1*4882a593Smuzhiyun===================================================== 2*4882a593SmuzhiyunMemory Resource Controller(Memcg) Implementation Memo 3*4882a593Smuzhiyun===================================================== 4*4882a593Smuzhiyun 5*4882a593SmuzhiyunLast Updated: 2010/2 6*4882a593Smuzhiyun 7*4882a593SmuzhiyunBase Kernel Version: based on 2.6.33-rc7-mm(candidate for 34). 8*4882a593Smuzhiyun 9*4882a593SmuzhiyunBecause VM is getting complex (one of reasons is memcg...), memcg's behavior 10*4882a593Smuzhiyunis complex. This is a document for memcg's internal behavior. 11*4882a593SmuzhiyunPlease note that implementation details can be changed. 12*4882a593Smuzhiyun 13*4882a593Smuzhiyun(*) Topics on API should be in Documentation/admin-guide/cgroup-v1/memory.rst) 14*4882a593Smuzhiyun 15*4882a593Smuzhiyun0. How to record usage ? 16*4882a593Smuzhiyun======================== 17*4882a593Smuzhiyun 18*4882a593Smuzhiyun 2 objects are used. 19*4882a593Smuzhiyun 20*4882a593Smuzhiyun page_cgroup ....an object per page. 21*4882a593Smuzhiyun 22*4882a593Smuzhiyun Allocated at boot or memory hotplug. Freed at memory hot removal. 23*4882a593Smuzhiyun 24*4882a593Smuzhiyun swap_cgroup ... an entry per swp_entry. 25*4882a593Smuzhiyun 26*4882a593Smuzhiyun Allocated at swapon(). Freed at swapoff(). 27*4882a593Smuzhiyun 28*4882a593Smuzhiyun The page_cgroup has USED bit and double count against a page_cgroup never 29*4882a593Smuzhiyun occurs. swap_cgroup is used only when a charged page is swapped-out. 30*4882a593Smuzhiyun 31*4882a593Smuzhiyun1. Charge 32*4882a593Smuzhiyun========= 33*4882a593Smuzhiyun 34*4882a593Smuzhiyun a page/swp_entry may be charged (usage += PAGE_SIZE) at 35*4882a593Smuzhiyun 36*4882a593Smuzhiyun mem_cgroup_try_charge() 37*4882a593Smuzhiyun 38*4882a593Smuzhiyun2. Uncharge 39*4882a593Smuzhiyun=========== 40*4882a593Smuzhiyun 41*4882a593Smuzhiyun a page/swp_entry may be uncharged (usage -= PAGE_SIZE) by 42*4882a593Smuzhiyun 43*4882a593Smuzhiyun mem_cgroup_uncharge() 44*4882a593Smuzhiyun Called when a page's refcount goes down to 0. 45*4882a593Smuzhiyun 46*4882a593Smuzhiyun mem_cgroup_uncharge_swap() 47*4882a593Smuzhiyun Called when swp_entry's refcnt goes down to 0. A charge against swap 48*4882a593Smuzhiyun disappears. 49*4882a593Smuzhiyun 50*4882a593Smuzhiyun3. charge-commit-cancel 51*4882a593Smuzhiyun======================= 52*4882a593Smuzhiyun 53*4882a593Smuzhiyun Memcg pages are charged in two steps: 54*4882a593Smuzhiyun 55*4882a593Smuzhiyun - mem_cgroup_try_charge() 56*4882a593Smuzhiyun - mem_cgroup_commit_charge() or mem_cgroup_cancel_charge() 57*4882a593Smuzhiyun 58*4882a593Smuzhiyun At try_charge(), there are no flags to say "this page is charged". 59*4882a593Smuzhiyun at this point, usage += PAGE_SIZE. 60*4882a593Smuzhiyun 61*4882a593Smuzhiyun At commit(), the page is associated with the memcg. 62*4882a593Smuzhiyun 63*4882a593Smuzhiyun At cancel(), simply usage -= PAGE_SIZE. 64*4882a593Smuzhiyun 65*4882a593SmuzhiyunUnder below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y. 66*4882a593Smuzhiyun 67*4882a593Smuzhiyun4. Anonymous 68*4882a593Smuzhiyun============ 69*4882a593Smuzhiyun 70*4882a593Smuzhiyun Anonymous page is newly allocated at 71*4882a593Smuzhiyun - page fault into MAP_ANONYMOUS mapping. 72*4882a593Smuzhiyun - Copy-On-Write. 73*4882a593Smuzhiyun 74*4882a593Smuzhiyun 4.1 Swap-in. 75*4882a593Smuzhiyun At swap-in, the page is taken from swap-cache. There are 2 cases. 76*4882a593Smuzhiyun 77*4882a593Smuzhiyun (a) If the SwapCache is newly allocated and read, it has no charges. 78*4882a593Smuzhiyun (b) If the SwapCache has been mapped by processes, it has been 79*4882a593Smuzhiyun charged already. 80*4882a593Smuzhiyun 81*4882a593Smuzhiyun 4.2 Swap-out. 82*4882a593Smuzhiyun At swap-out, typical state transition is below. 83*4882a593Smuzhiyun 84*4882a593Smuzhiyun (a) add to swap cache. (marked as SwapCache) 85*4882a593Smuzhiyun swp_entry's refcnt += 1. 86*4882a593Smuzhiyun (b) fully unmapped. 87*4882a593Smuzhiyun swp_entry's refcnt += # of ptes. 88*4882a593Smuzhiyun (c) write back to swap. 89*4882a593Smuzhiyun (d) delete from swap cache. (remove from SwapCache) 90*4882a593Smuzhiyun swp_entry's refcnt -= 1. 91*4882a593Smuzhiyun 92*4882a593Smuzhiyun 93*4882a593Smuzhiyun Finally, at task exit, 94*4882a593Smuzhiyun (e) zap_pte() is called and swp_entry's refcnt -=1 -> 0. 95*4882a593Smuzhiyun 96*4882a593Smuzhiyun5. Page Cache 97*4882a593Smuzhiyun============= 98*4882a593Smuzhiyun 99*4882a593Smuzhiyun Page Cache is charged at 100*4882a593Smuzhiyun - add_to_page_cache_locked(). 101*4882a593Smuzhiyun 102*4882a593Smuzhiyun The logic is very clear. (About migration, see below) 103*4882a593Smuzhiyun 104*4882a593Smuzhiyun Note: 105*4882a593Smuzhiyun __remove_from_page_cache() is called by remove_from_page_cache() 106*4882a593Smuzhiyun and __remove_mapping(). 107*4882a593Smuzhiyun 108*4882a593Smuzhiyun6. Shmem(tmpfs) Page Cache 109*4882a593Smuzhiyun=========================== 110*4882a593Smuzhiyun 111*4882a593Smuzhiyun The best way to understand shmem's page state transition is to read 112*4882a593Smuzhiyun mm/shmem.c. 113*4882a593Smuzhiyun 114*4882a593Smuzhiyun But brief explanation of the behavior of memcg around shmem will be 115*4882a593Smuzhiyun helpful to understand the logic. 116*4882a593Smuzhiyun 117*4882a593Smuzhiyun Shmem's page (just leaf page, not direct/indirect block) can be on 118*4882a593Smuzhiyun 119*4882a593Smuzhiyun - radix-tree of shmem's inode. 120*4882a593Smuzhiyun - SwapCache. 121*4882a593Smuzhiyun - Both on radix-tree and SwapCache. This happens at swap-in 122*4882a593Smuzhiyun and swap-out, 123*4882a593Smuzhiyun 124*4882a593Smuzhiyun It's charged when... 125*4882a593Smuzhiyun 126*4882a593Smuzhiyun - A new page is added to shmem's radix-tree. 127*4882a593Smuzhiyun - A swp page is read. (move a charge from swap_cgroup to page_cgroup) 128*4882a593Smuzhiyun 129*4882a593Smuzhiyun7. Page Migration 130*4882a593Smuzhiyun================= 131*4882a593Smuzhiyun 132*4882a593Smuzhiyun mem_cgroup_migrate() 133*4882a593Smuzhiyun 134*4882a593Smuzhiyun8. LRU 135*4882a593Smuzhiyun====== 136*4882a593Smuzhiyun Each memcg has its own private LRU. Now, its handling is under global 137*4882a593Smuzhiyun VM's control (means that it's handled under global pgdat->lru_lock). 138*4882a593Smuzhiyun Almost all routines around memcg's LRU is called by global LRU's 139*4882a593Smuzhiyun list management functions under pgdat->lru_lock. 140*4882a593Smuzhiyun 141*4882a593Smuzhiyun A special function is mem_cgroup_isolate_pages(). This scans 142*4882a593Smuzhiyun memcg's private LRU and call __isolate_lru_page() to extract a page 143*4882a593Smuzhiyun from LRU. 144*4882a593Smuzhiyun 145*4882a593Smuzhiyun (By __isolate_lru_page(), the page is removed from both of global and 146*4882a593Smuzhiyun private LRU.) 147*4882a593Smuzhiyun 148*4882a593Smuzhiyun 149*4882a593Smuzhiyun9. Typical Tests. 150*4882a593Smuzhiyun================= 151*4882a593Smuzhiyun 152*4882a593Smuzhiyun Tests for racy cases. 153*4882a593Smuzhiyun 154*4882a593Smuzhiyun9.1 Small limit to memcg. 155*4882a593Smuzhiyun------------------------- 156*4882a593Smuzhiyun 157*4882a593Smuzhiyun When you do test to do racy case, it's good test to set memcg's limit 158*4882a593Smuzhiyun to be very small rather than GB. Many races found in the test under 159*4882a593Smuzhiyun xKB or xxMB limits. 160*4882a593Smuzhiyun 161*4882a593Smuzhiyun (Memory behavior under GB and Memory behavior under MB shows very 162*4882a593Smuzhiyun different situation.) 163*4882a593Smuzhiyun 164*4882a593Smuzhiyun9.2 Shmem 165*4882a593Smuzhiyun--------- 166*4882a593Smuzhiyun 167*4882a593Smuzhiyun Historically, memcg's shmem handling was poor and we saw some amount 168*4882a593Smuzhiyun of troubles here. This is because shmem is page-cache but can be 169*4882a593Smuzhiyun SwapCache. Test with shmem/tmpfs is always good test. 170*4882a593Smuzhiyun 171*4882a593Smuzhiyun9.3 Migration 172*4882a593Smuzhiyun------------- 173*4882a593Smuzhiyun 174*4882a593Smuzhiyun For NUMA, migration is an another special case. To do easy test, cpuset 175*4882a593Smuzhiyun is useful. Following is a sample script to do migration:: 176*4882a593Smuzhiyun 177*4882a593Smuzhiyun mount -t cgroup -o cpuset none /opt/cpuset 178*4882a593Smuzhiyun 179*4882a593Smuzhiyun mkdir /opt/cpuset/01 180*4882a593Smuzhiyun echo 1 > /opt/cpuset/01/cpuset.cpus 181*4882a593Smuzhiyun echo 0 > /opt/cpuset/01/cpuset.mems 182*4882a593Smuzhiyun echo 1 > /opt/cpuset/01/cpuset.memory_migrate 183*4882a593Smuzhiyun mkdir /opt/cpuset/02 184*4882a593Smuzhiyun echo 1 > /opt/cpuset/02/cpuset.cpus 185*4882a593Smuzhiyun echo 1 > /opt/cpuset/02/cpuset.mems 186*4882a593Smuzhiyun echo 1 > /opt/cpuset/02/cpuset.memory_migrate 187*4882a593Smuzhiyun 188*4882a593Smuzhiyun In above set, when you moves a task from 01 to 02, page migration to 189*4882a593Smuzhiyun node 0 to node 1 will occur. Following is a script to migrate all 190*4882a593Smuzhiyun under cpuset.:: 191*4882a593Smuzhiyun 192*4882a593Smuzhiyun -- 193*4882a593Smuzhiyun move_task() 194*4882a593Smuzhiyun { 195*4882a593Smuzhiyun for pid in $1 196*4882a593Smuzhiyun do 197*4882a593Smuzhiyun /bin/echo $pid >$2/tasks 2>/dev/null 198*4882a593Smuzhiyun echo -n $pid 199*4882a593Smuzhiyun echo -n " " 200*4882a593Smuzhiyun done 201*4882a593Smuzhiyun echo END 202*4882a593Smuzhiyun } 203*4882a593Smuzhiyun 204*4882a593Smuzhiyun G1_TASK=`cat ${G1}/tasks` 205*4882a593Smuzhiyun G2_TASK=`cat ${G2}/tasks` 206*4882a593Smuzhiyun move_task "${G1_TASK}" ${G2} & 207*4882a593Smuzhiyun -- 208*4882a593Smuzhiyun 209*4882a593Smuzhiyun9.4 Memory hotplug 210*4882a593Smuzhiyun------------------ 211*4882a593Smuzhiyun 212*4882a593Smuzhiyun memory hotplug test is one of good test. 213*4882a593Smuzhiyun 214*4882a593Smuzhiyun to offline memory, do following:: 215*4882a593Smuzhiyun 216*4882a593Smuzhiyun # echo offline > /sys/devices/system/memory/memoryXXX/state 217*4882a593Smuzhiyun 218*4882a593Smuzhiyun (XXX is the place of memory) 219*4882a593Smuzhiyun 220*4882a593Smuzhiyun This is an easy way to test page migration, too. 221*4882a593Smuzhiyun 222*4882a593Smuzhiyun9.5 mkdir/rmdir 223*4882a593Smuzhiyun--------------- 224*4882a593Smuzhiyun 225*4882a593Smuzhiyun When using hierarchy, mkdir/rmdir test should be done. 226*4882a593Smuzhiyun Use tests like the following:: 227*4882a593Smuzhiyun 228*4882a593Smuzhiyun echo 1 >/opt/cgroup/01/memory/use_hierarchy 229*4882a593Smuzhiyun mkdir /opt/cgroup/01/child_a 230*4882a593Smuzhiyun mkdir /opt/cgroup/01/child_b 231*4882a593Smuzhiyun 232*4882a593Smuzhiyun set limit to 01. 233*4882a593Smuzhiyun add limit to 01/child_b 234*4882a593Smuzhiyun run jobs under child_a and child_b 235*4882a593Smuzhiyun 236*4882a593Smuzhiyun create/delete following groups at random while jobs are running:: 237*4882a593Smuzhiyun 238*4882a593Smuzhiyun /opt/cgroup/01/child_a/child_aa 239*4882a593Smuzhiyun /opt/cgroup/01/child_b/child_bb 240*4882a593Smuzhiyun /opt/cgroup/01/child_c 241*4882a593Smuzhiyun 242*4882a593Smuzhiyun running new jobs in new group is also good. 243*4882a593Smuzhiyun 244*4882a593Smuzhiyun9.6 Mount with other subsystems 245*4882a593Smuzhiyun------------------------------- 246*4882a593Smuzhiyun 247*4882a593Smuzhiyun Mounting with other subsystems is a good test because there is a 248*4882a593Smuzhiyun race and lock dependency with other cgroup subsystems. 249*4882a593Smuzhiyun 250*4882a593Smuzhiyun example:: 251*4882a593Smuzhiyun 252*4882a593Smuzhiyun # mount -t cgroup none /cgroup -o cpuset,memory,cpu,devices 253*4882a593Smuzhiyun 254*4882a593Smuzhiyun and do task move, mkdir, rmdir etc...under this. 255*4882a593Smuzhiyun 256*4882a593Smuzhiyun9.7 swapoff 257*4882a593Smuzhiyun----------- 258*4882a593Smuzhiyun 259*4882a593Smuzhiyun Besides management of swap is one of complicated parts of memcg, 260*4882a593Smuzhiyun call path of swap-in at swapoff is not same as usual swap-in path.. 261*4882a593Smuzhiyun It's worth to be tested explicitly. 262*4882a593Smuzhiyun 263*4882a593Smuzhiyun For example, test like following is good: 264*4882a593Smuzhiyun 265*4882a593Smuzhiyun (Shell-A):: 266*4882a593Smuzhiyun 267*4882a593Smuzhiyun # mount -t cgroup none /cgroup -o memory 268*4882a593Smuzhiyun # mkdir /cgroup/test 269*4882a593Smuzhiyun # echo 40M > /cgroup/test/memory.limit_in_bytes 270*4882a593Smuzhiyun # echo 0 > /cgroup/test/tasks 271*4882a593Smuzhiyun 272*4882a593Smuzhiyun Run malloc(100M) program under this. You'll see 60M of swaps. 273*4882a593Smuzhiyun 274*4882a593Smuzhiyun (Shell-B):: 275*4882a593Smuzhiyun 276*4882a593Smuzhiyun # move all tasks in /cgroup/test to /cgroup 277*4882a593Smuzhiyun # /sbin/swapoff -a 278*4882a593Smuzhiyun # rmdir /cgroup/test 279*4882a593Smuzhiyun # kill malloc task. 280*4882a593Smuzhiyun 281*4882a593Smuzhiyun Of course, tmpfs v.s. swapoff test should be tested, too. 282*4882a593Smuzhiyun 283*4882a593Smuzhiyun9.8 OOM-Killer 284*4882a593Smuzhiyun-------------- 285*4882a593Smuzhiyun 286*4882a593Smuzhiyun Out-of-memory caused by memcg's limit will kill tasks under 287*4882a593Smuzhiyun the memcg. When hierarchy is used, a task under hierarchy 288*4882a593Smuzhiyun will be killed by the kernel. 289*4882a593Smuzhiyun 290*4882a593Smuzhiyun In this case, panic_on_oom shouldn't be invoked and tasks 291*4882a593Smuzhiyun in other groups shouldn't be killed. 292*4882a593Smuzhiyun 293*4882a593Smuzhiyun It's not difficult to cause OOM under memcg as following. 294*4882a593Smuzhiyun 295*4882a593Smuzhiyun Case A) when you can swapoff:: 296*4882a593Smuzhiyun 297*4882a593Smuzhiyun #swapoff -a 298*4882a593Smuzhiyun #echo 50M > /memory.limit_in_bytes 299*4882a593Smuzhiyun 300*4882a593Smuzhiyun run 51M of malloc 301*4882a593Smuzhiyun 302*4882a593Smuzhiyun Case B) when you use mem+swap limitation:: 303*4882a593Smuzhiyun 304*4882a593Smuzhiyun #echo 50M > memory.limit_in_bytes 305*4882a593Smuzhiyun #echo 50M > memory.memsw.limit_in_bytes 306*4882a593Smuzhiyun 307*4882a593Smuzhiyun run 51M of malloc 308*4882a593Smuzhiyun 309*4882a593Smuzhiyun9.9 Move charges at task migration 310*4882a593Smuzhiyun---------------------------------- 311*4882a593Smuzhiyun 312*4882a593Smuzhiyun Charges associated with a task can be moved along with task migration. 313*4882a593Smuzhiyun 314*4882a593Smuzhiyun (Shell-A):: 315*4882a593Smuzhiyun 316*4882a593Smuzhiyun #mkdir /cgroup/A 317*4882a593Smuzhiyun #echo $$ >/cgroup/A/tasks 318*4882a593Smuzhiyun 319*4882a593Smuzhiyun run some programs which uses some amount of memory in /cgroup/A. 320*4882a593Smuzhiyun 321*4882a593Smuzhiyun (Shell-B):: 322*4882a593Smuzhiyun 323*4882a593Smuzhiyun #mkdir /cgroup/B 324*4882a593Smuzhiyun #echo 1 >/cgroup/B/memory.move_charge_at_immigrate 325*4882a593Smuzhiyun #echo "pid of the program running in group A" >/cgroup/B/tasks 326*4882a593Smuzhiyun 327*4882a593Smuzhiyun You can see charges have been moved by reading ``*.usage_in_bytes`` or 328*4882a593Smuzhiyun memory.stat of both A and B. 329*4882a593Smuzhiyun 330*4882a593Smuzhiyun See 8.2 of Documentation/admin-guide/cgroup-v1/memory.rst to see what value should 331*4882a593Smuzhiyun be written to move_charge_at_immigrate. 332*4882a593Smuzhiyun 333*4882a593Smuzhiyun9.10 Memory thresholds 334*4882a593Smuzhiyun---------------------- 335*4882a593Smuzhiyun 336*4882a593Smuzhiyun Memory controller implements memory thresholds using cgroups notification 337*4882a593Smuzhiyun API. You can use tools/cgroup/cgroup_event_listener.c to test it. 338*4882a593Smuzhiyun 339*4882a593Smuzhiyun (Shell-A) Create cgroup and run event listener:: 340*4882a593Smuzhiyun 341*4882a593Smuzhiyun # mkdir /cgroup/A 342*4882a593Smuzhiyun # ./cgroup_event_listener /cgroup/A/memory.usage_in_bytes 5M 343*4882a593Smuzhiyun 344*4882a593Smuzhiyun (Shell-B) Add task to cgroup and try to allocate and free memory:: 345*4882a593Smuzhiyun 346*4882a593Smuzhiyun # echo $$ >/cgroup/A/tasks 347*4882a593Smuzhiyun # a="$(dd if=/dev/zero bs=1M count=10)" 348*4882a593Smuzhiyun # a= 349*4882a593Smuzhiyun 350*4882a593Smuzhiyun You will see message from cgroup_event_listener every time you cross 351*4882a593Smuzhiyun the thresholds. 352*4882a593Smuzhiyun 353*4882a593Smuzhiyun Use /cgroup/A/memory.memsw.usage_in_bytes to test memsw thresholds. 354*4882a593Smuzhiyun 355*4882a593Smuzhiyun It's good idea to test root cgroup as well. 356