xref: /OK3568_Linux_fs/external/rknpu2/examples/rknn_yolov5_demo/README.md (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyun# Yolo-v5 demo
2*4882a593Smuzhiyun
3*4882a593Smuzhiyun## 导出rknn模型
4*4882a593Smuzhiyun
5*4882a593Smuzhiyun请参考 https://github.com/airockchip/rknn_model_zoo/tree/main/models/vision/object_detection/yolov5-pytorch
6*4882a593Smuzhiyun
7*4882a593Smuzhiyun
8*4882a593Smuzhiyun
9*4882a593Smuzhiyun## 注意事项
10*4882a593Smuzhiyun
11*4882a593Smuzhiyun1. 使用rknn-toolkit2版本大于等于1.1.2。
12*4882a593Smuzhiyun2. 切换成自己训练的模型时,请注意对齐anchor等后处理参数,否则会导致后处理解析出错。
13*4882a593Smuzhiyun3. 官网和rk预训练模型都是检测80类的目标,如果自己训练的模型,需要更改include/postprocess.h中的OBJ_CLASS_NUM以及NMS_THRESH,BOX_THRESH后处理参数。
14*4882a593Smuzhiyun5. demo需要librga.so的支持,编译使用请参考https://github.com/rockchip-linux/linux-rga
15*4882a593Smuzhiyun5. 由于硬件限制,该demo的模型默认把 yolov5 模型的后处理部分,移至cpu实现。本demo附带的模型均使用relu为激活函数,相比silu激活函数精度略微下降,性能大幅上升。
16*4882a593Smuzhiyun
17*4882a593Smuzhiyun
18*4882a593Smuzhiyun
19*4882a593Smuzhiyun## Android Demo
20*4882a593Smuzhiyun
21*4882a593Smuzhiyun### 编译
22*4882a593Smuzhiyun
23*4882a593Smuzhiyun根据指定平台修改 `build-android_<TARGET_PLATFORM>.sh`中的Android NDK的路径 `ANDROID_NDK_PATH`,<TARGET_PLATFORM>可以是RK356X或RK3588 例如修改成:
24*4882a593Smuzhiyun
25*4882a593Smuzhiyun```sh
26*4882a593SmuzhiyunANDROID_NDK_PATH=~/opt/tool_chain/android-ndk-r17
27*4882a593Smuzhiyun```
28*4882a593Smuzhiyun
29*4882a593Smuzhiyun然后执行:
30*4882a593Smuzhiyun
31*4882a593Smuzhiyun```sh
32*4882a593Smuzhiyun./build-android_<TARGET_PLATFORM>.sh
33*4882a593Smuzhiyun```
34*4882a593Smuzhiyun
35*4882a593Smuzhiyun### 推送执行文件到板子
36*4882a593Smuzhiyun
37*4882a593Smuzhiyun连接板子的usb口到PC,将整个demo目录到 `/data`:
38*4882a593Smuzhiyun
39*4882a593Smuzhiyun```sh
40*4882a593Smuzhiyunadb root
41*4882a593Smuzhiyunadb remount
42*4882a593Smuzhiyunadb push install/rknn_yolov5_demo /data/
43*4882a593Smuzhiyun```
44*4882a593Smuzhiyun
45*4882a593Smuzhiyun### 运行
46*4882a593Smuzhiyun
47*4882a593Smuzhiyun```sh
48*4882a593Smuzhiyunadb shell
49*4882a593Smuzhiyuncd /data/rknn_yolov5_demo/
50*4882a593Smuzhiyun
51*4882a593Smuzhiyunexport LD_LIBRARY_PATH=./lib
52*4882a593Smuzhiyun./rknn_yolov5_demo model/<TARGET_PLATFORM>/yolov5s-640-640.rknn model/bus.jpg
53*4882a593Smuzhiyun```
54*4882a593Smuzhiyun
55*4882a593Smuzhiyun## Aarch64 Linux Demo
56*4882a593Smuzhiyun
57*4882a593Smuzhiyun### 编译
58*4882a593Smuzhiyun
59*4882a593Smuzhiyun根据指定平台修改 `build-linux_<TARGET_PLATFORM>.sh`中的交叉编译器所在目录的路径 `TOOL_CHAIN`,例如修改成
60*4882a593Smuzhiyun
61*4882a593Smuzhiyun```sh
62*4882a593Smuzhiyunexport TOOL_CHAIN=~/opt/tool_chain/gcc-9.3.0-x86_64_aarch64-linux-gnu/host
63*4882a593Smuzhiyun```
64*4882a593Smuzhiyun
65*4882a593Smuzhiyun然后执行:
66*4882a593Smuzhiyun
67*4882a593Smuzhiyun```sh
68*4882a593Smuzhiyun./build-linux_<TARGET_PLATFORM>.sh
69*4882a593Smuzhiyun```
70*4882a593Smuzhiyun
71*4882a593Smuzhiyun### 推送执行文件到板子
72*4882a593Smuzhiyun
73*4882a593Smuzhiyun
74*4882a593Smuzhiyuninstall/rknn_yolov5_demo_Linux 拷贝到板子的/userdata/目录.
75*4882a593Smuzhiyun
76*4882a593Smuzhiyun- 如果使用rockchip的EVB板子,可以使用adb将文件推到板子上:
77*4882a593Smuzhiyun
78*4882a593Smuzhiyun```
79*4882a593Smuzhiyunadb push install/rknn_yolov5_demo_Linux /userdata/
80*4882a593Smuzhiyun```
81*4882a593Smuzhiyun
82*4882a593Smuzhiyun- 如果使用其他板子,可以使用scp等方式将install/rknn_yolov5_demo_Linux拷贝到板子的/userdata/目录
83*4882a593Smuzhiyun
84*4882a593Smuzhiyun### 运行
85*4882a593Smuzhiyun
86*4882a593Smuzhiyun```sh
87*4882a593Smuzhiyunadb shell
88*4882a593Smuzhiyuncd /userdata/rknn_yolov5_demo_Linux/
89*4882a593Smuzhiyun
90*4882a593Smuzhiyunexport LD_LIBRARY_PATH=./lib
91*4882a593Smuzhiyun./rknn_yolov5_demo model/<TARGET_PLATFORM>/yolov5s-640-640.rknn model/bus.jpg
92*4882a593Smuzhiyun```
93*4882a593Smuzhiyun
94*4882a593SmuzhiyunNote: Try searching the location of librga.so and add it to LD_LIBRARY_PATH if the librga.so is not found on the lib folder.
95*4882a593SmuzhiyunUsing the following commands to add to LD_LIBRARY_PATH.
96*4882a593Smuzhiyun
97*4882a593Smuzhiyun```sh
98*4882a593Smuzhiyunexport LD_LIBRARY_PATH=./lib:<LOCATION_LIBRGA.SO>
99*4882a593Smuzhiyun```
100*4882a593Smuzhiyun
101*4882a593Smuzhiyun## 视频流Demo运行命令参考如下:
102*4882a593Smuzhiyun- h264视频
103*4882a593Smuzhiyun```
104*4882a593Smuzhiyun./rknn_yolov5_video_demo model/<TARGET_PLATFORM>/yolov5s-640-640.rknn xxx.h264 264
105*4882a593Smuzhiyun```
106*4882a593Smuzhiyun注意需要使用h264码流视频,可以使用如下命令转换得到:
107*4882a593Smuzhiyun```
108*4882a593Smuzhiyunffmpeg -i xxx.mp4 -vcodec h264 out.h264
109*4882a593Smuzhiyun```
110*4882a593Smuzhiyun
111*4882a593Smuzhiyun- h265视频
112*4882a593Smuzhiyun```
113*4882a593Smuzhiyun./rknn_yolov5_video_demo model/<TARGET_PLATFORM>/yolov5s-640-640.rknn xxx.hevc 265
114*4882a593Smuzhiyun```
115*4882a593Smuzhiyun注意需要使用h265码流视频,可以使用如下命令转换得到:
116*4882a593Smuzhiyun```
117*4882a593Smuzhiyunffmpeg -i xxx.mp4 -vcodec hevc out.hevc
118*4882a593Smuzhiyun```
119*4882a593Smuzhiyun- rtsp视频流
120*4882a593Smuzhiyun```
121*4882a593Smuzhiyun./rknn_yolov5_video_demo model/<TARGET_PLATFORM>/yolov5s-640-640.rknn <RTSP_URL> 265
122*4882a593Smuzhiyun```
123*4882a593Smuzhiyun
124*4882a593Smuzhiyun### 注意
125*4882a593Smuzhiyun
126*4882a593Smuzhiyun- 需要根据系统的rga驱动选择正确的librga库,具体依赖请参考: https://github.com/airockchip/librga
127*4882a593Smuzhiyun- **rk3562 目前仅支持h264视频流**
128*4882a593Smuzhiyun- **rtsp 视频流Demo仅在Linux系统上支持,Android上目前还不支持**