xref: /OK3568_Linux_fs/external/rknn-toolkit2/examples/onnx/resnet50v2/test.py (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1import os
2import urllib
3import traceback
4import time
5import sys
6import numpy as np
7import cv2
8from rknn.api import RKNN
9
10ONNX_MODEL = 'resnet50v2.onnx'
11RKNN_MODEL = 'resnet50v2.rknn'
12
13
14def show_outputs(outputs):
15    output = outputs[0][0]
16    output_sorted = sorted(output, reverse=True)
17    top5_str = 'resnet50v2\n-----TOP 5-----\n'
18    for i in range(5):
19        value = output_sorted[i]
20        index = np.where(output == value)
21        for j in range(len(index)):
22            if (i + j) >= 5:
23                break
24            if value > 0:
25                topi = '{}: {}\n'.format(index[j], value)
26            else:
27                topi = '-1: 0.0\n'
28            top5_str += topi
29    print(top5_str)
30
31
32def readable_speed(speed):
33    speed_bytes = float(speed)
34    speed_kbytes = speed_bytes / 1024
35    if speed_kbytes > 1024:
36        speed_mbytes = speed_kbytes / 1024
37        if speed_mbytes > 1024:
38            speed_gbytes = speed_mbytes / 1024
39            return "{:.2f} GB/s".format(speed_gbytes)
40        else:
41            return "{:.2f} MB/s".format(speed_mbytes)
42    else:
43        return "{:.2f} KB/s".format(speed_kbytes)
44
45
46def show_progress(blocknum, blocksize, totalsize):
47    speed = (blocknum * blocksize) / (time.time() - start_time)
48    speed_str = " Speed: {}".format(readable_speed(speed))
49    recv_size = blocknum * blocksize
50
51    f = sys.stdout
52    progress = (recv_size / totalsize)
53    progress_str = "{:.2f}%".format(progress * 100)
54    n = round(progress * 50)
55    s = ('#' * n).ljust(50, '-')
56    f.write(progress_str.ljust(8, ' ') + '[' + s + ']' + speed_str)
57    f.flush()
58    f.write('\r\n')
59
60
61if __name__ == '__main__':
62
63    # Create RKNN object
64    rknn = RKNN(verbose=True)
65
66    # If resnet50v2 does not exist, download it.
67    # Download address:
68    # https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.onnx
69    if not os.path.exists(ONNX_MODEL):
70        print('--> Download {}'.format(ONNX_MODEL))
71        url = 'https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.onnx'
72        download_file = ONNX_MODEL
73        try:
74            start_time = time.time()
75            urllib.request.urlretrieve(url, download_file, show_progress)
76        except:
77            print('Download {} failed.'.format(download_file))
78            print(traceback.format_exc())
79            exit(-1)
80        print('done')
81
82    # pre-process config
83    print('--> config model')
84    rknn.config(mean_values=[123.675, 116.28, 103.53], std_values=[58.82, 58.82, 58.82])
85    print('done')
86
87    # Load model
88    print('--> Loading model')
89    ret = rknn.load_onnx(model=ONNX_MODEL)
90    if ret != 0:
91        print('Load model failed!')
92        exit(ret)
93    print('done')
94
95    # Build model
96    print('--> Building model')
97    ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
98    if ret != 0:
99        print('Build model failed!')
100        exit(ret)
101    print('done')
102
103    # Export rknn model
104    print('--> Export rknn model')
105    ret = rknn.export_rknn(RKNN_MODEL)
106    if ret != 0:
107        print('Export rknn model failed!')
108        exit(ret)
109    print('done')
110
111    # Set inputs
112    img = cv2.imread('./dog_224x224.jpg')
113    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
114
115    # Init runtime environment
116    print('--> Init runtime environment')
117    ret = rknn.init_runtime()
118    if ret != 0:
119        print('Init runtime environment failed!')
120        exit(ret)
121    print('done')
122
123    # Inference
124    print('--> Running model')
125    outputs = rknn.inference(inputs=[img])
126    np.save('./onnx_resnet50v2_0.npy', outputs[0])
127    x = outputs[0]
128    output = np.exp(x)/np.sum(np.exp(x))
129    outputs = [output]
130    show_outputs(outputs)
131    print('done')
132
133    rknn.release()
134