xref: /OK3568_Linux_fs/external/rknn-toolkit2/examples/onnx/resnet50v2/test.py (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyunimport os
2*4882a593Smuzhiyunimport urllib
3*4882a593Smuzhiyunimport traceback
4*4882a593Smuzhiyunimport time
5*4882a593Smuzhiyunimport sys
6*4882a593Smuzhiyunimport numpy as np
7*4882a593Smuzhiyunimport cv2
8*4882a593Smuzhiyunfrom rknn.api import RKNN
9*4882a593Smuzhiyun
10*4882a593SmuzhiyunONNX_MODEL = 'resnet50v2.onnx'
11*4882a593SmuzhiyunRKNN_MODEL = 'resnet50v2.rknn'
12*4882a593Smuzhiyun
13*4882a593Smuzhiyun
14*4882a593Smuzhiyundef show_outputs(outputs):
15*4882a593Smuzhiyun    output = outputs[0][0]
16*4882a593Smuzhiyun    output_sorted = sorted(output, reverse=True)
17*4882a593Smuzhiyun    top5_str = 'resnet50v2\n-----TOP 5-----\n'
18*4882a593Smuzhiyun    for i in range(5):
19*4882a593Smuzhiyun        value = output_sorted[i]
20*4882a593Smuzhiyun        index = np.where(output == value)
21*4882a593Smuzhiyun        for j in range(len(index)):
22*4882a593Smuzhiyun            if (i + j) >= 5:
23*4882a593Smuzhiyun                break
24*4882a593Smuzhiyun            if value > 0:
25*4882a593Smuzhiyun                topi = '{}: {}\n'.format(index[j], value)
26*4882a593Smuzhiyun            else:
27*4882a593Smuzhiyun                topi = '-1: 0.0\n'
28*4882a593Smuzhiyun            top5_str += topi
29*4882a593Smuzhiyun    print(top5_str)
30*4882a593Smuzhiyun
31*4882a593Smuzhiyun
32*4882a593Smuzhiyundef readable_speed(speed):
33*4882a593Smuzhiyun    speed_bytes = float(speed)
34*4882a593Smuzhiyun    speed_kbytes = speed_bytes / 1024
35*4882a593Smuzhiyun    if speed_kbytes > 1024:
36*4882a593Smuzhiyun        speed_mbytes = speed_kbytes / 1024
37*4882a593Smuzhiyun        if speed_mbytes > 1024:
38*4882a593Smuzhiyun            speed_gbytes = speed_mbytes / 1024
39*4882a593Smuzhiyun            return "{:.2f} GB/s".format(speed_gbytes)
40*4882a593Smuzhiyun        else:
41*4882a593Smuzhiyun            return "{:.2f} MB/s".format(speed_mbytes)
42*4882a593Smuzhiyun    else:
43*4882a593Smuzhiyun        return "{:.2f} KB/s".format(speed_kbytes)
44*4882a593Smuzhiyun
45*4882a593Smuzhiyun
46*4882a593Smuzhiyundef show_progress(blocknum, blocksize, totalsize):
47*4882a593Smuzhiyun    speed = (blocknum * blocksize) / (time.time() - start_time)
48*4882a593Smuzhiyun    speed_str = " Speed: {}".format(readable_speed(speed))
49*4882a593Smuzhiyun    recv_size = blocknum * blocksize
50*4882a593Smuzhiyun
51*4882a593Smuzhiyun    f = sys.stdout
52*4882a593Smuzhiyun    progress = (recv_size / totalsize)
53*4882a593Smuzhiyun    progress_str = "{:.2f}%".format(progress * 100)
54*4882a593Smuzhiyun    n = round(progress * 50)
55*4882a593Smuzhiyun    s = ('#' * n).ljust(50, '-')
56*4882a593Smuzhiyun    f.write(progress_str.ljust(8, ' ') + '[' + s + ']' + speed_str)
57*4882a593Smuzhiyun    f.flush()
58*4882a593Smuzhiyun    f.write('\r\n')
59*4882a593Smuzhiyun
60*4882a593Smuzhiyun
61*4882a593Smuzhiyunif __name__ == '__main__':
62*4882a593Smuzhiyun
63*4882a593Smuzhiyun    # Create RKNN object
64*4882a593Smuzhiyun    rknn = RKNN(verbose=True)
65*4882a593Smuzhiyun
66*4882a593Smuzhiyun    # If resnet50v2 does not exist, download it.
67*4882a593Smuzhiyun    # Download address:
68*4882a593Smuzhiyun    # https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.onnx
69*4882a593Smuzhiyun    if not os.path.exists(ONNX_MODEL):
70*4882a593Smuzhiyun        print('--> Download {}'.format(ONNX_MODEL))
71*4882a593Smuzhiyun        url = 'https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.onnx'
72*4882a593Smuzhiyun        download_file = ONNX_MODEL
73*4882a593Smuzhiyun        try:
74*4882a593Smuzhiyun            start_time = time.time()
75*4882a593Smuzhiyun            urllib.request.urlretrieve(url, download_file, show_progress)
76*4882a593Smuzhiyun        except:
77*4882a593Smuzhiyun            print('Download {} failed.'.format(download_file))
78*4882a593Smuzhiyun            print(traceback.format_exc())
79*4882a593Smuzhiyun            exit(-1)
80*4882a593Smuzhiyun        print('done')
81*4882a593Smuzhiyun
82*4882a593Smuzhiyun    # pre-process config
83*4882a593Smuzhiyun    print('--> config model')
84*4882a593Smuzhiyun    rknn.config(mean_values=[123.675, 116.28, 103.53], std_values=[58.82, 58.82, 58.82])
85*4882a593Smuzhiyun    print('done')
86*4882a593Smuzhiyun
87*4882a593Smuzhiyun    # Load model
88*4882a593Smuzhiyun    print('--> Loading model')
89*4882a593Smuzhiyun    ret = rknn.load_onnx(model=ONNX_MODEL)
90*4882a593Smuzhiyun    if ret != 0:
91*4882a593Smuzhiyun        print('Load model failed!')
92*4882a593Smuzhiyun        exit(ret)
93*4882a593Smuzhiyun    print('done')
94*4882a593Smuzhiyun
95*4882a593Smuzhiyun    # Build model
96*4882a593Smuzhiyun    print('--> Building model')
97*4882a593Smuzhiyun    ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
98*4882a593Smuzhiyun    if ret != 0:
99*4882a593Smuzhiyun        print('Build model failed!')
100*4882a593Smuzhiyun        exit(ret)
101*4882a593Smuzhiyun    print('done')
102*4882a593Smuzhiyun
103*4882a593Smuzhiyun    # Export rknn model
104*4882a593Smuzhiyun    print('--> Export rknn model')
105*4882a593Smuzhiyun    ret = rknn.export_rknn(RKNN_MODEL)
106*4882a593Smuzhiyun    if ret != 0:
107*4882a593Smuzhiyun        print('Export rknn model failed!')
108*4882a593Smuzhiyun        exit(ret)
109*4882a593Smuzhiyun    print('done')
110*4882a593Smuzhiyun
111*4882a593Smuzhiyun    # Set inputs
112*4882a593Smuzhiyun    img = cv2.imread('./dog_224x224.jpg')
113*4882a593Smuzhiyun    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
114*4882a593Smuzhiyun
115*4882a593Smuzhiyun    # Init runtime environment
116*4882a593Smuzhiyun    print('--> Init runtime environment')
117*4882a593Smuzhiyun    ret = rknn.init_runtime()
118*4882a593Smuzhiyun    if ret != 0:
119*4882a593Smuzhiyun        print('Init runtime environment failed!')
120*4882a593Smuzhiyun        exit(ret)
121*4882a593Smuzhiyun    print('done')
122*4882a593Smuzhiyun
123*4882a593Smuzhiyun    # Inference
124*4882a593Smuzhiyun    print('--> Running model')
125*4882a593Smuzhiyun    outputs = rknn.inference(inputs=[img])
126*4882a593Smuzhiyun    np.save('./onnx_resnet50v2_0.npy', outputs[0])
127*4882a593Smuzhiyun    x = outputs[0]
128*4882a593Smuzhiyun    output = np.exp(x)/np.sum(np.exp(x))
129*4882a593Smuzhiyun    outputs = [output]
130*4882a593Smuzhiyun    show_outputs(outputs)
131*4882a593Smuzhiyun    print('done')
132*4882a593Smuzhiyun
133*4882a593Smuzhiyun    rknn.release()
134