xref: /OK3568_Linux_fs/external/rknn-toolkit2/examples/functions/accuracy_analysis/test.py (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1import os
2import urllib
3import traceback
4import time
5import sys
6import numpy as np
7import cv2
8from rknn.api import RKNN
9import urllib.request
10
11ONNX_MODEL = 'resnet50v2.onnx'
12RKNN_MODEL = 'resnet50v2.rknn'
13
14
15def show_outputs(outputs):
16    output = outputs
17    output_sorted = sorted(output, reverse=True)
18    top5_str = 'resnet50v2\n-----TOP 5-----\n'
19    for i in range(5):
20        value = output_sorted[i]
21        index = np.where(output == value)
22        for j in range(len(index)):
23            if (i + j) >= 5:
24                break
25            if value > 0:
26                topi = '{}: {}\n'.format(index[j], value)
27            else:
28                topi = '-1: 0.0\n'
29            top5_str += topi
30    print(top5_str)
31
32
33def readable_speed(speed):
34    speed_bytes = float(speed)
35    speed_kbytes = speed_bytes / 1024
36    if speed_kbytes > 1024:
37        speed_mbytes = speed_kbytes / 1024
38        if speed_mbytes > 1024:
39            speed_gbytes = speed_mbytes / 1024
40            return "{:.2f} GB/s".format(speed_gbytes)
41        else:
42            return "{:.2f} MB/s".format(speed_mbytes)
43    else:
44        return "{:.2f} KB/s".format(speed_kbytes)
45
46
47def show_progress(blocknum, blocksize, totalsize):
48    speed = (blocknum * blocksize) / (time.time() - start_time)
49    speed_str = " Speed: {}".format(readable_speed(speed))
50    recv_size = blocknum * blocksize
51
52    f = sys.stdout
53    progress = (recv_size / totalsize)
54    progress_str = "{:.2f}%".format(progress * 100)
55    n = round(progress * 50)
56    s = ('#' * n).ljust(50, '-')
57    f.write(progress_str.ljust(8, ' ') + '[' + s + ']' + speed_str)
58    f.flush()
59    f.write('\r\n')
60
61
62if __name__ == '__main__':
63
64    # Create RKNN object
65    rknn = RKNN(verbose=True)
66
67    # If resnet50v2 does not exist, download it.
68    # Download address:
69    # https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.onnx
70    if not os.path.exists(ONNX_MODEL):
71        print('--> Download {}'.format(ONNX_MODEL))
72        url = 'https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.onnx'
73        download_file = ONNX_MODEL
74        try:
75            start_time = time.time()
76            urllib.request.urlretrieve(url, download_file, show_progress)
77        except:
78            print('Download {} failed.'.format(download_file))
79            print(traceback.format_exc())
80            exit(-1)
81        print('done')
82
83    # Pre-process config
84    print('--> Config model')
85    rknn.config(mean_values=[123.68, 116.28, 103.53], std_values=[57.38, 57.38, 57.38])
86    print('done')
87
88    # Load model
89    print('--> Loading model')
90    ret = rknn.load_onnx(model=ONNX_MODEL)
91    if ret != 0:
92        print('Load model failed!')
93        exit(ret)
94    print('done')
95
96    # Build model
97    print('--> Building model')
98    ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
99    if ret != 0:
100        print('Build model failed!')
101        exit(ret)
102    print('done')
103
104    # Accuracy analysis
105    print('--> Accuracy analysis')
106    ret = rknn.accuracy_analysis(inputs=['./dog_224x224.jpg'], output_dir='./snapshot')
107    if ret != 0:
108        print('Accuracy analysis failed!')
109        exit(ret)
110    print('done')
111
112    print('float32:')
113    output = np.genfromtxt('./snapshot/golden/resnetv24_dense0_fwd.txt')
114    show_outputs(output)
115
116    print('quantized:')
117    output = np.genfromtxt('./snapshot/simulator/resnetv24_dense0_fwd.txt')
118    show_outputs(output)
119
120    rknn.release()
121