xref: /OK3568_Linux_fs/external/rknn-toolkit2/examples/functions/accuracy_analysis/test.py (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyunimport os
2*4882a593Smuzhiyunimport urllib
3*4882a593Smuzhiyunimport traceback
4*4882a593Smuzhiyunimport time
5*4882a593Smuzhiyunimport sys
6*4882a593Smuzhiyunimport numpy as np
7*4882a593Smuzhiyunimport cv2
8*4882a593Smuzhiyunfrom rknn.api import RKNN
9*4882a593Smuzhiyunimport urllib.request
10*4882a593Smuzhiyun
11*4882a593SmuzhiyunONNX_MODEL = 'resnet50v2.onnx'
12*4882a593SmuzhiyunRKNN_MODEL = 'resnet50v2.rknn'
13*4882a593Smuzhiyun
14*4882a593Smuzhiyun
15*4882a593Smuzhiyundef show_outputs(outputs):
16*4882a593Smuzhiyun    output = outputs
17*4882a593Smuzhiyun    output_sorted = sorted(output, reverse=True)
18*4882a593Smuzhiyun    top5_str = 'resnet50v2\n-----TOP 5-----\n'
19*4882a593Smuzhiyun    for i in range(5):
20*4882a593Smuzhiyun        value = output_sorted[i]
21*4882a593Smuzhiyun        index = np.where(output == value)
22*4882a593Smuzhiyun        for j in range(len(index)):
23*4882a593Smuzhiyun            if (i + j) >= 5:
24*4882a593Smuzhiyun                break
25*4882a593Smuzhiyun            if value > 0:
26*4882a593Smuzhiyun                topi = '{}: {}\n'.format(index[j], value)
27*4882a593Smuzhiyun            else:
28*4882a593Smuzhiyun                topi = '-1: 0.0\n'
29*4882a593Smuzhiyun            top5_str += topi
30*4882a593Smuzhiyun    print(top5_str)
31*4882a593Smuzhiyun
32*4882a593Smuzhiyun
33*4882a593Smuzhiyundef readable_speed(speed):
34*4882a593Smuzhiyun    speed_bytes = float(speed)
35*4882a593Smuzhiyun    speed_kbytes = speed_bytes / 1024
36*4882a593Smuzhiyun    if speed_kbytes > 1024:
37*4882a593Smuzhiyun        speed_mbytes = speed_kbytes / 1024
38*4882a593Smuzhiyun        if speed_mbytes > 1024:
39*4882a593Smuzhiyun            speed_gbytes = speed_mbytes / 1024
40*4882a593Smuzhiyun            return "{:.2f} GB/s".format(speed_gbytes)
41*4882a593Smuzhiyun        else:
42*4882a593Smuzhiyun            return "{:.2f} MB/s".format(speed_mbytes)
43*4882a593Smuzhiyun    else:
44*4882a593Smuzhiyun        return "{:.2f} KB/s".format(speed_kbytes)
45*4882a593Smuzhiyun
46*4882a593Smuzhiyun
47*4882a593Smuzhiyundef show_progress(blocknum, blocksize, totalsize):
48*4882a593Smuzhiyun    speed = (blocknum * blocksize) / (time.time() - start_time)
49*4882a593Smuzhiyun    speed_str = " Speed: {}".format(readable_speed(speed))
50*4882a593Smuzhiyun    recv_size = blocknum * blocksize
51*4882a593Smuzhiyun
52*4882a593Smuzhiyun    f = sys.stdout
53*4882a593Smuzhiyun    progress = (recv_size / totalsize)
54*4882a593Smuzhiyun    progress_str = "{:.2f}%".format(progress * 100)
55*4882a593Smuzhiyun    n = round(progress * 50)
56*4882a593Smuzhiyun    s = ('#' * n).ljust(50, '-')
57*4882a593Smuzhiyun    f.write(progress_str.ljust(8, ' ') + '[' + s + ']' + speed_str)
58*4882a593Smuzhiyun    f.flush()
59*4882a593Smuzhiyun    f.write('\r\n')
60*4882a593Smuzhiyun
61*4882a593Smuzhiyun
62*4882a593Smuzhiyunif __name__ == '__main__':
63*4882a593Smuzhiyun
64*4882a593Smuzhiyun    # Create RKNN object
65*4882a593Smuzhiyun    rknn = RKNN(verbose=True)
66*4882a593Smuzhiyun
67*4882a593Smuzhiyun    # If resnet50v2 does not exist, download it.
68*4882a593Smuzhiyun    # Download address:
69*4882a593Smuzhiyun    # https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.onnx
70*4882a593Smuzhiyun    if not os.path.exists(ONNX_MODEL):
71*4882a593Smuzhiyun        print('--> Download {}'.format(ONNX_MODEL))
72*4882a593Smuzhiyun        url = 'https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.onnx'
73*4882a593Smuzhiyun        download_file = ONNX_MODEL
74*4882a593Smuzhiyun        try:
75*4882a593Smuzhiyun            start_time = time.time()
76*4882a593Smuzhiyun            urllib.request.urlretrieve(url, download_file, show_progress)
77*4882a593Smuzhiyun        except:
78*4882a593Smuzhiyun            print('Download {} failed.'.format(download_file))
79*4882a593Smuzhiyun            print(traceback.format_exc())
80*4882a593Smuzhiyun            exit(-1)
81*4882a593Smuzhiyun        print('done')
82*4882a593Smuzhiyun
83*4882a593Smuzhiyun    # Pre-process config
84*4882a593Smuzhiyun    print('--> Config model')
85*4882a593Smuzhiyun    rknn.config(mean_values=[123.68, 116.28, 103.53], std_values=[57.38, 57.38, 57.38])
86*4882a593Smuzhiyun    print('done')
87*4882a593Smuzhiyun
88*4882a593Smuzhiyun    # Load model
89*4882a593Smuzhiyun    print('--> Loading model')
90*4882a593Smuzhiyun    ret = rknn.load_onnx(model=ONNX_MODEL)
91*4882a593Smuzhiyun    if ret != 0:
92*4882a593Smuzhiyun        print('Load model failed!')
93*4882a593Smuzhiyun        exit(ret)
94*4882a593Smuzhiyun    print('done')
95*4882a593Smuzhiyun
96*4882a593Smuzhiyun    # Build model
97*4882a593Smuzhiyun    print('--> Building model')
98*4882a593Smuzhiyun    ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
99*4882a593Smuzhiyun    if ret != 0:
100*4882a593Smuzhiyun        print('Build model failed!')
101*4882a593Smuzhiyun        exit(ret)
102*4882a593Smuzhiyun    print('done')
103*4882a593Smuzhiyun
104*4882a593Smuzhiyun    # Accuracy analysis
105*4882a593Smuzhiyun    print('--> Accuracy analysis')
106*4882a593Smuzhiyun    ret = rknn.accuracy_analysis(inputs=['./dog_224x224.jpg'], output_dir='./snapshot')
107*4882a593Smuzhiyun    if ret != 0:
108*4882a593Smuzhiyun        print('Accuracy analysis failed!')
109*4882a593Smuzhiyun        exit(ret)
110*4882a593Smuzhiyun    print('done')
111*4882a593Smuzhiyun
112*4882a593Smuzhiyun    print('float32:')
113*4882a593Smuzhiyun    output = np.genfromtxt('./snapshot/golden/resnetv24_dense0_fwd.txt')
114*4882a593Smuzhiyun    show_outputs(output)
115*4882a593Smuzhiyun
116*4882a593Smuzhiyun    print('quantized:')
117*4882a593Smuzhiyun    output = np.genfromtxt('./snapshot/simulator/resnetv24_dense0_fwd.txt')
118*4882a593Smuzhiyun    show_outputs(output)
119*4882a593Smuzhiyun
120*4882a593Smuzhiyun    rknn.release()
121