xref: /OK3568_Linux_fs/buildroot/package/x11r7/mcookie/mcookie.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /* mcookie.c -- Generates random numbers for xauth
2  * Created: Fri Feb  3 10:42:48 1995 by faith@cs.unc.edu
3  * Revised: Fri Mar 19 07:48:01 1999 by faith@acm.org
4  * Public Domain 1995, 1999 Rickard E. Faith (faith@acm.org)
5  * This program comes with ABSOLUTELY NO WARRANTY.
6  *
7  * $Id: mcookie.c,v 1.5 1997/07/06 00:13:06 aebr Exp $
8  *
9  * This program gathers some random bits of data and used the MD5
10  * message-digest algorithm to generate a 128-bit hexadecimal number for
11  * use with xauth(1).
12  *
13  * NOTE: Unless /dev/random is available, this program does not actually
14  * gather 128 bits of random information, so the magic cookie generated
15  * will be considerably easier to guess than one might expect.
16  *
17  * 1999-02-22 Arkadiusz Mi�kiewicz <misiek@pld.ORG.PL>
18  * - added Native Language Support
19  * 1999-03-21 aeb: Added some fragments of code from Colin Plumb.
20  *
21  */
22 
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <fcntl.h>
26 #include <sys/time.h>
27 #include <time.h>
28 #include <unistd.h>
29 
30 #define BUFFERSIZE 4096
31 
32 
33 #ifndef MD5_H
34 #define MD5_H
35 
36 #if defined (__alpha__) || defined (__ia64__) || defined (__x86_64__)
37 typedef unsigned int uint32;
38 #else
39 typedef unsigned long uint32;
40 #endif
41 
42 struct MD5Context {
43 	uint32 buf[4];
44 	uint32 bits[2];
45 	unsigned char in[64];
46 };
47 
48 void MD5Init(struct MD5Context *context);
49 void MD5Update(struct MD5Context *context, unsigned char const *buf,
50 	       unsigned len);
51 void MD5Final(unsigned char digest[16], struct MD5Context *context);
52 void MD5Transform(uint32 buf[4], uint32 const in[16]);
53 
54 /*
55  * This is needed to make RSAREF happy on some MS-DOS compilers.
56  */
57 typedef struct MD5Context MD5_CTX;
58 
59 #endif /* !MD5_H */
60 
61 
62 
63 /*
64  * This code implements the MD5 message-digest algorithm.
65  * The algorithm is due to Ron Rivest.  This code was
66  * written by Colin Plumb in 1993, no copyright is claimed.
67  * This code is in the public domain; do with it what you wish.
68  *
69  * Equivalent code is available from RSA Data Security, Inc.
70  * This code has been tested against that, and is equivalent,
71  * except that you don't need to include two pages of legalese
72  * with every copy.
73  *
74  * To compute the message digest of a chunk of bytes, declare an
75  * MD5Context structure, pass it to MD5Init, call MD5Update as
76  * needed on buffers full of bytes, and then call MD5Final, which
77  * will fill a supplied 16-byte array with the digest.
78  */
79 #include <string.h>		/* for memcpy() */
80 #include <endian.h>
81 
82 #if __BYTE_ORDER == __LITTLE_ENDIAN
83 #define byteReverse(buf, len)	/* Nothing */
84 #else
85 void byteReverse(unsigned char *buf, unsigned longs);
86 
87 /*
88  * Note: this code is harmless on little-endian machines.
89  */
byteReverse(unsigned char * buf,unsigned longs)90 void byteReverse(unsigned char *buf, unsigned longs)
91 {
92     uint32 t;
93     do {
94 	t = (uint32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
95 	    ((unsigned) buf[1] << 8 | buf[0]);
96 	*(uint32 *) buf = t;
97 	buf += 4;
98     } while (--longs);
99 }
100 #endif
101 
102 /*
103  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
104  * initialization constants.
105  */
MD5Init(struct MD5Context * ctx)106 void MD5Init(struct MD5Context *ctx)
107 {
108     ctx->buf[0] = 0x67452301;
109     ctx->buf[1] = 0xefcdab89;
110     ctx->buf[2] = 0x98badcfe;
111     ctx->buf[3] = 0x10325476;
112 
113     ctx->bits[0] = 0;
114     ctx->bits[1] = 0;
115 }
116 
117 /*
118  * Update context to reflect the concatenation of another buffer full
119  * of bytes.
120  */
MD5Update(struct MD5Context * ctx,unsigned char const * buf,unsigned len)121 void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
122 {
123     uint32 t;
124 
125     /* Update bitcount */
126 
127     t = ctx->bits[0];
128     if ((ctx->bits[0] = t + ((uint32) len << 3)) < t)
129 	ctx->bits[1]++;		/* Carry from low to high */
130     ctx->bits[1] += len >> 29;
131 
132     t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */
133 
134     /* Handle any leading odd-sized chunks */
135 
136     if (t) {
137 	unsigned char *p = (unsigned char *) ctx->in + t;
138 
139 	t = 64 - t;
140 	if (len < t) {
141 	    memcpy(p, buf, len);
142 	    return;
143 	}
144 	memcpy(p, buf, t);
145 	byteReverse(ctx->in, 16);
146 	MD5Transform(ctx->buf, (uint32 *) ctx->in);
147 	buf += t;
148 	len -= t;
149     }
150     /* Process data in 64-byte chunks */
151 
152     while (len >= 64) {
153 	memcpy(ctx->in, buf, 64);
154 	byteReverse(ctx->in, 16);
155 	MD5Transform(ctx->buf, (uint32 *) ctx->in);
156 	buf += 64;
157 	len -= 64;
158     }
159 
160     /* Handle any remaining bytes of data. */
161 
162     memcpy(ctx->in, buf, len);
163 }
164 
165 /*
166  * Final wrapup - pad to 64-byte boundary with the bit pattern
167  * 1 0* (64-bit count of bits processed, MSB-first)
168  */
MD5Final(unsigned char digest[16],struct MD5Context * ctx)169 void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
170 {
171     unsigned count;
172     unsigned char *p;
173 
174     /* Compute number of bytes mod 64 */
175     count = (ctx->bits[0] >> 3) & 0x3F;
176 
177     /* Set the first char of padding to 0x80.  This is safe since there is
178        always at least one byte free */
179     p = ctx->in + count;
180     *p++ = 0x80;
181 
182     /* Bytes of padding needed to make 64 bytes */
183     count = 64 - 1 - count;
184 
185     /* Pad out to 56 mod 64 */
186     if (count < 8) {
187 	/* Two lots of padding:  Pad the first block to 64 bytes */
188 	memset(p, 0, count);
189 	byteReverse(ctx->in, 16);
190 	MD5Transform(ctx->buf, (uint32 *) ctx->in);
191 
192 	/* Now fill the next block with 56 bytes */
193 	memset(ctx->in, 0, 56);
194     } else {
195 	/* Pad block to 56 bytes */
196 	memset(p, 0, count - 8);
197     }
198     byteReverse(ctx->in, 14);
199 
200     /* Append length in bits and transform */
201     ((uint32 *) ctx->in)[14] = ctx->bits[0];
202     ((uint32 *) ctx->in)[15] = ctx->bits[1];
203 
204     MD5Transform(ctx->buf, (uint32 *) ctx->in);
205     byteReverse((unsigned char *) ctx->buf, 4);
206     memcpy(digest, ctx->buf, 16);
207     memset(ctx, 0, sizeof(*ctx));	/* In case it's sensitive */
208 }
209 
210 /* The four core functions - F1 is optimized somewhat */
211 
212 /* #define F1(x, y, z) (x & y | ~x & z) */
213 #define F1(x, y, z) (z ^ (x & (y ^ z)))
214 #define F2(x, y, z) F1(z, x, y)
215 #define F3(x, y, z) (x ^ y ^ z)
216 #define F4(x, y, z) (y ^ (x | ~z))
217 
218 /* This is the central step in the MD5 algorithm. */
219 #define MD5STEP(f, w, x, y, z, data, s) \
220 	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
221 
222 /*
223  * The core of the MD5 algorithm, this alters an existing MD5 hash to
224  * reflect the addition of 16 longwords of new data.  MD5Update blocks
225  * the data and converts bytes into longwords for this routine.
226  */
MD5Transform(uint32 buf[4],uint32 const in[16])227 void MD5Transform(uint32 buf[4], uint32 const in[16])
228 {
229     register uint32 a, b, c, d;
230 
231     a = buf[0];
232     b = buf[1];
233     c = buf[2];
234     d = buf[3];
235 
236     MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
237     MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
238     MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
239     MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
240     MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
241     MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
242     MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
243     MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
244     MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
245     MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
246     MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
247     MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
248     MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
249     MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
250     MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
251     MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
252 
253     MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
254     MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
255     MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
256     MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
257     MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
258     MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
259     MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
260     MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
261     MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
262     MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
263     MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
264     MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
265     MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
266     MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
267     MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
268     MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
269 
270     MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
271     MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
272     MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
273     MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
274     MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
275     MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
276     MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
277     MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
278     MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
279     MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
280     MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
281     MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
282     MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
283     MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
284     MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
285     MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
286 
287     MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
288     MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
289     MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
290     MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
291     MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
292     MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
293     MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
294     MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
295     MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
296     MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
297     MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
298     MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
299     MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
300     MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
301     MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
302     MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
303 
304     buf[0] += a;
305     buf[1] += b;
306     buf[2] += c;
307     buf[3] += d;
308 }
309 
310 
311 
312 
313 struct rngs {
314    const char *path;
315    int minlength, maxlength;
316 } rngs[] = {
317    { "/dev/random",              16,  16 }, /* 16 bytes = 128 bits suffice */
318    { "/proc/interrupts",          0,   0 },
319    { "/proc/slabinfo",            0,   0 },
320    { "/proc/stat",                0,   0 },
321    { "/dev/urandom",             32,  64 },
322 };
323 #define RNGS (sizeof(rngs)/sizeof(struct rngs))
324 
325 int Verbose = 0;
326 
327 /* The basic function to hash a file */
328 static off_t
hash_file(struct MD5Context * ctx,int fd)329 hash_file(struct MD5Context *ctx, int fd)
330 {
331    off_t count = 0;
332    ssize_t r;
333    unsigned char buf[BUFFERSIZE];
334 
335    while ((r = read(fd, buf, sizeof(buf))) > 0) {
336       MD5Update(ctx, buf, r);
337       count += r;
338    }
339    /* Separate files with a null byte */
340    buf[0] = 0;
341    MD5Update(ctx, buf, 1);
342    return count;
343 }
344 
main(int argc,char ** argv)345 int main( int argc, char **argv )
346 {
347    int               i;
348    struct MD5Context ctx;
349    unsigned char     digest[16];
350    unsigned char     buf[BUFFERSIZE];
351    int               fd;
352    int               c;
353    pid_t             pid;
354    char              *file = NULL;
355    int               r;
356    struct timeval    tv;
357    struct timezone   tz;
358 
359    while ((c = getopt( argc, argv, "vf:" )) != -1)
360       switch (c) {
361       case 'v': ++Verbose;     break;
362       case 'f': file = optarg; break;
363       }
364 
365    MD5Init( &ctx );
366 
367    gettimeofday( &tv, &tz );
368    MD5Update( &ctx, (unsigned char *)&tv, sizeof( tv ) );
369    pid = getppid();
370    MD5Update( &ctx, (unsigned char *)&pid, sizeof( pid ));
371    pid = getpid();
372    MD5Update( &ctx, (unsigned char *)&pid, sizeof( pid ));
373 
374    if (file) {
375       int count = 0;
376 
377       if (file[0] == '-' && !file[1])
378 	 fd = fileno(stdin);
379       else
380 	 fd = open( file, O_RDONLY );
381 
382       if (fd < 0) {
383 	 fprintf( stderr, "Could not open %s\n", file );
384       } else {
385          count = hash_file( &ctx, fd );
386 	 if (Verbose)
387 	    fprintf( stderr, "Got %d bytes from %s\n", count, file );
388 
389 	 if (file[0] != '-' || file[1]) close( fd );
390       }
391    }
392 
393    for (i = 0; i < RNGS; i++) {
394       if ((fd = open( rngs[i].path, O_RDONLY|O_NONBLOCK )) >= 0) {
395 	 int count = sizeof(buf);
396 
397 	 if (rngs[i].maxlength && count > rngs[i].maxlength)
398 	    count = rngs[i].maxlength;
399 	 r = read( fd, buf, count );
400 	 if (r > 0)
401 	    MD5Update( &ctx, buf, r );
402 	 else
403 	    r = 0;
404 	 close( fd );
405 	 if (Verbose)
406 	    fprintf( stderr, "Got %d bytes from %s\n", r, rngs[i].path );
407 	 if (rngs[i].minlength && r >= rngs[i].minlength)
408 	    break;
409       } else if (Verbose)
410 	 fprintf( stderr, "Could not open %s\n", rngs[i].path );
411    }
412 
413    MD5Final( digest, &ctx );
414    for (i = 0; i < 16; i++) printf( "%02x", digest[i] );
415    putchar ( '\n' );
416 
417    /*
418     * The following is important for cases like disk full, so shell scripts
419     * can bomb out properly rather than think they succeeded.
420     */
421    if (fflush(stdout) < 0 || fclose(stdout) < 0)
422       return 1;
423 
424    return 0;
425 }
426