1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/kernel/seccomp.c
4 *
5 * Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com>
6 *
7 * Copyright (C) 2012 Google, Inc.
8 * Will Drewry <wad@chromium.org>
9 *
10 * This defines a simple but solid secure-computing facility.
11 *
12 * Mode 1 uses a fixed list of allowed system calls.
13 * Mode 2 allows user-defined system call filters in the form
14 * of Berkeley Packet Filters/Linux Socket Filters.
15 */
16 #define pr_fmt(fmt) "seccomp: " fmt
17
18 #include <linux/refcount.h>
19 #include <linux/audit.h>
20 #include <linux/compat.h>
21 #include <linux/coredump.h>
22 #include <linux/kmemleak.h>
23 #include <linux/nospec.h>
24 #include <linux/prctl.h>
25 #include <linux/sched.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/seccomp.h>
28 #include <linux/slab.h>
29 #include <linux/syscalls.h>
30 #include <linux/sysctl.h>
31
32 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
33 #include <asm/syscall.h>
34 #endif
35
36 #ifdef CONFIG_SECCOMP_FILTER
37 #include <linux/file.h>
38 #include <linux/filter.h>
39 #include <linux/pid.h>
40 #include <linux/ptrace.h>
41 #include <linux/capability.h>
42 #include <linux/tracehook.h>
43 #include <linux/uaccess.h>
44 #include <linux/anon_inodes.h>
45 #include <linux/lockdep.h>
46
47 /*
48 * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the
49 * wrong direction flag in the ioctl number. This is the broken one,
50 * which the kernel needs to keep supporting until all userspaces stop
51 * using the wrong command number.
52 */
53 #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR SECCOMP_IOR(2, __u64)
54
55 enum notify_state {
56 SECCOMP_NOTIFY_INIT,
57 SECCOMP_NOTIFY_SENT,
58 SECCOMP_NOTIFY_REPLIED,
59 };
60
61 struct seccomp_knotif {
62 /* The struct pid of the task whose filter triggered the notification */
63 struct task_struct *task;
64
65 /* The "cookie" for this request; this is unique for this filter. */
66 u64 id;
67
68 /*
69 * The seccomp data. This pointer is valid the entire time this
70 * notification is active, since it comes from __seccomp_filter which
71 * eclipses the entire lifecycle here.
72 */
73 const struct seccomp_data *data;
74
75 /*
76 * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a
77 * struct seccomp_knotif is created and starts out in INIT. Once the
78 * handler reads the notification off of an FD, it transitions to SENT.
79 * If a signal is received the state transitions back to INIT and
80 * another message is sent. When the userspace handler replies, state
81 * transitions to REPLIED.
82 */
83 enum notify_state state;
84
85 /* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */
86 int error;
87 long val;
88 u32 flags;
89
90 /*
91 * Signals when this has changed states, such as the listener
92 * dying, a new seccomp addfd message, or changing to REPLIED
93 */
94 struct completion ready;
95
96 struct list_head list;
97
98 /* outstanding addfd requests */
99 struct list_head addfd;
100 };
101
102 /**
103 * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages
104 *
105 * @file: A reference to the file to install in the other task
106 * @fd: The fd number to install it at. If the fd number is -1, it means the
107 * installing process should allocate the fd as normal.
108 * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC
109 * is allowed.
110 * @ret: The return value of the installing process. It is set to the fd num
111 * upon success (>= 0).
112 * @completion: Indicates that the installing process has completed fd
113 * installation, or gone away (either due to successful
114 * reply, or signal)
115 *
116 */
117 struct seccomp_kaddfd {
118 struct file *file;
119 int fd;
120 unsigned int flags;
121
122 /* To only be set on reply */
123 int ret;
124 struct completion completion;
125 struct list_head list;
126 };
127
128 /**
129 * struct notification - container for seccomp userspace notifications. Since
130 * most seccomp filters will not have notification listeners attached and this
131 * structure is fairly large, we store the notification-specific stuff in a
132 * separate structure.
133 *
134 * @request: A semaphore that users of this notification can wait on for
135 * changes. Actual reads and writes are still controlled with
136 * filter->notify_lock.
137 * @next_id: The id of the next request.
138 * @notifications: A list of struct seccomp_knotif elements.
139 */
140 struct notification {
141 struct semaphore request;
142 u64 next_id;
143 struct list_head notifications;
144 };
145
146 #ifdef SECCOMP_ARCH_NATIVE
147 /**
148 * struct action_cache - per-filter cache of seccomp actions per
149 * arch/syscall pair
150 *
151 * @allow_native: A bitmap where each bit represents whether the
152 * filter will always allow the syscall, for the
153 * native architecture.
154 * @allow_compat: A bitmap where each bit represents whether the
155 * filter will always allow the syscall, for the
156 * compat architecture.
157 */
158 struct action_cache {
159 DECLARE_BITMAP(allow_native, SECCOMP_ARCH_NATIVE_NR);
160 #ifdef SECCOMP_ARCH_COMPAT
161 DECLARE_BITMAP(allow_compat, SECCOMP_ARCH_COMPAT_NR);
162 #endif
163 };
164 #else
165 struct action_cache { };
166
seccomp_cache_check_allow(const struct seccomp_filter * sfilter,const struct seccomp_data * sd)167 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter,
168 const struct seccomp_data *sd)
169 {
170 return false;
171 }
172
seccomp_cache_prepare(struct seccomp_filter * sfilter)173 static inline void seccomp_cache_prepare(struct seccomp_filter *sfilter)
174 {
175 }
176 #endif /* SECCOMP_ARCH_NATIVE */
177
178 /**
179 * struct seccomp_filter - container for seccomp BPF programs
180 *
181 * @refs: Reference count to manage the object lifetime.
182 * A filter's reference count is incremented for each directly
183 * attached task, once for the dependent filter, and if
184 * requested for the user notifier. When @refs reaches zero,
185 * the filter can be freed.
186 * @users: A filter's @users count is incremented for each directly
187 * attached task (filter installation, fork(), thread_sync),
188 * and once for the dependent filter (tracked in filter->prev).
189 * When it reaches zero it indicates that no direct or indirect
190 * users of that filter exist. No new tasks can get associated with
191 * this filter after reaching 0. The @users count is always smaller
192 * or equal to @refs. Hence, reaching 0 for @users does not mean
193 * the filter can be freed.
194 * @cache: cache of arch/syscall mappings to actions
195 * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged
196 * @prev: points to a previously installed, or inherited, filter
197 * @prog: the BPF program to evaluate
198 * @notif: the struct that holds all notification related information
199 * @notify_lock: A lock for all notification-related accesses.
200 * @wqh: A wait queue for poll if a notifier is in use.
201 *
202 * seccomp_filter objects are organized in a tree linked via the @prev
203 * pointer. For any task, it appears to be a singly-linked list starting
204 * with current->seccomp.filter, the most recently attached or inherited filter.
205 * However, multiple filters may share a @prev node, by way of fork(), which
206 * results in a unidirectional tree existing in memory. This is similar to
207 * how namespaces work.
208 *
209 * seccomp_filter objects should never be modified after being attached
210 * to a task_struct (other than @refs).
211 */
212 struct seccomp_filter {
213 refcount_t refs;
214 refcount_t users;
215 bool log;
216 struct action_cache cache;
217 struct seccomp_filter *prev;
218 struct bpf_prog *prog;
219 struct notification *notif;
220 struct mutex notify_lock;
221 wait_queue_head_t wqh;
222 };
223
224 /* Limit any path through the tree to 256KB worth of instructions. */
225 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter))
226
227 /*
228 * Endianness is explicitly ignored and left for BPF program authors to manage
229 * as per the specific architecture.
230 */
populate_seccomp_data(struct seccomp_data * sd)231 static void populate_seccomp_data(struct seccomp_data *sd)
232 {
233 /*
234 * Instead of using current_pt_reg(), we're already doing the work
235 * to safely fetch "current", so just use "task" everywhere below.
236 */
237 struct task_struct *task = current;
238 struct pt_regs *regs = task_pt_regs(task);
239 unsigned long args[6];
240
241 sd->nr = syscall_get_nr(task, regs);
242 sd->arch = syscall_get_arch(task);
243 syscall_get_arguments(task, regs, args);
244 sd->args[0] = args[0];
245 sd->args[1] = args[1];
246 sd->args[2] = args[2];
247 sd->args[3] = args[3];
248 sd->args[4] = args[4];
249 sd->args[5] = args[5];
250 sd->instruction_pointer = KSTK_EIP(task);
251 }
252
253 /**
254 * seccomp_check_filter - verify seccomp filter code
255 * @filter: filter to verify
256 * @flen: length of filter
257 *
258 * Takes a previously checked filter (by bpf_check_classic) and
259 * redirects all filter code that loads struct sk_buff data
260 * and related data through seccomp_bpf_load. It also
261 * enforces length and alignment checking of those loads.
262 *
263 * Returns 0 if the rule set is legal or -EINVAL if not.
264 */
seccomp_check_filter(struct sock_filter * filter,unsigned int flen)265 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen)
266 {
267 int pc;
268 for (pc = 0; pc < flen; pc++) {
269 struct sock_filter *ftest = &filter[pc];
270 u16 code = ftest->code;
271 u32 k = ftest->k;
272
273 switch (code) {
274 case BPF_LD | BPF_W | BPF_ABS:
275 ftest->code = BPF_LDX | BPF_W | BPF_ABS;
276 /* 32-bit aligned and not out of bounds. */
277 if (k >= sizeof(struct seccomp_data) || k & 3)
278 return -EINVAL;
279 continue;
280 case BPF_LD | BPF_W | BPF_LEN:
281 ftest->code = BPF_LD | BPF_IMM;
282 ftest->k = sizeof(struct seccomp_data);
283 continue;
284 case BPF_LDX | BPF_W | BPF_LEN:
285 ftest->code = BPF_LDX | BPF_IMM;
286 ftest->k = sizeof(struct seccomp_data);
287 continue;
288 /* Explicitly include allowed calls. */
289 case BPF_RET | BPF_K:
290 case BPF_RET | BPF_A:
291 case BPF_ALU | BPF_ADD | BPF_K:
292 case BPF_ALU | BPF_ADD | BPF_X:
293 case BPF_ALU | BPF_SUB | BPF_K:
294 case BPF_ALU | BPF_SUB | BPF_X:
295 case BPF_ALU | BPF_MUL | BPF_K:
296 case BPF_ALU | BPF_MUL | BPF_X:
297 case BPF_ALU | BPF_DIV | BPF_K:
298 case BPF_ALU | BPF_DIV | BPF_X:
299 case BPF_ALU | BPF_AND | BPF_K:
300 case BPF_ALU | BPF_AND | BPF_X:
301 case BPF_ALU | BPF_OR | BPF_K:
302 case BPF_ALU | BPF_OR | BPF_X:
303 case BPF_ALU | BPF_XOR | BPF_K:
304 case BPF_ALU | BPF_XOR | BPF_X:
305 case BPF_ALU | BPF_LSH | BPF_K:
306 case BPF_ALU | BPF_LSH | BPF_X:
307 case BPF_ALU | BPF_RSH | BPF_K:
308 case BPF_ALU | BPF_RSH | BPF_X:
309 case BPF_ALU | BPF_NEG:
310 case BPF_LD | BPF_IMM:
311 case BPF_LDX | BPF_IMM:
312 case BPF_MISC | BPF_TAX:
313 case BPF_MISC | BPF_TXA:
314 case BPF_LD | BPF_MEM:
315 case BPF_LDX | BPF_MEM:
316 case BPF_ST:
317 case BPF_STX:
318 case BPF_JMP | BPF_JA:
319 case BPF_JMP | BPF_JEQ | BPF_K:
320 case BPF_JMP | BPF_JEQ | BPF_X:
321 case BPF_JMP | BPF_JGE | BPF_K:
322 case BPF_JMP | BPF_JGE | BPF_X:
323 case BPF_JMP | BPF_JGT | BPF_K:
324 case BPF_JMP | BPF_JGT | BPF_X:
325 case BPF_JMP | BPF_JSET | BPF_K:
326 case BPF_JMP | BPF_JSET | BPF_X:
327 continue;
328 default:
329 return -EINVAL;
330 }
331 }
332 return 0;
333 }
334
335 #ifdef SECCOMP_ARCH_NATIVE
seccomp_cache_check_allow_bitmap(const void * bitmap,size_t bitmap_size,int syscall_nr)336 static inline bool seccomp_cache_check_allow_bitmap(const void *bitmap,
337 size_t bitmap_size,
338 int syscall_nr)
339 {
340 if (unlikely(syscall_nr < 0 || syscall_nr >= bitmap_size))
341 return false;
342 syscall_nr = array_index_nospec(syscall_nr, bitmap_size);
343
344 return test_bit(syscall_nr, bitmap);
345 }
346
347 /**
348 * seccomp_cache_check_allow - lookup seccomp cache
349 * @sfilter: The seccomp filter
350 * @sd: The seccomp data to lookup the cache with
351 *
352 * Returns true if the seccomp_data is cached and allowed.
353 */
seccomp_cache_check_allow(const struct seccomp_filter * sfilter,const struct seccomp_data * sd)354 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter,
355 const struct seccomp_data *sd)
356 {
357 int syscall_nr = sd->nr;
358 const struct action_cache *cache = &sfilter->cache;
359
360 #ifndef SECCOMP_ARCH_COMPAT
361 /* A native-only architecture doesn't need to check sd->arch. */
362 return seccomp_cache_check_allow_bitmap(cache->allow_native,
363 SECCOMP_ARCH_NATIVE_NR,
364 syscall_nr);
365 #else
366 if (likely(sd->arch == SECCOMP_ARCH_NATIVE))
367 return seccomp_cache_check_allow_bitmap(cache->allow_native,
368 SECCOMP_ARCH_NATIVE_NR,
369 syscall_nr);
370 if (likely(sd->arch == SECCOMP_ARCH_COMPAT))
371 return seccomp_cache_check_allow_bitmap(cache->allow_compat,
372 SECCOMP_ARCH_COMPAT_NR,
373 syscall_nr);
374 #endif /* SECCOMP_ARCH_COMPAT */
375
376 WARN_ON_ONCE(true);
377 return false;
378 }
379 #endif /* SECCOMP_ARCH_NATIVE */
380
381 /**
382 * seccomp_run_filters - evaluates all seccomp filters against @sd
383 * @sd: optional seccomp data to be passed to filters
384 * @match: stores struct seccomp_filter that resulted in the return value,
385 * unless filter returned SECCOMP_RET_ALLOW, in which case it will
386 * be unchanged.
387 *
388 * Returns valid seccomp BPF response codes.
389 */
390 #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL)))
seccomp_run_filters(const struct seccomp_data * sd,struct seccomp_filter ** match)391 static u32 seccomp_run_filters(const struct seccomp_data *sd,
392 struct seccomp_filter **match)
393 {
394 u32 ret = SECCOMP_RET_ALLOW;
395 /* Make sure cross-thread synced filter points somewhere sane. */
396 struct seccomp_filter *f =
397 READ_ONCE(current->seccomp.filter);
398
399 /* Ensure unexpected behavior doesn't result in failing open. */
400 if (WARN_ON(f == NULL))
401 return SECCOMP_RET_KILL_PROCESS;
402
403 if (seccomp_cache_check_allow(f, sd))
404 return SECCOMP_RET_ALLOW;
405
406 /*
407 * All filters in the list are evaluated and the lowest BPF return
408 * value always takes priority (ignoring the DATA).
409 */
410 for (; f; f = f->prev) {
411 u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd);
412
413 if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) {
414 ret = cur_ret;
415 *match = f;
416 }
417 }
418 return ret;
419 }
420 #endif /* CONFIG_SECCOMP_FILTER */
421
seccomp_may_assign_mode(unsigned long seccomp_mode)422 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode)
423 {
424 assert_spin_locked(¤t->sighand->siglock);
425
426 if (current->seccomp.mode && current->seccomp.mode != seccomp_mode)
427 return false;
428
429 return true;
430 }
431
arch_seccomp_spec_mitigate(struct task_struct * task)432 void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { }
433
seccomp_assign_mode(struct task_struct * task,unsigned long seccomp_mode,unsigned long flags)434 static inline void seccomp_assign_mode(struct task_struct *task,
435 unsigned long seccomp_mode,
436 unsigned long flags)
437 {
438 assert_spin_locked(&task->sighand->siglock);
439
440 task->seccomp.mode = seccomp_mode;
441 /*
442 * Make sure TIF_SECCOMP cannot be set before the mode (and
443 * filter) is set.
444 */
445 smp_mb__before_atomic();
446 /* Assume default seccomp processes want spec flaw mitigation. */
447 if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0)
448 arch_seccomp_spec_mitigate(task);
449 set_tsk_thread_flag(task, TIF_SECCOMP);
450 }
451
452 #ifdef CONFIG_SECCOMP_FILTER
453 /* Returns 1 if the parent is an ancestor of the child. */
is_ancestor(struct seccomp_filter * parent,struct seccomp_filter * child)454 static int is_ancestor(struct seccomp_filter *parent,
455 struct seccomp_filter *child)
456 {
457 /* NULL is the root ancestor. */
458 if (parent == NULL)
459 return 1;
460 for (; child; child = child->prev)
461 if (child == parent)
462 return 1;
463 return 0;
464 }
465
466 /**
467 * seccomp_can_sync_threads: checks if all threads can be synchronized
468 *
469 * Expects sighand and cred_guard_mutex locks to be held.
470 *
471 * Returns 0 on success, -ve on error, or the pid of a thread which was
472 * either not in the correct seccomp mode or did not have an ancestral
473 * seccomp filter.
474 */
seccomp_can_sync_threads(void)475 static inline pid_t seccomp_can_sync_threads(void)
476 {
477 struct task_struct *thread, *caller;
478
479 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex));
480 assert_spin_locked(¤t->sighand->siglock);
481
482 /* Validate all threads being eligible for synchronization. */
483 caller = current;
484 for_each_thread(caller, thread) {
485 pid_t failed;
486
487 /* Skip current, since it is initiating the sync. */
488 if (thread == caller)
489 continue;
490
491 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED ||
492 (thread->seccomp.mode == SECCOMP_MODE_FILTER &&
493 is_ancestor(thread->seccomp.filter,
494 caller->seccomp.filter)))
495 continue;
496
497 /* Return the first thread that cannot be synchronized. */
498 failed = task_pid_vnr(thread);
499 /* If the pid cannot be resolved, then return -ESRCH */
500 if (WARN_ON(failed == 0))
501 failed = -ESRCH;
502 return failed;
503 }
504
505 return 0;
506 }
507
seccomp_filter_free(struct seccomp_filter * filter)508 static inline void seccomp_filter_free(struct seccomp_filter *filter)
509 {
510 if (filter) {
511 bpf_prog_destroy(filter->prog);
512 kfree(filter);
513 }
514 }
515
__seccomp_filter_orphan(struct seccomp_filter * orig)516 static void __seccomp_filter_orphan(struct seccomp_filter *orig)
517 {
518 while (orig && refcount_dec_and_test(&orig->users)) {
519 if (waitqueue_active(&orig->wqh))
520 wake_up_poll(&orig->wqh, EPOLLHUP);
521 orig = orig->prev;
522 }
523 }
524
__put_seccomp_filter(struct seccomp_filter * orig)525 static void __put_seccomp_filter(struct seccomp_filter *orig)
526 {
527 /* Clean up single-reference branches iteratively. */
528 while (orig && refcount_dec_and_test(&orig->refs)) {
529 struct seccomp_filter *freeme = orig;
530 orig = orig->prev;
531 seccomp_filter_free(freeme);
532 }
533 }
534
__seccomp_filter_release(struct seccomp_filter * orig)535 static void __seccomp_filter_release(struct seccomp_filter *orig)
536 {
537 /* Notify about any unused filters in the task's former filter tree. */
538 __seccomp_filter_orphan(orig);
539 /* Finally drop all references to the task's former tree. */
540 __put_seccomp_filter(orig);
541 }
542
543 /**
544 * seccomp_filter_release - Detach the task from its filter tree,
545 * drop its reference count, and notify
546 * about unused filters
547 *
548 * This function should only be called when the task is exiting as
549 * it detaches it from its filter tree. As such, READ_ONCE() and
550 * barriers are not needed here, as would normally be needed.
551 */
seccomp_filter_release(struct task_struct * tsk)552 void seccomp_filter_release(struct task_struct *tsk)
553 {
554 struct seccomp_filter *orig = tsk->seccomp.filter;
555
556 /* Detach task from its filter tree. */
557 tsk->seccomp.filter = NULL;
558 __seccomp_filter_release(orig);
559 }
560
561 /**
562 * seccomp_sync_threads: sets all threads to use current's filter
563 *
564 * Expects sighand and cred_guard_mutex locks to be held, and for
565 * seccomp_can_sync_threads() to have returned success already
566 * without dropping the locks.
567 *
568 */
seccomp_sync_threads(unsigned long flags)569 static inline void seccomp_sync_threads(unsigned long flags)
570 {
571 struct task_struct *thread, *caller;
572
573 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex));
574 assert_spin_locked(¤t->sighand->siglock);
575
576 /* Synchronize all threads. */
577 caller = current;
578 for_each_thread(caller, thread) {
579 /* Skip current, since it needs no changes. */
580 if (thread == caller)
581 continue;
582
583 /* Get a task reference for the new leaf node. */
584 get_seccomp_filter(caller);
585
586 /*
587 * Drop the task reference to the shared ancestor since
588 * current's path will hold a reference. (This also
589 * allows a put before the assignment.)
590 */
591 __seccomp_filter_release(thread->seccomp.filter);
592
593 /* Make our new filter tree visible. */
594 smp_store_release(&thread->seccomp.filter,
595 caller->seccomp.filter);
596 atomic_set(&thread->seccomp.filter_count,
597 atomic_read(&caller->seccomp.filter_count));
598
599 /*
600 * Don't let an unprivileged task work around
601 * the no_new_privs restriction by creating
602 * a thread that sets it up, enters seccomp,
603 * then dies.
604 */
605 if (task_no_new_privs(caller))
606 task_set_no_new_privs(thread);
607
608 /*
609 * Opt the other thread into seccomp if needed.
610 * As threads are considered to be trust-realm
611 * equivalent (see ptrace_may_access), it is safe to
612 * allow one thread to transition the other.
613 */
614 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED)
615 seccomp_assign_mode(thread, SECCOMP_MODE_FILTER,
616 flags);
617 }
618 }
619
620 /**
621 * seccomp_prepare_filter: Prepares a seccomp filter for use.
622 * @fprog: BPF program to install
623 *
624 * Returns filter on success or an ERR_PTR on failure.
625 */
seccomp_prepare_filter(struct sock_fprog * fprog)626 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog)
627 {
628 struct seccomp_filter *sfilter;
629 int ret;
630 const bool save_orig =
631 #if defined(CONFIG_CHECKPOINT_RESTORE) || defined(SECCOMP_ARCH_NATIVE)
632 true;
633 #else
634 false;
635 #endif
636
637 if (fprog->len == 0 || fprog->len > BPF_MAXINSNS)
638 return ERR_PTR(-EINVAL);
639
640 BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter));
641
642 /*
643 * Installing a seccomp filter requires that the task has
644 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs.
645 * This avoids scenarios where unprivileged tasks can affect the
646 * behavior of privileged children.
647 */
648 if (!task_no_new_privs(current) &&
649 !ns_capable_noaudit(current_user_ns(), CAP_SYS_ADMIN))
650 return ERR_PTR(-EACCES);
651
652 /* Allocate a new seccomp_filter */
653 sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN);
654 if (!sfilter)
655 return ERR_PTR(-ENOMEM);
656
657 mutex_init(&sfilter->notify_lock);
658 ret = bpf_prog_create_from_user(&sfilter->prog, fprog,
659 seccomp_check_filter, save_orig);
660 if (ret < 0) {
661 kfree(sfilter);
662 return ERR_PTR(ret);
663 }
664
665 refcount_set(&sfilter->refs, 1);
666 refcount_set(&sfilter->users, 1);
667 init_waitqueue_head(&sfilter->wqh);
668
669 return sfilter;
670 }
671
672 /**
673 * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog
674 * @user_filter: pointer to the user data containing a sock_fprog.
675 *
676 * Returns 0 on success and non-zero otherwise.
677 */
678 static struct seccomp_filter *
seccomp_prepare_user_filter(const char __user * user_filter)679 seccomp_prepare_user_filter(const char __user *user_filter)
680 {
681 struct sock_fprog fprog;
682 struct seccomp_filter *filter = ERR_PTR(-EFAULT);
683
684 #ifdef CONFIG_COMPAT
685 if (in_compat_syscall()) {
686 struct compat_sock_fprog fprog32;
687 if (copy_from_user(&fprog32, user_filter, sizeof(fprog32)))
688 goto out;
689 fprog.len = fprog32.len;
690 fprog.filter = compat_ptr(fprog32.filter);
691 } else /* falls through to the if below. */
692 #endif
693 if (copy_from_user(&fprog, user_filter, sizeof(fprog)))
694 goto out;
695 filter = seccomp_prepare_filter(&fprog);
696 out:
697 return filter;
698 }
699
700 #ifdef SECCOMP_ARCH_NATIVE
701 /**
702 * seccomp_is_const_allow - check if filter is constant allow with given data
703 * @fprog: The BPF programs
704 * @sd: The seccomp data to check against, only syscall number and arch
705 * number are considered constant.
706 */
seccomp_is_const_allow(struct sock_fprog_kern * fprog,struct seccomp_data * sd)707 static bool seccomp_is_const_allow(struct sock_fprog_kern *fprog,
708 struct seccomp_data *sd)
709 {
710 unsigned int reg_value = 0;
711 unsigned int pc;
712 bool op_res;
713
714 if (WARN_ON_ONCE(!fprog))
715 return false;
716
717 for (pc = 0; pc < fprog->len; pc++) {
718 struct sock_filter *insn = &fprog->filter[pc];
719 u16 code = insn->code;
720 u32 k = insn->k;
721
722 switch (code) {
723 case BPF_LD | BPF_W | BPF_ABS:
724 switch (k) {
725 case offsetof(struct seccomp_data, nr):
726 reg_value = sd->nr;
727 break;
728 case offsetof(struct seccomp_data, arch):
729 reg_value = sd->arch;
730 break;
731 default:
732 /* can't optimize (non-constant value load) */
733 return false;
734 }
735 break;
736 case BPF_RET | BPF_K:
737 /* reached return with constant values only, check allow */
738 return k == SECCOMP_RET_ALLOW;
739 case BPF_JMP | BPF_JA:
740 pc += insn->k;
741 break;
742 case BPF_JMP | BPF_JEQ | BPF_K:
743 case BPF_JMP | BPF_JGE | BPF_K:
744 case BPF_JMP | BPF_JGT | BPF_K:
745 case BPF_JMP | BPF_JSET | BPF_K:
746 switch (BPF_OP(code)) {
747 case BPF_JEQ:
748 op_res = reg_value == k;
749 break;
750 case BPF_JGE:
751 op_res = reg_value >= k;
752 break;
753 case BPF_JGT:
754 op_res = reg_value > k;
755 break;
756 case BPF_JSET:
757 op_res = !!(reg_value & k);
758 break;
759 default:
760 /* can't optimize (unknown jump) */
761 return false;
762 }
763
764 pc += op_res ? insn->jt : insn->jf;
765 break;
766 case BPF_ALU | BPF_AND | BPF_K:
767 reg_value &= k;
768 break;
769 default:
770 /* can't optimize (unknown insn) */
771 return false;
772 }
773 }
774
775 /* ran off the end of the filter?! */
776 WARN_ON(1);
777 return false;
778 }
779
seccomp_cache_prepare_bitmap(struct seccomp_filter * sfilter,void * bitmap,const void * bitmap_prev,size_t bitmap_size,int arch)780 static void seccomp_cache_prepare_bitmap(struct seccomp_filter *sfilter,
781 void *bitmap, const void *bitmap_prev,
782 size_t bitmap_size, int arch)
783 {
784 struct sock_fprog_kern *fprog = sfilter->prog->orig_prog;
785 struct seccomp_data sd;
786 int nr;
787
788 if (bitmap_prev) {
789 /* The new filter must be as restrictive as the last. */
790 bitmap_copy(bitmap, bitmap_prev, bitmap_size);
791 } else {
792 /* Before any filters, all syscalls are always allowed. */
793 bitmap_fill(bitmap, bitmap_size);
794 }
795
796 for (nr = 0; nr < bitmap_size; nr++) {
797 /* No bitmap change: not a cacheable action. */
798 if (!test_bit(nr, bitmap))
799 continue;
800
801 sd.nr = nr;
802 sd.arch = arch;
803
804 /* No bitmap change: continue to always allow. */
805 if (seccomp_is_const_allow(fprog, &sd))
806 continue;
807
808 /*
809 * Not a cacheable action: always run filters.
810 * atomic clear_bit() not needed, filter not visible yet.
811 */
812 __clear_bit(nr, bitmap);
813 }
814 }
815
816 /**
817 * seccomp_cache_prepare - emulate the filter to find cachable syscalls
818 * @sfilter: The seccomp filter
819 *
820 * Returns 0 if successful or -errno if error occurred.
821 */
seccomp_cache_prepare(struct seccomp_filter * sfilter)822 static void seccomp_cache_prepare(struct seccomp_filter *sfilter)
823 {
824 struct action_cache *cache = &sfilter->cache;
825 const struct action_cache *cache_prev =
826 sfilter->prev ? &sfilter->prev->cache : NULL;
827
828 seccomp_cache_prepare_bitmap(sfilter, cache->allow_native,
829 cache_prev ? cache_prev->allow_native : NULL,
830 SECCOMP_ARCH_NATIVE_NR,
831 SECCOMP_ARCH_NATIVE);
832
833 #ifdef SECCOMP_ARCH_COMPAT
834 seccomp_cache_prepare_bitmap(sfilter, cache->allow_compat,
835 cache_prev ? cache_prev->allow_compat : NULL,
836 SECCOMP_ARCH_COMPAT_NR,
837 SECCOMP_ARCH_COMPAT);
838 #endif /* SECCOMP_ARCH_COMPAT */
839 }
840 #endif /* SECCOMP_ARCH_NATIVE */
841
842 /**
843 * seccomp_attach_filter: validate and attach filter
844 * @flags: flags to change filter behavior
845 * @filter: seccomp filter to add to the current process
846 *
847 * Caller must be holding current->sighand->siglock lock.
848 *
849 * Returns 0 on success, -ve on error, or
850 * - in TSYNC mode: the pid of a thread which was either not in the correct
851 * seccomp mode or did not have an ancestral seccomp filter
852 * - in NEW_LISTENER mode: the fd of the new listener
853 */
seccomp_attach_filter(unsigned int flags,struct seccomp_filter * filter)854 static long seccomp_attach_filter(unsigned int flags,
855 struct seccomp_filter *filter)
856 {
857 unsigned long total_insns;
858 struct seccomp_filter *walker;
859
860 assert_spin_locked(¤t->sighand->siglock);
861
862 /* Validate resulting filter length. */
863 total_insns = filter->prog->len;
864 for (walker = current->seccomp.filter; walker; walker = walker->prev)
865 total_insns += walker->prog->len + 4; /* 4 instr penalty */
866 if (total_insns > MAX_INSNS_PER_PATH)
867 return -ENOMEM;
868
869 /* If thread sync has been requested, check that it is possible. */
870 if (flags & SECCOMP_FILTER_FLAG_TSYNC) {
871 int ret;
872
873 ret = seccomp_can_sync_threads();
874 if (ret) {
875 if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH)
876 return -ESRCH;
877 else
878 return ret;
879 }
880 }
881
882 /* Set log flag, if present. */
883 if (flags & SECCOMP_FILTER_FLAG_LOG)
884 filter->log = true;
885
886 /*
887 * If there is an existing filter, make it the prev and don't drop its
888 * task reference.
889 */
890 filter->prev = current->seccomp.filter;
891 seccomp_cache_prepare(filter);
892 current->seccomp.filter = filter;
893 atomic_inc(¤t->seccomp.filter_count);
894
895 /* Now that the new filter is in place, synchronize to all threads. */
896 if (flags & SECCOMP_FILTER_FLAG_TSYNC)
897 seccomp_sync_threads(flags);
898
899 return 0;
900 }
901
__get_seccomp_filter(struct seccomp_filter * filter)902 static void __get_seccomp_filter(struct seccomp_filter *filter)
903 {
904 refcount_inc(&filter->refs);
905 }
906
907 /* get_seccomp_filter - increments the reference count of the filter on @tsk */
get_seccomp_filter(struct task_struct * tsk)908 void get_seccomp_filter(struct task_struct *tsk)
909 {
910 struct seccomp_filter *orig = tsk->seccomp.filter;
911 if (!orig)
912 return;
913 __get_seccomp_filter(orig);
914 refcount_inc(&orig->users);
915 }
916
seccomp_init_siginfo(kernel_siginfo_t * info,int syscall,int reason)917 static void seccomp_init_siginfo(kernel_siginfo_t *info, int syscall, int reason)
918 {
919 clear_siginfo(info);
920 info->si_signo = SIGSYS;
921 info->si_code = SYS_SECCOMP;
922 info->si_call_addr = (void __user *)KSTK_EIP(current);
923 info->si_errno = reason;
924 info->si_arch = syscall_get_arch(current);
925 info->si_syscall = syscall;
926 }
927
928 /**
929 * seccomp_send_sigsys - signals the task to allow in-process syscall emulation
930 * @syscall: syscall number to send to userland
931 * @reason: filter-supplied reason code to send to userland (via si_errno)
932 *
933 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
934 */
seccomp_send_sigsys(int syscall,int reason)935 static void seccomp_send_sigsys(int syscall, int reason)
936 {
937 struct kernel_siginfo info;
938 seccomp_init_siginfo(&info, syscall, reason);
939 force_sig_info(&info);
940 }
941 #endif /* CONFIG_SECCOMP_FILTER */
942
943 /* For use with seccomp_actions_logged */
944 #define SECCOMP_LOG_KILL_PROCESS (1 << 0)
945 #define SECCOMP_LOG_KILL_THREAD (1 << 1)
946 #define SECCOMP_LOG_TRAP (1 << 2)
947 #define SECCOMP_LOG_ERRNO (1 << 3)
948 #define SECCOMP_LOG_TRACE (1 << 4)
949 #define SECCOMP_LOG_LOG (1 << 5)
950 #define SECCOMP_LOG_ALLOW (1 << 6)
951 #define SECCOMP_LOG_USER_NOTIF (1 << 7)
952
953 static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS |
954 SECCOMP_LOG_KILL_THREAD |
955 SECCOMP_LOG_TRAP |
956 SECCOMP_LOG_ERRNO |
957 SECCOMP_LOG_USER_NOTIF |
958 SECCOMP_LOG_TRACE |
959 SECCOMP_LOG_LOG;
960
seccomp_log(unsigned long syscall,long signr,u32 action,bool requested)961 static inline void seccomp_log(unsigned long syscall, long signr, u32 action,
962 bool requested)
963 {
964 bool log = false;
965
966 switch (action) {
967 case SECCOMP_RET_ALLOW:
968 break;
969 case SECCOMP_RET_TRAP:
970 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP;
971 break;
972 case SECCOMP_RET_ERRNO:
973 log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO;
974 break;
975 case SECCOMP_RET_TRACE:
976 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE;
977 break;
978 case SECCOMP_RET_USER_NOTIF:
979 log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF;
980 break;
981 case SECCOMP_RET_LOG:
982 log = seccomp_actions_logged & SECCOMP_LOG_LOG;
983 break;
984 case SECCOMP_RET_KILL_THREAD:
985 log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD;
986 break;
987 case SECCOMP_RET_KILL_PROCESS:
988 default:
989 log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS;
990 }
991
992 /*
993 * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the
994 * FILTER_FLAG_LOG bit was set. The admin has the ability to silence
995 * any action from being logged by removing the action name from the
996 * seccomp_actions_logged sysctl.
997 */
998 if (!log)
999 return;
1000
1001 audit_seccomp(syscall, signr, action);
1002 }
1003
1004 /*
1005 * Secure computing mode 1 allows only read/write/exit/sigreturn.
1006 * To be fully secure this must be combined with rlimit
1007 * to limit the stack allocations too.
1008 */
1009 static const int mode1_syscalls[] = {
1010 __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn,
1011 -1, /* negative terminated */
1012 };
1013
__secure_computing_strict(int this_syscall)1014 static void __secure_computing_strict(int this_syscall)
1015 {
1016 const int *allowed_syscalls = mode1_syscalls;
1017 #ifdef CONFIG_COMPAT
1018 if (in_compat_syscall())
1019 allowed_syscalls = get_compat_mode1_syscalls();
1020 #endif
1021 do {
1022 if (*allowed_syscalls == this_syscall)
1023 return;
1024 } while (*++allowed_syscalls != -1);
1025
1026 #ifdef SECCOMP_DEBUG
1027 dump_stack();
1028 #endif
1029 seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true);
1030 do_exit(SIGKILL);
1031 }
1032
1033 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER
secure_computing_strict(int this_syscall)1034 void secure_computing_strict(int this_syscall)
1035 {
1036 int mode = current->seccomp.mode;
1037
1038 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1039 unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1040 return;
1041
1042 if (mode == SECCOMP_MODE_DISABLED)
1043 return;
1044 else if (mode == SECCOMP_MODE_STRICT)
1045 __secure_computing_strict(this_syscall);
1046 else
1047 BUG();
1048 }
1049 #else
1050
1051 #ifdef CONFIG_SECCOMP_FILTER
seccomp_next_notify_id(struct seccomp_filter * filter)1052 static u64 seccomp_next_notify_id(struct seccomp_filter *filter)
1053 {
1054 /*
1055 * Note: overflow is ok here, the id just needs to be unique per
1056 * filter.
1057 */
1058 lockdep_assert_held(&filter->notify_lock);
1059 return filter->notif->next_id++;
1060 }
1061
seccomp_handle_addfd(struct seccomp_kaddfd * addfd)1062 static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd)
1063 {
1064 /*
1065 * Remove the notification, and reset the list pointers, indicating
1066 * that it has been handled.
1067 */
1068 list_del_init(&addfd->list);
1069 addfd->ret = receive_fd_replace(addfd->fd, addfd->file, addfd->flags);
1070 complete(&addfd->completion);
1071 }
1072
seccomp_do_user_notification(int this_syscall,struct seccomp_filter * match,const struct seccomp_data * sd)1073 static int seccomp_do_user_notification(int this_syscall,
1074 struct seccomp_filter *match,
1075 const struct seccomp_data *sd)
1076 {
1077 int err;
1078 u32 flags = 0;
1079 long ret = 0;
1080 struct seccomp_knotif n = {};
1081 struct seccomp_kaddfd *addfd, *tmp;
1082
1083 mutex_lock(&match->notify_lock);
1084 err = -ENOSYS;
1085 if (!match->notif)
1086 goto out;
1087
1088 n.task = current;
1089 n.state = SECCOMP_NOTIFY_INIT;
1090 n.data = sd;
1091 n.id = seccomp_next_notify_id(match);
1092 init_completion(&n.ready);
1093 list_add(&n.list, &match->notif->notifications);
1094 INIT_LIST_HEAD(&n.addfd);
1095
1096 up(&match->notif->request);
1097 wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM);
1098
1099 /*
1100 * This is where we wait for a reply from userspace.
1101 */
1102 do {
1103 mutex_unlock(&match->notify_lock);
1104 err = wait_for_completion_interruptible(&n.ready);
1105 mutex_lock(&match->notify_lock);
1106 if (err != 0)
1107 goto interrupted;
1108
1109 addfd = list_first_entry_or_null(&n.addfd,
1110 struct seccomp_kaddfd, list);
1111 /* Check if we were woken up by a addfd message */
1112 if (addfd)
1113 seccomp_handle_addfd(addfd);
1114
1115 } while (n.state != SECCOMP_NOTIFY_REPLIED);
1116
1117 ret = n.val;
1118 err = n.error;
1119 flags = n.flags;
1120
1121 interrupted:
1122 /* If there were any pending addfd calls, clear them out */
1123 list_for_each_entry_safe(addfd, tmp, &n.addfd, list) {
1124 /* The process went away before we got a chance to handle it */
1125 addfd->ret = -ESRCH;
1126 list_del_init(&addfd->list);
1127 complete(&addfd->completion);
1128 }
1129
1130 /*
1131 * Note that it's possible the listener died in between the time when
1132 * we were notified of a response (or a signal) and when we were able to
1133 * re-acquire the lock, so only delete from the list if the
1134 * notification actually exists.
1135 *
1136 * Also note that this test is only valid because there's no way to
1137 * *reattach* to a notifier right now. If one is added, we'll need to
1138 * keep track of the notif itself and make sure they match here.
1139 */
1140 if (match->notif)
1141 list_del(&n.list);
1142 out:
1143 mutex_unlock(&match->notify_lock);
1144
1145 /* Userspace requests to continue the syscall. */
1146 if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1147 return 0;
1148
1149 syscall_set_return_value(current, current_pt_regs(),
1150 err, ret);
1151 return -1;
1152 }
1153
__seccomp_filter(int this_syscall,const struct seccomp_data * sd,const bool recheck_after_trace)1154 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
1155 const bool recheck_after_trace)
1156 {
1157 u32 filter_ret, action;
1158 struct seccomp_filter *match = NULL;
1159 int data;
1160 struct seccomp_data sd_local;
1161
1162 /*
1163 * Make sure that any changes to mode from another thread have
1164 * been seen after TIF_SECCOMP was seen.
1165 */
1166 rmb();
1167
1168 if (!sd) {
1169 populate_seccomp_data(&sd_local);
1170 sd = &sd_local;
1171 }
1172
1173 filter_ret = seccomp_run_filters(sd, &match);
1174 data = filter_ret & SECCOMP_RET_DATA;
1175 action = filter_ret & SECCOMP_RET_ACTION_FULL;
1176
1177 switch (action) {
1178 case SECCOMP_RET_ERRNO:
1179 /* Set low-order bits as an errno, capped at MAX_ERRNO. */
1180 if (data > MAX_ERRNO)
1181 data = MAX_ERRNO;
1182 syscall_set_return_value(current, current_pt_regs(),
1183 -data, 0);
1184 goto skip;
1185
1186 case SECCOMP_RET_TRAP:
1187 /* Show the handler the original registers. */
1188 syscall_rollback(current, current_pt_regs());
1189 /* Let the filter pass back 16 bits of data. */
1190 seccomp_send_sigsys(this_syscall, data);
1191 goto skip;
1192
1193 case SECCOMP_RET_TRACE:
1194 /* We've been put in this state by the ptracer already. */
1195 if (recheck_after_trace)
1196 return 0;
1197
1198 /* ENOSYS these calls if there is no tracer attached. */
1199 if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) {
1200 syscall_set_return_value(current,
1201 current_pt_regs(),
1202 -ENOSYS, 0);
1203 goto skip;
1204 }
1205
1206 /* Allow the BPF to provide the event message */
1207 ptrace_event(PTRACE_EVENT_SECCOMP, data);
1208 /*
1209 * The delivery of a fatal signal during event
1210 * notification may silently skip tracer notification,
1211 * which could leave us with a potentially unmodified
1212 * syscall that the tracer would have liked to have
1213 * changed. Since the process is about to die, we just
1214 * force the syscall to be skipped and let the signal
1215 * kill the process and correctly handle any tracer exit
1216 * notifications.
1217 */
1218 if (fatal_signal_pending(current))
1219 goto skip;
1220 /* Check if the tracer forced the syscall to be skipped. */
1221 this_syscall = syscall_get_nr(current, current_pt_regs());
1222 if (this_syscall < 0)
1223 goto skip;
1224
1225 /*
1226 * Recheck the syscall, since it may have changed. This
1227 * intentionally uses a NULL struct seccomp_data to force
1228 * a reload of all registers. This does not goto skip since
1229 * a skip would have already been reported.
1230 */
1231 if (__seccomp_filter(this_syscall, NULL, true))
1232 return -1;
1233
1234 return 0;
1235
1236 case SECCOMP_RET_USER_NOTIF:
1237 if (seccomp_do_user_notification(this_syscall, match, sd))
1238 goto skip;
1239
1240 return 0;
1241
1242 case SECCOMP_RET_LOG:
1243 seccomp_log(this_syscall, 0, action, true);
1244 return 0;
1245
1246 case SECCOMP_RET_ALLOW:
1247 /*
1248 * Note that the "match" filter will always be NULL for
1249 * this action since SECCOMP_RET_ALLOW is the starting
1250 * state in seccomp_run_filters().
1251 */
1252 return 0;
1253
1254 case SECCOMP_RET_KILL_THREAD:
1255 case SECCOMP_RET_KILL_PROCESS:
1256 default:
1257 seccomp_log(this_syscall, SIGSYS, action, true);
1258 /* Dump core only if this is the last remaining thread. */
1259 if (action != SECCOMP_RET_KILL_THREAD ||
1260 get_nr_threads(current) == 1) {
1261 kernel_siginfo_t info;
1262
1263 /* Show the original registers in the dump. */
1264 syscall_rollback(current, current_pt_regs());
1265 /* Trigger a manual coredump since do_exit skips it. */
1266 seccomp_init_siginfo(&info, this_syscall, data);
1267 do_coredump(&info);
1268 }
1269 if (action == SECCOMP_RET_KILL_THREAD)
1270 do_exit(SIGSYS);
1271 else
1272 do_group_exit(SIGSYS);
1273 }
1274
1275 unreachable();
1276
1277 skip:
1278 seccomp_log(this_syscall, 0, action, match ? match->log : false);
1279 return -1;
1280 }
1281 #else
__seccomp_filter(int this_syscall,const struct seccomp_data * sd,const bool recheck_after_trace)1282 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
1283 const bool recheck_after_trace)
1284 {
1285 BUG();
1286
1287 return -1;
1288 }
1289 #endif
1290
__secure_computing(const struct seccomp_data * sd)1291 int __secure_computing(const struct seccomp_data *sd)
1292 {
1293 int mode = current->seccomp.mode;
1294 int this_syscall;
1295
1296 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1297 unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1298 return 0;
1299
1300 this_syscall = sd ? sd->nr :
1301 syscall_get_nr(current, current_pt_regs());
1302
1303 switch (mode) {
1304 case SECCOMP_MODE_STRICT:
1305 __secure_computing_strict(this_syscall); /* may call do_exit */
1306 return 0;
1307 case SECCOMP_MODE_FILTER:
1308 return __seccomp_filter(this_syscall, sd, false);
1309 default:
1310 BUG();
1311 }
1312 }
1313 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */
1314
prctl_get_seccomp(void)1315 long prctl_get_seccomp(void)
1316 {
1317 return current->seccomp.mode;
1318 }
1319
1320 /**
1321 * seccomp_set_mode_strict: internal function for setting strict seccomp
1322 *
1323 * Once current->seccomp.mode is non-zero, it may not be changed.
1324 *
1325 * Returns 0 on success or -EINVAL on failure.
1326 */
seccomp_set_mode_strict(void)1327 static long seccomp_set_mode_strict(void)
1328 {
1329 const unsigned long seccomp_mode = SECCOMP_MODE_STRICT;
1330 long ret = -EINVAL;
1331
1332 spin_lock_irq(¤t->sighand->siglock);
1333
1334 if (!seccomp_may_assign_mode(seccomp_mode))
1335 goto out;
1336
1337 #ifdef TIF_NOTSC
1338 disable_TSC();
1339 #endif
1340 seccomp_assign_mode(current, seccomp_mode, 0);
1341 ret = 0;
1342
1343 out:
1344 spin_unlock_irq(¤t->sighand->siglock);
1345
1346 return ret;
1347 }
1348
1349 #ifdef CONFIG_SECCOMP_FILTER
seccomp_notify_free(struct seccomp_filter * filter)1350 static void seccomp_notify_free(struct seccomp_filter *filter)
1351 {
1352 kfree(filter->notif);
1353 filter->notif = NULL;
1354 }
1355
seccomp_notify_detach(struct seccomp_filter * filter)1356 static void seccomp_notify_detach(struct seccomp_filter *filter)
1357 {
1358 struct seccomp_knotif *knotif;
1359
1360 if (!filter)
1361 return;
1362
1363 mutex_lock(&filter->notify_lock);
1364
1365 /*
1366 * If this file is being closed because e.g. the task who owned it
1367 * died, let's wake everyone up who was waiting on us.
1368 */
1369 list_for_each_entry(knotif, &filter->notif->notifications, list) {
1370 if (knotif->state == SECCOMP_NOTIFY_REPLIED)
1371 continue;
1372
1373 knotif->state = SECCOMP_NOTIFY_REPLIED;
1374 knotif->error = -ENOSYS;
1375 knotif->val = 0;
1376
1377 /*
1378 * We do not need to wake up any pending addfd messages, as
1379 * the notifier will do that for us, as this just looks
1380 * like a standard reply.
1381 */
1382 complete(&knotif->ready);
1383 }
1384
1385 seccomp_notify_free(filter);
1386 mutex_unlock(&filter->notify_lock);
1387 }
1388
seccomp_notify_release(struct inode * inode,struct file * file)1389 static int seccomp_notify_release(struct inode *inode, struct file *file)
1390 {
1391 struct seccomp_filter *filter = file->private_data;
1392
1393 seccomp_notify_detach(filter);
1394 __put_seccomp_filter(filter);
1395 return 0;
1396 }
1397
1398 /* must be called with notif_lock held */
1399 static inline struct seccomp_knotif *
find_notification(struct seccomp_filter * filter,u64 id)1400 find_notification(struct seccomp_filter *filter, u64 id)
1401 {
1402 struct seccomp_knotif *cur;
1403
1404 lockdep_assert_held(&filter->notify_lock);
1405
1406 list_for_each_entry(cur, &filter->notif->notifications, list) {
1407 if (cur->id == id)
1408 return cur;
1409 }
1410
1411 return NULL;
1412 }
1413
1414
seccomp_notify_recv(struct seccomp_filter * filter,void __user * buf)1415 static long seccomp_notify_recv(struct seccomp_filter *filter,
1416 void __user *buf)
1417 {
1418 struct seccomp_knotif *knotif = NULL, *cur;
1419 struct seccomp_notif unotif;
1420 ssize_t ret;
1421
1422 /* Verify that we're not given garbage to keep struct extensible. */
1423 ret = check_zeroed_user(buf, sizeof(unotif));
1424 if (ret < 0)
1425 return ret;
1426 if (!ret)
1427 return -EINVAL;
1428
1429 memset(&unotif, 0, sizeof(unotif));
1430
1431 ret = down_interruptible(&filter->notif->request);
1432 if (ret < 0)
1433 return ret;
1434
1435 mutex_lock(&filter->notify_lock);
1436 list_for_each_entry(cur, &filter->notif->notifications, list) {
1437 if (cur->state == SECCOMP_NOTIFY_INIT) {
1438 knotif = cur;
1439 break;
1440 }
1441 }
1442
1443 /*
1444 * If we didn't find a notification, it could be that the task was
1445 * interrupted by a fatal signal between the time we were woken and
1446 * when we were able to acquire the rw lock.
1447 */
1448 if (!knotif) {
1449 ret = -ENOENT;
1450 goto out;
1451 }
1452
1453 unotif.id = knotif->id;
1454 unotif.pid = task_pid_vnr(knotif->task);
1455 unotif.data = *(knotif->data);
1456
1457 knotif->state = SECCOMP_NOTIFY_SENT;
1458 wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM);
1459 ret = 0;
1460 out:
1461 mutex_unlock(&filter->notify_lock);
1462
1463 if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) {
1464 ret = -EFAULT;
1465
1466 /*
1467 * Userspace screwed up. To make sure that we keep this
1468 * notification alive, let's reset it back to INIT. It
1469 * may have died when we released the lock, so we need to make
1470 * sure it's still around.
1471 */
1472 mutex_lock(&filter->notify_lock);
1473 knotif = find_notification(filter, unotif.id);
1474 if (knotif) {
1475 knotif->state = SECCOMP_NOTIFY_INIT;
1476 up(&filter->notif->request);
1477 }
1478 mutex_unlock(&filter->notify_lock);
1479 }
1480
1481 return ret;
1482 }
1483
seccomp_notify_send(struct seccomp_filter * filter,void __user * buf)1484 static long seccomp_notify_send(struct seccomp_filter *filter,
1485 void __user *buf)
1486 {
1487 struct seccomp_notif_resp resp = {};
1488 struct seccomp_knotif *knotif;
1489 long ret;
1490
1491 if (copy_from_user(&resp, buf, sizeof(resp)))
1492 return -EFAULT;
1493
1494 if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1495 return -EINVAL;
1496
1497 if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) &&
1498 (resp.error || resp.val))
1499 return -EINVAL;
1500
1501 ret = mutex_lock_interruptible(&filter->notify_lock);
1502 if (ret < 0)
1503 return ret;
1504
1505 knotif = find_notification(filter, resp.id);
1506 if (!knotif) {
1507 ret = -ENOENT;
1508 goto out;
1509 }
1510
1511 /* Allow exactly one reply. */
1512 if (knotif->state != SECCOMP_NOTIFY_SENT) {
1513 ret = -EINPROGRESS;
1514 goto out;
1515 }
1516
1517 ret = 0;
1518 knotif->state = SECCOMP_NOTIFY_REPLIED;
1519 knotif->error = resp.error;
1520 knotif->val = resp.val;
1521 knotif->flags = resp.flags;
1522 complete(&knotif->ready);
1523 out:
1524 mutex_unlock(&filter->notify_lock);
1525 return ret;
1526 }
1527
seccomp_notify_id_valid(struct seccomp_filter * filter,void __user * buf)1528 static long seccomp_notify_id_valid(struct seccomp_filter *filter,
1529 void __user *buf)
1530 {
1531 struct seccomp_knotif *knotif;
1532 u64 id;
1533 long ret;
1534
1535 if (copy_from_user(&id, buf, sizeof(id)))
1536 return -EFAULT;
1537
1538 ret = mutex_lock_interruptible(&filter->notify_lock);
1539 if (ret < 0)
1540 return ret;
1541
1542 knotif = find_notification(filter, id);
1543 if (knotif && knotif->state == SECCOMP_NOTIFY_SENT)
1544 ret = 0;
1545 else
1546 ret = -ENOENT;
1547
1548 mutex_unlock(&filter->notify_lock);
1549 return ret;
1550 }
1551
seccomp_notify_addfd(struct seccomp_filter * filter,struct seccomp_notif_addfd __user * uaddfd,unsigned int size)1552 static long seccomp_notify_addfd(struct seccomp_filter *filter,
1553 struct seccomp_notif_addfd __user *uaddfd,
1554 unsigned int size)
1555 {
1556 struct seccomp_notif_addfd addfd;
1557 struct seccomp_knotif *knotif;
1558 struct seccomp_kaddfd kaddfd;
1559 int ret;
1560
1561 BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0);
1562 BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST);
1563
1564 if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE)
1565 return -EINVAL;
1566
1567 ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size);
1568 if (ret)
1569 return ret;
1570
1571 if (addfd.newfd_flags & ~O_CLOEXEC)
1572 return -EINVAL;
1573
1574 if (addfd.flags & ~SECCOMP_ADDFD_FLAG_SETFD)
1575 return -EINVAL;
1576
1577 if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD))
1578 return -EINVAL;
1579
1580 kaddfd.file = fget(addfd.srcfd);
1581 if (!kaddfd.file)
1582 return -EBADF;
1583
1584 kaddfd.flags = addfd.newfd_flags;
1585 kaddfd.fd = (addfd.flags & SECCOMP_ADDFD_FLAG_SETFD) ?
1586 addfd.newfd : -1;
1587 init_completion(&kaddfd.completion);
1588
1589 ret = mutex_lock_interruptible(&filter->notify_lock);
1590 if (ret < 0)
1591 goto out;
1592
1593 knotif = find_notification(filter, addfd.id);
1594 if (!knotif) {
1595 ret = -ENOENT;
1596 goto out_unlock;
1597 }
1598
1599 /*
1600 * We do not want to allow for FD injection to occur before the
1601 * notification has been picked up by a userspace handler, or after
1602 * the notification has been replied to.
1603 */
1604 if (knotif->state != SECCOMP_NOTIFY_SENT) {
1605 ret = -EINPROGRESS;
1606 goto out_unlock;
1607 }
1608
1609 list_add(&kaddfd.list, &knotif->addfd);
1610 complete(&knotif->ready);
1611 mutex_unlock(&filter->notify_lock);
1612
1613 /* Now we wait for it to be processed or be interrupted */
1614 ret = wait_for_completion_interruptible(&kaddfd.completion);
1615 if (ret == 0) {
1616 /*
1617 * We had a successful completion. The other side has already
1618 * removed us from the addfd queue, and
1619 * wait_for_completion_interruptible has a memory barrier upon
1620 * success that lets us read this value directly without
1621 * locking.
1622 */
1623 ret = kaddfd.ret;
1624 goto out;
1625 }
1626
1627 mutex_lock(&filter->notify_lock);
1628 /*
1629 * Even though we were woken up by a signal and not a successful
1630 * completion, a completion may have happened in the mean time.
1631 *
1632 * We need to check again if the addfd request has been handled,
1633 * and if not, we will remove it from the queue.
1634 */
1635 if (list_empty(&kaddfd.list))
1636 ret = kaddfd.ret;
1637 else
1638 list_del(&kaddfd.list);
1639
1640 out_unlock:
1641 mutex_unlock(&filter->notify_lock);
1642 out:
1643 fput(kaddfd.file);
1644
1645 return ret;
1646 }
1647
seccomp_notify_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1648 static long seccomp_notify_ioctl(struct file *file, unsigned int cmd,
1649 unsigned long arg)
1650 {
1651 struct seccomp_filter *filter = file->private_data;
1652 void __user *buf = (void __user *)arg;
1653
1654 /* Fixed-size ioctls */
1655 switch (cmd) {
1656 case SECCOMP_IOCTL_NOTIF_RECV:
1657 return seccomp_notify_recv(filter, buf);
1658 case SECCOMP_IOCTL_NOTIF_SEND:
1659 return seccomp_notify_send(filter, buf);
1660 case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR:
1661 case SECCOMP_IOCTL_NOTIF_ID_VALID:
1662 return seccomp_notify_id_valid(filter, buf);
1663 }
1664
1665 /* Extensible Argument ioctls */
1666 #define EA_IOCTL(cmd) ((cmd) & ~(IOC_INOUT | IOCSIZE_MASK))
1667 switch (EA_IOCTL(cmd)) {
1668 case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD):
1669 return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd));
1670 default:
1671 return -EINVAL;
1672 }
1673 }
1674
seccomp_notify_poll(struct file * file,struct poll_table_struct * poll_tab)1675 static __poll_t seccomp_notify_poll(struct file *file,
1676 struct poll_table_struct *poll_tab)
1677 {
1678 struct seccomp_filter *filter = file->private_data;
1679 __poll_t ret = 0;
1680 struct seccomp_knotif *cur;
1681
1682 poll_wait(file, &filter->wqh, poll_tab);
1683
1684 if (mutex_lock_interruptible(&filter->notify_lock) < 0)
1685 return EPOLLERR;
1686
1687 list_for_each_entry(cur, &filter->notif->notifications, list) {
1688 if (cur->state == SECCOMP_NOTIFY_INIT)
1689 ret |= EPOLLIN | EPOLLRDNORM;
1690 if (cur->state == SECCOMP_NOTIFY_SENT)
1691 ret |= EPOLLOUT | EPOLLWRNORM;
1692 if ((ret & EPOLLIN) && (ret & EPOLLOUT))
1693 break;
1694 }
1695
1696 mutex_unlock(&filter->notify_lock);
1697
1698 if (refcount_read(&filter->users) == 0)
1699 ret |= EPOLLHUP;
1700
1701 return ret;
1702 }
1703
1704 static const struct file_operations seccomp_notify_ops = {
1705 .poll = seccomp_notify_poll,
1706 .release = seccomp_notify_release,
1707 .unlocked_ioctl = seccomp_notify_ioctl,
1708 .compat_ioctl = seccomp_notify_ioctl,
1709 };
1710
init_listener(struct seccomp_filter * filter)1711 static struct file *init_listener(struct seccomp_filter *filter)
1712 {
1713 struct file *ret;
1714
1715 ret = ERR_PTR(-ENOMEM);
1716 filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL);
1717 if (!filter->notif)
1718 goto out;
1719
1720 sema_init(&filter->notif->request, 0);
1721 filter->notif->next_id = get_random_u64();
1722 INIT_LIST_HEAD(&filter->notif->notifications);
1723
1724 ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops,
1725 filter, O_RDWR);
1726 if (IS_ERR(ret))
1727 goto out_notif;
1728
1729 /* The file has a reference to it now */
1730 __get_seccomp_filter(filter);
1731
1732 out_notif:
1733 if (IS_ERR(ret))
1734 seccomp_notify_free(filter);
1735 out:
1736 return ret;
1737 }
1738
1739 /*
1740 * Does @new_child have a listener while an ancestor also has a listener?
1741 * If so, we'll want to reject this filter.
1742 * This only has to be tested for the current process, even in the TSYNC case,
1743 * because TSYNC installs @child with the same parent on all threads.
1744 * Note that @new_child is not hooked up to its parent at this point yet, so
1745 * we use current->seccomp.filter.
1746 */
has_duplicate_listener(struct seccomp_filter * new_child)1747 static bool has_duplicate_listener(struct seccomp_filter *new_child)
1748 {
1749 struct seccomp_filter *cur;
1750
1751 /* must be protected against concurrent TSYNC */
1752 lockdep_assert_held(¤t->sighand->siglock);
1753
1754 if (!new_child->notif)
1755 return false;
1756 for (cur = current->seccomp.filter; cur; cur = cur->prev) {
1757 if (cur->notif)
1758 return true;
1759 }
1760
1761 return false;
1762 }
1763
1764 /**
1765 * seccomp_set_mode_filter: internal function for setting seccomp filter
1766 * @flags: flags to change filter behavior
1767 * @filter: struct sock_fprog containing filter
1768 *
1769 * This function may be called repeatedly to install additional filters.
1770 * Every filter successfully installed will be evaluated (in reverse order)
1771 * for each system call the task makes.
1772 *
1773 * Once current->seccomp.mode is non-zero, it may not be changed.
1774 *
1775 * Returns 0 on success or -EINVAL on failure.
1776 */
seccomp_set_mode_filter(unsigned int flags,const char __user * filter)1777 static long seccomp_set_mode_filter(unsigned int flags,
1778 const char __user *filter)
1779 {
1780 const unsigned long seccomp_mode = SECCOMP_MODE_FILTER;
1781 struct seccomp_filter *prepared = NULL;
1782 long ret = -EINVAL;
1783 int listener = -1;
1784 struct file *listener_f = NULL;
1785
1786 /* Validate flags. */
1787 if (flags & ~SECCOMP_FILTER_FLAG_MASK)
1788 return -EINVAL;
1789
1790 /*
1791 * In the successful case, NEW_LISTENER returns the new listener fd.
1792 * But in the failure case, TSYNC returns the thread that died. If you
1793 * combine these two flags, there's no way to tell whether something
1794 * succeeded or failed. So, let's disallow this combination if the user
1795 * has not explicitly requested no errors from TSYNC.
1796 */
1797 if ((flags & SECCOMP_FILTER_FLAG_TSYNC) &&
1798 (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) &&
1799 ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0))
1800 return -EINVAL;
1801
1802 /* Prepare the new filter before holding any locks. */
1803 prepared = seccomp_prepare_user_filter(filter);
1804 if (IS_ERR(prepared))
1805 return PTR_ERR(prepared);
1806
1807 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1808 listener = get_unused_fd_flags(O_CLOEXEC);
1809 if (listener < 0) {
1810 ret = listener;
1811 goto out_free;
1812 }
1813
1814 listener_f = init_listener(prepared);
1815 if (IS_ERR(listener_f)) {
1816 put_unused_fd(listener);
1817 ret = PTR_ERR(listener_f);
1818 goto out_free;
1819 }
1820 }
1821
1822 /*
1823 * Make sure we cannot change seccomp or nnp state via TSYNC
1824 * while another thread is in the middle of calling exec.
1825 */
1826 if (flags & SECCOMP_FILTER_FLAG_TSYNC &&
1827 mutex_lock_killable(¤t->signal->cred_guard_mutex))
1828 goto out_put_fd;
1829
1830 spin_lock_irq(¤t->sighand->siglock);
1831
1832 if (!seccomp_may_assign_mode(seccomp_mode))
1833 goto out;
1834
1835 if (has_duplicate_listener(prepared)) {
1836 ret = -EBUSY;
1837 goto out;
1838 }
1839
1840 ret = seccomp_attach_filter(flags, prepared);
1841 if (ret)
1842 goto out;
1843 /* Do not free the successfully attached filter. */
1844 prepared = NULL;
1845
1846 seccomp_assign_mode(current, seccomp_mode, flags);
1847 out:
1848 spin_unlock_irq(¤t->sighand->siglock);
1849 if (flags & SECCOMP_FILTER_FLAG_TSYNC)
1850 mutex_unlock(¤t->signal->cred_guard_mutex);
1851 out_put_fd:
1852 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1853 if (ret) {
1854 listener_f->private_data = NULL;
1855 fput(listener_f);
1856 put_unused_fd(listener);
1857 seccomp_notify_detach(prepared);
1858 } else {
1859 fd_install(listener, listener_f);
1860 ret = listener;
1861 }
1862 }
1863 out_free:
1864 seccomp_filter_free(prepared);
1865 return ret;
1866 }
1867 #else
seccomp_set_mode_filter(unsigned int flags,const char __user * filter)1868 static inline long seccomp_set_mode_filter(unsigned int flags,
1869 const char __user *filter)
1870 {
1871 return -EINVAL;
1872 }
1873 #endif
1874
seccomp_get_action_avail(const char __user * uaction)1875 static long seccomp_get_action_avail(const char __user *uaction)
1876 {
1877 u32 action;
1878
1879 if (copy_from_user(&action, uaction, sizeof(action)))
1880 return -EFAULT;
1881
1882 switch (action) {
1883 case SECCOMP_RET_KILL_PROCESS:
1884 case SECCOMP_RET_KILL_THREAD:
1885 case SECCOMP_RET_TRAP:
1886 case SECCOMP_RET_ERRNO:
1887 case SECCOMP_RET_USER_NOTIF:
1888 case SECCOMP_RET_TRACE:
1889 case SECCOMP_RET_LOG:
1890 case SECCOMP_RET_ALLOW:
1891 break;
1892 default:
1893 return -EOPNOTSUPP;
1894 }
1895
1896 return 0;
1897 }
1898
seccomp_get_notif_sizes(void __user * usizes)1899 static long seccomp_get_notif_sizes(void __user *usizes)
1900 {
1901 struct seccomp_notif_sizes sizes = {
1902 .seccomp_notif = sizeof(struct seccomp_notif),
1903 .seccomp_notif_resp = sizeof(struct seccomp_notif_resp),
1904 .seccomp_data = sizeof(struct seccomp_data),
1905 };
1906
1907 if (copy_to_user(usizes, &sizes, sizeof(sizes)))
1908 return -EFAULT;
1909
1910 return 0;
1911 }
1912
1913 /* Common entry point for both prctl and syscall. */
do_seccomp(unsigned int op,unsigned int flags,void __user * uargs)1914 static long do_seccomp(unsigned int op, unsigned int flags,
1915 void __user *uargs)
1916 {
1917 switch (op) {
1918 case SECCOMP_SET_MODE_STRICT:
1919 if (flags != 0 || uargs != NULL)
1920 return -EINVAL;
1921 return seccomp_set_mode_strict();
1922 case SECCOMP_SET_MODE_FILTER:
1923 return seccomp_set_mode_filter(flags, uargs);
1924 case SECCOMP_GET_ACTION_AVAIL:
1925 if (flags != 0)
1926 return -EINVAL;
1927
1928 return seccomp_get_action_avail(uargs);
1929 case SECCOMP_GET_NOTIF_SIZES:
1930 if (flags != 0)
1931 return -EINVAL;
1932
1933 return seccomp_get_notif_sizes(uargs);
1934 default:
1935 return -EINVAL;
1936 }
1937 }
1938
SYSCALL_DEFINE3(seccomp,unsigned int,op,unsigned int,flags,void __user *,uargs)1939 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags,
1940 void __user *, uargs)
1941 {
1942 return do_seccomp(op, flags, uargs);
1943 }
1944
1945 /**
1946 * prctl_set_seccomp: configures current->seccomp.mode
1947 * @seccomp_mode: requested mode to use
1948 * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER
1949 *
1950 * Returns 0 on success or -EINVAL on failure.
1951 */
prctl_set_seccomp(unsigned long seccomp_mode,void __user * filter)1952 long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter)
1953 {
1954 unsigned int op;
1955 void __user *uargs;
1956
1957 switch (seccomp_mode) {
1958 case SECCOMP_MODE_STRICT:
1959 op = SECCOMP_SET_MODE_STRICT;
1960 /*
1961 * Setting strict mode through prctl always ignored filter,
1962 * so make sure it is always NULL here to pass the internal
1963 * check in do_seccomp().
1964 */
1965 uargs = NULL;
1966 break;
1967 case SECCOMP_MODE_FILTER:
1968 op = SECCOMP_SET_MODE_FILTER;
1969 uargs = filter;
1970 break;
1971 default:
1972 return -EINVAL;
1973 }
1974
1975 /* prctl interface doesn't have flags, so they are always zero. */
1976 return do_seccomp(op, 0, uargs);
1977 }
1978
1979 #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE)
get_nth_filter(struct task_struct * task,unsigned long filter_off)1980 static struct seccomp_filter *get_nth_filter(struct task_struct *task,
1981 unsigned long filter_off)
1982 {
1983 struct seccomp_filter *orig, *filter;
1984 unsigned long count;
1985
1986 /*
1987 * Note: this is only correct because the caller should be the (ptrace)
1988 * tracer of the task, otherwise lock_task_sighand is needed.
1989 */
1990 spin_lock_irq(&task->sighand->siglock);
1991
1992 if (task->seccomp.mode != SECCOMP_MODE_FILTER) {
1993 spin_unlock_irq(&task->sighand->siglock);
1994 return ERR_PTR(-EINVAL);
1995 }
1996
1997 orig = task->seccomp.filter;
1998 __get_seccomp_filter(orig);
1999 spin_unlock_irq(&task->sighand->siglock);
2000
2001 count = 0;
2002 for (filter = orig; filter; filter = filter->prev)
2003 count++;
2004
2005 if (filter_off >= count) {
2006 filter = ERR_PTR(-ENOENT);
2007 goto out;
2008 }
2009
2010 count -= filter_off;
2011 for (filter = orig; filter && count > 1; filter = filter->prev)
2012 count--;
2013
2014 if (WARN_ON(count != 1 || !filter)) {
2015 filter = ERR_PTR(-ENOENT);
2016 goto out;
2017 }
2018
2019 __get_seccomp_filter(filter);
2020
2021 out:
2022 __put_seccomp_filter(orig);
2023 return filter;
2024 }
2025
seccomp_get_filter(struct task_struct * task,unsigned long filter_off,void __user * data)2026 long seccomp_get_filter(struct task_struct *task, unsigned long filter_off,
2027 void __user *data)
2028 {
2029 struct seccomp_filter *filter;
2030 struct sock_fprog_kern *fprog;
2031 long ret;
2032
2033 if (!capable(CAP_SYS_ADMIN) ||
2034 current->seccomp.mode != SECCOMP_MODE_DISABLED) {
2035 return -EACCES;
2036 }
2037
2038 filter = get_nth_filter(task, filter_off);
2039 if (IS_ERR(filter))
2040 return PTR_ERR(filter);
2041
2042 fprog = filter->prog->orig_prog;
2043 if (!fprog) {
2044 /* This must be a new non-cBPF filter, since we save
2045 * every cBPF filter's orig_prog above when
2046 * CONFIG_CHECKPOINT_RESTORE is enabled.
2047 */
2048 ret = -EMEDIUMTYPE;
2049 goto out;
2050 }
2051
2052 ret = fprog->len;
2053 if (!data)
2054 goto out;
2055
2056 if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog)))
2057 ret = -EFAULT;
2058
2059 out:
2060 __put_seccomp_filter(filter);
2061 return ret;
2062 }
2063
seccomp_get_metadata(struct task_struct * task,unsigned long size,void __user * data)2064 long seccomp_get_metadata(struct task_struct *task,
2065 unsigned long size, void __user *data)
2066 {
2067 long ret;
2068 struct seccomp_filter *filter;
2069 struct seccomp_metadata kmd = {};
2070
2071 if (!capable(CAP_SYS_ADMIN) ||
2072 current->seccomp.mode != SECCOMP_MODE_DISABLED) {
2073 return -EACCES;
2074 }
2075
2076 size = min_t(unsigned long, size, sizeof(kmd));
2077
2078 if (size < sizeof(kmd.filter_off))
2079 return -EINVAL;
2080
2081 if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off)))
2082 return -EFAULT;
2083
2084 filter = get_nth_filter(task, kmd.filter_off);
2085 if (IS_ERR(filter))
2086 return PTR_ERR(filter);
2087
2088 if (filter->log)
2089 kmd.flags |= SECCOMP_FILTER_FLAG_LOG;
2090
2091 ret = size;
2092 if (copy_to_user(data, &kmd, size))
2093 ret = -EFAULT;
2094
2095 __put_seccomp_filter(filter);
2096 return ret;
2097 }
2098 #endif
2099
2100 #ifdef CONFIG_SYSCTL
2101
2102 /* Human readable action names for friendly sysctl interaction */
2103 #define SECCOMP_RET_KILL_PROCESS_NAME "kill_process"
2104 #define SECCOMP_RET_KILL_THREAD_NAME "kill_thread"
2105 #define SECCOMP_RET_TRAP_NAME "trap"
2106 #define SECCOMP_RET_ERRNO_NAME "errno"
2107 #define SECCOMP_RET_USER_NOTIF_NAME "user_notif"
2108 #define SECCOMP_RET_TRACE_NAME "trace"
2109 #define SECCOMP_RET_LOG_NAME "log"
2110 #define SECCOMP_RET_ALLOW_NAME "allow"
2111
2112 static const char seccomp_actions_avail[] =
2113 SECCOMP_RET_KILL_PROCESS_NAME " "
2114 SECCOMP_RET_KILL_THREAD_NAME " "
2115 SECCOMP_RET_TRAP_NAME " "
2116 SECCOMP_RET_ERRNO_NAME " "
2117 SECCOMP_RET_USER_NOTIF_NAME " "
2118 SECCOMP_RET_TRACE_NAME " "
2119 SECCOMP_RET_LOG_NAME " "
2120 SECCOMP_RET_ALLOW_NAME;
2121
2122 struct seccomp_log_name {
2123 u32 log;
2124 const char *name;
2125 };
2126
2127 static const struct seccomp_log_name seccomp_log_names[] = {
2128 { SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME },
2129 { SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME },
2130 { SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME },
2131 { SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME },
2132 { SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME },
2133 { SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME },
2134 { SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME },
2135 { SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME },
2136 { }
2137 };
2138
seccomp_names_from_actions_logged(char * names,size_t size,u32 actions_logged,const char * sep)2139 static bool seccomp_names_from_actions_logged(char *names, size_t size,
2140 u32 actions_logged,
2141 const char *sep)
2142 {
2143 const struct seccomp_log_name *cur;
2144 bool append_sep = false;
2145
2146 for (cur = seccomp_log_names; cur->name && size; cur++) {
2147 ssize_t ret;
2148
2149 if (!(actions_logged & cur->log))
2150 continue;
2151
2152 if (append_sep) {
2153 ret = strscpy(names, sep, size);
2154 if (ret < 0)
2155 return false;
2156
2157 names += ret;
2158 size -= ret;
2159 } else
2160 append_sep = true;
2161
2162 ret = strscpy(names, cur->name, size);
2163 if (ret < 0)
2164 return false;
2165
2166 names += ret;
2167 size -= ret;
2168 }
2169
2170 return true;
2171 }
2172
seccomp_action_logged_from_name(u32 * action_logged,const char * name)2173 static bool seccomp_action_logged_from_name(u32 *action_logged,
2174 const char *name)
2175 {
2176 const struct seccomp_log_name *cur;
2177
2178 for (cur = seccomp_log_names; cur->name; cur++) {
2179 if (!strcmp(cur->name, name)) {
2180 *action_logged = cur->log;
2181 return true;
2182 }
2183 }
2184
2185 return false;
2186 }
2187
seccomp_actions_logged_from_names(u32 * actions_logged,char * names)2188 static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names)
2189 {
2190 char *name;
2191
2192 *actions_logged = 0;
2193 while ((name = strsep(&names, " ")) && *name) {
2194 u32 action_logged = 0;
2195
2196 if (!seccomp_action_logged_from_name(&action_logged, name))
2197 return false;
2198
2199 *actions_logged |= action_logged;
2200 }
2201
2202 return true;
2203 }
2204
read_actions_logged(struct ctl_table * ro_table,void * buffer,size_t * lenp,loff_t * ppos)2205 static int read_actions_logged(struct ctl_table *ro_table, void *buffer,
2206 size_t *lenp, loff_t *ppos)
2207 {
2208 char names[sizeof(seccomp_actions_avail)];
2209 struct ctl_table table;
2210
2211 memset(names, 0, sizeof(names));
2212
2213 if (!seccomp_names_from_actions_logged(names, sizeof(names),
2214 seccomp_actions_logged, " "))
2215 return -EINVAL;
2216
2217 table = *ro_table;
2218 table.data = names;
2219 table.maxlen = sizeof(names);
2220 return proc_dostring(&table, 0, buffer, lenp, ppos);
2221 }
2222
write_actions_logged(struct ctl_table * ro_table,void * buffer,size_t * lenp,loff_t * ppos,u32 * actions_logged)2223 static int write_actions_logged(struct ctl_table *ro_table, void *buffer,
2224 size_t *lenp, loff_t *ppos, u32 *actions_logged)
2225 {
2226 char names[sizeof(seccomp_actions_avail)];
2227 struct ctl_table table;
2228 int ret;
2229
2230 if (!capable(CAP_SYS_ADMIN))
2231 return -EPERM;
2232
2233 memset(names, 0, sizeof(names));
2234
2235 table = *ro_table;
2236 table.data = names;
2237 table.maxlen = sizeof(names);
2238 ret = proc_dostring(&table, 1, buffer, lenp, ppos);
2239 if (ret)
2240 return ret;
2241
2242 if (!seccomp_actions_logged_from_names(actions_logged, table.data))
2243 return -EINVAL;
2244
2245 if (*actions_logged & SECCOMP_LOG_ALLOW)
2246 return -EINVAL;
2247
2248 seccomp_actions_logged = *actions_logged;
2249 return 0;
2250 }
2251
audit_actions_logged(u32 actions_logged,u32 old_actions_logged,int ret)2252 static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged,
2253 int ret)
2254 {
2255 char names[sizeof(seccomp_actions_avail)];
2256 char old_names[sizeof(seccomp_actions_avail)];
2257 const char *new = names;
2258 const char *old = old_names;
2259
2260 if (!audit_enabled)
2261 return;
2262
2263 memset(names, 0, sizeof(names));
2264 memset(old_names, 0, sizeof(old_names));
2265
2266 if (ret)
2267 new = "?";
2268 else if (!actions_logged)
2269 new = "(none)";
2270 else if (!seccomp_names_from_actions_logged(names, sizeof(names),
2271 actions_logged, ","))
2272 new = "?";
2273
2274 if (!old_actions_logged)
2275 old = "(none)";
2276 else if (!seccomp_names_from_actions_logged(old_names,
2277 sizeof(old_names),
2278 old_actions_logged, ","))
2279 old = "?";
2280
2281 return audit_seccomp_actions_logged(new, old, !ret);
2282 }
2283
seccomp_actions_logged_handler(struct ctl_table * ro_table,int write,void * buffer,size_t * lenp,loff_t * ppos)2284 static int seccomp_actions_logged_handler(struct ctl_table *ro_table, int write,
2285 void *buffer, size_t *lenp,
2286 loff_t *ppos)
2287 {
2288 int ret;
2289
2290 if (write) {
2291 u32 actions_logged = 0;
2292 u32 old_actions_logged = seccomp_actions_logged;
2293
2294 ret = write_actions_logged(ro_table, buffer, lenp, ppos,
2295 &actions_logged);
2296 audit_actions_logged(actions_logged, old_actions_logged, ret);
2297 } else
2298 ret = read_actions_logged(ro_table, buffer, lenp, ppos);
2299
2300 return ret;
2301 }
2302
2303 static struct ctl_path seccomp_sysctl_path[] = {
2304 { .procname = "kernel", },
2305 { .procname = "seccomp", },
2306 { }
2307 };
2308
2309 static struct ctl_table seccomp_sysctl_table[] = {
2310 {
2311 .procname = "actions_avail",
2312 .data = (void *) &seccomp_actions_avail,
2313 .maxlen = sizeof(seccomp_actions_avail),
2314 .mode = 0444,
2315 .proc_handler = proc_dostring,
2316 },
2317 {
2318 .procname = "actions_logged",
2319 .mode = 0644,
2320 .proc_handler = seccomp_actions_logged_handler,
2321 },
2322 { }
2323 };
2324
seccomp_sysctl_init(void)2325 static int __init seccomp_sysctl_init(void)
2326 {
2327 struct ctl_table_header *hdr;
2328
2329 hdr = register_sysctl_paths(seccomp_sysctl_path, seccomp_sysctl_table);
2330 if (!hdr)
2331 pr_warn("sysctl registration failed\n");
2332 else
2333 kmemleak_not_leak(hdr);
2334
2335 return 0;
2336 }
2337
2338 device_initcall(seccomp_sysctl_init)
2339
2340 #endif /* CONFIG_SYSCTL */
2341