1 //  Boost rational.hpp header file  ------------------------------------------//
2 
3 //  (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
4 //  distribute this software is granted provided this copyright notice appears
5 //  in all copies. This software is provided "as is" without express or
6 //  implied warranty, and with no claim as to its suitability for any purpose.
7 
8 // boostinspect:nolicense (don't complain about the lack of a Boost license)
9 // (Paul Moore hasn't been in contact for years, so there's no way to change the
10 // license.)
11 
12 //  See http://www.boost.org/libs/rational for documentation.
13 
14 //  Credits:
15 //  Thanks to the boost mailing list in general for useful comments.
16 //  Particular contributions included:
17 //    Andrew D Jewell, for reminding me to take care to avoid overflow
18 //    Ed Brey, for many comments, including picking up on some dreadful typos
19 //    Stephen Silver contributed the test suite and comments on user-defined
20 //    IntType
21 //    Nickolay Mladenov, for the implementation of operator+=
22 
23 //  Revision History
24 //  02 Sep 13  Remove unneeded forward declarations; tweak private helper
25 //             function (Daryle Walker)
26 //  30 Aug 13  Improve exception safety of "assign"; start modernizing I/O code
27 //             (Daryle Walker)
28 //  27 Aug 13  Add cross-version constructor template, plus some private helper
29 //             functions; add constructor to exception class to take custom
30 //             messages (Daryle Walker)
31 //  25 Aug 13  Add constexpr qualification wherever possible (Daryle Walker)
32 //  05 May 12  Reduced use of implicit gcd (Mario Lang)
33 //  05 Nov 06  Change rational_cast to not depend on division between different
34 //             types (Daryle Walker)
35 //  04 Nov 06  Off-load GCD and LCM to Boost.Integer; add some invariant checks;
36 //             add std::numeric_limits<> requirement to help GCD (Daryle Walker)
37 //  31 Oct 06  Recoded both operator< to use round-to-negative-infinity
38 //             divisions; the rational-value version now uses continued fraction
39 //             expansion to avoid overflows, for bug #798357 (Daryle Walker)
40 //  20 Oct 06  Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz)
41 //  18 Oct 06  Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config
42 //             (Joaquín M López Muñoz)
43 //  27 Dec 05  Add Boolean conversion operator (Daryle Walker)
44 //  28 Sep 02  Use _left versions of operators from operators.hpp
45 //  05 Jul 01  Recode gcd(), avoiding std::swap (Helmut Zeisel)
46 //  03 Mar 01  Workarounds for Intel C++ 5.0 (David Abrahams)
47 //  05 Feb 01  Update operator>> to tighten up input syntax
48 //  05 Feb 01  Final tidy up of gcd code prior to the new release
49 //  27 Jan 01  Recode abs() without relying on abs(IntType)
50 //  21 Jan 01  Include Nickolay Mladenov's operator+= algorithm,
51 //             tidy up a number of areas, use newer features of operators.hpp
52 //             (reduces space overhead to zero), add operator!,
53 //             introduce explicit mixed-mode arithmetic operations
54 //  12 Jan 01  Include fixes to handle a user-defined IntType better
55 //  19 Nov 00  Throw on divide by zero in operator /= (John (EBo) David)
56 //  23 Jun 00  Incorporate changes from Mark Rodgers for Borland C++
57 //  22 Jun 00  Change _MSC_VER to BOOST_MSVC so other compilers are not
58 //             affected (Beman Dawes)
59 //   6 Mar 00  Fix operator-= normalization, #include <string> (Jens Maurer)
60 //  14 Dec 99  Modifications based on comments from the boost list
61 //  09 Dec 99  Initial Version (Paul Moore)
62 
63 #ifndef BOOST_RATIONAL_HPP
64 #define BOOST_RATIONAL_HPP
65 
66 #include <boost/config.hpp>      // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC, etc
67 #ifndef BOOST_NO_IOSTREAM
68 #include <iomanip>               // for std::setw
69 #include <ios>                   // for std::noskipws, streamsize
70 #include <istream>               // for std::istream
71 #include <ostream>               // for std::ostream
72 #include <sstream>               // for std::ostringstream
73 #endif
74 #include <cstddef>               // for NULL
75 #include <stdexcept>             // for std::domain_error
76 #include <string>                // for std::string implicit constructor
77 #include <boost/operators.hpp>   // for boost::addable etc
78 #include <cstdlib>               // for std::abs
79 #include <boost/call_traits.hpp> // for boost::call_traits
80 #include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND
81 #include <boost/assert.hpp>      // for BOOST_ASSERT
82 #include <boost/integer/common_factor_rt.hpp> // for boost::integer::gcd, lcm
83 #include <limits>                // for std::numeric_limits
84 #include <boost/static_assert.hpp>  // for BOOST_STATIC_ASSERT
85 #include <boost/throw_exception.hpp>
86 #include <boost/utility/enable_if.hpp>
87 #include <boost/type_traits/is_convertible.hpp>
88 #include <boost/type_traits/is_class.hpp>
89 #include <boost/type_traits/is_same.hpp>
90 
91 // Control whether depreciated GCD and LCM functions are included (default: yes)
92 #ifndef BOOST_CONTROL_RATIONAL_HAS_GCD
93 #define BOOST_CONTROL_RATIONAL_HAS_GCD  1
94 #endif
95 
96 namespace boost {
97 
98 #if BOOST_CONTROL_RATIONAL_HAS_GCD
99 template <typename IntType>
gcd(IntType n,IntType m)100 IntType gcd(IntType n, IntType m)
101 {
102     // Defer to the version in Boost.Integer
103     return integer::gcd( n, m );
104 }
105 
106 template <typename IntType>
lcm(IntType n,IntType m)107 IntType lcm(IntType n, IntType m)
108 {
109     // Defer to the version in Boost.Integer
110     return integer::lcm( n, m );
111 }
112 #endif  // BOOST_CONTROL_RATIONAL_HAS_GCD
113 
114 namespace rational_detail{
115 
116    template <class FromInt, class ToInt>
117    struct is_compatible_integer
118    {
119       BOOST_STATIC_CONSTANT(bool, value = ((std::numeric_limits<FromInt>::is_specialized && std::numeric_limits<FromInt>::is_integer
120          && (std::numeric_limits<FromInt>::digits <= std::numeric_limits<ToInt>::digits)
121          && (std::numeric_limits<FromInt>::radix == std::numeric_limits<ToInt>::radix)
122          && ((std::numeric_limits<FromInt>::is_signed == false) || (std::numeric_limits<ToInt>::is_signed == true))
123          && is_convertible<FromInt, ToInt>::value)
124          || is_same<FromInt, ToInt>::value)
125          || (is_class<ToInt>::value && is_class<FromInt>::value && is_convertible<FromInt, ToInt>::value));
126    };
127 
128 }
129 
130 class bad_rational : public std::domain_error
131 {
132 public:
bad_rational()133     explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
bad_rational(char const * what)134     explicit bad_rational( char const *what ) : std::domain_error( what ) {}
135 };
136 
137 template <typename IntType>
138 class rational
139 {
140     // Class-wide pre-conditions
141     BOOST_STATIC_ASSERT( ::std::numeric_limits<IntType>::is_specialized );
142 
143     // Helper types
144     typedef typename boost::call_traits<IntType>::param_type param_type;
145 
146     struct helper { IntType parts[2]; };
147     typedef IntType (helper::* bool_type)[2];
148 
149 public:
150     // Component type
151     typedef IntType int_type;
152 
153     BOOST_CONSTEXPR
rational()154     rational() : num(0), den(1) {}
155     template <class T>
rational(const T & n,typename enable_if_c<rational_detail::is_compatible_integer<T,IntType>::value>::type const * =0)156     BOOST_CONSTEXPR rational(const T& n, typename enable_if_c<
157        rational_detail::is_compatible_integer<T, IntType>::value
158     >::type const* = 0) : num(n), den(1) {}
159     template <class T, class U>
rational(const T & n,const U & d,typename enable_if_c<rational_detail::is_compatible_integer<T,IntType>::value && rational_detail::is_compatible_integer<U,IntType>::value>::type const * =0)160     rational(const T& n, const U& d, typename enable_if_c<
161        rational_detail::is_compatible_integer<T, IntType>::value && rational_detail::is_compatible_integer<U, IntType>::value
162     >::type const* = 0) : num(n), den(d) {
163        normalize();
164     }
165 
166     template < typename NewType >
167     BOOST_CONSTEXPR explicit
rational(rational<NewType> const & r,typename enable_if_c<rational_detail::is_compatible_integer<NewType,IntType>::value>::type const * =0)168        rational(rational<NewType> const &r, typename enable_if_c<rational_detail::is_compatible_integer<NewType, IntType>::value>::type const* = 0)
169        : num(r.numerator()), den(is_normalized(int_type(r.numerator()),
170        int_type(r.denominator())) ? r.denominator() :
171        (BOOST_THROW_EXCEPTION(bad_rational("bad rational: denormalized conversion")), 0)){}
172 
173     template < typename NewType >
174     BOOST_CONSTEXPR explicit
rational(rational<NewType> const & r,typename disable_if_c<rational_detail::is_compatible_integer<NewType,IntType>::value>::type const * =0)175        rational(rational<NewType> const &r, typename disable_if_c<rational_detail::is_compatible_integer<NewType, IntType>::value>::type const* = 0)
176        : num(r.numerator()), den(is_normalized(int_type(r.numerator()),
177        int_type(r.denominator())) && is_safe_narrowing_conversion(r.denominator()) && is_safe_narrowing_conversion(r.numerator()) ? r.denominator() :
178        (BOOST_THROW_EXCEPTION(bad_rational("bad rational: denormalized conversion")), 0)){}
179     // Default copy constructor and assignment are fine
180 
181     // Add assignment from IntType
182     template <class T>
183     typename enable_if_c<
184        rational_detail::is_compatible_integer<T, IntType>::value, rational &
operator =(const T & n)185     >::type operator=(const T& n) { return assign(static_cast<IntType>(n), static_cast<IntType>(1)); }
186 
187     // Assign in place
188     template <class T, class U>
189     typename enable_if_c<
190        rational_detail::is_compatible_integer<T, IntType>::value && rational_detail::is_compatible_integer<U, IntType>::value, rational &
assign(const T & n,const U & d)191     >::type assign(const T& n, const U& d)
192     {
193        return *this = rational<IntType>(static_cast<IntType>(n), static_cast<IntType>(d));
194     }
195     //
196     // The following overloads should probably *not* be provided -
197     // but are provided for backwards compatibity reasons only.
198     // These allow for construction/assignment from types that
199     // are wider than IntType only if there is an implicit
200     // conversion from T to IntType, they will throw a bad_rational
201     // if the conversion results in loss of precision or undefined behaviour.
202     //
203     template <class T>
rational(const T & n,typename enable_if_c<std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer &&!rational_detail::is_compatible_integer<T,IntType>::value && (std::numeric_limits<T>::radix==std::numeric_limits<IntType>::radix)&& is_convertible<T,IntType>::value>::type const * =0)204     rational(const T& n, typename enable_if_c<
205        std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
206        && !rational_detail::is_compatible_integer<T, IntType>::value
207        && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
208        && is_convertible<T, IntType>::value
209     >::type const* = 0)
210     {
211        assign(n, static_cast<T>(1));
212     }
213     template <class T, class U>
rational(const T & n,const U & d,typename enable_if_c<(!rational_detail::is_compatible_integer<T,IntType>::value||!rational_detail::is_compatible_integer<U,IntType>::value)&& std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer && (std::numeric_limits<T>::radix==std::numeric_limits<IntType>::radix)&& is_convertible<T,IntType>::value && std::numeric_limits<U>::is_specialized && std::numeric_limits<U>::is_integer && (std::numeric_limits<U>::radix==std::numeric_limits<IntType>::radix)&& is_convertible<U,IntType>::value>::type const * =0)214     rational(const T& n, const U& d, typename enable_if_c<
215        (!rational_detail::is_compatible_integer<T, IntType>::value
216        || !rational_detail::is_compatible_integer<U, IntType>::value)
217        && std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
218        && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
219        && is_convertible<T, IntType>::value &&
220        std::numeric_limits<U>::is_specialized && std::numeric_limits<U>::is_integer
221        && (std::numeric_limits<U>::radix == std::numeric_limits<IntType>::radix)
222        && is_convertible<U, IntType>::value
223     >::type const* = 0)
224     {
225        assign(n, d);
226     }
227     template <class T>
228     typename enable_if_c<
229        std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
230        && !rational_detail::is_compatible_integer<T, IntType>::value
231        && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
232        && is_convertible<T, IntType>::value,
233        rational &
operator =(const T & n)234     >::type operator=(const T& n) { return assign(n, static_cast<T>(1)); }
235 
236     template <class T, class U>
237     typename enable_if_c<
238        (!rational_detail::is_compatible_integer<T, IntType>::value
239           || !rational_detail::is_compatible_integer<U, IntType>::value)
240        && std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
241        && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
242        && is_convertible<T, IntType>::value &&
243        std::numeric_limits<U>::is_specialized && std::numeric_limits<U>::is_integer
244        && (std::numeric_limits<U>::radix == std::numeric_limits<IntType>::radix)
245        && is_convertible<U, IntType>::value,
246        rational &
assign(const T & n,const U & d)247     >::type assign(const T& n, const U& d)
248     {
249        if(!is_safe_narrowing_conversion(n) || !is_safe_narrowing_conversion(d))
250           BOOST_THROW_EXCEPTION(bad_rational());
251        return *this = rational<IntType>(static_cast<IntType>(n), static_cast<IntType>(d));
252     }
253 
254     // Access to representation
255     BOOST_CONSTEXPR
numerator() const256     const IntType& numerator() const { return num; }
257     BOOST_CONSTEXPR
denominator() const258     const IntType& denominator() const { return den; }
259 
260     // Arithmetic assignment operators
261     rational& operator+= (const rational& r);
262     rational& operator-= (const rational& r);
263     rational& operator*= (const rational& r);
264     rational& operator/= (const rational& r);
265 
266     template <class T>
operator +=(const T & i)267     typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator+= (const T& i)
268     {
269        num += i * den;
270        return *this;
271     }
272     template <class T>
operator -=(const T & i)273     typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator-= (const T& i)
274     {
275        num -= i * den;
276        return *this;
277     }
278     template <class T>
operator *=(const T & i)279     typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator*= (const T& i)
280     {
281        // Avoid overflow and preserve normalization
282        IntType gcd = integer::gcd(static_cast<IntType>(i), den);
283        num *= i / gcd;
284        den /= gcd;
285        return *this;
286     }
287     template <class T>
operator /=(const T & i)288     typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator/= (const T& i)
289     {
290        // Avoid repeated construction
291        IntType const zero(0);
292 
293        if(i == zero) BOOST_THROW_EXCEPTION(bad_rational());
294        if(num == zero) return *this;
295 
296        // Avoid overflow and preserve normalization
297        IntType const gcd = integer::gcd(num, static_cast<IntType>(i));
298        num /= gcd;
299        den *= i / gcd;
300 
301        if(den < zero) {
302           num = -num;
303           den = -den;
304        }
305 
306        return *this;
307     }
308 
309     // Increment and decrement
operator ++()310     const rational& operator++() { num += den; return *this; }
operator --()311     const rational& operator--() { num -= den; return *this; }
312 
operator ++(int)313     rational operator++(int)
314     {
315        rational t(*this);
316        ++(*this);
317        return t;
318     }
operator --(int)319     rational operator--(int)
320     {
321        rational t(*this);
322        --(*this);
323        return t;
324     }
325 
326     // Operator not
327     BOOST_CONSTEXPR
operator !() const328     bool operator!() const { return !num; }
329 
330     // Boolean conversion
331 
332 #if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
333     // The "ISO C++ Template Parser" option in CW 8.3 chokes on the
334     // following, hence we selectively disable that option for the
335     // offending memfun.
336 #pragma parse_mfunc_templ off
337 #endif
338 
339     BOOST_CONSTEXPR
operator bool_type() const340     operator bool_type() const { return operator !() ? 0 : &helper::parts; }
341 
342 #if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
343 #pragma parse_mfunc_templ reset
344 #endif
345 
346     // Comparison operators
347     bool operator< (const rational& r) const;
operator >(const rational & r) const348     bool operator> (const rational& r) const { return r < *this; }
349     BOOST_CONSTEXPR
350     bool operator== (const rational& r) const;
351 
352     template <class T>
operator <(const T & i) const353     typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator< (const T& i) const
354     {
355        // Avoid repeated construction
356        int_type const  zero(0);
357 
358        // Break value into mixed-fraction form, w/ always-nonnegative remainder
359        BOOST_ASSERT(this->den > zero);
360        int_type  q = this->num / this->den, r = this->num % this->den;
361        while(r < zero)  { r += this->den; --q; }
362 
363        // Compare with just the quotient, since the remainder always bumps the
364        // value up.  [Since q = floor(n/d), and if n/d < i then q < i, if n/d == i
365        // then q == i, if n/d == i + r/d then q == i, and if n/d >= i + 1 then
366        // q >= i + 1 > i; therefore n/d < i iff q < i.]
367        return q < i;
368     }
369     template <class T>
operator >(const T & i) const370     typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator>(const T& i) const
371     {
372        return operator==(i) ? false : !operator<(i);
373     }
374     template <class T>
operator ==(const T & i) const375     BOOST_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator== (const T& i) const
376     {
377        return ((den == IntType(1)) && (num == i));
378     }
379 
380 private:
381     // Implementation - numerator and denominator (normalized).
382     // Other possibilities - separate whole-part, or sign, fields?
383     IntType num;
384     IntType den;
385 
386     // Helper functions
387     static BOOST_CONSTEXPR
inner_gcd(param_type a,param_type b,int_type const & zero=int_type (0))388     int_type inner_gcd( param_type a, param_type b, int_type const &zero =
389      int_type(0) )
390     { return b == zero ? a : inner_gcd(b, a % b, zero); }
391 
392     static BOOST_CONSTEXPR
inner_abs(param_type x,int_type const & zero=int_type (0))393     int_type inner_abs( param_type x, int_type const &zero = int_type(0) )
394     { return x < zero ? -x : +x; }
395 
396     // Representation note: Fractions are kept in normalized form at all
397     // times. normalized form is defined as gcd(num,den) == 1 and den > 0.
398     // In particular, note that the implementation of abs() below relies
399     // on den always being positive.
400     bool test_invariant() const;
401     void normalize();
402 
403     static BOOST_CONSTEXPR
is_normalized(param_type n,param_type d,int_type const & zero=int_type (0),int_type const & one=int_type (1))404     bool is_normalized( param_type n, param_type d, int_type const &zero =
405      int_type(0), int_type const &one = int_type(1) )
406     {
407         return d > zero && ( n != zero || d == one ) && inner_abs( inner_gcd(n,
408          d, zero), zero ) == one;
409     }
410     //
411     // Conversion checks:
412     //
413     // (1) From an unsigned type with more digits than IntType:
414     //
415     template <class T>
is_safe_narrowing_conversion(const T & val)416     BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
417     {
418        return val < (T(1) << std::numeric_limits<IntType>::digits);
419     }
420     //
421     // (2) From a signed type with more digits than IntType, and IntType also signed:
422     //
423     template <class T>
is_safe_narrowing_conversion(const T & val)424     BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T& val)
425     {
426        // Note that this check assumes IntType has a 2's complement representation,
427        // we don't want to try to convert a std::numeric_limits<IntType>::min() to
428        // a T because that conversion may not be allowed (this happens when IntType
429        // is from Boost.Multiprecision).
430        return (val < (T(1) << std::numeric_limits<IntType>::digits)) && (val >= -(T(1) << std::numeric_limits<IntType>::digits));
431     }
432     //
433     // (3) From a signed type with more digits than IntType, and IntType unsigned:
434     //
435     template <class T>
is_safe_narrowing_conversion(const T & val)436     BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
437     {
438        return (val < (T(1) << std::numeric_limits<IntType>::digits)) && (val >= 0);
439     }
440     //
441     // (4) From a signed type with fewer digits than IntType, and IntType unsigned:
442     //
443     template <class T>
is_safe_narrowing_conversion(const T & val)444     BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
445     {
446        return val >= 0;
447     }
448     //
449     // (5) From an unsigned type with fewer digits than IntType, and IntType signed:
450     //
451     template <class T>
is_safe_narrowing_conversion(const T &)452     BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T&)
453     {
454        return true;
455     }
456     //
457     // (6) From an unsigned type with fewer digits than IntType, and IntType unsigned:
458     //
459     template <class T>
is_safe_narrowing_conversion(const T &)460     BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T&)
461     {
462        return true;
463     }
464     //
465     // (7) From an signed type with fewer digits than IntType, and IntType signed:
466     //
467     template <class T>
is_safe_narrowing_conversion(const T &)468     BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T&)
469     {
470        return true;
471     }
472 };
473 
474 // Unary plus and minus
475 template <typename IntType>
476 BOOST_CONSTEXPR
operator +(const rational<IntType> & r)477 inline rational<IntType> operator+ (const rational<IntType>& r)
478 {
479     return r;
480 }
481 
482 template <typename IntType>
operator -(const rational<IntType> & r)483 inline rational<IntType> operator- (const rational<IntType>& r)
484 {
485     return rational<IntType>(static_cast<IntType>(-r.numerator()), r.denominator());
486 }
487 
488 // Arithmetic assignment operators
489 template <typename IntType>
operator +=(const rational<IntType> & r)490 rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r)
491 {
492     // This calculation avoids overflow, and minimises the number of expensive
493     // calculations. Thanks to Nickolay Mladenov for this algorithm.
494     //
495     // Proof:
496     // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
497     // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
498     //
499     // The result is (a*d1 + c*b1) / (b1*d1*g).
500     // Now we have to normalize this ratio.
501     // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
502     // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
503     // But since gcd(a,b1)=1 we have h=1.
504     // Similarly h|d1 leads to h=1.
505     // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
506     // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
507     // Which proves that instead of normalizing the result, it is better to
508     // divide num and den by gcd((a*d1 + c*b1), g)
509 
510     // Protect against self-modification
511     IntType r_num = r.num;
512     IntType r_den = r.den;
513 
514     IntType g = integer::gcd(den, r_den);
515     den /= g;  // = b1 from the calculations above
516     num = num * (r_den / g) + r_num * den;
517     g = integer::gcd(num, g);
518     num /= g;
519     den *= r_den/g;
520 
521     return *this;
522 }
523 
524 template <typename IntType>
operator -=(const rational<IntType> & r)525 rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r)
526 {
527     // Protect against self-modification
528     IntType r_num = r.num;
529     IntType r_den = r.den;
530 
531     // This calculation avoids overflow, and minimises the number of expensive
532     // calculations. It corresponds exactly to the += case above
533     IntType g = integer::gcd(den, r_den);
534     den /= g;
535     num = num * (r_den / g) - r_num * den;
536     g = integer::gcd(num, g);
537     num /= g;
538     den *= r_den/g;
539 
540     return *this;
541 }
542 
543 template <typename IntType>
operator *=(const rational<IntType> & r)544 rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r)
545 {
546     // Protect against self-modification
547     IntType r_num = r.num;
548     IntType r_den = r.den;
549 
550     // Avoid overflow and preserve normalization
551     IntType gcd1 = integer::gcd(num, r_den);
552     IntType gcd2 = integer::gcd(r_num, den);
553     num = (num/gcd1) * (r_num/gcd2);
554     den = (den/gcd2) * (r_den/gcd1);
555     return *this;
556 }
557 
558 template <typename IntType>
operator /=(const rational<IntType> & r)559 rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r)
560 {
561     // Protect against self-modification
562     IntType r_num = r.num;
563     IntType r_den = r.den;
564 
565     // Avoid repeated construction
566     IntType zero(0);
567 
568     // Trap division by zero
569     if (r_num == zero)
570         BOOST_THROW_EXCEPTION(bad_rational());
571     if (num == zero)
572         return *this;
573 
574     // Avoid overflow and preserve normalization
575     IntType gcd1 = integer::gcd(num, r_num);
576     IntType gcd2 = integer::gcd(r_den, den);
577     num = (num/gcd1) * (r_den/gcd2);
578     den = (den/gcd2) * (r_num/gcd1);
579 
580     if (den < zero) {
581         num = -num;
582         den = -den;
583     }
584     return *this;
585 }
586 
587 
588 //
589 // Non-member operators: previously these were provided by Boost.Operator, but these had a number of
590 // drawbacks, most notably, that in order to allow inter-operability with IntType code such as this:
591 //
592 // rational<int> r(3);
593 // assert(r == 3.5); // compiles and passes!!
594 //
595 // Happens to be allowed as well :-(
596 //
597 // There are three possible cases for each operator:
598 // 1) rational op rational.
599 // 2) rational op integer
600 // 3) integer op rational
601 // Cases (1) and (2) are folded into the one function.
602 //
603 template <class IntType, class Arg>
604 inline typename boost::enable_if_c <
605    rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
operator +(const rational<IntType> & a,const Arg & b)606    operator + (const rational<IntType>& a, const Arg& b)
607 {
608       rational<IntType> t(a);
609       return t += b;
610 }
611 template <class Arg, class IntType>
612 inline typename boost::enable_if_c <
613    rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
operator +(const Arg & b,const rational<IntType> & a)614    operator + (const Arg& b, const rational<IntType>& a)
615 {
616       rational<IntType> t(a);
617       return t += b;
618 }
619 
620 template <class IntType, class Arg>
621 inline typename boost::enable_if_c <
622    rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
operator -(const rational<IntType> & a,const Arg & b)623    operator - (const rational<IntType>& a, const Arg& b)
624 {
625       rational<IntType> t(a);
626       return t -= b;
627 }
628 template <class Arg, class IntType>
629 inline typename boost::enable_if_c <
630    rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
operator -(const Arg & b,const rational<IntType> & a)631    operator - (const Arg& b, const rational<IntType>& a)
632 {
633       rational<IntType> t(a);
634       return -(t -= b);
635 }
636 
637 template <class IntType, class Arg>
638 inline typename boost::enable_if_c <
639    rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
operator *(const rational<IntType> & a,const Arg & b)640    operator * (const rational<IntType>& a, const Arg& b)
641 {
642       rational<IntType> t(a);
643       return t *= b;
644 }
645 template <class Arg, class IntType>
646 inline typename boost::enable_if_c <
647    rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
operator *(const Arg & b,const rational<IntType> & a)648    operator * (const Arg& b, const rational<IntType>& a)
649 {
650       rational<IntType> t(a);
651       return t *= b;
652 }
653 
654 template <class IntType, class Arg>
655 inline typename boost::enable_if_c <
656    rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
operator /(const rational<IntType> & a,const Arg & b)657    operator / (const rational<IntType>& a, const Arg& b)
658 {
659       rational<IntType> t(a);
660       return t /= b;
661 }
662 template <class Arg, class IntType>
663 inline typename boost::enable_if_c <
664    rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
operator /(const Arg & b,const rational<IntType> & a)665    operator / (const Arg& b, const rational<IntType>& a)
666 {
667       rational<IntType> t(b);
668       return t /= a;
669 }
670 
671 template <class IntType, class Arg>
672 inline typename boost::enable_if_c <
673    rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
operator <=(const rational<IntType> & a,const Arg & b)674    operator <= (const rational<IntType>& a, const Arg& b)
675 {
676       return !(a > b);
677 }
678 template <class Arg, class IntType>
679 inline typename boost::enable_if_c <
680    rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
operator <=(const Arg & b,const rational<IntType> & a)681    operator <= (const Arg& b, const rational<IntType>& a)
682 {
683       return a >= b;
684 }
685 
686 template <class IntType, class Arg>
687 inline typename boost::enable_if_c <
688    rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
operator >=(const rational<IntType> & a,const Arg & b)689    operator >= (const rational<IntType>& a, const Arg& b)
690 {
691       return !(a < b);
692 }
693 template <class Arg, class IntType>
694 inline typename boost::enable_if_c <
695    rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
operator >=(const Arg & b,const rational<IntType> & a)696    operator >= (const Arg& b, const rational<IntType>& a)
697 {
698       return a <= b;
699 }
700 
701 template <class IntType, class Arg>
702 inline typename boost::enable_if_c <
703    rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
operator !=(const rational<IntType> & a,const Arg & b)704    operator != (const rational<IntType>& a, const Arg& b)
705 {
706       return !(a == b);
707 }
708 template <class Arg, class IntType>
709 inline typename boost::enable_if_c <
710    rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
operator !=(const Arg & b,const rational<IntType> & a)711    operator != (const Arg& b, const rational<IntType>& a)
712 {
713       return !(b == a);
714 }
715 
716 template <class Arg, class IntType>
717 inline typename boost::enable_if_c <
718    rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
operator <(const Arg & b,const rational<IntType> & a)719    operator < (const Arg& b, const rational<IntType>& a)
720 {
721       return a > b;
722 }
723 template <class Arg, class IntType>
724 inline typename boost::enable_if_c <
725    rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
operator >(const Arg & b,const rational<IntType> & a)726    operator > (const Arg& b, const rational<IntType>& a)
727 {
728       return a < b;
729 }
730 template <class Arg, class IntType>
731 inline typename boost::enable_if_c <
732    rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
operator ==(const Arg & b,const rational<IntType> & a)733    operator == (const Arg& b, const rational<IntType>& a)
734 {
735       return a == b;
736 }
737 
738 // Comparison operators
739 template <typename IntType>
operator <(const rational<IntType> & r) const740 bool rational<IntType>::operator< (const rational<IntType>& r) const
741 {
742     // Avoid repeated construction
743     int_type const  zero( 0 );
744 
745     // This should really be a class-wide invariant.  The reason for these
746     // checks is that for 2's complement systems, INT_MIN has no corresponding
747     // positive, so negating it during normalization keeps it INT_MIN, which
748     // is bad for later calculations that assume a positive denominator.
749     BOOST_ASSERT( this->den > zero );
750     BOOST_ASSERT( r.den > zero );
751 
752     // Determine relative order by expanding each value to its simple continued
753     // fraction representation using the Euclidian GCD algorithm.
754     struct { int_type  n, d, q, r; }
755      ts = { this->num, this->den, static_cast<int_type>(this->num / this->den),
756      static_cast<int_type>(this->num % this->den) },
757      rs = { r.num, r.den, static_cast<int_type>(r.num / r.den),
758      static_cast<int_type>(r.num % r.den) };
759     unsigned  reverse = 0u;
760 
761     // Normalize negative moduli by repeatedly adding the (positive) denominator
762     // and decrementing the quotient.  Later cycles should have all positive
763     // values, so this only has to be done for the first cycle.  (The rules of
764     // C++ require a nonnegative quotient & remainder for a nonnegative dividend
765     // & positive divisor.)
766     while ( ts.r < zero )  { ts.r += ts.d; --ts.q; }
767     while ( rs.r < zero )  { rs.r += rs.d; --rs.q; }
768 
769     // Loop through and compare each variable's continued-fraction components
770     for ( ;; )
771     {
772         // The quotients of the current cycle are the continued-fraction
773         // components.  Comparing two c.f. is comparing their sequences,
774         // stopping at the first difference.
775         if ( ts.q != rs.q )
776         {
777             // Since reciprocation changes the relative order of two variables,
778             // and c.f. use reciprocals, the less/greater-than test reverses
779             // after each index.  (Start w/ non-reversed @ whole-number place.)
780             return reverse ? ts.q > rs.q : ts.q < rs.q;
781         }
782 
783         // Prepare the next cycle
784         reverse ^= 1u;
785 
786         if ( (ts.r == zero) || (rs.r == zero) )
787         {
788             // At least one variable's c.f. expansion has ended
789             break;
790         }
791 
792         ts.n = ts.d;         ts.d = ts.r;
793         ts.q = ts.n / ts.d;  ts.r = ts.n % ts.d;
794         rs.n = rs.d;         rs.d = rs.r;
795         rs.q = rs.n / rs.d;  rs.r = rs.n % rs.d;
796     }
797 
798     // Compare infinity-valued components for otherwise equal sequences
799     if ( ts.r == rs.r )
800     {
801         // Both remainders are zero, so the next (and subsequent) c.f.
802         // components for both sequences are infinity.  Therefore, the sequences
803         // and their corresponding values are equal.
804         return false;
805     }
806     else
807     {
808 #ifdef BOOST_MSVC
809 #pragma warning(push)
810 #pragma warning(disable:4800)
811 #endif
812         // Exactly one of the remainders is zero, so all following c.f.
813         // components of that variable are infinity, while the other variable
814         // has a finite next c.f. component.  So that other variable has the
815         // lesser value (modulo the reversal flag!).
816         return ( ts.r != zero ) != static_cast<bool>( reverse );
817 #ifdef BOOST_MSVC
818 #pragma warning(pop)
819 #endif
820     }
821 }
822 
823 template <typename IntType>
824 BOOST_CONSTEXPR
operator ==(const rational<IntType> & r) const825 inline bool rational<IntType>::operator== (const rational<IntType>& r) const
826 {
827     return ((num == r.num) && (den == r.den));
828 }
829 
830 // Invariant check
831 template <typename IntType>
test_invariant() const832 inline bool rational<IntType>::test_invariant() const
833 {
834     return ( this->den > int_type(0) ) && ( integer::gcd(this->num, this->den) ==
835      int_type(1) );
836 }
837 
838 // Normalisation
839 template <typename IntType>
normalize()840 void rational<IntType>::normalize()
841 {
842     // Avoid repeated construction
843     IntType zero(0);
844 
845     if (den == zero)
846        BOOST_THROW_EXCEPTION(bad_rational());
847 
848     // Handle the case of zero separately, to avoid division by zero
849     if (num == zero) {
850         den = IntType(1);
851         return;
852     }
853 
854     IntType g = integer::gcd(num, den);
855 
856     num /= g;
857     den /= g;
858 
859     // Ensure that the denominator is positive
860     if (den < zero) {
861         num = -num;
862         den = -den;
863     }
864 
865     // ...But acknowledge that the previous step doesn't always work.
866     // (Nominally, this should be done before the mutating steps, but this
867     // member function is only called during the constructor, so we never have
868     // to worry about zombie objects.)
869     if (den < zero)
870        BOOST_THROW_EXCEPTION(bad_rational("bad rational: non-zero singular denominator"));
871 
872     BOOST_ASSERT( this->test_invariant() );
873 }
874 
875 #ifndef BOOST_NO_IOSTREAM
876 namespace detail {
877 
878     // A utility class to reset the format flags for an istream at end
879     // of scope, even in case of exceptions
880     struct resetter {
resetterboost::detail::resetter881         resetter(std::istream& is) : is_(is), f_(is.flags()) {}
~resetterboost::detail::resetter882         ~resetter() { is_.flags(f_); }
883         std::istream& is_;
884         std::istream::fmtflags f_;      // old GNU c++ lib has no ios_base
885     };
886 
887 }
888 
889 // Input and output
890 template <typename IntType>
operator >>(std::istream & is,rational<IntType> & r)891 std::istream& operator>> (std::istream& is, rational<IntType>& r)
892 {
893     using std::ios;
894 
895     IntType n = IntType(0), d = IntType(1);
896     char c = 0;
897     detail::resetter sentry(is);
898 
899     if ( is >> n )
900     {
901         if ( is.get(c) )
902         {
903             if ( c == '/' )
904             {
905                 if ( is >> std::noskipws >> d )
906                     try {
907                         r.assign( n, d );
908                     } catch ( bad_rational & ) {        // normalization fail
909                         try { is.setstate(ios::failbit); }
910                         catch ( ... ) {}  // don't throw ios_base::failure...
911                         if ( is.exceptions() & ios::failbit )
912                             throw;   // ...but the original exception instead
913                         // ELSE: suppress the exception, use just error flags
914                     }
915             }
916             else
917                 is.setstate( ios::failbit );
918         }
919     }
920 
921     return is;
922 }
923 
924 // Add manipulators for output format?
925 template <typename IntType>
operator <<(std::ostream & os,const rational<IntType> & r)926 std::ostream& operator<< (std::ostream& os, const rational<IntType>& r)
927 {
928     // The slash directly precedes the denominator, which has no prefixes.
929     std::ostringstream  ss;
930 
931     ss.copyfmt( os );
932     ss.tie( NULL );
933     ss.exceptions( std::ios::goodbit );
934     ss.width( 0 );
935     ss << std::noshowpos << std::noshowbase << '/' << r.denominator();
936 
937     // The numerator holds the showpos, internal, and showbase flags.
938     std::string const   tail = ss.str();
939     std::streamsize const  w =
940         os.width() - static_cast<std::streamsize>( tail.size() );
941 
942     ss.clear();
943     ss.str( "" );
944     ss.flags( os.flags() );
945     ss << std::setw( w < 0 || (os.flags() & std::ios::adjustfield) !=
946                      std::ios::internal ? 0 : w ) << r.numerator();
947     return os << ss.str() + tail;
948 }
949 #endif  // BOOST_NO_IOSTREAM
950 
951 // Type conversion
952 template <typename T, typename IntType>
953 BOOST_CONSTEXPR
rational_cast(const rational<IntType> & src)954 inline T rational_cast(const rational<IntType>& src)
955 {
956     return static_cast<T>(src.numerator())/static_cast<T>(src.denominator());
957 }
958 
959 // Do not use any abs() defined on IntType - it isn't worth it, given the
960 // difficulties involved (Koenig lookup required, there may not *be* an abs()
961 // defined, etc etc).
962 template <typename IntType>
abs(const rational<IntType> & r)963 inline rational<IntType> abs(const rational<IntType>& r)
964 {
965     return r.numerator() >= IntType(0)? r: -r;
966 }
967 
968 namespace integer {
969 
970 template <typename IntType>
971 struct gcd_evaluator< rational<IntType> >
972 {
973     typedef rational<IntType> result_type,
974                               first_argument_type, second_argument_type;
operator ()boost::integer::gcd_evaluator975     result_type operator() (  first_argument_type const &a
976                            , second_argument_type const &b
977                            ) const
978     {
979         return result_type(integer::gcd(a.numerator(), b.numerator()),
980                            integer::lcm(a.denominator(), b.denominator()));
981     }
982 };
983 
984 template <typename IntType>
985 struct lcm_evaluator< rational<IntType> >
986 {
987     typedef rational<IntType> result_type,
988                               first_argument_type, second_argument_type;
operator ()boost::integer::lcm_evaluator989     result_type operator() (  first_argument_type const &a
990                            , second_argument_type const &b
991                            ) const
992     {
993         return result_type(integer::lcm(a.numerator(), b.numerator()),
994                            integer::gcd(a.denominator(), b.denominator()));
995     }
996 };
997 
998 } // namespace integer
999 
1000 } // namespace boost
1001 
1002 #endif  // BOOST_RATIONAL_HPP
1003