xref: /OK3568_Linux_fs/external/rknpu2/examples/rknn_api_demo/src/rknn_with_mmz_demo.cpp (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 /*-------------------------------------------
16                 Includes
17 -------------------------------------------*/
18 #include "rk_mpi_mmz.h"
19 #include "rknn_api.h"
20 
21 #include <float.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <sys/time.h>
26 
27 #define STB_IMAGE_IMPLEMENTATION
28 #include "stb/stb_image.h"
29 #define STB_IMAGE_RESIZE_IMPLEMENTATION
30 #include <stb/stb_image_resize.h>
31 
32 /*-------------------------------------------
33                   Functions
34 -------------------------------------------*/
getCurrentTimeUs()35 static inline int64_t getCurrentTimeUs()
36 {
37   struct timeval tv;
38   gettimeofday(&tv, NULL);
39   return tv.tv_sec * 1000000 + tv.tv_usec;
40 }
41 
rknn_GetTopN(float * pfProb,float * pfMaxProb,uint32_t * pMaxClass,uint32_t outputCount,uint32_t topNum)42 static int rknn_GetTopN(float* pfProb, float* pfMaxProb, uint32_t* pMaxClass, uint32_t outputCount, uint32_t topNum)
43 {
44   uint32_t i, j;
45   uint32_t top_count = outputCount > topNum ? topNum : outputCount;
46 
47   for (i = 0; i < topNum; ++i) {
48     pfMaxProb[i] = -FLT_MAX;
49     pMaxClass[i] = -1;
50   }
51 
52   for (j = 0; j < top_count; j++) {
53     for (i = 0; i < outputCount; i++) {
54       if ((i == *(pMaxClass + 0)) || (i == *(pMaxClass + 1)) || (i == *(pMaxClass + 2)) || (i == *(pMaxClass + 3)) ||
55           (i == *(pMaxClass + 4))) {
56         continue;
57       }
58 
59       if (pfProb[i] > *(pfMaxProb + j)) {
60         *(pfMaxProb + j) = pfProb[i];
61         *(pMaxClass + j) = i;
62       }
63     }
64   }
65 
66   return 1;
67 }
68 
dump_tensor_attr(rknn_tensor_attr * attr)69 static void dump_tensor_attr(rknn_tensor_attr* attr)
70 {
71   printf("  index=%d, name=%s, n_dims=%d, dims=[%d, %d, %d, %d], n_elems=%d, size=%d, fmt=%s, type=%s, qnt_type=%s, "
72          "zp=%d, scale=%f\n",
73          attr->index, attr->name, attr->n_dims, attr->dims[0], attr->dims[1], attr->dims[2], attr->dims[3],
74          attr->n_elems, attr->size, get_format_string(attr->fmt), get_type_string(attr->type),
75          get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale);
76 }
77 
load_image(const char * image_path,rknn_tensor_attr * input_attr)78 static unsigned char* load_image(const char* image_path, rknn_tensor_attr* input_attr)
79 {
80   int req_height  = 0;
81   int req_width   = 0;
82   int req_channel = 0;
83 
84   switch (input_attr->fmt) {
85   case RKNN_TENSOR_NHWC:
86     req_height  = input_attr->dims[1];
87     req_width   = input_attr->dims[2];
88     req_channel = input_attr->dims[3];
89     break;
90   case RKNN_TENSOR_NCHW:
91     req_height  = input_attr->dims[2];
92     req_width   = input_attr->dims[3];
93     req_channel = input_attr->dims[1];
94     break;
95   default:
96     printf("meet unsupported layout\n");
97     return NULL;
98   }
99 
100   int height  = 0;
101   int width   = 0;
102   int channel = 0;
103 
104   unsigned char* image_data = stbi_load(image_path, &width, &height, &channel, req_channel);
105   if (image_data == NULL) {
106     printf("load image failed!\n");
107     return NULL;
108   }
109 
110   if (width != req_width || height != req_height) {
111     unsigned char* image_resized = (unsigned char*)STBI_MALLOC(req_width * req_height * req_channel);
112     if (!image_resized) {
113       printf("malloc image failed!\n");
114       STBI_FREE(image_data);
115       return NULL;
116     }
117     if (stbir_resize_uint8(image_data, width, height, 0, image_resized, req_width, req_height, 0, channel) != 1) {
118       printf("resize image failed!\n");
119       STBI_FREE(image_data);
120       return NULL;
121     }
122     STBI_FREE(image_data);
123     image_data = image_resized;
124   }
125 
126   return image_data;
127 }
128 
129 /*-------------------------------------------
130                   Main Functions
131 -------------------------------------------*/
main(int argc,char * argv[])132 int main(int argc, char* argv[])
133 {
134   if (argc < 3) {
135     printf("Usage:%s model_path input_path [loop_count]\n", argv[0]);
136     return -1;
137   }
138 
139   char* model_path = argv[1];
140   char* input_path = argv[2];
141 
142   int loop_count = 1;
143   if (argc > 3) {
144     loop_count = atoi(argv[3]);
145   }
146 
147   rknn_context ctx = 0;
148 
149   // Load RKNN Model
150   int ret = rknn_init(&ctx, model_path, 0, 0, NULL);
151   if (ret < 0) {
152     printf("rknn_init fail! ret=%d\n", ret);
153     return -1;
154   }
155 
156   // Get sdk and driver version
157   rknn_sdk_version sdk_ver;
158   ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &sdk_ver, sizeof(sdk_ver));
159   if (ret != RKNN_SUCC) {
160     printf("rknn_query fail! ret=%d\n", ret);
161     return -1;
162   }
163   printf("rknn_api/rknnrt version: %s, driver version: %s\n", sdk_ver.api_version, sdk_ver.drv_version);
164 
165   // Get Model Input Output Info
166   rknn_input_output_num io_num;
167   ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
168   if (ret != RKNN_SUCC) {
169     printf("rknn_query fail! ret=%d\n", ret);
170     return -1;
171   }
172   printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output);
173 
174   printf("input tensors:\n");
175   rknn_tensor_attr input_attrs[io_num.n_input];
176   memset(input_attrs, 0, io_num.n_input * sizeof(rknn_tensor_attr));
177   for (uint32_t i = 0; i < io_num.n_input; i++) {
178     input_attrs[i].index = i;
179     // query info
180     ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));
181     if (ret < 0) {
182       printf("rknn_init error! ret=%d\n", ret);
183       return -1;
184     }
185     dump_tensor_attr(&input_attrs[i]);
186   }
187 
188   printf("output tensors:\n");
189   rknn_tensor_attr output_attrs[io_num.n_output];
190   memset(output_attrs, 0, io_num.n_output * sizeof(rknn_tensor_attr));
191   for (uint32_t i = 0; i < io_num.n_output; i++) {
192     output_attrs[i].index = i;
193     // query info
194     ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));
195     if (ret != RKNN_SUCC) {
196       printf("rknn_query fail! ret=%d\n", ret);
197       return -1;
198     }
199     dump_tensor_attr(&output_attrs[i]);
200   }
201 
202   // Get custom string
203   rknn_custom_string custom_string;
204   ret = rknn_query(ctx, RKNN_QUERY_CUSTOM_STRING, &custom_string, sizeof(custom_string));
205   if (ret != RKNN_SUCC) {
206     printf("rknn_query fail! ret=%d\n", ret);
207     return -1;
208   }
209   printf("custom string: %s\n", custom_string.string);
210 
211   unsigned char*     input_data   = NULL;
212   rknn_tensor_type   input_type   = RKNN_TENSOR_UINT8;
213   rknn_tensor_format input_layout = RKNN_TENSOR_NHWC;
214 
215   // Load image
216   input_data = load_image(input_path, &input_attrs[0]);
217 
218   if (!input_data) {
219     return -1;
220   }
221 
222   int mb_flags = RK_MMZ_ALLOC_TYPE_CMA | RK_MMZ_ALLOC_UNCACHEABLE;
223 
224   // Allocate input memory in outside
225   MB_BLK input_mb;
226   int    input_size = input_attrs[0].size_with_stride;
227   ret               = RK_MPI_MMZ_Alloc(&input_mb, input_size, mb_flags);
228   if (ret < 0) {
229     printf("RK_MPI_MMZ_Alloc failed, ret: %d\n", ret);
230     return ret;
231   }
232   void* input_virt = RK_MPI_MMZ_Handle2VirAddr(input_mb);
233   if (input_virt == NULL) {
234     printf("RK_MPI_MMZ_Handle2VirAddr failed!\n");
235     return -1;
236   }
237   uint64_t input_phys = RK_MPI_MMZ_Handle2PhysAddr(input_mb);
238   if (input_phys == 0) {
239     printf("RK_MPI_MMZ_Handle2PhysAddr failed!\n");
240     return -1;
241   }
242   printf("input mb info: virt = %p, phys = %#lx, size: %d\n", input_virt, input_phys, input_size);
243 
244   // Allocate outputs memory in outside
245   MB_BLK   output_mbs[io_num.n_output];
246   void*    output_virts[io_num.n_output];
247   uint64_t output_physs[io_num.n_output];
248   for (uint32_t i = 0; i < io_num.n_output; ++i) {
249     // default output type is depend on model, this require float32 to compute top5
250     output_attrs[i].type = RKNN_TENSOR_FLOAT32;
251     int output_size      = output_attrs[i].n_elems * sizeof(float);
252     output_attrs[i].size = output_size;
253     ret                  = RK_MPI_MMZ_Alloc(&output_mbs[i], output_size, mb_flags);
254     if (ret < 0) {
255       printf("RK_MPI_MMZ_Alloc failed, ret: %d\n", ret);
256       return ret;
257     }
258     output_virts[i] = RK_MPI_MMZ_Handle2VirAddr(output_mbs[i]);
259     if (output_virts[i] == NULL) {
260       printf("RK_MPI_MMZ_Handle2VirAddr failed!\n");
261       return -1;
262     }
263     output_physs[i] = RK_MPI_MMZ_Handle2PhysAddr(output_mbs[i]);
264     if (output_physs[i] == 0) {
265       printf("RK_MPI_MMZ_Handle2PhysAddr failed!\n");
266       return -1;
267     }
268     printf("output%d mb info: virt = %p, phys = %#lx, size = %d\n", i, output_virts[i], output_physs[i], output_size);
269   }
270 
271   // Create input tensor memory
272   rknn_tensor_mem* input_mems[1];
273   // default input type is int8 (normalize and quantize need compute in outside)
274   // if set uint8, will fuse normalize and quantize to npu
275   input_attrs[0].type = input_type;
276   // default fmt is NHWC, npu only support NHWC in zero copy mode
277   input_attrs[0].fmt = input_layout;
278 
279   input_mems[0] = rknn_create_mem_from_phys(ctx, input_phys, input_virt, input_attrs[0].size_with_stride);
280 
281   // Copy input data to input tensor memory
282   int width  = input_attrs[0].dims[2];
283   int stride = input_attrs[0].w_stride;
284   if (width == stride) {
285     memcpy(input_mems[0]->virt_addr, input_data, width * input_attrs[0].dims[1] * input_attrs[0].dims[3]);
286   } else {
287     int height  = input_attrs[0].dims[1];
288     int channel = input_attrs[0].dims[3];
289     // copy from src to dst with stride
290     uint8_t* src_ptr = input_data;
291     uint8_t* dst_ptr = (uint8_t*)input_mems[0]->virt_addr;
292     // width-channel elements
293     int src_wc_elems = width * channel;
294     int dst_wc_elems = stride * channel;
295     for (int h = 0; h < height; ++h) {
296       memcpy(dst_ptr, src_ptr, src_wc_elems);
297       src_ptr += src_wc_elems;
298       dst_ptr += dst_wc_elems;
299     }
300   }
301 
302   // Create output tensor memory
303   rknn_tensor_mem* output_mems[io_num.n_output];
304   for (uint32_t i = 0; i < io_num.n_output; ++i) {
305     output_mems[i] = rknn_create_mem_from_phys(ctx, output_physs[i], output_virts[i], output_attrs[i].size);
306   }
307 
308   // Set input tensor memory
309   ret = rknn_set_io_mem(ctx, input_mems[0], &input_attrs[0]);
310   if (ret < 0) {
311     printf("rknn_set_io_mem fail! ret=%d\n", ret);
312     return -1;
313   }
314 
315   // Set output tensor memory
316   for (uint32_t i = 0; i < io_num.n_output; ++i) {
317     // set output memory and attribute
318     ret = rknn_set_io_mem(ctx, output_mems[i], &output_attrs[i]);
319     if (ret < 0) {
320       printf("rknn_set_io_mem fail! ret=%d\n", ret);
321       return -1;
322     }
323   }
324 
325   // Run
326   printf("Begin perf ...\n");
327   for (int i = 0; i < loop_count; ++i) {
328     int64_t start_us  = getCurrentTimeUs();
329     ret               = rknn_run(ctx, NULL);
330     int64_t elapse_us = getCurrentTimeUs() - start_us;
331     if (ret < 0) {
332       printf("rknn run error %d\n", ret);
333       return -1;
334     }
335     printf("%4d: Elapse Time = %.2fms, FPS = %.2f\n", i, elapse_us / 1000.f, 1000.f * 1000.f / elapse_us);
336   }
337 
338   // Get top 5
339   uint32_t topNum = 5;
340   for (uint32_t i = 0; i < io_num.n_output; i++) {
341     uint32_t MaxClass[topNum];
342     float    fMaxProb[topNum];
343     float*   buffer    = (float*)output_mems[i]->virt_addr;
344     uint32_t sz        = output_attrs[i].n_elems;
345     int      top_count = sz > topNum ? topNum : sz;
346 
347     rknn_GetTopN(buffer, fMaxProb, MaxClass, sz, topNum);
348 
349     printf("---- Top%d ----\n", top_count);
350     for (int j = 0; j < top_count; j++) {
351       printf("%8.6f - %d\n", fMaxProb[j], MaxClass[j]);
352     }
353   }
354 
355   // free mb blk memory
356   RK_MPI_MMZ_Free(input_mb);
357   for (uint32_t i = 0; i < io_num.n_output; ++i) {
358     RK_MPI_MMZ_Free(output_mbs[i]);
359   }
360 
361   // Destroy rknn memory
362   rknn_destroy_mem(ctx, input_mems[0]);
363   for (uint32_t i = 0; i < io_num.n_output; ++i) {
364     rknn_destroy_mem(ctx, output_mems[i]);
365   }
366 
367   // destroy
368   rknn_destroy(ctx);
369 
370   free(input_data);
371 
372   return 0;
373 }
374