xref: /OK3568_Linux_fs/external/rknpu2/examples/rknn_api_demo/src/rknn_create_mem_with_rga_demo.cpp (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 /*-------------------------------------------
16                 Includes
17 -------------------------------------------*/
18 
19 #include <float.h>
20 #include <stdio.h>
21 #include <stdlib.h>
22 #include <string.h>
23 #include <sys/time.h>
24 
25 #include "RgaUtils.h"
26 #include "im2d.h"
27 #include "rga.h"
28 #include "rknn_api.h"
29 
30 #define STB_IMAGE_IMPLEMENTATION
31 #include "stb/stb_image.h"
32 #define STB_IMAGE_RESIZE_IMPLEMENTATION
33 #include <stb/stb_image_resize.h>
34 
35 #define ALIGN 8
36 
37 /*-------------------------------------------
38                   Functions
39 -------------------------------------------*/
getCurrentTimeUs()40 static inline int64_t getCurrentTimeUs()
41 {
42   struct timeval tv;
43   gettimeofday(&tv, NULL);
44   return tv.tv_sec * 1000000 + tv.tv_usec;
45 }
46 
rknn_GetTopN(float * pfProb,float * pfMaxProb,uint32_t * pMaxClass,uint32_t outputCount,uint32_t topNum)47 static int rknn_GetTopN(float* pfProb, float* pfMaxProb, uint32_t* pMaxClass, uint32_t outputCount, uint32_t topNum)
48 {
49   uint32_t i, j;
50   uint32_t top_count = outputCount > topNum ? topNum : outputCount;
51 
52   for (i = 0; i < topNum; ++i) {
53     pfMaxProb[i] = -FLT_MAX;
54     pMaxClass[i] = -1;
55   }
56 
57   for (j = 0; j < top_count; j++) {
58     for (i = 0; i < outputCount; i++) {
59       if ((i == *(pMaxClass + 0)) || (i == *(pMaxClass + 1)) || (i == *(pMaxClass + 2)) || (i == *(pMaxClass + 3)) ||
60           (i == *(pMaxClass + 4))) {
61         continue;
62       }
63 
64       if (pfProb[i] > *(pfMaxProb + j)) {
65         *(pfMaxProb + j) = pfProb[i];
66         *(pMaxClass + j) = i;
67       }
68     }
69   }
70 
71   return 1;
72 }
73 
dump_tensor_attr(rknn_tensor_attr * attr)74 static void dump_tensor_attr(rknn_tensor_attr* attr)
75 {
76   printf("  index=%d, name=%s, n_dims=%d, dims=[%d, %d, %d, %d], n_elems=%d, size=%d, fmt=%s, type=%s, qnt_type=%s, "
77          "zp=%d, scale=%f\n",
78          attr->index, attr->name, attr->n_dims, attr->dims[0], attr->dims[1], attr->dims[2], attr->dims[3],
79          attr->n_elems, attr->size, get_format_string(attr->fmt), get_type_string(attr->type),
80          get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale);
81 }
82 
load_image(const char * image_path,rknn_tensor_attr * input_attr)83 unsigned char* load_image(const char* image_path, rknn_tensor_attr* input_attr)
84 {
85   int req_height  = 0;
86   int req_width   = 0;
87   int req_channel = 0;
88 
89   switch (input_attr->fmt) {
90   case RKNN_TENSOR_NHWC:
91     req_height  = input_attr->dims[1];
92     req_width   = input_attr->dims[2];
93     req_channel = input_attr->dims[3];
94     break;
95   case RKNN_TENSOR_NCHW:
96     req_height  = input_attr->dims[2];
97     req_width   = input_attr->dims[3];
98     req_channel = input_attr->dims[1];
99     break;
100   default:
101     printf("meet unsupported layout\n");
102     return NULL;
103   }
104 
105   int height  = 0;
106   int width   = 0;
107   int channel = 0;
108 
109   unsigned char* image_data = stbi_load(image_path, &width, &height, &channel, req_channel);
110   if (image_data == NULL) {
111     printf("load image failed!\n");
112     return NULL;
113   }
114 
115   if (width != req_width || height != req_height) {
116     unsigned char* image_resized = (unsigned char*)STBI_MALLOC(req_width * req_height * req_channel);
117     if (!image_resized) {
118       printf("malloc image failed!\n");
119       STBI_FREE(image_data);
120       return NULL;
121     }
122     if (stbir_resize_uint8(image_data, width, height, 0, image_resized, req_width, req_height, 0, channel) != 1) {
123       printf("resize image failed!\n");
124       STBI_FREE(image_data);
125       return NULL;
126     }
127     STBI_FREE(image_data);
128     image_data = image_resized;
129   }
130 
131   return image_data;
132 }
133 
134 /*-------------------------------------------
135                   Main Functions
136 -------------------------------------------*/
main(int argc,char * argv[])137 int main(int argc, char* argv[])
138 {
139   if (argc < 3) {
140     printf("Usage:%s model_path input_path [loop_count]\n", argv[0]);
141     return -1;
142   }
143 
144   char* model_path = argv[1];
145   char* input_path = argv[2];
146 
147   int loop_count = 1;
148   if (argc > 3) {
149     loop_count = atoi(argv[3]);
150   }
151 
152   rknn_context ctx = 0;
153 
154   // init rga context
155   rga_buffer_t src;
156   rga_buffer_t dst;
157   im_rect      src_rect;
158   im_rect      dst_rect;
159   memset(&src_rect, 0, sizeof(src_rect));
160   memset(&dst_rect, 0, sizeof(dst_rect));
161   memset(&src, 0, sizeof(src));
162   memset(&dst, 0, sizeof(dst));
163 
164   // Load RKNN Model
165   int ret = rknn_init(&ctx, model_path, 0, 0, NULL);
166   if (ret < 0) {
167     printf("rknn_init fail! ret=%d\n", ret);
168     return -1;
169   }
170 
171   // Get sdk and driver version
172   rknn_sdk_version sdk_ver;
173   ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &sdk_ver, sizeof(sdk_ver));
174   if (ret != RKNN_SUCC) {
175     printf("rknn_query fail! ret=%d\n", ret);
176     return -1;
177   }
178   printf("rknn_api/rknnrt version: %s, driver version: %s\n", sdk_ver.api_version, sdk_ver.drv_version);
179 
180   // Get Model Input Output Info
181   rknn_input_output_num io_num;
182   ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
183   if (ret != RKNN_SUCC) {
184     printf("rknn_query fail! ret=%d\n", ret);
185     return -1;
186   }
187   printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output);
188 
189   printf("input tensors:\n");
190   rknn_tensor_attr input_attrs[io_num.n_input];
191   memset(input_attrs, 0, io_num.n_input * sizeof(rknn_tensor_attr));
192   for (uint32_t i = 0; i < io_num.n_input; i++) {
193     input_attrs[i].index = i;
194     // query info
195     ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));
196     if (ret < 0) {
197       printf("rknn_init error! ret=%d\n", ret);
198       return -1;
199     }
200     dump_tensor_attr(&input_attrs[i]);
201   }
202 
203   printf("output tensors:\n");
204   rknn_tensor_attr output_attrs[io_num.n_output];
205   memset(output_attrs, 0, io_num.n_output * sizeof(rknn_tensor_attr));
206   for (uint32_t i = 0; i < io_num.n_output; i++) {
207     output_attrs[i].index = i;
208     // query info
209     ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));
210     if (ret != RKNN_SUCC) {
211       printf("rknn_query fail! ret=%d\n", ret);
212       return -1;
213     }
214     dump_tensor_attr(&output_attrs[i]);
215   }
216 
217   // Get custom string
218   rknn_custom_string custom_string;
219   ret = rknn_query(ctx, RKNN_QUERY_CUSTOM_STRING, &custom_string, sizeof(custom_string));
220   if (ret != RKNN_SUCC) {
221     printf("rknn_query fail! ret=%d\n", ret);
222     return -1;
223   }
224   printf("custom string: %s\n", custom_string.string);
225 
226   unsigned char*     input_data   = NULL;
227   rknn_tensor_type   input_type   = RKNN_TENSOR_UINT8;
228   rknn_tensor_format input_layout = RKNN_TENSOR_NHWC;
229 
230   int img_input_height = 0;
231   int img_input_width  = 0;
232   int channel          = 0;
233   input_data           = stbi_load(input_path, &img_input_height, &img_input_width, &channel, 3);
234   int model_in_height  = 0;
235   int model_in_width   = 0;
236   int req_channel      = 0;
237   switch (input_attrs[0].fmt) {
238   case RKNN_TENSOR_NHWC:
239     model_in_height = input_attrs[0].dims[1];
240     model_in_width  = input_attrs[0].dims[2];
241     req_channel     = input_attrs[0].dims[3];
242     break;
243   case RKNN_TENSOR_NCHW:
244     model_in_height = input_attrs[0].dims[2];
245     model_in_width  = input_attrs[0].dims[3];
246     req_channel     = input_attrs[0].dims[1];
247     break;
248   default:
249     printf("meet unsupported layout\n");
250     return -1;
251   }
252 
253   if (!input_data) {
254     printf("load image failed!\n");
255     return -1;
256   }
257 
258   src = wrapbuffer_virtualaddr((void*)input_data, img_input_width, img_input_height,
259                                RK_FORMAT_RGB_888); // wstride, hstride,
260 
261   // Create input tensor memory
262   rknn_tensor_mem* input_mems[1];
263   // default input type is int8 (normalize and quantize need compute in outside)
264   // if set uint8, will fuse normalize and quantize to npu
265   input_attrs[0].type = input_type;
266   // default fmt is NHWC, npu only support NHWC in zero copy mode
267   input_attrs[0].fmt = input_layout;
268   input_mems[0]      = rknn_create_mem(ctx, input_attrs[0].size_with_stride);
269   // Copy input data to input tensor memory
270   // memcpy(input_mems[0]->virt_addr, input_data, input_attrs[0].size);
271 
272   int wstride = model_in_width + (ALIGN - model_in_width % ALIGN) % ALIGN;
273   int hstride = model_in_height;
274   dst         = wrapbuffer_fd_t(input_mems[0]->fd, model_in_width, model_in_height, wstride, hstride,
275                         RK_FORMAT_RGB_888); // wstride, hstride,
276 
277   ret = imcheck(src, dst, src_rect, dst_rect);
278   if (IM_STATUS_NOERROR != ret) {
279     printf("%d, check error! %s", __LINE__, imStrError((IM_STATUS)ret));
280     return -1;
281   }
282 
283   IM_STATUS STATUS = imresize(src, dst);
284 
285   // Create output tensor memory
286   rknn_tensor_mem* output_mems[io_num.n_output];
287   for (uint32_t i = 0; i < io_num.n_output; ++i) {
288     int output_size = output_attrs[i].n_elems * sizeof(float);
289     // default output type is depend on model, this require float32 to compute top5
290     output_attrs[i].type = RKNN_TENSOR_FLOAT32;
291     output_mems[i]       = rknn_create_mem(ctx, output_size);
292   }
293 
294   // Set input tensor memory
295   ret = rknn_set_io_mem(ctx, input_mems[0], &input_attrs[0]);
296   if (ret < 0) {
297     printf("rknn_set_io_mem fail! ret=%d\n", ret);
298     return -1;
299   }
300 
301   // Set output tensor memory
302   for (uint32_t i = 0; i < io_num.n_output; ++i) {
303     ret = rknn_set_io_mem(ctx, output_mems[i], &output_attrs[i]);
304     if (ret < 0) {
305       printf("rknn_set_io_mem fail! ret=%d\n", ret);
306       return -1;
307     }
308   }
309 
310   // Run
311   printf("Begin perf ...\n");
312   for (int i = 0; i < loop_count; ++i) {
313     int64_t start_us  = getCurrentTimeUs();
314     ret               = rknn_run(ctx, NULL);
315     int64_t elapse_us = getCurrentTimeUs() - start_us;
316     if (ret < 0) {
317       printf("rknn run error %d\n", ret);
318       return -1;
319     }
320     printf("%4d: Elapse Time = %.2fms, FPS = %.2f\n", i, elapse_us / 1000.f, 1000.f * 1000.f / elapse_us);
321   }
322 
323   // Get top 5
324   uint32_t topNum = 5;
325   for (uint32_t i = 0; i < io_num.n_output; i++) {
326     uint32_t MaxClass[topNum];
327     float    fMaxProb[topNum];
328     float*   buffer    = (float*)output_mems[i]->virt_addr;
329     uint32_t sz        = output_attrs[i].n_elems;
330     int      top_count = sz > topNum ? topNum : sz;
331 
332     rknn_GetTopN(buffer, fMaxProb, MaxClass, sz, topNum);
333 
334     printf("---- Top%d ----\n", top_count);
335     for (int j = 0; j < top_count; j++) {
336       printf("%8.6f - %d\n", fMaxProb[j], MaxClass[j]);
337     }
338   }
339 
340   // Destroy rknn memory
341   rknn_destroy_mem(ctx, input_mems[0]);
342   for (uint32_t i = 0; i < io_num.n_output; ++i) {
343     rknn_destroy_mem(ctx, output_mems[i]);
344   }
345 
346   // destroy
347   rknn_destroy(ctx);
348 
349   free(input_data);
350 
351   return 0;
352 }
353