1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter. This is separated from,
3 but required by, the NAT layer; it can also be used by an iptables
4 extension. */
5
6 /* (C) 1999-2001 Paul `Rusty' Russell
7 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/jhash.h>
25 #include <linux/siphash.h>
26 #include <linux/err.h>
27 #include <linux/percpu.h>
28 #include <linux/moduleparam.h>
29 #include <linux/notifier.h>
30 #include <linux/kernel.h>
31 #include <linux/netdevice.h>
32 #include <linux/socket.h>
33 #include <linux/mm.h>
34 #include <linux/nsproxy.h>
35 #include <linux/rculist_nulls.h>
36 #include <trace/hooks/net.h>
37
38 #include <net/netfilter/nf_conntrack.h>
39 #include <net/netfilter/nf_conntrack_l4proto.h>
40 #include <net/netfilter/nf_conntrack_expect.h>
41 #include <net/netfilter/nf_conntrack_helper.h>
42 #include <net/netfilter/nf_conntrack_seqadj.h>
43 #include <net/netfilter/nf_conntrack_core.h>
44 #include <net/netfilter/nf_conntrack_extend.h>
45 #include <net/netfilter/nf_conntrack_acct.h>
46 #include <net/netfilter/nf_conntrack_ecache.h>
47 #include <net/netfilter/nf_conntrack_zones.h>
48 #include <net/netfilter/nf_conntrack_timestamp.h>
49 #include <net/netfilter/nf_conntrack_timeout.h>
50 #include <net/netfilter/nf_conntrack_labels.h>
51 #include <net/netfilter/nf_conntrack_synproxy.h>
52 #include <net/netfilter/nf_nat.h>
53 #include <net/netfilter/nf_nat_helper.h>
54 #include <net/netns/hash.h>
55 #include <net/ip.h>
56
57 #include "nf_internals.h"
58
59 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
60 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
61
62 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
63 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
64
65 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
66 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
67
68 struct conntrack_gc_work {
69 struct delayed_work dwork;
70 u32 next_bucket;
71 bool exiting;
72 bool early_drop;
73 };
74
75 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
76 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
77 static __read_mostly bool nf_conntrack_locks_all;
78
79 /* serialize hash resizes and nf_ct_iterate_cleanup */
80 static DEFINE_MUTEX(nf_conntrack_mutex);
81
82 #define GC_SCAN_INTERVAL (120u * HZ)
83 #define GC_SCAN_MAX_DURATION msecs_to_jiffies(10)
84
85 static struct conntrack_gc_work conntrack_gc_work;
86
nf_conntrack_lock(spinlock_t * lock)87 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
88 {
89 /* 1) Acquire the lock */
90 spin_lock(lock);
91
92 /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
93 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
94 */
95 if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
96 return;
97
98 /* fast path failed, unlock */
99 spin_unlock(lock);
100
101 /* Slow path 1) get global lock */
102 spin_lock(&nf_conntrack_locks_all_lock);
103
104 /* Slow path 2) get the lock we want */
105 spin_lock(lock);
106
107 /* Slow path 3) release the global lock */
108 spin_unlock(&nf_conntrack_locks_all_lock);
109 }
110 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
111
nf_conntrack_double_unlock(unsigned int h1,unsigned int h2)112 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
113 {
114 h1 %= CONNTRACK_LOCKS;
115 h2 %= CONNTRACK_LOCKS;
116 spin_unlock(&nf_conntrack_locks[h1]);
117 if (h1 != h2)
118 spin_unlock(&nf_conntrack_locks[h2]);
119 }
120
121 /* return true if we need to recompute hashes (in case hash table was resized) */
nf_conntrack_double_lock(struct net * net,unsigned int h1,unsigned int h2,unsigned int sequence)122 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
123 unsigned int h2, unsigned int sequence)
124 {
125 h1 %= CONNTRACK_LOCKS;
126 h2 %= CONNTRACK_LOCKS;
127 if (h1 <= h2) {
128 nf_conntrack_lock(&nf_conntrack_locks[h1]);
129 if (h1 != h2)
130 spin_lock_nested(&nf_conntrack_locks[h2],
131 SINGLE_DEPTH_NESTING);
132 } else {
133 nf_conntrack_lock(&nf_conntrack_locks[h2]);
134 spin_lock_nested(&nf_conntrack_locks[h1],
135 SINGLE_DEPTH_NESTING);
136 }
137 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
138 nf_conntrack_double_unlock(h1, h2);
139 return true;
140 }
141 return false;
142 }
143
nf_conntrack_all_lock(void)144 static void nf_conntrack_all_lock(void)
145 __acquires(&nf_conntrack_locks_all_lock)
146 {
147 int i;
148
149 spin_lock(&nf_conntrack_locks_all_lock);
150
151 nf_conntrack_locks_all = true;
152
153 for (i = 0; i < CONNTRACK_LOCKS; i++) {
154 spin_lock(&nf_conntrack_locks[i]);
155
156 /* This spin_unlock provides the "release" to ensure that
157 * nf_conntrack_locks_all==true is visible to everyone that
158 * acquired spin_lock(&nf_conntrack_locks[]).
159 */
160 spin_unlock(&nf_conntrack_locks[i]);
161 }
162 }
163
nf_conntrack_all_unlock(void)164 static void nf_conntrack_all_unlock(void)
165 __releases(&nf_conntrack_locks_all_lock)
166 {
167 /* All prior stores must be complete before we clear
168 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
169 * might observe the false value but not the entire
170 * critical section.
171 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
172 */
173 smp_store_release(&nf_conntrack_locks_all, false);
174 spin_unlock(&nf_conntrack_locks_all_lock);
175 }
176
177 unsigned int nf_conntrack_htable_size __read_mostly;
178 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
179
180 unsigned int nf_conntrack_max __read_mostly;
181 EXPORT_SYMBOL_GPL(nf_conntrack_max);
182 seqcount_spinlock_t nf_conntrack_generation __read_mostly;
183 static unsigned int nf_conntrack_hash_rnd __read_mostly;
184
hash_conntrack_raw(const struct nf_conntrack_tuple * tuple,const struct net * net)185 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
186 const struct net *net)
187 {
188 unsigned int n;
189 u32 seed;
190
191 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
192
193 /* The direction must be ignored, so we hash everything up to the
194 * destination ports (which is a multiple of 4) and treat the last
195 * three bytes manually.
196 */
197 seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
198 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
199 return jhash2((u32 *)tuple, n, seed ^
200 (((__force __u16)tuple->dst.u.all << 16) |
201 tuple->dst.protonum));
202 }
203
scale_hash(u32 hash)204 static u32 scale_hash(u32 hash)
205 {
206 return reciprocal_scale(hash, nf_conntrack_htable_size);
207 }
208
__hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int size)209 static u32 __hash_conntrack(const struct net *net,
210 const struct nf_conntrack_tuple *tuple,
211 unsigned int size)
212 {
213 return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
214 }
215
hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple)216 static u32 hash_conntrack(const struct net *net,
217 const struct nf_conntrack_tuple *tuple)
218 {
219 return scale_hash(hash_conntrack_raw(tuple, net));
220 }
221
nf_ct_get_tuple_ports(const struct sk_buff * skb,unsigned int dataoff,struct nf_conntrack_tuple * tuple)222 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
223 unsigned int dataoff,
224 struct nf_conntrack_tuple *tuple)
225 { struct {
226 __be16 sport;
227 __be16 dport;
228 } _inet_hdr, *inet_hdr;
229
230 /* Actually only need first 4 bytes to get ports. */
231 inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
232 if (!inet_hdr)
233 return false;
234
235 tuple->src.u.udp.port = inet_hdr->sport;
236 tuple->dst.u.udp.port = inet_hdr->dport;
237 return true;
238 }
239
240 static bool
nf_ct_get_tuple(const struct sk_buff * skb,unsigned int nhoff,unsigned int dataoff,u_int16_t l3num,u_int8_t protonum,struct net * net,struct nf_conntrack_tuple * tuple)241 nf_ct_get_tuple(const struct sk_buff *skb,
242 unsigned int nhoff,
243 unsigned int dataoff,
244 u_int16_t l3num,
245 u_int8_t protonum,
246 struct net *net,
247 struct nf_conntrack_tuple *tuple)
248 {
249 unsigned int size;
250 const __be32 *ap;
251 __be32 _addrs[8];
252
253 memset(tuple, 0, sizeof(*tuple));
254
255 tuple->src.l3num = l3num;
256 switch (l3num) {
257 case NFPROTO_IPV4:
258 nhoff += offsetof(struct iphdr, saddr);
259 size = 2 * sizeof(__be32);
260 break;
261 case NFPROTO_IPV6:
262 nhoff += offsetof(struct ipv6hdr, saddr);
263 size = sizeof(_addrs);
264 break;
265 default:
266 return true;
267 }
268
269 ap = skb_header_pointer(skb, nhoff, size, _addrs);
270 if (!ap)
271 return false;
272
273 switch (l3num) {
274 case NFPROTO_IPV4:
275 tuple->src.u3.ip = ap[0];
276 tuple->dst.u3.ip = ap[1];
277 break;
278 case NFPROTO_IPV6:
279 memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
280 memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
281 break;
282 }
283
284 tuple->dst.protonum = protonum;
285 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
286
287 switch (protonum) {
288 #if IS_ENABLED(CONFIG_IPV6)
289 case IPPROTO_ICMPV6:
290 return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
291 #endif
292 case IPPROTO_ICMP:
293 return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
294 #ifdef CONFIG_NF_CT_PROTO_GRE
295 case IPPROTO_GRE:
296 return gre_pkt_to_tuple(skb, dataoff, net, tuple);
297 #endif
298 case IPPROTO_TCP:
299 case IPPROTO_UDP: /* fallthrough */
300 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
301 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
302 case IPPROTO_UDPLITE:
303 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
304 #endif
305 #ifdef CONFIG_NF_CT_PROTO_SCTP
306 case IPPROTO_SCTP:
307 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
308 #endif
309 #ifdef CONFIG_NF_CT_PROTO_DCCP
310 case IPPROTO_DCCP:
311 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
312 #endif
313 default:
314 break;
315 }
316
317 return true;
318 }
319
ipv4_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u_int8_t * protonum)320 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
321 u_int8_t *protonum)
322 {
323 int dataoff = -1;
324 const struct iphdr *iph;
325 struct iphdr _iph;
326
327 iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
328 if (!iph)
329 return -1;
330
331 /* Conntrack defragments packets, we might still see fragments
332 * inside ICMP packets though.
333 */
334 if (iph->frag_off & htons(IP_OFFSET))
335 return -1;
336
337 dataoff = nhoff + (iph->ihl << 2);
338 *protonum = iph->protocol;
339
340 /* Check bogus IP headers */
341 if (dataoff > skb->len) {
342 pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
343 nhoff, iph->ihl << 2, skb->len);
344 return -1;
345 }
346 return dataoff;
347 }
348
349 #if IS_ENABLED(CONFIG_IPV6)
ipv6_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 * protonum)350 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
351 u8 *protonum)
352 {
353 int protoff = -1;
354 unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
355 __be16 frag_off;
356 u8 nexthdr;
357
358 if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
359 &nexthdr, sizeof(nexthdr)) != 0) {
360 pr_debug("can't get nexthdr\n");
361 return -1;
362 }
363 protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
364 /*
365 * (protoff == skb->len) means the packet has not data, just
366 * IPv6 and possibly extensions headers, but it is tracked anyway
367 */
368 if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
369 pr_debug("can't find proto in pkt\n");
370 return -1;
371 }
372
373 *protonum = nexthdr;
374 return protoff;
375 }
376 #endif
377
get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 pf,u8 * l4num)378 static int get_l4proto(const struct sk_buff *skb,
379 unsigned int nhoff, u8 pf, u8 *l4num)
380 {
381 switch (pf) {
382 case NFPROTO_IPV4:
383 return ipv4_get_l4proto(skb, nhoff, l4num);
384 #if IS_ENABLED(CONFIG_IPV6)
385 case NFPROTO_IPV6:
386 return ipv6_get_l4proto(skb, nhoff, l4num);
387 #endif
388 default:
389 *l4num = 0;
390 break;
391 }
392 return -1;
393 }
394
nf_ct_get_tuplepr(const struct sk_buff * skb,unsigned int nhoff,u_int16_t l3num,struct net * net,struct nf_conntrack_tuple * tuple)395 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
396 u_int16_t l3num,
397 struct net *net, struct nf_conntrack_tuple *tuple)
398 {
399 u8 protonum;
400 int protoff;
401
402 protoff = get_l4proto(skb, nhoff, l3num, &protonum);
403 if (protoff <= 0)
404 return false;
405
406 return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
407 }
408 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
409
410 bool
nf_ct_invert_tuple(struct nf_conntrack_tuple * inverse,const struct nf_conntrack_tuple * orig)411 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
412 const struct nf_conntrack_tuple *orig)
413 {
414 memset(inverse, 0, sizeof(*inverse));
415
416 inverse->src.l3num = orig->src.l3num;
417
418 switch (orig->src.l3num) {
419 case NFPROTO_IPV4:
420 inverse->src.u3.ip = orig->dst.u3.ip;
421 inverse->dst.u3.ip = orig->src.u3.ip;
422 break;
423 case NFPROTO_IPV6:
424 inverse->src.u3.in6 = orig->dst.u3.in6;
425 inverse->dst.u3.in6 = orig->src.u3.in6;
426 break;
427 default:
428 break;
429 }
430
431 inverse->dst.dir = !orig->dst.dir;
432
433 inverse->dst.protonum = orig->dst.protonum;
434
435 switch (orig->dst.protonum) {
436 case IPPROTO_ICMP:
437 return nf_conntrack_invert_icmp_tuple(inverse, orig);
438 #if IS_ENABLED(CONFIG_IPV6)
439 case IPPROTO_ICMPV6:
440 return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
441 #endif
442 }
443
444 inverse->src.u.all = orig->dst.u.all;
445 inverse->dst.u.all = orig->src.u.all;
446 return true;
447 }
448 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
449
450 /* Generate a almost-unique pseudo-id for a given conntrack.
451 *
452 * intentionally doesn't re-use any of the seeds used for hash
453 * table location, we assume id gets exposed to userspace.
454 *
455 * Following nf_conn items do not change throughout lifetime
456 * of the nf_conn:
457 *
458 * 1. nf_conn address
459 * 2. nf_conn->master address (normally NULL)
460 * 3. the associated net namespace
461 * 4. the original direction tuple
462 */
nf_ct_get_id(const struct nf_conn * ct)463 u32 nf_ct_get_id(const struct nf_conn *ct)
464 {
465 static __read_mostly siphash_key_t ct_id_seed;
466 unsigned long a, b, c, d;
467
468 net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
469
470 a = (unsigned long)ct;
471 b = (unsigned long)ct->master;
472 c = (unsigned long)nf_ct_net(ct);
473 d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
474 sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
475 &ct_id_seed);
476 #ifdef CONFIG_64BIT
477 return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
478 #else
479 return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
480 #endif
481 }
482 EXPORT_SYMBOL_GPL(nf_ct_get_id);
483
484 static void
clean_from_lists(struct nf_conn * ct)485 clean_from_lists(struct nf_conn *ct)
486 {
487 pr_debug("clean_from_lists(%p)\n", ct);
488 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
489 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
490
491 /* Destroy all pending expectations */
492 nf_ct_remove_expectations(ct);
493 }
494
495 /* must be called with local_bh_disable */
nf_ct_add_to_dying_list(struct nf_conn * ct)496 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
497 {
498 struct ct_pcpu *pcpu;
499
500 /* add this conntrack to the (per cpu) dying list */
501 ct->cpu = smp_processor_id();
502 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
503
504 spin_lock(&pcpu->lock);
505 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
506 &pcpu->dying);
507 spin_unlock(&pcpu->lock);
508 }
509
510 /* must be called with local_bh_disable */
nf_ct_add_to_unconfirmed_list(struct nf_conn * ct)511 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
512 {
513 struct ct_pcpu *pcpu;
514
515 /* add this conntrack to the (per cpu) unconfirmed list */
516 ct->cpu = smp_processor_id();
517 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
518
519 spin_lock(&pcpu->lock);
520 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
521 &pcpu->unconfirmed);
522 spin_unlock(&pcpu->lock);
523 }
524
525 /* must be called with local_bh_disable */
nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn * ct)526 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
527 {
528 struct ct_pcpu *pcpu;
529
530 /* We overload first tuple to link into unconfirmed or dying list.*/
531 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
532
533 spin_lock(&pcpu->lock);
534 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
535 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
536 spin_unlock(&pcpu->lock);
537 }
538
539 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
540
541 /* Released via destroy_conntrack() */
nf_ct_tmpl_alloc(struct net * net,const struct nf_conntrack_zone * zone,gfp_t flags)542 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
543 const struct nf_conntrack_zone *zone,
544 gfp_t flags)
545 {
546 struct nf_conn *tmpl, *p;
547
548 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
549 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
550 if (!tmpl)
551 return NULL;
552
553 p = tmpl;
554 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
555 if (tmpl != p) {
556 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
557 tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
558 }
559 } else {
560 tmpl = kzalloc(sizeof(*tmpl), flags);
561 if (!tmpl)
562 return NULL;
563 }
564
565 tmpl->status = IPS_TEMPLATE;
566 write_pnet(&tmpl->ct_net, net);
567 nf_ct_zone_add(tmpl, zone);
568 atomic_set(&tmpl->ct_general.use, 0);
569
570 return tmpl;
571 }
572 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
573
nf_ct_tmpl_free(struct nf_conn * tmpl)574 void nf_ct_tmpl_free(struct nf_conn *tmpl)
575 {
576 nf_ct_ext_destroy(tmpl);
577
578 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
579 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
580 else
581 kfree(tmpl);
582 }
583 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
584
destroy_gre_conntrack(struct nf_conn * ct)585 static void destroy_gre_conntrack(struct nf_conn *ct)
586 {
587 #ifdef CONFIG_NF_CT_PROTO_GRE
588 struct nf_conn *master = ct->master;
589
590 if (master)
591 nf_ct_gre_keymap_destroy(master);
592 #endif
593 }
594
595 static void
destroy_conntrack(struct nf_conntrack * nfct)596 destroy_conntrack(struct nf_conntrack *nfct)
597 {
598 struct nf_conn *ct = (struct nf_conn *)nfct;
599
600 pr_debug("destroy_conntrack(%p)\n", ct);
601 WARN_ON(atomic_read(&nfct->use) != 0);
602
603 if (unlikely(nf_ct_is_template(ct))) {
604 nf_ct_tmpl_free(ct);
605 return;
606 }
607
608 if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
609 destroy_gre_conntrack(ct);
610
611 local_bh_disable();
612 /* Expectations will have been removed in clean_from_lists,
613 * except TFTP can create an expectation on the first packet,
614 * before connection is in the list, so we need to clean here,
615 * too.
616 */
617 nf_ct_remove_expectations(ct);
618
619 nf_ct_del_from_dying_or_unconfirmed_list(ct);
620
621 local_bh_enable();
622
623 if (ct->master)
624 nf_ct_put(ct->master);
625
626 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
627 nf_conntrack_free(ct);
628 }
629
nf_ct_delete_from_lists(struct nf_conn * ct)630 static void nf_ct_delete_from_lists(struct nf_conn *ct)
631 {
632 struct net *net = nf_ct_net(ct);
633 unsigned int hash, reply_hash;
634 unsigned int sequence;
635
636 nf_ct_helper_destroy(ct);
637
638 local_bh_disable();
639 do {
640 sequence = read_seqcount_begin(&nf_conntrack_generation);
641 hash = hash_conntrack(net,
642 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
643 reply_hash = hash_conntrack(net,
644 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
645 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
646
647 clean_from_lists(ct);
648 nf_conntrack_double_unlock(hash, reply_hash);
649
650 nf_ct_add_to_dying_list(ct);
651
652 local_bh_enable();
653 }
654
nf_ct_delete(struct nf_conn * ct,u32 portid,int report)655 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
656 {
657 struct nf_conn_tstamp *tstamp;
658
659 if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
660 return false;
661
662 tstamp = nf_conn_tstamp_find(ct);
663 if (tstamp) {
664 s32 timeout = READ_ONCE(ct->timeout) - nfct_time_stamp;
665
666 tstamp->stop = ktime_get_real_ns();
667 if (timeout < 0)
668 tstamp->stop -= jiffies_to_nsecs(-timeout);
669 }
670
671 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
672 portid, report) < 0) {
673 /* destroy event was not delivered. nf_ct_put will
674 * be done by event cache worker on redelivery.
675 */
676 nf_ct_delete_from_lists(ct);
677 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
678 return false;
679 }
680
681 nf_conntrack_ecache_work(nf_ct_net(ct));
682 nf_ct_delete_from_lists(ct);
683 nf_ct_put(ct);
684 return true;
685 }
686 EXPORT_SYMBOL_GPL(nf_ct_delete);
687
688 static inline bool
nf_ct_key_equal(struct nf_conntrack_tuple_hash * h,const struct nf_conntrack_tuple * tuple,const struct nf_conntrack_zone * zone,const struct net * net)689 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
690 const struct nf_conntrack_tuple *tuple,
691 const struct nf_conntrack_zone *zone,
692 const struct net *net)
693 {
694 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
695
696 /* A conntrack can be recreated with the equal tuple,
697 * so we need to check that the conntrack is confirmed
698 */
699 return nf_ct_tuple_equal(tuple, &h->tuple) &&
700 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
701 nf_ct_is_confirmed(ct) &&
702 net_eq(net, nf_ct_net(ct));
703 }
704
705 static inline bool
nf_ct_match(const struct nf_conn * ct1,const struct nf_conn * ct2)706 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
707 {
708 return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
709 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
710 nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
711 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
712 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
713 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
714 net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
715 }
716
717 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
nf_ct_gc_expired(struct nf_conn * ct)718 static void nf_ct_gc_expired(struct nf_conn *ct)
719 {
720 if (!atomic_inc_not_zero(&ct->ct_general.use))
721 return;
722
723 if (nf_ct_should_gc(ct))
724 nf_ct_kill(ct);
725
726 nf_ct_put(ct);
727 }
728
729 /*
730 * Warning :
731 * - Caller must take a reference on returned object
732 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
733 */
734 static struct nf_conntrack_tuple_hash *
____nf_conntrack_find(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)735 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
736 const struct nf_conntrack_tuple *tuple, u32 hash)
737 {
738 struct nf_conntrack_tuple_hash *h;
739 struct hlist_nulls_head *ct_hash;
740 struct hlist_nulls_node *n;
741 unsigned int bucket, hsize;
742
743 begin:
744 nf_conntrack_get_ht(&ct_hash, &hsize);
745 bucket = reciprocal_scale(hash, hsize);
746
747 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
748 struct nf_conn *ct;
749
750 ct = nf_ct_tuplehash_to_ctrack(h);
751 if (nf_ct_is_expired(ct)) {
752 nf_ct_gc_expired(ct);
753 continue;
754 }
755
756 if (nf_ct_key_equal(h, tuple, zone, net))
757 return h;
758 }
759 /*
760 * if the nulls value we got at the end of this lookup is
761 * not the expected one, we must restart lookup.
762 * We probably met an item that was moved to another chain.
763 */
764 if (get_nulls_value(n) != bucket) {
765 NF_CT_STAT_INC_ATOMIC(net, search_restart);
766 goto begin;
767 }
768
769 return NULL;
770 }
771
772 /* Find a connection corresponding to a tuple. */
773 static struct nf_conntrack_tuple_hash *
__nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)774 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
775 const struct nf_conntrack_tuple *tuple, u32 hash)
776 {
777 struct nf_conntrack_tuple_hash *h;
778 struct nf_conn *ct;
779
780 rcu_read_lock();
781
782 h = ____nf_conntrack_find(net, zone, tuple, hash);
783 if (h) {
784 /* We have a candidate that matches the tuple we're interested
785 * in, try to obtain a reference and re-check tuple
786 */
787 ct = nf_ct_tuplehash_to_ctrack(h);
788 if (likely(atomic_inc_not_zero(&ct->ct_general.use))) {
789 if (likely(nf_ct_key_equal(h, tuple, zone, net)))
790 goto found;
791
792 /* TYPESAFE_BY_RCU recycled the candidate */
793 nf_ct_put(ct);
794 }
795
796 h = NULL;
797 }
798 found:
799 rcu_read_unlock();
800
801 return h;
802 }
803
804 struct nf_conntrack_tuple_hash *
nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple)805 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
806 const struct nf_conntrack_tuple *tuple)
807 {
808 return __nf_conntrack_find_get(net, zone, tuple,
809 hash_conntrack_raw(tuple, net));
810 }
811 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
812
__nf_conntrack_hash_insert(struct nf_conn * ct,unsigned int hash,unsigned int reply_hash)813 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
814 unsigned int hash,
815 unsigned int reply_hash)
816 {
817 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
818 &nf_conntrack_hash[hash]);
819 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
820 &nf_conntrack_hash[reply_hash]);
821 }
822
823 int
nf_conntrack_hash_check_insert(struct nf_conn * ct)824 nf_conntrack_hash_check_insert(struct nf_conn *ct)
825 {
826 const struct nf_conntrack_zone *zone;
827 struct net *net = nf_ct_net(ct);
828 unsigned int hash, reply_hash;
829 struct nf_conntrack_tuple_hash *h;
830 struct hlist_nulls_node *n;
831 unsigned int sequence;
832
833 zone = nf_ct_zone(ct);
834
835 local_bh_disable();
836 do {
837 sequence = read_seqcount_begin(&nf_conntrack_generation);
838 hash = hash_conntrack(net,
839 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
840 reply_hash = hash_conntrack(net,
841 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
842 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
843
844 /* See if there's one in the list already, including reverse */
845 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
846 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
847 zone, net))
848 goto out;
849
850 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
851 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
852 zone, net))
853 goto out;
854
855 smp_wmb();
856 /* The caller holds a reference to this object */
857 atomic_set(&ct->ct_general.use, 2);
858 __nf_conntrack_hash_insert(ct, hash, reply_hash);
859 nf_conntrack_double_unlock(hash, reply_hash);
860 NF_CT_STAT_INC(net, insert);
861 local_bh_enable();
862 return 0;
863
864 out:
865 nf_conntrack_double_unlock(hash, reply_hash);
866 local_bh_enable();
867 return -EEXIST;
868 }
869 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
870
nf_ct_acct_add(struct nf_conn * ct,u32 dir,unsigned int packets,unsigned int bytes)871 void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
872 unsigned int bytes)
873 {
874 struct nf_conn_acct *acct;
875
876 acct = nf_conn_acct_find(ct);
877 if (acct) {
878 struct nf_conn_counter *counter = acct->counter;
879
880 atomic64_add(packets, &counter[dir].packets);
881 atomic64_add(bytes, &counter[dir].bytes);
882 }
883 }
884 EXPORT_SYMBOL_GPL(nf_ct_acct_add);
885
nf_ct_acct_merge(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct nf_conn * loser_ct)886 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
887 const struct nf_conn *loser_ct)
888 {
889 struct nf_conn_acct *acct;
890
891 acct = nf_conn_acct_find(loser_ct);
892 if (acct) {
893 struct nf_conn_counter *counter = acct->counter;
894 unsigned int bytes;
895
896 /* u32 should be fine since we must have seen one packet. */
897 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
898 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
899 }
900 }
901
__nf_conntrack_insert_prepare(struct nf_conn * ct)902 static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
903 {
904 struct nf_conn_tstamp *tstamp;
905
906 atomic_inc(&ct->ct_general.use);
907 ct->status |= IPS_CONFIRMED;
908
909 /* set conntrack timestamp, if enabled. */
910 tstamp = nf_conn_tstamp_find(ct);
911 if (tstamp)
912 tstamp->start = ktime_get_real_ns();
913 }
914
915 /* caller must hold locks to prevent concurrent changes */
__nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h)916 static int __nf_ct_resolve_clash(struct sk_buff *skb,
917 struct nf_conntrack_tuple_hash *h)
918 {
919 /* This is the conntrack entry already in hashes that won race. */
920 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
921 enum ip_conntrack_info ctinfo;
922 struct nf_conn *loser_ct;
923
924 loser_ct = nf_ct_get(skb, &ctinfo);
925
926 if (nf_ct_is_dying(ct))
927 return NF_DROP;
928
929 if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
930 nf_ct_match(ct, loser_ct)) {
931 struct net *net = nf_ct_net(ct);
932
933 nf_conntrack_get(&ct->ct_general);
934
935 nf_ct_acct_merge(ct, ctinfo, loser_ct);
936 nf_ct_add_to_dying_list(loser_ct);
937 nf_conntrack_put(&loser_ct->ct_general);
938 nf_ct_set(skb, ct, ctinfo);
939
940 NF_CT_STAT_INC(net, clash_resolve);
941 return NF_ACCEPT;
942 }
943
944 return NF_DROP;
945 }
946
947 /**
948 * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
949 *
950 * @skb: skb that causes the collision
951 * @repl_idx: hash slot for reply direction
952 *
953 * Called when origin or reply direction had a clash.
954 * The skb can be handled without packet drop provided the reply direction
955 * is unique or there the existing entry has the identical tuple in both
956 * directions.
957 *
958 * Caller must hold conntrack table locks to prevent concurrent updates.
959 *
960 * Returns NF_DROP if the clash could not be handled.
961 */
nf_ct_resolve_clash_harder(struct sk_buff * skb,u32 repl_idx)962 static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
963 {
964 struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
965 const struct nf_conntrack_zone *zone;
966 struct nf_conntrack_tuple_hash *h;
967 struct hlist_nulls_node *n;
968 struct net *net;
969
970 zone = nf_ct_zone(loser_ct);
971 net = nf_ct_net(loser_ct);
972
973 /* Reply direction must never result in a clash, unless both origin
974 * and reply tuples are identical.
975 */
976 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
977 if (nf_ct_key_equal(h,
978 &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
979 zone, net))
980 return __nf_ct_resolve_clash(skb, h);
981 }
982
983 /* We want the clashing entry to go away real soon: 1 second timeout. */
984 WRITE_ONCE(loser_ct->timeout, nfct_time_stamp + HZ);
985
986 /* IPS_NAT_CLASH removes the entry automatically on the first
987 * reply. Also prevents UDP tracker from moving the entry to
988 * ASSURED state, i.e. the entry can always be evicted under
989 * pressure.
990 */
991 loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
992
993 __nf_conntrack_insert_prepare(loser_ct);
994
995 /* fake add for ORIGINAL dir: we want lookups to only find the entry
996 * already in the table. This also hides the clashing entry from
997 * ctnetlink iteration, i.e. conntrack -L won't show them.
998 */
999 hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
1000
1001 hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1002 &nf_conntrack_hash[repl_idx]);
1003
1004 NF_CT_STAT_INC(net, clash_resolve);
1005 return NF_ACCEPT;
1006 }
1007
1008 /**
1009 * nf_ct_resolve_clash - attempt to handle clash without packet drop
1010 *
1011 * @skb: skb that causes the clash
1012 * @h: tuplehash of the clashing entry already in table
1013 * @reply_hash: hash slot for reply direction
1014 *
1015 * A conntrack entry can be inserted to the connection tracking table
1016 * if there is no existing entry with an identical tuple.
1017 *
1018 * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1019 * to be dropped. In case @skb is retransmitted, next conntrack lookup
1020 * will find the already-existing entry.
1021 *
1022 * The major problem with such packet drop is the extra delay added by
1023 * the packet loss -- it will take some time for a retransmit to occur
1024 * (or the sender to time out when waiting for a reply).
1025 *
1026 * This function attempts to handle the situation without packet drop.
1027 *
1028 * If @skb has no NAT transformation or if the colliding entries are
1029 * exactly the same, only the to-be-confirmed conntrack entry is discarded
1030 * and @skb is associated with the conntrack entry already in the table.
1031 *
1032 * Failing that, the new, unconfirmed conntrack is still added to the table
1033 * provided that the collision only occurs in the ORIGINAL direction.
1034 * The new entry will be added only in the non-clashing REPLY direction,
1035 * so packets in the ORIGINAL direction will continue to match the existing
1036 * entry. The new entry will also have a fixed timeout so it expires --
1037 * due to the collision, it will only see reply traffic.
1038 *
1039 * Returns NF_DROP if the clash could not be resolved.
1040 */
1041 static __cold noinline int
nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h,u32 reply_hash)1042 nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1043 u32 reply_hash)
1044 {
1045 /* This is the conntrack entry already in hashes that won race. */
1046 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1047 const struct nf_conntrack_l4proto *l4proto;
1048 enum ip_conntrack_info ctinfo;
1049 struct nf_conn *loser_ct;
1050 struct net *net;
1051 int ret;
1052
1053 loser_ct = nf_ct_get(skb, &ctinfo);
1054 net = nf_ct_net(loser_ct);
1055
1056 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1057 if (!l4proto->allow_clash)
1058 goto drop;
1059
1060 ret = __nf_ct_resolve_clash(skb, h);
1061 if (ret == NF_ACCEPT)
1062 return ret;
1063
1064 ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1065 if (ret == NF_ACCEPT)
1066 return ret;
1067
1068 drop:
1069 nf_ct_add_to_dying_list(loser_ct);
1070 NF_CT_STAT_INC(net, drop);
1071 NF_CT_STAT_INC(net, insert_failed);
1072 return NF_DROP;
1073 }
1074
1075 /* Confirm a connection given skb; places it in hash table */
1076 int
__nf_conntrack_confirm(struct sk_buff * skb)1077 __nf_conntrack_confirm(struct sk_buff *skb)
1078 {
1079 const struct nf_conntrack_zone *zone;
1080 unsigned int hash, reply_hash;
1081 struct nf_conntrack_tuple_hash *h;
1082 struct nf_conn *ct;
1083 struct nf_conn_help *help;
1084 struct hlist_nulls_node *n;
1085 enum ip_conntrack_info ctinfo;
1086 struct net *net;
1087 unsigned int sequence;
1088 int ret = NF_DROP;
1089
1090 ct = nf_ct_get(skb, &ctinfo);
1091 net = nf_ct_net(ct);
1092
1093 /* ipt_REJECT uses nf_conntrack_attach to attach related
1094 ICMP/TCP RST packets in other direction. Actual packet
1095 which created connection will be IP_CT_NEW or for an
1096 expected connection, IP_CT_RELATED. */
1097 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1098 return NF_ACCEPT;
1099
1100 zone = nf_ct_zone(ct);
1101 local_bh_disable();
1102
1103 do {
1104 sequence = read_seqcount_begin(&nf_conntrack_generation);
1105 /* reuse the hash saved before */
1106 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1107 hash = scale_hash(hash);
1108 reply_hash = hash_conntrack(net,
1109 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
1110
1111 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1112
1113 /* We're not in hash table, and we refuse to set up related
1114 * connections for unconfirmed conns. But packet copies and
1115 * REJECT will give spurious warnings here.
1116 */
1117
1118 /* Another skb with the same unconfirmed conntrack may
1119 * win the race. This may happen for bridge(br_flood)
1120 * or broadcast/multicast packets do skb_clone with
1121 * unconfirmed conntrack.
1122 */
1123 if (unlikely(nf_ct_is_confirmed(ct))) {
1124 WARN_ON_ONCE(1);
1125 nf_conntrack_double_unlock(hash, reply_hash);
1126 local_bh_enable();
1127 return NF_DROP;
1128 }
1129
1130 pr_debug("Confirming conntrack %p\n", ct);
1131 /* We have to check the DYING flag after unlink to prevent
1132 * a race against nf_ct_get_next_corpse() possibly called from
1133 * user context, else we insert an already 'dead' hash, blocking
1134 * further use of that particular connection -JM.
1135 */
1136 nf_ct_del_from_dying_or_unconfirmed_list(ct);
1137
1138 if (unlikely(nf_ct_is_dying(ct))) {
1139 nf_ct_add_to_dying_list(ct);
1140 NF_CT_STAT_INC(net, insert_failed);
1141 goto dying;
1142 }
1143
1144 /* See if there's one in the list already, including reverse:
1145 NAT could have grabbed it without realizing, since we're
1146 not in the hash. If there is, we lost race. */
1147 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
1148 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1149 zone, net))
1150 goto out;
1151
1152 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
1153 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1154 zone, net))
1155 goto out;
1156
1157 /* Timer relative to confirmation time, not original
1158 setting time, otherwise we'd get timer wrap in
1159 weird delay cases. */
1160 ct->timeout += nfct_time_stamp;
1161
1162 __nf_conntrack_insert_prepare(ct);
1163
1164 /* Since the lookup is lockless, hash insertion must be done after
1165 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1166 * guarantee that no other CPU can find the conntrack before the above
1167 * stores are visible.
1168 */
1169 __nf_conntrack_hash_insert(ct, hash, reply_hash);
1170 nf_conntrack_double_unlock(hash, reply_hash);
1171 local_bh_enable();
1172
1173 help = nfct_help(ct);
1174 if (help && help->helper)
1175 nf_conntrack_event_cache(IPCT_HELPER, ct);
1176
1177 nf_conntrack_event_cache(master_ct(ct) ?
1178 IPCT_RELATED : IPCT_NEW, ct);
1179 return NF_ACCEPT;
1180
1181 out:
1182 ret = nf_ct_resolve_clash(skb, h, reply_hash);
1183 dying:
1184 nf_conntrack_double_unlock(hash, reply_hash);
1185 local_bh_enable();
1186 return ret;
1187 }
1188 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1189
1190 /* Returns true if a connection correspondings to the tuple (required
1191 for NAT). */
1192 int
nf_conntrack_tuple_taken(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_conntrack)1193 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1194 const struct nf_conn *ignored_conntrack)
1195 {
1196 struct net *net = nf_ct_net(ignored_conntrack);
1197 const struct nf_conntrack_zone *zone;
1198 struct nf_conntrack_tuple_hash *h;
1199 struct hlist_nulls_head *ct_hash;
1200 unsigned int hash, hsize;
1201 struct hlist_nulls_node *n;
1202 struct nf_conn *ct;
1203
1204 zone = nf_ct_zone(ignored_conntrack);
1205
1206 rcu_read_lock();
1207 begin:
1208 nf_conntrack_get_ht(&ct_hash, &hsize);
1209 hash = __hash_conntrack(net, tuple, hsize);
1210
1211 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1212 ct = nf_ct_tuplehash_to_ctrack(h);
1213
1214 if (ct == ignored_conntrack)
1215 continue;
1216
1217 if (nf_ct_is_expired(ct)) {
1218 nf_ct_gc_expired(ct);
1219 continue;
1220 }
1221
1222 if (nf_ct_key_equal(h, tuple, zone, net)) {
1223 /* Tuple is taken already, so caller will need to find
1224 * a new source port to use.
1225 *
1226 * Only exception:
1227 * If the *original tuples* are identical, then both
1228 * conntracks refer to the same flow.
1229 * This is a rare situation, it can occur e.g. when
1230 * more than one UDP packet is sent from same socket
1231 * in different threads.
1232 *
1233 * Let nf_ct_resolve_clash() deal with this later.
1234 */
1235 if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1236 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1237 nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL))
1238 continue;
1239
1240 NF_CT_STAT_INC_ATOMIC(net, found);
1241 rcu_read_unlock();
1242 return 1;
1243 }
1244 }
1245
1246 if (get_nulls_value(n) != hash) {
1247 NF_CT_STAT_INC_ATOMIC(net, search_restart);
1248 goto begin;
1249 }
1250
1251 rcu_read_unlock();
1252
1253 return 0;
1254 }
1255 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1256
1257 #define NF_CT_EVICTION_RANGE 8
1258
1259 /* There's a small race here where we may free a just-assured
1260 connection. Too bad: we're in trouble anyway. */
early_drop_list(struct net * net,struct hlist_nulls_head * head)1261 static unsigned int early_drop_list(struct net *net,
1262 struct hlist_nulls_head *head)
1263 {
1264 struct nf_conntrack_tuple_hash *h;
1265 struct hlist_nulls_node *n;
1266 unsigned int drops = 0;
1267 struct nf_conn *tmp;
1268
1269 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1270 tmp = nf_ct_tuplehash_to_ctrack(h);
1271
1272 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1273 continue;
1274
1275 if (nf_ct_is_expired(tmp)) {
1276 nf_ct_gc_expired(tmp);
1277 continue;
1278 }
1279
1280 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1281 !net_eq(nf_ct_net(tmp), net) ||
1282 nf_ct_is_dying(tmp))
1283 continue;
1284
1285 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1286 continue;
1287
1288 /* kill only if still in same netns -- might have moved due to
1289 * SLAB_TYPESAFE_BY_RCU rules.
1290 *
1291 * We steal the timer reference. If that fails timer has
1292 * already fired or someone else deleted it. Just drop ref
1293 * and move to next entry.
1294 */
1295 if (net_eq(nf_ct_net(tmp), net) &&
1296 nf_ct_is_confirmed(tmp) &&
1297 nf_ct_delete(tmp, 0, 0))
1298 drops++;
1299
1300 nf_ct_put(tmp);
1301 }
1302
1303 return drops;
1304 }
1305
early_drop(struct net * net,unsigned int hash)1306 static noinline int early_drop(struct net *net, unsigned int hash)
1307 {
1308 unsigned int i, bucket;
1309
1310 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1311 struct hlist_nulls_head *ct_hash;
1312 unsigned int hsize, drops;
1313
1314 rcu_read_lock();
1315 nf_conntrack_get_ht(&ct_hash, &hsize);
1316 if (!i)
1317 bucket = reciprocal_scale(hash, hsize);
1318 else
1319 bucket = (bucket + 1) % hsize;
1320
1321 drops = early_drop_list(net, &ct_hash[bucket]);
1322 rcu_read_unlock();
1323
1324 if (drops) {
1325 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1326 return true;
1327 }
1328 }
1329
1330 return false;
1331 }
1332
gc_worker_skip_ct(const struct nf_conn * ct)1333 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1334 {
1335 return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1336 }
1337
gc_worker_can_early_drop(const struct nf_conn * ct)1338 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1339 {
1340 const struct nf_conntrack_l4proto *l4proto;
1341
1342 if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1343 return true;
1344
1345 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1346 if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1347 return true;
1348
1349 return false;
1350 }
1351
gc_worker(struct work_struct * work)1352 static void gc_worker(struct work_struct *work)
1353 {
1354 unsigned long end_time = jiffies + GC_SCAN_MAX_DURATION;
1355 unsigned int i, hashsz, nf_conntrack_max95 = 0;
1356 unsigned long next_run = GC_SCAN_INTERVAL;
1357 struct conntrack_gc_work *gc_work;
1358 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1359
1360 i = gc_work->next_bucket;
1361 if (gc_work->early_drop)
1362 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1363
1364 do {
1365 struct nf_conntrack_tuple_hash *h;
1366 struct hlist_nulls_head *ct_hash;
1367 struct hlist_nulls_node *n;
1368 struct nf_conn *tmp;
1369
1370 rcu_read_lock();
1371
1372 nf_conntrack_get_ht(&ct_hash, &hashsz);
1373 if (i >= hashsz) {
1374 rcu_read_unlock();
1375 break;
1376 }
1377
1378 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1379 struct net *net;
1380
1381 tmp = nf_ct_tuplehash_to_ctrack(h);
1382
1383 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1384 nf_ct_offload_timeout(tmp);
1385 continue;
1386 }
1387
1388 if (nf_ct_is_expired(tmp)) {
1389 nf_ct_gc_expired(tmp);
1390 continue;
1391 }
1392
1393 if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1394 continue;
1395
1396 net = nf_ct_net(tmp);
1397 if (atomic_read(&net->ct.count) < nf_conntrack_max95)
1398 continue;
1399
1400 /* need to take reference to avoid possible races */
1401 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1402 continue;
1403
1404 if (gc_worker_skip_ct(tmp)) {
1405 nf_ct_put(tmp);
1406 continue;
1407 }
1408
1409 if (gc_worker_can_early_drop(tmp))
1410 nf_ct_kill(tmp);
1411
1412 nf_ct_put(tmp);
1413 }
1414
1415 /* could check get_nulls_value() here and restart if ct
1416 * was moved to another chain. But given gc is best-effort
1417 * we will just continue with next hash slot.
1418 */
1419 rcu_read_unlock();
1420 cond_resched();
1421 i++;
1422
1423 if (time_after(jiffies, end_time) && i < hashsz) {
1424 gc_work->next_bucket = i;
1425 next_run = 0;
1426 break;
1427 }
1428 } while (i < hashsz);
1429
1430 if (gc_work->exiting)
1431 return;
1432
1433 /*
1434 * Eviction will normally happen from the packet path, and not
1435 * from this gc worker.
1436 *
1437 * This worker is only here to reap expired entries when system went
1438 * idle after a busy period.
1439 */
1440 if (next_run) {
1441 gc_work->early_drop = false;
1442 gc_work->next_bucket = 0;
1443 }
1444 queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1445 }
1446
conntrack_gc_work_init(struct conntrack_gc_work * gc_work)1447 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1448 {
1449 INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1450 gc_work->exiting = false;
1451 }
1452
1453 static struct nf_conn *
__nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp,u32 hash)1454 __nf_conntrack_alloc(struct net *net,
1455 const struct nf_conntrack_zone *zone,
1456 const struct nf_conntrack_tuple *orig,
1457 const struct nf_conntrack_tuple *repl,
1458 gfp_t gfp, u32 hash)
1459 {
1460 struct nf_conn *ct;
1461
1462 /* We don't want any race condition at early drop stage */
1463 atomic_inc(&net->ct.count);
1464
1465 if (nf_conntrack_max &&
1466 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1467 if (!early_drop(net, hash)) {
1468 if (!conntrack_gc_work.early_drop)
1469 conntrack_gc_work.early_drop = true;
1470 atomic_dec(&net->ct.count);
1471 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1472 return ERR_PTR(-ENOMEM);
1473 }
1474 }
1475
1476 /*
1477 * Do not use kmem_cache_zalloc(), as this cache uses
1478 * SLAB_TYPESAFE_BY_RCU.
1479 */
1480 ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1481 if (ct == NULL)
1482 goto out;
1483
1484 spin_lock_init(&ct->lock);
1485 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1486 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1487 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1488 /* save hash for reusing when confirming */
1489 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1490 ct->status = 0;
1491 WRITE_ONCE(ct->timeout, 0);
1492 write_pnet(&ct->ct_net, net);
1493 memset(&ct->__nfct_init_offset, 0,
1494 offsetof(struct nf_conn, proto) -
1495 offsetof(struct nf_conn, __nfct_init_offset));
1496
1497 nf_ct_zone_add(ct, zone);
1498
1499 /* Because we use RCU lookups, we set ct_general.use to zero before
1500 * this is inserted in any list.
1501 */
1502 atomic_set(&ct->ct_general.use, 0);
1503 return ct;
1504 out:
1505 atomic_dec(&net->ct.count);
1506 return ERR_PTR(-ENOMEM);
1507 }
1508
nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp)1509 struct nf_conn *nf_conntrack_alloc(struct net *net,
1510 const struct nf_conntrack_zone *zone,
1511 const struct nf_conntrack_tuple *orig,
1512 const struct nf_conntrack_tuple *repl,
1513 gfp_t gfp)
1514 {
1515 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1516 }
1517 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1518
nf_conntrack_free(struct nf_conn * ct)1519 void nf_conntrack_free(struct nf_conn *ct)
1520 {
1521 struct net *net = nf_ct_net(ct);
1522
1523 /* A freed object has refcnt == 0, that's
1524 * the golden rule for SLAB_TYPESAFE_BY_RCU
1525 */
1526 WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1527
1528 nf_ct_ext_destroy(ct);
1529 kmem_cache_free(nf_conntrack_cachep, ct);
1530 smp_mb__before_atomic();
1531 atomic_dec(&net->ct.count);
1532 }
1533 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1534
1535
1536 /* Allocate a new conntrack: we return -ENOMEM if classification
1537 failed due to stress. Otherwise it really is unclassifiable. */
1538 static noinline struct nf_conntrack_tuple_hash *
init_conntrack(struct net * net,struct nf_conn * tmpl,const struct nf_conntrack_tuple * tuple,struct sk_buff * skb,unsigned int dataoff,u32 hash)1539 init_conntrack(struct net *net, struct nf_conn *tmpl,
1540 const struct nf_conntrack_tuple *tuple,
1541 struct sk_buff *skb,
1542 unsigned int dataoff, u32 hash)
1543 {
1544 struct nf_conn *ct;
1545 struct nf_conn_help *help;
1546 struct nf_conntrack_tuple repl_tuple;
1547 struct nf_conntrack_ecache *ecache;
1548 struct nf_conntrack_expect *exp = NULL;
1549 const struct nf_conntrack_zone *zone;
1550 struct nf_conn_timeout *timeout_ext;
1551 struct nf_conntrack_zone tmp;
1552
1553 if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1554 pr_debug("Can't invert tuple.\n");
1555 return NULL;
1556 }
1557
1558 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1559 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1560 hash);
1561 if (IS_ERR(ct))
1562 return (struct nf_conntrack_tuple_hash *)ct;
1563
1564 if (!nf_ct_add_synproxy(ct, tmpl)) {
1565 nf_conntrack_free(ct);
1566 return ERR_PTR(-ENOMEM);
1567 }
1568
1569 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1570
1571 if (timeout_ext)
1572 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1573 GFP_ATOMIC);
1574
1575 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1576 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1577 nf_ct_labels_ext_add(ct);
1578
1579 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1580 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1581 ecache ? ecache->expmask : 0,
1582 GFP_ATOMIC);
1583
1584 local_bh_disable();
1585 if (net->ct.expect_count) {
1586 spin_lock(&nf_conntrack_expect_lock);
1587 exp = nf_ct_find_expectation(net, zone, tuple);
1588 if (exp) {
1589 pr_debug("expectation arrives ct=%p exp=%p\n",
1590 ct, exp);
1591 /* Welcome, Mr. Bond. We've been expecting you... */
1592 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1593 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1594 ct->master = exp->master;
1595 if (exp->helper) {
1596 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1597 if (help)
1598 rcu_assign_pointer(help->helper, exp->helper);
1599 }
1600
1601 #ifdef CONFIG_NF_CONNTRACK_MARK
1602 ct->mark = READ_ONCE(exp->master->mark);
1603 #endif
1604 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1605 ct->secmark = exp->master->secmark;
1606 #endif
1607 NF_CT_STAT_INC(net, expect_new);
1608 }
1609 spin_unlock(&nf_conntrack_expect_lock);
1610 }
1611 if (!exp)
1612 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1613
1614 /* Now it is inserted into the unconfirmed list, bump refcount */
1615 nf_conntrack_get(&ct->ct_general);
1616 nf_ct_add_to_unconfirmed_list(ct);
1617
1618 local_bh_enable();
1619
1620 if (exp) {
1621 if (exp->expectfn)
1622 exp->expectfn(ct, exp);
1623 nf_ct_expect_put(exp);
1624 }
1625
1626 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1627 }
1628
1629 /* On success, returns 0, sets skb->_nfct | ctinfo */
1630 static int
resolve_normal_ct(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u_int8_t protonum,const struct nf_hook_state * state)1631 resolve_normal_ct(struct nf_conn *tmpl,
1632 struct sk_buff *skb,
1633 unsigned int dataoff,
1634 u_int8_t protonum,
1635 const struct nf_hook_state *state)
1636 {
1637 const struct nf_conntrack_zone *zone;
1638 struct nf_conntrack_tuple tuple;
1639 struct nf_conntrack_tuple_hash *h;
1640 enum ip_conntrack_info ctinfo;
1641 struct nf_conntrack_zone tmp;
1642 struct nf_conn *ct;
1643 u32 hash;
1644
1645 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1646 dataoff, state->pf, protonum, state->net,
1647 &tuple)) {
1648 pr_debug("Can't get tuple\n");
1649 return 0;
1650 }
1651
1652 /* look for tuple match */
1653 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1654 hash = hash_conntrack_raw(&tuple, state->net);
1655 h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1656 if (!h) {
1657 h = init_conntrack(state->net, tmpl, &tuple,
1658 skb, dataoff, hash);
1659 if (!h)
1660 return 0;
1661 if (IS_ERR(h))
1662 return PTR_ERR(h);
1663 }
1664 ct = nf_ct_tuplehash_to_ctrack(h);
1665
1666 /* It exists; we have (non-exclusive) reference. */
1667 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1668 ctinfo = IP_CT_ESTABLISHED_REPLY;
1669 } else {
1670 /* Once we've had two way comms, always ESTABLISHED. */
1671 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1672 pr_debug("normal packet for %p\n", ct);
1673 ctinfo = IP_CT_ESTABLISHED;
1674 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1675 pr_debug("related packet for %p\n", ct);
1676 ctinfo = IP_CT_RELATED;
1677 } else {
1678 pr_debug("new packet for %p\n", ct);
1679 ctinfo = IP_CT_NEW;
1680 }
1681 }
1682 nf_ct_set(skb, ct, ctinfo);
1683 return 0;
1684 }
1685
1686 /*
1687 * icmp packets need special treatment to handle error messages that are
1688 * related to a connection.
1689 *
1690 * Callers need to check if skb has a conntrack assigned when this
1691 * helper returns; in such case skb belongs to an already known connection.
1692 */
1693 static unsigned int __cold
nf_conntrack_handle_icmp(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u8 protonum,const struct nf_hook_state * state)1694 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1695 struct sk_buff *skb,
1696 unsigned int dataoff,
1697 u8 protonum,
1698 const struct nf_hook_state *state)
1699 {
1700 int ret;
1701
1702 if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1703 ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1704 #if IS_ENABLED(CONFIG_IPV6)
1705 else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1706 ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1707 #endif
1708 else
1709 return NF_ACCEPT;
1710
1711 if (ret <= 0)
1712 NF_CT_STAT_INC_ATOMIC(state->net, error);
1713
1714 return ret;
1715 }
1716
generic_packet(struct nf_conn * ct,struct sk_buff * skb,enum ip_conntrack_info ctinfo)1717 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1718 enum ip_conntrack_info ctinfo)
1719 {
1720 const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1721
1722 if (!timeout)
1723 timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1724
1725 nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1726 return NF_ACCEPT;
1727 }
1728
1729 /* Returns verdict for packet, or -1 for invalid. */
nf_conntrack_handle_packet(struct nf_conn * ct,struct sk_buff * skb,unsigned int dataoff,enum ip_conntrack_info ctinfo,const struct nf_hook_state * state)1730 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1731 struct sk_buff *skb,
1732 unsigned int dataoff,
1733 enum ip_conntrack_info ctinfo,
1734 const struct nf_hook_state *state)
1735 {
1736 switch (nf_ct_protonum(ct)) {
1737 case IPPROTO_TCP:
1738 return nf_conntrack_tcp_packet(ct, skb, dataoff,
1739 ctinfo, state);
1740 case IPPROTO_UDP:
1741 return nf_conntrack_udp_packet(ct, skb, dataoff,
1742 ctinfo, state);
1743 case IPPROTO_ICMP:
1744 return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1745 #if IS_ENABLED(CONFIG_IPV6)
1746 case IPPROTO_ICMPV6:
1747 return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1748 #endif
1749 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1750 case IPPROTO_UDPLITE:
1751 return nf_conntrack_udplite_packet(ct, skb, dataoff,
1752 ctinfo, state);
1753 #endif
1754 #ifdef CONFIG_NF_CT_PROTO_SCTP
1755 case IPPROTO_SCTP:
1756 return nf_conntrack_sctp_packet(ct, skb, dataoff,
1757 ctinfo, state);
1758 #endif
1759 #ifdef CONFIG_NF_CT_PROTO_DCCP
1760 case IPPROTO_DCCP:
1761 return nf_conntrack_dccp_packet(ct, skb, dataoff,
1762 ctinfo, state);
1763 #endif
1764 #ifdef CONFIG_NF_CT_PROTO_GRE
1765 case IPPROTO_GRE:
1766 return nf_conntrack_gre_packet(ct, skb, dataoff,
1767 ctinfo, state);
1768 #endif
1769 }
1770
1771 return generic_packet(ct, skb, ctinfo);
1772 }
1773
1774 unsigned int
nf_conntrack_in(struct sk_buff * skb,const struct nf_hook_state * state)1775 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1776 {
1777 enum ip_conntrack_info ctinfo;
1778 struct nf_conn *ct, *tmpl;
1779 u_int8_t protonum;
1780 int dataoff, ret;
1781
1782 tmpl = nf_ct_get(skb, &ctinfo);
1783 if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1784 /* Previously seen (loopback or untracked)? Ignore. */
1785 if ((tmpl && !nf_ct_is_template(tmpl)) ||
1786 ctinfo == IP_CT_UNTRACKED)
1787 return NF_ACCEPT;
1788 skb->_nfct = 0;
1789 }
1790
1791 /* rcu_read_lock()ed by nf_hook_thresh */
1792 dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1793 if (dataoff <= 0) {
1794 pr_debug("not prepared to track yet or error occurred\n");
1795 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1796 ret = NF_ACCEPT;
1797 goto out;
1798 }
1799
1800 if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1801 ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1802 protonum, state);
1803 if (ret <= 0) {
1804 ret = -ret;
1805 goto out;
1806 }
1807 /* ICMP[v6] protocol trackers may assign one conntrack. */
1808 if (skb->_nfct)
1809 goto out;
1810 }
1811 repeat:
1812 ret = resolve_normal_ct(tmpl, skb, dataoff,
1813 protonum, state);
1814 if (ret < 0) {
1815 /* Too stressed to deal. */
1816 NF_CT_STAT_INC_ATOMIC(state->net, drop);
1817 ret = NF_DROP;
1818 goto out;
1819 }
1820
1821 ct = nf_ct_get(skb, &ctinfo);
1822 if (!ct) {
1823 /* Not valid part of a connection */
1824 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1825 ret = NF_ACCEPT;
1826 goto out;
1827 }
1828
1829 ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
1830 if (ret <= 0) {
1831 /* Invalid: inverse of the return code tells
1832 * the netfilter core what to do */
1833 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1834 nf_conntrack_put(&ct->ct_general);
1835 skb->_nfct = 0;
1836 /* Special case: TCP tracker reports an attempt to reopen a
1837 * closed/aborted connection. We have to go back and create a
1838 * fresh conntrack.
1839 */
1840 if (ret == -NF_REPEAT)
1841 goto repeat;
1842
1843 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1844 if (ret == -NF_DROP)
1845 NF_CT_STAT_INC_ATOMIC(state->net, drop);
1846
1847 ret = -ret;
1848 goto out;
1849 }
1850
1851 if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1852 !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1853 nf_conntrack_event_cache(IPCT_REPLY, ct);
1854 out:
1855 if (tmpl)
1856 nf_ct_put(tmpl);
1857
1858 return ret;
1859 }
1860 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1861
1862 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1863 implicitly racy: see __nf_conntrack_confirm */
nf_conntrack_alter_reply(struct nf_conn * ct,const struct nf_conntrack_tuple * newreply)1864 void nf_conntrack_alter_reply(struct nf_conn *ct,
1865 const struct nf_conntrack_tuple *newreply)
1866 {
1867 struct nf_conn_help *help = nfct_help(ct);
1868
1869 /* Should be unconfirmed, so not in hash table yet */
1870 WARN_ON(nf_ct_is_confirmed(ct));
1871
1872 pr_debug("Altering reply tuple of %p to ", ct);
1873 nf_ct_dump_tuple(newreply);
1874
1875 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1876 if (ct->master || (help && !hlist_empty(&help->expectations)))
1877 return;
1878
1879 rcu_read_lock();
1880 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1881 rcu_read_unlock();
1882 }
1883 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1884
1885 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
__nf_ct_refresh_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb,u32 extra_jiffies,bool do_acct)1886 void __nf_ct_refresh_acct(struct nf_conn *ct,
1887 enum ip_conntrack_info ctinfo,
1888 const struct sk_buff *skb,
1889 u32 extra_jiffies,
1890 bool do_acct)
1891 {
1892 /* Only update if this is not a fixed timeout */
1893 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1894 goto acct;
1895
1896 /* If not in hash table, timer will not be active yet */
1897 if (nf_ct_is_confirmed(ct))
1898 extra_jiffies += nfct_time_stamp;
1899
1900 if (READ_ONCE(ct->timeout) != extra_jiffies)
1901 WRITE_ONCE(ct->timeout, extra_jiffies);
1902 acct:
1903 if (do_acct)
1904 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
1905 }
1906 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1907
nf_ct_kill_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb)1908 bool nf_ct_kill_acct(struct nf_conn *ct,
1909 enum ip_conntrack_info ctinfo,
1910 const struct sk_buff *skb)
1911 {
1912 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
1913
1914 return nf_ct_delete(ct, 0, 0);
1915 }
1916 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1917
1918 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1919
1920 #include <linux/netfilter/nfnetlink.h>
1921 #include <linux/netfilter/nfnetlink_conntrack.h>
1922 #include <linux/mutex.h>
1923
1924 /* Generic function for tcp/udp/sctp/dccp and alike. */
nf_ct_port_tuple_to_nlattr(struct sk_buff * skb,const struct nf_conntrack_tuple * tuple)1925 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1926 const struct nf_conntrack_tuple *tuple)
1927 {
1928 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1929 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1930 goto nla_put_failure;
1931 return 0;
1932
1933 nla_put_failure:
1934 return -1;
1935 }
1936 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1937
1938 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1939 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1940 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1941 };
1942 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1943
nf_ct_port_nlattr_to_tuple(struct nlattr * tb[],struct nf_conntrack_tuple * t,u_int32_t flags)1944 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1945 struct nf_conntrack_tuple *t,
1946 u_int32_t flags)
1947 {
1948 if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
1949 if (!tb[CTA_PROTO_SRC_PORT])
1950 return -EINVAL;
1951
1952 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1953 }
1954
1955 if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
1956 if (!tb[CTA_PROTO_DST_PORT])
1957 return -EINVAL;
1958
1959 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1960 }
1961
1962 return 0;
1963 }
1964 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1965
nf_ct_port_nlattr_tuple_size(void)1966 unsigned int nf_ct_port_nlattr_tuple_size(void)
1967 {
1968 static unsigned int size __read_mostly;
1969
1970 if (!size)
1971 size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1972
1973 return size;
1974 }
1975 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1976 #endif
1977
1978 /* Used by ipt_REJECT and ip6t_REJECT. */
nf_conntrack_attach(struct sk_buff * nskb,const struct sk_buff * skb)1979 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1980 {
1981 struct nf_conn *ct;
1982 enum ip_conntrack_info ctinfo;
1983
1984 /* This ICMP is in reverse direction to the packet which caused it */
1985 ct = nf_ct_get(skb, &ctinfo);
1986 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1987 ctinfo = IP_CT_RELATED_REPLY;
1988 else
1989 ctinfo = IP_CT_RELATED;
1990
1991 /* Attach to new skbuff, and increment count */
1992 nf_ct_set(nskb, ct, ctinfo);
1993 nf_conntrack_get(skb_nfct(nskb));
1994 }
1995
__nf_conntrack_update(struct net * net,struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)1996 static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
1997 struct nf_conn *ct,
1998 enum ip_conntrack_info ctinfo)
1999 {
2000 struct nf_conntrack_tuple_hash *h;
2001 struct nf_conntrack_tuple tuple;
2002 struct nf_nat_hook *nat_hook;
2003 unsigned int status;
2004 int dataoff;
2005 u16 l3num;
2006 u8 l4num;
2007
2008 l3num = nf_ct_l3num(ct);
2009
2010 dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2011 if (dataoff <= 0)
2012 return -1;
2013
2014 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2015 l4num, net, &tuple))
2016 return -1;
2017
2018 if (ct->status & IPS_SRC_NAT) {
2019 memcpy(tuple.src.u3.all,
2020 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2021 sizeof(tuple.src.u3.all));
2022 tuple.src.u.all =
2023 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2024 }
2025
2026 if (ct->status & IPS_DST_NAT) {
2027 memcpy(tuple.dst.u3.all,
2028 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2029 sizeof(tuple.dst.u3.all));
2030 tuple.dst.u.all =
2031 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2032 }
2033
2034 h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2035 if (!h)
2036 return 0;
2037
2038 /* Store status bits of the conntrack that is clashing to re-do NAT
2039 * mangling according to what it has been done already to this packet.
2040 */
2041 status = ct->status;
2042
2043 nf_ct_put(ct);
2044 ct = nf_ct_tuplehash_to_ctrack(h);
2045 nf_ct_set(skb, ct, ctinfo);
2046
2047 nat_hook = rcu_dereference(nf_nat_hook);
2048 if (!nat_hook)
2049 return 0;
2050
2051 if (status & IPS_SRC_NAT &&
2052 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2053 IP_CT_DIR_ORIGINAL) == NF_DROP)
2054 return -1;
2055
2056 if (status & IPS_DST_NAT &&
2057 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2058 IP_CT_DIR_ORIGINAL) == NF_DROP)
2059 return -1;
2060
2061 return 0;
2062 }
2063
2064 /* This packet is coming from userspace via nf_queue, complete the packet
2065 * processing after the helper invocation in nf_confirm().
2066 */
nf_confirm_cthelper(struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)2067 static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2068 enum ip_conntrack_info ctinfo)
2069 {
2070 const struct nf_conntrack_helper *helper;
2071 const struct nf_conn_help *help;
2072 int protoff;
2073
2074 help = nfct_help(ct);
2075 if (!help)
2076 return 0;
2077
2078 helper = rcu_dereference(help->helper);
2079 if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2080 return 0;
2081
2082 switch (nf_ct_l3num(ct)) {
2083 case NFPROTO_IPV4:
2084 protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2085 break;
2086 #if IS_ENABLED(CONFIG_IPV6)
2087 case NFPROTO_IPV6: {
2088 __be16 frag_off;
2089 u8 pnum;
2090
2091 pnum = ipv6_hdr(skb)->nexthdr;
2092 protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2093 &frag_off);
2094 if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2095 return 0;
2096 break;
2097 }
2098 #endif
2099 default:
2100 return 0;
2101 }
2102
2103 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2104 !nf_is_loopback_packet(skb)) {
2105 if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2106 NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2107 return -1;
2108 }
2109 }
2110
2111 /* We've seen it coming out the other side: confirm it */
2112 return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2113 }
2114
nf_conntrack_update(struct net * net,struct sk_buff * skb)2115 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2116 {
2117 enum ip_conntrack_info ctinfo;
2118 struct nf_conn *ct;
2119 int err;
2120
2121 ct = nf_ct_get(skb, &ctinfo);
2122 if (!ct)
2123 return 0;
2124
2125 if (!nf_ct_is_confirmed(ct)) {
2126 err = __nf_conntrack_update(net, skb, ct, ctinfo);
2127 if (err < 0)
2128 return err;
2129
2130 ct = nf_ct_get(skb, &ctinfo);
2131 }
2132
2133 return nf_confirm_cthelper(skb, ct, ctinfo);
2134 }
2135
nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple * dst_tuple,const struct sk_buff * skb)2136 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2137 const struct sk_buff *skb)
2138 {
2139 const struct nf_conntrack_tuple *src_tuple;
2140 const struct nf_conntrack_tuple_hash *hash;
2141 struct nf_conntrack_tuple srctuple;
2142 enum ip_conntrack_info ctinfo;
2143 struct nf_conn *ct;
2144
2145 ct = nf_ct_get(skb, &ctinfo);
2146 if (ct) {
2147 src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2148 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2149 return true;
2150 }
2151
2152 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2153 NFPROTO_IPV4, dev_net(skb->dev),
2154 &srctuple))
2155 return false;
2156
2157 hash = nf_conntrack_find_get(dev_net(skb->dev),
2158 &nf_ct_zone_dflt,
2159 &srctuple);
2160 if (!hash)
2161 return false;
2162
2163 ct = nf_ct_tuplehash_to_ctrack(hash);
2164 src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2165 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2166 nf_ct_put(ct);
2167
2168 return true;
2169 }
2170
2171 /* Bring out ya dead! */
2172 static struct nf_conn *
get_next_corpse(int (* iter)(struct nf_conn * i,void * data),void * data,unsigned int * bucket)2173 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2174 void *data, unsigned int *bucket)
2175 {
2176 struct nf_conntrack_tuple_hash *h;
2177 struct nf_conn *ct;
2178 struct hlist_nulls_node *n;
2179 spinlock_t *lockp;
2180
2181 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2182 struct hlist_nulls_head *hslot = &nf_conntrack_hash[*bucket];
2183
2184 if (hlist_nulls_empty(hslot))
2185 continue;
2186
2187 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2188 local_bh_disable();
2189 nf_conntrack_lock(lockp);
2190 hlist_nulls_for_each_entry(h, n, hslot, hnnode) {
2191 if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2192 continue;
2193 /* All nf_conn objects are added to hash table twice, one
2194 * for original direction tuple, once for the reply tuple.
2195 *
2196 * Exception: In the IPS_NAT_CLASH case, only the reply
2197 * tuple is added (the original tuple already existed for
2198 * a different object).
2199 *
2200 * We only need to call the iterator once for each
2201 * conntrack, so we just use the 'reply' direction
2202 * tuple while iterating.
2203 */
2204 ct = nf_ct_tuplehash_to_ctrack(h);
2205 if (iter(ct, data))
2206 goto found;
2207 }
2208 spin_unlock(lockp);
2209 local_bh_enable();
2210 cond_resched();
2211 }
2212
2213 return NULL;
2214 found:
2215 atomic_inc(&ct->ct_general.use);
2216 spin_unlock(lockp);
2217 local_bh_enable();
2218 return ct;
2219 }
2220
nf_ct_iterate_cleanup(int (* iter)(struct nf_conn * i,void * data),void * data,u32 portid,int report)2221 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2222 void *data, u32 portid, int report)
2223 {
2224 unsigned int bucket = 0;
2225 struct nf_conn *ct;
2226
2227 might_sleep();
2228
2229 mutex_lock(&nf_conntrack_mutex);
2230 while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
2231 /* Time to push up daises... */
2232
2233 nf_ct_delete(ct, portid, report);
2234 nf_ct_put(ct);
2235 cond_resched();
2236 }
2237 mutex_unlock(&nf_conntrack_mutex);
2238 }
2239
2240 struct iter_data {
2241 int (*iter)(struct nf_conn *i, void *data);
2242 void *data;
2243 struct net *net;
2244 };
2245
iter_net_only(struct nf_conn * i,void * data)2246 static int iter_net_only(struct nf_conn *i, void *data)
2247 {
2248 struct iter_data *d = data;
2249
2250 if (!net_eq(d->net, nf_ct_net(i)))
2251 return 0;
2252
2253 return d->iter(i, d->data);
2254 }
2255
2256 static void
__nf_ct_unconfirmed_destroy(struct net * net)2257 __nf_ct_unconfirmed_destroy(struct net *net)
2258 {
2259 int cpu;
2260
2261 for_each_possible_cpu(cpu) {
2262 struct nf_conntrack_tuple_hash *h;
2263 struct hlist_nulls_node *n;
2264 struct ct_pcpu *pcpu;
2265
2266 pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2267
2268 spin_lock_bh(&pcpu->lock);
2269 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
2270 struct nf_conn *ct;
2271
2272 ct = nf_ct_tuplehash_to_ctrack(h);
2273
2274 /* we cannot call iter() on unconfirmed list, the
2275 * owning cpu can reallocate ct->ext at any time.
2276 */
2277 set_bit(IPS_DYING_BIT, &ct->status);
2278 }
2279 spin_unlock_bh(&pcpu->lock);
2280 cond_resched();
2281 }
2282 }
2283
nf_ct_unconfirmed_destroy(struct net * net)2284 void nf_ct_unconfirmed_destroy(struct net *net)
2285 {
2286 might_sleep();
2287
2288 if (atomic_read(&net->ct.count) > 0) {
2289 __nf_ct_unconfirmed_destroy(net);
2290 nf_queue_nf_hook_drop(net);
2291 synchronize_net();
2292 }
2293 }
2294 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
2295
nf_ct_iterate_cleanup_net(struct net * net,int (* iter)(struct nf_conn * i,void * data),void * data,u32 portid,int report)2296 void nf_ct_iterate_cleanup_net(struct net *net,
2297 int (*iter)(struct nf_conn *i, void *data),
2298 void *data, u32 portid, int report)
2299 {
2300 struct iter_data d;
2301
2302 might_sleep();
2303
2304 if (atomic_read(&net->ct.count) == 0)
2305 return;
2306
2307 d.iter = iter;
2308 d.data = data;
2309 d.net = net;
2310
2311 nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
2312 }
2313 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2314
2315 /**
2316 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2317 * @iter: callback to invoke for each conntrack
2318 * @data: data to pass to @iter
2319 *
2320 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2321 * unconfirmed list as dying (so they will not be inserted into
2322 * main table).
2323 *
2324 * Can only be called in module exit path.
2325 */
2326 void
nf_ct_iterate_destroy(int (* iter)(struct nf_conn * i,void * data),void * data)2327 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2328 {
2329 struct net *net;
2330
2331 down_read(&net_rwsem);
2332 for_each_net(net) {
2333 if (atomic_read(&net->ct.count) == 0)
2334 continue;
2335 __nf_ct_unconfirmed_destroy(net);
2336 nf_queue_nf_hook_drop(net);
2337 }
2338 up_read(&net_rwsem);
2339
2340 /* Need to wait for netns cleanup worker to finish, if its
2341 * running -- it might have deleted a net namespace from
2342 * the global list, so our __nf_ct_unconfirmed_destroy() might
2343 * not have affected all namespaces.
2344 */
2345 net_ns_barrier();
2346
2347 /* a conntrack could have been unlinked from unconfirmed list
2348 * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2349 * This makes sure its inserted into conntrack table.
2350 */
2351 synchronize_net();
2352
2353 nf_ct_iterate_cleanup(iter, data, 0, 0);
2354 }
2355 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2356
kill_all(struct nf_conn * i,void * data)2357 static int kill_all(struct nf_conn *i, void *data)
2358 {
2359 return net_eq(nf_ct_net(i), data);
2360 }
2361
nf_conntrack_cleanup_start(void)2362 void nf_conntrack_cleanup_start(void)
2363 {
2364 conntrack_gc_work.exiting = true;
2365 RCU_INIT_POINTER(ip_ct_attach, NULL);
2366 }
2367
nf_conntrack_cleanup_end(void)2368 void nf_conntrack_cleanup_end(void)
2369 {
2370 RCU_INIT_POINTER(nf_ct_hook, NULL);
2371 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2372 kvfree(nf_conntrack_hash);
2373
2374 nf_conntrack_proto_fini();
2375 nf_conntrack_seqadj_fini();
2376 nf_conntrack_labels_fini();
2377 nf_conntrack_helper_fini();
2378 nf_conntrack_timeout_fini();
2379 nf_conntrack_ecache_fini();
2380 nf_conntrack_tstamp_fini();
2381 nf_conntrack_acct_fini();
2382 nf_conntrack_expect_fini();
2383
2384 kmem_cache_destroy(nf_conntrack_cachep);
2385 }
2386
2387 /*
2388 * Mishearing the voices in his head, our hero wonders how he's
2389 * supposed to kill the mall.
2390 */
nf_conntrack_cleanup_net(struct net * net)2391 void nf_conntrack_cleanup_net(struct net *net)
2392 {
2393 LIST_HEAD(single);
2394
2395 list_add(&net->exit_list, &single);
2396 nf_conntrack_cleanup_net_list(&single);
2397 }
2398
nf_conntrack_cleanup_net_list(struct list_head * net_exit_list)2399 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2400 {
2401 int busy;
2402 struct net *net;
2403
2404 /*
2405 * This makes sure all current packets have passed through
2406 * netfilter framework. Roll on, two-stage module
2407 * delete...
2408 */
2409 synchronize_net();
2410 i_see_dead_people:
2411 busy = 0;
2412 list_for_each_entry(net, net_exit_list, exit_list) {
2413 nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2414 if (atomic_read(&net->ct.count) != 0)
2415 busy = 1;
2416 }
2417 if (busy) {
2418 schedule();
2419 goto i_see_dead_people;
2420 }
2421
2422 list_for_each_entry(net, net_exit_list, exit_list) {
2423 nf_conntrack_proto_pernet_fini(net);
2424 nf_conntrack_ecache_pernet_fini(net);
2425 nf_conntrack_expect_pernet_fini(net);
2426 free_percpu(net->ct.stat);
2427 free_percpu(net->ct.pcpu_lists);
2428 }
2429 }
2430
nf_ct_alloc_hashtable(unsigned int * sizep,int nulls)2431 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2432 {
2433 struct hlist_nulls_head *hash;
2434 unsigned int nr_slots, i;
2435
2436 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2437 return NULL;
2438
2439 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2440 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2441
2442 hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2443
2444 if (hash && nulls)
2445 for (i = 0; i < nr_slots; i++)
2446 INIT_HLIST_NULLS_HEAD(&hash[i], i);
2447
2448 return hash;
2449 }
2450 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2451
nf_conntrack_hash_resize(unsigned int hashsize)2452 int nf_conntrack_hash_resize(unsigned int hashsize)
2453 {
2454 int i, bucket;
2455 unsigned int old_size;
2456 struct hlist_nulls_head *hash, *old_hash;
2457 struct nf_conntrack_tuple_hash *h;
2458 struct nf_conn *ct;
2459
2460 if (!hashsize)
2461 return -EINVAL;
2462
2463 hash = nf_ct_alloc_hashtable(&hashsize, 1);
2464 if (!hash)
2465 return -ENOMEM;
2466
2467 mutex_lock(&nf_conntrack_mutex);
2468 old_size = nf_conntrack_htable_size;
2469 if (old_size == hashsize) {
2470 mutex_unlock(&nf_conntrack_mutex);
2471 kvfree(hash);
2472 return 0;
2473 }
2474
2475 local_bh_disable();
2476 nf_conntrack_all_lock();
2477 write_seqcount_begin(&nf_conntrack_generation);
2478
2479 /* Lookups in the old hash might happen in parallel, which means we
2480 * might get false negatives during connection lookup. New connections
2481 * created because of a false negative won't make it into the hash
2482 * though since that required taking the locks.
2483 */
2484
2485 for (i = 0; i < nf_conntrack_htable_size; i++) {
2486 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2487 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2488 struct nf_conntrack_tuple_hash, hnnode);
2489 ct = nf_ct_tuplehash_to_ctrack(h);
2490 hlist_nulls_del_rcu(&h->hnnode);
2491 bucket = __hash_conntrack(nf_ct_net(ct),
2492 &h->tuple, hashsize);
2493 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2494 }
2495 }
2496 old_size = nf_conntrack_htable_size;
2497 old_hash = nf_conntrack_hash;
2498
2499 nf_conntrack_hash = hash;
2500 nf_conntrack_htable_size = hashsize;
2501
2502 write_seqcount_end(&nf_conntrack_generation);
2503 nf_conntrack_all_unlock();
2504 local_bh_enable();
2505
2506 mutex_unlock(&nf_conntrack_mutex);
2507
2508 synchronize_net();
2509 kvfree(old_hash);
2510 return 0;
2511 }
2512
nf_conntrack_set_hashsize(const char * val,const struct kernel_param * kp)2513 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2514 {
2515 unsigned int hashsize;
2516 int rc;
2517
2518 if (current->nsproxy->net_ns != &init_net)
2519 return -EOPNOTSUPP;
2520
2521 /* On boot, we can set this without any fancy locking. */
2522 if (!nf_conntrack_hash)
2523 return param_set_uint(val, kp);
2524
2525 rc = kstrtouint(val, 0, &hashsize);
2526 if (rc)
2527 return rc;
2528
2529 return nf_conntrack_hash_resize(hashsize);
2530 }
2531
total_extension_size(void)2532 static __always_inline unsigned int total_extension_size(void)
2533 {
2534 /* remember to add new extensions below */
2535 BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2536
2537 return sizeof(struct nf_ct_ext) +
2538 sizeof(struct nf_conn_help)
2539 #if IS_ENABLED(CONFIG_NF_NAT)
2540 + sizeof(struct nf_conn_nat)
2541 #endif
2542 + sizeof(struct nf_conn_seqadj)
2543 + sizeof(struct nf_conn_acct)
2544 #ifdef CONFIG_NF_CONNTRACK_EVENTS
2545 + sizeof(struct nf_conntrack_ecache)
2546 #endif
2547 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2548 + sizeof(struct nf_conn_tstamp)
2549 #endif
2550 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2551 + sizeof(struct nf_conn_timeout)
2552 #endif
2553 #ifdef CONFIG_NF_CONNTRACK_LABELS
2554 + sizeof(struct nf_conn_labels)
2555 #endif
2556 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2557 + sizeof(struct nf_conn_synproxy)
2558 #endif
2559 ;
2560 };
2561
nf_conntrack_init_start(void)2562 int nf_conntrack_init_start(void)
2563 {
2564 unsigned long nr_pages = totalram_pages();
2565 int max_factor = 8;
2566 int ret = -ENOMEM;
2567 int i;
2568
2569 /* struct nf_ct_ext uses u8 to store offsets/size */
2570 BUILD_BUG_ON(total_extension_size() > 255u);
2571
2572 seqcount_spinlock_init(&nf_conntrack_generation,
2573 &nf_conntrack_locks_all_lock);
2574
2575 for (i = 0; i < CONNTRACK_LOCKS; i++)
2576 spin_lock_init(&nf_conntrack_locks[i]);
2577
2578 if (!nf_conntrack_htable_size) {
2579 /* Idea from tcp.c: use 1/16384 of memory.
2580 * On i386: 32MB machine has 512 buckets.
2581 * >= 1GB machines have 16384 buckets.
2582 * >= 4GB machines have 65536 buckets.
2583 */
2584 nf_conntrack_htable_size
2585 = (((nr_pages << PAGE_SHIFT) / 16384)
2586 / sizeof(struct hlist_head));
2587 if (nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2588 nf_conntrack_htable_size = 65536;
2589 else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2590 nf_conntrack_htable_size = 16384;
2591 if (nf_conntrack_htable_size < 32)
2592 nf_conntrack_htable_size = 32;
2593
2594 /* Use a max. factor of four by default to get the same max as
2595 * with the old struct list_heads. When a table size is given
2596 * we use the old value of 8 to avoid reducing the max.
2597 * entries. */
2598 max_factor = 4;
2599 }
2600
2601 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2602 if (!nf_conntrack_hash)
2603 return -ENOMEM;
2604
2605 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2606
2607 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2608 sizeof(struct nf_conn),
2609 NFCT_INFOMASK + 1,
2610 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2611 if (!nf_conntrack_cachep)
2612 goto err_cachep;
2613
2614 ret = nf_conntrack_expect_init();
2615 if (ret < 0)
2616 goto err_expect;
2617
2618 ret = nf_conntrack_acct_init();
2619 if (ret < 0)
2620 goto err_acct;
2621
2622 ret = nf_conntrack_tstamp_init();
2623 if (ret < 0)
2624 goto err_tstamp;
2625
2626 ret = nf_conntrack_ecache_init();
2627 if (ret < 0)
2628 goto err_ecache;
2629
2630 ret = nf_conntrack_timeout_init();
2631 if (ret < 0)
2632 goto err_timeout;
2633
2634 ret = nf_conntrack_helper_init();
2635 if (ret < 0)
2636 goto err_helper;
2637
2638 ret = nf_conntrack_labels_init();
2639 if (ret < 0)
2640 goto err_labels;
2641
2642 ret = nf_conntrack_seqadj_init();
2643 if (ret < 0)
2644 goto err_seqadj;
2645
2646 ret = nf_conntrack_proto_init();
2647 if (ret < 0)
2648 goto err_proto;
2649
2650 conntrack_gc_work_init(&conntrack_gc_work);
2651 queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2652
2653 return 0;
2654
2655 err_proto:
2656 nf_conntrack_seqadj_fini();
2657 err_seqadj:
2658 nf_conntrack_labels_fini();
2659 err_labels:
2660 nf_conntrack_helper_fini();
2661 err_helper:
2662 nf_conntrack_timeout_fini();
2663 err_timeout:
2664 nf_conntrack_ecache_fini();
2665 err_ecache:
2666 nf_conntrack_tstamp_fini();
2667 err_tstamp:
2668 nf_conntrack_acct_fini();
2669 err_acct:
2670 nf_conntrack_expect_fini();
2671 err_expect:
2672 kmem_cache_destroy(nf_conntrack_cachep);
2673 err_cachep:
2674 kvfree(nf_conntrack_hash);
2675 return ret;
2676 }
2677
2678 static struct nf_ct_hook nf_conntrack_hook = {
2679 .update = nf_conntrack_update,
2680 .destroy = destroy_conntrack,
2681 .get_tuple_skb = nf_conntrack_get_tuple_skb,
2682 };
2683
nf_conntrack_init_end(void)2684 void nf_conntrack_init_end(void)
2685 {
2686 /* For use by REJECT target */
2687 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2688 RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2689 }
2690
2691 /*
2692 * We need to use special "null" values, not used in hash table
2693 */
2694 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
2695 #define DYING_NULLS_VAL ((1<<30)+1)
2696
nf_conntrack_init_net(struct net * net)2697 int nf_conntrack_init_net(struct net *net)
2698 {
2699 int ret = -ENOMEM;
2700 int cpu;
2701
2702 BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2703 BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2704 atomic_set(&net->ct.count, 0);
2705
2706 net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2707 if (!net->ct.pcpu_lists)
2708 goto err_stat;
2709
2710 for_each_possible_cpu(cpu) {
2711 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2712
2713 spin_lock_init(&pcpu->lock);
2714 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2715 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2716 }
2717
2718 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2719 if (!net->ct.stat)
2720 goto err_pcpu_lists;
2721
2722 ret = nf_conntrack_expect_pernet_init(net);
2723 if (ret < 0)
2724 goto err_expect;
2725
2726 nf_conntrack_acct_pernet_init(net);
2727 nf_conntrack_tstamp_pernet_init(net);
2728 nf_conntrack_ecache_pernet_init(net);
2729 nf_conntrack_helper_pernet_init(net);
2730 nf_conntrack_proto_pernet_init(net);
2731
2732 return 0;
2733
2734 err_expect:
2735 free_percpu(net->ct.stat);
2736 err_pcpu_lists:
2737 free_percpu(net->ct.pcpu_lists);
2738 err_stat:
2739 return ret;
2740 }
2741