1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70 #include <trace/hooks/mm.h>
71
72 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
73 EXPORT_SYMBOL(memory_cgrp_subsys);
74
75 struct mem_cgroup *root_mem_cgroup __read_mostly;
76
77 /* Active memory cgroup to use from an interrupt context */
78 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
79
80 /* Socket memory accounting disabled? */
81 static bool cgroup_memory_nosocket;
82
83 /* Kernel memory accounting disabled? */
84 static bool cgroup_memory_nokmem;
85
86 /* Whether the swap controller is active */
87 #ifdef CONFIG_MEMCG_SWAP
88 bool cgroup_memory_noswap __read_mostly;
89 #else
90 #define cgroup_memory_noswap 1
91 #endif
92
93 #ifdef CONFIG_CGROUP_WRITEBACK
94 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
95 #endif
96
97 /* Whether legacy memory+swap accounting is active */
do_memsw_account(void)98 static bool do_memsw_account(void)
99 {
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
101 }
102
103 #define THRESHOLDS_EVENTS_TARGET 128
104 #define SOFTLIMIT_EVENTS_TARGET 1024
105
106 /*
107 * Cgroups above their limits are maintained in a RB-Tree, independent of
108 * their hierarchy representation
109 */
110
111 struct mem_cgroup_tree_per_node {
112 struct rb_root rb_root;
113 struct rb_node *rb_rightmost;
114 spinlock_t lock;
115 };
116
117 struct mem_cgroup_tree {
118 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
119 };
120
121 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
122
123 /* for OOM */
124 struct mem_cgroup_eventfd_list {
125 struct list_head list;
126 struct eventfd_ctx *eventfd;
127 };
128
129 /*
130 * cgroup_event represents events which userspace want to receive.
131 */
132 struct mem_cgroup_event {
133 /*
134 * memcg which the event belongs to.
135 */
136 struct mem_cgroup *memcg;
137 /*
138 * eventfd to signal userspace about the event.
139 */
140 struct eventfd_ctx *eventfd;
141 /*
142 * Each of these stored in a list by the cgroup.
143 */
144 struct list_head list;
145 /*
146 * register_event() callback will be used to add new userspace
147 * waiter for changes related to this event. Use eventfd_signal()
148 * on eventfd to send notification to userspace.
149 */
150 int (*register_event)(struct mem_cgroup *memcg,
151 struct eventfd_ctx *eventfd, const char *args);
152 /*
153 * unregister_event() callback will be called when userspace closes
154 * the eventfd or on cgroup removing. This callback must be set,
155 * if you want provide notification functionality.
156 */
157 void (*unregister_event)(struct mem_cgroup *memcg,
158 struct eventfd_ctx *eventfd);
159 /*
160 * All fields below needed to unregister event when
161 * userspace closes eventfd.
162 */
163 poll_table pt;
164 wait_queue_head_t *wqh;
165 wait_queue_entry_t wait;
166 struct work_struct remove;
167 };
168
169 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
170 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
171
172 /* Stuffs for move charges at task migration. */
173 /*
174 * Types of charges to be moved.
175 */
176 #define MOVE_ANON 0x1U
177 #define MOVE_FILE 0x2U
178 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
179
180 /* "mc" and its members are protected by cgroup_mutex */
181 static struct move_charge_struct {
182 spinlock_t lock; /* for from, to */
183 struct mm_struct *mm;
184 struct mem_cgroup *from;
185 struct mem_cgroup *to;
186 unsigned long flags;
187 unsigned long precharge;
188 unsigned long moved_charge;
189 unsigned long moved_swap;
190 struct task_struct *moving_task; /* a task moving charges */
191 wait_queue_head_t waitq; /* a waitq for other context */
192 } mc = {
193 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
194 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
195 };
196
197 /*
198 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
199 * limit reclaim to prevent infinite loops, if they ever occur.
200 */
201 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
202 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
203
204 /* for encoding cft->private value on file */
205 enum res_type {
206 _MEM,
207 _MEMSWAP,
208 _OOM_TYPE,
209 _KMEM,
210 _TCP,
211 };
212
213 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
214 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
215 #define MEMFILE_ATTR(val) ((val) & 0xffff)
216 /* Used for OOM nofiier */
217 #define OOM_CONTROL (0)
218
219 /*
220 * Iteration constructs for visiting all cgroups (under a tree). If
221 * loops are exited prematurely (break), mem_cgroup_iter_break() must
222 * be used for reference counting.
223 */
224 #define for_each_mem_cgroup_tree(iter, root) \
225 for (iter = mem_cgroup_iter(root, NULL, NULL); \
226 iter != NULL; \
227 iter = mem_cgroup_iter(root, iter, NULL))
228
229 #define for_each_mem_cgroup(iter) \
230 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
231 iter != NULL; \
232 iter = mem_cgroup_iter(NULL, iter, NULL))
233
task_is_dying(void)234 static inline bool task_is_dying(void)
235 {
236 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
237 (current->flags & PF_EXITING);
238 }
239
240 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)241 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
242 {
243 if (!memcg)
244 memcg = root_mem_cgroup;
245 return &memcg->vmpressure;
246 }
247
vmpressure_to_css(struct vmpressure * vmpr)248 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
249 {
250 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
251 }
252
253 #ifdef CONFIG_MEMCG_KMEM
254 static DEFINE_SPINLOCK(objcg_lock);
255
obj_cgroup_release(struct percpu_ref * ref)256 static void obj_cgroup_release(struct percpu_ref *ref)
257 {
258 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
259 struct mem_cgroup *memcg;
260 unsigned int nr_bytes;
261 unsigned int nr_pages;
262 unsigned long flags;
263
264 /*
265 * At this point all allocated objects are freed, and
266 * objcg->nr_charged_bytes can't have an arbitrary byte value.
267 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
268 *
269 * The following sequence can lead to it:
270 * 1) CPU0: objcg == stock->cached_objcg
271 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
272 * PAGE_SIZE bytes are charged
273 * 3) CPU1: a process from another memcg is allocating something,
274 * the stock if flushed,
275 * objcg->nr_charged_bytes = PAGE_SIZE - 92
276 * 5) CPU0: we do release this object,
277 * 92 bytes are added to stock->nr_bytes
278 * 6) CPU0: stock is flushed,
279 * 92 bytes are added to objcg->nr_charged_bytes
280 *
281 * In the result, nr_charged_bytes == PAGE_SIZE.
282 * This page will be uncharged in obj_cgroup_release().
283 */
284 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
285 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
286 nr_pages = nr_bytes >> PAGE_SHIFT;
287
288 spin_lock_irqsave(&objcg_lock, flags);
289 memcg = obj_cgroup_memcg(objcg);
290 if (nr_pages)
291 __memcg_kmem_uncharge(memcg, nr_pages);
292 list_del(&objcg->list);
293 mem_cgroup_put(memcg);
294 spin_unlock_irqrestore(&objcg_lock, flags);
295
296 percpu_ref_exit(ref);
297 kfree_rcu(objcg, rcu);
298 }
299
obj_cgroup_alloc(void)300 static struct obj_cgroup *obj_cgroup_alloc(void)
301 {
302 struct obj_cgroup *objcg;
303 int ret;
304
305 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
306 if (!objcg)
307 return NULL;
308
309 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
310 GFP_KERNEL);
311 if (ret) {
312 kfree(objcg);
313 return NULL;
314 }
315 INIT_LIST_HEAD(&objcg->list);
316 return objcg;
317 }
318
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)319 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
320 struct mem_cgroup *parent)
321 {
322 struct obj_cgroup *objcg, *iter;
323
324 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
325
326 spin_lock_irq(&objcg_lock);
327
328 /* Move active objcg to the parent's list */
329 xchg(&objcg->memcg, parent);
330 css_get(&parent->css);
331 list_add(&objcg->list, &parent->objcg_list);
332
333 /* Move already reparented objcgs to the parent's list */
334 list_for_each_entry(iter, &memcg->objcg_list, list) {
335 css_get(&parent->css);
336 xchg(&iter->memcg, parent);
337 css_put(&memcg->css);
338 }
339 list_splice(&memcg->objcg_list, &parent->objcg_list);
340
341 spin_unlock_irq(&objcg_lock);
342
343 percpu_ref_kill(&objcg->refcnt);
344 }
345
346 /*
347 * This will be used as a shrinker list's index.
348 * The main reason for not using cgroup id for this:
349 * this works better in sparse environments, where we have a lot of memcgs,
350 * but only a few kmem-limited. Or also, if we have, for instance, 200
351 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
352 * 200 entry array for that.
353 *
354 * The current size of the caches array is stored in memcg_nr_cache_ids. It
355 * will double each time we have to increase it.
356 */
357 static DEFINE_IDA(memcg_cache_ida);
358 int memcg_nr_cache_ids;
359
360 /* Protects memcg_nr_cache_ids */
361 static DECLARE_RWSEM(memcg_cache_ids_sem);
362
memcg_get_cache_ids(void)363 void memcg_get_cache_ids(void)
364 {
365 down_read(&memcg_cache_ids_sem);
366 }
367
memcg_put_cache_ids(void)368 void memcg_put_cache_ids(void)
369 {
370 up_read(&memcg_cache_ids_sem);
371 }
372
373 /*
374 * MIN_SIZE is different than 1, because we would like to avoid going through
375 * the alloc/free process all the time. In a small machine, 4 kmem-limited
376 * cgroups is a reasonable guess. In the future, it could be a parameter or
377 * tunable, but that is strictly not necessary.
378 *
379 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
380 * this constant directly from cgroup, but it is understandable that this is
381 * better kept as an internal representation in cgroup.c. In any case, the
382 * cgrp_id space is not getting any smaller, and we don't have to necessarily
383 * increase ours as well if it increases.
384 */
385 #define MEMCG_CACHES_MIN_SIZE 4
386 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
387
388 /*
389 * A lot of the calls to the cache allocation functions are expected to be
390 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
391 * conditional to this static branch, we'll have to allow modules that does
392 * kmem_cache_alloc and the such to see this symbol as well
393 */
394 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
395 EXPORT_SYMBOL(memcg_kmem_enabled_key);
396 #endif
397
398 static int memcg_shrinker_map_size;
399 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
400
memcg_free_shrinker_map_rcu(struct rcu_head * head)401 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
402 {
403 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
404 }
405
memcg_expand_one_shrinker_map(struct mem_cgroup * memcg,int size,int old_size)406 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
407 int size, int old_size)
408 {
409 struct memcg_shrinker_map *new, *old;
410 int nid;
411
412 lockdep_assert_held(&memcg_shrinker_map_mutex);
413
414 for_each_node(nid) {
415 old = rcu_dereference_protected(
416 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
417 /* Not yet online memcg */
418 if (!old)
419 return 0;
420
421 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
422 if (!new)
423 return -ENOMEM;
424
425 /* Set all old bits, clear all new bits */
426 memset(new->map, (int)0xff, old_size);
427 memset((void *)new->map + old_size, 0, size - old_size);
428
429 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
430 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
431 }
432
433 return 0;
434 }
435
memcg_free_shrinker_maps(struct mem_cgroup * memcg)436 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
437 {
438 struct mem_cgroup_per_node *pn;
439 struct memcg_shrinker_map *map;
440 int nid;
441
442 if (mem_cgroup_is_root(memcg))
443 return;
444
445 for_each_node(nid) {
446 pn = mem_cgroup_nodeinfo(memcg, nid);
447 map = rcu_dereference_protected(pn->shrinker_map, true);
448 if (map)
449 kvfree(map);
450 rcu_assign_pointer(pn->shrinker_map, NULL);
451 }
452 }
453
memcg_alloc_shrinker_maps(struct mem_cgroup * memcg)454 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
455 {
456 struct memcg_shrinker_map *map;
457 int nid, size, ret = 0;
458
459 if (mem_cgroup_is_root(memcg))
460 return 0;
461
462 mutex_lock(&memcg_shrinker_map_mutex);
463 size = memcg_shrinker_map_size;
464 for_each_node(nid) {
465 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
466 if (!map) {
467 memcg_free_shrinker_maps(memcg);
468 ret = -ENOMEM;
469 break;
470 }
471 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
472 }
473 mutex_unlock(&memcg_shrinker_map_mutex);
474
475 return ret;
476 }
477
memcg_expand_shrinker_maps(int new_id)478 int memcg_expand_shrinker_maps(int new_id)
479 {
480 int size, old_size, ret = 0;
481 struct mem_cgroup *memcg;
482
483 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
484 old_size = memcg_shrinker_map_size;
485 if (size <= old_size)
486 return 0;
487
488 mutex_lock(&memcg_shrinker_map_mutex);
489 if (!root_mem_cgroup)
490 goto unlock;
491
492 for_each_mem_cgroup(memcg) {
493 if (mem_cgroup_is_root(memcg))
494 continue;
495 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
496 if (ret) {
497 mem_cgroup_iter_break(NULL, memcg);
498 goto unlock;
499 }
500 }
501 unlock:
502 if (!ret)
503 memcg_shrinker_map_size = size;
504 mutex_unlock(&memcg_shrinker_map_mutex);
505 return ret;
506 }
507
memcg_set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)508 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
509 {
510 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
511 struct memcg_shrinker_map *map;
512
513 rcu_read_lock();
514 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
515 /* Pairs with smp mb in shrink_slab() */
516 smp_mb__before_atomic();
517 set_bit(shrinker_id, map->map);
518 rcu_read_unlock();
519 }
520 }
521
522 /**
523 * mem_cgroup_css_from_page - css of the memcg associated with a page
524 * @page: page of interest
525 *
526 * If memcg is bound to the default hierarchy, css of the memcg associated
527 * with @page is returned. The returned css remains associated with @page
528 * until it is released.
529 *
530 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
531 * is returned.
532 */
mem_cgroup_css_from_page(struct page * page)533 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
534 {
535 struct mem_cgroup *memcg;
536
537 memcg = page->mem_cgroup;
538
539 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
540 memcg = root_mem_cgroup;
541
542 return &memcg->css;
543 }
544
545 /**
546 * page_cgroup_ino - return inode number of the memcg a page is charged to
547 * @page: the page
548 *
549 * Look up the closest online ancestor of the memory cgroup @page is charged to
550 * and return its inode number or 0 if @page is not charged to any cgroup. It
551 * is safe to call this function without holding a reference to @page.
552 *
553 * Note, this function is inherently racy, because there is nothing to prevent
554 * the cgroup inode from getting torn down and potentially reallocated a moment
555 * after page_cgroup_ino() returns, so it only should be used by callers that
556 * do not care (such as procfs interfaces).
557 */
page_cgroup_ino(struct page * page)558 ino_t page_cgroup_ino(struct page *page)
559 {
560 struct mem_cgroup *memcg;
561 unsigned long ino = 0;
562
563 rcu_read_lock();
564 memcg = page->mem_cgroup;
565
566 /*
567 * The lowest bit set means that memcg isn't a valid
568 * memcg pointer, but a obj_cgroups pointer.
569 * In this case the page is shared and doesn't belong
570 * to any specific memory cgroup.
571 */
572 if ((unsigned long) memcg & 0x1UL)
573 memcg = NULL;
574
575 while (memcg && !(memcg->css.flags & CSS_ONLINE))
576 memcg = parent_mem_cgroup(memcg);
577 if (memcg)
578 ino = cgroup_ino(memcg->css.cgroup);
579 rcu_read_unlock();
580 return ino;
581 }
582
583 static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup * memcg,struct page * page)584 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
585 {
586 int nid = page_to_nid(page);
587
588 return memcg->nodeinfo[nid];
589 }
590
591 static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)592 soft_limit_tree_node(int nid)
593 {
594 return soft_limit_tree.rb_tree_per_node[nid];
595 }
596
597 static struct mem_cgroup_tree_per_node *
soft_limit_tree_from_page(struct page * page)598 soft_limit_tree_from_page(struct page *page)
599 {
600 int nid = page_to_nid(page);
601
602 return soft_limit_tree.rb_tree_per_node[nid];
603 }
604
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz,unsigned long new_usage_in_excess)605 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
606 struct mem_cgroup_tree_per_node *mctz,
607 unsigned long new_usage_in_excess)
608 {
609 struct rb_node **p = &mctz->rb_root.rb_node;
610 struct rb_node *parent = NULL;
611 struct mem_cgroup_per_node *mz_node;
612 bool rightmost = true;
613
614 if (mz->on_tree)
615 return;
616
617 mz->usage_in_excess = new_usage_in_excess;
618 if (!mz->usage_in_excess)
619 return;
620 while (*p) {
621 parent = *p;
622 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
623 tree_node);
624 if (mz->usage_in_excess < mz_node->usage_in_excess) {
625 p = &(*p)->rb_left;
626 rightmost = false;
627 }
628
629 /*
630 * We can't avoid mem cgroups that are over their soft
631 * limit by the same amount
632 */
633 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
634 p = &(*p)->rb_right;
635 }
636
637 if (rightmost)
638 mctz->rb_rightmost = &mz->tree_node;
639
640 rb_link_node(&mz->tree_node, parent, p);
641 rb_insert_color(&mz->tree_node, &mctz->rb_root);
642 mz->on_tree = true;
643 }
644
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)645 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
646 struct mem_cgroup_tree_per_node *mctz)
647 {
648 if (!mz->on_tree)
649 return;
650
651 if (&mz->tree_node == mctz->rb_rightmost)
652 mctz->rb_rightmost = rb_prev(&mz->tree_node);
653
654 rb_erase(&mz->tree_node, &mctz->rb_root);
655 mz->on_tree = false;
656 }
657
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)658 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
659 struct mem_cgroup_tree_per_node *mctz)
660 {
661 unsigned long flags;
662
663 spin_lock_irqsave(&mctz->lock, flags);
664 __mem_cgroup_remove_exceeded(mz, mctz);
665 spin_unlock_irqrestore(&mctz->lock, flags);
666 }
667
soft_limit_excess(struct mem_cgroup * memcg)668 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
669 {
670 unsigned long nr_pages = page_counter_read(&memcg->memory);
671 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
672 unsigned long excess = 0;
673
674 if (nr_pages > soft_limit)
675 excess = nr_pages - soft_limit;
676
677 return excess;
678 }
679
mem_cgroup_update_tree(struct mem_cgroup * memcg,struct page * page)680 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
681 {
682 unsigned long excess;
683 struct mem_cgroup_per_node *mz;
684 struct mem_cgroup_tree_per_node *mctz;
685
686 mctz = soft_limit_tree_from_page(page);
687 if (!mctz)
688 return;
689 /*
690 * Necessary to update all ancestors when hierarchy is used.
691 * because their event counter is not touched.
692 */
693 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
694 mz = mem_cgroup_page_nodeinfo(memcg, page);
695 excess = soft_limit_excess(memcg);
696 /*
697 * We have to update the tree if mz is on RB-tree or
698 * mem is over its softlimit.
699 */
700 if (excess || mz->on_tree) {
701 unsigned long flags;
702
703 spin_lock_irqsave(&mctz->lock, flags);
704 /* if on-tree, remove it */
705 if (mz->on_tree)
706 __mem_cgroup_remove_exceeded(mz, mctz);
707 /*
708 * Insert again. mz->usage_in_excess will be updated.
709 * If excess is 0, no tree ops.
710 */
711 __mem_cgroup_insert_exceeded(mz, mctz, excess);
712 spin_unlock_irqrestore(&mctz->lock, flags);
713 }
714 }
715 }
716
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)717 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
718 {
719 struct mem_cgroup_tree_per_node *mctz;
720 struct mem_cgroup_per_node *mz;
721 int nid;
722
723 for_each_node(nid) {
724 mz = mem_cgroup_nodeinfo(memcg, nid);
725 mctz = soft_limit_tree_node(nid);
726 if (mctz)
727 mem_cgroup_remove_exceeded(mz, mctz);
728 }
729 }
730
731 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)732 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
733 {
734 struct mem_cgroup_per_node *mz;
735
736 retry:
737 mz = NULL;
738 if (!mctz->rb_rightmost)
739 goto done; /* Nothing to reclaim from */
740
741 mz = rb_entry(mctz->rb_rightmost,
742 struct mem_cgroup_per_node, tree_node);
743 /*
744 * Remove the node now but someone else can add it back,
745 * we will to add it back at the end of reclaim to its correct
746 * position in the tree.
747 */
748 __mem_cgroup_remove_exceeded(mz, mctz);
749 if (!soft_limit_excess(mz->memcg) ||
750 !css_tryget(&mz->memcg->css))
751 goto retry;
752 done:
753 return mz;
754 }
755
756 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)757 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
758 {
759 struct mem_cgroup_per_node *mz;
760
761 spin_lock_irq(&mctz->lock);
762 mz = __mem_cgroup_largest_soft_limit_node(mctz);
763 spin_unlock_irq(&mctz->lock);
764 return mz;
765 }
766
767 /**
768 * __mod_memcg_state - update cgroup memory statistics
769 * @memcg: the memory cgroup
770 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
771 * @val: delta to add to the counter, can be negative
772 */
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)773 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
774 {
775 long x, threshold = MEMCG_CHARGE_BATCH;
776
777 if (mem_cgroup_disabled())
778 return;
779
780 if (memcg_stat_item_in_bytes(idx))
781 threshold <<= PAGE_SHIFT;
782
783 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
784 if (unlikely(abs(x) > threshold)) {
785 struct mem_cgroup *mi;
786
787 /*
788 * Batch local counters to keep them in sync with
789 * the hierarchical ones.
790 */
791 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
792 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
793 atomic_long_add(x, &mi->vmstats[idx]);
794 x = 0;
795 }
796 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
797 }
798
799 static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node * pn,int nid)800 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
801 {
802 struct mem_cgroup *parent;
803
804 parent = parent_mem_cgroup(pn->memcg);
805 if (!parent)
806 return NULL;
807 return mem_cgroup_nodeinfo(parent, nid);
808 }
809
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)810 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
811 int val)
812 {
813 struct mem_cgroup_per_node *pn;
814 struct mem_cgroup *memcg;
815 long x, threshold = MEMCG_CHARGE_BATCH;
816
817 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
818 memcg = pn->memcg;
819
820 /* Update memcg */
821 __mod_memcg_state(memcg, idx, val);
822
823 /* Update lruvec */
824 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
825
826 if (vmstat_item_in_bytes(idx))
827 threshold <<= PAGE_SHIFT;
828
829 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
830 if (unlikely(abs(x) > threshold)) {
831 pg_data_t *pgdat = lruvec_pgdat(lruvec);
832 struct mem_cgroup_per_node *pi;
833
834 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
835 atomic_long_add(x, &pi->lruvec_stat[idx]);
836 x = 0;
837 }
838 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
839 }
840
841 /**
842 * __mod_lruvec_state - update lruvec memory statistics
843 * @lruvec: the lruvec
844 * @idx: the stat item
845 * @val: delta to add to the counter, can be negative
846 *
847 * The lruvec is the intersection of the NUMA node and a cgroup. This
848 * function updates the all three counters that are affected by a
849 * change of state at this level: per-node, per-cgroup, per-lruvec.
850 */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)851 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
852 int val)
853 {
854 /* Update node */
855 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
856
857 /* Update memcg and lruvec */
858 if (!mem_cgroup_disabled())
859 __mod_memcg_lruvec_state(lruvec, idx, val);
860 }
861
__mod_lruvec_slab_state(void * p,enum node_stat_item idx,int val)862 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
863 {
864 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
865 struct mem_cgroup *memcg;
866 struct lruvec *lruvec;
867
868 rcu_read_lock();
869 memcg = mem_cgroup_from_obj(p);
870
871 /*
872 * Untracked pages have no memcg, no lruvec. Update only the
873 * node. If we reparent the slab objects to the root memcg,
874 * when we free the slab object, we need to update the per-memcg
875 * vmstats to keep it correct for the root memcg.
876 */
877 if (!memcg) {
878 __mod_node_page_state(pgdat, idx, val);
879 } else {
880 lruvec = mem_cgroup_lruvec(memcg, pgdat);
881 __mod_lruvec_state(lruvec, idx, val);
882 }
883 rcu_read_unlock();
884 }
885
mod_memcg_obj_state(void * p,int idx,int val)886 void mod_memcg_obj_state(void *p, int idx, int val)
887 {
888 struct mem_cgroup *memcg;
889
890 rcu_read_lock();
891 memcg = mem_cgroup_from_obj(p);
892 if (memcg)
893 mod_memcg_state(memcg, idx, val);
894 rcu_read_unlock();
895 }
896
897 /**
898 * __count_memcg_events - account VM events in a cgroup
899 * @memcg: the memory cgroup
900 * @idx: the event item
901 * @count: the number of events that occured
902 */
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)903 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
904 unsigned long count)
905 {
906 unsigned long x;
907
908 if (mem_cgroup_disabled())
909 return;
910
911 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
912 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
913 struct mem_cgroup *mi;
914
915 /*
916 * Batch local counters to keep them in sync with
917 * the hierarchical ones.
918 */
919 __this_cpu_add(memcg->vmstats_local->events[idx], x);
920 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
921 atomic_long_add(x, &mi->vmevents[idx]);
922 x = 0;
923 }
924 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
925 }
926
memcg_events(struct mem_cgroup * memcg,int event)927 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
928 {
929 return atomic_long_read(&memcg->vmevents[event]);
930 }
931
memcg_events_local(struct mem_cgroup * memcg,int event)932 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
933 {
934 long x = 0;
935 int cpu;
936
937 for_each_possible_cpu(cpu)
938 x += per_cpu(memcg->vmstats_local->events[event], cpu);
939 return x;
940 }
941
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,struct page * page,int nr_pages)942 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
943 struct page *page,
944 int nr_pages)
945 {
946 /* pagein of a big page is an event. So, ignore page size */
947 if (nr_pages > 0)
948 __count_memcg_events(memcg, PGPGIN, 1);
949 else {
950 __count_memcg_events(memcg, PGPGOUT, 1);
951 nr_pages = -nr_pages; /* for event */
952 }
953
954 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
955 }
956
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)957 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
958 enum mem_cgroup_events_target target)
959 {
960 unsigned long val, next;
961
962 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
963 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
964 /* from time_after() in jiffies.h */
965 if ((long)(next - val) < 0) {
966 switch (target) {
967 case MEM_CGROUP_TARGET_THRESH:
968 next = val + THRESHOLDS_EVENTS_TARGET;
969 break;
970 case MEM_CGROUP_TARGET_SOFTLIMIT:
971 next = val + SOFTLIMIT_EVENTS_TARGET;
972 break;
973 default:
974 break;
975 }
976 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
977 return true;
978 }
979 return false;
980 }
981
982 /*
983 * Check events in order.
984 *
985 */
memcg_check_events(struct mem_cgroup * memcg,struct page * page)986 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
987 {
988 /* threshold event is triggered in finer grain than soft limit */
989 if (unlikely(mem_cgroup_event_ratelimit(memcg,
990 MEM_CGROUP_TARGET_THRESH))) {
991 bool do_softlimit;
992
993 do_softlimit = mem_cgroup_event_ratelimit(memcg,
994 MEM_CGROUP_TARGET_SOFTLIMIT);
995 mem_cgroup_threshold(memcg);
996 if (unlikely(do_softlimit))
997 mem_cgroup_update_tree(memcg, page);
998 }
999 }
1000
mem_cgroup_from_task(struct task_struct * p)1001 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1002 {
1003 /*
1004 * mm_update_next_owner() may clear mm->owner to NULL
1005 * if it races with swapoff, page migration, etc.
1006 * So this can be called with p == NULL.
1007 */
1008 if (unlikely(!p))
1009 return NULL;
1010
1011 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1012 }
1013 EXPORT_SYMBOL(mem_cgroup_from_task);
1014
1015 /**
1016 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1017 * @mm: mm from which memcg should be extracted. It can be NULL.
1018 *
1019 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1020 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1021 * returned.
1022 */
get_mem_cgroup_from_mm(struct mm_struct * mm)1023 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1024 {
1025 struct mem_cgroup *memcg;
1026
1027 if (mem_cgroup_disabled())
1028 return NULL;
1029
1030 rcu_read_lock();
1031 do {
1032 /*
1033 * Page cache insertions can happen withou an
1034 * actual mm context, e.g. during disk probing
1035 * on boot, loopback IO, acct() writes etc.
1036 */
1037 if (unlikely(!mm))
1038 memcg = root_mem_cgroup;
1039 else {
1040 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1041 if (unlikely(!memcg))
1042 memcg = root_mem_cgroup;
1043 }
1044 } while (!css_tryget(&memcg->css));
1045 rcu_read_unlock();
1046 return memcg;
1047 }
1048 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1049
1050 /**
1051 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1052 * @page: page from which memcg should be extracted.
1053 *
1054 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1055 * root_mem_cgroup is returned.
1056 */
get_mem_cgroup_from_page(struct page * page)1057 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1058 {
1059 struct mem_cgroup *memcg = page->mem_cgroup;
1060
1061 if (mem_cgroup_disabled())
1062 return NULL;
1063
1064 rcu_read_lock();
1065 /* Page should not get uncharged and freed memcg under us. */
1066 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1067 memcg = root_mem_cgroup;
1068 rcu_read_unlock();
1069 return memcg;
1070 }
1071 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1072
active_memcg(void)1073 static __always_inline struct mem_cgroup *active_memcg(void)
1074 {
1075 if (in_interrupt())
1076 return this_cpu_read(int_active_memcg);
1077 else
1078 return current->active_memcg;
1079 }
1080
get_active_memcg(void)1081 static __always_inline struct mem_cgroup *get_active_memcg(void)
1082 {
1083 struct mem_cgroup *memcg;
1084
1085 rcu_read_lock();
1086 memcg = active_memcg();
1087 /* remote memcg must hold a ref. */
1088 if (memcg && WARN_ON_ONCE(!css_tryget(&memcg->css)))
1089 memcg = root_mem_cgroup;
1090 rcu_read_unlock();
1091
1092 return memcg;
1093 }
1094
memcg_kmem_bypass(void)1095 static __always_inline bool memcg_kmem_bypass(void)
1096 {
1097 /* Allow remote memcg charging from any context. */
1098 if (unlikely(active_memcg()))
1099 return false;
1100
1101 /* Memcg to charge can't be determined. */
1102 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1103 return true;
1104
1105 return false;
1106 }
1107
1108 /**
1109 * If active memcg is set, do not fallback to current->mm->memcg.
1110 */
get_mem_cgroup_from_current(void)1111 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1112 {
1113 if (memcg_kmem_bypass())
1114 return NULL;
1115
1116 if (unlikely(active_memcg()))
1117 return get_active_memcg();
1118
1119 return get_mem_cgroup_from_mm(current->mm);
1120 }
1121
1122 /**
1123 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1124 * @root: hierarchy root
1125 * @prev: previously returned memcg, NULL on first invocation
1126 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1127 *
1128 * Returns references to children of the hierarchy below @root, or
1129 * @root itself, or %NULL after a full round-trip.
1130 *
1131 * Caller must pass the return value in @prev on subsequent
1132 * invocations for reference counting, or use mem_cgroup_iter_break()
1133 * to cancel a hierarchy walk before the round-trip is complete.
1134 *
1135 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1136 * in the hierarchy among all concurrent reclaimers operating on the
1137 * same node.
1138 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1139 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1140 struct mem_cgroup *prev,
1141 struct mem_cgroup_reclaim_cookie *reclaim)
1142 {
1143 struct mem_cgroup_reclaim_iter *iter;
1144 struct cgroup_subsys_state *css = NULL;
1145 struct mem_cgroup *memcg = NULL;
1146 struct mem_cgroup *pos = NULL;
1147
1148 if (mem_cgroup_disabled())
1149 return NULL;
1150
1151 if (!root)
1152 root = root_mem_cgroup;
1153
1154 if (prev && !reclaim)
1155 pos = prev;
1156
1157 if (!root->use_hierarchy && root != root_mem_cgroup) {
1158 if (prev)
1159 goto out;
1160 return root;
1161 }
1162
1163 rcu_read_lock();
1164
1165 if (reclaim) {
1166 struct mem_cgroup_per_node *mz;
1167
1168 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1169 iter = &mz->iter;
1170
1171 if (prev && reclaim->generation != iter->generation)
1172 goto out_unlock;
1173
1174 while (1) {
1175 pos = READ_ONCE(iter->position);
1176 if (!pos || css_tryget(&pos->css))
1177 break;
1178 /*
1179 * css reference reached zero, so iter->position will
1180 * be cleared by ->css_released. However, we should not
1181 * rely on this happening soon, because ->css_released
1182 * is called from a work queue, and by busy-waiting we
1183 * might block it. So we clear iter->position right
1184 * away.
1185 */
1186 (void)cmpxchg(&iter->position, pos, NULL);
1187 }
1188 }
1189
1190 if (pos)
1191 css = &pos->css;
1192
1193 for (;;) {
1194 css = css_next_descendant_pre(css, &root->css);
1195 if (!css) {
1196 /*
1197 * Reclaimers share the hierarchy walk, and a
1198 * new one might jump in right at the end of
1199 * the hierarchy - make sure they see at least
1200 * one group and restart from the beginning.
1201 */
1202 if (!prev)
1203 continue;
1204 break;
1205 }
1206
1207 /*
1208 * Verify the css and acquire a reference. The root
1209 * is provided by the caller, so we know it's alive
1210 * and kicking, and don't take an extra reference.
1211 */
1212 memcg = mem_cgroup_from_css(css);
1213
1214 if (css == &root->css)
1215 break;
1216
1217 if (css_tryget(css))
1218 break;
1219
1220 memcg = NULL;
1221 }
1222
1223 if (reclaim) {
1224 /*
1225 * The position could have already been updated by a competing
1226 * thread, so check that the value hasn't changed since we read
1227 * it to avoid reclaiming from the same cgroup twice.
1228 */
1229 (void)cmpxchg(&iter->position, pos, memcg);
1230
1231 if (pos)
1232 css_put(&pos->css);
1233
1234 if (!memcg)
1235 iter->generation++;
1236 else if (!prev)
1237 reclaim->generation = iter->generation;
1238 }
1239
1240 out_unlock:
1241 rcu_read_unlock();
1242 out:
1243 if (prev && prev != root)
1244 css_put(&prev->css);
1245
1246 return memcg;
1247 }
1248
1249 /**
1250 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1251 * @root: hierarchy root
1252 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1253 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1254 void mem_cgroup_iter_break(struct mem_cgroup *root,
1255 struct mem_cgroup *prev)
1256 {
1257 if (!root)
1258 root = root_mem_cgroup;
1259 if (prev && prev != root)
1260 css_put(&prev->css);
1261 }
1262
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1263 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1264 struct mem_cgroup *dead_memcg)
1265 {
1266 struct mem_cgroup_reclaim_iter *iter;
1267 struct mem_cgroup_per_node *mz;
1268 int nid;
1269
1270 for_each_node(nid) {
1271 mz = mem_cgroup_nodeinfo(from, nid);
1272 iter = &mz->iter;
1273 cmpxchg(&iter->position, dead_memcg, NULL);
1274 }
1275 }
1276
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1277 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1278 {
1279 struct mem_cgroup *memcg = dead_memcg;
1280 struct mem_cgroup *last;
1281
1282 do {
1283 __invalidate_reclaim_iterators(memcg, dead_memcg);
1284 last = memcg;
1285 } while ((memcg = parent_mem_cgroup(memcg)));
1286
1287 /*
1288 * When cgruop1 non-hierarchy mode is used,
1289 * parent_mem_cgroup() does not walk all the way up to the
1290 * cgroup root (root_mem_cgroup). So we have to handle
1291 * dead_memcg from cgroup root separately.
1292 */
1293 if (last != root_mem_cgroup)
1294 __invalidate_reclaim_iterators(root_mem_cgroup,
1295 dead_memcg);
1296 }
1297
1298 /**
1299 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1300 * @memcg: hierarchy root
1301 * @fn: function to call for each task
1302 * @arg: argument passed to @fn
1303 *
1304 * This function iterates over tasks attached to @memcg or to any of its
1305 * descendants and calls @fn for each task. If @fn returns a non-zero
1306 * value, the function breaks the iteration loop and returns the value.
1307 * Otherwise, it will iterate over all tasks and return 0.
1308 *
1309 * This function must not be called for the root memory cgroup.
1310 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1311 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1312 int (*fn)(struct task_struct *, void *), void *arg)
1313 {
1314 struct mem_cgroup *iter;
1315 int ret = 0;
1316
1317 BUG_ON(memcg == root_mem_cgroup);
1318
1319 for_each_mem_cgroup_tree(iter, memcg) {
1320 struct css_task_iter it;
1321 struct task_struct *task;
1322
1323 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1324 while (!ret && (task = css_task_iter_next(&it)))
1325 ret = fn(task, arg);
1326 css_task_iter_end(&it);
1327 if (ret) {
1328 mem_cgroup_iter_break(memcg, iter);
1329 break;
1330 }
1331 }
1332 return ret;
1333 }
1334
1335 /**
1336 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1337 * @page: the page
1338 * @pgdat: pgdat of the page
1339 *
1340 * This function relies on page->mem_cgroup being stable - see the
1341 * access rules in commit_charge().
1342 */
mem_cgroup_page_lruvec(struct page * page,struct pglist_data * pgdat)1343 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1344 {
1345 struct mem_cgroup_per_node *mz;
1346 struct mem_cgroup *memcg;
1347 struct lruvec *lruvec;
1348
1349 if (mem_cgroup_disabled()) {
1350 lruvec = &pgdat->__lruvec;
1351 goto out;
1352 }
1353
1354 memcg = page->mem_cgroup;
1355 /*
1356 * Swapcache readahead pages are added to the LRU - and
1357 * possibly migrated - before they are charged.
1358 */
1359 if (!memcg)
1360 memcg = root_mem_cgroup;
1361
1362 mz = mem_cgroup_page_nodeinfo(memcg, page);
1363 lruvec = &mz->lruvec;
1364 out:
1365 /*
1366 * Since a node can be onlined after the mem_cgroup was created,
1367 * we have to be prepared to initialize lruvec->zone here;
1368 * and if offlined then reonlined, we need to reinitialize it.
1369 */
1370 if (unlikely(lruvec->pgdat != pgdat))
1371 lruvec->pgdat = pgdat;
1372 return lruvec;
1373 }
1374
page_to_lruvec(struct page * page,pg_data_t * pgdat)1375 struct lruvec *page_to_lruvec(struct page *page, pg_data_t *pgdat)
1376 {
1377 struct lruvec *lruvec;
1378
1379 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1380
1381 return lruvec;
1382 }
1383 EXPORT_SYMBOL_GPL(page_to_lruvec);
1384
do_traversal_all_lruvec(void)1385 void do_traversal_all_lruvec(void)
1386 {
1387 pg_data_t *pgdat;
1388
1389 for_each_online_pgdat(pgdat) {
1390 struct mem_cgroup *memcg = NULL;
1391
1392 spin_lock_irq(&pgdat->lru_lock);
1393 memcg = mem_cgroup_iter(NULL, NULL, NULL);
1394 do {
1395 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
1396
1397 trace_android_vh_do_traversal_lruvec(lruvec);
1398
1399 memcg = mem_cgroup_iter(NULL, memcg, NULL);
1400 } while (memcg);
1401
1402 spin_unlock_irq(&pgdat->lru_lock);
1403 }
1404 }
1405 EXPORT_SYMBOL_GPL(do_traversal_all_lruvec);
1406
1407 /**
1408 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1409 * @lruvec: mem_cgroup per zone lru vector
1410 * @lru: index of lru list the page is sitting on
1411 * @zid: zone id of the accounted pages
1412 * @nr_pages: positive when adding or negative when removing
1413 *
1414 * This function must be called under lru_lock, just before a page is added
1415 * to or just after a page is removed from an lru list (that ordering being
1416 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1417 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1418 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1419 int zid, int nr_pages)
1420 {
1421 struct mem_cgroup_per_node *mz;
1422 unsigned long *lru_size;
1423 long size;
1424
1425 if (mem_cgroup_disabled())
1426 return;
1427
1428 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1429 lru_size = &mz->lru_zone_size[zid][lru];
1430
1431 if (nr_pages < 0)
1432 *lru_size += nr_pages;
1433
1434 size = *lru_size;
1435 if (WARN_ONCE(size < 0,
1436 "%s(%p, %d, %d): lru_size %ld\n",
1437 __func__, lruvec, lru, nr_pages, size)) {
1438 VM_BUG_ON(1);
1439 *lru_size = 0;
1440 }
1441
1442 if (nr_pages > 0)
1443 *lru_size += nr_pages;
1444 }
1445
1446 /**
1447 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1448 * @memcg: the memory cgroup
1449 *
1450 * Returns the maximum amount of memory @mem can be charged with, in
1451 * pages.
1452 */
mem_cgroup_margin(struct mem_cgroup * memcg)1453 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1454 {
1455 unsigned long margin = 0;
1456 unsigned long count;
1457 unsigned long limit;
1458
1459 count = page_counter_read(&memcg->memory);
1460 limit = READ_ONCE(memcg->memory.max);
1461 if (count < limit)
1462 margin = limit - count;
1463
1464 if (do_memsw_account()) {
1465 count = page_counter_read(&memcg->memsw);
1466 limit = READ_ONCE(memcg->memsw.max);
1467 if (count < limit)
1468 margin = min(margin, limit - count);
1469 else
1470 margin = 0;
1471 }
1472
1473 return margin;
1474 }
1475
1476 /*
1477 * A routine for checking "mem" is under move_account() or not.
1478 *
1479 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1480 * moving cgroups. This is for waiting at high-memory pressure
1481 * caused by "move".
1482 */
mem_cgroup_under_move(struct mem_cgroup * memcg)1483 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1484 {
1485 struct mem_cgroup *from;
1486 struct mem_cgroup *to;
1487 bool ret = false;
1488 /*
1489 * Unlike task_move routines, we access mc.to, mc.from not under
1490 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1491 */
1492 spin_lock(&mc.lock);
1493 from = mc.from;
1494 to = mc.to;
1495 if (!from)
1496 goto unlock;
1497
1498 ret = mem_cgroup_is_descendant(from, memcg) ||
1499 mem_cgroup_is_descendant(to, memcg);
1500 unlock:
1501 spin_unlock(&mc.lock);
1502 return ret;
1503 }
1504
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1505 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1506 {
1507 if (mc.moving_task && current != mc.moving_task) {
1508 if (mem_cgroup_under_move(memcg)) {
1509 DEFINE_WAIT(wait);
1510 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1511 /* moving charge context might have finished. */
1512 if (mc.moving_task)
1513 schedule();
1514 finish_wait(&mc.waitq, &wait);
1515 return true;
1516 }
1517 }
1518 return false;
1519 }
1520
1521 struct memory_stat {
1522 const char *name;
1523 unsigned int ratio;
1524 unsigned int idx;
1525 };
1526
1527 static struct memory_stat memory_stats[] = {
1528 { "anon", PAGE_SIZE, NR_ANON_MAPPED },
1529 { "file", PAGE_SIZE, NR_FILE_PAGES },
1530 { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1531 { "percpu", 1, MEMCG_PERCPU_B },
1532 { "sock", PAGE_SIZE, MEMCG_SOCK },
1533 { "shmem", PAGE_SIZE, NR_SHMEM },
1534 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1535 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1536 { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1538 /*
1539 * The ratio will be initialized in memory_stats_init(). Because
1540 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1541 * constant(e.g. powerpc).
1542 */
1543 { "anon_thp", 0, NR_ANON_THPS },
1544 #endif
1545 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1546 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1547 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1548 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1549 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1550
1551 /*
1552 * Note: The slab_reclaimable and slab_unreclaimable must be
1553 * together and slab_reclaimable must be in front.
1554 */
1555 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1556 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1557
1558 /* The memory events */
1559 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1560 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1561 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1562 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1563 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1564 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1565 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1566 };
1567
memory_stats_init(void)1568 static int __init memory_stats_init(void)
1569 {
1570 int i;
1571
1572 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1574 if (memory_stats[i].idx == NR_ANON_THPS)
1575 memory_stats[i].ratio = HPAGE_PMD_SIZE;
1576 #endif
1577 VM_BUG_ON(!memory_stats[i].ratio);
1578 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1579 }
1580
1581 return 0;
1582 }
1583 pure_initcall(memory_stats_init);
1584
memory_stat_format(struct mem_cgroup * memcg)1585 static char *memory_stat_format(struct mem_cgroup *memcg)
1586 {
1587 struct seq_buf s;
1588 int i;
1589
1590 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1591 if (!s.buffer)
1592 return NULL;
1593
1594 /*
1595 * Provide statistics on the state of the memory subsystem as
1596 * well as cumulative event counters that show past behavior.
1597 *
1598 * This list is ordered following a combination of these gradients:
1599 * 1) generic big picture -> specifics and details
1600 * 2) reflecting userspace activity -> reflecting kernel heuristics
1601 *
1602 * Current memory state:
1603 */
1604
1605 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1606 u64 size;
1607
1608 size = memcg_page_state(memcg, memory_stats[i].idx);
1609 size *= memory_stats[i].ratio;
1610 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1611
1612 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1613 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1614 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1615 seq_buf_printf(&s, "slab %llu\n", size);
1616 }
1617 }
1618
1619 /* Accumulated memory events */
1620
1621 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1622 memcg_events(memcg, PGFAULT));
1623 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1624 memcg_events(memcg, PGMAJFAULT));
1625 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1626 memcg_events(memcg, PGREFILL));
1627 seq_buf_printf(&s, "pgscan %lu\n",
1628 memcg_events(memcg, PGSCAN_KSWAPD) +
1629 memcg_events(memcg, PGSCAN_DIRECT));
1630 seq_buf_printf(&s, "pgsteal %lu\n",
1631 memcg_events(memcg, PGSTEAL_KSWAPD) +
1632 memcg_events(memcg, PGSTEAL_DIRECT));
1633 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1634 memcg_events(memcg, PGACTIVATE));
1635 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1636 memcg_events(memcg, PGDEACTIVATE));
1637 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1638 memcg_events(memcg, PGLAZYFREE));
1639 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1640 memcg_events(memcg, PGLAZYFREED));
1641
1642 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1643 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1644 memcg_events(memcg, THP_FAULT_ALLOC));
1645 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1646 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1647 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1648
1649 /* The above should easily fit into one page */
1650 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1651
1652 return s.buffer;
1653 }
1654
1655 #define K(x) ((x) << (PAGE_SHIFT-10))
1656 /**
1657 * mem_cgroup_print_oom_context: Print OOM information relevant to
1658 * memory controller.
1659 * @memcg: The memory cgroup that went over limit
1660 * @p: Task that is going to be killed
1661 *
1662 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1663 * enabled
1664 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1665 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1666 {
1667 rcu_read_lock();
1668
1669 if (memcg) {
1670 pr_cont(",oom_memcg=");
1671 pr_cont_cgroup_path(memcg->css.cgroup);
1672 } else
1673 pr_cont(",global_oom");
1674 if (p) {
1675 pr_cont(",task_memcg=");
1676 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1677 }
1678 rcu_read_unlock();
1679 }
1680
1681 /**
1682 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1683 * memory controller.
1684 * @memcg: The memory cgroup that went over limit
1685 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1686 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1687 {
1688 char *buf;
1689
1690 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1691 K((u64)page_counter_read(&memcg->memory)),
1692 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1693 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1694 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1695 K((u64)page_counter_read(&memcg->swap)),
1696 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1697 else {
1698 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1699 K((u64)page_counter_read(&memcg->memsw)),
1700 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1701 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1702 K((u64)page_counter_read(&memcg->kmem)),
1703 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1704 }
1705
1706 pr_info("Memory cgroup stats for ");
1707 pr_cont_cgroup_path(memcg->css.cgroup);
1708 pr_cont(":");
1709 buf = memory_stat_format(memcg);
1710 if (!buf)
1711 return;
1712 pr_info("%s", buf);
1713 kfree(buf);
1714 }
1715
1716 /*
1717 * Return the memory (and swap, if configured) limit for a memcg.
1718 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1719 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1720 {
1721 unsigned long max = READ_ONCE(memcg->memory.max);
1722
1723 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1724 if (mem_cgroup_swappiness(memcg))
1725 max += min(READ_ONCE(memcg->swap.max),
1726 (unsigned long)total_swap_pages);
1727 } else { /* v1 */
1728 if (mem_cgroup_swappiness(memcg)) {
1729 /* Calculate swap excess capacity from memsw limit */
1730 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1731
1732 max += min(swap, (unsigned long)total_swap_pages);
1733 }
1734 }
1735 return max;
1736 }
1737
mem_cgroup_size(struct mem_cgroup * memcg)1738 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1739 {
1740 return page_counter_read(&memcg->memory);
1741 }
1742
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1743 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1744 int order)
1745 {
1746 struct oom_control oc = {
1747 .zonelist = NULL,
1748 .nodemask = NULL,
1749 .memcg = memcg,
1750 .gfp_mask = gfp_mask,
1751 .order = order,
1752 };
1753 bool ret = true;
1754
1755 if (mutex_lock_killable(&oom_lock))
1756 return true;
1757
1758 if (mem_cgroup_margin(memcg) >= (1 << order))
1759 goto unlock;
1760
1761 /*
1762 * A few threads which were not waiting at mutex_lock_killable() can
1763 * fail to bail out. Therefore, check again after holding oom_lock.
1764 */
1765 ret = task_is_dying() || out_of_memory(&oc);
1766
1767 unlock:
1768 mutex_unlock(&oom_lock);
1769 return ret;
1770 }
1771
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,pg_data_t * pgdat,gfp_t gfp_mask,unsigned long * total_scanned)1772 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1773 pg_data_t *pgdat,
1774 gfp_t gfp_mask,
1775 unsigned long *total_scanned)
1776 {
1777 struct mem_cgroup *victim = NULL;
1778 int total = 0;
1779 int loop = 0;
1780 unsigned long excess;
1781 unsigned long nr_scanned;
1782 struct mem_cgroup_reclaim_cookie reclaim = {
1783 .pgdat = pgdat,
1784 };
1785
1786 excess = soft_limit_excess(root_memcg);
1787
1788 while (1) {
1789 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1790 if (!victim) {
1791 loop++;
1792 if (loop >= 2) {
1793 /*
1794 * If we have not been able to reclaim
1795 * anything, it might because there are
1796 * no reclaimable pages under this hierarchy
1797 */
1798 if (!total)
1799 break;
1800 /*
1801 * We want to do more targeted reclaim.
1802 * excess >> 2 is not to excessive so as to
1803 * reclaim too much, nor too less that we keep
1804 * coming back to reclaim from this cgroup
1805 */
1806 if (total >= (excess >> 2) ||
1807 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1808 break;
1809 }
1810 continue;
1811 }
1812 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1813 pgdat, &nr_scanned);
1814 *total_scanned += nr_scanned;
1815 if (!soft_limit_excess(root_memcg))
1816 break;
1817 }
1818 mem_cgroup_iter_break(root_memcg, victim);
1819 return total;
1820 }
1821
1822 #ifdef CONFIG_LOCKDEP
1823 static struct lockdep_map memcg_oom_lock_dep_map = {
1824 .name = "memcg_oom_lock",
1825 };
1826 #endif
1827
1828 static DEFINE_SPINLOCK(memcg_oom_lock);
1829
1830 /*
1831 * Check OOM-Killer is already running under our hierarchy.
1832 * If someone is running, return false.
1833 */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1834 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1835 {
1836 struct mem_cgroup *iter, *failed = NULL;
1837
1838 spin_lock(&memcg_oom_lock);
1839
1840 for_each_mem_cgroup_tree(iter, memcg) {
1841 if (iter->oom_lock) {
1842 /*
1843 * this subtree of our hierarchy is already locked
1844 * so we cannot give a lock.
1845 */
1846 failed = iter;
1847 mem_cgroup_iter_break(memcg, iter);
1848 break;
1849 } else
1850 iter->oom_lock = true;
1851 }
1852
1853 if (failed) {
1854 /*
1855 * OK, we failed to lock the whole subtree so we have
1856 * to clean up what we set up to the failing subtree
1857 */
1858 for_each_mem_cgroup_tree(iter, memcg) {
1859 if (iter == failed) {
1860 mem_cgroup_iter_break(memcg, iter);
1861 break;
1862 }
1863 iter->oom_lock = false;
1864 }
1865 } else
1866 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1867
1868 spin_unlock(&memcg_oom_lock);
1869
1870 return !failed;
1871 }
1872
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1873 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1874 {
1875 struct mem_cgroup *iter;
1876
1877 spin_lock(&memcg_oom_lock);
1878 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1879 for_each_mem_cgroup_tree(iter, memcg)
1880 iter->oom_lock = false;
1881 spin_unlock(&memcg_oom_lock);
1882 }
1883
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1884 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1885 {
1886 struct mem_cgroup *iter;
1887
1888 spin_lock(&memcg_oom_lock);
1889 for_each_mem_cgroup_tree(iter, memcg)
1890 iter->under_oom++;
1891 spin_unlock(&memcg_oom_lock);
1892 }
1893
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1894 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1895 {
1896 struct mem_cgroup *iter;
1897
1898 /*
1899 * Be careful about under_oom underflows becase a child memcg
1900 * could have been added after mem_cgroup_mark_under_oom.
1901 */
1902 spin_lock(&memcg_oom_lock);
1903 for_each_mem_cgroup_tree(iter, memcg)
1904 if (iter->under_oom > 0)
1905 iter->under_oom--;
1906 spin_unlock(&memcg_oom_lock);
1907 }
1908
1909 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1910
1911 struct oom_wait_info {
1912 struct mem_cgroup *memcg;
1913 wait_queue_entry_t wait;
1914 };
1915
memcg_oom_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1916 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1917 unsigned mode, int sync, void *arg)
1918 {
1919 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1920 struct mem_cgroup *oom_wait_memcg;
1921 struct oom_wait_info *oom_wait_info;
1922
1923 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1924 oom_wait_memcg = oom_wait_info->memcg;
1925
1926 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1927 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1928 return 0;
1929 return autoremove_wake_function(wait, mode, sync, arg);
1930 }
1931
memcg_oom_recover(struct mem_cgroup * memcg)1932 static void memcg_oom_recover(struct mem_cgroup *memcg)
1933 {
1934 /*
1935 * For the following lockless ->under_oom test, the only required
1936 * guarantee is that it must see the state asserted by an OOM when
1937 * this function is called as a result of userland actions
1938 * triggered by the notification of the OOM. This is trivially
1939 * achieved by invoking mem_cgroup_mark_under_oom() before
1940 * triggering notification.
1941 */
1942 if (memcg && memcg->under_oom)
1943 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1944 }
1945
1946 enum oom_status {
1947 OOM_SUCCESS,
1948 OOM_FAILED,
1949 OOM_ASYNC,
1950 OOM_SKIPPED
1951 };
1952
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1953 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1954 {
1955 enum oom_status ret;
1956 bool locked;
1957
1958 if (order > PAGE_ALLOC_COSTLY_ORDER)
1959 return OOM_SKIPPED;
1960
1961 memcg_memory_event(memcg, MEMCG_OOM);
1962
1963 /*
1964 * We are in the middle of the charge context here, so we
1965 * don't want to block when potentially sitting on a callstack
1966 * that holds all kinds of filesystem and mm locks.
1967 *
1968 * cgroup1 allows disabling the OOM killer and waiting for outside
1969 * handling until the charge can succeed; remember the context and put
1970 * the task to sleep at the end of the page fault when all locks are
1971 * released.
1972 *
1973 * On the other hand, in-kernel OOM killer allows for an async victim
1974 * memory reclaim (oom_reaper) and that means that we are not solely
1975 * relying on the oom victim to make a forward progress and we can
1976 * invoke the oom killer here.
1977 *
1978 * Please note that mem_cgroup_out_of_memory might fail to find a
1979 * victim and then we have to bail out from the charge path.
1980 */
1981 if (memcg->oom_kill_disable) {
1982 if (!current->in_user_fault)
1983 return OOM_SKIPPED;
1984 css_get(&memcg->css);
1985 current->memcg_in_oom = memcg;
1986 current->memcg_oom_gfp_mask = mask;
1987 current->memcg_oom_order = order;
1988
1989 return OOM_ASYNC;
1990 }
1991
1992 mem_cgroup_mark_under_oom(memcg);
1993
1994 locked = mem_cgroup_oom_trylock(memcg);
1995
1996 if (locked)
1997 mem_cgroup_oom_notify(memcg);
1998
1999 mem_cgroup_unmark_under_oom(memcg);
2000 if (mem_cgroup_out_of_memory(memcg, mask, order))
2001 ret = OOM_SUCCESS;
2002 else
2003 ret = OOM_FAILED;
2004
2005 if (locked)
2006 mem_cgroup_oom_unlock(memcg);
2007
2008 return ret;
2009 }
2010
2011 /**
2012 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2013 * @handle: actually kill/wait or just clean up the OOM state
2014 *
2015 * This has to be called at the end of a page fault if the memcg OOM
2016 * handler was enabled.
2017 *
2018 * Memcg supports userspace OOM handling where failed allocations must
2019 * sleep on a waitqueue until the userspace task resolves the
2020 * situation. Sleeping directly in the charge context with all kinds
2021 * of locks held is not a good idea, instead we remember an OOM state
2022 * in the task and mem_cgroup_oom_synchronize() has to be called at
2023 * the end of the page fault to complete the OOM handling.
2024 *
2025 * Returns %true if an ongoing memcg OOM situation was detected and
2026 * completed, %false otherwise.
2027 */
mem_cgroup_oom_synchronize(bool handle)2028 bool mem_cgroup_oom_synchronize(bool handle)
2029 {
2030 struct mem_cgroup *memcg = current->memcg_in_oom;
2031 struct oom_wait_info owait;
2032 bool locked;
2033
2034 /* OOM is global, do not handle */
2035 if (!memcg)
2036 return false;
2037
2038 if (!handle)
2039 goto cleanup;
2040
2041 owait.memcg = memcg;
2042 owait.wait.flags = 0;
2043 owait.wait.func = memcg_oom_wake_function;
2044 owait.wait.private = current;
2045 INIT_LIST_HEAD(&owait.wait.entry);
2046
2047 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2048 mem_cgroup_mark_under_oom(memcg);
2049
2050 locked = mem_cgroup_oom_trylock(memcg);
2051
2052 if (locked)
2053 mem_cgroup_oom_notify(memcg);
2054
2055 if (locked && !memcg->oom_kill_disable) {
2056 mem_cgroup_unmark_under_oom(memcg);
2057 finish_wait(&memcg_oom_waitq, &owait.wait);
2058 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2059 current->memcg_oom_order);
2060 } else {
2061 schedule();
2062 mem_cgroup_unmark_under_oom(memcg);
2063 finish_wait(&memcg_oom_waitq, &owait.wait);
2064 }
2065
2066 if (locked) {
2067 mem_cgroup_oom_unlock(memcg);
2068 /*
2069 * There is no guarantee that an OOM-lock contender
2070 * sees the wakeups triggered by the OOM kill
2071 * uncharges. Wake any sleepers explicitely.
2072 */
2073 memcg_oom_recover(memcg);
2074 }
2075 cleanup:
2076 current->memcg_in_oom = NULL;
2077 css_put(&memcg->css);
2078 return true;
2079 }
2080
2081 /**
2082 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2083 * @victim: task to be killed by the OOM killer
2084 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2085 *
2086 * Returns a pointer to a memory cgroup, which has to be cleaned up
2087 * by killing all belonging OOM-killable tasks.
2088 *
2089 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2090 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)2091 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2092 struct mem_cgroup *oom_domain)
2093 {
2094 struct mem_cgroup *oom_group = NULL;
2095 struct mem_cgroup *memcg;
2096
2097 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2098 return NULL;
2099
2100 if (!oom_domain)
2101 oom_domain = root_mem_cgroup;
2102
2103 rcu_read_lock();
2104
2105 memcg = mem_cgroup_from_task(victim);
2106 if (memcg == root_mem_cgroup)
2107 goto out;
2108
2109 /*
2110 * If the victim task has been asynchronously moved to a different
2111 * memory cgroup, we might end up killing tasks outside oom_domain.
2112 * In this case it's better to ignore memory.group.oom.
2113 */
2114 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2115 goto out;
2116
2117 /*
2118 * Traverse the memory cgroup hierarchy from the victim task's
2119 * cgroup up to the OOMing cgroup (or root) to find the
2120 * highest-level memory cgroup with oom.group set.
2121 */
2122 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2123 if (memcg->oom_group)
2124 oom_group = memcg;
2125
2126 if (memcg == oom_domain)
2127 break;
2128 }
2129
2130 if (oom_group)
2131 css_get(&oom_group->css);
2132 out:
2133 rcu_read_unlock();
2134
2135 return oom_group;
2136 }
2137
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)2138 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2139 {
2140 pr_info("Tasks in ");
2141 pr_cont_cgroup_path(memcg->css.cgroup);
2142 pr_cont(" are going to be killed due to memory.oom.group set\n");
2143 }
2144
2145 /**
2146 * lock_page_memcg - lock a page->mem_cgroup binding
2147 * @page: the page
2148 *
2149 * This function protects unlocked LRU pages from being moved to
2150 * another cgroup.
2151 *
2152 * It ensures lifetime of the returned memcg. Caller is responsible
2153 * for the lifetime of the page; __unlock_page_memcg() is available
2154 * when @page might get freed inside the locked section.
2155 */
lock_page_memcg(struct page * page)2156 struct mem_cgroup *lock_page_memcg(struct page *page)
2157 {
2158 struct page *head = compound_head(page); /* rmap on tail pages */
2159 struct mem_cgroup *memcg;
2160 unsigned long flags;
2161
2162 /*
2163 * The RCU lock is held throughout the transaction. The fast
2164 * path can get away without acquiring the memcg->move_lock
2165 * because page moving starts with an RCU grace period.
2166 *
2167 * The RCU lock also protects the memcg from being freed when
2168 * the page state that is going to change is the only thing
2169 * preventing the page itself from being freed. E.g. writeback
2170 * doesn't hold a page reference and relies on PG_writeback to
2171 * keep off truncation, migration and so forth.
2172 */
2173 rcu_read_lock();
2174
2175 if (mem_cgroup_disabled())
2176 return NULL;
2177 again:
2178 memcg = head->mem_cgroup;
2179 if (unlikely(!memcg))
2180 return NULL;
2181
2182 if (atomic_read(&memcg->moving_account) <= 0)
2183 return memcg;
2184
2185 spin_lock_irqsave(&memcg->move_lock, flags);
2186 if (memcg != head->mem_cgroup) {
2187 spin_unlock_irqrestore(&memcg->move_lock, flags);
2188 goto again;
2189 }
2190
2191 /*
2192 * When charge migration first begins, we can have locked and
2193 * unlocked page stat updates happening concurrently. Track
2194 * the task who has the lock for unlock_page_memcg().
2195 */
2196 memcg->move_lock_task = current;
2197 memcg->move_lock_flags = flags;
2198
2199 return memcg;
2200 }
2201 EXPORT_SYMBOL(lock_page_memcg);
2202
2203 /**
2204 * __unlock_page_memcg - unlock and unpin a memcg
2205 * @memcg: the memcg
2206 *
2207 * Unlock and unpin a memcg returned by lock_page_memcg().
2208 */
__unlock_page_memcg(struct mem_cgroup * memcg)2209 void __unlock_page_memcg(struct mem_cgroup *memcg)
2210 {
2211 if (memcg && memcg->move_lock_task == current) {
2212 unsigned long flags = memcg->move_lock_flags;
2213
2214 memcg->move_lock_task = NULL;
2215 memcg->move_lock_flags = 0;
2216
2217 spin_unlock_irqrestore(&memcg->move_lock, flags);
2218 }
2219
2220 rcu_read_unlock();
2221 }
2222
2223 /**
2224 * unlock_page_memcg - unlock a page->mem_cgroup binding
2225 * @page: the page
2226 */
unlock_page_memcg(struct page * page)2227 void unlock_page_memcg(struct page *page)
2228 {
2229 struct page *head = compound_head(page);
2230
2231 __unlock_page_memcg(head->mem_cgroup);
2232 }
2233 EXPORT_SYMBOL(unlock_page_memcg);
2234
2235 struct memcg_stock_pcp {
2236 struct mem_cgroup *cached; /* this never be root cgroup */
2237 unsigned int nr_pages;
2238
2239 #ifdef CONFIG_MEMCG_KMEM
2240 struct obj_cgroup *cached_objcg;
2241 unsigned int nr_bytes;
2242 #endif
2243
2244 struct work_struct work;
2245 unsigned long flags;
2246 #define FLUSHING_CACHED_CHARGE 0
2247 };
2248 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2249 static DEFINE_MUTEX(percpu_charge_mutex);
2250
2251 #ifdef CONFIG_MEMCG_KMEM
2252 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2253 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2254 struct mem_cgroup *root_memcg);
2255
2256 #else
drain_obj_stock(struct memcg_stock_pcp * stock)2257 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2258 {
2259 }
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)2260 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2261 struct mem_cgroup *root_memcg)
2262 {
2263 return false;
2264 }
2265 #endif
2266
2267 /**
2268 * consume_stock: Try to consume stocked charge on this cpu.
2269 * @memcg: memcg to consume from.
2270 * @nr_pages: how many pages to charge.
2271 *
2272 * The charges will only happen if @memcg matches the current cpu's memcg
2273 * stock, and at least @nr_pages are available in that stock. Failure to
2274 * service an allocation will refill the stock.
2275 *
2276 * returns true if successful, false otherwise.
2277 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2278 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2279 {
2280 struct memcg_stock_pcp *stock;
2281 unsigned long flags;
2282 bool ret = false;
2283
2284 if (nr_pages > MEMCG_CHARGE_BATCH)
2285 return ret;
2286
2287 local_irq_save(flags);
2288
2289 stock = this_cpu_ptr(&memcg_stock);
2290 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2291 stock->nr_pages -= nr_pages;
2292 ret = true;
2293 }
2294
2295 local_irq_restore(flags);
2296
2297 return ret;
2298 }
2299
2300 /*
2301 * Returns stocks cached in percpu and reset cached information.
2302 */
drain_stock(struct memcg_stock_pcp * stock)2303 static void drain_stock(struct memcg_stock_pcp *stock)
2304 {
2305 struct mem_cgroup *old = stock->cached;
2306
2307 if (!old)
2308 return;
2309
2310 if (stock->nr_pages) {
2311 page_counter_uncharge(&old->memory, stock->nr_pages);
2312 if (do_memsw_account())
2313 page_counter_uncharge(&old->memsw, stock->nr_pages);
2314 stock->nr_pages = 0;
2315 }
2316
2317 css_put(&old->css);
2318 stock->cached = NULL;
2319 }
2320
drain_local_stock(struct work_struct * dummy)2321 static void drain_local_stock(struct work_struct *dummy)
2322 {
2323 struct memcg_stock_pcp *stock;
2324 unsigned long flags;
2325
2326 /*
2327 * The only protection from memory hotplug vs. drain_stock races is
2328 * that we always operate on local CPU stock here with IRQ disabled
2329 */
2330 local_irq_save(flags);
2331
2332 stock = this_cpu_ptr(&memcg_stock);
2333 drain_obj_stock(stock);
2334 drain_stock(stock);
2335 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2336
2337 local_irq_restore(flags);
2338 }
2339
2340 /*
2341 * Cache charges(val) to local per_cpu area.
2342 * This will be consumed by consume_stock() function, later.
2343 */
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2344 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2345 {
2346 struct memcg_stock_pcp *stock;
2347 unsigned long flags;
2348
2349 local_irq_save(flags);
2350
2351 stock = this_cpu_ptr(&memcg_stock);
2352 if (stock->cached != memcg) { /* reset if necessary */
2353 drain_stock(stock);
2354 css_get(&memcg->css);
2355 stock->cached = memcg;
2356 }
2357 stock->nr_pages += nr_pages;
2358
2359 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2360 drain_stock(stock);
2361
2362 local_irq_restore(flags);
2363 }
2364
2365 /*
2366 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2367 * of the hierarchy under it.
2368 */
drain_all_stock(struct mem_cgroup * root_memcg)2369 static void drain_all_stock(struct mem_cgroup *root_memcg)
2370 {
2371 int cpu, curcpu;
2372
2373 /* If someone's already draining, avoid adding running more workers. */
2374 if (!mutex_trylock(&percpu_charge_mutex))
2375 return;
2376 /*
2377 * Notify other cpus that system-wide "drain" is running
2378 * We do not care about races with the cpu hotplug because cpu down
2379 * as well as workers from this path always operate on the local
2380 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2381 */
2382 curcpu = get_cpu();
2383 for_each_online_cpu(cpu) {
2384 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2385 struct mem_cgroup *memcg;
2386 bool flush = false;
2387
2388 rcu_read_lock();
2389 memcg = stock->cached;
2390 if (memcg && stock->nr_pages &&
2391 mem_cgroup_is_descendant(memcg, root_memcg))
2392 flush = true;
2393 if (obj_stock_flush_required(stock, root_memcg))
2394 flush = true;
2395 rcu_read_unlock();
2396
2397 if (flush &&
2398 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2399 if (cpu == curcpu)
2400 drain_local_stock(&stock->work);
2401 else
2402 schedule_work_on(cpu, &stock->work);
2403 }
2404 }
2405 put_cpu();
2406 mutex_unlock(&percpu_charge_mutex);
2407 }
2408
memcg_hotplug_cpu_dead(unsigned int cpu)2409 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2410 {
2411 struct memcg_stock_pcp *stock;
2412 struct mem_cgroup *memcg, *mi;
2413
2414 stock = &per_cpu(memcg_stock, cpu);
2415 drain_stock(stock);
2416
2417 for_each_mem_cgroup(memcg) {
2418 int i;
2419
2420 for (i = 0; i < MEMCG_NR_STAT; i++) {
2421 int nid;
2422 long x;
2423
2424 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2425 if (x)
2426 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2427 atomic_long_add(x, &memcg->vmstats[i]);
2428
2429 if (i >= NR_VM_NODE_STAT_ITEMS)
2430 continue;
2431
2432 for_each_node(nid) {
2433 struct mem_cgroup_per_node *pn;
2434
2435 pn = mem_cgroup_nodeinfo(memcg, nid);
2436 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2437 if (x)
2438 do {
2439 atomic_long_add(x, &pn->lruvec_stat[i]);
2440 } while ((pn = parent_nodeinfo(pn, nid)));
2441 }
2442 }
2443
2444 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2445 long x;
2446
2447 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2448 if (x)
2449 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2450 atomic_long_add(x, &memcg->vmevents[i]);
2451 }
2452 }
2453
2454 return 0;
2455 }
2456
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2457 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2458 unsigned int nr_pages,
2459 gfp_t gfp_mask)
2460 {
2461 unsigned long nr_reclaimed = 0;
2462
2463 do {
2464 unsigned long pflags;
2465
2466 if (page_counter_read(&memcg->memory) <=
2467 READ_ONCE(memcg->memory.high))
2468 continue;
2469
2470 memcg_memory_event(memcg, MEMCG_HIGH);
2471
2472 psi_memstall_enter(&pflags);
2473 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2474 gfp_mask, true);
2475 psi_memstall_leave(&pflags);
2476 } while ((memcg = parent_mem_cgroup(memcg)) &&
2477 !mem_cgroup_is_root(memcg));
2478
2479 return nr_reclaimed;
2480 }
2481
high_work_func(struct work_struct * work)2482 static void high_work_func(struct work_struct *work)
2483 {
2484 struct mem_cgroup *memcg;
2485
2486 memcg = container_of(work, struct mem_cgroup, high_work);
2487 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2488 }
2489
2490 /*
2491 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2492 * enough to still cause a significant slowdown in most cases, while still
2493 * allowing diagnostics and tracing to proceed without becoming stuck.
2494 */
2495 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2496
2497 /*
2498 * When calculating the delay, we use these either side of the exponentiation to
2499 * maintain precision and scale to a reasonable number of jiffies (see the table
2500 * below.
2501 *
2502 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2503 * overage ratio to a delay.
2504 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2505 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2506 * to produce a reasonable delay curve.
2507 *
2508 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2509 * reasonable delay curve compared to precision-adjusted overage, not
2510 * penalising heavily at first, but still making sure that growth beyond the
2511 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2512 * example, with a high of 100 megabytes:
2513 *
2514 * +-------+------------------------+
2515 * | usage | time to allocate in ms |
2516 * +-------+------------------------+
2517 * | 100M | 0 |
2518 * | 101M | 6 |
2519 * | 102M | 25 |
2520 * | 103M | 57 |
2521 * | 104M | 102 |
2522 * | 105M | 159 |
2523 * | 106M | 230 |
2524 * | 107M | 313 |
2525 * | 108M | 409 |
2526 * | 109M | 518 |
2527 * | 110M | 639 |
2528 * | 111M | 774 |
2529 * | 112M | 921 |
2530 * | 113M | 1081 |
2531 * | 114M | 1254 |
2532 * | 115M | 1439 |
2533 * | 116M | 1638 |
2534 * | 117M | 1849 |
2535 * | 118M | 2000 |
2536 * | 119M | 2000 |
2537 * | 120M | 2000 |
2538 * +-------+------------------------+
2539 */
2540 #define MEMCG_DELAY_PRECISION_SHIFT 20
2541 #define MEMCG_DELAY_SCALING_SHIFT 14
2542
calculate_overage(unsigned long usage,unsigned long high)2543 static u64 calculate_overage(unsigned long usage, unsigned long high)
2544 {
2545 u64 overage;
2546
2547 if (usage <= high)
2548 return 0;
2549
2550 /*
2551 * Prevent division by 0 in overage calculation by acting as if
2552 * it was a threshold of 1 page
2553 */
2554 high = max(high, 1UL);
2555
2556 overage = usage - high;
2557 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2558 return div64_u64(overage, high);
2559 }
2560
mem_find_max_overage(struct mem_cgroup * memcg)2561 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2562 {
2563 u64 overage, max_overage = 0;
2564
2565 do {
2566 overage = calculate_overage(page_counter_read(&memcg->memory),
2567 READ_ONCE(memcg->memory.high));
2568 max_overage = max(overage, max_overage);
2569 } while ((memcg = parent_mem_cgroup(memcg)) &&
2570 !mem_cgroup_is_root(memcg));
2571
2572 return max_overage;
2573 }
2574
swap_find_max_overage(struct mem_cgroup * memcg)2575 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2576 {
2577 u64 overage, max_overage = 0;
2578
2579 do {
2580 overage = calculate_overage(page_counter_read(&memcg->swap),
2581 READ_ONCE(memcg->swap.high));
2582 if (overage)
2583 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2584 max_overage = max(overage, max_overage);
2585 } while ((memcg = parent_mem_cgroup(memcg)) &&
2586 !mem_cgroup_is_root(memcg));
2587
2588 return max_overage;
2589 }
2590
2591 /*
2592 * Get the number of jiffies that we should penalise a mischievous cgroup which
2593 * is exceeding its memory.high by checking both it and its ancestors.
2594 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2595 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2596 unsigned int nr_pages,
2597 u64 max_overage)
2598 {
2599 unsigned long penalty_jiffies;
2600
2601 if (!max_overage)
2602 return 0;
2603
2604 /*
2605 * We use overage compared to memory.high to calculate the number of
2606 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2607 * fairly lenient on small overages, and increasingly harsh when the
2608 * memcg in question makes it clear that it has no intention of stopping
2609 * its crazy behaviour, so we exponentially increase the delay based on
2610 * overage amount.
2611 */
2612 penalty_jiffies = max_overage * max_overage * HZ;
2613 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2614 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2615
2616 /*
2617 * Factor in the task's own contribution to the overage, such that four
2618 * N-sized allocations are throttled approximately the same as one
2619 * 4N-sized allocation.
2620 *
2621 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2622 * larger the current charge patch is than that.
2623 */
2624 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2625 }
2626
2627 /*
2628 * Scheduled by try_charge() to be executed from the userland return path
2629 * and reclaims memory over the high limit.
2630 */
mem_cgroup_handle_over_high(void)2631 void mem_cgroup_handle_over_high(void)
2632 {
2633 unsigned long penalty_jiffies;
2634 unsigned long pflags;
2635 unsigned long nr_reclaimed;
2636 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2637 int nr_retries = MAX_RECLAIM_RETRIES;
2638 struct mem_cgroup *memcg;
2639 bool in_retry = false;
2640
2641 if (likely(!nr_pages))
2642 return;
2643
2644 memcg = get_mem_cgroup_from_mm(current->mm);
2645 current->memcg_nr_pages_over_high = 0;
2646
2647 retry_reclaim:
2648 /*
2649 * The allocating task should reclaim at least the batch size, but for
2650 * subsequent retries we only want to do what's necessary to prevent oom
2651 * or breaching resource isolation.
2652 *
2653 * This is distinct from memory.max or page allocator behaviour because
2654 * memory.high is currently batched, whereas memory.max and the page
2655 * allocator run every time an allocation is made.
2656 */
2657 nr_reclaimed = reclaim_high(memcg,
2658 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2659 GFP_KERNEL);
2660
2661 /*
2662 * memory.high is breached and reclaim is unable to keep up. Throttle
2663 * allocators proactively to slow down excessive growth.
2664 */
2665 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2666 mem_find_max_overage(memcg));
2667
2668 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2669 swap_find_max_overage(memcg));
2670
2671 /*
2672 * Clamp the max delay per usermode return so as to still keep the
2673 * application moving forwards and also permit diagnostics, albeit
2674 * extremely slowly.
2675 */
2676 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2677
2678 /*
2679 * Don't sleep if the amount of jiffies this memcg owes us is so low
2680 * that it's not even worth doing, in an attempt to be nice to those who
2681 * go only a small amount over their memory.high value and maybe haven't
2682 * been aggressively reclaimed enough yet.
2683 */
2684 if (penalty_jiffies <= HZ / 100)
2685 goto out;
2686
2687 /*
2688 * If reclaim is making forward progress but we're still over
2689 * memory.high, we want to encourage that rather than doing allocator
2690 * throttling.
2691 */
2692 if (nr_reclaimed || nr_retries--) {
2693 in_retry = true;
2694 goto retry_reclaim;
2695 }
2696
2697 /*
2698 * If we exit early, we're guaranteed to die (since
2699 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2700 * need to account for any ill-begotten jiffies to pay them off later.
2701 */
2702 psi_memstall_enter(&pflags);
2703 schedule_timeout_killable(penalty_jiffies);
2704 psi_memstall_leave(&pflags);
2705
2706 out:
2707 css_put(&memcg->css);
2708 }
2709
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2710 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2711 unsigned int nr_pages)
2712 {
2713 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2714 int nr_retries = MAX_RECLAIM_RETRIES;
2715 struct mem_cgroup *mem_over_limit;
2716 struct page_counter *counter;
2717 enum oom_status oom_status;
2718 unsigned long nr_reclaimed;
2719 bool passed_oom = false;
2720 bool may_swap = true;
2721 bool drained = false;
2722 unsigned long pflags;
2723
2724 if (mem_cgroup_is_root(memcg))
2725 return 0;
2726 retry:
2727 if (consume_stock(memcg, nr_pages))
2728 return 0;
2729
2730 if (!do_memsw_account() ||
2731 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2732 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2733 goto done_restock;
2734 if (do_memsw_account())
2735 page_counter_uncharge(&memcg->memsw, batch);
2736 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2737 } else {
2738 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2739 may_swap = false;
2740 }
2741
2742 if (batch > nr_pages) {
2743 batch = nr_pages;
2744 goto retry;
2745 }
2746
2747 /*
2748 * Memcg doesn't have a dedicated reserve for atomic
2749 * allocations. But like the global atomic pool, we need to
2750 * put the burden of reclaim on regular allocation requests
2751 * and let these go through as privileged allocations.
2752 */
2753 if (gfp_mask & __GFP_ATOMIC)
2754 goto force;
2755
2756 /*
2757 * Prevent unbounded recursion when reclaim operations need to
2758 * allocate memory. This might exceed the limits temporarily,
2759 * but we prefer facilitating memory reclaim and getting back
2760 * under the limit over triggering OOM kills in these cases.
2761 */
2762 if (unlikely(current->flags & PF_MEMALLOC))
2763 goto force;
2764
2765 if (unlikely(task_in_memcg_oom(current)))
2766 goto nomem;
2767
2768 if (!gfpflags_allow_blocking(gfp_mask))
2769 goto nomem;
2770
2771 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2772
2773 psi_memstall_enter(&pflags);
2774 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2775 gfp_mask, may_swap);
2776 psi_memstall_leave(&pflags);
2777
2778 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2779 goto retry;
2780
2781 if (!drained) {
2782 drain_all_stock(mem_over_limit);
2783 drained = true;
2784 goto retry;
2785 }
2786
2787 if (gfp_mask & __GFP_NORETRY)
2788 goto nomem;
2789 /*
2790 * Even though the limit is exceeded at this point, reclaim
2791 * may have been able to free some pages. Retry the charge
2792 * before killing the task.
2793 *
2794 * Only for regular pages, though: huge pages are rather
2795 * unlikely to succeed so close to the limit, and we fall back
2796 * to regular pages anyway in case of failure.
2797 */
2798 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2799 goto retry;
2800 /*
2801 * At task move, charge accounts can be doubly counted. So, it's
2802 * better to wait until the end of task_move if something is going on.
2803 */
2804 if (mem_cgroup_wait_acct_move(mem_over_limit))
2805 goto retry;
2806
2807 if (nr_retries--)
2808 goto retry;
2809
2810 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2811 goto nomem;
2812
2813 if (gfp_mask & __GFP_NOFAIL)
2814 goto force;
2815
2816 /* Avoid endless loop for tasks bypassed by the oom killer */
2817 if (passed_oom && task_is_dying())
2818 goto nomem;
2819
2820 /*
2821 * keep retrying as long as the memcg oom killer is able to make
2822 * a forward progress or bypass the charge if the oom killer
2823 * couldn't make any progress.
2824 */
2825 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2826 get_order(nr_pages * PAGE_SIZE));
2827 if (oom_status == OOM_SUCCESS) {
2828 passed_oom = true;
2829 nr_retries = MAX_RECLAIM_RETRIES;
2830 goto retry;
2831 }
2832 nomem:
2833 if (!(gfp_mask & __GFP_NOFAIL))
2834 return -ENOMEM;
2835 force:
2836 /*
2837 * The allocation either can't fail or will lead to more memory
2838 * being freed very soon. Allow memory usage go over the limit
2839 * temporarily by force charging it.
2840 */
2841 page_counter_charge(&memcg->memory, nr_pages);
2842 if (do_memsw_account())
2843 page_counter_charge(&memcg->memsw, nr_pages);
2844
2845 return 0;
2846
2847 done_restock:
2848 if (batch > nr_pages)
2849 refill_stock(memcg, batch - nr_pages);
2850
2851 /*
2852 * If the hierarchy is above the normal consumption range, schedule
2853 * reclaim on returning to userland. We can perform reclaim here
2854 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2855 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2856 * not recorded as it most likely matches current's and won't
2857 * change in the meantime. As high limit is checked again before
2858 * reclaim, the cost of mismatch is negligible.
2859 */
2860 do {
2861 bool mem_high, swap_high;
2862
2863 mem_high = page_counter_read(&memcg->memory) >
2864 READ_ONCE(memcg->memory.high);
2865 swap_high = page_counter_read(&memcg->swap) >
2866 READ_ONCE(memcg->swap.high);
2867
2868 /* Don't bother a random interrupted task */
2869 if (in_interrupt()) {
2870 if (mem_high) {
2871 schedule_work(&memcg->high_work);
2872 break;
2873 }
2874 continue;
2875 }
2876
2877 if (mem_high || swap_high) {
2878 /*
2879 * The allocating tasks in this cgroup will need to do
2880 * reclaim or be throttled to prevent further growth
2881 * of the memory or swap footprints.
2882 *
2883 * Target some best-effort fairness between the tasks,
2884 * and distribute reclaim work and delay penalties
2885 * based on how much each task is actually allocating.
2886 */
2887 current->memcg_nr_pages_over_high += batch;
2888 set_notify_resume(current);
2889 break;
2890 }
2891 } while ((memcg = parent_mem_cgroup(memcg)));
2892
2893 return 0;
2894 }
2895
2896 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2897 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2898 {
2899 if (mem_cgroup_is_root(memcg))
2900 return;
2901
2902 page_counter_uncharge(&memcg->memory, nr_pages);
2903 if (do_memsw_account())
2904 page_counter_uncharge(&memcg->memsw, nr_pages);
2905 }
2906 #endif
2907
commit_charge(struct page * page,struct mem_cgroup * memcg)2908 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2909 {
2910 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2911 /*
2912 * Any of the following ensures page->mem_cgroup stability:
2913 *
2914 * - the page lock
2915 * - LRU isolation
2916 * - lock_page_memcg()
2917 * - exclusive reference
2918 */
2919 page->mem_cgroup = memcg;
2920 }
2921
2922 #ifdef CONFIG_MEMCG_KMEM
2923 /*
2924 * The allocated objcg pointers array is not accounted directly.
2925 * Moreover, it should not come from DMA buffer and is not readily
2926 * reclaimable. So those GFP bits should be masked off.
2927 */
2928 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2929
memcg_alloc_page_obj_cgroups(struct page * page,struct kmem_cache * s,gfp_t gfp)2930 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2931 gfp_t gfp)
2932 {
2933 unsigned int objects = objs_per_slab_page(s, page);
2934 void *vec;
2935
2936 gfp &= ~OBJCGS_CLEAR_MASK;
2937 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2938 page_to_nid(page));
2939 if (!vec)
2940 return -ENOMEM;
2941
2942 if (cmpxchg(&page->obj_cgroups, NULL,
2943 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2944 kfree(vec);
2945 else
2946 kmemleak_not_leak(vec);
2947
2948 return 0;
2949 }
2950
2951 /*
2952 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2953 *
2954 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2955 * cgroup_mutex, etc.
2956 */
mem_cgroup_from_obj(void * p)2957 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2958 {
2959 struct page *page;
2960
2961 if (mem_cgroup_disabled())
2962 return NULL;
2963
2964 page = virt_to_head_page(p);
2965
2966 /*
2967 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
2968 * or a pointer to obj_cgroup vector. In the latter case the lowest
2969 * bit of the pointer is set.
2970 * The page->mem_cgroup pointer can be asynchronously changed
2971 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
2972 * from a valid memcg pointer to objcg vector or back.
2973 */
2974 if (!page->mem_cgroup)
2975 return NULL;
2976
2977 /*
2978 * Slab objects are accounted individually, not per-page.
2979 * Memcg membership data for each individual object is saved in
2980 * the page->obj_cgroups.
2981 */
2982 if (page_has_obj_cgroups(page)) {
2983 struct obj_cgroup *objcg;
2984 unsigned int off;
2985
2986 off = obj_to_index(page->slab_cache, page, p);
2987 objcg = page_obj_cgroups(page)[off];
2988 if (objcg)
2989 return obj_cgroup_memcg(objcg);
2990
2991 return NULL;
2992 }
2993
2994 /* All other pages use page->mem_cgroup */
2995 return page->mem_cgroup;
2996 }
2997
get_obj_cgroup_from_current(void)2998 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2999 {
3000 struct obj_cgroup *objcg = NULL;
3001 struct mem_cgroup *memcg;
3002
3003 if (memcg_kmem_bypass())
3004 return NULL;
3005
3006 rcu_read_lock();
3007 if (unlikely(active_memcg()))
3008 memcg = active_memcg();
3009 else
3010 memcg = mem_cgroup_from_task(current);
3011
3012 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
3013 objcg = rcu_dereference(memcg->objcg);
3014 if (objcg && obj_cgroup_tryget(objcg))
3015 break;
3016 objcg = NULL;
3017 }
3018 rcu_read_unlock();
3019
3020 return objcg;
3021 }
3022
memcg_alloc_cache_id(void)3023 static int memcg_alloc_cache_id(void)
3024 {
3025 int id, size;
3026 int err;
3027
3028 id = ida_simple_get(&memcg_cache_ida,
3029 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3030 if (id < 0)
3031 return id;
3032
3033 if (id < memcg_nr_cache_ids)
3034 return id;
3035
3036 /*
3037 * There's no space for the new id in memcg_caches arrays,
3038 * so we have to grow them.
3039 */
3040 down_write(&memcg_cache_ids_sem);
3041
3042 size = 2 * (id + 1);
3043 if (size < MEMCG_CACHES_MIN_SIZE)
3044 size = MEMCG_CACHES_MIN_SIZE;
3045 else if (size > MEMCG_CACHES_MAX_SIZE)
3046 size = MEMCG_CACHES_MAX_SIZE;
3047
3048 err = memcg_update_all_list_lrus(size);
3049 if (!err)
3050 memcg_nr_cache_ids = size;
3051
3052 up_write(&memcg_cache_ids_sem);
3053
3054 if (err) {
3055 ida_simple_remove(&memcg_cache_ida, id);
3056 return err;
3057 }
3058 return id;
3059 }
3060
memcg_free_cache_id(int id)3061 static void memcg_free_cache_id(int id)
3062 {
3063 ida_simple_remove(&memcg_cache_ida, id);
3064 }
3065
3066 /**
3067 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3068 * @memcg: memory cgroup to charge
3069 * @gfp: reclaim mode
3070 * @nr_pages: number of pages to charge
3071 *
3072 * Returns 0 on success, an error code on failure.
3073 */
__memcg_kmem_charge(struct mem_cgroup * memcg,gfp_t gfp,unsigned int nr_pages)3074 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3075 unsigned int nr_pages)
3076 {
3077 struct page_counter *counter;
3078 int ret;
3079
3080 ret = try_charge(memcg, gfp, nr_pages);
3081 if (ret)
3082 return ret;
3083
3084 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3085 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3086
3087 /*
3088 * Enforce __GFP_NOFAIL allocation because callers are not
3089 * prepared to see failures and likely do not have any failure
3090 * handling code.
3091 */
3092 if (gfp & __GFP_NOFAIL) {
3093 page_counter_charge(&memcg->kmem, nr_pages);
3094 return 0;
3095 }
3096 cancel_charge(memcg, nr_pages);
3097 return -ENOMEM;
3098 }
3099 return 0;
3100 }
3101
3102 /**
3103 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3104 * @memcg: memcg to uncharge
3105 * @nr_pages: number of pages to uncharge
3106 */
__memcg_kmem_uncharge(struct mem_cgroup * memcg,unsigned int nr_pages)3107 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3108 {
3109 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3110 page_counter_uncharge(&memcg->kmem, nr_pages);
3111
3112 refill_stock(memcg, nr_pages);
3113 }
3114
3115 /**
3116 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3117 * @page: page to charge
3118 * @gfp: reclaim mode
3119 * @order: allocation order
3120 *
3121 * Returns 0 on success, an error code on failure.
3122 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)3123 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3124 {
3125 struct mem_cgroup *memcg;
3126 int ret = 0;
3127
3128 memcg = get_mem_cgroup_from_current();
3129 if (memcg && !mem_cgroup_is_root(memcg)) {
3130 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3131 if (!ret) {
3132 page->mem_cgroup = memcg;
3133 __SetPageKmemcg(page);
3134 return 0;
3135 }
3136 css_put(&memcg->css);
3137 }
3138 return ret;
3139 }
3140
3141 /**
3142 * __memcg_kmem_uncharge_page: uncharge a kmem page
3143 * @page: page to uncharge
3144 * @order: allocation order
3145 */
__memcg_kmem_uncharge_page(struct page * page,int order)3146 void __memcg_kmem_uncharge_page(struct page *page, int order)
3147 {
3148 struct mem_cgroup *memcg = page->mem_cgroup;
3149 unsigned int nr_pages = 1 << order;
3150
3151 if (!memcg)
3152 return;
3153
3154 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3155 __memcg_kmem_uncharge(memcg, nr_pages);
3156 page->mem_cgroup = NULL;
3157 css_put(&memcg->css);
3158
3159 /* slab pages do not have PageKmemcg flag set */
3160 if (PageKmemcg(page))
3161 __ClearPageKmemcg(page);
3162 }
3163
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)3164 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3165 {
3166 struct memcg_stock_pcp *stock;
3167 unsigned long flags;
3168 bool ret = false;
3169
3170 local_irq_save(flags);
3171
3172 stock = this_cpu_ptr(&memcg_stock);
3173 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3174 stock->nr_bytes -= nr_bytes;
3175 ret = true;
3176 }
3177
3178 local_irq_restore(flags);
3179
3180 return ret;
3181 }
3182
drain_obj_stock(struct memcg_stock_pcp * stock)3183 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3184 {
3185 struct obj_cgroup *old = stock->cached_objcg;
3186
3187 if (!old)
3188 return;
3189
3190 if (stock->nr_bytes) {
3191 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3192 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3193
3194 if (nr_pages) {
3195 struct mem_cgroup *memcg;
3196
3197 rcu_read_lock();
3198 retry:
3199 memcg = obj_cgroup_memcg(old);
3200 if (unlikely(!css_tryget(&memcg->css)))
3201 goto retry;
3202 rcu_read_unlock();
3203
3204 __memcg_kmem_uncharge(memcg, nr_pages);
3205 css_put(&memcg->css);
3206 }
3207
3208 /*
3209 * The leftover is flushed to the centralized per-memcg value.
3210 * On the next attempt to refill obj stock it will be moved
3211 * to a per-cpu stock (probably, on an other CPU), see
3212 * refill_obj_stock().
3213 *
3214 * How often it's flushed is a trade-off between the memory
3215 * limit enforcement accuracy and potential CPU contention,
3216 * so it might be changed in the future.
3217 */
3218 atomic_add(nr_bytes, &old->nr_charged_bytes);
3219 stock->nr_bytes = 0;
3220 }
3221
3222 obj_cgroup_put(old);
3223 stock->cached_objcg = NULL;
3224 }
3225
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)3226 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3227 struct mem_cgroup *root_memcg)
3228 {
3229 struct mem_cgroup *memcg;
3230
3231 if (stock->cached_objcg) {
3232 memcg = obj_cgroup_memcg(stock->cached_objcg);
3233 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3234 return true;
3235 }
3236
3237 return false;
3238 }
3239
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)3240 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3241 {
3242 struct memcg_stock_pcp *stock;
3243 unsigned long flags;
3244
3245 local_irq_save(flags);
3246
3247 stock = this_cpu_ptr(&memcg_stock);
3248 if (stock->cached_objcg != objcg) { /* reset if necessary */
3249 drain_obj_stock(stock);
3250 obj_cgroup_get(objcg);
3251 stock->cached_objcg = objcg;
3252 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3253 }
3254 stock->nr_bytes += nr_bytes;
3255
3256 if (stock->nr_bytes > PAGE_SIZE)
3257 drain_obj_stock(stock);
3258
3259 local_irq_restore(flags);
3260 }
3261
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3262 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3263 {
3264 struct mem_cgroup *memcg;
3265 unsigned int nr_pages, nr_bytes;
3266 int ret;
3267
3268 if (consume_obj_stock(objcg, size))
3269 return 0;
3270
3271 /*
3272 * In theory, memcg->nr_charged_bytes can have enough
3273 * pre-charged bytes to satisfy the allocation. However,
3274 * flushing memcg->nr_charged_bytes requires two atomic
3275 * operations, and memcg->nr_charged_bytes can't be big,
3276 * so it's better to ignore it and try grab some new pages.
3277 * memcg->nr_charged_bytes will be flushed in
3278 * refill_obj_stock(), called from this function or
3279 * independently later.
3280 */
3281 rcu_read_lock();
3282 retry:
3283 memcg = obj_cgroup_memcg(objcg);
3284 if (unlikely(!css_tryget(&memcg->css)))
3285 goto retry;
3286 rcu_read_unlock();
3287
3288 nr_pages = size >> PAGE_SHIFT;
3289 nr_bytes = size & (PAGE_SIZE - 1);
3290
3291 if (nr_bytes)
3292 nr_pages += 1;
3293
3294 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3295 if (!ret && nr_bytes)
3296 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3297
3298 css_put(&memcg->css);
3299 return ret;
3300 }
3301
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3302 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3303 {
3304 refill_obj_stock(objcg, size);
3305 }
3306
3307 #endif /* CONFIG_MEMCG_KMEM */
3308
3309 /*
3310 * Because head->mem_cgroup is not set on tails, set it now.
3311 */
split_page_memcg(struct page * head,unsigned int nr)3312 void split_page_memcg(struct page *head, unsigned int nr)
3313 {
3314 struct mem_cgroup *memcg = head->mem_cgroup;
3315 int kmemcg = PageKmemcg(head);
3316 int i;
3317
3318 if (mem_cgroup_disabled() || !memcg)
3319 return;
3320
3321 for (i = 1; i < nr; i++) {
3322 head[i].mem_cgroup = memcg;
3323 if (kmemcg)
3324 __SetPageKmemcg(head + i);
3325 }
3326 css_get_many(&memcg->css, nr - 1);
3327 }
3328
3329 #ifdef CONFIG_MEMCG_SWAP
3330 /**
3331 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3332 * @entry: swap entry to be moved
3333 * @from: mem_cgroup which the entry is moved from
3334 * @to: mem_cgroup which the entry is moved to
3335 *
3336 * It succeeds only when the swap_cgroup's record for this entry is the same
3337 * as the mem_cgroup's id of @from.
3338 *
3339 * Returns 0 on success, -EINVAL on failure.
3340 *
3341 * The caller must have charged to @to, IOW, called page_counter_charge() about
3342 * both res and memsw, and called css_get().
3343 */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3344 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3345 struct mem_cgroup *from, struct mem_cgroup *to)
3346 {
3347 unsigned short old_id, new_id;
3348
3349 old_id = mem_cgroup_id(from);
3350 new_id = mem_cgroup_id(to);
3351
3352 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3353 mod_memcg_state(from, MEMCG_SWAP, -1);
3354 mod_memcg_state(to, MEMCG_SWAP, 1);
3355 return 0;
3356 }
3357 return -EINVAL;
3358 }
3359 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3360 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3361 struct mem_cgroup *from, struct mem_cgroup *to)
3362 {
3363 return -EINVAL;
3364 }
3365 #endif
3366
3367 static DEFINE_MUTEX(memcg_max_mutex);
3368
mem_cgroup_resize_max(struct mem_cgroup * memcg,unsigned long max,bool memsw)3369 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3370 unsigned long max, bool memsw)
3371 {
3372 bool enlarge = false;
3373 bool drained = false;
3374 int ret;
3375 bool limits_invariant;
3376 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3377
3378 do {
3379 if (signal_pending(current)) {
3380 ret = -EINTR;
3381 break;
3382 }
3383
3384 mutex_lock(&memcg_max_mutex);
3385 /*
3386 * Make sure that the new limit (memsw or memory limit) doesn't
3387 * break our basic invariant rule memory.max <= memsw.max.
3388 */
3389 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3390 max <= memcg->memsw.max;
3391 if (!limits_invariant) {
3392 mutex_unlock(&memcg_max_mutex);
3393 ret = -EINVAL;
3394 break;
3395 }
3396 if (max > counter->max)
3397 enlarge = true;
3398 ret = page_counter_set_max(counter, max);
3399 mutex_unlock(&memcg_max_mutex);
3400
3401 if (!ret)
3402 break;
3403
3404 if (!drained) {
3405 drain_all_stock(memcg);
3406 drained = true;
3407 continue;
3408 }
3409
3410 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3411 GFP_KERNEL, !memsw)) {
3412 ret = -EBUSY;
3413 break;
3414 }
3415 } while (true);
3416
3417 if (!ret && enlarge)
3418 memcg_oom_recover(memcg);
3419
3420 return ret;
3421 }
3422
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)3423 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3424 gfp_t gfp_mask,
3425 unsigned long *total_scanned)
3426 {
3427 unsigned long nr_reclaimed = 0;
3428 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3429 unsigned long reclaimed;
3430 int loop = 0;
3431 struct mem_cgroup_tree_per_node *mctz;
3432 unsigned long excess;
3433 unsigned long nr_scanned;
3434
3435 if (order > 0)
3436 return 0;
3437
3438 mctz = soft_limit_tree_node(pgdat->node_id);
3439
3440 /*
3441 * Do not even bother to check the largest node if the root
3442 * is empty. Do it lockless to prevent lock bouncing. Races
3443 * are acceptable as soft limit is best effort anyway.
3444 */
3445 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3446 return 0;
3447
3448 /*
3449 * This loop can run a while, specially if mem_cgroup's continuously
3450 * keep exceeding their soft limit and putting the system under
3451 * pressure
3452 */
3453 do {
3454 if (next_mz)
3455 mz = next_mz;
3456 else
3457 mz = mem_cgroup_largest_soft_limit_node(mctz);
3458 if (!mz)
3459 break;
3460
3461 nr_scanned = 0;
3462 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3463 gfp_mask, &nr_scanned);
3464 nr_reclaimed += reclaimed;
3465 *total_scanned += nr_scanned;
3466 spin_lock_irq(&mctz->lock);
3467 __mem_cgroup_remove_exceeded(mz, mctz);
3468
3469 /*
3470 * If we failed to reclaim anything from this memory cgroup
3471 * it is time to move on to the next cgroup
3472 */
3473 next_mz = NULL;
3474 if (!reclaimed)
3475 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3476
3477 excess = soft_limit_excess(mz->memcg);
3478 /*
3479 * One school of thought says that we should not add
3480 * back the node to the tree if reclaim returns 0.
3481 * But our reclaim could return 0, simply because due
3482 * to priority we are exposing a smaller subset of
3483 * memory to reclaim from. Consider this as a longer
3484 * term TODO.
3485 */
3486 /* If excess == 0, no tree ops */
3487 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3488 spin_unlock_irq(&mctz->lock);
3489 css_put(&mz->memcg->css);
3490 loop++;
3491 /*
3492 * Could not reclaim anything and there are no more
3493 * mem cgroups to try or we seem to be looping without
3494 * reclaiming anything.
3495 */
3496 if (!nr_reclaimed &&
3497 (next_mz == NULL ||
3498 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3499 break;
3500 } while (!nr_reclaimed);
3501 if (next_mz)
3502 css_put(&next_mz->memcg->css);
3503 return nr_reclaimed;
3504 }
3505
3506 /*
3507 * Test whether @memcg has children, dead or alive. Note that this
3508 * function doesn't care whether @memcg has use_hierarchy enabled and
3509 * returns %true if there are child csses according to the cgroup
3510 * hierarchy. Testing use_hierarchy is the caller's responsibility.
3511 */
memcg_has_children(struct mem_cgroup * memcg)3512 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3513 {
3514 bool ret;
3515
3516 rcu_read_lock();
3517 ret = css_next_child(NULL, &memcg->css);
3518 rcu_read_unlock();
3519 return ret;
3520 }
3521
3522 /*
3523 * Reclaims as many pages from the given memcg as possible.
3524 *
3525 * Caller is responsible for holding css reference for memcg.
3526 */
mem_cgroup_force_empty(struct mem_cgroup * memcg)3527 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3528 {
3529 int nr_retries = MAX_RECLAIM_RETRIES;
3530
3531 /* we call try-to-free pages for make this cgroup empty */
3532 lru_add_drain_all();
3533
3534 drain_all_stock(memcg);
3535
3536 /* try to free all pages in this cgroup */
3537 while (nr_retries && page_counter_read(&memcg->memory)) {
3538 int progress;
3539
3540 if (signal_pending(current))
3541 return -EINTR;
3542
3543 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3544 GFP_KERNEL, true);
3545 if (!progress) {
3546 nr_retries--;
3547 /* maybe some writeback is necessary */
3548 congestion_wait(BLK_RW_ASYNC, HZ/10);
3549 }
3550
3551 }
3552
3553 return 0;
3554 }
3555
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3556 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3557 char *buf, size_t nbytes,
3558 loff_t off)
3559 {
3560 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3561
3562 if (mem_cgroup_is_root(memcg))
3563 return -EINVAL;
3564 return mem_cgroup_force_empty(memcg) ?: nbytes;
3565 }
3566
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)3567 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3568 struct cftype *cft)
3569 {
3570 return mem_cgroup_from_css(css)->use_hierarchy;
3571 }
3572
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3573 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3574 struct cftype *cft, u64 val)
3575 {
3576 int retval = 0;
3577 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3578 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3579
3580 if (memcg->use_hierarchy == val)
3581 return 0;
3582
3583 /*
3584 * If parent's use_hierarchy is set, we can't make any modifications
3585 * in the child subtrees. If it is unset, then the change can
3586 * occur, provided the current cgroup has no children.
3587 *
3588 * For the root cgroup, parent_mem is NULL, we allow value to be
3589 * set if there are no children.
3590 */
3591 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3592 (val == 1 || val == 0)) {
3593 if (!memcg_has_children(memcg))
3594 memcg->use_hierarchy = val;
3595 else
3596 retval = -EBUSY;
3597 } else
3598 retval = -EINVAL;
3599
3600 return retval;
3601 }
3602
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3603 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3604 {
3605 unsigned long val;
3606
3607 if (mem_cgroup_is_root(memcg)) {
3608 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3609 memcg_page_state(memcg, NR_ANON_MAPPED);
3610 if (swap)
3611 val += memcg_page_state(memcg, MEMCG_SWAP);
3612 } else {
3613 if (!swap)
3614 val = page_counter_read(&memcg->memory);
3615 else
3616 val = page_counter_read(&memcg->memsw);
3617 }
3618 return val;
3619 }
3620
3621 enum {
3622 RES_USAGE,
3623 RES_LIMIT,
3624 RES_MAX_USAGE,
3625 RES_FAILCNT,
3626 RES_SOFT_LIMIT,
3627 };
3628
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)3629 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3630 struct cftype *cft)
3631 {
3632 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3633 struct page_counter *counter;
3634
3635 switch (MEMFILE_TYPE(cft->private)) {
3636 case _MEM:
3637 counter = &memcg->memory;
3638 break;
3639 case _MEMSWAP:
3640 counter = &memcg->memsw;
3641 break;
3642 case _KMEM:
3643 counter = &memcg->kmem;
3644 break;
3645 case _TCP:
3646 counter = &memcg->tcpmem;
3647 break;
3648 default:
3649 BUG();
3650 }
3651
3652 switch (MEMFILE_ATTR(cft->private)) {
3653 case RES_USAGE:
3654 if (counter == &memcg->memory)
3655 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3656 if (counter == &memcg->memsw)
3657 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3658 return (u64)page_counter_read(counter) * PAGE_SIZE;
3659 case RES_LIMIT:
3660 return (u64)counter->max * PAGE_SIZE;
3661 case RES_MAX_USAGE:
3662 return (u64)counter->watermark * PAGE_SIZE;
3663 case RES_FAILCNT:
3664 return counter->failcnt;
3665 case RES_SOFT_LIMIT:
3666 return (u64)memcg->soft_limit * PAGE_SIZE;
3667 default:
3668 BUG();
3669 }
3670 }
3671
memcg_flush_percpu_vmstats(struct mem_cgroup * memcg)3672 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3673 {
3674 unsigned long stat[MEMCG_NR_STAT] = {0};
3675 struct mem_cgroup *mi;
3676 int node, cpu, i;
3677
3678 for_each_online_cpu(cpu)
3679 for (i = 0; i < MEMCG_NR_STAT; i++)
3680 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3681
3682 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3683 for (i = 0; i < MEMCG_NR_STAT; i++)
3684 atomic_long_add(stat[i], &mi->vmstats[i]);
3685
3686 for_each_node(node) {
3687 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3688 struct mem_cgroup_per_node *pi;
3689
3690 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3691 stat[i] = 0;
3692
3693 for_each_online_cpu(cpu)
3694 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3695 stat[i] += per_cpu(
3696 pn->lruvec_stat_cpu->count[i], cpu);
3697
3698 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3699 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3700 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3701 }
3702 }
3703
memcg_flush_percpu_vmevents(struct mem_cgroup * memcg)3704 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3705 {
3706 unsigned long events[NR_VM_EVENT_ITEMS];
3707 struct mem_cgroup *mi;
3708 int cpu, i;
3709
3710 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3711 events[i] = 0;
3712
3713 for_each_online_cpu(cpu)
3714 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3715 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3716 cpu);
3717
3718 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3719 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3720 atomic_long_add(events[i], &mi->vmevents[i]);
3721 }
3722
3723 #ifdef CONFIG_MEMCG_KMEM
memcg_online_kmem(struct mem_cgroup * memcg)3724 static int memcg_online_kmem(struct mem_cgroup *memcg)
3725 {
3726 struct obj_cgroup *objcg;
3727 int memcg_id;
3728
3729 if (cgroup_memory_nokmem)
3730 return 0;
3731
3732 BUG_ON(memcg->kmemcg_id >= 0);
3733 BUG_ON(memcg->kmem_state);
3734
3735 memcg_id = memcg_alloc_cache_id();
3736 if (memcg_id < 0)
3737 return memcg_id;
3738
3739 objcg = obj_cgroup_alloc();
3740 if (!objcg) {
3741 memcg_free_cache_id(memcg_id);
3742 return -ENOMEM;
3743 }
3744 objcg->memcg = memcg;
3745 rcu_assign_pointer(memcg->objcg, objcg);
3746
3747 static_branch_enable(&memcg_kmem_enabled_key);
3748
3749 /*
3750 * A memory cgroup is considered kmem-online as soon as it gets
3751 * kmemcg_id. Setting the id after enabling static branching will
3752 * guarantee no one starts accounting before all call sites are
3753 * patched.
3754 */
3755 memcg->kmemcg_id = memcg_id;
3756 memcg->kmem_state = KMEM_ONLINE;
3757
3758 return 0;
3759 }
3760
memcg_offline_kmem(struct mem_cgroup * memcg)3761 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3762 {
3763 struct cgroup_subsys_state *css;
3764 struct mem_cgroup *parent, *child;
3765 int kmemcg_id;
3766
3767 if (memcg->kmem_state != KMEM_ONLINE)
3768 return;
3769
3770 memcg->kmem_state = KMEM_ALLOCATED;
3771
3772 parent = parent_mem_cgroup(memcg);
3773 if (!parent)
3774 parent = root_mem_cgroup;
3775
3776 memcg_reparent_objcgs(memcg, parent);
3777
3778 kmemcg_id = memcg->kmemcg_id;
3779 BUG_ON(kmemcg_id < 0);
3780
3781 /*
3782 * Change kmemcg_id of this cgroup and all its descendants to the
3783 * parent's id, and then move all entries from this cgroup's list_lrus
3784 * to ones of the parent. After we have finished, all list_lrus
3785 * corresponding to this cgroup are guaranteed to remain empty. The
3786 * ordering is imposed by list_lru_node->lock taken by
3787 * memcg_drain_all_list_lrus().
3788 */
3789 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3790 css_for_each_descendant_pre(css, &memcg->css) {
3791 child = mem_cgroup_from_css(css);
3792 BUG_ON(child->kmemcg_id != kmemcg_id);
3793 child->kmemcg_id = parent->kmemcg_id;
3794 if (!memcg->use_hierarchy)
3795 break;
3796 }
3797 rcu_read_unlock();
3798
3799 memcg_drain_all_list_lrus(kmemcg_id, parent);
3800
3801 memcg_free_cache_id(kmemcg_id);
3802 }
3803
memcg_free_kmem(struct mem_cgroup * memcg)3804 static void memcg_free_kmem(struct mem_cgroup *memcg)
3805 {
3806 /* css_alloc() failed, offlining didn't happen */
3807 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3808 memcg_offline_kmem(memcg);
3809 }
3810 #else
memcg_online_kmem(struct mem_cgroup * memcg)3811 static int memcg_online_kmem(struct mem_cgroup *memcg)
3812 {
3813 return 0;
3814 }
memcg_offline_kmem(struct mem_cgroup * memcg)3815 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3816 {
3817 }
memcg_free_kmem(struct mem_cgroup * memcg)3818 static void memcg_free_kmem(struct mem_cgroup *memcg)
3819 {
3820 }
3821 #endif /* CONFIG_MEMCG_KMEM */
3822
memcg_update_kmem_max(struct mem_cgroup * memcg,unsigned long max)3823 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3824 unsigned long max)
3825 {
3826 int ret;
3827
3828 mutex_lock(&memcg_max_mutex);
3829 ret = page_counter_set_max(&memcg->kmem, max);
3830 mutex_unlock(&memcg_max_mutex);
3831 return ret;
3832 }
3833
memcg_update_tcp_max(struct mem_cgroup * memcg,unsigned long max)3834 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3835 {
3836 int ret;
3837
3838 mutex_lock(&memcg_max_mutex);
3839
3840 ret = page_counter_set_max(&memcg->tcpmem, max);
3841 if (ret)
3842 goto out;
3843
3844 if (!memcg->tcpmem_active) {
3845 /*
3846 * The active flag needs to be written after the static_key
3847 * update. This is what guarantees that the socket activation
3848 * function is the last one to run. See mem_cgroup_sk_alloc()
3849 * for details, and note that we don't mark any socket as
3850 * belonging to this memcg until that flag is up.
3851 *
3852 * We need to do this, because static_keys will span multiple
3853 * sites, but we can't control their order. If we mark a socket
3854 * as accounted, but the accounting functions are not patched in
3855 * yet, we'll lose accounting.
3856 *
3857 * We never race with the readers in mem_cgroup_sk_alloc(),
3858 * because when this value change, the code to process it is not
3859 * patched in yet.
3860 */
3861 static_branch_inc(&memcg_sockets_enabled_key);
3862 memcg->tcpmem_active = true;
3863 }
3864 out:
3865 mutex_unlock(&memcg_max_mutex);
3866 return ret;
3867 }
3868
3869 /*
3870 * The user of this function is...
3871 * RES_LIMIT.
3872 */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3873 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3874 char *buf, size_t nbytes, loff_t off)
3875 {
3876 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3877 unsigned long nr_pages;
3878 int ret;
3879
3880 buf = strstrip(buf);
3881 ret = page_counter_memparse(buf, "-1", &nr_pages);
3882 if (ret)
3883 return ret;
3884
3885 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3886 case RES_LIMIT:
3887 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3888 ret = -EINVAL;
3889 break;
3890 }
3891 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3892 case _MEM:
3893 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3894 break;
3895 case _MEMSWAP:
3896 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3897 break;
3898 case _KMEM:
3899 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3900 "Please report your usecase to linux-mm@kvack.org if you "
3901 "depend on this functionality.\n");
3902 ret = memcg_update_kmem_max(memcg, nr_pages);
3903 break;
3904 case _TCP:
3905 ret = memcg_update_tcp_max(memcg, nr_pages);
3906 break;
3907 }
3908 break;
3909 case RES_SOFT_LIMIT:
3910 memcg->soft_limit = nr_pages;
3911 ret = 0;
3912 break;
3913 }
3914 return ret ?: nbytes;
3915 }
3916
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3917 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3918 size_t nbytes, loff_t off)
3919 {
3920 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3921 struct page_counter *counter;
3922
3923 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3924 case _MEM:
3925 counter = &memcg->memory;
3926 break;
3927 case _MEMSWAP:
3928 counter = &memcg->memsw;
3929 break;
3930 case _KMEM:
3931 counter = &memcg->kmem;
3932 break;
3933 case _TCP:
3934 counter = &memcg->tcpmem;
3935 break;
3936 default:
3937 BUG();
3938 }
3939
3940 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3941 case RES_MAX_USAGE:
3942 page_counter_reset_watermark(counter);
3943 break;
3944 case RES_FAILCNT:
3945 counter->failcnt = 0;
3946 break;
3947 default:
3948 BUG();
3949 }
3950
3951 return nbytes;
3952 }
3953
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3954 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3955 struct cftype *cft)
3956 {
3957 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3958 }
3959
3960 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3961 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3962 struct cftype *cft, u64 val)
3963 {
3964 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3965
3966 if (val & ~MOVE_MASK)
3967 return -EINVAL;
3968
3969 /*
3970 * No kind of locking is needed in here, because ->can_attach() will
3971 * check this value once in the beginning of the process, and then carry
3972 * on with stale data. This means that changes to this value will only
3973 * affect task migrations starting after the change.
3974 */
3975 memcg->move_charge_at_immigrate = val;
3976 return 0;
3977 }
3978 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3979 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3980 struct cftype *cft, u64 val)
3981 {
3982 return -ENOSYS;
3983 }
3984 #endif
3985
3986 #ifdef CONFIG_NUMA
3987
3988 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3989 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3990 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3991
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask,bool tree)3992 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3993 int nid, unsigned int lru_mask, bool tree)
3994 {
3995 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3996 unsigned long nr = 0;
3997 enum lru_list lru;
3998
3999 VM_BUG_ON((unsigned)nid >= nr_node_ids);
4000
4001 for_each_lru(lru) {
4002 if (!(BIT(lru) & lru_mask))
4003 continue;
4004 if (tree)
4005 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4006 else
4007 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4008 }
4009 return nr;
4010 }
4011
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask,bool tree)4012 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4013 unsigned int lru_mask,
4014 bool tree)
4015 {
4016 unsigned long nr = 0;
4017 enum lru_list lru;
4018
4019 for_each_lru(lru) {
4020 if (!(BIT(lru) & lru_mask))
4021 continue;
4022 if (tree)
4023 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4024 else
4025 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4026 }
4027 return nr;
4028 }
4029
memcg_numa_stat_show(struct seq_file * m,void * v)4030 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4031 {
4032 struct numa_stat {
4033 const char *name;
4034 unsigned int lru_mask;
4035 };
4036
4037 static const struct numa_stat stats[] = {
4038 { "total", LRU_ALL },
4039 { "file", LRU_ALL_FILE },
4040 { "anon", LRU_ALL_ANON },
4041 { "unevictable", BIT(LRU_UNEVICTABLE) },
4042 };
4043 const struct numa_stat *stat;
4044 int nid;
4045 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4046
4047 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4048 seq_printf(m, "%s=%lu", stat->name,
4049 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4050 false));
4051 for_each_node_state(nid, N_MEMORY)
4052 seq_printf(m, " N%d=%lu", nid,
4053 mem_cgroup_node_nr_lru_pages(memcg, nid,
4054 stat->lru_mask, false));
4055 seq_putc(m, '\n');
4056 }
4057
4058 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4059
4060 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4061 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4062 true));
4063 for_each_node_state(nid, N_MEMORY)
4064 seq_printf(m, " N%d=%lu", nid,
4065 mem_cgroup_node_nr_lru_pages(memcg, nid,
4066 stat->lru_mask, true));
4067 seq_putc(m, '\n');
4068 }
4069
4070 return 0;
4071 }
4072 #endif /* CONFIG_NUMA */
4073
4074 static const unsigned int memcg1_stats[] = {
4075 NR_FILE_PAGES,
4076 NR_ANON_MAPPED,
4077 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4078 NR_ANON_THPS,
4079 #endif
4080 NR_SHMEM,
4081 NR_FILE_MAPPED,
4082 NR_FILE_DIRTY,
4083 NR_WRITEBACK,
4084 MEMCG_SWAP,
4085 };
4086
4087 static const char *const memcg1_stat_names[] = {
4088 "cache",
4089 "rss",
4090 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4091 "rss_huge",
4092 #endif
4093 "shmem",
4094 "mapped_file",
4095 "dirty",
4096 "writeback",
4097 "swap",
4098 };
4099
4100 /* Universal VM events cgroup1 shows, original sort order */
4101 static const unsigned int memcg1_events[] = {
4102 PGPGIN,
4103 PGPGOUT,
4104 PGFAULT,
4105 PGMAJFAULT,
4106 };
4107
memcg_stat_show(struct seq_file * m,void * v)4108 static int memcg_stat_show(struct seq_file *m, void *v)
4109 {
4110 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4111 unsigned long memory, memsw;
4112 struct mem_cgroup *mi;
4113 unsigned int i;
4114
4115 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4116
4117 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4118 unsigned long nr;
4119
4120 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4121 continue;
4122 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4123 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4124 if (memcg1_stats[i] == NR_ANON_THPS)
4125 nr *= HPAGE_PMD_NR;
4126 #endif
4127 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4128 }
4129
4130 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4131 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4132 memcg_events_local(memcg, memcg1_events[i]));
4133
4134 for (i = 0; i < NR_LRU_LISTS; i++)
4135 seq_printf(m, "%s %lu\n", lru_list_name(i),
4136 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4137 PAGE_SIZE);
4138
4139 /* Hierarchical information */
4140 memory = memsw = PAGE_COUNTER_MAX;
4141 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4142 memory = min(memory, READ_ONCE(mi->memory.max));
4143 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4144 }
4145 seq_printf(m, "hierarchical_memory_limit %llu\n",
4146 (u64)memory * PAGE_SIZE);
4147 if (do_memsw_account())
4148 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4149 (u64)memsw * PAGE_SIZE);
4150
4151 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4152 unsigned long nr;
4153
4154 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4155 continue;
4156 nr = memcg_page_state(memcg, memcg1_stats[i]);
4157 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4158 if (memcg1_stats[i] == NR_ANON_THPS)
4159 nr *= HPAGE_PMD_NR;
4160 #endif
4161 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4162 (u64)nr * PAGE_SIZE);
4163 }
4164
4165 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4166 seq_printf(m, "total_%s %llu\n",
4167 vm_event_name(memcg1_events[i]),
4168 (u64)memcg_events(memcg, memcg1_events[i]));
4169
4170 for (i = 0; i < NR_LRU_LISTS; i++)
4171 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4172 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4173 PAGE_SIZE);
4174
4175 #ifdef CONFIG_DEBUG_VM
4176 {
4177 pg_data_t *pgdat;
4178 struct mem_cgroup_per_node *mz;
4179 unsigned long anon_cost = 0;
4180 unsigned long file_cost = 0;
4181
4182 for_each_online_pgdat(pgdat) {
4183 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4184
4185 anon_cost += mz->lruvec.anon_cost;
4186 file_cost += mz->lruvec.file_cost;
4187 }
4188 seq_printf(m, "anon_cost %lu\n", anon_cost);
4189 seq_printf(m, "file_cost %lu\n", file_cost);
4190 }
4191 #endif
4192
4193 return 0;
4194 }
4195
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)4196 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4197 struct cftype *cft)
4198 {
4199 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4200
4201 return mem_cgroup_swappiness(memcg);
4202 }
4203
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4204 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4205 struct cftype *cft, u64 val)
4206 {
4207 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4208
4209 if (val > 100)
4210 return -EINVAL;
4211
4212 if (css->parent)
4213 memcg->swappiness = val;
4214 else
4215 vm_swappiness = val;
4216
4217 return 0;
4218 }
4219
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)4220 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4221 {
4222 struct mem_cgroup_threshold_ary *t;
4223 unsigned long usage;
4224 int i;
4225
4226 rcu_read_lock();
4227 if (!swap)
4228 t = rcu_dereference(memcg->thresholds.primary);
4229 else
4230 t = rcu_dereference(memcg->memsw_thresholds.primary);
4231
4232 if (!t)
4233 goto unlock;
4234
4235 usage = mem_cgroup_usage(memcg, swap);
4236
4237 /*
4238 * current_threshold points to threshold just below or equal to usage.
4239 * If it's not true, a threshold was crossed after last
4240 * call of __mem_cgroup_threshold().
4241 */
4242 i = t->current_threshold;
4243
4244 /*
4245 * Iterate backward over array of thresholds starting from
4246 * current_threshold and check if a threshold is crossed.
4247 * If none of thresholds below usage is crossed, we read
4248 * only one element of the array here.
4249 */
4250 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4251 eventfd_signal(t->entries[i].eventfd, 1);
4252
4253 /* i = current_threshold + 1 */
4254 i++;
4255
4256 /*
4257 * Iterate forward over array of thresholds starting from
4258 * current_threshold+1 and check if a threshold is crossed.
4259 * If none of thresholds above usage is crossed, we read
4260 * only one element of the array here.
4261 */
4262 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4263 eventfd_signal(t->entries[i].eventfd, 1);
4264
4265 /* Update current_threshold */
4266 t->current_threshold = i - 1;
4267 unlock:
4268 rcu_read_unlock();
4269 }
4270
mem_cgroup_threshold(struct mem_cgroup * memcg)4271 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4272 {
4273 while (memcg) {
4274 __mem_cgroup_threshold(memcg, false);
4275 if (do_memsw_account())
4276 __mem_cgroup_threshold(memcg, true);
4277
4278 memcg = parent_mem_cgroup(memcg);
4279 }
4280 }
4281
compare_thresholds(const void * a,const void * b)4282 static int compare_thresholds(const void *a, const void *b)
4283 {
4284 const struct mem_cgroup_threshold *_a = a;
4285 const struct mem_cgroup_threshold *_b = b;
4286
4287 if (_a->threshold > _b->threshold)
4288 return 1;
4289
4290 if (_a->threshold < _b->threshold)
4291 return -1;
4292
4293 return 0;
4294 }
4295
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)4296 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4297 {
4298 struct mem_cgroup_eventfd_list *ev;
4299
4300 spin_lock(&memcg_oom_lock);
4301
4302 list_for_each_entry(ev, &memcg->oom_notify, list)
4303 eventfd_signal(ev->eventfd, 1);
4304
4305 spin_unlock(&memcg_oom_lock);
4306 return 0;
4307 }
4308
mem_cgroup_oom_notify(struct mem_cgroup * memcg)4309 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4310 {
4311 struct mem_cgroup *iter;
4312
4313 for_each_mem_cgroup_tree(iter, memcg)
4314 mem_cgroup_oom_notify_cb(iter);
4315 }
4316
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)4317 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4318 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4319 {
4320 struct mem_cgroup_thresholds *thresholds;
4321 struct mem_cgroup_threshold_ary *new;
4322 unsigned long threshold;
4323 unsigned long usage;
4324 int i, size, ret;
4325
4326 ret = page_counter_memparse(args, "-1", &threshold);
4327 if (ret)
4328 return ret;
4329
4330 mutex_lock(&memcg->thresholds_lock);
4331
4332 if (type == _MEM) {
4333 thresholds = &memcg->thresholds;
4334 usage = mem_cgroup_usage(memcg, false);
4335 } else if (type == _MEMSWAP) {
4336 thresholds = &memcg->memsw_thresholds;
4337 usage = mem_cgroup_usage(memcg, true);
4338 } else
4339 BUG();
4340
4341 /* Check if a threshold crossed before adding a new one */
4342 if (thresholds->primary)
4343 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4344
4345 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4346
4347 /* Allocate memory for new array of thresholds */
4348 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4349 if (!new) {
4350 ret = -ENOMEM;
4351 goto unlock;
4352 }
4353 new->size = size;
4354
4355 /* Copy thresholds (if any) to new array */
4356 if (thresholds->primary)
4357 memcpy(new->entries, thresholds->primary->entries,
4358 flex_array_size(new, entries, size - 1));
4359
4360 /* Add new threshold */
4361 new->entries[size - 1].eventfd = eventfd;
4362 new->entries[size - 1].threshold = threshold;
4363
4364 /* Sort thresholds. Registering of new threshold isn't time-critical */
4365 sort(new->entries, size, sizeof(*new->entries),
4366 compare_thresholds, NULL);
4367
4368 /* Find current threshold */
4369 new->current_threshold = -1;
4370 for (i = 0; i < size; i++) {
4371 if (new->entries[i].threshold <= usage) {
4372 /*
4373 * new->current_threshold will not be used until
4374 * rcu_assign_pointer(), so it's safe to increment
4375 * it here.
4376 */
4377 ++new->current_threshold;
4378 } else
4379 break;
4380 }
4381
4382 /* Free old spare buffer and save old primary buffer as spare */
4383 kfree(thresholds->spare);
4384 thresholds->spare = thresholds->primary;
4385
4386 rcu_assign_pointer(thresholds->primary, new);
4387
4388 /* To be sure that nobody uses thresholds */
4389 synchronize_rcu();
4390
4391 unlock:
4392 mutex_unlock(&memcg->thresholds_lock);
4393
4394 return ret;
4395 }
4396
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4397 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4398 struct eventfd_ctx *eventfd, const char *args)
4399 {
4400 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4401 }
4402
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4403 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4404 struct eventfd_ctx *eventfd, const char *args)
4405 {
4406 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4407 }
4408
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)4409 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4410 struct eventfd_ctx *eventfd, enum res_type type)
4411 {
4412 struct mem_cgroup_thresholds *thresholds;
4413 struct mem_cgroup_threshold_ary *new;
4414 unsigned long usage;
4415 int i, j, size, entries;
4416
4417 mutex_lock(&memcg->thresholds_lock);
4418
4419 if (type == _MEM) {
4420 thresholds = &memcg->thresholds;
4421 usage = mem_cgroup_usage(memcg, false);
4422 } else if (type == _MEMSWAP) {
4423 thresholds = &memcg->memsw_thresholds;
4424 usage = mem_cgroup_usage(memcg, true);
4425 } else
4426 BUG();
4427
4428 if (!thresholds->primary)
4429 goto unlock;
4430
4431 /* Check if a threshold crossed before removing */
4432 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4433
4434 /* Calculate new number of threshold */
4435 size = entries = 0;
4436 for (i = 0; i < thresholds->primary->size; i++) {
4437 if (thresholds->primary->entries[i].eventfd != eventfd)
4438 size++;
4439 else
4440 entries++;
4441 }
4442
4443 new = thresholds->spare;
4444
4445 /* If no items related to eventfd have been cleared, nothing to do */
4446 if (!entries)
4447 goto unlock;
4448
4449 /* Set thresholds array to NULL if we don't have thresholds */
4450 if (!size) {
4451 kfree(new);
4452 new = NULL;
4453 goto swap_buffers;
4454 }
4455
4456 new->size = size;
4457
4458 /* Copy thresholds and find current threshold */
4459 new->current_threshold = -1;
4460 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4461 if (thresholds->primary->entries[i].eventfd == eventfd)
4462 continue;
4463
4464 new->entries[j] = thresholds->primary->entries[i];
4465 if (new->entries[j].threshold <= usage) {
4466 /*
4467 * new->current_threshold will not be used
4468 * until rcu_assign_pointer(), so it's safe to increment
4469 * it here.
4470 */
4471 ++new->current_threshold;
4472 }
4473 j++;
4474 }
4475
4476 swap_buffers:
4477 /* Swap primary and spare array */
4478 thresholds->spare = thresholds->primary;
4479
4480 rcu_assign_pointer(thresholds->primary, new);
4481
4482 /* To be sure that nobody uses thresholds */
4483 synchronize_rcu();
4484
4485 /* If all events are unregistered, free the spare array */
4486 if (!new) {
4487 kfree(thresholds->spare);
4488 thresholds->spare = NULL;
4489 }
4490 unlock:
4491 mutex_unlock(&memcg->thresholds_lock);
4492 }
4493
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4494 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4495 struct eventfd_ctx *eventfd)
4496 {
4497 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4498 }
4499
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4500 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4501 struct eventfd_ctx *eventfd)
4502 {
4503 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4504 }
4505
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4506 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4507 struct eventfd_ctx *eventfd, const char *args)
4508 {
4509 struct mem_cgroup_eventfd_list *event;
4510
4511 event = kmalloc(sizeof(*event), GFP_KERNEL);
4512 if (!event)
4513 return -ENOMEM;
4514
4515 spin_lock(&memcg_oom_lock);
4516
4517 event->eventfd = eventfd;
4518 list_add(&event->list, &memcg->oom_notify);
4519
4520 /* already in OOM ? */
4521 if (memcg->under_oom)
4522 eventfd_signal(eventfd, 1);
4523 spin_unlock(&memcg_oom_lock);
4524
4525 return 0;
4526 }
4527
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4528 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4529 struct eventfd_ctx *eventfd)
4530 {
4531 struct mem_cgroup_eventfd_list *ev, *tmp;
4532
4533 spin_lock(&memcg_oom_lock);
4534
4535 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4536 if (ev->eventfd == eventfd) {
4537 list_del(&ev->list);
4538 kfree(ev);
4539 }
4540 }
4541
4542 spin_unlock(&memcg_oom_lock);
4543 }
4544
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)4545 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4546 {
4547 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4548
4549 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4550 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4551 seq_printf(sf, "oom_kill %lu\n",
4552 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4553 return 0;
4554 }
4555
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4556 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4557 struct cftype *cft, u64 val)
4558 {
4559 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4560
4561 /* cannot set to root cgroup and only 0 and 1 are allowed */
4562 if (!css->parent || !((val == 0) || (val == 1)))
4563 return -EINVAL;
4564
4565 memcg->oom_kill_disable = val;
4566 if (!val)
4567 memcg_oom_recover(memcg);
4568
4569 return 0;
4570 }
4571
4572 #ifdef CONFIG_CGROUP_WRITEBACK
4573
4574 #include <trace/events/writeback.h>
4575
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4576 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4577 {
4578 return wb_domain_init(&memcg->cgwb_domain, gfp);
4579 }
4580
memcg_wb_domain_exit(struct mem_cgroup * memcg)4581 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4582 {
4583 wb_domain_exit(&memcg->cgwb_domain);
4584 }
4585
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4586 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4587 {
4588 wb_domain_size_changed(&memcg->cgwb_domain);
4589 }
4590
mem_cgroup_wb_domain(struct bdi_writeback * wb)4591 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4592 {
4593 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4594
4595 if (!memcg->css.parent)
4596 return NULL;
4597
4598 return &memcg->cgwb_domain;
4599 }
4600
4601 /*
4602 * idx can be of type enum memcg_stat_item or node_stat_item.
4603 * Keep in sync with memcg_exact_page().
4604 */
memcg_exact_page_state(struct mem_cgroup * memcg,int idx)4605 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4606 {
4607 long x = atomic_long_read(&memcg->vmstats[idx]);
4608 int cpu;
4609
4610 for_each_online_cpu(cpu)
4611 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4612 if (x < 0)
4613 x = 0;
4614 return x;
4615 }
4616
4617 /**
4618 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4619 * @wb: bdi_writeback in question
4620 * @pfilepages: out parameter for number of file pages
4621 * @pheadroom: out parameter for number of allocatable pages according to memcg
4622 * @pdirty: out parameter for number of dirty pages
4623 * @pwriteback: out parameter for number of pages under writeback
4624 *
4625 * Determine the numbers of file, headroom, dirty, and writeback pages in
4626 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4627 * is a bit more involved.
4628 *
4629 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4630 * headroom is calculated as the lowest headroom of itself and the
4631 * ancestors. Note that this doesn't consider the actual amount of
4632 * available memory in the system. The caller should further cap
4633 * *@pheadroom accordingly.
4634 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)4635 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4636 unsigned long *pheadroom, unsigned long *pdirty,
4637 unsigned long *pwriteback)
4638 {
4639 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4640 struct mem_cgroup *parent;
4641
4642 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4643
4644 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4645 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4646 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4647 *pheadroom = PAGE_COUNTER_MAX;
4648
4649 while ((parent = parent_mem_cgroup(memcg))) {
4650 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4651 READ_ONCE(memcg->memory.high));
4652 unsigned long used = page_counter_read(&memcg->memory);
4653
4654 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4655 memcg = parent;
4656 }
4657 }
4658
4659 /*
4660 * Foreign dirty flushing
4661 *
4662 * There's an inherent mismatch between memcg and writeback. The former
4663 * trackes ownership per-page while the latter per-inode. This was a
4664 * deliberate design decision because honoring per-page ownership in the
4665 * writeback path is complicated, may lead to higher CPU and IO overheads
4666 * and deemed unnecessary given that write-sharing an inode across
4667 * different cgroups isn't a common use-case.
4668 *
4669 * Combined with inode majority-writer ownership switching, this works well
4670 * enough in most cases but there are some pathological cases. For
4671 * example, let's say there are two cgroups A and B which keep writing to
4672 * different but confined parts of the same inode. B owns the inode and
4673 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4674 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4675 * triggering background writeback. A will be slowed down without a way to
4676 * make writeback of the dirty pages happen.
4677 *
4678 * Conditions like the above can lead to a cgroup getting repatedly and
4679 * severely throttled after making some progress after each
4680 * dirty_expire_interval while the underyling IO device is almost
4681 * completely idle.
4682 *
4683 * Solving this problem completely requires matching the ownership tracking
4684 * granularities between memcg and writeback in either direction. However,
4685 * the more egregious behaviors can be avoided by simply remembering the
4686 * most recent foreign dirtying events and initiating remote flushes on
4687 * them when local writeback isn't enough to keep the memory clean enough.
4688 *
4689 * The following two functions implement such mechanism. When a foreign
4690 * page - a page whose memcg and writeback ownerships don't match - is
4691 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4692 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4693 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4694 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4695 * foreign bdi_writebacks which haven't expired. Both the numbers of
4696 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4697 * limited to MEMCG_CGWB_FRN_CNT.
4698 *
4699 * The mechanism only remembers IDs and doesn't hold any object references.
4700 * As being wrong occasionally doesn't matter, updates and accesses to the
4701 * records are lockless and racy.
4702 */
mem_cgroup_track_foreign_dirty_slowpath(struct page * page,struct bdi_writeback * wb)4703 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4704 struct bdi_writeback *wb)
4705 {
4706 struct mem_cgroup *memcg = page->mem_cgroup;
4707 struct memcg_cgwb_frn *frn;
4708 u64 now = get_jiffies_64();
4709 u64 oldest_at = now;
4710 int oldest = -1;
4711 int i;
4712
4713 trace_track_foreign_dirty(page, wb);
4714
4715 /*
4716 * Pick the slot to use. If there is already a slot for @wb, keep
4717 * using it. If not replace the oldest one which isn't being
4718 * written out.
4719 */
4720 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4721 frn = &memcg->cgwb_frn[i];
4722 if (frn->bdi_id == wb->bdi->id &&
4723 frn->memcg_id == wb->memcg_css->id)
4724 break;
4725 if (time_before64(frn->at, oldest_at) &&
4726 atomic_read(&frn->done.cnt) == 1) {
4727 oldest = i;
4728 oldest_at = frn->at;
4729 }
4730 }
4731
4732 if (i < MEMCG_CGWB_FRN_CNT) {
4733 /*
4734 * Re-using an existing one. Update timestamp lazily to
4735 * avoid making the cacheline hot. We want them to be
4736 * reasonably up-to-date and significantly shorter than
4737 * dirty_expire_interval as that's what expires the record.
4738 * Use the shorter of 1s and dirty_expire_interval / 8.
4739 */
4740 unsigned long update_intv =
4741 min_t(unsigned long, HZ,
4742 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4743
4744 if (time_before64(frn->at, now - update_intv))
4745 frn->at = now;
4746 } else if (oldest >= 0) {
4747 /* replace the oldest free one */
4748 frn = &memcg->cgwb_frn[oldest];
4749 frn->bdi_id = wb->bdi->id;
4750 frn->memcg_id = wb->memcg_css->id;
4751 frn->at = now;
4752 }
4753 }
4754
4755 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)4756 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4757 {
4758 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4759 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4760 u64 now = jiffies_64;
4761 int i;
4762
4763 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4764 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4765
4766 /*
4767 * If the record is older than dirty_expire_interval,
4768 * writeback on it has already started. No need to kick it
4769 * off again. Also, don't start a new one if there's
4770 * already one in flight.
4771 */
4772 if (time_after64(frn->at, now - intv) &&
4773 atomic_read(&frn->done.cnt) == 1) {
4774 frn->at = 0;
4775 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4776 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4777 WB_REASON_FOREIGN_FLUSH,
4778 &frn->done);
4779 }
4780 }
4781 }
4782
4783 #else /* CONFIG_CGROUP_WRITEBACK */
4784
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4785 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4786 {
4787 return 0;
4788 }
4789
memcg_wb_domain_exit(struct mem_cgroup * memcg)4790 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4791 {
4792 }
4793
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4794 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4795 {
4796 }
4797
4798 #endif /* CONFIG_CGROUP_WRITEBACK */
4799
4800 /*
4801 * DO NOT USE IN NEW FILES.
4802 *
4803 * "cgroup.event_control" implementation.
4804 *
4805 * This is way over-engineered. It tries to support fully configurable
4806 * events for each user. Such level of flexibility is completely
4807 * unnecessary especially in the light of the planned unified hierarchy.
4808 *
4809 * Please deprecate this and replace with something simpler if at all
4810 * possible.
4811 */
4812
4813 /*
4814 * Unregister event and free resources.
4815 *
4816 * Gets called from workqueue.
4817 */
memcg_event_remove(struct work_struct * work)4818 static void memcg_event_remove(struct work_struct *work)
4819 {
4820 struct mem_cgroup_event *event =
4821 container_of(work, struct mem_cgroup_event, remove);
4822 struct mem_cgroup *memcg = event->memcg;
4823
4824 remove_wait_queue(event->wqh, &event->wait);
4825
4826 event->unregister_event(memcg, event->eventfd);
4827
4828 /* Notify userspace the event is going away. */
4829 eventfd_signal(event->eventfd, 1);
4830
4831 eventfd_ctx_put(event->eventfd);
4832 kfree(event);
4833 css_put(&memcg->css);
4834 }
4835
4836 /*
4837 * Gets called on EPOLLHUP on eventfd when user closes it.
4838 *
4839 * Called with wqh->lock held and interrupts disabled.
4840 */
memcg_event_wake(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)4841 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4842 int sync, void *key)
4843 {
4844 struct mem_cgroup_event *event =
4845 container_of(wait, struct mem_cgroup_event, wait);
4846 struct mem_cgroup *memcg = event->memcg;
4847 __poll_t flags = key_to_poll(key);
4848
4849 if (flags & EPOLLHUP) {
4850 /*
4851 * If the event has been detached at cgroup removal, we
4852 * can simply return knowing the other side will cleanup
4853 * for us.
4854 *
4855 * We can't race against event freeing since the other
4856 * side will require wqh->lock via remove_wait_queue(),
4857 * which we hold.
4858 */
4859 spin_lock(&memcg->event_list_lock);
4860 if (!list_empty(&event->list)) {
4861 list_del_init(&event->list);
4862 /*
4863 * We are in atomic context, but cgroup_event_remove()
4864 * may sleep, so we have to call it in workqueue.
4865 */
4866 schedule_work(&event->remove);
4867 }
4868 spin_unlock(&memcg->event_list_lock);
4869 }
4870
4871 return 0;
4872 }
4873
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)4874 static void memcg_event_ptable_queue_proc(struct file *file,
4875 wait_queue_head_t *wqh, poll_table *pt)
4876 {
4877 struct mem_cgroup_event *event =
4878 container_of(pt, struct mem_cgroup_event, pt);
4879
4880 event->wqh = wqh;
4881 add_wait_queue(wqh, &event->wait);
4882 }
4883
4884 /*
4885 * DO NOT USE IN NEW FILES.
4886 *
4887 * Parse input and register new cgroup event handler.
4888 *
4889 * Input must be in format '<event_fd> <control_fd> <args>'.
4890 * Interpretation of args is defined by control file implementation.
4891 */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4892 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4893 char *buf, size_t nbytes, loff_t off)
4894 {
4895 struct cgroup_subsys_state *css = of_css(of);
4896 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4897 struct mem_cgroup_event *event;
4898 struct cgroup_subsys_state *cfile_css;
4899 unsigned int efd, cfd;
4900 struct fd efile;
4901 struct fd cfile;
4902 struct dentry *cdentry;
4903 const char *name;
4904 char *endp;
4905 int ret;
4906
4907 buf = strstrip(buf);
4908
4909 efd = simple_strtoul(buf, &endp, 10);
4910 if (*endp != ' ')
4911 return -EINVAL;
4912 buf = endp + 1;
4913
4914 cfd = simple_strtoul(buf, &endp, 10);
4915 if ((*endp != ' ') && (*endp != '\0'))
4916 return -EINVAL;
4917 buf = endp + 1;
4918
4919 event = kzalloc(sizeof(*event), GFP_KERNEL);
4920 if (!event)
4921 return -ENOMEM;
4922
4923 event->memcg = memcg;
4924 INIT_LIST_HEAD(&event->list);
4925 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4926 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4927 INIT_WORK(&event->remove, memcg_event_remove);
4928
4929 efile = fdget(efd);
4930 if (!efile.file) {
4931 ret = -EBADF;
4932 goto out_kfree;
4933 }
4934
4935 event->eventfd = eventfd_ctx_fileget(efile.file);
4936 if (IS_ERR(event->eventfd)) {
4937 ret = PTR_ERR(event->eventfd);
4938 goto out_put_efile;
4939 }
4940
4941 cfile = fdget(cfd);
4942 if (!cfile.file) {
4943 ret = -EBADF;
4944 goto out_put_eventfd;
4945 }
4946
4947 /* the process need read permission on control file */
4948 /* AV: shouldn't we check that it's been opened for read instead? */
4949 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4950 if (ret < 0)
4951 goto out_put_cfile;
4952
4953 /*
4954 * The control file must be a regular cgroup1 file. As a regular cgroup
4955 * file can't be renamed, it's safe to access its name afterwards.
4956 */
4957 cdentry = cfile.file->f_path.dentry;
4958 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4959 ret = -EINVAL;
4960 goto out_put_cfile;
4961 }
4962
4963 /*
4964 * Determine the event callbacks and set them in @event. This used
4965 * to be done via struct cftype but cgroup core no longer knows
4966 * about these events. The following is crude but the whole thing
4967 * is for compatibility anyway.
4968 *
4969 * DO NOT ADD NEW FILES.
4970 */
4971 name = cdentry->d_name.name;
4972
4973 if (!strcmp(name, "memory.usage_in_bytes")) {
4974 event->register_event = mem_cgroup_usage_register_event;
4975 event->unregister_event = mem_cgroup_usage_unregister_event;
4976 } else if (!strcmp(name, "memory.oom_control")) {
4977 event->register_event = mem_cgroup_oom_register_event;
4978 event->unregister_event = mem_cgroup_oom_unregister_event;
4979 } else if (!strcmp(name, "memory.pressure_level")) {
4980 event->register_event = vmpressure_register_event;
4981 event->unregister_event = vmpressure_unregister_event;
4982 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4983 event->register_event = memsw_cgroup_usage_register_event;
4984 event->unregister_event = memsw_cgroup_usage_unregister_event;
4985 } else {
4986 ret = -EINVAL;
4987 goto out_put_cfile;
4988 }
4989
4990 /*
4991 * Verify @cfile should belong to @css. Also, remaining events are
4992 * automatically removed on cgroup destruction but the removal is
4993 * asynchronous, so take an extra ref on @css.
4994 */
4995 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4996 &memory_cgrp_subsys);
4997 ret = -EINVAL;
4998 if (IS_ERR(cfile_css))
4999 goto out_put_cfile;
5000 if (cfile_css != css) {
5001 css_put(cfile_css);
5002 goto out_put_cfile;
5003 }
5004
5005 ret = event->register_event(memcg, event->eventfd, buf);
5006 if (ret)
5007 goto out_put_css;
5008
5009 vfs_poll(efile.file, &event->pt);
5010
5011 spin_lock(&memcg->event_list_lock);
5012 list_add(&event->list, &memcg->event_list);
5013 spin_unlock(&memcg->event_list_lock);
5014
5015 fdput(cfile);
5016 fdput(efile);
5017
5018 return nbytes;
5019
5020 out_put_css:
5021 css_put(css);
5022 out_put_cfile:
5023 fdput(cfile);
5024 out_put_eventfd:
5025 eventfd_ctx_put(event->eventfd);
5026 out_put_efile:
5027 fdput(efile);
5028 out_kfree:
5029 kfree(event);
5030
5031 return ret;
5032 }
5033
5034 static struct cftype mem_cgroup_legacy_files[] = {
5035 {
5036 .name = "usage_in_bytes",
5037 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5038 .read_u64 = mem_cgroup_read_u64,
5039 },
5040 {
5041 .name = "max_usage_in_bytes",
5042 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5043 .write = mem_cgroup_reset,
5044 .read_u64 = mem_cgroup_read_u64,
5045 },
5046 {
5047 .name = "limit_in_bytes",
5048 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5049 .write = mem_cgroup_write,
5050 .read_u64 = mem_cgroup_read_u64,
5051 },
5052 {
5053 .name = "soft_limit_in_bytes",
5054 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5055 .write = mem_cgroup_write,
5056 .read_u64 = mem_cgroup_read_u64,
5057 },
5058 {
5059 .name = "failcnt",
5060 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5061 .write = mem_cgroup_reset,
5062 .read_u64 = mem_cgroup_read_u64,
5063 },
5064 {
5065 .name = "stat",
5066 .seq_show = memcg_stat_show,
5067 },
5068 {
5069 .name = "force_empty",
5070 .write = mem_cgroup_force_empty_write,
5071 },
5072 {
5073 .name = "use_hierarchy",
5074 .write_u64 = mem_cgroup_hierarchy_write,
5075 .read_u64 = mem_cgroup_hierarchy_read,
5076 },
5077 {
5078 .name = "cgroup.event_control", /* XXX: for compat */
5079 .write = memcg_write_event_control,
5080 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5081 },
5082 {
5083 .name = "swappiness",
5084 .read_u64 = mem_cgroup_swappiness_read,
5085 .write_u64 = mem_cgroup_swappiness_write,
5086 },
5087 {
5088 .name = "move_charge_at_immigrate",
5089 .read_u64 = mem_cgroup_move_charge_read,
5090 .write_u64 = mem_cgroup_move_charge_write,
5091 },
5092 {
5093 .name = "oom_control",
5094 .seq_show = mem_cgroup_oom_control_read,
5095 .write_u64 = mem_cgroup_oom_control_write,
5096 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5097 },
5098 {
5099 .name = "pressure_level",
5100 },
5101 #ifdef CONFIG_NUMA
5102 {
5103 .name = "numa_stat",
5104 .seq_show = memcg_numa_stat_show,
5105 },
5106 #endif
5107 {
5108 .name = "kmem.limit_in_bytes",
5109 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5110 .write = mem_cgroup_write,
5111 .read_u64 = mem_cgroup_read_u64,
5112 },
5113 {
5114 .name = "kmem.usage_in_bytes",
5115 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5116 .read_u64 = mem_cgroup_read_u64,
5117 },
5118 {
5119 .name = "kmem.failcnt",
5120 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5121 .write = mem_cgroup_reset,
5122 .read_u64 = mem_cgroup_read_u64,
5123 },
5124 {
5125 .name = "kmem.max_usage_in_bytes",
5126 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5127 .write = mem_cgroup_reset,
5128 .read_u64 = mem_cgroup_read_u64,
5129 },
5130 #if defined(CONFIG_MEMCG_KMEM) && \
5131 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5132 {
5133 .name = "kmem.slabinfo",
5134 .seq_show = memcg_slab_show,
5135 },
5136 #endif
5137 {
5138 .name = "kmem.tcp.limit_in_bytes",
5139 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5140 .write = mem_cgroup_write,
5141 .read_u64 = mem_cgroup_read_u64,
5142 },
5143 {
5144 .name = "kmem.tcp.usage_in_bytes",
5145 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5146 .read_u64 = mem_cgroup_read_u64,
5147 },
5148 {
5149 .name = "kmem.tcp.failcnt",
5150 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5151 .write = mem_cgroup_reset,
5152 .read_u64 = mem_cgroup_read_u64,
5153 },
5154 {
5155 .name = "kmem.tcp.max_usage_in_bytes",
5156 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5157 .write = mem_cgroup_reset,
5158 .read_u64 = mem_cgroup_read_u64,
5159 },
5160 { }, /* terminate */
5161 };
5162
5163 /*
5164 * Private memory cgroup IDR
5165 *
5166 * Swap-out records and page cache shadow entries need to store memcg
5167 * references in constrained space, so we maintain an ID space that is
5168 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5169 * memory-controlled cgroups to 64k.
5170 *
5171 * However, there usually are many references to the offline CSS after
5172 * the cgroup has been destroyed, such as page cache or reclaimable
5173 * slab objects, that don't need to hang on to the ID. We want to keep
5174 * those dead CSS from occupying IDs, or we might quickly exhaust the
5175 * relatively small ID space and prevent the creation of new cgroups
5176 * even when there are much fewer than 64k cgroups - possibly none.
5177 *
5178 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5179 * be freed and recycled when it's no longer needed, which is usually
5180 * when the CSS is offlined.
5181 *
5182 * The only exception to that are records of swapped out tmpfs/shmem
5183 * pages that need to be attributed to live ancestors on swapin. But
5184 * those references are manageable from userspace.
5185 */
5186
5187 static DEFINE_IDR(mem_cgroup_idr);
5188
mem_cgroup_id_remove(struct mem_cgroup * memcg)5189 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5190 {
5191 if (memcg->id.id > 0) {
5192 trace_android_vh_mem_cgroup_id_remove(memcg);
5193 idr_remove(&mem_cgroup_idr, memcg->id.id);
5194 memcg->id.id = 0;
5195 }
5196 }
5197
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)5198 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5199 unsigned int n)
5200 {
5201 refcount_add(n, &memcg->id.ref);
5202 }
5203
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)5204 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5205 {
5206 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5207 mem_cgroup_id_remove(memcg);
5208
5209 /* Memcg ID pins CSS */
5210 css_put(&memcg->css);
5211 }
5212 }
5213
mem_cgroup_id_put(struct mem_cgroup * memcg)5214 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5215 {
5216 mem_cgroup_id_put_many(memcg, 1);
5217 }
5218
5219 /**
5220 * mem_cgroup_from_id - look up a memcg from a memcg id
5221 * @id: the memcg id to look up
5222 *
5223 * Caller must hold rcu_read_lock().
5224 */
mem_cgroup_from_id(unsigned short id)5225 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5226 {
5227 WARN_ON_ONCE(!rcu_read_lock_held());
5228 return idr_find(&mem_cgroup_idr, id);
5229 }
5230 EXPORT_SYMBOL_GPL(mem_cgroup_from_id);
5231
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5232 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5233 {
5234 struct mem_cgroup_per_node *pn;
5235 int tmp = node;
5236 /*
5237 * This routine is called against possible nodes.
5238 * But it's BUG to call kmalloc() against offline node.
5239 *
5240 * TODO: this routine can waste much memory for nodes which will
5241 * never be onlined. It's better to use memory hotplug callback
5242 * function.
5243 */
5244 if (!node_state(node, N_NORMAL_MEMORY))
5245 tmp = -1;
5246 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5247 if (!pn)
5248 return 1;
5249
5250 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5251 GFP_KERNEL_ACCOUNT);
5252 if (!pn->lruvec_stat_local) {
5253 kfree(pn);
5254 return 1;
5255 }
5256
5257 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5258 GFP_KERNEL_ACCOUNT);
5259 if (!pn->lruvec_stat_cpu) {
5260 free_percpu(pn->lruvec_stat_local);
5261 kfree(pn);
5262 return 1;
5263 }
5264
5265 lruvec_init(&pn->lruvec);
5266 pn->usage_in_excess = 0;
5267 pn->on_tree = false;
5268 pn->memcg = memcg;
5269
5270 memcg->nodeinfo[node] = pn;
5271 return 0;
5272 }
5273
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5274 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5275 {
5276 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5277
5278 if (!pn)
5279 return;
5280
5281 free_percpu(pn->lruvec_stat_cpu);
5282 free_percpu(pn->lruvec_stat_local);
5283 kfree(pn);
5284 }
5285
__mem_cgroup_free(struct mem_cgroup * memcg)5286 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5287 {
5288 int node;
5289
5290 trace_android_vh_mem_cgroup_free(memcg);
5291 for_each_node(node)
5292 free_mem_cgroup_per_node_info(memcg, node);
5293 free_percpu(memcg->vmstats_percpu);
5294 free_percpu(memcg->vmstats_local);
5295 kfree(memcg);
5296 }
5297
mem_cgroup_free(struct mem_cgroup * memcg)5298 static void mem_cgroup_free(struct mem_cgroup *memcg)
5299 {
5300 memcg_wb_domain_exit(memcg);
5301 /*
5302 * Flush percpu vmstats and vmevents to guarantee the value correctness
5303 * on parent's and all ancestor levels.
5304 */
5305 memcg_flush_percpu_vmstats(memcg);
5306 memcg_flush_percpu_vmevents(memcg);
5307 __mem_cgroup_free(memcg);
5308 }
5309
mem_cgroup_alloc(void)5310 static struct mem_cgroup *mem_cgroup_alloc(void)
5311 {
5312 struct mem_cgroup *memcg;
5313 unsigned int size;
5314 int node;
5315 int __maybe_unused i;
5316 long error = -ENOMEM;
5317
5318 size = sizeof(struct mem_cgroup);
5319 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5320
5321 memcg = kzalloc(size, GFP_KERNEL);
5322 if (!memcg)
5323 return ERR_PTR(error);
5324
5325 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5326 1, MEM_CGROUP_ID_MAX,
5327 GFP_KERNEL);
5328 if (memcg->id.id < 0) {
5329 error = memcg->id.id;
5330 goto fail;
5331 }
5332
5333 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5334 GFP_KERNEL_ACCOUNT);
5335 if (!memcg->vmstats_local)
5336 goto fail;
5337
5338 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5339 GFP_KERNEL_ACCOUNT);
5340 if (!memcg->vmstats_percpu)
5341 goto fail;
5342
5343 for_each_node(node)
5344 if (alloc_mem_cgroup_per_node_info(memcg, node))
5345 goto fail;
5346
5347 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5348 goto fail;
5349
5350 INIT_WORK(&memcg->high_work, high_work_func);
5351 INIT_LIST_HEAD(&memcg->oom_notify);
5352 mutex_init(&memcg->thresholds_lock);
5353 spin_lock_init(&memcg->move_lock);
5354 vmpressure_init(&memcg->vmpressure);
5355 INIT_LIST_HEAD(&memcg->event_list);
5356 spin_lock_init(&memcg->event_list_lock);
5357 memcg->socket_pressure = jiffies;
5358 #ifdef CONFIG_MEMCG_KMEM
5359 memcg->kmemcg_id = -1;
5360 INIT_LIST_HEAD(&memcg->objcg_list);
5361 #endif
5362 #ifdef CONFIG_CGROUP_WRITEBACK
5363 INIT_LIST_HEAD(&memcg->cgwb_list);
5364 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5365 memcg->cgwb_frn[i].done =
5366 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5367 #endif
5368 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5369 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5370 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5371 memcg->deferred_split_queue.split_queue_len = 0;
5372 #endif
5373 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5374 trace_android_vh_mem_cgroup_alloc(memcg);
5375 return memcg;
5376 fail:
5377 mem_cgroup_id_remove(memcg);
5378 __mem_cgroup_free(memcg);
5379 return ERR_PTR(error);
5380 }
5381
5382 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)5383 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5384 {
5385 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5386 struct mem_cgroup *memcg, *old_memcg;
5387 long error = -ENOMEM;
5388
5389 old_memcg = set_active_memcg(parent);
5390 memcg = mem_cgroup_alloc();
5391 set_active_memcg(old_memcg);
5392 if (IS_ERR(memcg))
5393 return ERR_CAST(memcg);
5394
5395 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5396 memcg->soft_limit = PAGE_COUNTER_MAX;
5397 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5398 if (parent) {
5399 memcg->swappiness = mem_cgroup_swappiness(parent);
5400 memcg->oom_kill_disable = parent->oom_kill_disable;
5401 }
5402 if (!parent) {
5403 page_counter_init(&memcg->memory, NULL);
5404 page_counter_init(&memcg->swap, NULL);
5405 page_counter_init(&memcg->kmem, NULL);
5406 page_counter_init(&memcg->tcpmem, NULL);
5407 } else if (parent->use_hierarchy) {
5408 memcg->use_hierarchy = true;
5409 page_counter_init(&memcg->memory, &parent->memory);
5410 page_counter_init(&memcg->swap, &parent->swap);
5411 page_counter_init(&memcg->kmem, &parent->kmem);
5412 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5413 } else {
5414 page_counter_init(&memcg->memory, &root_mem_cgroup->memory);
5415 page_counter_init(&memcg->swap, &root_mem_cgroup->swap);
5416 page_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
5417 page_counter_init(&memcg->tcpmem, &root_mem_cgroup->tcpmem);
5418 /*
5419 * Deeper hierachy with use_hierarchy == false doesn't make
5420 * much sense so let cgroup subsystem know about this
5421 * unfortunate state in our controller.
5422 */
5423 if (parent != root_mem_cgroup)
5424 memory_cgrp_subsys.broken_hierarchy = true;
5425 }
5426
5427 /* The following stuff does not apply to the root */
5428 if (!parent) {
5429 root_mem_cgroup = memcg;
5430 return &memcg->css;
5431 }
5432
5433 error = memcg_online_kmem(memcg);
5434 if (error)
5435 goto fail;
5436
5437 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5438 static_branch_inc(&memcg_sockets_enabled_key);
5439
5440 return &memcg->css;
5441 fail:
5442 mem_cgroup_id_remove(memcg);
5443 mem_cgroup_free(memcg);
5444 return ERR_PTR(error);
5445 }
5446
mem_cgroup_css_online(struct cgroup_subsys_state * css)5447 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5448 {
5449 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5450
5451 /*
5452 * A memcg must be visible for memcg_expand_shrinker_maps()
5453 * by the time the maps are allocated. So, we allocate maps
5454 * here, when for_each_mem_cgroup() can't skip it.
5455 */
5456 if (memcg_alloc_shrinker_maps(memcg)) {
5457 mem_cgroup_id_remove(memcg);
5458 return -ENOMEM;
5459 }
5460
5461 /* Online state pins memcg ID, memcg ID pins CSS */
5462 refcount_set(&memcg->id.ref, 1);
5463 css_get(css);
5464 trace_android_vh_mem_cgroup_css_online(css, memcg);
5465 return 0;
5466 }
5467
mem_cgroup_css_offline(struct cgroup_subsys_state * css)5468 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5469 {
5470 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5471 struct mem_cgroup_event *event, *tmp;
5472
5473 trace_android_vh_mem_cgroup_css_offline(css, memcg);
5474 /*
5475 * Unregister events and notify userspace.
5476 * Notify userspace about cgroup removing only after rmdir of cgroup
5477 * directory to avoid race between userspace and kernelspace.
5478 */
5479 spin_lock(&memcg->event_list_lock);
5480 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5481 list_del_init(&event->list);
5482 schedule_work(&event->remove);
5483 }
5484 spin_unlock(&memcg->event_list_lock);
5485
5486 page_counter_set_min(&memcg->memory, 0);
5487 page_counter_set_low(&memcg->memory, 0);
5488
5489 memcg_offline_kmem(memcg);
5490 wb_memcg_offline(memcg);
5491
5492 drain_all_stock(memcg);
5493
5494 mem_cgroup_id_put(memcg);
5495 }
5496
mem_cgroup_css_released(struct cgroup_subsys_state * css)5497 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5498 {
5499 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5500
5501 invalidate_reclaim_iterators(memcg);
5502 }
5503
mem_cgroup_css_free(struct cgroup_subsys_state * css)5504 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5505 {
5506 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5507 int __maybe_unused i;
5508
5509 #ifdef CONFIG_CGROUP_WRITEBACK
5510 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5511 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5512 #endif
5513 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5514 static_branch_dec(&memcg_sockets_enabled_key);
5515
5516 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5517 static_branch_dec(&memcg_sockets_enabled_key);
5518
5519 vmpressure_cleanup(&memcg->vmpressure);
5520 cancel_work_sync(&memcg->high_work);
5521 mem_cgroup_remove_from_trees(memcg);
5522 memcg_free_shrinker_maps(memcg);
5523 memcg_free_kmem(memcg);
5524 mem_cgroup_free(memcg);
5525 }
5526
5527 /**
5528 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5529 * @css: the target css
5530 *
5531 * Reset the states of the mem_cgroup associated with @css. This is
5532 * invoked when the userland requests disabling on the default hierarchy
5533 * but the memcg is pinned through dependency. The memcg should stop
5534 * applying policies and should revert to the vanilla state as it may be
5535 * made visible again.
5536 *
5537 * The current implementation only resets the essential configurations.
5538 * This needs to be expanded to cover all the visible parts.
5539 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)5540 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5541 {
5542 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5543
5544 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5545 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5546 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5547 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5548 page_counter_set_min(&memcg->memory, 0);
5549 page_counter_set_low(&memcg->memory, 0);
5550 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5551 memcg->soft_limit = PAGE_COUNTER_MAX;
5552 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5553 memcg_wb_domain_size_changed(memcg);
5554 }
5555
5556 #ifdef CONFIG_MMU
5557 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)5558 static int mem_cgroup_do_precharge(unsigned long count)
5559 {
5560 int ret;
5561
5562 /* Try a single bulk charge without reclaim first, kswapd may wake */
5563 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5564 if (!ret) {
5565 mc.precharge += count;
5566 return ret;
5567 }
5568
5569 /* Try charges one by one with reclaim, but do not retry */
5570 while (count--) {
5571 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5572 if (ret)
5573 return ret;
5574 mc.precharge++;
5575 cond_resched();
5576 }
5577 return 0;
5578 }
5579
5580 union mc_target {
5581 struct page *page;
5582 swp_entry_t ent;
5583 };
5584
5585 enum mc_target_type {
5586 MC_TARGET_NONE = 0,
5587 MC_TARGET_PAGE,
5588 MC_TARGET_SWAP,
5589 MC_TARGET_DEVICE,
5590 };
5591
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5592 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5593 unsigned long addr, pte_t ptent)
5594 {
5595 struct page *page = vm_normal_page(vma, addr, ptent);
5596
5597 if (!page || !page_mapped(page))
5598 return NULL;
5599 if (PageAnon(page)) {
5600 if (!(mc.flags & MOVE_ANON))
5601 return NULL;
5602 } else {
5603 if (!(mc.flags & MOVE_FILE))
5604 return NULL;
5605 }
5606 if (!get_page_unless_zero(page))
5607 return NULL;
5608
5609 return page;
5610 }
5611
5612 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5613 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5614 pte_t ptent, swp_entry_t *entry)
5615 {
5616 struct page *page = NULL;
5617 swp_entry_t ent = pte_to_swp_entry(ptent);
5618
5619 if (!(mc.flags & MOVE_ANON))
5620 return NULL;
5621
5622 /*
5623 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5624 * a device and because they are not accessible by CPU they are store
5625 * as special swap entry in the CPU page table.
5626 */
5627 if (is_device_private_entry(ent)) {
5628 page = device_private_entry_to_page(ent);
5629 /*
5630 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5631 * a refcount of 1 when free (unlike normal page)
5632 */
5633 if (!page_ref_add_unless(page, 1, 1))
5634 return NULL;
5635 return page;
5636 }
5637
5638 if (non_swap_entry(ent))
5639 return NULL;
5640
5641 /*
5642 * Because lookup_swap_cache() updates some statistics counter,
5643 * we call find_get_page() with swapper_space directly.
5644 */
5645 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5646 entry->val = ent.val;
5647
5648 return page;
5649 }
5650 #else
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5651 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5652 pte_t ptent, swp_entry_t *entry)
5653 {
5654 return NULL;
5655 }
5656 #endif
5657
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)5658 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5659 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5660 {
5661 if (!vma->vm_file) /* anonymous vma */
5662 return NULL;
5663 if (!(mc.flags & MOVE_FILE))
5664 return NULL;
5665
5666 /* page is moved even if it's not RSS of this task(page-faulted). */
5667 /* shmem/tmpfs may report page out on swap: account for that too. */
5668 return find_get_incore_page(vma->vm_file->f_mapping,
5669 linear_page_index(vma, addr));
5670 }
5671
5672 /**
5673 * mem_cgroup_move_account - move account of the page
5674 * @page: the page
5675 * @compound: charge the page as compound or small page
5676 * @from: mem_cgroup which the page is moved from.
5677 * @to: mem_cgroup which the page is moved to. @from != @to.
5678 *
5679 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5680 *
5681 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5682 * from old cgroup.
5683 */
mem_cgroup_move_account(struct page * page,bool compound,struct mem_cgroup * from,struct mem_cgroup * to)5684 static int mem_cgroup_move_account(struct page *page,
5685 bool compound,
5686 struct mem_cgroup *from,
5687 struct mem_cgroup *to)
5688 {
5689 struct lruvec *from_vec, *to_vec;
5690 struct pglist_data *pgdat;
5691 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5692 int ret;
5693
5694 VM_BUG_ON(from == to);
5695 VM_BUG_ON_PAGE(PageLRU(page), page);
5696 VM_BUG_ON(compound && !PageTransHuge(page));
5697
5698 /*
5699 * Prevent mem_cgroup_migrate() from looking at
5700 * page->mem_cgroup of its source page while we change it.
5701 */
5702 ret = -EBUSY;
5703 if (!trylock_page(page))
5704 goto out;
5705
5706 ret = -EINVAL;
5707 if (page->mem_cgroup != from)
5708 goto out_unlock;
5709
5710 pgdat = page_pgdat(page);
5711 from_vec = mem_cgroup_lruvec(from, pgdat);
5712 to_vec = mem_cgroup_lruvec(to, pgdat);
5713
5714 lock_page_memcg(page);
5715
5716 if (PageAnon(page)) {
5717 if (page_mapped(page)) {
5718 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5719 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5720 if (PageTransHuge(page)) {
5721 __dec_lruvec_state(from_vec, NR_ANON_THPS);
5722 __inc_lruvec_state(to_vec, NR_ANON_THPS);
5723 }
5724
5725 }
5726 } else {
5727 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5728 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5729
5730 if (PageSwapBacked(page)) {
5731 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5732 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5733 }
5734
5735 if (page_mapped(page)) {
5736 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5737 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5738 }
5739
5740 if (PageDirty(page)) {
5741 struct address_space *mapping = page_mapping(page);
5742
5743 if (mapping_can_writeback(mapping)) {
5744 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5745 -nr_pages);
5746 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5747 nr_pages);
5748 }
5749 }
5750 }
5751
5752 if (PageWriteback(page)) {
5753 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5754 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5755 }
5756
5757 /*
5758 * All state has been migrated, let's switch to the new memcg.
5759 *
5760 * It is safe to change page->mem_cgroup here because the page
5761 * is referenced, charged, isolated, and locked: we can't race
5762 * with (un)charging, migration, LRU putback, or anything else
5763 * that would rely on a stable page->mem_cgroup.
5764 *
5765 * Note that lock_page_memcg is a memcg lock, not a page lock,
5766 * to save space. As soon as we switch page->mem_cgroup to a
5767 * new memcg that isn't locked, the above state can change
5768 * concurrently again. Make sure we're truly done with it.
5769 */
5770 smp_mb();
5771
5772 css_get(&to->css);
5773 css_put(&from->css);
5774
5775 page->mem_cgroup = to;
5776
5777 __unlock_page_memcg(from);
5778
5779 ret = 0;
5780
5781 local_irq_disable();
5782 mem_cgroup_charge_statistics(to, page, nr_pages);
5783 memcg_check_events(to, page);
5784 mem_cgroup_charge_statistics(from, page, -nr_pages);
5785 memcg_check_events(from, page);
5786 local_irq_enable();
5787 out_unlock:
5788 unlock_page(page);
5789 out:
5790 return ret;
5791 }
5792
5793 /**
5794 * get_mctgt_type - get target type of moving charge
5795 * @vma: the vma the pte to be checked belongs
5796 * @addr: the address corresponding to the pte to be checked
5797 * @ptent: the pte to be checked
5798 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5799 *
5800 * Returns
5801 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5802 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5803 * move charge. if @target is not NULL, the page is stored in target->page
5804 * with extra refcnt got(Callers should handle it).
5805 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5806 * target for charge migration. if @target is not NULL, the entry is stored
5807 * in target->ent.
5808 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5809 * (so ZONE_DEVICE page and thus not on the lru).
5810 * For now we such page is charge like a regular page would be as for all
5811 * intent and purposes it is just special memory taking the place of a
5812 * regular page.
5813 *
5814 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5815 *
5816 * Called with pte lock held.
5817 */
5818
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)5819 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5820 unsigned long addr, pte_t ptent, union mc_target *target)
5821 {
5822 struct page *page = NULL;
5823 enum mc_target_type ret = MC_TARGET_NONE;
5824 swp_entry_t ent = { .val = 0 };
5825
5826 if (pte_present(ptent))
5827 page = mc_handle_present_pte(vma, addr, ptent);
5828 else if (is_swap_pte(ptent))
5829 page = mc_handle_swap_pte(vma, ptent, &ent);
5830 else if (pte_none(ptent))
5831 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5832
5833 if (!page && !ent.val)
5834 return ret;
5835 if (page) {
5836 /*
5837 * Do only loose check w/o serialization.
5838 * mem_cgroup_move_account() checks the page is valid or
5839 * not under LRU exclusion.
5840 */
5841 if (page->mem_cgroup == mc.from) {
5842 ret = MC_TARGET_PAGE;
5843 if (is_device_private_page(page))
5844 ret = MC_TARGET_DEVICE;
5845 if (target)
5846 target->page = page;
5847 }
5848 if (!ret || !target)
5849 put_page(page);
5850 }
5851 /*
5852 * There is a swap entry and a page doesn't exist or isn't charged.
5853 * But we cannot move a tail-page in a THP.
5854 */
5855 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5856 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5857 ret = MC_TARGET_SWAP;
5858 if (target)
5859 target->ent = ent;
5860 }
5861 return ret;
5862 }
5863
5864 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5865 /*
5866 * We don't consider PMD mapped swapping or file mapped pages because THP does
5867 * not support them for now.
5868 * Caller should make sure that pmd_trans_huge(pmd) is true.
5869 */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5870 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5871 unsigned long addr, pmd_t pmd, union mc_target *target)
5872 {
5873 struct page *page = NULL;
5874 enum mc_target_type ret = MC_TARGET_NONE;
5875
5876 if (unlikely(is_swap_pmd(pmd))) {
5877 VM_BUG_ON(thp_migration_supported() &&
5878 !is_pmd_migration_entry(pmd));
5879 return ret;
5880 }
5881 page = pmd_page(pmd);
5882 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5883 if (!(mc.flags & MOVE_ANON))
5884 return ret;
5885 if (page->mem_cgroup == mc.from) {
5886 ret = MC_TARGET_PAGE;
5887 if (target) {
5888 get_page(page);
5889 target->page = page;
5890 }
5891 }
5892 return ret;
5893 }
5894 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5895 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5896 unsigned long addr, pmd_t pmd, union mc_target *target)
5897 {
5898 return MC_TARGET_NONE;
5899 }
5900 #endif
5901
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)5902 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5903 unsigned long addr, unsigned long end,
5904 struct mm_walk *walk)
5905 {
5906 struct vm_area_struct *vma = walk->vma;
5907 pte_t *pte;
5908 spinlock_t *ptl;
5909
5910 ptl = pmd_trans_huge_lock(pmd, vma);
5911 if (ptl) {
5912 /*
5913 * Note their can not be MC_TARGET_DEVICE for now as we do not
5914 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5915 * this might change.
5916 */
5917 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5918 mc.precharge += HPAGE_PMD_NR;
5919 spin_unlock(ptl);
5920 return 0;
5921 }
5922
5923 if (pmd_trans_unstable(pmd))
5924 return 0;
5925 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5926 for (; addr != end; pte++, addr += PAGE_SIZE)
5927 if (get_mctgt_type(vma, addr, *pte, NULL))
5928 mc.precharge++; /* increment precharge temporarily */
5929 pte_unmap_unlock(pte - 1, ptl);
5930 cond_resched();
5931
5932 return 0;
5933 }
5934
5935 static const struct mm_walk_ops precharge_walk_ops = {
5936 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5937 };
5938
mem_cgroup_count_precharge(struct mm_struct * mm)5939 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5940 {
5941 unsigned long precharge;
5942
5943 mmap_read_lock(mm);
5944 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5945 mmap_read_unlock(mm);
5946
5947 precharge = mc.precharge;
5948 mc.precharge = 0;
5949
5950 return precharge;
5951 }
5952
mem_cgroup_precharge_mc(struct mm_struct * mm)5953 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5954 {
5955 unsigned long precharge = mem_cgroup_count_precharge(mm);
5956
5957 VM_BUG_ON(mc.moving_task);
5958 mc.moving_task = current;
5959 return mem_cgroup_do_precharge(precharge);
5960 }
5961
5962 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)5963 static void __mem_cgroup_clear_mc(void)
5964 {
5965 struct mem_cgroup *from = mc.from;
5966 struct mem_cgroup *to = mc.to;
5967
5968 /* we must uncharge all the leftover precharges from mc.to */
5969 if (mc.precharge) {
5970 cancel_charge(mc.to, mc.precharge);
5971 mc.precharge = 0;
5972 }
5973 /*
5974 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5975 * we must uncharge here.
5976 */
5977 if (mc.moved_charge) {
5978 cancel_charge(mc.from, mc.moved_charge);
5979 mc.moved_charge = 0;
5980 }
5981 /* we must fixup refcnts and charges */
5982 if (mc.moved_swap) {
5983 /* uncharge swap account from the old cgroup */
5984 if (!mem_cgroup_is_root(mc.from))
5985 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5986
5987 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5988
5989 /*
5990 * we charged both to->memory and to->memsw, so we
5991 * should uncharge to->memory.
5992 */
5993 if (!mem_cgroup_is_root(mc.to))
5994 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5995
5996 mc.moved_swap = 0;
5997 }
5998 memcg_oom_recover(from);
5999 memcg_oom_recover(to);
6000 wake_up_all(&mc.waitq);
6001 }
6002
mem_cgroup_clear_mc(void)6003 static void mem_cgroup_clear_mc(void)
6004 {
6005 struct mm_struct *mm = mc.mm;
6006
6007 /*
6008 * we must clear moving_task before waking up waiters at the end of
6009 * task migration.
6010 */
6011 mc.moving_task = NULL;
6012 __mem_cgroup_clear_mc();
6013 spin_lock(&mc.lock);
6014 mc.from = NULL;
6015 mc.to = NULL;
6016 mc.mm = NULL;
6017 spin_unlock(&mc.lock);
6018
6019 mmput(mm);
6020 }
6021
mem_cgroup_can_attach(struct cgroup_taskset * tset)6022 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6023 {
6024 struct cgroup_subsys_state *css;
6025 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6026 struct mem_cgroup *from;
6027 struct task_struct *leader, *p;
6028 struct mm_struct *mm;
6029 unsigned long move_flags;
6030 int ret = 0;
6031
6032 /* charge immigration isn't supported on the default hierarchy */
6033 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6034 return 0;
6035
6036 /*
6037 * Multi-process migrations only happen on the default hierarchy
6038 * where charge immigration is not used. Perform charge
6039 * immigration if @tset contains a leader and whine if there are
6040 * multiple.
6041 */
6042 p = NULL;
6043 cgroup_taskset_for_each_leader(leader, css, tset) {
6044 WARN_ON_ONCE(p);
6045 p = leader;
6046 memcg = mem_cgroup_from_css(css);
6047 }
6048 if (!p)
6049 return 0;
6050
6051 /*
6052 * We are now commited to this value whatever it is. Changes in this
6053 * tunable will only affect upcoming migrations, not the current one.
6054 * So we need to save it, and keep it going.
6055 */
6056 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6057 if (!move_flags)
6058 return 0;
6059
6060 from = mem_cgroup_from_task(p);
6061
6062 VM_BUG_ON(from == memcg);
6063
6064 mm = get_task_mm(p);
6065 if (!mm)
6066 return 0;
6067 /* We move charges only when we move a owner of the mm */
6068 if (mm->owner == p) {
6069 VM_BUG_ON(mc.from);
6070 VM_BUG_ON(mc.to);
6071 VM_BUG_ON(mc.precharge);
6072 VM_BUG_ON(mc.moved_charge);
6073 VM_BUG_ON(mc.moved_swap);
6074
6075 spin_lock(&mc.lock);
6076 mc.mm = mm;
6077 mc.from = from;
6078 mc.to = memcg;
6079 mc.flags = move_flags;
6080 spin_unlock(&mc.lock);
6081 /* We set mc.moving_task later */
6082
6083 ret = mem_cgroup_precharge_mc(mm);
6084 if (ret)
6085 mem_cgroup_clear_mc();
6086 } else {
6087 mmput(mm);
6088 }
6089 return ret;
6090 }
6091
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6092 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6093 {
6094 if (mc.to)
6095 mem_cgroup_clear_mc();
6096 }
6097
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)6098 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6099 unsigned long addr, unsigned long end,
6100 struct mm_walk *walk)
6101 {
6102 int ret = 0;
6103 struct vm_area_struct *vma = walk->vma;
6104 pte_t *pte;
6105 spinlock_t *ptl;
6106 enum mc_target_type target_type;
6107 union mc_target target;
6108 struct page *page;
6109
6110 ptl = pmd_trans_huge_lock(pmd, vma);
6111 if (ptl) {
6112 if (mc.precharge < HPAGE_PMD_NR) {
6113 spin_unlock(ptl);
6114 return 0;
6115 }
6116 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6117 if (target_type == MC_TARGET_PAGE) {
6118 page = target.page;
6119 if (!isolate_lru_page(page)) {
6120 if (!mem_cgroup_move_account(page, true,
6121 mc.from, mc.to)) {
6122 mc.precharge -= HPAGE_PMD_NR;
6123 mc.moved_charge += HPAGE_PMD_NR;
6124 }
6125 putback_lru_page(page);
6126 }
6127 put_page(page);
6128 } else if (target_type == MC_TARGET_DEVICE) {
6129 page = target.page;
6130 if (!mem_cgroup_move_account(page, true,
6131 mc.from, mc.to)) {
6132 mc.precharge -= HPAGE_PMD_NR;
6133 mc.moved_charge += HPAGE_PMD_NR;
6134 }
6135 put_page(page);
6136 }
6137 spin_unlock(ptl);
6138 return 0;
6139 }
6140
6141 if (pmd_trans_unstable(pmd))
6142 return 0;
6143 retry:
6144 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6145 for (; addr != end; addr += PAGE_SIZE) {
6146 pte_t ptent = *(pte++);
6147 bool device = false;
6148 swp_entry_t ent;
6149
6150 if (!mc.precharge)
6151 break;
6152
6153 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6154 case MC_TARGET_DEVICE:
6155 device = true;
6156 fallthrough;
6157 case MC_TARGET_PAGE:
6158 page = target.page;
6159 /*
6160 * We can have a part of the split pmd here. Moving it
6161 * can be done but it would be too convoluted so simply
6162 * ignore such a partial THP and keep it in original
6163 * memcg. There should be somebody mapping the head.
6164 */
6165 if (PageTransCompound(page))
6166 goto put;
6167 if (!device && isolate_lru_page(page))
6168 goto put;
6169 if (!mem_cgroup_move_account(page, false,
6170 mc.from, mc.to)) {
6171 mc.precharge--;
6172 /* we uncharge from mc.from later. */
6173 mc.moved_charge++;
6174 }
6175 if (!device)
6176 putback_lru_page(page);
6177 put: /* get_mctgt_type() gets the page */
6178 put_page(page);
6179 break;
6180 case MC_TARGET_SWAP:
6181 ent = target.ent;
6182 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6183 mc.precharge--;
6184 mem_cgroup_id_get_many(mc.to, 1);
6185 /* we fixup other refcnts and charges later. */
6186 mc.moved_swap++;
6187 }
6188 break;
6189 default:
6190 break;
6191 }
6192 }
6193 pte_unmap_unlock(pte - 1, ptl);
6194 cond_resched();
6195
6196 if (addr != end) {
6197 /*
6198 * We have consumed all precharges we got in can_attach().
6199 * We try charge one by one, but don't do any additional
6200 * charges to mc.to if we have failed in charge once in attach()
6201 * phase.
6202 */
6203 ret = mem_cgroup_do_precharge(1);
6204 if (!ret)
6205 goto retry;
6206 }
6207
6208 return ret;
6209 }
6210
6211 static const struct mm_walk_ops charge_walk_ops = {
6212 .pmd_entry = mem_cgroup_move_charge_pte_range,
6213 };
6214
mem_cgroup_move_charge(void)6215 static void mem_cgroup_move_charge(void)
6216 {
6217 lru_add_drain_all();
6218 /*
6219 * Signal lock_page_memcg() to take the memcg's move_lock
6220 * while we're moving its pages to another memcg. Then wait
6221 * for already started RCU-only updates to finish.
6222 */
6223 atomic_inc(&mc.from->moving_account);
6224 synchronize_rcu();
6225 retry:
6226 if (unlikely(!mmap_read_trylock(mc.mm))) {
6227 /*
6228 * Someone who are holding the mmap_lock might be waiting in
6229 * waitq. So we cancel all extra charges, wake up all waiters,
6230 * and retry. Because we cancel precharges, we might not be able
6231 * to move enough charges, but moving charge is a best-effort
6232 * feature anyway, so it wouldn't be a big problem.
6233 */
6234 __mem_cgroup_clear_mc();
6235 cond_resched();
6236 goto retry;
6237 }
6238 /*
6239 * When we have consumed all precharges and failed in doing
6240 * additional charge, the page walk just aborts.
6241 */
6242 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6243 NULL);
6244
6245 mmap_read_unlock(mc.mm);
6246 atomic_dec(&mc.from->moving_account);
6247 }
6248
mem_cgroup_move_task(void)6249 static void mem_cgroup_move_task(void)
6250 {
6251 if (mc.to) {
6252 mem_cgroup_move_charge();
6253 mem_cgroup_clear_mc();
6254 }
6255 }
6256 #else /* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)6257 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6258 {
6259 return 0;
6260 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6261 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6262 {
6263 }
mem_cgroup_move_task(void)6264 static void mem_cgroup_move_task(void)
6265 {
6266 }
6267 #endif
6268
6269 /*
6270 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6271 * to verify whether we're attached to the default hierarchy on each mount
6272 * attempt.
6273 */
mem_cgroup_bind(struct cgroup_subsys_state * root_css)6274 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6275 {
6276 /*
6277 * use_hierarchy is forced on the default hierarchy. cgroup core
6278 * guarantees that @root doesn't have any children, so turning it
6279 * on for the root memcg is enough.
6280 */
6281 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6282 root_mem_cgroup->use_hierarchy = true;
6283 else
6284 root_mem_cgroup->use_hierarchy = false;
6285 }
6286
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)6287 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6288 {
6289 if (value == PAGE_COUNTER_MAX)
6290 seq_puts(m, "max\n");
6291 else
6292 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6293
6294 return 0;
6295 }
6296
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)6297 static u64 memory_current_read(struct cgroup_subsys_state *css,
6298 struct cftype *cft)
6299 {
6300 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6301
6302 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6303 }
6304
memory_min_show(struct seq_file * m,void * v)6305 static int memory_min_show(struct seq_file *m, void *v)
6306 {
6307 return seq_puts_memcg_tunable(m,
6308 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6309 }
6310
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6311 static ssize_t memory_min_write(struct kernfs_open_file *of,
6312 char *buf, size_t nbytes, loff_t off)
6313 {
6314 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6315 unsigned long min;
6316 int err;
6317
6318 buf = strstrip(buf);
6319 err = page_counter_memparse(buf, "max", &min);
6320 if (err)
6321 return err;
6322
6323 page_counter_set_min(&memcg->memory, min);
6324
6325 return nbytes;
6326 }
6327
memory_low_show(struct seq_file * m,void * v)6328 static int memory_low_show(struct seq_file *m, void *v)
6329 {
6330 return seq_puts_memcg_tunable(m,
6331 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6332 }
6333
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6334 static ssize_t memory_low_write(struct kernfs_open_file *of,
6335 char *buf, size_t nbytes, loff_t off)
6336 {
6337 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6338 unsigned long low;
6339 int err;
6340
6341 buf = strstrip(buf);
6342 err = page_counter_memparse(buf, "max", &low);
6343 if (err)
6344 return err;
6345
6346 page_counter_set_low(&memcg->memory, low);
6347
6348 return nbytes;
6349 }
6350
memory_high_show(struct seq_file * m,void * v)6351 static int memory_high_show(struct seq_file *m, void *v)
6352 {
6353 return seq_puts_memcg_tunable(m,
6354 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6355 }
6356
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6357 static ssize_t memory_high_write(struct kernfs_open_file *of,
6358 char *buf, size_t nbytes, loff_t off)
6359 {
6360 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6361 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6362 bool drained = false;
6363 unsigned long high;
6364 int err;
6365
6366 buf = strstrip(buf);
6367 err = page_counter_memparse(buf, "max", &high);
6368 if (err)
6369 return err;
6370
6371 page_counter_set_high(&memcg->memory, high);
6372
6373 for (;;) {
6374 unsigned long nr_pages = page_counter_read(&memcg->memory);
6375 unsigned long reclaimed;
6376
6377 if (nr_pages <= high)
6378 break;
6379
6380 if (signal_pending(current))
6381 break;
6382
6383 if (!drained) {
6384 drain_all_stock(memcg);
6385 drained = true;
6386 continue;
6387 }
6388
6389 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6390 GFP_KERNEL, true);
6391
6392 if (!reclaimed && !nr_retries--)
6393 break;
6394 }
6395
6396 memcg_wb_domain_size_changed(memcg);
6397 return nbytes;
6398 }
6399
memory_max_show(struct seq_file * m,void * v)6400 static int memory_max_show(struct seq_file *m, void *v)
6401 {
6402 return seq_puts_memcg_tunable(m,
6403 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6404 }
6405
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6406 static ssize_t memory_max_write(struct kernfs_open_file *of,
6407 char *buf, size_t nbytes, loff_t off)
6408 {
6409 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6410 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6411 bool drained = false;
6412 unsigned long max;
6413 int err;
6414
6415 buf = strstrip(buf);
6416 err = page_counter_memparse(buf, "max", &max);
6417 if (err)
6418 return err;
6419
6420 xchg(&memcg->memory.max, max);
6421
6422 for (;;) {
6423 unsigned long nr_pages = page_counter_read(&memcg->memory);
6424
6425 if (nr_pages <= max)
6426 break;
6427
6428 if (signal_pending(current))
6429 break;
6430
6431 if (!drained) {
6432 drain_all_stock(memcg);
6433 drained = true;
6434 continue;
6435 }
6436
6437 if (nr_reclaims) {
6438 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6439 GFP_KERNEL, true))
6440 nr_reclaims--;
6441 continue;
6442 }
6443
6444 memcg_memory_event(memcg, MEMCG_OOM);
6445 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6446 break;
6447 }
6448
6449 memcg_wb_domain_size_changed(memcg);
6450 return nbytes;
6451 }
6452
__memory_events_show(struct seq_file * m,atomic_long_t * events)6453 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6454 {
6455 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6456 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6457 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6458 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6459 seq_printf(m, "oom_kill %lu\n",
6460 atomic_long_read(&events[MEMCG_OOM_KILL]));
6461 }
6462
memory_events_show(struct seq_file * m,void * v)6463 static int memory_events_show(struct seq_file *m, void *v)
6464 {
6465 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6466
6467 __memory_events_show(m, memcg->memory_events);
6468 return 0;
6469 }
6470
memory_events_local_show(struct seq_file * m,void * v)6471 static int memory_events_local_show(struct seq_file *m, void *v)
6472 {
6473 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6474
6475 __memory_events_show(m, memcg->memory_events_local);
6476 return 0;
6477 }
6478
memory_stat_show(struct seq_file * m,void * v)6479 static int memory_stat_show(struct seq_file *m, void *v)
6480 {
6481 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6482 char *buf;
6483
6484 buf = memory_stat_format(memcg);
6485 if (!buf)
6486 return -ENOMEM;
6487 seq_puts(m, buf);
6488 kfree(buf);
6489 return 0;
6490 }
6491
6492 #ifdef CONFIG_NUMA
memory_numa_stat_show(struct seq_file * m,void * v)6493 static int memory_numa_stat_show(struct seq_file *m, void *v)
6494 {
6495 int i;
6496 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6497
6498 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6499 int nid;
6500
6501 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6502 continue;
6503
6504 seq_printf(m, "%s", memory_stats[i].name);
6505 for_each_node_state(nid, N_MEMORY) {
6506 u64 size;
6507 struct lruvec *lruvec;
6508
6509 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6510 size = lruvec_page_state(lruvec, memory_stats[i].idx);
6511 size *= memory_stats[i].ratio;
6512 seq_printf(m, " N%d=%llu", nid, size);
6513 }
6514 seq_putc(m, '\n');
6515 }
6516
6517 return 0;
6518 }
6519 #endif
6520
memory_oom_group_show(struct seq_file * m,void * v)6521 static int memory_oom_group_show(struct seq_file *m, void *v)
6522 {
6523 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6524
6525 seq_printf(m, "%d\n", memcg->oom_group);
6526
6527 return 0;
6528 }
6529
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6530 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6531 char *buf, size_t nbytes, loff_t off)
6532 {
6533 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6534 int ret, oom_group;
6535
6536 buf = strstrip(buf);
6537 if (!buf)
6538 return -EINVAL;
6539
6540 ret = kstrtoint(buf, 0, &oom_group);
6541 if (ret)
6542 return ret;
6543
6544 if (oom_group != 0 && oom_group != 1)
6545 return -EINVAL;
6546
6547 memcg->oom_group = oom_group;
6548
6549 return nbytes;
6550 }
6551
6552 static struct cftype memory_files[] = {
6553 {
6554 .name = "current",
6555 .flags = CFTYPE_NOT_ON_ROOT,
6556 .read_u64 = memory_current_read,
6557 },
6558 {
6559 .name = "min",
6560 .flags = CFTYPE_NOT_ON_ROOT,
6561 .seq_show = memory_min_show,
6562 .write = memory_min_write,
6563 },
6564 {
6565 .name = "low",
6566 .flags = CFTYPE_NOT_ON_ROOT,
6567 .seq_show = memory_low_show,
6568 .write = memory_low_write,
6569 },
6570 {
6571 .name = "high",
6572 .flags = CFTYPE_NOT_ON_ROOT,
6573 .seq_show = memory_high_show,
6574 .write = memory_high_write,
6575 },
6576 {
6577 .name = "max",
6578 .flags = CFTYPE_NOT_ON_ROOT,
6579 .seq_show = memory_max_show,
6580 .write = memory_max_write,
6581 },
6582 {
6583 .name = "events",
6584 .flags = CFTYPE_NOT_ON_ROOT,
6585 .file_offset = offsetof(struct mem_cgroup, events_file),
6586 .seq_show = memory_events_show,
6587 },
6588 {
6589 .name = "events.local",
6590 .flags = CFTYPE_NOT_ON_ROOT,
6591 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6592 .seq_show = memory_events_local_show,
6593 },
6594 {
6595 .name = "stat",
6596 .seq_show = memory_stat_show,
6597 },
6598 #ifdef CONFIG_NUMA
6599 {
6600 .name = "numa_stat",
6601 .seq_show = memory_numa_stat_show,
6602 },
6603 #endif
6604 {
6605 .name = "oom.group",
6606 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6607 .seq_show = memory_oom_group_show,
6608 .write = memory_oom_group_write,
6609 },
6610 { } /* terminate */
6611 };
6612
6613 struct cgroup_subsys memory_cgrp_subsys = {
6614 .css_alloc = mem_cgroup_css_alloc,
6615 .css_online = mem_cgroup_css_online,
6616 .css_offline = mem_cgroup_css_offline,
6617 .css_released = mem_cgroup_css_released,
6618 .css_free = mem_cgroup_css_free,
6619 .css_reset = mem_cgroup_css_reset,
6620 .can_attach = mem_cgroup_can_attach,
6621 .cancel_attach = mem_cgroup_cancel_attach,
6622 .post_attach = mem_cgroup_move_task,
6623 .bind = mem_cgroup_bind,
6624 .dfl_cftypes = memory_files,
6625 .legacy_cftypes = mem_cgroup_legacy_files,
6626 .early_init = 0,
6627 };
6628
6629 /*
6630 * This function calculates an individual cgroup's effective
6631 * protection which is derived from its own memory.min/low, its
6632 * parent's and siblings' settings, as well as the actual memory
6633 * distribution in the tree.
6634 *
6635 * The following rules apply to the effective protection values:
6636 *
6637 * 1. At the first level of reclaim, effective protection is equal to
6638 * the declared protection in memory.min and memory.low.
6639 *
6640 * 2. To enable safe delegation of the protection configuration, at
6641 * subsequent levels the effective protection is capped to the
6642 * parent's effective protection.
6643 *
6644 * 3. To make complex and dynamic subtrees easier to configure, the
6645 * user is allowed to overcommit the declared protection at a given
6646 * level. If that is the case, the parent's effective protection is
6647 * distributed to the children in proportion to how much protection
6648 * they have declared and how much of it they are utilizing.
6649 *
6650 * This makes distribution proportional, but also work-conserving:
6651 * if one cgroup claims much more protection than it uses memory,
6652 * the unused remainder is available to its siblings.
6653 *
6654 * 4. Conversely, when the declared protection is undercommitted at a
6655 * given level, the distribution of the larger parental protection
6656 * budget is NOT proportional. A cgroup's protection from a sibling
6657 * is capped to its own memory.min/low setting.
6658 *
6659 * 5. However, to allow protecting recursive subtrees from each other
6660 * without having to declare each individual cgroup's fixed share
6661 * of the ancestor's claim to protection, any unutilized -
6662 * "floating" - protection from up the tree is distributed in
6663 * proportion to each cgroup's *usage*. This makes the protection
6664 * neutral wrt sibling cgroups and lets them compete freely over
6665 * the shared parental protection budget, but it protects the
6666 * subtree as a whole from neighboring subtrees.
6667 *
6668 * Note that 4. and 5. are not in conflict: 4. is about protecting
6669 * against immediate siblings whereas 5. is about protecting against
6670 * neighboring subtrees.
6671 */
effective_protection(unsigned long usage,unsigned long parent_usage,unsigned long setting,unsigned long parent_effective,unsigned long siblings_protected)6672 static unsigned long effective_protection(unsigned long usage,
6673 unsigned long parent_usage,
6674 unsigned long setting,
6675 unsigned long parent_effective,
6676 unsigned long siblings_protected)
6677 {
6678 unsigned long protected;
6679 unsigned long ep;
6680
6681 protected = min(usage, setting);
6682 /*
6683 * If all cgroups at this level combined claim and use more
6684 * protection then what the parent affords them, distribute
6685 * shares in proportion to utilization.
6686 *
6687 * We are using actual utilization rather than the statically
6688 * claimed protection in order to be work-conserving: claimed
6689 * but unused protection is available to siblings that would
6690 * otherwise get a smaller chunk than what they claimed.
6691 */
6692 if (siblings_protected > parent_effective)
6693 return protected * parent_effective / siblings_protected;
6694
6695 /*
6696 * Ok, utilized protection of all children is within what the
6697 * parent affords them, so we know whatever this child claims
6698 * and utilizes is effectively protected.
6699 *
6700 * If there is unprotected usage beyond this value, reclaim
6701 * will apply pressure in proportion to that amount.
6702 *
6703 * If there is unutilized protection, the cgroup will be fully
6704 * shielded from reclaim, but we do return a smaller value for
6705 * protection than what the group could enjoy in theory. This
6706 * is okay. With the overcommit distribution above, effective
6707 * protection is always dependent on how memory is actually
6708 * consumed among the siblings anyway.
6709 */
6710 ep = protected;
6711
6712 /*
6713 * If the children aren't claiming (all of) the protection
6714 * afforded to them by the parent, distribute the remainder in
6715 * proportion to the (unprotected) memory of each cgroup. That
6716 * way, cgroups that aren't explicitly prioritized wrt each
6717 * other compete freely over the allowance, but they are
6718 * collectively protected from neighboring trees.
6719 *
6720 * We're using unprotected memory for the weight so that if
6721 * some cgroups DO claim explicit protection, we don't protect
6722 * the same bytes twice.
6723 *
6724 * Check both usage and parent_usage against the respective
6725 * protected values. One should imply the other, but they
6726 * aren't read atomically - make sure the division is sane.
6727 */
6728 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6729 return ep;
6730 if (parent_effective > siblings_protected &&
6731 parent_usage > siblings_protected &&
6732 usage > protected) {
6733 unsigned long unclaimed;
6734
6735 unclaimed = parent_effective - siblings_protected;
6736 unclaimed *= usage - protected;
6737 unclaimed /= parent_usage - siblings_protected;
6738
6739 ep += unclaimed;
6740 }
6741
6742 return ep;
6743 }
6744
6745 /**
6746 * mem_cgroup_protected - check if memory consumption is in the normal range
6747 * @root: the top ancestor of the sub-tree being checked
6748 * @memcg: the memory cgroup to check
6749 *
6750 * WARNING: This function is not stateless! It can only be used as part
6751 * of a top-down tree iteration, not for isolated queries.
6752 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)6753 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6754 struct mem_cgroup *memcg)
6755 {
6756 unsigned long usage, parent_usage;
6757 struct mem_cgroup *parent;
6758
6759 if (mem_cgroup_disabled())
6760 return;
6761
6762 if (!root)
6763 root = root_mem_cgroup;
6764
6765 /*
6766 * Effective values of the reclaim targets are ignored so they
6767 * can be stale. Have a look at mem_cgroup_protection for more
6768 * details.
6769 * TODO: calculation should be more robust so that we do not need
6770 * that special casing.
6771 */
6772 if (memcg == root)
6773 return;
6774
6775 usage = page_counter_read(&memcg->memory);
6776 if (!usage)
6777 return;
6778
6779 parent = parent_mem_cgroup(memcg);
6780 /* No parent means a non-hierarchical mode on v1 memcg */
6781 if (!parent)
6782 return;
6783
6784 if (parent == root) {
6785 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6786 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6787 return;
6788 }
6789
6790 parent_usage = page_counter_read(&parent->memory);
6791
6792 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6793 READ_ONCE(memcg->memory.min),
6794 READ_ONCE(parent->memory.emin),
6795 atomic_long_read(&parent->memory.children_min_usage)));
6796
6797 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6798 READ_ONCE(memcg->memory.low),
6799 READ_ONCE(parent->memory.elow),
6800 atomic_long_read(&parent->memory.children_low_usage)));
6801 }
6802
6803 /**
6804 * __mem_cgroup_charge - charge a newly allocated page to a cgroup
6805 * @page: page to charge
6806 * @mm: mm context of the victim
6807 * @gfp_mask: reclaim mode
6808 *
6809 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6810 * pages according to @gfp_mask if necessary.
6811 *
6812 * Returns 0 on success. Otherwise, an error code is returned.
6813 */
__mem_cgroup_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask)6814 int __mem_cgroup_charge(struct page *page, struct mm_struct *mm,
6815 gfp_t gfp_mask)
6816 {
6817 unsigned int nr_pages = thp_nr_pages(page);
6818 struct mem_cgroup *memcg = NULL;
6819 int ret = 0;
6820
6821 if (PageSwapCache(page)) {
6822 swp_entry_t ent = { .val = page_private(page), };
6823 unsigned short id;
6824
6825 /*
6826 * Every swap fault against a single page tries to charge the
6827 * page, bail as early as possible. shmem_unuse() encounters
6828 * already charged pages, too. page->mem_cgroup is protected
6829 * by the page lock, which serializes swap cache removal, which
6830 * in turn serializes uncharging.
6831 */
6832 VM_BUG_ON_PAGE(!PageLocked(page), page);
6833 if (compound_head(page)->mem_cgroup)
6834 goto out;
6835
6836 id = lookup_swap_cgroup_id(ent);
6837 rcu_read_lock();
6838 memcg = mem_cgroup_from_id(id);
6839 if (memcg && !css_tryget_online(&memcg->css))
6840 memcg = NULL;
6841 rcu_read_unlock();
6842 }
6843
6844 if (!memcg)
6845 memcg = get_mem_cgroup_from_mm(mm);
6846
6847 ret = try_charge(memcg, gfp_mask, nr_pages);
6848 if (ret)
6849 goto out_put;
6850
6851 css_get(&memcg->css);
6852 commit_charge(page, memcg);
6853
6854 local_irq_disable();
6855 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6856 memcg_check_events(memcg, page);
6857 local_irq_enable();
6858
6859 /*
6860 * Cgroup1's unified memory+swap counter has been charged with the
6861 * new swapcache page, finish the transfer by uncharging the swap
6862 * slot. The swap slot would also get uncharged when it dies, but
6863 * it can stick around indefinitely and we'd count the page twice
6864 * the entire time.
6865 *
6866 * Cgroup2 has separate resource counters for memory and swap,
6867 * so this is a non-issue here. Memory and swap charge lifetimes
6868 * correspond 1:1 to page and swap slot lifetimes: we charge the
6869 * page to memory here, and uncharge swap when the slot is freed.
6870 */
6871 if (do_memsw_account() && PageSwapCache(page)) {
6872 swp_entry_t entry = { .val = page_private(page) };
6873 /*
6874 * The swap entry might not get freed for a long time,
6875 * let's not wait for it. The page already received a
6876 * memory+swap charge, drop the swap entry duplicate.
6877 */
6878 mem_cgroup_uncharge_swap(entry, nr_pages);
6879 }
6880
6881 out_put:
6882 css_put(&memcg->css);
6883 out:
6884 return ret;
6885 }
6886
6887 struct uncharge_gather {
6888 struct mem_cgroup *memcg;
6889 unsigned long nr_pages;
6890 unsigned long pgpgout;
6891 unsigned long nr_kmem;
6892 struct page *dummy_page;
6893 };
6894
uncharge_gather_clear(struct uncharge_gather * ug)6895 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6896 {
6897 memset(ug, 0, sizeof(*ug));
6898 }
6899
uncharge_batch(const struct uncharge_gather * ug)6900 static void uncharge_batch(const struct uncharge_gather *ug)
6901 {
6902 unsigned long flags;
6903
6904 if (!mem_cgroup_is_root(ug->memcg)) {
6905 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6906 if (do_memsw_account())
6907 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6908 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6909 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6910 memcg_oom_recover(ug->memcg);
6911 }
6912
6913 local_irq_save(flags);
6914 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6915 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6916 memcg_check_events(ug->memcg, ug->dummy_page);
6917 local_irq_restore(flags);
6918
6919 /* drop reference from uncharge_page */
6920 css_put(&ug->memcg->css);
6921 }
6922
uncharge_page(struct page * page,struct uncharge_gather * ug)6923 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6924 {
6925 unsigned long nr_pages;
6926
6927 VM_BUG_ON_PAGE(PageLRU(page), page);
6928
6929 if (!page->mem_cgroup)
6930 return;
6931
6932 /*
6933 * Nobody should be changing or seriously looking at
6934 * page->mem_cgroup at this point, we have fully
6935 * exclusive access to the page.
6936 */
6937
6938 if (ug->memcg != page->mem_cgroup) {
6939 if (ug->memcg) {
6940 uncharge_batch(ug);
6941 uncharge_gather_clear(ug);
6942 }
6943 ug->memcg = page->mem_cgroup;
6944
6945 /* pairs with css_put in uncharge_batch */
6946 css_get(&ug->memcg->css);
6947 }
6948
6949 nr_pages = compound_nr(page);
6950 ug->nr_pages += nr_pages;
6951
6952 if (!PageKmemcg(page)) {
6953 ug->pgpgout++;
6954 } else {
6955 ug->nr_kmem += nr_pages;
6956 __ClearPageKmemcg(page);
6957 }
6958
6959 ug->dummy_page = page;
6960 page->mem_cgroup = NULL;
6961 css_put(&ug->memcg->css);
6962 }
6963
uncharge_list(struct list_head * page_list)6964 static void uncharge_list(struct list_head *page_list)
6965 {
6966 struct uncharge_gather ug;
6967 struct list_head *next;
6968
6969 uncharge_gather_clear(&ug);
6970
6971 /*
6972 * Note that the list can be a single page->lru; hence the
6973 * do-while loop instead of a simple list_for_each_entry().
6974 */
6975 next = page_list->next;
6976 do {
6977 struct page *page;
6978
6979 page = list_entry(next, struct page, lru);
6980 next = page->lru.next;
6981
6982 uncharge_page(page, &ug);
6983 } while (next != page_list);
6984
6985 if (ug.memcg)
6986 uncharge_batch(&ug);
6987 }
6988
6989 /**
6990 * __mem_cgroup_uncharge - uncharge a page
6991 * @page: page to uncharge
6992 *
6993 * Uncharge a page previously charged with __mem_cgroup_charge().
6994 */
__mem_cgroup_uncharge(struct page * page)6995 void __mem_cgroup_uncharge(struct page *page)
6996 {
6997 struct uncharge_gather ug;
6998
6999 /* Don't touch page->lru of any random page, pre-check: */
7000 if (!page->mem_cgroup)
7001 return;
7002
7003 uncharge_gather_clear(&ug);
7004 uncharge_page(page, &ug);
7005 uncharge_batch(&ug);
7006 }
7007
7008 /**
7009 * __mem_cgroup_uncharge_list - uncharge a list of page
7010 * @page_list: list of pages to uncharge
7011 *
7012 * Uncharge a list of pages previously charged with
7013 * __mem_cgroup_charge().
7014 */
__mem_cgroup_uncharge_list(struct list_head * page_list)7015 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7016 {
7017 if (!list_empty(page_list))
7018 uncharge_list(page_list);
7019 }
7020
7021 /**
7022 * mem_cgroup_migrate - charge a page's replacement
7023 * @oldpage: currently circulating page
7024 * @newpage: replacement page
7025 *
7026 * Charge @newpage as a replacement page for @oldpage. @oldpage will
7027 * be uncharged upon free.
7028 *
7029 * Both pages must be locked, @newpage->mapping must be set up.
7030 */
mem_cgroup_migrate(struct page * oldpage,struct page * newpage)7031 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
7032 {
7033 struct mem_cgroup *memcg;
7034 unsigned int nr_pages;
7035 unsigned long flags;
7036
7037 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
7038 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
7039 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
7040 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
7041 newpage);
7042
7043 if (mem_cgroup_disabled())
7044 return;
7045
7046 /* Page cache replacement: new page already charged? */
7047 if (newpage->mem_cgroup)
7048 return;
7049
7050 /* Swapcache readahead pages can get replaced before being charged */
7051 memcg = oldpage->mem_cgroup;
7052 if (!memcg)
7053 return;
7054
7055 /* Force-charge the new page. The old one will be freed soon */
7056 nr_pages = thp_nr_pages(newpage);
7057
7058 page_counter_charge(&memcg->memory, nr_pages);
7059 if (do_memsw_account())
7060 page_counter_charge(&memcg->memsw, nr_pages);
7061
7062 css_get(&memcg->css);
7063 commit_charge(newpage, memcg);
7064
7065 local_irq_save(flags);
7066 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7067 memcg_check_events(memcg, newpage);
7068 local_irq_restore(flags);
7069 }
7070
7071 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7072 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7073
mem_cgroup_sk_alloc(struct sock * sk)7074 void mem_cgroup_sk_alloc(struct sock *sk)
7075 {
7076 struct mem_cgroup *memcg;
7077
7078 if (!mem_cgroup_sockets_enabled)
7079 return;
7080
7081 /* Do not associate the sock with unrelated interrupted task's memcg. */
7082 if (in_interrupt())
7083 return;
7084
7085 rcu_read_lock();
7086 memcg = mem_cgroup_from_task(current);
7087 if (memcg == root_mem_cgroup)
7088 goto out;
7089 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7090 goto out;
7091 if (css_tryget(&memcg->css))
7092 sk->sk_memcg = memcg;
7093 out:
7094 rcu_read_unlock();
7095 }
7096
mem_cgroup_sk_free(struct sock * sk)7097 void mem_cgroup_sk_free(struct sock *sk)
7098 {
7099 if (sk->sk_memcg)
7100 css_put(&sk->sk_memcg->css);
7101 }
7102
7103 /**
7104 * mem_cgroup_charge_skmem - charge socket memory
7105 * @memcg: memcg to charge
7106 * @nr_pages: number of pages to charge
7107 *
7108 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7109 * @memcg's configured limit, %false if the charge had to be forced.
7110 */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)7111 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7112 {
7113 gfp_t gfp_mask = GFP_KERNEL;
7114
7115 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7116 struct page_counter *fail;
7117
7118 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7119 memcg->tcpmem_pressure = 0;
7120 return true;
7121 }
7122 page_counter_charge(&memcg->tcpmem, nr_pages);
7123 memcg->tcpmem_pressure = 1;
7124 return false;
7125 }
7126
7127 /* Don't block in the packet receive path */
7128 if (in_softirq())
7129 gfp_mask = GFP_NOWAIT;
7130
7131 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7132
7133 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7134 return true;
7135
7136 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7137 return false;
7138 }
7139
7140 /**
7141 * mem_cgroup_uncharge_skmem - uncharge socket memory
7142 * @memcg: memcg to uncharge
7143 * @nr_pages: number of pages to uncharge
7144 */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)7145 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7146 {
7147 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7148 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7149 return;
7150 }
7151
7152 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7153
7154 refill_stock(memcg, nr_pages);
7155 }
7156
cgroup_memory(char * s)7157 static int __init cgroup_memory(char *s)
7158 {
7159 char *token;
7160
7161 while ((token = strsep(&s, ",")) != NULL) {
7162 if (!*token)
7163 continue;
7164 if (!strcmp(token, "nosocket"))
7165 cgroup_memory_nosocket = true;
7166 if (!strcmp(token, "nokmem"))
7167 cgroup_memory_nokmem = true;
7168 }
7169 return 1;
7170 }
7171 __setup("cgroup.memory=", cgroup_memory);
7172
7173 /*
7174 * subsys_initcall() for memory controller.
7175 *
7176 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7177 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7178 * basically everything that doesn't depend on a specific mem_cgroup structure
7179 * should be initialized from here.
7180 */
mem_cgroup_init(void)7181 static int __init mem_cgroup_init(void)
7182 {
7183 int cpu, node;
7184
7185 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7186 memcg_hotplug_cpu_dead);
7187
7188 for_each_possible_cpu(cpu)
7189 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7190 drain_local_stock);
7191
7192 for_each_node(node) {
7193 struct mem_cgroup_tree_per_node *rtpn;
7194
7195 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7196 node_online(node) ? node : NUMA_NO_NODE);
7197
7198 rtpn->rb_root = RB_ROOT;
7199 rtpn->rb_rightmost = NULL;
7200 spin_lock_init(&rtpn->lock);
7201 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7202 }
7203
7204 return 0;
7205 }
7206 subsys_initcall(mem_cgroup_init);
7207
7208 #ifdef CONFIG_MEMCG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)7209 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7210 {
7211 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7212 /*
7213 * The root cgroup cannot be destroyed, so it's refcount must
7214 * always be >= 1.
7215 */
7216 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7217 VM_BUG_ON(1);
7218 break;
7219 }
7220 memcg = parent_mem_cgroup(memcg);
7221 if (!memcg)
7222 memcg = root_mem_cgroup;
7223 }
7224 return memcg;
7225 }
7226
7227 /**
7228 * mem_cgroup_swapout - transfer a memsw charge to swap
7229 * @page: page whose memsw charge to transfer
7230 * @entry: swap entry to move the charge to
7231 *
7232 * Transfer the memsw charge of @page to @entry.
7233 */
mem_cgroup_swapout(struct page * page,swp_entry_t entry)7234 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7235 {
7236 struct mem_cgroup *memcg, *swap_memcg;
7237 unsigned int nr_entries;
7238 unsigned short oldid;
7239
7240 VM_BUG_ON_PAGE(PageLRU(page), page);
7241 VM_BUG_ON_PAGE(page_count(page), page);
7242
7243 if (mem_cgroup_disabled())
7244 return;
7245
7246 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7247 return;
7248
7249 memcg = page->mem_cgroup;
7250
7251 /* Readahead page, never charged */
7252 if (!memcg)
7253 return;
7254
7255 /*
7256 * In case the memcg owning these pages has been offlined and doesn't
7257 * have an ID allocated to it anymore, charge the closest online
7258 * ancestor for the swap instead and transfer the memory+swap charge.
7259 */
7260 swap_memcg = mem_cgroup_id_get_online(memcg);
7261 nr_entries = thp_nr_pages(page);
7262 /* Get references for the tail pages, too */
7263 if (nr_entries > 1)
7264 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7265 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7266 nr_entries);
7267 VM_BUG_ON_PAGE(oldid, page);
7268 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7269
7270 page->mem_cgroup = NULL;
7271
7272 if (!mem_cgroup_is_root(memcg))
7273 page_counter_uncharge(&memcg->memory, nr_entries);
7274
7275 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7276 if (!mem_cgroup_is_root(swap_memcg))
7277 page_counter_charge(&swap_memcg->memsw, nr_entries);
7278 page_counter_uncharge(&memcg->memsw, nr_entries);
7279 }
7280
7281 /*
7282 * Interrupts should be disabled here because the caller holds the
7283 * i_pages lock which is taken with interrupts-off. It is
7284 * important here to have the interrupts disabled because it is the
7285 * only synchronisation we have for updating the per-CPU variables.
7286 */
7287 VM_BUG_ON(!irqs_disabled());
7288 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7289 memcg_check_events(memcg, page);
7290
7291 css_put(&memcg->css);
7292 }
7293
7294 /**
7295 * __mem_cgroup_try_charge_swap - try charging swap space for a page
7296 * @page: page being added to swap
7297 * @entry: swap entry to charge
7298 *
7299 * Try to charge @page's memcg for the swap space at @entry.
7300 *
7301 * Returns 0 on success, -ENOMEM on failure.
7302 */
__mem_cgroup_try_charge_swap(struct page * page,swp_entry_t entry)7303 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7304 {
7305 unsigned int nr_pages = thp_nr_pages(page);
7306 struct page_counter *counter;
7307 struct mem_cgroup *memcg;
7308 unsigned short oldid;
7309
7310 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7311 return 0;
7312
7313 memcg = page->mem_cgroup;
7314
7315 /* Readahead page, never charged */
7316 if (!memcg)
7317 return 0;
7318
7319 if (!entry.val) {
7320 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7321 return 0;
7322 }
7323
7324 memcg = mem_cgroup_id_get_online(memcg);
7325
7326 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7327 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7328 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7329 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7330 mem_cgroup_id_put(memcg);
7331 return -ENOMEM;
7332 }
7333
7334 /* Get references for the tail pages, too */
7335 if (nr_pages > 1)
7336 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7337 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7338 VM_BUG_ON_PAGE(oldid, page);
7339 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7340
7341 return 0;
7342 }
7343
7344 /**
7345 * __mem_cgroup_uncharge_swap - uncharge swap space
7346 * @entry: swap entry to uncharge
7347 * @nr_pages: the amount of swap space to uncharge
7348 */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)7349 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7350 {
7351 struct mem_cgroup *memcg;
7352 unsigned short id;
7353
7354 id = swap_cgroup_record(entry, 0, nr_pages);
7355 rcu_read_lock();
7356 memcg = mem_cgroup_from_id(id);
7357 if (memcg) {
7358 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7359 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7360 page_counter_uncharge(&memcg->swap, nr_pages);
7361 else
7362 page_counter_uncharge(&memcg->memsw, nr_pages);
7363 }
7364 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7365 mem_cgroup_id_put_many(memcg, nr_pages);
7366 }
7367 rcu_read_unlock();
7368 }
7369
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)7370 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7371 {
7372 long nr_swap_pages = get_nr_swap_pages();
7373
7374 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7375 return nr_swap_pages;
7376 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7377 nr_swap_pages = min_t(long, nr_swap_pages,
7378 READ_ONCE(memcg->swap.max) -
7379 page_counter_read(&memcg->swap));
7380 return nr_swap_pages;
7381 }
7382
mem_cgroup_swap_full(struct page * page)7383 bool mem_cgroup_swap_full(struct page *page)
7384 {
7385 struct mem_cgroup *memcg;
7386
7387 VM_BUG_ON_PAGE(!PageLocked(page), page);
7388
7389 if (vm_swap_full())
7390 return true;
7391 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7392 return false;
7393
7394 memcg = page->mem_cgroup;
7395 if (!memcg)
7396 return false;
7397
7398 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7399 unsigned long usage = page_counter_read(&memcg->swap);
7400
7401 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7402 usage * 2 >= READ_ONCE(memcg->swap.max))
7403 return true;
7404 }
7405
7406 return false;
7407 }
7408
setup_swap_account(char * s)7409 static int __init setup_swap_account(char *s)
7410 {
7411 if (!strcmp(s, "1"))
7412 cgroup_memory_noswap = 0;
7413 else if (!strcmp(s, "0"))
7414 cgroup_memory_noswap = 1;
7415 return 1;
7416 }
7417 __setup("swapaccount=", setup_swap_account);
7418
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7419 static u64 swap_current_read(struct cgroup_subsys_state *css,
7420 struct cftype *cft)
7421 {
7422 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7423
7424 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7425 }
7426
swap_high_show(struct seq_file * m,void * v)7427 static int swap_high_show(struct seq_file *m, void *v)
7428 {
7429 return seq_puts_memcg_tunable(m,
7430 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7431 }
7432
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7433 static ssize_t swap_high_write(struct kernfs_open_file *of,
7434 char *buf, size_t nbytes, loff_t off)
7435 {
7436 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7437 unsigned long high;
7438 int err;
7439
7440 buf = strstrip(buf);
7441 err = page_counter_memparse(buf, "max", &high);
7442 if (err)
7443 return err;
7444
7445 page_counter_set_high(&memcg->swap, high);
7446
7447 return nbytes;
7448 }
7449
swap_max_show(struct seq_file * m,void * v)7450 static int swap_max_show(struct seq_file *m, void *v)
7451 {
7452 return seq_puts_memcg_tunable(m,
7453 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7454 }
7455
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7456 static ssize_t swap_max_write(struct kernfs_open_file *of,
7457 char *buf, size_t nbytes, loff_t off)
7458 {
7459 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7460 unsigned long max;
7461 int err;
7462
7463 buf = strstrip(buf);
7464 err = page_counter_memparse(buf, "max", &max);
7465 if (err)
7466 return err;
7467
7468 xchg(&memcg->swap.max, max);
7469
7470 return nbytes;
7471 }
7472
swap_events_show(struct seq_file * m,void * v)7473 static int swap_events_show(struct seq_file *m, void *v)
7474 {
7475 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7476
7477 seq_printf(m, "high %lu\n",
7478 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7479 seq_printf(m, "max %lu\n",
7480 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7481 seq_printf(m, "fail %lu\n",
7482 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7483
7484 return 0;
7485 }
7486
7487 static struct cftype swap_files[] = {
7488 {
7489 .name = "swap.current",
7490 .flags = CFTYPE_NOT_ON_ROOT,
7491 .read_u64 = swap_current_read,
7492 },
7493 {
7494 .name = "swap.high",
7495 .flags = CFTYPE_NOT_ON_ROOT,
7496 .seq_show = swap_high_show,
7497 .write = swap_high_write,
7498 },
7499 {
7500 .name = "swap.max",
7501 .flags = CFTYPE_NOT_ON_ROOT,
7502 .seq_show = swap_max_show,
7503 .write = swap_max_write,
7504 },
7505 {
7506 .name = "swap.events",
7507 .flags = CFTYPE_NOT_ON_ROOT,
7508 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7509 .seq_show = swap_events_show,
7510 },
7511 { } /* terminate */
7512 };
7513
7514 static struct cftype memsw_files[] = {
7515 {
7516 .name = "memsw.usage_in_bytes",
7517 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7518 .read_u64 = mem_cgroup_read_u64,
7519 },
7520 {
7521 .name = "memsw.max_usage_in_bytes",
7522 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7523 .write = mem_cgroup_reset,
7524 .read_u64 = mem_cgroup_read_u64,
7525 },
7526 {
7527 .name = "memsw.limit_in_bytes",
7528 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7529 .write = mem_cgroup_write,
7530 .read_u64 = mem_cgroup_read_u64,
7531 },
7532 {
7533 .name = "memsw.failcnt",
7534 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7535 .write = mem_cgroup_reset,
7536 .read_u64 = mem_cgroup_read_u64,
7537 },
7538 { }, /* terminate */
7539 };
7540
7541 /*
7542 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7543 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7544 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7545 * boot parameter. This may result in premature OOPS inside
7546 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7547 */
mem_cgroup_swap_init(void)7548 static int __init mem_cgroup_swap_init(void)
7549 {
7550 /* No memory control -> no swap control */
7551 if (mem_cgroup_disabled())
7552 cgroup_memory_noswap = true;
7553
7554 if (cgroup_memory_noswap)
7555 return 0;
7556
7557 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7558 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7559
7560 return 0;
7561 }
7562 core_initcall(mem_cgroup_swap_init);
7563
7564 #endif /* CONFIG_MEMCG_SWAP */
7565