1 /* 2 * Copyright (C) 2008 Apple Inc. All Rights Reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY 14 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 16 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR 17 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 18 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 19 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 20 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY 21 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 23 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #pragma once 27 28 #include <cmath> 29 #include <tuple> 30 31 namespace mbgl { 32 namespace util { 33 34 struct UnitBezier { 35 // Calculate the polynomial coefficients, implicit first and last control points are (0,0) and (1,1). UnitBeziermbgl::util::UnitBezier36 constexpr UnitBezier(double p1x, double p1y, double p2x, double p2y) 37 : cx(3.0 * p1x) 38 , bx(3.0 * (p2x - p1x) - (3.0 * p1x)) 39 , ax(1.0 - (3.0 * p1x) - (3.0 * (p2x - p1x) - (3.0 * p1x))) 40 , cy(3.0 * p1y) 41 , by(3.0 * (p2y - p1y) - (3.0 * p1y)) 42 , ay(1.0 - (3.0 * p1y) - (3.0 * (p2y - p1y) - (3.0 * p1y))) { 43 } 44 getP1mbgl::util::UnitBezier45 std::pair<double, double> getP1() const { 46 return { cx / 3.0, cy / 3.0 }; 47 } 48 getP2mbgl::util::UnitBezier49 std::pair<double, double> getP2() const { 50 return { 51 (bx + (3.0 * cx / 3.0) + cx) / 3.0, 52 (by + (3.0 * cy / 3.0) + cy) / 3.0, 53 }; 54 } 55 sampleCurveXmbgl::util::UnitBezier56 double sampleCurveX(double t) const { 57 // `ax t^3 + bx t^2 + cx t' expanded using Horner's rule. 58 return ((ax * t + bx) * t + cx) * t; 59 } 60 sampleCurveYmbgl::util::UnitBezier61 double sampleCurveY(double t) const { 62 return ((ay * t + by) * t + cy) * t; 63 } 64 sampleCurveDerivativeXmbgl::util::UnitBezier65 double sampleCurveDerivativeX(double t) const { 66 return (3.0 * ax * t + 2.0 * bx) * t + cx; 67 } 68 69 // Given an x value, find a parametric value it came from. solveCurveXmbgl::util::UnitBezier70 double solveCurveX(double x, double epsilon) const { 71 double t0; 72 double t1; 73 double t2; 74 double x2; 75 double d2; 76 int i; 77 78 // First try a few iterations of Newton's method -- normally very fast. 79 for (t2 = x, i = 0; i < 8; ++i) { 80 x2 = sampleCurveX(t2) - x; 81 if (fabs (x2) < epsilon) 82 return t2; 83 d2 = sampleCurveDerivativeX(t2); 84 if (fabs(d2) < 1e-6) 85 break; 86 t2 = t2 - x2 / d2; 87 } 88 89 // Fall back to the bisection method for reliability. 90 t0 = 0.0; 91 t1 = 1.0; 92 t2 = x; 93 94 if (t2 < t0) 95 return t0; 96 if (t2 > t1) 97 return t1; 98 99 while (t0 < t1) { 100 x2 = sampleCurveX(t2); 101 if (fabs(x2 - x) < epsilon) 102 return t2; 103 if (x > x2) 104 t0 = t2; 105 else 106 t1 = t2; 107 t2 = (t1 - t0) * .5 + t0; 108 } 109 110 // Failure. 111 return t2; 112 } 113 solvembgl::util::UnitBezier114 double solve(double x, double epsilon) const { 115 return sampleCurveY(solveCurveX(x, epsilon)); 116 } 117 operator ==mbgl::util::UnitBezier118 bool operator==(const UnitBezier& rhs) const { 119 return std::tie(cx, bx, ax, cy, by, ay) == 120 std::tie(rhs.cx, rhs.bx, rhs.ax, rhs.cy, rhs.by, rhs.ay); 121 } 122 123 private: 124 const double cx; 125 const double bx; 126 const double ax; 127 128 const double cy; 129 const double by; 130 const double ay; 131 }; 132 133 } // namespace util 134 } // namespace mbgl 135