1 #pragma once
2 
3 #include <algorithm>
4 #include <cassert>
5 #include <cmath>
6 #include <memory>
7 #include <vector>
8 
9 namespace mapbox {
10 
11 namespace util {
12 
13 template <std::size_t I, typename T> struct nth {
14     inline static typename std::tuple_element<I, T>::type
getmapbox::util::nth15     get(const T& t) { return std::get<I>(t); };
16 };
17 
18 }
19 
20 namespace detail {
21 
22 template <typename N = uint32_t>
23 class Earcut {
24 public:
25     std::vector<N> indices;
26     std::size_t vertices = 0;
27 
28     template <typename Polygon>
29     void operator()(const Polygon& points);
30 
31 private:
32     struct Node {
Nodemapbox::detail::Earcut::Node33         Node(N index, double x_, double y_) : i(index), x(x_), y(y_) {}
34         Node(const Node&) = delete;
35         Node& operator=(const Node&) = delete;
36         Node(Node&&) = delete;
37         Node& operator=(Node&&) = delete;
38 
39         const N i;
40         const double x;
41         const double y;
42 
43         // previous and next vertice nodes in a polygon ring
44         Node* prev = nullptr;
45         Node* next = nullptr;
46 
47         // z-order curve value
48         int32_t z = 0;
49 
50         // previous and next nodes in z-order
51         Node* prevZ = nullptr;
52         Node* nextZ = nullptr;
53 
54         // indicates whether this is a steiner point
55         bool steiner = false;
56     };
57 
58     template <typename Ring> Node* linkedList(const Ring& points, const bool clockwise);
59     Node* filterPoints(Node* start, Node* end = nullptr);
60     void earcutLinked(Node* ear, int pass = 0);
61     bool isEar(Node* ear);
62     bool isEarHashed(Node* ear);
63     Node* cureLocalIntersections(Node* start);
64     void splitEarcut(Node* start);
65     template <typename Polygon> Node* eliminateHoles(const Polygon& points, Node* outerNode);
66     void eliminateHole(Node* hole, Node* outerNode);
67     Node* findHoleBridge(Node* hole, Node* outerNode);
68     void indexCurve(Node* start);
69     Node* sortLinked(Node* list);
70     int32_t zOrder(const double x_, const double y_);
71     Node* getLeftmost(Node* start);
72     bool pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const;
73     bool isValidDiagonal(Node* a, Node* b);
74     double area(const Node* p, const Node* q, const Node* r) const;
75     bool equals(const Node* p1, const Node* p2);
76     bool intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2);
77     bool intersectsPolygon(const Node* a, const Node* b);
78     bool locallyInside(const Node* a, const Node* b);
79     bool middleInside(const Node* a, const Node* b);
80     Node* splitPolygon(Node* a, Node* b);
81     template <typename Point> Node* insertNode(std::size_t i, const Point& p, Node* last);
82     void removeNode(Node* p);
83 
84     bool hashing;
85     double minX, maxX;
86     double minY, maxY;
87     double inv_size = 0;
88 
89     template <typename T, typename Alloc = std::allocator<T>>
90     class ObjectPool {
91     public:
ObjectPool()92         ObjectPool() { }
ObjectPool(std::size_t blockSize_)93         ObjectPool(std::size_t blockSize_) {
94             reset(blockSize_);
95         }
~ObjectPool()96         ~ObjectPool() {
97             clear();
98         }
99         template <typename... Args>
construct(Args &&...args)100         T* construct(Args&&... args) {
101             if (currentIndex >= blockSize) {
102                 currentBlock = alloc.allocate(blockSize);
103                 allocations.emplace_back(currentBlock);
104                 currentIndex = 0;
105             }
106             T* object = &currentBlock[currentIndex++];
107             alloc.construct(object, std::forward<Args>(args)...);
108             return object;
109         }
reset(std::size_t newBlockSize)110         void reset(std::size_t newBlockSize) {
111             for (auto allocation : allocations) alloc.deallocate(allocation, blockSize);
112             allocations.clear();
113             blockSize = std::max<std::size_t>(1, newBlockSize);
114             currentBlock = nullptr;
115             currentIndex = blockSize;
116         }
clear()117         void clear() { reset(blockSize); }
118     private:
119         T* currentBlock = nullptr;
120         std::size_t currentIndex = 1;
121         std::size_t blockSize = 1;
122         std::vector<T*> allocations;
123         Alloc alloc;
124     };
125     ObjectPool<Node> nodes;
126 };
127 
128 template <typename N> template <typename Polygon>
operator ()(const Polygon & points)129 void Earcut<N>::operator()(const Polygon& points) {
130     // reset
131     indices.clear();
132     vertices = 0;
133 
134     if (points.empty()) return;
135 
136     double x;
137     double y;
138     int threshold = 80;
139     std::size_t len = 0;
140 
141     for (size_t i = 0; threshold >= 0 && i < points.size(); i++) {
142         threshold -= static_cast<int>(points[i].size());
143         len += points[i].size();
144     }
145 
146     //estimate size of nodes and indices
147     nodes.reset(len * 3 / 2);
148     indices.reserve(len + points[0].size());
149 
150     Node* outerNode = linkedList(points[0], true);
151     if (!outerNode) return;
152 
153     if (points.size() > 1) outerNode = eliminateHoles(points, outerNode);
154 
155     // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
156     hashing = threshold < 0;
157     if (hashing) {
158         Node* p = outerNode->next;
159         minX = maxX = p->x;
160         minY = maxY = p->y;
161         do {
162             x = p->x;
163             y = p->y;
164             minX = std::min<double>(minX, x);
165             minY = std::min<double>(minY, y);
166             maxX = std::max<double>(maxX, x);
167             maxY = std::max<double>(maxY, y);
168             p = p->next;
169         } while (p != outerNode);
170 
171         // minX, minY and size are later used to transform coords into integers for z-order calculation
172         inv_size = std::max<double>(maxX - minX, maxY - minY);
173         inv_size = inv_size != .0 ? (1. / inv_size) : .0;
174     }
175 
176     earcutLinked(outerNode);
177 
178     nodes.clear();
179 }
180 
181 // create a circular doubly linked list from polygon points in the specified winding order
182 template <typename N> template <typename Ring>
183 typename Earcut<N>::Node*
linkedList(const Ring & points,const bool clockwise)184 Earcut<N>::linkedList(const Ring& points, const bool clockwise) {
185     using Point = typename Ring::value_type;
186     double sum = 0;
187     const std::size_t len = points.size();
188     std::size_t i, j;
189     Node* last = nullptr;
190 
191     // calculate original winding order of a polygon ring
192     for (i = 0, j = len > 0 ? len - 1 : 0; i < len; j = i++) {
193         const auto& p1 = points[i];
194         const auto& p2 = points[j];
195         const double p20 = util::nth<0, Point>::get(p2);
196         const double p10 = util::nth<0, Point>::get(p1);
197         const double p11 = util::nth<1, Point>::get(p1);
198         const double p21 = util::nth<1, Point>::get(p2);
199         sum += (p20 - p10) * (p11 + p21);
200     }
201 
202     // link points into circular doubly-linked list in the specified winding order
203     if (clockwise == (sum > 0)) {
204         for (i = 0; i < len; i++) last = insertNode(vertices + i, points[i], last);
205     } else {
206         for (i = len; i-- > 0;) last = insertNode(vertices + i, points[i], last);
207     }
208 
209     if (last && equals(last, last->next)) {
210         removeNode(last);
211         last = last->next;
212     }
213 
214     vertices += len;
215 
216     return last;
217 }
218 
219 // eliminate colinear or duplicate points
220 template <typename N>
221 typename Earcut<N>::Node*
filterPoints(Node * start,Node * end)222 Earcut<N>::filterPoints(Node* start, Node* end) {
223     if (!end) end = start;
224 
225     Node* p = start;
226     bool again;
227     do {
228         again = false;
229 
230         if (!p->steiner && (equals(p, p->next) || area(p->prev, p, p->next) == 0)) {
231             removeNode(p);
232             p = end = p->prev;
233 
234             if (p == p->next) break;
235             again = true;
236 
237         } else {
238             p = p->next;
239         }
240     } while (again || p != end);
241 
242     return end;
243 }
244 
245 // main ear slicing loop which triangulates a polygon (given as a linked list)
246 template <typename N>
earcutLinked(Node * ear,int pass)247 void Earcut<N>::earcutLinked(Node* ear, int pass) {
248     if (!ear) return;
249 
250     // interlink polygon nodes in z-order
251     if (!pass && hashing) indexCurve(ear);
252 
253     Node* stop = ear;
254     Node* prev;
255     Node* next;
256 
257     int iterations = 0;
258 
259     // iterate through ears, slicing them one by one
260     while (ear->prev != ear->next) {
261         iterations++;
262         prev = ear->prev;
263         next = ear->next;
264 
265         if (hashing ? isEarHashed(ear) : isEar(ear)) {
266             // cut off the triangle
267             indices.emplace_back(prev->i);
268             indices.emplace_back(ear->i);
269             indices.emplace_back(next->i);
270 
271             removeNode(ear);
272 
273             // skipping the next vertice leads to less sliver triangles
274             ear = next->next;
275             stop = next->next;
276 
277             continue;
278         }
279 
280         ear = next;
281 
282         // if we looped through the whole remaining polygon and can't find any more ears
283         if (ear == stop) {
284             // try filtering points and slicing again
285             if (!pass) earcutLinked(filterPoints(ear), 1);
286 
287             // if this didn't work, try curing all small self-intersections locally
288             else if (pass == 1) {
289                 ear = cureLocalIntersections(ear);
290                 earcutLinked(ear, 2);
291 
292             // as a last resort, try splitting the remaining polygon into two
293             } else if (pass == 2) splitEarcut(ear);
294 
295             break;
296         }
297     }
298 }
299 
300 // check whether a polygon node forms a valid ear with adjacent nodes
301 template <typename N>
isEar(Node * ear)302 bool Earcut<N>::isEar(Node* ear) {
303     const Node* a = ear->prev;
304     const Node* b = ear;
305     const Node* c = ear->next;
306 
307     if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
308 
309     // now make sure we don't have other points inside the potential ear
310     Node* p = ear->next->next;
311 
312     while (p != ear->prev) {
313         if (pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
314             area(p->prev, p, p->next) >= 0) return false;
315         p = p->next;
316     }
317 
318     return true;
319 }
320 
321 template <typename N>
isEarHashed(Node * ear)322 bool Earcut<N>::isEarHashed(Node* ear) {
323     const Node* a = ear->prev;
324     const Node* b = ear;
325     const Node* c = ear->next;
326 
327     if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
328 
329     // triangle bbox; min & max are calculated like this for speed
330     const double minTX = std::min<double>(a->x, std::min<double>(b->x, c->x));
331     const double minTY = std::min<double>(a->y, std::min<double>(b->y, c->y));
332     const double maxTX = std::max<double>(a->x, std::max<double>(b->x, c->x));
333     const double maxTY = std::max<double>(a->y, std::max<double>(b->y, c->y));
334 
335     // z-order range for the current triangle bbox;
336     const int32_t minZ = zOrder(minTX, minTY);
337     const int32_t maxZ = zOrder(maxTX, maxTY);
338 
339     // first look for points inside the triangle in increasing z-order
340     Node* p = ear->nextZ;
341 
342     while (p && p->z <= maxZ) {
343         if (p != ear->prev && p != ear->next &&
344             pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
345             area(p->prev, p, p->next) >= 0) return false;
346         p = p->nextZ;
347     }
348 
349     // then look for points in decreasing z-order
350     p = ear->prevZ;
351 
352     while (p && p->z >= minZ) {
353         if (p != ear->prev && p != ear->next &&
354             pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
355             area(p->prev, p, p->next) >= 0) return false;
356         p = p->prevZ;
357     }
358 
359     return true;
360 }
361 
362 // go through all polygon nodes and cure small local self-intersections
363 template <typename N>
364 typename Earcut<N>::Node*
cureLocalIntersections(Node * start)365 Earcut<N>::cureLocalIntersections(Node* start) {
366     Node* p = start;
367     do {
368         Node* a = p->prev;
369         Node* b = p->next->next;
370 
371         // a self-intersection where edge (v[i-1],v[i]) intersects (v[i+1],v[i+2])
372         if (!equals(a, b) && intersects(a, p, p->next, b) && locallyInside(a, b) && locallyInside(b, a)) {
373             indices.emplace_back(a->i);
374             indices.emplace_back(p->i);
375             indices.emplace_back(b->i);
376 
377             // remove two nodes involved
378             removeNode(p);
379             removeNode(p->next);
380 
381             p = start = b;
382         }
383         p = p->next;
384     } while (p != start);
385 
386     return p;
387 }
388 
389 // try splitting polygon into two and triangulate them independently
390 template <typename N>
splitEarcut(Node * start)391 void Earcut<N>::splitEarcut(Node* start) {
392     // look for a valid diagonal that divides the polygon into two
393     Node* a = start;
394     do {
395         Node* b = a->next->next;
396         while (b != a->prev) {
397             if (a->i != b->i && isValidDiagonal(a, b)) {
398                 // split the polygon in two by the diagonal
399                 Node* c = splitPolygon(a, b);
400 
401                 // filter colinear points around the cuts
402                 a = filterPoints(a, a->next);
403                 c = filterPoints(c, c->next);
404 
405                 // run earcut on each half
406                 earcutLinked(a);
407                 earcutLinked(c);
408                 return;
409             }
410             b = b->next;
411         }
412         a = a->next;
413     } while (a != start);
414 }
415 
416 // link every hole into the outer loop, producing a single-ring polygon without holes
417 template <typename N> template <typename Polygon>
418 typename Earcut<N>::Node*
eliminateHoles(const Polygon & points,Node * outerNode)419 Earcut<N>::eliminateHoles(const Polygon& points, Node* outerNode) {
420     const size_t len = points.size();
421 
422     std::vector<Node*> queue;
423     for (size_t i = 1; i < len; i++) {
424         Node* list = linkedList(points[i], false);
425         if (list) {
426             if (list == list->next) list->steiner = true;
427             queue.push_back(getLeftmost(list));
428         }
429     }
430     std::sort(queue.begin(), queue.end(), [](const Node* a, const Node* b) {
431         return a->x < b->x;
432     });
433 
434     // process holes from left to right
435     for (size_t i = 0; i < queue.size(); i++) {
436         eliminateHole(queue[i], outerNode);
437         outerNode = filterPoints(outerNode, outerNode->next);
438     }
439 
440     return outerNode;
441 }
442 
443 // find a bridge between vertices that connects hole with an outer ring and and link it
444 template <typename N>
eliminateHole(Node * hole,Node * outerNode)445 void Earcut<N>::eliminateHole(Node* hole, Node* outerNode) {
446     outerNode = findHoleBridge(hole, outerNode);
447     if (outerNode) {
448         Node* b = splitPolygon(outerNode, hole);
449         filterPoints(b, b->next);
450     }
451 }
452 
453 // David Eberly's algorithm for finding a bridge between hole and outer polygon
454 template <typename N>
455 typename Earcut<N>::Node*
findHoleBridge(Node * hole,Node * outerNode)456 Earcut<N>::findHoleBridge(Node* hole, Node* outerNode) {
457     Node* p = outerNode;
458     double hx = hole->x;
459     double hy = hole->y;
460     double qx = -std::numeric_limits<double>::infinity();
461     Node* m = nullptr;
462 
463     // find a segment intersected by a ray from the hole's leftmost Vertex to the left;
464     // segment's endpoint with lesser x will be potential connection Vertex
465     do {
466         if (hy <= p->y && hy >= p->next->y && p->next->y != p->y) {
467           double x = p->x + (hy - p->y) * (p->next->x - p->x) / (p->next->y - p->y);
468           if (x <= hx && x > qx) {
469             qx = x;
470             if (x == hx) {
471                 if (hy == p->y) return p;
472                 if (hy == p->next->y) return p->next;
473             }
474             m = p->x < p->next->x ? p : p->next;
475           }
476         }
477         p = p->next;
478     } while (p != outerNode);
479 
480     if (!m) return 0;
481 
482     if (hx == qx) return m->prev;
483 
484     // look for points inside the triangle of hole Vertex, segment intersection and endpoint;
485     // if there are no points found, we have a valid connection;
486     // otherwise choose the Vertex of the minimum angle with the ray as connection Vertex
487 
488     const Node* stop = m;
489     double tanMin = std::numeric_limits<double>::infinity();
490     double tanCur = 0;
491 
492     p = m->next;
493     double mx = m->x;
494     double my = m->y;
495 
496     while (p != stop) {
497         if (hx >= p->x && p->x >= mx && hx != p->x &&
498             pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p->x, p->y)) {
499 
500             tanCur = std::abs(hy - p->y) / (hx - p->x); // tangential
501 
502             if ((tanCur < tanMin || (tanCur == tanMin && p->x > m->x)) && locallyInside(p, hole)) {
503                 m = p;
504                 tanMin = tanCur;
505             }
506         }
507 
508         p = p->next;
509     }
510 
511     return m;
512 }
513 
514 // interlink polygon nodes in z-order
515 template <typename N>
indexCurve(Node * start)516 void Earcut<N>::indexCurve(Node* start) {
517     assert(start);
518     Node* p = start;
519 
520     do {
521         p->z = p->z ? p->z : zOrder(p->x, p->y);
522         p->prevZ = p->prev;
523         p->nextZ = p->next;
524         p = p->next;
525     } while (p != start);
526 
527     p->prevZ->nextZ = nullptr;
528     p->prevZ = nullptr;
529 
530     sortLinked(p);
531 }
532 
533 // Simon Tatham's linked list merge sort algorithm
534 // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
535 template <typename N>
536 typename Earcut<N>::Node*
sortLinked(Node * list)537 Earcut<N>::sortLinked(Node* list) {
538     assert(list);
539     Node* p;
540     Node* q;
541     Node* e;
542     Node* tail;
543     int i, numMerges, pSize, qSize;
544     int inSize = 1;
545 
546     for (;;) {
547         p = list;
548         list = nullptr;
549         tail = nullptr;
550         numMerges = 0;
551 
552         while (p) {
553             numMerges++;
554             q = p;
555             pSize = 0;
556             for (i = 0; i < inSize; i++) {
557                 pSize++;
558                 q = q->nextZ;
559                 if (!q) break;
560             }
561 
562             qSize = inSize;
563 
564             while (pSize > 0 || (qSize > 0 && q)) {
565 
566                 if (pSize == 0) {
567                     e = q;
568                     q = q->nextZ;
569                     qSize--;
570                 } else if (qSize == 0 || !q) {
571                     e = p;
572                     p = p->nextZ;
573                     pSize--;
574                 } else if (p->z <= q->z) {
575                     e = p;
576                     p = p->nextZ;
577                     pSize--;
578                 } else {
579                     e = q;
580                     q = q->nextZ;
581                     qSize--;
582                 }
583 
584                 if (tail) tail->nextZ = e;
585                 else list = e;
586 
587                 e->prevZ = tail;
588                 tail = e;
589             }
590 
591             p = q;
592         }
593 
594         tail->nextZ = nullptr;
595 
596         if (numMerges <= 1) return list;
597 
598         inSize *= 2;
599     }
600 }
601 
602 // z-order of a Vertex given coords and size of the data bounding box
603 template <typename N>
zOrder(const double x_,const double y_)604 int32_t Earcut<N>::zOrder(const double x_, const double y_) {
605     // coords are transformed into non-negative 15-bit integer range
606     int32_t x = static_cast<int32_t>(32767.0 * (x_ - minX) * inv_size);
607     int32_t y = static_cast<int32_t>(32767.0 * (y_ - minY) * inv_size);
608 
609     x = (x | (x << 8)) & 0x00FF00FF;
610     x = (x | (x << 4)) & 0x0F0F0F0F;
611     x = (x | (x << 2)) & 0x33333333;
612     x = (x | (x << 1)) & 0x55555555;
613 
614     y = (y | (y << 8)) & 0x00FF00FF;
615     y = (y | (y << 4)) & 0x0F0F0F0F;
616     y = (y | (y << 2)) & 0x33333333;
617     y = (y | (y << 1)) & 0x55555555;
618 
619     return x | (y << 1);
620 }
621 
622 // find the leftmost node of a polygon ring
623 template <typename N>
624 typename Earcut<N>::Node*
getLeftmost(Node * start)625 Earcut<N>::getLeftmost(Node* start) {
626     Node* p = start;
627     Node* leftmost = start;
628     do {
629         if (p->x < leftmost->x) leftmost = p;
630         p = p->next;
631     } while (p != start);
632 
633     return leftmost;
634 }
635 
636 // check if a point lies within a convex triangle
637 template <typename N>
pointInTriangle(double ax,double ay,double bx,double by,double cx,double cy,double px,double py) const638 bool Earcut<N>::pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const {
639     return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 &&
640            (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 &&
641            (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
642 }
643 
644 // check if a diagonal between two polygon nodes is valid (lies in polygon interior)
645 template <typename N>
isValidDiagonal(Node * a,Node * b)646 bool Earcut<N>::isValidDiagonal(Node* a, Node* b) {
647     return a->next->i != b->i && a->prev->i != b->i && !intersectsPolygon(a, b) &&
648            locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b);
649 }
650 
651 // signed area of a triangle
652 template <typename N>
area(const Node * p,const Node * q,const Node * r) const653 double Earcut<N>::area(const Node* p, const Node* q, const Node* r) const {
654     return (q->y - p->y) * (r->x - q->x) - (q->x - p->x) * (r->y - q->y);
655 }
656 
657 // check if two points are equal
658 template <typename N>
equals(const Node * p1,const Node * p2)659 bool Earcut<N>::equals(const Node* p1, const Node* p2) {
660     return p1->x == p2->x && p1->y == p2->y;
661 }
662 
663 // check if two segments intersect
664 template <typename N>
intersects(const Node * p1,const Node * q1,const Node * p2,const Node * q2)665 bool Earcut<N>::intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2) {
666     if ((equals(p1, q1) && equals(p2, q2)) ||
667         (equals(p1, q2) && equals(p2, q1))) return true;
668     return (area(p1, q1, p2) > 0) != (area(p1, q1, q2) > 0) &&
669            (area(p2, q2, p1) > 0) != (area(p2, q2, q1) > 0);
670 }
671 
672 // check if a polygon diagonal intersects any polygon segments
673 template <typename N>
intersectsPolygon(const Node * a,const Node * b)674 bool Earcut<N>::intersectsPolygon(const Node* a, const Node* b) {
675     const Node* p = a;
676     do {
677         if (p->i != a->i && p->next->i != a->i && p->i != b->i && p->next->i != b->i &&
678                 intersects(p, p->next, a, b)) return true;
679         p = p->next;
680     } while (p != a);
681 
682     return false;
683 }
684 
685 // check if a polygon diagonal is locally inside the polygon
686 template <typename N>
locallyInside(const Node * a,const Node * b)687 bool Earcut<N>::locallyInside(const Node* a, const Node* b) {
688     return area(a->prev, a, a->next) < 0 ?
689         area(a, b, a->next) >= 0 && area(a, a->prev, b) >= 0 :
690         area(a, b, a->prev) < 0 || area(a, a->next, b) < 0;
691 }
692 
693 // check if the middle Vertex of a polygon diagonal is inside the polygon
694 template <typename N>
middleInside(const Node * a,const Node * b)695 bool Earcut<N>::middleInside(const Node* a, const Node* b) {
696     const Node* p = a;
697     bool inside = false;
698     double px = (a->x + b->x) / 2;
699     double py = (a->y + b->y) / 2;
700     do {
701         if (((p->y > py) != (p->next->y > py)) && p->next->y != p->y &&
702                 (px < (p->next->x - p->x) * (py - p->y) / (p->next->y - p->y) + p->x))
703             inside = !inside;
704         p = p->next;
705     } while (p != a);
706 
707     return inside;
708 }
709 
710 // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits
711 // polygon into two; if one belongs to the outer ring and another to a hole, it merges it into a
712 // single ring
713 template <typename N>
714 typename Earcut<N>::Node*
splitPolygon(Node * a,Node * b)715 Earcut<N>::splitPolygon(Node* a, Node* b) {
716     Node* a2 = nodes.construct(a->i, a->x, a->y);
717     Node* b2 = nodes.construct(b->i, b->x, b->y);
718     Node* an = a->next;
719     Node* bp = b->prev;
720 
721     a->next = b;
722     b->prev = a;
723 
724     a2->next = an;
725     an->prev = a2;
726 
727     b2->next = a2;
728     a2->prev = b2;
729 
730     bp->next = b2;
731     b2->prev = bp;
732 
733     return b2;
734 }
735 
736 // create a node and util::optionally link it with previous one (in a circular doubly linked list)
737 template <typename N> template <typename Point>
738 typename Earcut<N>::Node*
insertNode(std::size_t i,const Point & pt,Node * last)739 Earcut<N>::insertNode(std::size_t i, const Point& pt, Node* last) {
740     Node* p = nodes.construct(static_cast<N>(i), util::nth<0, Point>::get(pt), util::nth<1, Point>::get(pt));
741 
742     if (!last) {
743         p->prev = p;
744         p->next = p;
745 
746     } else {
747         assert(last);
748         p->next = last->next;
749         p->prev = last;
750         last->next->prev = p;
751         last->next = p;
752     }
753     return p;
754 }
755 
756 template <typename N>
removeNode(Node * p)757 void Earcut<N>::removeNode(Node* p) {
758     p->next->prev = p->prev;
759     p->prev->next = p->next;
760 
761     if (p->prevZ) p->prevZ->nextZ = p->nextZ;
762     if (p->nextZ) p->nextZ->prevZ = p->prevZ;
763 }
764 }
765 
766 template <typename N = uint32_t, typename Polygon>
earcut(const Polygon & poly)767 std::vector<N> earcut(const Polygon& poly) {
768     mapbox::detail::Earcut<N> earcut;
769     earcut(poly);
770     return std::move(earcut.indices);
771 }
772 }
773