1 /*********************************************************************** 2 * Software License Agreement (BSD License) 3 * 4 * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. 5 * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. 6 * 7 * THE BSD LICENSE 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 *************************************************************************/ 30 31 #ifndef OPENCV_FLANN_KMEANS_INDEX_H_ 32 #define OPENCV_FLANN_KMEANS_INDEX_H_ 33 34 #include <algorithm> 35 #include <map> 36 #include <cassert> 37 #include <limits> 38 #include <cmath> 39 40 #include "general.h" 41 #include "nn_index.h" 42 #include "dist.h" 43 #include "matrix.h" 44 #include "result_set.h" 45 #include "heap.h" 46 #include "allocator.h" 47 #include "random.h" 48 #include "saving.h" 49 #include "logger.h" 50 51 52 namespace cvflann 53 { 54 55 struct KMeansIndexParams : public IndexParams 56 { 57 KMeansIndexParams(int branching = 32, int iterations = 11, 58 flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 ) 59 { 60 (*this)["algorithm"] = FLANN_INDEX_KMEANS; 61 // branching factor 62 (*this)["branching"] = branching; 63 // max iterations to perform in one kmeans clustering (kmeans tree) 64 (*this)["iterations"] = iterations; 65 // algorithm used for picking the initial cluster centers for kmeans tree 66 (*this)["centers_init"] = centers_init; 67 // cluster boundary index. Used when searching the kmeans tree 68 (*this)["cb_index"] = cb_index; 69 } 70 }; 71 72 73 /** 74 * Hierarchical kmeans index 75 * 76 * Contains a tree constructed through a hierarchical kmeans clustering 77 * and other information for indexing a set of points for nearest-neighbour matching. 78 */ 79 template <typename Distance> 80 class KMeansIndex : public NNIndex<Distance> 81 { 82 public: 83 typedef typename Distance::ElementType ElementType; 84 typedef typename Distance::ResultType DistanceType; 85 86 87 88 typedef void (KMeansIndex::* centersAlgFunction)(int, int*, int, int*, int&); 89 90 /** 91 * The function used for choosing the cluster centers. 92 */ 93 centersAlgFunction chooseCenters; 94 95 96 97 /** 98 * Chooses the initial centers in the k-means clustering in a random manner. 99 * 100 * Params: 101 * k = number of centers 102 * vecs = the dataset of points 103 * indices = indices in the dataset 104 * indices_length = length of indices vector 105 * 106 */ chooseCentersRandom(int k,int * indices,int indices_length,int * centers,int & centers_length)107 void chooseCentersRandom(int k, int* indices, int indices_length, int* centers, int& centers_length) 108 { 109 UniqueRandom r(indices_length); 110 111 int index; 112 for (index=0; index<k; ++index) { 113 bool duplicate = true; 114 int rnd; 115 while (duplicate) { 116 duplicate = false; 117 rnd = r.next(); 118 if (rnd<0) { 119 centers_length = index; 120 return; 121 } 122 123 centers[index] = indices[rnd]; 124 125 for (int j=0; j<index; ++j) { 126 DistanceType sq = distance_(dataset_[centers[index]], dataset_[centers[j]], dataset_.cols); 127 if (sq<1e-16) { 128 duplicate = true; 129 } 130 } 131 } 132 } 133 134 centers_length = index; 135 } 136 137 138 /** 139 * Chooses the initial centers in the k-means using Gonzales' algorithm 140 * so that the centers are spaced apart from each other. 141 * 142 * Params: 143 * k = number of centers 144 * vecs = the dataset of points 145 * indices = indices in the dataset 146 * Returns: 147 */ chooseCentersGonzales(int k,int * indices,int indices_length,int * centers,int & centers_length)148 void chooseCentersGonzales(int k, int* indices, int indices_length, int* centers, int& centers_length) 149 { 150 int n = indices_length; 151 152 int rnd = rand_int(n); 153 assert(rnd >=0 && rnd < n); 154 155 centers[0] = indices[rnd]; 156 157 int index; 158 for (index=1; index<k; ++index) { 159 160 int best_index = -1; 161 DistanceType best_val = 0; 162 for (int j=0; j<n; ++j) { 163 DistanceType dist = distance_(dataset_[centers[0]],dataset_[indices[j]],dataset_.cols); 164 for (int i=1; i<index; ++i) { 165 DistanceType tmp_dist = distance_(dataset_[centers[i]],dataset_[indices[j]],dataset_.cols); 166 if (tmp_dist<dist) { 167 dist = tmp_dist; 168 } 169 } 170 if (dist>best_val) { 171 best_val = dist; 172 best_index = j; 173 } 174 } 175 if (best_index!=-1) { 176 centers[index] = indices[best_index]; 177 } 178 else { 179 break; 180 } 181 } 182 centers_length = index; 183 } 184 185 186 /** 187 * Chooses the initial centers in the k-means using the algorithm 188 * proposed in the KMeans++ paper: 189 * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding 190 * 191 * Implementation of this function was converted from the one provided in Arthur's code. 192 * 193 * Params: 194 * k = number of centers 195 * vecs = the dataset of points 196 * indices = indices in the dataset 197 * Returns: 198 */ chooseCentersKMeanspp(int k,int * indices,int indices_length,int * centers,int & centers_length)199 void chooseCentersKMeanspp(int k, int* indices, int indices_length, int* centers, int& centers_length) 200 { 201 int n = indices_length; 202 203 double currentPot = 0; 204 DistanceType* closestDistSq = new DistanceType[n]; 205 206 // Choose one random center and set the closestDistSq values 207 int index = rand_int(n); 208 assert(index >=0 && index < n); 209 centers[0] = indices[index]; 210 211 for (int i = 0; i < n; i++) { 212 closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols); 213 closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] ); 214 currentPot += closestDistSq[i]; 215 } 216 217 218 const int numLocalTries = 1; 219 220 // Choose each center 221 int centerCount; 222 for (centerCount = 1; centerCount < k; centerCount++) { 223 224 // Repeat several trials 225 double bestNewPot = -1; 226 int bestNewIndex = -1; 227 for (int localTrial = 0; localTrial < numLocalTries; localTrial++) { 228 229 // Choose our center - have to be slightly careful to return a valid answer even accounting 230 // for possible rounding errors 231 double randVal = rand_double(currentPot); 232 for (index = 0; index < n-1; index++) { 233 if (randVal <= closestDistSq[index]) break; 234 else randVal -= closestDistSq[index]; 235 } 236 237 // Compute the new potential 238 double newPot = 0; 239 for (int i = 0; i < n; i++) { 240 DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols); 241 newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] ); 242 } 243 244 // Store the best result 245 if ((bestNewPot < 0)||(newPot < bestNewPot)) { 246 bestNewPot = newPot; 247 bestNewIndex = index; 248 } 249 } 250 251 // Add the appropriate center 252 centers[centerCount] = indices[bestNewIndex]; 253 currentPot = bestNewPot; 254 for (int i = 0; i < n; i++) { 255 DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols); 256 closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] ); 257 } 258 } 259 260 centers_length = centerCount; 261 262 delete[] closestDistSq; 263 } 264 265 266 267 public: 268 getType()269 flann_algorithm_t getType() const CV_OVERRIDE 270 { 271 return FLANN_INDEX_KMEANS; 272 } 273 274 class KMeansDistanceComputer : public cv::ParallelLoopBody 275 { 276 public: KMeansDistanceComputer(Distance _distance,const Matrix<ElementType> & _dataset,const int _branching,const int * _indices,const Matrix<double> & _dcenters,const size_t _veclen,int * _count,int * _belongs_to,std::vector<DistanceType> & _radiuses,bool & _converged,cv::Mutex & _mtx)277 KMeansDistanceComputer(Distance _distance, const Matrix<ElementType>& _dataset, 278 const int _branching, const int* _indices, const Matrix<double>& _dcenters, const size_t _veclen, 279 int* _count, int* _belongs_to, std::vector<DistanceType>& _radiuses, bool& _converged, cv::Mutex& _mtx) 280 : distance(_distance) 281 , dataset(_dataset) 282 , branching(_branching) 283 , indices(_indices) 284 , dcenters(_dcenters) 285 , veclen(_veclen) 286 , count(_count) 287 , belongs_to(_belongs_to) 288 , radiuses(_radiuses) 289 , converged(_converged) 290 , mtx(_mtx) 291 { 292 } 293 operator()294 void operator()(const cv::Range& range) const CV_OVERRIDE 295 { 296 const int begin = range.start; 297 const int end = range.end; 298 299 for( int i = begin; i<end; ++i) 300 { 301 DistanceType sq_dist = distance(dataset[indices[i]], dcenters[0], veclen); 302 int new_centroid = 0; 303 for (int j=1; j<branching; ++j) { 304 DistanceType new_sq_dist = distance(dataset[indices[i]], dcenters[j], veclen); 305 if (sq_dist>new_sq_dist) { 306 new_centroid = j; 307 sq_dist = new_sq_dist; 308 } 309 } 310 if (sq_dist > radiuses[new_centroid]) { 311 radiuses[new_centroid] = sq_dist; 312 } 313 if (new_centroid != belongs_to[i]) { 314 count[belongs_to[i]]--; 315 count[new_centroid]++; 316 belongs_to[i] = new_centroid; 317 mtx.lock(); 318 converged = false; 319 mtx.unlock(); 320 } 321 } 322 } 323 324 private: 325 Distance distance; 326 const Matrix<ElementType>& dataset; 327 const int branching; 328 const int* indices; 329 const Matrix<double>& dcenters; 330 const size_t veclen; 331 int* count; 332 int* belongs_to; 333 std::vector<DistanceType>& radiuses; 334 bool& converged; 335 cv::Mutex& mtx; 336 KMeansDistanceComputer& operator=( const KMeansDistanceComputer & ) { return *this; } 337 }; 338 339 /** 340 * Index constructor 341 * 342 * Params: 343 * inputData = dataset with the input features 344 * params = parameters passed to the hierarchical k-means algorithm 345 */ 346 KMeansIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KMeansIndexParams(), 347 Distance d = Distance()) dataset_(inputData)348 : dataset_(inputData), index_params_(params), root_(NULL), indices_(NULL), distance_(d) 349 { 350 memoryCounter_ = 0; 351 352 size_ = dataset_.rows; 353 veclen_ = dataset_.cols; 354 355 branching_ = get_param(params,"branching",32); 356 iterations_ = get_param(params,"iterations",11); 357 if (iterations_<0) { 358 iterations_ = (std::numeric_limits<int>::max)(); 359 } 360 centers_init_ = get_param(params,"centers_init",FLANN_CENTERS_RANDOM); 361 362 if (centers_init_==FLANN_CENTERS_RANDOM) { 363 chooseCenters = &KMeansIndex::chooseCentersRandom; 364 } 365 else if (centers_init_==FLANN_CENTERS_GONZALES) { 366 chooseCenters = &KMeansIndex::chooseCentersGonzales; 367 } 368 else if (centers_init_==FLANN_CENTERS_KMEANSPP) { 369 chooseCenters = &KMeansIndex::chooseCentersKMeanspp; 370 } 371 else { 372 throw FLANNException("Unknown algorithm for choosing initial centers."); 373 } 374 cb_index_ = 0.4f; 375 376 } 377 378 379 KMeansIndex(const KMeansIndex&); 380 KMeansIndex& operator=(const KMeansIndex&); 381 382 383 /** 384 * Index destructor. 385 * 386 * Release the memory used by the index. 387 */ ~KMeansIndex()388 virtual ~KMeansIndex() 389 { 390 if (root_ != NULL) { 391 free_centers(root_); 392 } 393 if (indices_!=NULL) { 394 delete[] indices_; 395 } 396 } 397 398 /** 399 * Returns size of index. 400 */ size()401 size_t size() const CV_OVERRIDE 402 { 403 return size_; 404 } 405 406 /** 407 * Returns the length of an index feature. 408 */ veclen()409 size_t veclen() const CV_OVERRIDE 410 { 411 return veclen_; 412 } 413 414 set_cb_index(float index)415 void set_cb_index( float index) 416 { 417 cb_index_ = index; 418 } 419 420 /** 421 * Computes the inde memory usage 422 * Returns: memory used by the index 423 */ usedMemory()424 int usedMemory() const CV_OVERRIDE 425 { 426 return pool_.usedMemory+pool_.wastedMemory+memoryCounter_; 427 } 428 429 /** 430 * Builds the index 431 */ buildIndex()432 void buildIndex() CV_OVERRIDE 433 { 434 if (branching_<2) { 435 throw FLANNException("Branching factor must be at least 2"); 436 } 437 438 indices_ = new int[size_]; 439 for (size_t i=0; i<size_; ++i) { 440 indices_[i] = int(i); 441 } 442 443 root_ = pool_.allocate<KMeansNode>(); 444 std::memset(root_, 0, sizeof(KMeansNode)); 445 446 computeNodeStatistics(root_, indices_, (int)size_); 447 computeClustering(root_, indices_, (int)size_, branching_,0); 448 } 449 450 saveIndex(FILE * stream)451 void saveIndex(FILE* stream) CV_OVERRIDE 452 { 453 save_value(stream, branching_); 454 save_value(stream, iterations_); 455 save_value(stream, memoryCounter_); 456 save_value(stream, cb_index_); 457 save_value(stream, *indices_, (int)size_); 458 459 save_tree(stream, root_); 460 } 461 462 loadIndex(FILE * stream)463 void loadIndex(FILE* stream) CV_OVERRIDE 464 { 465 load_value(stream, branching_); 466 load_value(stream, iterations_); 467 load_value(stream, memoryCounter_); 468 load_value(stream, cb_index_); 469 if (indices_!=NULL) { 470 delete[] indices_; 471 } 472 indices_ = new int[size_]; 473 load_value(stream, *indices_, size_); 474 475 if (root_!=NULL) { 476 free_centers(root_); 477 } 478 load_tree(stream, root_); 479 480 index_params_["algorithm"] = getType(); 481 index_params_["branching"] = branching_; 482 index_params_["iterations"] = iterations_; 483 index_params_["centers_init"] = centers_init_; 484 index_params_["cb_index"] = cb_index_; 485 486 } 487 488 489 /** 490 * Find set of nearest neighbors to vec. Their indices are stored inside 491 * the result object. 492 * 493 * Params: 494 * result = the result object in which the indices of the nearest-neighbors are stored 495 * vec = the vector for which to search the nearest neighbors 496 * searchParams = parameters that influence the search algorithm (checks, cb_index) 497 */ findNeighbors(ResultSet<DistanceType> & result,const ElementType * vec,const SearchParams & searchParams)498 void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE 499 { 500 501 int maxChecks = get_param(searchParams,"checks",32); 502 503 if (maxChecks==FLANN_CHECKS_UNLIMITED) { 504 findExactNN(root_, result, vec); 505 } 506 else { 507 // Priority queue storing intermediate branches in the best-bin-first search 508 Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_); 509 510 int checks = 0; 511 findNN(root_, result, vec, checks, maxChecks, heap); 512 513 BranchSt branch; 514 while (heap->popMin(branch) && (checks<maxChecks || !result.full())) { 515 KMeansNodePtr node = branch.node; 516 findNN(node, result, vec, checks, maxChecks, heap); 517 } 518 assert(result.full()); 519 520 delete heap; 521 } 522 523 } 524 525 /** 526 * Clustering function that takes a cut in the hierarchical k-means 527 * tree and return the clusters centers of that clustering. 528 * Params: 529 * numClusters = number of clusters to have in the clustering computed 530 * Returns: number of cluster centers 531 */ getClusterCenters(Matrix<DistanceType> & centers)532 int getClusterCenters(Matrix<DistanceType>& centers) 533 { 534 int numClusters = centers.rows; 535 if (numClusters<1) { 536 throw FLANNException("Number of clusters must be at least 1"); 537 } 538 539 DistanceType variance; 540 KMeansNodePtr* clusters = new KMeansNodePtr[numClusters]; 541 542 int clusterCount = getMinVarianceClusters(root_, clusters, numClusters, variance); 543 544 Logger::info("Clusters requested: %d, returning %d\n",numClusters, clusterCount); 545 546 for (int i=0; i<clusterCount; ++i) { 547 DistanceType* center = clusters[i]->pivot; 548 for (size_t j=0; j<veclen_; ++j) { 549 centers[i][j] = center[j]; 550 } 551 } 552 delete[] clusters; 553 554 return clusterCount; 555 } 556 getParameters()557 IndexParams getParameters() const CV_OVERRIDE 558 { 559 return index_params_; 560 } 561 562 563 private: 564 /** 565 * Struture representing a node in the hierarchical k-means tree. 566 */ 567 struct KMeansNode 568 { 569 /** 570 * The cluster center. 571 */ 572 DistanceType* pivot; 573 /** 574 * The cluster radius. 575 */ 576 DistanceType radius; 577 /** 578 * The cluster mean radius. 579 */ 580 DistanceType mean_radius; 581 /** 582 * The cluster variance. 583 */ 584 DistanceType variance; 585 /** 586 * The cluster size (number of points in the cluster) 587 */ 588 int size; 589 /** 590 * Child nodes (only for non-terminal nodes) 591 */ 592 KMeansNode** childs; 593 /** 594 * Node points (only for terminal nodes) 595 */ 596 int* indices; 597 /** 598 * Level 599 */ 600 int level; 601 }; 602 typedef KMeansNode* KMeansNodePtr; 603 604 /** 605 * Alias definition for a nicer syntax. 606 */ 607 typedef BranchStruct<KMeansNodePtr, DistanceType> BranchSt; 608 609 610 611 save_tree(FILE * stream,KMeansNodePtr node)612 void save_tree(FILE* stream, KMeansNodePtr node) 613 { 614 save_value(stream, *node); 615 save_value(stream, *(node->pivot), (int)veclen_); 616 if (node->childs==NULL) { 617 int indices_offset = (int)(node->indices - indices_); 618 save_value(stream, indices_offset); 619 } 620 else { 621 for(int i=0; i<branching_; ++i) { 622 save_tree(stream, node->childs[i]); 623 } 624 } 625 } 626 627 load_tree(FILE * stream,KMeansNodePtr & node)628 void load_tree(FILE* stream, KMeansNodePtr& node) 629 { 630 node = pool_.allocate<KMeansNode>(); 631 load_value(stream, *node); 632 node->pivot = new DistanceType[veclen_]; 633 load_value(stream, *(node->pivot), (int)veclen_); 634 if (node->childs==NULL) { 635 int indices_offset; 636 load_value(stream, indices_offset); 637 node->indices = indices_ + indices_offset; 638 } 639 else { 640 node->childs = pool_.allocate<KMeansNodePtr>(branching_); 641 for(int i=0; i<branching_; ++i) { 642 load_tree(stream, node->childs[i]); 643 } 644 } 645 } 646 647 648 /** 649 * Helper function 650 */ free_centers(KMeansNodePtr node)651 void free_centers(KMeansNodePtr node) 652 { 653 delete[] node->pivot; 654 if (node->childs!=NULL) { 655 for (int k=0; k<branching_; ++k) { 656 free_centers(node->childs[k]); 657 } 658 } 659 } 660 661 /** 662 * Computes the statistics of a node (mean, radius, variance). 663 * 664 * Params: 665 * node = the node to use 666 * indices = the indices of the points belonging to the node 667 */ computeNodeStatistics(KMeansNodePtr node,int * indices,int indices_length)668 void computeNodeStatistics(KMeansNodePtr node, int* indices, int indices_length) 669 { 670 671 DistanceType radius = 0; 672 DistanceType variance = 0; 673 DistanceType* mean = new DistanceType[veclen_]; 674 memoryCounter_ += int(veclen_*sizeof(DistanceType)); 675 676 memset(mean,0,veclen_*sizeof(DistanceType)); 677 678 for (size_t i=0; i<size_; ++i) { 679 ElementType* vec = dataset_[indices[i]]; 680 for (size_t j=0; j<veclen_; ++j) { 681 mean[j] += vec[j]; 682 } 683 variance += distance_(vec, ZeroIterator<ElementType>(), veclen_); 684 } 685 for (size_t j=0; j<veclen_; ++j) { 686 mean[j] /= size_; 687 } 688 variance /= size_; 689 variance -= distance_(mean, ZeroIterator<ElementType>(), veclen_); 690 691 DistanceType tmp = 0; 692 for (int i=0; i<indices_length; ++i) { 693 tmp = distance_(mean, dataset_[indices[i]], veclen_); 694 if (tmp>radius) { 695 radius = tmp; 696 } 697 } 698 699 node->variance = variance; 700 node->radius = radius; 701 node->pivot = mean; 702 } 703 704 705 /** 706 * The method responsible with actually doing the recursive hierarchical 707 * clustering 708 * 709 * Params: 710 * node = the node to cluster 711 * indices = indices of the points belonging to the current node 712 * branching = the branching factor to use in the clustering 713 * 714 * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point) 715 */ computeClustering(KMeansNodePtr node,int * indices,int indices_length,int branching,int level)716 void computeClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level) 717 { 718 node->size = indices_length; 719 node->level = level; 720 721 if (indices_length < branching) { 722 node->indices = indices; 723 std::sort(node->indices,node->indices+indices_length); 724 node->childs = NULL; 725 return; 726 } 727 728 cv::AutoBuffer<int> centers_idx_buf(branching); 729 int* centers_idx = (int*)centers_idx_buf; 730 int centers_length; 731 (this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length); 732 733 if (centers_length<branching) { 734 node->indices = indices; 735 std::sort(node->indices,node->indices+indices_length); 736 node->childs = NULL; 737 return; 738 } 739 740 741 cv::AutoBuffer<double> dcenters_buf(branching*veclen_); 742 Matrix<double> dcenters((double*)dcenters_buf,branching,veclen_); 743 for (int i=0; i<centers_length; ++i) { 744 ElementType* vec = dataset_[centers_idx[i]]; 745 for (size_t k=0; k<veclen_; ++k) { 746 dcenters[i][k] = double(vec[k]); 747 } 748 } 749 750 std::vector<DistanceType> radiuses(branching); 751 cv::AutoBuffer<int> count_buf(branching); 752 int* count = (int*)count_buf; 753 for (int i=0; i<branching; ++i) { 754 radiuses[i] = 0; 755 count[i] = 0; 756 } 757 758 // assign points to clusters 759 cv::AutoBuffer<int> belongs_to_buf(indices_length); 760 int* belongs_to = (int*)belongs_to_buf; 761 for (int i=0; i<indices_length; ++i) { 762 763 DistanceType sq_dist = distance_(dataset_[indices[i]], dcenters[0], veclen_); 764 belongs_to[i] = 0; 765 for (int j=1; j<branching; ++j) { 766 DistanceType new_sq_dist = distance_(dataset_[indices[i]], dcenters[j], veclen_); 767 if (sq_dist>new_sq_dist) { 768 belongs_to[i] = j; 769 sq_dist = new_sq_dist; 770 } 771 } 772 if (sq_dist>radiuses[belongs_to[i]]) { 773 radiuses[belongs_to[i]] = sq_dist; 774 } 775 count[belongs_to[i]]++; 776 } 777 778 bool converged = false; 779 int iteration = 0; 780 while (!converged && iteration<iterations_) { 781 converged = true; 782 iteration++; 783 784 // compute the new cluster centers 785 for (int i=0; i<branching; ++i) { 786 memset(dcenters[i],0,sizeof(double)*veclen_); 787 radiuses[i] = 0; 788 } 789 for (int i=0; i<indices_length; ++i) { 790 ElementType* vec = dataset_[indices[i]]; 791 double* center = dcenters[belongs_to[i]]; 792 for (size_t k=0; k<veclen_; ++k) { 793 center[k] += vec[k]; 794 } 795 } 796 for (int i=0; i<branching; ++i) { 797 int cnt = count[i]; 798 for (size_t k=0; k<veclen_; ++k) { 799 dcenters[i][k] /= cnt; 800 } 801 } 802 803 // reassign points to clusters 804 cv::Mutex mtx; 805 KMeansDistanceComputer invoker(distance_, dataset_, branching, indices, dcenters, veclen_, count, belongs_to, radiuses, converged, mtx); 806 parallel_for_(cv::Range(0, (int)indices_length), invoker); 807 808 for (int i=0; i<branching; ++i) { 809 // if one cluster converges to an empty cluster, 810 // move an element into that cluster 811 if (count[i]==0) { 812 int j = (i+1)%branching; 813 while (count[j]<=1) { 814 j = (j+1)%branching; 815 } 816 817 for (int k=0; k<indices_length; ++k) { 818 if (belongs_to[k]==j) { 819 // for cluster j, we move the furthest element from the center to the empty cluster i 820 if ( distance_(dataset_[indices[k]], dcenters[j], veclen_) == radiuses[j] ) { 821 belongs_to[k] = i; 822 count[j]--; 823 count[i]++; 824 break; 825 } 826 } 827 } 828 converged = false; 829 } 830 } 831 832 } 833 834 DistanceType** centers = new DistanceType*[branching]; 835 836 for (int i=0; i<branching; ++i) { 837 centers[i] = new DistanceType[veclen_]; 838 memoryCounter_ += (int)(veclen_*sizeof(DistanceType)); 839 for (size_t k=0; k<veclen_; ++k) { 840 centers[i][k] = (DistanceType)dcenters[i][k]; 841 } 842 } 843 844 845 // compute kmeans clustering for each of the resulting clusters 846 node->childs = pool_.allocate<KMeansNodePtr>(branching); 847 int start = 0; 848 int end = start; 849 for (int c=0; c<branching; ++c) { 850 int s = count[c]; 851 852 DistanceType variance = 0; 853 DistanceType mean_radius =0; 854 for (int i=0; i<indices_length; ++i) { 855 if (belongs_to[i]==c) { 856 DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_); 857 variance += d; 858 mean_radius += sqrt(d); 859 std::swap(indices[i],indices[end]); 860 std::swap(belongs_to[i],belongs_to[end]); 861 end++; 862 } 863 } 864 variance /= s; 865 mean_radius /= s; 866 variance -= distance_(centers[c], ZeroIterator<ElementType>(), veclen_); 867 868 node->childs[c] = pool_.allocate<KMeansNode>(); 869 std::memset(node->childs[c], 0, sizeof(KMeansNode)); 870 node->childs[c]->radius = radiuses[c]; 871 node->childs[c]->pivot = centers[c]; 872 node->childs[c]->variance = variance; 873 node->childs[c]->mean_radius = mean_radius; 874 computeClustering(node->childs[c],indices+start, end-start, branching, level+1); 875 start=end; 876 } 877 878 delete[] centers; 879 } 880 881 882 883 /** 884 * Performs one descent in the hierarchical k-means tree. The branches not 885 * visited are stored in a priority queue. 886 * 887 * Params: 888 * node = node to explore 889 * result = container for the k-nearest neighbors found 890 * vec = query points 891 * checks = how many points in the dataset have been checked so far 892 * maxChecks = maximum dataset points to checks 893 */ 894 895 findNN(KMeansNodePtr node,ResultSet<DistanceType> & result,const ElementType * vec,int & checks,int maxChecks,Heap<BranchSt> * heap)896 void findNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks, 897 Heap<BranchSt>* heap) 898 { 899 // Ignore those clusters that are too far away 900 { 901 DistanceType bsq = distance_(vec, node->pivot, veclen_); 902 DistanceType rsq = node->radius; 903 DistanceType wsq = result.worstDist(); 904 905 DistanceType val = bsq-rsq-wsq; 906 DistanceType val2 = val*val-4*rsq*wsq; 907 908 //if (val>0) { 909 if ((val>0)&&(val2>0)) { 910 return; 911 } 912 } 913 914 if (node->childs==NULL) { 915 if (checks>=maxChecks) { 916 if (result.full()) return; 917 } 918 checks += node->size; 919 for (int i=0; i<node->size; ++i) { 920 int index = node->indices[i]; 921 DistanceType dist = distance_(dataset_[index], vec, veclen_); 922 result.addPoint(dist, index); 923 } 924 } 925 else { 926 DistanceType* domain_distances = new DistanceType[branching_]; 927 int closest_center = exploreNodeBranches(node, vec, domain_distances, heap); 928 delete[] domain_distances; 929 findNN(node->childs[closest_center],result,vec, checks, maxChecks, heap); 930 } 931 } 932 933 /** 934 * Helper function that computes the nearest childs of a node to a given query point. 935 * Params: 936 * node = the node 937 * q = the query point 938 * distances = array with the distances to each child node. 939 * Returns: 940 */ exploreNodeBranches(KMeansNodePtr node,const ElementType * q,DistanceType * domain_distances,Heap<BranchSt> * heap)941 int exploreNodeBranches(KMeansNodePtr node, const ElementType* q, DistanceType* domain_distances, Heap<BranchSt>* heap) 942 { 943 944 int best_index = 0; 945 domain_distances[best_index] = distance_(q, node->childs[best_index]->pivot, veclen_); 946 for (int i=1; i<branching_; ++i) { 947 domain_distances[i] = distance_(q, node->childs[i]->pivot, veclen_); 948 if (domain_distances[i]<domain_distances[best_index]) { 949 best_index = i; 950 } 951 } 952 953 // float* best_center = node->childs[best_index]->pivot; 954 for (int i=0; i<branching_; ++i) { 955 if (i != best_index) { 956 domain_distances[i] -= cb_index_*node->childs[i]->variance; 957 958 // float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q); 959 // if (domain_distances[i]<dist_to_border) { 960 // domain_distances[i] = dist_to_border; 961 // } 962 heap->insert(BranchSt(node->childs[i],domain_distances[i])); 963 } 964 } 965 966 return best_index; 967 } 968 969 970 /** 971 * Function the performs exact nearest neighbor search by traversing the entire tree. 972 */ findExactNN(KMeansNodePtr node,ResultSet<DistanceType> & result,const ElementType * vec)973 void findExactNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec) 974 { 975 // Ignore those clusters that are too far away 976 { 977 DistanceType bsq = distance_(vec, node->pivot, veclen_); 978 DistanceType rsq = node->radius; 979 DistanceType wsq = result.worstDist(); 980 981 DistanceType val = bsq-rsq-wsq; 982 DistanceType val2 = val*val-4*rsq*wsq; 983 984 // if (val>0) { 985 if ((val>0)&&(val2>0)) { 986 return; 987 } 988 } 989 990 991 if (node->childs==NULL) { 992 for (int i=0; i<node->size; ++i) { 993 int index = node->indices[i]; 994 DistanceType dist = distance_(dataset_[index], vec, veclen_); 995 result.addPoint(dist, index); 996 } 997 } 998 else { 999 int* sort_indices = new int[branching_]; 1000 1001 getCenterOrdering(node, vec, sort_indices); 1002 1003 for (int i=0; i<branching_; ++i) { 1004 findExactNN(node->childs[sort_indices[i]],result,vec); 1005 } 1006 1007 delete[] sort_indices; 1008 } 1009 } 1010 1011 1012 /** 1013 * Helper function. 1014 * 1015 * I computes the order in which to traverse the child nodes of a particular node. 1016 */ getCenterOrdering(KMeansNodePtr node,const ElementType * q,int * sort_indices)1017 void getCenterOrdering(KMeansNodePtr node, const ElementType* q, int* sort_indices) 1018 { 1019 DistanceType* domain_distances = new DistanceType[branching_]; 1020 for (int i=0; i<branching_; ++i) { 1021 DistanceType dist = distance_(q, node->childs[i]->pivot, veclen_); 1022 1023 int j=0; 1024 while (domain_distances[j]<dist && j<i) j++; 1025 for (int k=i; k>j; --k) { 1026 domain_distances[k] = domain_distances[k-1]; 1027 sort_indices[k] = sort_indices[k-1]; 1028 } 1029 domain_distances[j] = dist; 1030 sort_indices[j] = i; 1031 } 1032 delete[] domain_distances; 1033 } 1034 1035 /** 1036 * Method that computes the squared distance from the query point q 1037 * from inside region with center c to the border between this 1038 * region and the region with center p 1039 */ getDistanceToBorder(DistanceType * p,DistanceType * c,DistanceType * q)1040 DistanceType getDistanceToBorder(DistanceType* p, DistanceType* c, DistanceType* q) 1041 { 1042 DistanceType sum = 0; 1043 DistanceType sum2 = 0; 1044 1045 for (int i=0; i<veclen_; ++i) { 1046 DistanceType t = c[i]-p[i]; 1047 sum += t*(q[i]-(c[i]+p[i])/2); 1048 sum2 += t*t; 1049 } 1050 1051 return sum*sum/sum2; 1052 } 1053 1054 1055 /** 1056 * Helper function the descends in the hierarchical k-means tree by splitting those clusters that minimize 1057 * the overall variance of the clustering. 1058 * Params: 1059 * root = root node 1060 * clusters = array with clusters centers (return value) 1061 * varianceValue = variance of the clustering (return value) 1062 * Returns: 1063 */ getMinVarianceClusters(KMeansNodePtr root,KMeansNodePtr * clusters,int clusters_length,DistanceType & varianceValue)1064 int getMinVarianceClusters(KMeansNodePtr root, KMeansNodePtr* clusters, int clusters_length, DistanceType& varianceValue) 1065 { 1066 int clusterCount = 1; 1067 clusters[0] = root; 1068 1069 DistanceType meanVariance = root->variance*root->size; 1070 1071 while (clusterCount<clusters_length) { 1072 DistanceType minVariance = (std::numeric_limits<DistanceType>::max)(); 1073 int splitIndex = -1; 1074 1075 for (int i=0; i<clusterCount; ++i) { 1076 if (clusters[i]->childs != NULL) { 1077 1078 DistanceType variance = meanVariance - clusters[i]->variance*clusters[i]->size; 1079 1080 for (int j=0; j<branching_; ++j) { 1081 variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size; 1082 } 1083 if (variance<minVariance) { 1084 minVariance = variance; 1085 splitIndex = i; 1086 } 1087 } 1088 } 1089 1090 if (splitIndex==-1) break; 1091 if ( (branching_+clusterCount-1) > clusters_length) break; 1092 1093 meanVariance = minVariance; 1094 1095 // split node 1096 KMeansNodePtr toSplit = clusters[splitIndex]; 1097 clusters[splitIndex] = toSplit->childs[0]; 1098 for (int i=1; i<branching_; ++i) { 1099 clusters[clusterCount++] = toSplit->childs[i]; 1100 } 1101 } 1102 1103 varianceValue = meanVariance/root->size; 1104 return clusterCount; 1105 } 1106 1107 private: 1108 /** The branching factor used in the hierarchical k-means clustering */ 1109 int branching_; 1110 1111 /** Maximum number of iterations to use when performing k-means clustering */ 1112 int iterations_; 1113 1114 /** Algorithm for choosing the cluster centers */ 1115 flann_centers_init_t centers_init_; 1116 1117 /** 1118 * Cluster border index. This is used in the tree search phase when determining 1119 * the closest cluster to explore next. A zero value takes into account only 1120 * the cluster centres, a value greater then zero also take into account the size 1121 * of the cluster. 1122 */ 1123 float cb_index_; 1124 1125 /** 1126 * The dataset used by this index 1127 */ 1128 const Matrix<ElementType> dataset_; 1129 1130 /** Index parameters */ 1131 IndexParams index_params_; 1132 1133 /** 1134 * Number of features in the dataset. 1135 */ 1136 size_t size_; 1137 1138 /** 1139 * Length of each feature. 1140 */ 1141 size_t veclen_; 1142 1143 /** 1144 * The root node in the tree. 1145 */ 1146 KMeansNodePtr root_; 1147 1148 /** 1149 * Array of indices to vectors in the dataset. 1150 */ 1151 int* indices_; 1152 1153 /** 1154 * The distance 1155 */ 1156 Distance distance_; 1157 1158 /** 1159 * Pooled memory allocator. 1160 */ 1161 PooledAllocator pool_; 1162 1163 /** 1164 * Memory occupied by the index. 1165 */ 1166 int memoryCounter_; 1167 }; 1168 1169 } 1170 1171 #endif //OPENCV_FLANN_KMEANS_INDEX_H_ 1172