xref: /OK3568_Linux_fs/kernel/kernel/sched/pelt.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Per Entity Load Tracking
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  *
23  *  Move PELT related code from fair.c into this pelt.c file
24  *  Author: Vincent Guittot <vincent.guittot@linaro.org>
25  */
26 
27 #include <linux/sched.h>
28 #include "sched.h"
29 #include "pelt.h"
30 
31 int pelt_load_avg_period = PELT32_LOAD_AVG_PERIOD;
32 int sysctl_sched_pelt_period = PELT32_LOAD_AVG_PERIOD;
33 int pelt_load_avg_max = PELT32_LOAD_AVG_MAX;
34 const u32 *pelt_runnable_avg_yN_inv = pelt32_runnable_avg_yN_inv;
35 
get_pelt_halflife(void)36 int get_pelt_halflife(void)
37 {
38 	return pelt_load_avg_period;
39 }
40 EXPORT_SYMBOL_GPL(get_pelt_halflife);
41 
__set_pelt_halflife(void * data)42 static int __set_pelt_halflife(void *data)
43 {
44 	int rc = 0;
45 	int num = *(int *)data;
46 
47 	switch (num) {
48 	case PELT8_LOAD_AVG_PERIOD:
49 		pelt_load_avg_period = PELT8_LOAD_AVG_PERIOD;
50 		pelt_load_avg_max = PELT8_LOAD_AVG_MAX;
51 		pelt_runnable_avg_yN_inv = pelt8_runnable_avg_yN_inv;
52 		pr_info("PELT half life is set to %dms\n", num);
53 		break;
54 	case PELT32_LOAD_AVG_PERIOD:
55 		pelt_load_avg_period = PELT32_LOAD_AVG_PERIOD;
56 		pelt_load_avg_max = PELT32_LOAD_AVG_MAX;
57 		pelt_runnable_avg_yN_inv = pelt32_runnable_avg_yN_inv;
58 		pr_info("PELT half life is set to %dms\n", num);
59 		break;
60 	default:
61 		rc = -EINVAL;
62 		pr_err("Failed to set PELT half life to %dms, the current value is %dms\n",
63 			num, pelt_load_avg_period);
64 	}
65 
66 	sysctl_sched_pelt_period = pelt_load_avg_period;
67 
68 	return rc;
69 }
70 
set_pelt_halflife(int num)71 int set_pelt_halflife(int num)
72 {
73 	return stop_machine(__set_pelt_halflife, &num, NULL);
74 }
75 EXPORT_SYMBOL_GPL(set_pelt_halflife);
76 
sched_pelt_period_update_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)77 int sched_pelt_period_update_handler(struct ctl_table *table, int write,
78 				     void *buffer, size_t *lenp, loff_t *ppos)
79 {
80 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
81 
82 	if (ret || !write)
83 		return ret;
84 
85 	set_pelt_halflife(sysctl_sched_pelt_period);
86 
87 	return 0;
88 }
89 
set_pelt(char * str)90 static int __init set_pelt(char *str)
91 {
92 	int rc, num;
93 
94 	rc = kstrtoint(str, 0, &num);
95 	if (rc) {
96 		pr_err("%s: kstrtoint failed. rc=%d\n", __func__, rc);
97 		return 0;
98 	}
99 
100 	__set_pelt_halflife(&num);
101 	return rc;
102 }
103 
104 early_param("pelt", set_pelt);
105 
106 /*
107  * Approximate:
108  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
109  */
decay_load(u64 val,u64 n)110 static u64 decay_load(u64 val, u64 n)
111 {
112 	unsigned int local_n;
113 
114 	if (unlikely(n > LOAD_AVG_PERIOD * 63))
115 		return 0;
116 
117 	/* after bounds checking we can collapse to 32-bit */
118 	local_n = n;
119 
120 	/*
121 	 * As y^PERIOD = 1/2, we can combine
122 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
123 	 * With a look-up table which covers y^n (n<PERIOD)
124 	 *
125 	 * To achieve constant time decay_load.
126 	 */
127 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
128 		val >>= local_n / LOAD_AVG_PERIOD;
129 		local_n %= LOAD_AVG_PERIOD;
130 	}
131 
132 	val = mul_u64_u32_shr(val, pelt_runnable_avg_yN_inv[local_n], 32);
133 	return val;
134 }
135 
__accumulate_pelt_segments(u64 periods,u32 d1,u32 d3)136 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
137 {
138 	u32 c1, c2, c3 = d3; /* y^0 == 1 */
139 
140 	/*
141 	 * c1 = d1 y^p
142 	 */
143 	c1 = decay_load((u64)d1, periods);
144 
145 	/*
146 	 *            p-1
147 	 * c2 = 1024 \Sum y^n
148 	 *            n=1
149 	 *
150 	 *              inf        inf
151 	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
152 	 *              n=0        n=p
153 	 */
154 	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
155 
156 	return c1 + c2 + c3;
157 }
158 
159 /*
160  * Accumulate the three separate parts of the sum; d1 the remainder
161  * of the last (incomplete) period, d2 the span of full periods and d3
162  * the remainder of the (incomplete) current period.
163  *
164  *           d1          d2           d3
165  *           ^           ^            ^
166  *           |           |            |
167  *         |<->|<----------------->|<--->|
168  * ... |---x---|------| ... |------|-----x (now)
169  *
170  *                           p-1
171  * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
172  *                           n=1
173  *
174  *    = u y^p +					(Step 1)
175  *
176  *                     p-1
177  *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
178  *                     n=1
179  */
180 static __always_inline u32
accumulate_sum(u64 delta,struct sched_avg * sa,unsigned long load,unsigned long runnable,int running)181 accumulate_sum(u64 delta, struct sched_avg *sa,
182 	       unsigned long load, unsigned long runnable, int running)
183 {
184 	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
185 	u64 periods;
186 
187 	delta += sa->period_contrib;
188 	periods = delta / 1024; /* A period is 1024us (~1ms) */
189 
190 	/*
191 	 * Step 1: decay old *_sum if we crossed period boundaries.
192 	 */
193 	if (periods) {
194 		sa->load_sum = decay_load(sa->load_sum, periods);
195 		sa->runnable_sum =
196 			decay_load(sa->runnable_sum, periods);
197 		sa->util_sum = decay_load((u64)(sa->util_sum), periods);
198 
199 		/*
200 		 * Step 2
201 		 */
202 		delta %= 1024;
203 		if (load) {
204 			/*
205 			 * This relies on the:
206 			 *
207 			 * if (!load)
208 			 *	runnable = running = 0;
209 			 *
210 			 * clause from ___update_load_sum(); this results in
211 			 * the below usage of @contrib to dissapear entirely,
212 			 * so no point in calculating it.
213 			 */
214 			contrib = __accumulate_pelt_segments(periods,
215 					1024 - sa->period_contrib, delta);
216 		}
217 	}
218 	sa->period_contrib = delta;
219 
220 	if (load)
221 		sa->load_sum += load * contrib;
222 	if (runnable)
223 		sa->runnable_sum += runnable * contrib << SCHED_CAPACITY_SHIFT;
224 	if (running)
225 		sa->util_sum += contrib << SCHED_CAPACITY_SHIFT;
226 
227 	return periods;
228 }
229 
230 /*
231  * We can represent the historical contribution to runnable average as the
232  * coefficients of a geometric series.  To do this we sub-divide our runnable
233  * history into segments of approximately 1ms (1024us); label the segment that
234  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
235  *
236  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
237  *      p0            p1           p2
238  *     (now)       (~1ms ago)  (~2ms ago)
239  *
240  * Let u_i denote the fraction of p_i that the entity was runnable.
241  *
242  * We then designate the fractions u_i as our co-efficients, yielding the
243  * following representation of historical load:
244  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
245  *
246  * We choose y based on the with of a reasonably scheduling period, fixing:
247  *   y^32 = 0.5
248  *
249  * This means that the contribution to load ~32ms ago (u_32) will be weighted
250  * approximately half as much as the contribution to load within the last ms
251  * (u_0).
252  *
253  * When a period "rolls over" and we have new u_0`, multiplying the previous
254  * sum again by y is sufficient to update:
255  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
256  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
257  */
258 static __always_inline int
___update_load_sum(u64 now,struct sched_avg * sa,unsigned long load,unsigned long runnable,int running)259 ___update_load_sum(u64 now, struct sched_avg *sa,
260 		  unsigned long load, unsigned long runnable, int running)
261 {
262 	u64 delta;
263 
264 	delta = now - sa->last_update_time;
265 	/*
266 	 * This should only happen when time goes backwards, which it
267 	 * unfortunately does during sched clock init when we swap over to TSC.
268 	 */
269 	if ((s64)delta < 0) {
270 		sa->last_update_time = now;
271 		return 0;
272 	}
273 
274 	/*
275 	 * Use 1024ns as the unit of measurement since it's a reasonable
276 	 * approximation of 1us and fast to compute.
277 	 */
278 	delta >>= 10;
279 	if (!delta)
280 		return 0;
281 
282 	sa->last_update_time += delta << 10;
283 
284 	/*
285 	 * running is a subset of runnable (weight) so running can't be set if
286 	 * runnable is clear. But there are some corner cases where the current
287 	 * se has been already dequeued but cfs_rq->curr still points to it.
288 	 * This means that weight will be 0 but not running for a sched_entity
289 	 * but also for a cfs_rq if the latter becomes idle. As an example,
290 	 * this happens during idle_balance() which calls
291 	 * update_blocked_averages().
292 	 *
293 	 * Also see the comment in accumulate_sum().
294 	 */
295 	if (!load)
296 		runnable = running = 0;
297 
298 	/*
299 	 * Now we know we crossed measurement unit boundaries. The *_avg
300 	 * accrues by two steps:
301 	 *
302 	 * Step 1: accumulate *_sum since last_update_time. If we haven't
303 	 * crossed period boundaries, finish.
304 	 */
305 	if (!accumulate_sum(delta, sa, load, runnable, running))
306 		return 0;
307 
308 	return 1;
309 }
310 
311 /*
312  * When syncing *_avg with *_sum, we must take into account the current
313  * position in the PELT segment otherwise the remaining part of the segment
314  * will be considered as idle time whereas it's not yet elapsed and this will
315  * generate unwanted oscillation in the range [1002..1024[.
316  *
317  * The max value of *_sum varies with the position in the time segment and is
318  * equals to :
319  *
320  *   LOAD_AVG_MAX*y + sa->period_contrib
321  *
322  * which can be simplified into:
323  *
324  *   LOAD_AVG_MAX - 1024 + sa->period_contrib
325  *
326  * because LOAD_AVG_MAX*y == LOAD_AVG_MAX-1024
327  *
328  * The same care must be taken when a sched entity is added, updated or
329  * removed from a cfs_rq and we need to update sched_avg. Scheduler entities
330  * and the cfs rq, to which they are attached, have the same position in the
331  * time segment because they use the same clock. This means that we can use
332  * the period_contrib of cfs_rq when updating the sched_avg of a sched_entity
333  * if it's more convenient.
334  */
335 static __always_inline void
___update_load_avg(struct sched_avg * sa,unsigned long load)336 ___update_load_avg(struct sched_avg *sa, unsigned long load)
337 {
338 	u32 divider = get_pelt_divider(sa);
339 
340 	/*
341 	 * Step 2: update *_avg.
342 	 */
343 	sa->load_avg = div_u64(load * sa->load_sum, divider);
344 	sa->runnable_avg = div_u64(sa->runnable_sum, divider);
345 	WRITE_ONCE(sa->util_avg, sa->util_sum / divider);
346 }
347 
348 /*
349  * sched_entity:
350  *
351  *   task:
352  *     se_weight()   = se->load.weight
353  *     se_runnable() = !!on_rq
354  *
355  *   group: [ see update_cfs_group() ]
356  *     se_weight()   = tg->weight * grq->load_avg / tg->load_avg
357  *     se_runnable() = grq->h_nr_running
358  *
359  *   runnable_sum = se_runnable() * runnable = grq->runnable_sum
360  *   runnable_avg = runnable_sum
361  *
362  *   load_sum := runnable
363  *   load_avg = se_weight(se) * load_sum
364  *
365  * cfq_rq:
366  *
367  *   runnable_sum = \Sum se->avg.runnable_sum
368  *   runnable_avg = \Sum se->avg.runnable_avg
369  *
370  *   load_sum = \Sum se_weight(se) * se->avg.load_sum
371  *   load_avg = \Sum se->avg.load_avg
372  */
373 
__update_load_avg_blocked_se(u64 now,struct sched_entity * se)374 int __update_load_avg_blocked_se(u64 now, struct sched_entity *se)
375 {
376 	if (___update_load_sum(now, &se->avg, 0, 0, 0)) {
377 		___update_load_avg(&se->avg, se_weight(se));
378 		trace_pelt_se_tp(se);
379 		return 1;
380 	}
381 
382 	return 0;
383 }
384 EXPORT_SYMBOL_GPL(__update_load_avg_blocked_se);
385 
__update_load_avg_se(u64 now,struct cfs_rq * cfs_rq,struct sched_entity * se)386 int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se)
387 {
388 	if (___update_load_sum(now, &se->avg, !!se->on_rq, se_runnable(se),
389 				cfs_rq->curr == se)) {
390 
391 		___update_load_avg(&se->avg, se_weight(se));
392 		cfs_se_util_change(&se->avg);
393 		trace_pelt_se_tp(se);
394 		return 1;
395 	}
396 
397 	return 0;
398 }
399 
__update_load_avg_cfs_rq(u64 now,struct cfs_rq * cfs_rq)400 int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq)
401 {
402 	if (___update_load_sum(now, &cfs_rq->avg,
403 				scale_load_down(cfs_rq->load.weight),
404 				cfs_rq->h_nr_running,
405 				cfs_rq->curr != NULL)) {
406 
407 		___update_load_avg(&cfs_rq->avg, 1);
408 		trace_pelt_cfs_tp(cfs_rq);
409 		return 1;
410 	}
411 
412 	return 0;
413 }
414 
415 /*
416  * rt_rq:
417  *
418  *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
419  *   util_sum = cpu_scale * load_sum
420  *   runnable_sum = util_sum
421  *
422  *   load_avg and runnable_avg are not supported and meaningless.
423  *
424  */
425 
update_rt_rq_load_avg(u64 now,struct rq * rq,int running)426 int update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
427 {
428 	if (___update_load_sum(now, &rq->avg_rt,
429 				running,
430 				running,
431 				running)) {
432 
433 		___update_load_avg(&rq->avg_rt, 1);
434 		trace_pelt_rt_tp(rq);
435 		return 1;
436 	}
437 
438 	return 0;
439 }
440 
441 /*
442  * dl_rq:
443  *
444  *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
445  *   util_sum = cpu_scale * load_sum
446  *   runnable_sum = util_sum
447  *
448  *   load_avg and runnable_avg are not supported and meaningless.
449  *
450  */
451 
update_dl_rq_load_avg(u64 now,struct rq * rq,int running)452 int update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
453 {
454 	if (___update_load_sum(now, &rq->avg_dl,
455 				running,
456 				running,
457 				running)) {
458 
459 		___update_load_avg(&rq->avg_dl, 1);
460 		trace_pelt_dl_tp(rq);
461 		return 1;
462 	}
463 
464 	return 0;
465 }
466 
467 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
468 /*
469  * thermal:
470  *
471  *   load_sum = \Sum se->avg.load_sum but se->avg.load_sum is not tracked
472  *
473  *   util_avg and runnable_load_avg are not supported and meaningless.
474  *
475  * Unlike rt/dl utilization tracking that track time spent by a cpu
476  * running a rt/dl task through util_avg, the average thermal pressure is
477  * tracked through load_avg. This is because thermal pressure signal is
478  * time weighted "delta" capacity unlike util_avg which is binary.
479  * "delta capacity" =  actual capacity  -
480  *			capped capacity a cpu due to a thermal event.
481  */
482 
update_thermal_load_avg(u64 now,struct rq * rq,u64 capacity)483 int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
484 {
485 	if (___update_load_sum(now, &rq->avg_thermal,
486 			       capacity,
487 			       capacity,
488 			       capacity)) {
489 		___update_load_avg(&rq->avg_thermal, 1);
490 		trace_pelt_thermal_tp(rq);
491 		return 1;
492 	}
493 
494 	return 0;
495 }
496 #endif
497 
498 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
499 /*
500  * irq:
501  *
502  *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
503  *   util_sum = cpu_scale * load_sum
504  *   runnable_sum = util_sum
505  *
506  *   load_avg and runnable_avg are not supported and meaningless.
507  *
508  */
509 
update_irq_load_avg(struct rq * rq,u64 running)510 int update_irq_load_avg(struct rq *rq, u64 running)
511 {
512 	int ret = 0;
513 
514 	/*
515 	 * We can't use clock_pelt because irq time is not accounted in
516 	 * clock_task. Instead we directly scale the running time to
517 	 * reflect the real amount of computation
518 	 */
519 	running = cap_scale(running, arch_scale_freq_capacity(cpu_of(rq)));
520 	running = cap_scale(running, arch_scale_cpu_capacity(cpu_of(rq)));
521 
522 	/*
523 	 * We know the time that has been used by interrupt since last update
524 	 * but we don't when. Let be pessimistic and assume that interrupt has
525 	 * happened just before the update. This is not so far from reality
526 	 * because interrupt will most probably wake up task and trig an update
527 	 * of rq clock during which the metric is updated.
528 	 * We start to decay with normal context time and then we add the
529 	 * interrupt context time.
530 	 * We can safely remove running from rq->clock because
531 	 * rq->clock += delta with delta >= running
532 	 */
533 	ret = ___update_load_sum(rq->clock - running, &rq->avg_irq,
534 				0,
535 				0,
536 				0);
537 	ret += ___update_load_sum(rq->clock, &rq->avg_irq,
538 				1,
539 				1,
540 				1);
541 
542 	if (ret) {
543 		___update_load_avg(&rq->avg_irq, 1);
544 		trace_pelt_irq_tp(rq);
545 	}
546 
547 	return ret;
548 }
549 #endif
550 
551 #include <trace/hooks/sched.h>
552 DEFINE_PER_CPU(u64, clock_task_mult);
553 
554 unsigned int sysctl_sched_pelt_multiplier = 1;
555 __read_mostly unsigned int sched_pelt_lshift;
556 
sched_pelt_multiplier(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)557 int sched_pelt_multiplier(struct ctl_table *table, int write, void *buffer,
558 			  size_t *lenp, loff_t *ppos)
559 {
560 	static DEFINE_MUTEX(mutex);
561 	unsigned int old;
562 	int ret;
563 
564 	mutex_lock(&mutex);
565 
566 	old = sysctl_sched_pelt_multiplier;
567 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
568 	if (ret)
569 		goto undo;
570 	if (!write)
571 		goto done;
572 
573 	trace_android_vh_sched_pelt_multiplier(old, sysctl_sched_pelt_multiplier, &ret);
574 	if (ret)
575 		goto undo;
576 
577 	switch (sysctl_sched_pelt_multiplier)  {
578 	case 1:
579 		fallthrough;
580 	case 2:
581 		fallthrough;
582 	case 4:
583 		WRITE_ONCE(sched_pelt_lshift,
584 			   sysctl_sched_pelt_multiplier >> 1);
585 		goto done;
586 	default:
587 		ret = -EINVAL;
588 	}
589 
590 undo:
591 	sysctl_sched_pelt_multiplier = old;
592 done:
593 	mutex_unlock(&mutex);
594 
595 	return ret;
596 }
597