1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67
68 #include <linux/uaccess.h>
69 #include <asm/unistd.h>
70 #include <asm/mmu_context.h>
71 #include <trace/hooks/mm.h>
72
__unhash_process(struct task_struct * p,bool group_dead)73 static void __unhash_process(struct task_struct *p, bool group_dead)
74 {
75 nr_threads--;
76 detach_pid(p, PIDTYPE_PID);
77 if (group_dead) {
78 detach_pid(p, PIDTYPE_TGID);
79 detach_pid(p, PIDTYPE_PGID);
80 detach_pid(p, PIDTYPE_SID);
81
82 list_del_rcu(&p->tasks);
83 list_del_init(&p->sibling);
84 __this_cpu_dec(process_counts);
85 }
86 list_del_rcu(&p->thread_group);
87 list_del_rcu(&p->thread_node);
88 }
89
90 /*
91 * This function expects the tasklist_lock write-locked.
92 */
__exit_signal(struct task_struct * tsk)93 static void __exit_signal(struct task_struct *tsk)
94 {
95 struct signal_struct *sig = tsk->signal;
96 bool group_dead = thread_group_leader(tsk);
97 struct sighand_struct *sighand;
98 struct tty_struct *tty;
99 u64 utime, stime;
100
101 sighand = rcu_dereference_check(tsk->sighand,
102 lockdep_tasklist_lock_is_held());
103 spin_lock(&sighand->siglock);
104
105 #ifdef CONFIG_POSIX_TIMERS
106 posix_cpu_timers_exit(tsk);
107 if (group_dead)
108 posix_cpu_timers_exit_group(tsk);
109 #endif
110
111 if (group_dead) {
112 tty = sig->tty;
113 sig->tty = NULL;
114 } else {
115 /*
116 * If there is any task waiting for the group exit
117 * then notify it:
118 */
119 if (sig->notify_count > 0 && !--sig->notify_count)
120 wake_up_process(sig->group_exit_task);
121
122 if (tsk == sig->curr_target)
123 sig->curr_target = next_thread(tsk);
124 }
125
126 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
127 sizeof(unsigned long long));
128
129 /*
130 * Accumulate here the counters for all threads as they die. We could
131 * skip the group leader because it is the last user of signal_struct,
132 * but we want to avoid the race with thread_group_cputime() which can
133 * see the empty ->thread_head list.
134 */
135 task_cputime(tsk, &utime, &stime);
136 write_seqlock(&sig->stats_lock);
137 sig->utime += utime;
138 sig->stime += stime;
139 sig->gtime += task_gtime(tsk);
140 sig->min_flt += tsk->min_flt;
141 sig->maj_flt += tsk->maj_flt;
142 sig->nvcsw += tsk->nvcsw;
143 sig->nivcsw += tsk->nivcsw;
144 sig->inblock += task_io_get_inblock(tsk);
145 sig->oublock += task_io_get_oublock(tsk);
146 task_io_accounting_add(&sig->ioac, &tsk->ioac);
147 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
148 sig->nr_threads--;
149 __unhash_process(tsk, group_dead);
150 write_sequnlock(&sig->stats_lock);
151
152 /*
153 * Do this under ->siglock, we can race with another thread
154 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
155 */
156 flush_sigqueue(&tsk->pending);
157 tsk->sighand = NULL;
158 spin_unlock(&sighand->siglock);
159
160 __cleanup_sighand(sighand);
161 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
162 if (group_dead) {
163 flush_sigqueue(&sig->shared_pending);
164 tty_kref_put(tty);
165 }
166 }
167
delayed_put_task_struct(struct rcu_head * rhp)168 static void delayed_put_task_struct(struct rcu_head *rhp)
169 {
170 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
171
172 perf_event_delayed_put(tsk);
173 trace_sched_process_free(tsk);
174 put_task_struct(tsk);
175 }
176
put_task_struct_rcu_user(struct task_struct * task)177 void put_task_struct_rcu_user(struct task_struct *task)
178 {
179 if (refcount_dec_and_test(&task->rcu_users))
180 call_rcu(&task->rcu, delayed_put_task_struct);
181 }
182
release_task(struct task_struct * p)183 void release_task(struct task_struct *p)
184 {
185 struct task_struct *leader;
186 struct pid *thread_pid;
187 int zap_leader;
188 repeat:
189 /* don't need to get the RCU readlock here - the process is dead and
190 * can't be modifying its own credentials. But shut RCU-lockdep up */
191 rcu_read_lock();
192 atomic_dec(&__task_cred(p)->user->processes);
193 rcu_read_unlock();
194
195 cgroup_release(p);
196
197 write_lock_irq(&tasklist_lock);
198 ptrace_release_task(p);
199 thread_pid = get_pid(p->thread_pid);
200 __exit_signal(p);
201
202 /*
203 * If we are the last non-leader member of the thread
204 * group, and the leader is zombie, then notify the
205 * group leader's parent process. (if it wants notification.)
206 */
207 zap_leader = 0;
208 leader = p->group_leader;
209 if (leader != p && thread_group_empty(leader)
210 && leader->exit_state == EXIT_ZOMBIE) {
211 /*
212 * If we were the last child thread and the leader has
213 * exited already, and the leader's parent ignores SIGCHLD,
214 * then we are the one who should release the leader.
215 */
216 zap_leader = do_notify_parent(leader, leader->exit_signal);
217 if (zap_leader)
218 leader->exit_state = EXIT_DEAD;
219 }
220
221 write_unlock_irq(&tasklist_lock);
222 seccomp_filter_release(p);
223 proc_flush_pid(thread_pid);
224 put_pid(thread_pid);
225 release_thread(p);
226 put_task_struct_rcu_user(p);
227
228 p = leader;
229 if (unlikely(zap_leader))
230 goto repeat;
231 }
232
rcuwait_wake_up(struct rcuwait * w)233 int rcuwait_wake_up(struct rcuwait *w)
234 {
235 int ret = 0;
236 struct task_struct *task;
237
238 rcu_read_lock();
239
240 /*
241 * Order condition vs @task, such that everything prior to the load
242 * of @task is visible. This is the condition as to why the user called
243 * rcuwait_wake() in the first place. Pairs with set_current_state()
244 * barrier (A) in rcuwait_wait_event().
245 *
246 * WAIT WAKE
247 * [S] tsk = current [S] cond = true
248 * MB (A) MB (B)
249 * [L] cond [L] tsk
250 */
251 smp_mb(); /* (B) */
252
253 task = rcu_dereference(w->task);
254 if (task)
255 ret = wake_up_process(task);
256 rcu_read_unlock();
257
258 return ret;
259 }
260 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
261
262 /*
263 * Determine if a process group is "orphaned", according to the POSIX
264 * definition in 2.2.2.52. Orphaned process groups are not to be affected
265 * by terminal-generated stop signals. Newly orphaned process groups are
266 * to receive a SIGHUP and a SIGCONT.
267 *
268 * "I ask you, have you ever known what it is to be an orphan?"
269 */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)270 static int will_become_orphaned_pgrp(struct pid *pgrp,
271 struct task_struct *ignored_task)
272 {
273 struct task_struct *p;
274
275 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
276 if ((p == ignored_task) ||
277 (p->exit_state && thread_group_empty(p)) ||
278 is_global_init(p->real_parent))
279 continue;
280
281 if (task_pgrp(p->real_parent) != pgrp &&
282 task_session(p->real_parent) == task_session(p))
283 return 0;
284 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
285
286 return 1;
287 }
288
is_current_pgrp_orphaned(void)289 int is_current_pgrp_orphaned(void)
290 {
291 int retval;
292
293 read_lock(&tasklist_lock);
294 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
295 read_unlock(&tasklist_lock);
296
297 return retval;
298 }
299
has_stopped_jobs(struct pid * pgrp)300 static bool has_stopped_jobs(struct pid *pgrp)
301 {
302 struct task_struct *p;
303
304 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
305 if (p->signal->flags & SIGNAL_STOP_STOPPED)
306 return true;
307 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
308
309 return false;
310 }
311
312 /*
313 * Check to see if any process groups have become orphaned as
314 * a result of our exiting, and if they have any stopped jobs,
315 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
316 */
317 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)318 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
319 {
320 struct pid *pgrp = task_pgrp(tsk);
321 struct task_struct *ignored_task = tsk;
322
323 if (!parent)
324 /* exit: our father is in a different pgrp than
325 * we are and we were the only connection outside.
326 */
327 parent = tsk->real_parent;
328 else
329 /* reparent: our child is in a different pgrp than
330 * we are, and it was the only connection outside.
331 */
332 ignored_task = NULL;
333
334 if (task_pgrp(parent) != pgrp &&
335 task_session(parent) == task_session(tsk) &&
336 will_become_orphaned_pgrp(pgrp, ignored_task) &&
337 has_stopped_jobs(pgrp)) {
338 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
339 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
340 }
341 }
342
343 #ifdef CONFIG_MEMCG
344 /*
345 * A task is exiting. If it owned this mm, find a new owner for the mm.
346 */
mm_update_next_owner(struct mm_struct * mm)347 void mm_update_next_owner(struct mm_struct *mm)
348 {
349 struct task_struct *c, *g, *p = current;
350
351 retry:
352 /*
353 * If the exiting or execing task is not the owner, it's
354 * someone else's problem.
355 */
356 if (mm->owner != p)
357 return;
358 /*
359 * The current owner is exiting/execing and there are no other
360 * candidates. Do not leave the mm pointing to a possibly
361 * freed task structure.
362 */
363 if (atomic_read(&mm->mm_users) <= 1) {
364 WRITE_ONCE(mm->owner, NULL);
365 return;
366 }
367
368 read_lock(&tasklist_lock);
369 /*
370 * Search in the children
371 */
372 list_for_each_entry(c, &p->children, sibling) {
373 if (c->mm == mm)
374 goto assign_new_owner;
375 }
376
377 /*
378 * Search in the siblings
379 */
380 list_for_each_entry(c, &p->real_parent->children, sibling) {
381 if (c->mm == mm)
382 goto assign_new_owner;
383 }
384
385 /*
386 * Search through everything else, we should not get here often.
387 */
388 for_each_process(g) {
389 if (g->flags & PF_KTHREAD)
390 continue;
391 for_each_thread(g, c) {
392 if (c->mm == mm)
393 goto assign_new_owner;
394 if (c->mm)
395 break;
396 }
397 }
398 read_unlock(&tasklist_lock);
399 /*
400 * We found no owner yet mm_users > 1: this implies that we are
401 * most likely racing with swapoff (try_to_unuse()) or /proc or
402 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
403 */
404 WRITE_ONCE(mm->owner, NULL);
405 return;
406
407 assign_new_owner:
408 BUG_ON(c == p);
409 get_task_struct(c);
410 /*
411 * The task_lock protects c->mm from changing.
412 * We always want mm->owner->mm == mm
413 */
414 task_lock(c);
415 /*
416 * Delay read_unlock() till we have the task_lock()
417 * to ensure that c does not slip away underneath us
418 */
419 read_unlock(&tasklist_lock);
420 if (c->mm != mm) {
421 task_unlock(c);
422 put_task_struct(c);
423 goto retry;
424 }
425 WRITE_ONCE(mm->owner, c);
426 task_unlock(c);
427 put_task_struct(c);
428 }
429 #endif /* CONFIG_MEMCG */
430
431 /*
432 * Turn us into a lazy TLB process if we
433 * aren't already..
434 */
exit_mm(void)435 static void exit_mm(void)
436 {
437 struct mm_struct *mm = current->mm;
438 struct core_state *core_state;
439
440 exit_mm_release(current, mm);
441 if (!mm)
442 return;
443 sync_mm_rss(mm);
444 /*
445 * Serialize with any possible pending coredump.
446 * We must hold mmap_lock around checking core_state
447 * and clearing tsk->mm. The core-inducing thread
448 * will increment ->nr_threads for each thread in the
449 * group with ->mm != NULL.
450 */
451 mmap_read_lock(mm);
452 core_state = mm->core_state;
453 if (core_state) {
454 struct core_thread self;
455
456 mmap_read_unlock(mm);
457
458 self.task = current;
459 if (self.task->flags & PF_SIGNALED)
460 self.next = xchg(&core_state->dumper.next, &self);
461 else
462 self.task = NULL;
463 /*
464 * Implies mb(), the result of xchg() must be visible
465 * to core_state->dumper.
466 */
467 if (atomic_dec_and_test(&core_state->nr_threads))
468 complete(&core_state->startup);
469
470 for (;;) {
471 set_current_state(TASK_UNINTERRUPTIBLE);
472 if (!self.task) /* see coredump_finish() */
473 break;
474 freezable_schedule();
475 }
476 __set_current_state(TASK_RUNNING);
477 mmap_read_lock(mm);
478 }
479 mmgrab(mm);
480 BUG_ON(mm != current->active_mm);
481 /* more a memory barrier than a real lock */
482 task_lock(current);
483 current->mm = NULL;
484 mmap_read_unlock(mm);
485 enter_lazy_tlb(mm, current);
486 task_unlock(current);
487 mm_update_next_owner(mm);
488 trace_android_vh_exit_mm(mm);
489 mmput(mm);
490 if (test_thread_flag(TIF_MEMDIE))
491 exit_oom_victim();
492 }
493
find_alive_thread(struct task_struct * p)494 static struct task_struct *find_alive_thread(struct task_struct *p)
495 {
496 struct task_struct *t;
497
498 for_each_thread(p, t) {
499 if (!(t->flags & PF_EXITING))
500 return t;
501 }
502 return NULL;
503 }
504
find_child_reaper(struct task_struct * father,struct list_head * dead)505 static struct task_struct *find_child_reaper(struct task_struct *father,
506 struct list_head *dead)
507 __releases(&tasklist_lock)
508 __acquires(&tasklist_lock)
509 {
510 struct pid_namespace *pid_ns = task_active_pid_ns(father);
511 struct task_struct *reaper = pid_ns->child_reaper;
512 struct task_struct *p, *n;
513
514 if (likely(reaper != father))
515 return reaper;
516
517 reaper = find_alive_thread(father);
518 if (reaper) {
519 pid_ns->child_reaper = reaper;
520 return reaper;
521 }
522
523 write_unlock_irq(&tasklist_lock);
524
525 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
526 list_del_init(&p->ptrace_entry);
527 release_task(p);
528 }
529
530 zap_pid_ns_processes(pid_ns);
531 write_lock_irq(&tasklist_lock);
532
533 return father;
534 }
535
536 /*
537 * When we die, we re-parent all our children, and try to:
538 * 1. give them to another thread in our thread group, if such a member exists
539 * 2. give it to the first ancestor process which prctl'd itself as a
540 * child_subreaper for its children (like a service manager)
541 * 3. give it to the init process (PID 1) in our pid namespace
542 */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)543 static struct task_struct *find_new_reaper(struct task_struct *father,
544 struct task_struct *child_reaper)
545 {
546 struct task_struct *thread, *reaper;
547
548 thread = find_alive_thread(father);
549 if (thread)
550 return thread;
551
552 if (father->signal->has_child_subreaper) {
553 unsigned int ns_level = task_pid(father)->level;
554 /*
555 * Find the first ->is_child_subreaper ancestor in our pid_ns.
556 * We can't check reaper != child_reaper to ensure we do not
557 * cross the namespaces, the exiting parent could be injected
558 * by setns() + fork().
559 * We check pid->level, this is slightly more efficient than
560 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
561 */
562 for (reaper = father->real_parent;
563 task_pid(reaper)->level == ns_level;
564 reaper = reaper->real_parent) {
565 if (reaper == &init_task)
566 break;
567 if (!reaper->signal->is_child_subreaper)
568 continue;
569 thread = find_alive_thread(reaper);
570 if (thread)
571 return thread;
572 }
573 }
574
575 return child_reaper;
576 }
577
578 /*
579 * Any that need to be release_task'd are put on the @dead list.
580 */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)581 static void reparent_leader(struct task_struct *father, struct task_struct *p,
582 struct list_head *dead)
583 {
584 if (unlikely(p->exit_state == EXIT_DEAD))
585 return;
586
587 /* We don't want people slaying init. */
588 p->exit_signal = SIGCHLD;
589
590 /* If it has exited notify the new parent about this child's death. */
591 if (!p->ptrace &&
592 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
593 if (do_notify_parent(p, p->exit_signal)) {
594 p->exit_state = EXIT_DEAD;
595 list_add(&p->ptrace_entry, dead);
596 }
597 }
598
599 kill_orphaned_pgrp(p, father);
600 }
601
602 /*
603 * This does two things:
604 *
605 * A. Make init inherit all the child processes
606 * B. Check to see if any process groups have become orphaned
607 * as a result of our exiting, and if they have any stopped
608 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
609 */
forget_original_parent(struct task_struct * father,struct list_head * dead)610 static void forget_original_parent(struct task_struct *father,
611 struct list_head *dead)
612 {
613 struct task_struct *p, *t, *reaper;
614
615 if (unlikely(!list_empty(&father->ptraced)))
616 exit_ptrace(father, dead);
617
618 /* Can drop and reacquire tasklist_lock */
619 reaper = find_child_reaper(father, dead);
620 if (list_empty(&father->children))
621 return;
622
623 reaper = find_new_reaper(father, reaper);
624 list_for_each_entry(p, &father->children, sibling) {
625 for_each_thread(p, t) {
626 RCU_INIT_POINTER(t->real_parent, reaper);
627 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
628 if (likely(!t->ptrace))
629 t->parent = t->real_parent;
630 if (t->pdeath_signal)
631 group_send_sig_info(t->pdeath_signal,
632 SEND_SIG_NOINFO, t,
633 PIDTYPE_TGID);
634 }
635 /*
636 * If this is a threaded reparent there is no need to
637 * notify anyone anything has happened.
638 */
639 if (!same_thread_group(reaper, father))
640 reparent_leader(father, p, dead);
641 }
642 list_splice_tail_init(&father->children, &reaper->children);
643 }
644
645 /*
646 * Send signals to all our closest relatives so that they know
647 * to properly mourn us..
648 */
exit_notify(struct task_struct * tsk,int group_dead)649 static void exit_notify(struct task_struct *tsk, int group_dead)
650 {
651 bool autoreap;
652 struct task_struct *p, *n;
653 LIST_HEAD(dead);
654
655 write_lock_irq(&tasklist_lock);
656 forget_original_parent(tsk, &dead);
657
658 if (group_dead)
659 kill_orphaned_pgrp(tsk->group_leader, NULL);
660
661 tsk->exit_state = EXIT_ZOMBIE;
662 if (unlikely(tsk->ptrace)) {
663 int sig = thread_group_leader(tsk) &&
664 thread_group_empty(tsk) &&
665 !ptrace_reparented(tsk) ?
666 tsk->exit_signal : SIGCHLD;
667 autoreap = do_notify_parent(tsk, sig);
668 } else if (thread_group_leader(tsk)) {
669 autoreap = thread_group_empty(tsk) &&
670 do_notify_parent(tsk, tsk->exit_signal);
671 } else {
672 autoreap = true;
673 }
674
675 if (autoreap) {
676 tsk->exit_state = EXIT_DEAD;
677 list_add(&tsk->ptrace_entry, &dead);
678 }
679
680 /* mt-exec, de_thread() is waiting for group leader */
681 if (unlikely(tsk->signal->notify_count < 0))
682 wake_up_process(tsk->signal->group_exit_task);
683 write_unlock_irq(&tasklist_lock);
684
685 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
686 list_del_init(&p->ptrace_entry);
687 release_task(p);
688 }
689 }
690
691 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)692 static void check_stack_usage(void)
693 {
694 static DEFINE_SPINLOCK(low_water_lock);
695 static int lowest_to_date = THREAD_SIZE;
696 unsigned long free;
697
698 free = stack_not_used(current);
699
700 if (free >= lowest_to_date)
701 return;
702
703 spin_lock(&low_water_lock);
704 if (free < lowest_to_date) {
705 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
706 current->comm, task_pid_nr(current), free);
707 lowest_to_date = free;
708 }
709 spin_unlock(&low_water_lock);
710 }
711 #else
check_stack_usage(void)712 static inline void check_stack_usage(void) {}
713 #endif
714
do_exit(long code)715 void __noreturn do_exit(long code)
716 {
717 struct task_struct *tsk = current;
718 int group_dead;
719
720 /*
721 * We can get here from a kernel oops, sometimes with preemption off.
722 * Start by checking for critical errors.
723 * Then fix up important state like USER_DS and preemption.
724 * Then do everything else.
725 */
726
727 WARN_ON(blk_needs_flush_plug(tsk));
728
729 if (unlikely(in_interrupt()))
730 panic("Aiee, killing interrupt handler!");
731 if (unlikely(!tsk->pid))
732 panic("Attempted to kill the idle task!");
733
734 /*
735 * If do_exit is called because this processes oopsed, it's possible
736 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
737 * continuing. Amongst other possible reasons, this is to prevent
738 * mm_release()->clear_child_tid() from writing to a user-controlled
739 * kernel address.
740 */
741 force_uaccess_begin();
742
743 if (unlikely(in_atomic())) {
744 pr_info("note: %s[%d] exited with preempt_count %d\n",
745 current->comm, task_pid_nr(current),
746 preempt_count());
747 preempt_count_set(PREEMPT_ENABLED);
748 }
749
750 profile_task_exit(tsk);
751 kcov_task_exit(tsk);
752
753 ptrace_event(PTRACE_EVENT_EXIT, code);
754
755 validate_creds_for_do_exit(tsk);
756
757 /*
758 * We're taking recursive faults here in do_exit. Safest is to just
759 * leave this task alone and wait for reboot.
760 */
761 if (unlikely(tsk->flags & PF_EXITING)) {
762 pr_alert("Fixing recursive fault but reboot is needed!\n");
763 futex_exit_recursive(tsk);
764 set_current_state(TASK_UNINTERRUPTIBLE);
765 schedule();
766 }
767
768 io_uring_files_cancel();
769 exit_signals(tsk); /* sets PF_EXITING */
770
771 /* sync mm's RSS info before statistics gathering */
772 if (tsk->mm)
773 sync_mm_rss(tsk->mm);
774 acct_update_integrals(tsk);
775 group_dead = atomic_dec_and_test(&tsk->signal->live);
776 if (group_dead) {
777 /*
778 * If the last thread of global init has exited, panic
779 * immediately to get a useable coredump.
780 */
781 if (unlikely(is_global_init(tsk)))
782 panic("Attempted to kill init! exitcode=0x%08x\n",
783 tsk->signal->group_exit_code ?: (int)code);
784
785 #ifdef CONFIG_POSIX_TIMERS
786 hrtimer_cancel(&tsk->signal->real_timer);
787 exit_itimers(tsk);
788 #endif
789 if (tsk->mm)
790 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
791 }
792 acct_collect(code, group_dead);
793 if (group_dead)
794 tty_audit_exit();
795 audit_free(tsk);
796
797 tsk->exit_code = code;
798 taskstats_exit(tsk, group_dead);
799
800 exit_mm();
801
802 if (group_dead)
803 acct_process();
804 trace_sched_process_exit(tsk);
805
806 exit_sem(tsk);
807 exit_shm(tsk);
808 exit_files(tsk);
809 exit_fs(tsk);
810 if (group_dead)
811 disassociate_ctty(1);
812 exit_task_namespaces(tsk);
813 exit_task_work(tsk);
814 exit_thread(tsk);
815
816 /*
817 * Flush inherited counters to the parent - before the parent
818 * gets woken up by child-exit notifications.
819 *
820 * because of cgroup mode, must be called before cgroup_exit()
821 */
822 perf_event_exit_task(tsk);
823
824 sched_autogroup_exit_task(tsk);
825 cgroup_exit(tsk);
826
827 /*
828 * FIXME: do that only when needed, using sched_exit tracepoint
829 */
830 flush_ptrace_hw_breakpoint(tsk);
831
832 exit_tasks_rcu_start();
833 exit_notify(tsk, group_dead);
834 proc_exit_connector(tsk);
835 mpol_put_task_policy(tsk);
836 #ifdef CONFIG_FUTEX
837 if (unlikely(current->pi_state_cache))
838 kfree(current->pi_state_cache);
839 #endif
840 /*
841 * Make sure we are holding no locks:
842 */
843 debug_check_no_locks_held();
844
845 if (tsk->io_context)
846 exit_io_context(tsk);
847
848 if (tsk->splice_pipe)
849 free_pipe_info(tsk->splice_pipe);
850
851 if (tsk->task_frag.page)
852 put_page(tsk->task_frag.page);
853
854 validate_creds_for_do_exit(tsk);
855
856 check_stack_usage();
857 preempt_disable();
858 if (tsk->nr_dirtied)
859 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
860 exit_rcu();
861 exit_tasks_rcu_finish();
862
863 lockdep_free_task(tsk);
864 do_task_dead();
865 }
866 EXPORT_SYMBOL_GPL(do_exit);
867
complete_and_exit(struct completion * comp,long code)868 void complete_and_exit(struct completion *comp, long code)
869 {
870 if (comp)
871 complete(comp);
872
873 do_exit(code);
874 }
875 EXPORT_SYMBOL(complete_and_exit);
876
SYSCALL_DEFINE1(exit,int,error_code)877 SYSCALL_DEFINE1(exit, int, error_code)
878 {
879 do_exit((error_code&0xff)<<8);
880 }
881
882 /*
883 * Take down every thread in the group. This is called by fatal signals
884 * as well as by sys_exit_group (below).
885 */
886 void
do_group_exit(int exit_code)887 do_group_exit(int exit_code)
888 {
889 struct signal_struct *sig = current->signal;
890
891 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
892
893 if (signal_group_exit(sig))
894 exit_code = sig->group_exit_code;
895 else if (!thread_group_empty(current)) {
896 struct sighand_struct *const sighand = current->sighand;
897
898 spin_lock_irq(&sighand->siglock);
899 if (signal_group_exit(sig))
900 /* Another thread got here before we took the lock. */
901 exit_code = sig->group_exit_code;
902 else {
903 sig->group_exit_code = exit_code;
904 sig->flags = SIGNAL_GROUP_EXIT;
905 zap_other_threads(current);
906 }
907 spin_unlock_irq(&sighand->siglock);
908 }
909
910 do_exit(exit_code);
911 /* NOTREACHED */
912 }
913
914 /*
915 * this kills every thread in the thread group. Note that any externally
916 * wait4()-ing process will get the correct exit code - even if this
917 * thread is not the thread group leader.
918 */
SYSCALL_DEFINE1(exit_group,int,error_code)919 SYSCALL_DEFINE1(exit_group, int, error_code)
920 {
921 do_group_exit((error_code & 0xff) << 8);
922 /* NOTREACHED */
923 return 0;
924 }
925
926 struct waitid_info {
927 pid_t pid;
928 uid_t uid;
929 int status;
930 int cause;
931 };
932
933 struct wait_opts {
934 enum pid_type wo_type;
935 int wo_flags;
936 struct pid *wo_pid;
937
938 struct waitid_info *wo_info;
939 int wo_stat;
940 struct rusage *wo_rusage;
941
942 wait_queue_entry_t child_wait;
943 int notask_error;
944 };
945
eligible_pid(struct wait_opts * wo,struct task_struct * p)946 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
947 {
948 return wo->wo_type == PIDTYPE_MAX ||
949 task_pid_type(p, wo->wo_type) == wo->wo_pid;
950 }
951
952 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)953 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
954 {
955 if (!eligible_pid(wo, p))
956 return 0;
957
958 /*
959 * Wait for all children (clone and not) if __WALL is set or
960 * if it is traced by us.
961 */
962 if (ptrace || (wo->wo_flags & __WALL))
963 return 1;
964
965 /*
966 * Otherwise, wait for clone children *only* if __WCLONE is set;
967 * otherwise, wait for non-clone children *only*.
968 *
969 * Note: a "clone" child here is one that reports to its parent
970 * using a signal other than SIGCHLD, or a non-leader thread which
971 * we can only see if it is traced by us.
972 */
973 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
974 return 0;
975
976 return 1;
977 }
978
979 /*
980 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
981 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
982 * the lock and this task is uninteresting. If we return nonzero, we have
983 * released the lock and the system call should return.
984 */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)985 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
986 {
987 int state, status;
988 pid_t pid = task_pid_vnr(p);
989 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
990 struct waitid_info *infop;
991
992 if (!likely(wo->wo_flags & WEXITED))
993 return 0;
994
995 if (unlikely(wo->wo_flags & WNOWAIT)) {
996 status = p->exit_code;
997 get_task_struct(p);
998 read_unlock(&tasklist_lock);
999 sched_annotate_sleep();
1000 if (wo->wo_rusage)
1001 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1002 put_task_struct(p);
1003 goto out_info;
1004 }
1005 /*
1006 * Move the task's state to DEAD/TRACE, only one thread can do this.
1007 */
1008 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1009 EXIT_TRACE : EXIT_DEAD;
1010 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1011 return 0;
1012 /*
1013 * We own this thread, nobody else can reap it.
1014 */
1015 read_unlock(&tasklist_lock);
1016 sched_annotate_sleep();
1017
1018 /*
1019 * Check thread_group_leader() to exclude the traced sub-threads.
1020 */
1021 if (state == EXIT_DEAD && thread_group_leader(p)) {
1022 struct signal_struct *sig = p->signal;
1023 struct signal_struct *psig = current->signal;
1024 unsigned long maxrss;
1025 u64 tgutime, tgstime;
1026
1027 /*
1028 * The resource counters for the group leader are in its
1029 * own task_struct. Those for dead threads in the group
1030 * are in its signal_struct, as are those for the child
1031 * processes it has previously reaped. All these
1032 * accumulate in the parent's signal_struct c* fields.
1033 *
1034 * We don't bother to take a lock here to protect these
1035 * p->signal fields because the whole thread group is dead
1036 * and nobody can change them.
1037 *
1038 * psig->stats_lock also protects us from our sub-theads
1039 * which can reap other children at the same time. Until
1040 * we change k_getrusage()-like users to rely on this lock
1041 * we have to take ->siglock as well.
1042 *
1043 * We use thread_group_cputime_adjusted() to get times for
1044 * the thread group, which consolidates times for all threads
1045 * in the group including the group leader.
1046 */
1047 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1048 spin_lock_irq(¤t->sighand->siglock);
1049 write_seqlock(&psig->stats_lock);
1050 psig->cutime += tgutime + sig->cutime;
1051 psig->cstime += tgstime + sig->cstime;
1052 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1053 psig->cmin_flt +=
1054 p->min_flt + sig->min_flt + sig->cmin_flt;
1055 psig->cmaj_flt +=
1056 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1057 psig->cnvcsw +=
1058 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1059 psig->cnivcsw +=
1060 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1061 psig->cinblock +=
1062 task_io_get_inblock(p) +
1063 sig->inblock + sig->cinblock;
1064 psig->coublock +=
1065 task_io_get_oublock(p) +
1066 sig->oublock + sig->coublock;
1067 maxrss = max(sig->maxrss, sig->cmaxrss);
1068 if (psig->cmaxrss < maxrss)
1069 psig->cmaxrss = maxrss;
1070 task_io_accounting_add(&psig->ioac, &p->ioac);
1071 task_io_accounting_add(&psig->ioac, &sig->ioac);
1072 write_sequnlock(&psig->stats_lock);
1073 spin_unlock_irq(¤t->sighand->siglock);
1074 }
1075
1076 if (wo->wo_rusage)
1077 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1078 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1079 ? p->signal->group_exit_code : p->exit_code;
1080 wo->wo_stat = status;
1081
1082 if (state == EXIT_TRACE) {
1083 write_lock_irq(&tasklist_lock);
1084 /* We dropped tasklist, ptracer could die and untrace */
1085 ptrace_unlink(p);
1086
1087 /* If parent wants a zombie, don't release it now */
1088 state = EXIT_ZOMBIE;
1089 if (do_notify_parent(p, p->exit_signal))
1090 state = EXIT_DEAD;
1091 p->exit_state = state;
1092 write_unlock_irq(&tasklist_lock);
1093 }
1094 if (state == EXIT_DEAD)
1095 release_task(p);
1096
1097 out_info:
1098 infop = wo->wo_info;
1099 if (infop) {
1100 if ((status & 0x7f) == 0) {
1101 infop->cause = CLD_EXITED;
1102 infop->status = status >> 8;
1103 } else {
1104 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1105 infop->status = status & 0x7f;
1106 }
1107 infop->pid = pid;
1108 infop->uid = uid;
1109 }
1110
1111 return pid;
1112 }
1113
task_stopped_code(struct task_struct * p,bool ptrace)1114 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1115 {
1116 if (ptrace) {
1117 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1118 return &p->exit_code;
1119 } else {
1120 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1121 return &p->signal->group_exit_code;
1122 }
1123 return NULL;
1124 }
1125
1126 /**
1127 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1128 * @wo: wait options
1129 * @ptrace: is the wait for ptrace
1130 * @p: task to wait for
1131 *
1132 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1133 *
1134 * CONTEXT:
1135 * read_lock(&tasklist_lock), which is released if return value is
1136 * non-zero. Also, grabs and releases @p->sighand->siglock.
1137 *
1138 * RETURNS:
1139 * 0 if wait condition didn't exist and search for other wait conditions
1140 * should continue. Non-zero return, -errno on failure and @p's pid on
1141 * success, implies that tasklist_lock is released and wait condition
1142 * search should terminate.
1143 */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1144 static int wait_task_stopped(struct wait_opts *wo,
1145 int ptrace, struct task_struct *p)
1146 {
1147 struct waitid_info *infop;
1148 int exit_code, *p_code, why;
1149 uid_t uid = 0; /* unneeded, required by compiler */
1150 pid_t pid;
1151
1152 /*
1153 * Traditionally we see ptrace'd stopped tasks regardless of options.
1154 */
1155 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1156 return 0;
1157
1158 if (!task_stopped_code(p, ptrace))
1159 return 0;
1160
1161 exit_code = 0;
1162 spin_lock_irq(&p->sighand->siglock);
1163
1164 p_code = task_stopped_code(p, ptrace);
1165 if (unlikely(!p_code))
1166 goto unlock_sig;
1167
1168 exit_code = *p_code;
1169 if (!exit_code)
1170 goto unlock_sig;
1171
1172 if (!unlikely(wo->wo_flags & WNOWAIT))
1173 *p_code = 0;
1174
1175 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1176 unlock_sig:
1177 spin_unlock_irq(&p->sighand->siglock);
1178 if (!exit_code)
1179 return 0;
1180
1181 /*
1182 * Now we are pretty sure this task is interesting.
1183 * Make sure it doesn't get reaped out from under us while we
1184 * give up the lock and then examine it below. We don't want to
1185 * keep holding onto the tasklist_lock while we call getrusage and
1186 * possibly take page faults for user memory.
1187 */
1188 get_task_struct(p);
1189 pid = task_pid_vnr(p);
1190 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1191 read_unlock(&tasklist_lock);
1192 sched_annotate_sleep();
1193 if (wo->wo_rusage)
1194 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1195 put_task_struct(p);
1196
1197 if (likely(!(wo->wo_flags & WNOWAIT)))
1198 wo->wo_stat = (exit_code << 8) | 0x7f;
1199
1200 infop = wo->wo_info;
1201 if (infop) {
1202 infop->cause = why;
1203 infop->status = exit_code;
1204 infop->pid = pid;
1205 infop->uid = uid;
1206 }
1207 return pid;
1208 }
1209
1210 /*
1211 * Handle do_wait work for one task in a live, non-stopped state.
1212 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1213 * the lock and this task is uninteresting. If we return nonzero, we have
1214 * released the lock and the system call should return.
1215 */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1216 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1217 {
1218 struct waitid_info *infop;
1219 pid_t pid;
1220 uid_t uid;
1221
1222 if (!unlikely(wo->wo_flags & WCONTINUED))
1223 return 0;
1224
1225 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1226 return 0;
1227
1228 spin_lock_irq(&p->sighand->siglock);
1229 /* Re-check with the lock held. */
1230 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1231 spin_unlock_irq(&p->sighand->siglock);
1232 return 0;
1233 }
1234 if (!unlikely(wo->wo_flags & WNOWAIT))
1235 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1236 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1237 spin_unlock_irq(&p->sighand->siglock);
1238
1239 pid = task_pid_vnr(p);
1240 get_task_struct(p);
1241 read_unlock(&tasklist_lock);
1242 sched_annotate_sleep();
1243 if (wo->wo_rusage)
1244 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1245 put_task_struct(p);
1246
1247 infop = wo->wo_info;
1248 if (!infop) {
1249 wo->wo_stat = 0xffff;
1250 } else {
1251 infop->cause = CLD_CONTINUED;
1252 infop->pid = pid;
1253 infop->uid = uid;
1254 infop->status = SIGCONT;
1255 }
1256 return pid;
1257 }
1258
1259 /*
1260 * Consider @p for a wait by @parent.
1261 *
1262 * -ECHILD should be in ->notask_error before the first call.
1263 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1264 * Returns zero if the search for a child should continue;
1265 * then ->notask_error is 0 if @p is an eligible child,
1266 * or still -ECHILD.
1267 */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1268 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1269 struct task_struct *p)
1270 {
1271 /*
1272 * We can race with wait_task_zombie() from another thread.
1273 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1274 * can't confuse the checks below.
1275 */
1276 int exit_state = READ_ONCE(p->exit_state);
1277 int ret;
1278
1279 if (unlikely(exit_state == EXIT_DEAD))
1280 return 0;
1281
1282 ret = eligible_child(wo, ptrace, p);
1283 if (!ret)
1284 return ret;
1285
1286 if (unlikely(exit_state == EXIT_TRACE)) {
1287 /*
1288 * ptrace == 0 means we are the natural parent. In this case
1289 * we should clear notask_error, debugger will notify us.
1290 */
1291 if (likely(!ptrace))
1292 wo->notask_error = 0;
1293 return 0;
1294 }
1295
1296 if (likely(!ptrace) && unlikely(p->ptrace)) {
1297 /*
1298 * If it is traced by its real parent's group, just pretend
1299 * the caller is ptrace_do_wait() and reap this child if it
1300 * is zombie.
1301 *
1302 * This also hides group stop state from real parent; otherwise
1303 * a single stop can be reported twice as group and ptrace stop.
1304 * If a ptracer wants to distinguish these two events for its
1305 * own children it should create a separate process which takes
1306 * the role of real parent.
1307 */
1308 if (!ptrace_reparented(p))
1309 ptrace = 1;
1310 }
1311
1312 /* slay zombie? */
1313 if (exit_state == EXIT_ZOMBIE) {
1314 /* we don't reap group leaders with subthreads */
1315 if (!delay_group_leader(p)) {
1316 /*
1317 * A zombie ptracee is only visible to its ptracer.
1318 * Notification and reaping will be cascaded to the
1319 * real parent when the ptracer detaches.
1320 */
1321 if (unlikely(ptrace) || likely(!p->ptrace))
1322 return wait_task_zombie(wo, p);
1323 }
1324
1325 /*
1326 * Allow access to stopped/continued state via zombie by
1327 * falling through. Clearing of notask_error is complex.
1328 *
1329 * When !@ptrace:
1330 *
1331 * If WEXITED is set, notask_error should naturally be
1332 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1333 * so, if there are live subthreads, there are events to
1334 * wait for. If all subthreads are dead, it's still safe
1335 * to clear - this function will be called again in finite
1336 * amount time once all the subthreads are released and
1337 * will then return without clearing.
1338 *
1339 * When @ptrace:
1340 *
1341 * Stopped state is per-task and thus can't change once the
1342 * target task dies. Only continued and exited can happen.
1343 * Clear notask_error if WCONTINUED | WEXITED.
1344 */
1345 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1346 wo->notask_error = 0;
1347 } else {
1348 /*
1349 * @p is alive and it's gonna stop, continue or exit, so
1350 * there always is something to wait for.
1351 */
1352 wo->notask_error = 0;
1353 }
1354
1355 /*
1356 * Wait for stopped. Depending on @ptrace, different stopped state
1357 * is used and the two don't interact with each other.
1358 */
1359 ret = wait_task_stopped(wo, ptrace, p);
1360 if (ret)
1361 return ret;
1362
1363 /*
1364 * Wait for continued. There's only one continued state and the
1365 * ptracer can consume it which can confuse the real parent. Don't
1366 * use WCONTINUED from ptracer. You don't need or want it.
1367 */
1368 return wait_task_continued(wo, p);
1369 }
1370
1371 /*
1372 * Do the work of do_wait() for one thread in the group, @tsk.
1373 *
1374 * -ECHILD should be in ->notask_error before the first call.
1375 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1376 * Returns zero if the search for a child should continue; then
1377 * ->notask_error is 0 if there were any eligible children,
1378 * or still -ECHILD.
1379 */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1380 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1381 {
1382 struct task_struct *p;
1383
1384 list_for_each_entry(p, &tsk->children, sibling) {
1385 int ret = wait_consider_task(wo, 0, p);
1386
1387 if (ret)
1388 return ret;
1389 }
1390
1391 return 0;
1392 }
1393
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1394 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1395 {
1396 struct task_struct *p;
1397
1398 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1399 int ret = wait_consider_task(wo, 1, p);
1400
1401 if (ret)
1402 return ret;
1403 }
1404
1405 return 0;
1406 }
1407
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1408 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1409 int sync, void *key)
1410 {
1411 struct wait_opts *wo = container_of(wait, struct wait_opts,
1412 child_wait);
1413 struct task_struct *p = key;
1414
1415 if (!eligible_pid(wo, p))
1416 return 0;
1417
1418 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1419 return 0;
1420
1421 return default_wake_function(wait, mode, sync, key);
1422 }
1423
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1424 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1425 {
1426 __wake_up_sync_key(&parent->signal->wait_chldexit,
1427 TASK_INTERRUPTIBLE, p);
1428 }
1429
do_wait(struct wait_opts * wo)1430 static long do_wait(struct wait_opts *wo)
1431 {
1432 struct task_struct *tsk;
1433 int retval;
1434
1435 trace_sched_process_wait(wo->wo_pid);
1436
1437 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1438 wo->child_wait.private = current;
1439 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1440 repeat:
1441 /*
1442 * If there is nothing that can match our criteria, just get out.
1443 * We will clear ->notask_error to zero if we see any child that
1444 * might later match our criteria, even if we are not able to reap
1445 * it yet.
1446 */
1447 wo->notask_error = -ECHILD;
1448 if ((wo->wo_type < PIDTYPE_MAX) &&
1449 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1450 goto notask;
1451
1452 set_current_state(TASK_INTERRUPTIBLE);
1453 read_lock(&tasklist_lock);
1454 tsk = current;
1455 do {
1456 retval = do_wait_thread(wo, tsk);
1457 if (retval)
1458 goto end;
1459
1460 retval = ptrace_do_wait(wo, tsk);
1461 if (retval)
1462 goto end;
1463
1464 if (wo->wo_flags & __WNOTHREAD)
1465 break;
1466 } while_each_thread(current, tsk);
1467 read_unlock(&tasklist_lock);
1468
1469 notask:
1470 retval = wo->notask_error;
1471 if (!retval && !(wo->wo_flags & WNOHANG)) {
1472 retval = -ERESTARTSYS;
1473 if (!signal_pending(current)) {
1474 schedule();
1475 goto repeat;
1476 }
1477 }
1478 end:
1479 __set_current_state(TASK_RUNNING);
1480 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1481 return retval;
1482 }
1483
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1484 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1485 int options, struct rusage *ru)
1486 {
1487 struct wait_opts wo;
1488 struct pid *pid = NULL;
1489 enum pid_type type;
1490 long ret;
1491 unsigned int f_flags = 0;
1492
1493 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1494 __WNOTHREAD|__WCLONE|__WALL))
1495 return -EINVAL;
1496 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1497 return -EINVAL;
1498
1499 switch (which) {
1500 case P_ALL:
1501 type = PIDTYPE_MAX;
1502 break;
1503 case P_PID:
1504 type = PIDTYPE_PID;
1505 if (upid <= 0)
1506 return -EINVAL;
1507
1508 pid = find_get_pid(upid);
1509 break;
1510 case P_PGID:
1511 type = PIDTYPE_PGID;
1512 if (upid < 0)
1513 return -EINVAL;
1514
1515 if (upid)
1516 pid = find_get_pid(upid);
1517 else
1518 pid = get_task_pid(current, PIDTYPE_PGID);
1519 break;
1520 case P_PIDFD:
1521 type = PIDTYPE_PID;
1522 if (upid < 0)
1523 return -EINVAL;
1524
1525 pid = pidfd_get_pid(upid, &f_flags);
1526 if (IS_ERR(pid))
1527 return PTR_ERR(pid);
1528
1529 break;
1530 default:
1531 return -EINVAL;
1532 }
1533
1534 wo.wo_type = type;
1535 wo.wo_pid = pid;
1536 wo.wo_flags = options;
1537 wo.wo_info = infop;
1538 wo.wo_rusage = ru;
1539 if (f_flags & O_NONBLOCK)
1540 wo.wo_flags |= WNOHANG;
1541
1542 ret = do_wait(&wo);
1543 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1544 ret = -EAGAIN;
1545
1546 put_pid(pid);
1547 return ret;
1548 }
1549
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1550 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1551 infop, int, options, struct rusage __user *, ru)
1552 {
1553 struct rusage r;
1554 struct waitid_info info = {.status = 0};
1555 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1556 int signo = 0;
1557
1558 if (err > 0) {
1559 signo = SIGCHLD;
1560 err = 0;
1561 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1562 return -EFAULT;
1563 }
1564 if (!infop)
1565 return err;
1566
1567 if (!user_write_access_begin(infop, sizeof(*infop)))
1568 return -EFAULT;
1569
1570 unsafe_put_user(signo, &infop->si_signo, Efault);
1571 unsafe_put_user(0, &infop->si_errno, Efault);
1572 unsafe_put_user(info.cause, &infop->si_code, Efault);
1573 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1574 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1575 unsafe_put_user(info.status, &infop->si_status, Efault);
1576 user_write_access_end();
1577 return err;
1578 Efault:
1579 user_write_access_end();
1580 return -EFAULT;
1581 }
1582
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1583 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1584 struct rusage *ru)
1585 {
1586 struct wait_opts wo;
1587 struct pid *pid = NULL;
1588 enum pid_type type;
1589 long ret;
1590
1591 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1592 __WNOTHREAD|__WCLONE|__WALL))
1593 return -EINVAL;
1594
1595 /* -INT_MIN is not defined */
1596 if (upid == INT_MIN)
1597 return -ESRCH;
1598
1599 if (upid == -1)
1600 type = PIDTYPE_MAX;
1601 else if (upid < 0) {
1602 type = PIDTYPE_PGID;
1603 pid = find_get_pid(-upid);
1604 } else if (upid == 0) {
1605 type = PIDTYPE_PGID;
1606 pid = get_task_pid(current, PIDTYPE_PGID);
1607 } else /* upid > 0 */ {
1608 type = PIDTYPE_PID;
1609 pid = find_get_pid(upid);
1610 }
1611
1612 wo.wo_type = type;
1613 wo.wo_pid = pid;
1614 wo.wo_flags = options | WEXITED;
1615 wo.wo_info = NULL;
1616 wo.wo_stat = 0;
1617 wo.wo_rusage = ru;
1618 ret = do_wait(&wo);
1619 put_pid(pid);
1620 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1621 ret = -EFAULT;
1622
1623 return ret;
1624 }
1625
kernel_wait(pid_t pid,int * stat)1626 int kernel_wait(pid_t pid, int *stat)
1627 {
1628 struct wait_opts wo = {
1629 .wo_type = PIDTYPE_PID,
1630 .wo_pid = find_get_pid(pid),
1631 .wo_flags = WEXITED,
1632 };
1633 int ret;
1634
1635 ret = do_wait(&wo);
1636 if (ret > 0 && wo.wo_stat)
1637 *stat = wo.wo_stat;
1638 put_pid(wo.wo_pid);
1639 return ret;
1640 }
1641
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1642 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1643 int, options, struct rusage __user *, ru)
1644 {
1645 struct rusage r;
1646 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1647
1648 if (err > 0) {
1649 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1650 return -EFAULT;
1651 }
1652 return err;
1653 }
1654
1655 #ifdef __ARCH_WANT_SYS_WAITPID
1656
1657 /*
1658 * sys_waitpid() remains for compatibility. waitpid() should be
1659 * implemented by calling sys_wait4() from libc.a.
1660 */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1661 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1662 {
1663 return kernel_wait4(pid, stat_addr, options, NULL);
1664 }
1665
1666 #endif
1667
1668 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1669 COMPAT_SYSCALL_DEFINE4(wait4,
1670 compat_pid_t, pid,
1671 compat_uint_t __user *, stat_addr,
1672 int, options,
1673 struct compat_rusage __user *, ru)
1674 {
1675 struct rusage r;
1676 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1677 if (err > 0) {
1678 if (ru && put_compat_rusage(&r, ru))
1679 return -EFAULT;
1680 }
1681 return err;
1682 }
1683
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1684 COMPAT_SYSCALL_DEFINE5(waitid,
1685 int, which, compat_pid_t, pid,
1686 struct compat_siginfo __user *, infop, int, options,
1687 struct compat_rusage __user *, uru)
1688 {
1689 struct rusage ru;
1690 struct waitid_info info = {.status = 0};
1691 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1692 int signo = 0;
1693 if (err > 0) {
1694 signo = SIGCHLD;
1695 err = 0;
1696 if (uru) {
1697 /* kernel_waitid() overwrites everything in ru */
1698 if (COMPAT_USE_64BIT_TIME)
1699 err = copy_to_user(uru, &ru, sizeof(ru));
1700 else
1701 err = put_compat_rusage(&ru, uru);
1702 if (err)
1703 return -EFAULT;
1704 }
1705 }
1706
1707 if (!infop)
1708 return err;
1709
1710 if (!user_write_access_begin(infop, sizeof(*infop)))
1711 return -EFAULT;
1712
1713 unsafe_put_user(signo, &infop->si_signo, Efault);
1714 unsafe_put_user(0, &infop->si_errno, Efault);
1715 unsafe_put_user(info.cause, &infop->si_code, Efault);
1716 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1717 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1718 unsafe_put_user(info.status, &infop->si_status, Efault);
1719 user_write_access_end();
1720 return err;
1721 Efault:
1722 user_write_access_end();
1723 return -EFAULT;
1724 }
1725 #endif
1726
1727 /**
1728 * thread_group_exited - check that a thread group has exited
1729 * @pid: tgid of thread group to be checked.
1730 *
1731 * Test if the thread group represented by tgid has exited (all
1732 * threads are zombies, dead or completely gone).
1733 *
1734 * Return: true if the thread group has exited. false otherwise.
1735 */
thread_group_exited(struct pid * pid)1736 bool thread_group_exited(struct pid *pid)
1737 {
1738 struct task_struct *task;
1739 bool exited;
1740
1741 rcu_read_lock();
1742 task = pid_task(pid, PIDTYPE_PID);
1743 exited = !task ||
1744 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1745 rcu_read_unlock();
1746
1747 return exited;
1748 }
1749 EXPORT_SYMBOL(thread_group_exited);
1750
abort(void)1751 __weak void abort(void)
1752 {
1753 BUG();
1754
1755 /* if that doesn't kill us, halt */
1756 panic("Oops failed to kill thread");
1757 }
1758 EXPORT_SYMBOL(abort);
1759