1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/kthread.h>
37 #include <linux/list.h>
38 #include <linux/mempolicy.h>
39 #include <linux/mm.h>
40 #include <linux/memory.h>
41 #include <linux/export.h>
42 #include <linux/mount.h>
43 #include <linux/fs_context.h>
44 #include <linux/namei.h>
45 #include <linux/pagemap.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/sched.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/mm.h>
51 #include <linux/sched/task.h>
52 #include <linux/seq_file.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/spinlock.h>
56 #include <linux/stat.h>
57 #include <linux/string.h>
58 #include <linux/time.h>
59 #include <linux/time64.h>
60 #include <linux/backing-dev.h>
61 #include <linux/sort.h>
62 #include <linux/oom.h>
63 #include <linux/sched/isolation.h>
64 #include <linux/uaccess.h>
65 #include <linux/atomic.h>
66 #include <linux/mutex.h>
67 #include <linux/cgroup.h>
68 #include <linux/wait.h>
69
70 #include <trace/hooks/sched.h>
71 #include <trace/hooks/cgroup.h>
72
73 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
74 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
75
76 /* See "Frequency meter" comments, below. */
77
78 struct fmeter {
79 int cnt; /* unprocessed events count */
80 int val; /* most recent output value */
81 time64_t time; /* clock (secs) when val computed */
82 spinlock_t lock; /* guards read or write of above */
83 };
84
85 struct cpuset {
86 struct cgroup_subsys_state css;
87
88 unsigned long flags; /* "unsigned long" so bitops work */
89
90 /*
91 * On default hierarchy:
92 *
93 * The user-configured masks can only be changed by writing to
94 * cpuset.cpus and cpuset.mems, and won't be limited by the
95 * parent masks.
96 *
97 * The effective masks is the real masks that apply to the tasks
98 * in the cpuset. They may be changed if the configured masks are
99 * changed or hotplug happens.
100 *
101 * effective_mask == configured_mask & parent's effective_mask,
102 * and if it ends up empty, it will inherit the parent's mask.
103 *
104 *
105 * On legacy hierachy:
106 *
107 * The user-configured masks are always the same with effective masks.
108 */
109
110 /* user-configured CPUs and Memory Nodes allow to tasks */
111 cpumask_var_t cpus_allowed;
112 cpumask_var_t cpus_requested;
113 nodemask_t mems_allowed;
114
115 /* effective CPUs and Memory Nodes allow to tasks */
116 cpumask_var_t effective_cpus;
117 nodemask_t effective_mems;
118
119 /*
120 * CPUs allocated to child sub-partitions (default hierarchy only)
121 * - CPUs granted by the parent = effective_cpus U subparts_cpus
122 * - effective_cpus and subparts_cpus are mutually exclusive.
123 *
124 * effective_cpus contains only onlined CPUs, but subparts_cpus
125 * may have offlined ones.
126 */
127 cpumask_var_t subparts_cpus;
128
129 /*
130 * This is old Memory Nodes tasks took on.
131 *
132 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
133 * - A new cpuset's old_mems_allowed is initialized when some
134 * task is moved into it.
135 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
136 * cpuset.mems_allowed and have tasks' nodemask updated, and
137 * then old_mems_allowed is updated to mems_allowed.
138 */
139 nodemask_t old_mems_allowed;
140
141 struct fmeter fmeter; /* memory_pressure filter */
142
143 /*
144 * Tasks are being attached to this cpuset. Used to prevent
145 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
146 */
147 int attach_in_progress;
148
149 /* partition number for rebuild_sched_domains() */
150 int pn;
151
152 /* for custom sched domain */
153 int relax_domain_level;
154
155 /* number of CPUs in subparts_cpus */
156 int nr_subparts_cpus;
157
158 /* partition root state */
159 int partition_root_state;
160
161 /*
162 * Default hierarchy only:
163 * use_parent_ecpus - set if using parent's effective_cpus
164 * child_ecpus_count - # of children with use_parent_ecpus set
165 */
166 int use_parent_ecpus;
167 int child_ecpus_count;
168 };
169
170 /*
171 * Partition root states:
172 *
173 * 0 - not a partition root
174 *
175 * 1 - partition root
176 *
177 * -1 - invalid partition root
178 * None of the cpus in cpus_allowed can be put into the parent's
179 * subparts_cpus. In this case, the cpuset is not a real partition
180 * root anymore. However, the CPU_EXCLUSIVE bit will still be set
181 * and the cpuset can be restored back to a partition root if the
182 * parent cpuset can give more CPUs back to this child cpuset.
183 */
184 #define PRS_DISABLED 0
185 #define PRS_ENABLED 1
186 #define PRS_ERROR -1
187
188 /*
189 * Temporary cpumasks for working with partitions that are passed among
190 * functions to avoid memory allocation in inner functions.
191 */
192 struct tmpmasks {
193 cpumask_var_t addmask, delmask; /* For partition root */
194 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
195 };
196
css_cs(struct cgroup_subsys_state * css)197 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
198 {
199 return css ? container_of(css, struct cpuset, css) : NULL;
200 }
201
202 /* Retrieve the cpuset for a task */
task_cs(struct task_struct * task)203 static inline struct cpuset *task_cs(struct task_struct *task)
204 {
205 return css_cs(task_css(task, cpuset_cgrp_id));
206 }
207
parent_cs(struct cpuset * cs)208 static inline struct cpuset *parent_cs(struct cpuset *cs)
209 {
210 return css_cs(cs->css.parent);
211 }
212
213 /* bits in struct cpuset flags field */
214 typedef enum {
215 CS_ONLINE,
216 CS_CPU_EXCLUSIVE,
217 CS_MEM_EXCLUSIVE,
218 CS_MEM_HARDWALL,
219 CS_MEMORY_MIGRATE,
220 CS_SCHED_LOAD_BALANCE,
221 CS_SPREAD_PAGE,
222 CS_SPREAD_SLAB,
223 } cpuset_flagbits_t;
224
225 /* convenient tests for these bits */
is_cpuset_online(struct cpuset * cs)226 static inline bool is_cpuset_online(struct cpuset *cs)
227 {
228 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
229 }
230
is_cpu_exclusive(const struct cpuset * cs)231 static inline int is_cpu_exclusive(const struct cpuset *cs)
232 {
233 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
234 }
235
is_mem_exclusive(const struct cpuset * cs)236 static inline int is_mem_exclusive(const struct cpuset *cs)
237 {
238 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
239 }
240
is_mem_hardwall(const struct cpuset * cs)241 static inline int is_mem_hardwall(const struct cpuset *cs)
242 {
243 return test_bit(CS_MEM_HARDWALL, &cs->flags);
244 }
245
is_sched_load_balance(const struct cpuset * cs)246 static inline int is_sched_load_balance(const struct cpuset *cs)
247 {
248 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
249 }
250
is_memory_migrate(const struct cpuset * cs)251 static inline int is_memory_migrate(const struct cpuset *cs)
252 {
253 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
254 }
255
is_spread_page(const struct cpuset * cs)256 static inline int is_spread_page(const struct cpuset *cs)
257 {
258 return test_bit(CS_SPREAD_PAGE, &cs->flags);
259 }
260
is_spread_slab(const struct cpuset * cs)261 static inline int is_spread_slab(const struct cpuset *cs)
262 {
263 return test_bit(CS_SPREAD_SLAB, &cs->flags);
264 }
265
is_partition_root(const struct cpuset * cs)266 static inline int is_partition_root(const struct cpuset *cs)
267 {
268 return cs->partition_root_state > 0;
269 }
270
271 static struct cpuset top_cpuset = {
272 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
273 (1 << CS_MEM_EXCLUSIVE)),
274 .partition_root_state = PRS_ENABLED,
275 };
276
277 /**
278 * cpuset_for_each_child - traverse online children of a cpuset
279 * @child_cs: loop cursor pointing to the current child
280 * @pos_css: used for iteration
281 * @parent_cs: target cpuset to walk children of
282 *
283 * Walk @child_cs through the online children of @parent_cs. Must be used
284 * with RCU read locked.
285 */
286 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
287 css_for_each_child((pos_css), &(parent_cs)->css) \
288 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
289
290 /**
291 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
292 * @des_cs: loop cursor pointing to the current descendant
293 * @pos_css: used for iteration
294 * @root_cs: target cpuset to walk ancestor of
295 *
296 * Walk @des_cs through the online descendants of @root_cs. Must be used
297 * with RCU read locked. The caller may modify @pos_css by calling
298 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
299 * iteration and the first node to be visited.
300 */
301 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
302 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
303 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
304
305 /*
306 * There are two global locks guarding cpuset structures - cpuset_mutex and
307 * callback_lock. We also require taking task_lock() when dereferencing a
308 * task's cpuset pointer. See "The task_lock() exception", at the end of this
309 * comment.
310 *
311 * A task must hold both locks to modify cpusets. If a task holds
312 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
313 * is the only task able to also acquire callback_lock and be able to
314 * modify cpusets. It can perform various checks on the cpuset structure
315 * first, knowing nothing will change. It can also allocate memory while
316 * just holding cpuset_mutex. While it is performing these checks, various
317 * callback routines can briefly acquire callback_lock to query cpusets.
318 * Once it is ready to make the changes, it takes callback_lock, blocking
319 * everyone else.
320 *
321 * Calls to the kernel memory allocator can not be made while holding
322 * callback_lock, as that would risk double tripping on callback_lock
323 * from one of the callbacks into the cpuset code from within
324 * __alloc_pages().
325 *
326 * If a task is only holding callback_lock, then it has read-only
327 * access to cpusets.
328 *
329 * Now, the task_struct fields mems_allowed and mempolicy may be changed
330 * by other task, we use alloc_lock in the task_struct fields to protect
331 * them.
332 *
333 * The cpuset_common_file_read() handlers only hold callback_lock across
334 * small pieces of code, such as when reading out possibly multi-word
335 * cpumasks and nodemasks.
336 *
337 * Accessing a task's cpuset should be done in accordance with the
338 * guidelines for accessing subsystem state in kernel/cgroup.c
339 */
340
341 static DEFINE_MUTEX(cpuset_mutex);
342 static DEFINE_SPINLOCK(callback_lock);
343
344 static struct workqueue_struct *cpuset_migrate_mm_wq;
345
346 /*
347 * CPU / memory hotplug is handled asynchronously
348 * for hotplug, synchronously for resume_cpus
349 */
350 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
351
352 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
353
354 /*
355 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
356 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
357 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
358 * With v2 behavior, "cpus" and "mems" are always what the users have
359 * requested and won't be changed by hotplug events. Only the effective
360 * cpus or mems will be affected.
361 */
is_in_v2_mode(void)362 static inline bool is_in_v2_mode(void)
363 {
364 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
365 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
366 }
367
368 /*
369 * Return in pmask the portion of a task's cpusets's cpus_allowed that
370 * are online and are capable of running the task. If none are found,
371 * walk up the cpuset hierarchy until we find one that does have some
372 * appropriate cpus.
373 *
374 * One way or another, we guarantee to return some non-empty subset
375 * of cpu_active_mask.
376 *
377 * Call with callback_lock or cpuset_mutex held.
378 */
guarantee_online_cpus(struct task_struct * tsk,struct cpumask * pmask)379 static void guarantee_online_cpus(struct task_struct *tsk,
380 struct cpumask *pmask)
381 {
382 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
383 struct cpuset *cs;
384
385 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_active_mask)))
386 cpumask_copy(pmask, cpu_active_mask);
387
388 rcu_read_lock();
389 cs = task_cs(tsk);
390
391 while (!cpumask_intersects(cs->effective_cpus, pmask)) {
392 cs = parent_cs(cs);
393 if (unlikely(!cs)) {
394 /*
395 * The top cpuset doesn't have any online cpu as a
396 * consequence of a race between cpuset_hotplug_work
397 * and cpu hotplug notifier. But we know the top
398 * cpuset's effective_cpus is on its way to be
399 * identical to cpu_online_mask.
400 */
401 goto out_unlock;
402 }
403 }
404 cpumask_and(pmask, pmask, cs->effective_cpus);
405
406 out_unlock:
407 rcu_read_unlock();
408 }
409
410 /*
411 * Return in *pmask the portion of a cpusets's mems_allowed that
412 * are online, with memory. If none are online with memory, walk
413 * up the cpuset hierarchy until we find one that does have some
414 * online mems. The top cpuset always has some mems online.
415 *
416 * One way or another, we guarantee to return some non-empty subset
417 * of node_states[N_MEMORY].
418 *
419 * Call with callback_lock or cpuset_mutex held.
420 */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)421 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
422 {
423 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
424 cs = parent_cs(cs);
425 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
426 }
427
428 /*
429 * update task's spread flag if cpuset's page/slab spread flag is set
430 *
431 * Call with callback_lock or cpuset_mutex held.
432 */
cpuset_update_task_spread_flag(struct cpuset * cs,struct task_struct * tsk)433 static void cpuset_update_task_spread_flag(struct cpuset *cs,
434 struct task_struct *tsk)
435 {
436 if (is_spread_page(cs))
437 task_set_spread_page(tsk);
438 else
439 task_clear_spread_page(tsk);
440
441 if (is_spread_slab(cs))
442 task_set_spread_slab(tsk);
443 else
444 task_clear_spread_slab(tsk);
445 }
446
447 /*
448 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
449 *
450 * One cpuset is a subset of another if all its allowed CPUs and
451 * Memory Nodes are a subset of the other, and its exclusive flags
452 * are only set if the other's are set. Call holding cpuset_mutex.
453 */
454
is_cpuset_subset(const struct cpuset * p,const struct cpuset * q)455 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
456 {
457 return cpumask_subset(p->cpus_requested, q->cpus_requested) &&
458 nodes_subset(p->mems_allowed, q->mems_allowed) &&
459 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
460 is_mem_exclusive(p) <= is_mem_exclusive(q);
461 }
462
463 /**
464 * alloc_cpumasks - allocate three cpumasks for cpuset
465 * @cs: the cpuset that have cpumasks to be allocated.
466 * @tmp: the tmpmasks structure pointer
467 * Return: 0 if successful, -ENOMEM otherwise.
468 *
469 * Only one of the two input arguments should be non-NULL.
470 */
alloc_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)471 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
472 {
473 cpumask_var_t *pmask1, *pmask2, *pmask3;
474
475 if (cs) {
476 pmask1 = &cs->cpus_allowed;
477 pmask2 = &cs->effective_cpus;
478 pmask3 = &cs->subparts_cpus;
479 } else {
480 pmask1 = &tmp->new_cpus;
481 pmask2 = &tmp->addmask;
482 pmask3 = &tmp->delmask;
483 }
484
485 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
486 return -ENOMEM;
487
488 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
489 goto free_one;
490
491 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
492 goto free_two;
493
494 if (cs && !zalloc_cpumask_var(&cs->cpus_requested, GFP_KERNEL))
495 goto free_three;
496
497 return 0;
498
499 free_three:
500 free_cpumask_var(*pmask3);
501 free_two:
502 free_cpumask_var(*pmask2);
503 free_one:
504 free_cpumask_var(*pmask1);
505 return -ENOMEM;
506 }
507
508 /**
509 * free_cpumasks - free cpumasks in a tmpmasks structure
510 * @cs: the cpuset that have cpumasks to be free.
511 * @tmp: the tmpmasks structure pointer
512 */
free_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)513 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
514 {
515 if (cs) {
516 free_cpumask_var(cs->cpus_allowed);
517 free_cpumask_var(cs->cpus_requested);
518 free_cpumask_var(cs->effective_cpus);
519 free_cpumask_var(cs->subparts_cpus);
520 }
521 if (tmp) {
522 free_cpumask_var(tmp->new_cpus);
523 free_cpumask_var(tmp->addmask);
524 free_cpumask_var(tmp->delmask);
525 }
526 }
527
528 /**
529 * alloc_trial_cpuset - allocate a trial cpuset
530 * @cs: the cpuset that the trial cpuset duplicates
531 */
alloc_trial_cpuset(struct cpuset * cs)532 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
533 {
534 struct cpuset *trial;
535
536 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
537 if (!trial)
538 return NULL;
539
540 if (alloc_cpumasks(trial, NULL)) {
541 kfree(trial);
542 return NULL;
543 }
544
545 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
546 cpumask_copy(trial->cpus_requested, cs->cpus_requested);
547 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
548 return trial;
549 }
550
551 /**
552 * free_cpuset - free the cpuset
553 * @cs: the cpuset to be freed
554 */
free_cpuset(struct cpuset * cs)555 static inline void free_cpuset(struct cpuset *cs)
556 {
557 free_cpumasks(cs, NULL);
558 kfree(cs);
559 }
560
561 /*
562 * validate_change() - Used to validate that any proposed cpuset change
563 * follows the structural rules for cpusets.
564 *
565 * If we replaced the flag and mask values of the current cpuset
566 * (cur) with those values in the trial cpuset (trial), would
567 * our various subset and exclusive rules still be valid? Presumes
568 * cpuset_mutex held.
569 *
570 * 'cur' is the address of an actual, in-use cpuset. Operations
571 * such as list traversal that depend on the actual address of the
572 * cpuset in the list must use cur below, not trial.
573 *
574 * 'trial' is the address of bulk structure copy of cur, with
575 * perhaps one or more of the fields cpus_allowed, mems_allowed,
576 * or flags changed to new, trial values.
577 *
578 * Return 0 if valid, -errno if not.
579 */
580
validate_change(struct cpuset * cur,struct cpuset * trial)581 static int validate_change(struct cpuset *cur, struct cpuset *trial)
582 {
583 struct cgroup_subsys_state *css;
584 struct cpuset *c, *par;
585 int ret;
586
587 rcu_read_lock();
588
589 /* Each of our child cpusets must be a subset of us */
590 ret = -EBUSY;
591 cpuset_for_each_child(c, css, cur)
592 if (!is_cpuset_subset(c, trial))
593 goto out;
594
595 /* Remaining checks don't apply to root cpuset */
596 ret = 0;
597 if (cur == &top_cpuset)
598 goto out;
599
600 par = parent_cs(cur);
601
602 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
603 ret = -EACCES;
604 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
605 goto out;
606
607 /*
608 * If either I or some sibling (!= me) is exclusive, we can't
609 * overlap
610 */
611 ret = -EINVAL;
612 cpuset_for_each_child(c, css, par) {
613 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
614 c != cur &&
615 cpumask_intersects(trial->cpus_requested, c->cpus_requested))
616 goto out;
617 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
618 c != cur &&
619 nodes_intersects(trial->mems_allowed, c->mems_allowed))
620 goto out;
621 }
622
623 /*
624 * Cpusets with tasks - existing or newly being attached - can't
625 * be changed to have empty cpus_allowed or mems_allowed.
626 */
627 ret = -ENOSPC;
628 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
629 if (!cpumask_empty(cur->cpus_allowed) &&
630 cpumask_empty(trial->cpus_allowed))
631 goto out;
632 if (!nodes_empty(cur->mems_allowed) &&
633 nodes_empty(trial->mems_allowed))
634 goto out;
635 }
636
637 /*
638 * We can't shrink if we won't have enough room for SCHED_DEADLINE
639 * tasks.
640 */
641 ret = -EBUSY;
642 if (is_cpu_exclusive(cur) &&
643 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
644 trial->cpus_allowed))
645 goto out;
646
647 ret = 0;
648 out:
649 rcu_read_unlock();
650 return ret;
651 }
652
653 #ifdef CONFIG_SMP
654 /*
655 * Helper routine for generate_sched_domains().
656 * Do cpusets a, b have overlapping effective cpus_allowed masks?
657 */
cpusets_overlap(struct cpuset * a,struct cpuset * b)658 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
659 {
660 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
661 }
662
663 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)664 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
665 {
666 if (dattr->relax_domain_level < c->relax_domain_level)
667 dattr->relax_domain_level = c->relax_domain_level;
668 return;
669 }
670
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)671 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
672 struct cpuset *root_cs)
673 {
674 struct cpuset *cp;
675 struct cgroup_subsys_state *pos_css;
676
677 rcu_read_lock();
678 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
679 /* skip the whole subtree if @cp doesn't have any CPU */
680 if (cpumask_empty(cp->cpus_allowed)) {
681 pos_css = css_rightmost_descendant(pos_css);
682 continue;
683 }
684
685 if (is_sched_load_balance(cp))
686 update_domain_attr(dattr, cp);
687 }
688 rcu_read_unlock();
689 }
690
691 /* Must be called with cpuset_mutex held. */
nr_cpusets(void)692 static inline int nr_cpusets(void)
693 {
694 /* jump label reference count + the top-level cpuset */
695 return static_key_count(&cpusets_enabled_key.key) + 1;
696 }
697
698 /*
699 * generate_sched_domains()
700 *
701 * This function builds a partial partition of the systems CPUs
702 * A 'partial partition' is a set of non-overlapping subsets whose
703 * union is a subset of that set.
704 * The output of this function needs to be passed to kernel/sched/core.c
705 * partition_sched_domains() routine, which will rebuild the scheduler's
706 * load balancing domains (sched domains) as specified by that partial
707 * partition.
708 *
709 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
710 * for a background explanation of this.
711 *
712 * Does not return errors, on the theory that the callers of this
713 * routine would rather not worry about failures to rebuild sched
714 * domains when operating in the severe memory shortage situations
715 * that could cause allocation failures below.
716 *
717 * Must be called with cpuset_mutex held.
718 *
719 * The three key local variables below are:
720 * cp - cpuset pointer, used (together with pos_css) to perform a
721 * top-down scan of all cpusets. For our purposes, rebuilding
722 * the schedulers sched domains, we can ignore !is_sched_load_
723 * balance cpusets.
724 * csa - (for CpuSet Array) Array of pointers to all the cpusets
725 * that need to be load balanced, for convenient iterative
726 * access by the subsequent code that finds the best partition,
727 * i.e the set of domains (subsets) of CPUs such that the
728 * cpus_allowed of every cpuset marked is_sched_load_balance
729 * is a subset of one of these domains, while there are as
730 * many such domains as possible, each as small as possible.
731 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
732 * the kernel/sched/core.c routine partition_sched_domains() in a
733 * convenient format, that can be easily compared to the prior
734 * value to determine what partition elements (sched domains)
735 * were changed (added or removed.)
736 *
737 * Finding the best partition (set of domains):
738 * The triple nested loops below over i, j, k scan over the
739 * load balanced cpusets (using the array of cpuset pointers in
740 * csa[]) looking for pairs of cpusets that have overlapping
741 * cpus_allowed, but which don't have the same 'pn' partition
742 * number and gives them in the same partition number. It keeps
743 * looping on the 'restart' label until it can no longer find
744 * any such pairs.
745 *
746 * The union of the cpus_allowed masks from the set of
747 * all cpusets having the same 'pn' value then form the one
748 * element of the partition (one sched domain) to be passed to
749 * partition_sched_domains().
750 */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)751 static int generate_sched_domains(cpumask_var_t **domains,
752 struct sched_domain_attr **attributes)
753 {
754 struct cpuset *cp; /* top-down scan of cpusets */
755 struct cpuset **csa; /* array of all cpuset ptrs */
756 int csn; /* how many cpuset ptrs in csa so far */
757 int i, j, k; /* indices for partition finding loops */
758 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
759 struct sched_domain_attr *dattr; /* attributes for custom domains */
760 int ndoms = 0; /* number of sched domains in result */
761 int nslot; /* next empty doms[] struct cpumask slot */
762 struct cgroup_subsys_state *pos_css;
763 bool root_load_balance = is_sched_load_balance(&top_cpuset);
764
765 doms = NULL;
766 dattr = NULL;
767 csa = NULL;
768
769 /* Special case for the 99% of systems with one, full, sched domain */
770 if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
771 ndoms = 1;
772 doms = alloc_sched_domains(ndoms);
773 if (!doms)
774 goto done;
775
776 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
777 if (dattr) {
778 *dattr = SD_ATTR_INIT;
779 update_domain_attr_tree(dattr, &top_cpuset);
780 }
781 cpumask_and(doms[0], top_cpuset.effective_cpus,
782 housekeeping_cpumask(HK_FLAG_DOMAIN));
783
784 goto done;
785 }
786
787 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
788 if (!csa)
789 goto done;
790 csn = 0;
791
792 rcu_read_lock();
793 if (root_load_balance)
794 csa[csn++] = &top_cpuset;
795 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
796 if (cp == &top_cpuset)
797 continue;
798 /*
799 * Continue traversing beyond @cp iff @cp has some CPUs and
800 * isn't load balancing. The former is obvious. The
801 * latter: All child cpusets contain a subset of the
802 * parent's cpus, so just skip them, and then we call
803 * update_domain_attr_tree() to calc relax_domain_level of
804 * the corresponding sched domain.
805 *
806 * If root is load-balancing, we can skip @cp if it
807 * is a subset of the root's effective_cpus.
808 */
809 if (!cpumask_empty(cp->cpus_allowed) &&
810 !(is_sched_load_balance(cp) &&
811 cpumask_intersects(cp->cpus_allowed,
812 housekeeping_cpumask(HK_FLAG_DOMAIN))))
813 continue;
814
815 if (root_load_balance &&
816 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
817 continue;
818
819 if (is_sched_load_balance(cp) &&
820 !cpumask_empty(cp->effective_cpus))
821 csa[csn++] = cp;
822
823 /* skip @cp's subtree if not a partition root */
824 if (!is_partition_root(cp))
825 pos_css = css_rightmost_descendant(pos_css);
826 }
827 rcu_read_unlock();
828
829 for (i = 0; i < csn; i++)
830 csa[i]->pn = i;
831 ndoms = csn;
832
833 restart:
834 /* Find the best partition (set of sched domains) */
835 for (i = 0; i < csn; i++) {
836 struct cpuset *a = csa[i];
837 int apn = a->pn;
838
839 for (j = 0; j < csn; j++) {
840 struct cpuset *b = csa[j];
841 int bpn = b->pn;
842
843 if (apn != bpn && cpusets_overlap(a, b)) {
844 for (k = 0; k < csn; k++) {
845 struct cpuset *c = csa[k];
846
847 if (c->pn == bpn)
848 c->pn = apn;
849 }
850 ndoms--; /* one less element */
851 goto restart;
852 }
853 }
854 }
855
856 /*
857 * Now we know how many domains to create.
858 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
859 */
860 doms = alloc_sched_domains(ndoms);
861 if (!doms)
862 goto done;
863
864 /*
865 * The rest of the code, including the scheduler, can deal with
866 * dattr==NULL case. No need to abort if alloc fails.
867 */
868 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
869 GFP_KERNEL);
870
871 for (nslot = 0, i = 0; i < csn; i++) {
872 struct cpuset *a = csa[i];
873 struct cpumask *dp;
874 int apn = a->pn;
875
876 if (apn < 0) {
877 /* Skip completed partitions */
878 continue;
879 }
880
881 dp = doms[nslot];
882
883 if (nslot == ndoms) {
884 static int warnings = 10;
885 if (warnings) {
886 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
887 nslot, ndoms, csn, i, apn);
888 warnings--;
889 }
890 continue;
891 }
892
893 cpumask_clear(dp);
894 if (dattr)
895 *(dattr + nslot) = SD_ATTR_INIT;
896 for (j = i; j < csn; j++) {
897 struct cpuset *b = csa[j];
898
899 if (apn == b->pn) {
900 cpumask_or(dp, dp, b->effective_cpus);
901 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
902 if (dattr)
903 update_domain_attr_tree(dattr + nslot, b);
904
905 /* Done with this partition */
906 b->pn = -1;
907 }
908 }
909 nslot++;
910 }
911 BUG_ON(nslot != ndoms);
912
913 done:
914 kfree(csa);
915
916 /*
917 * Fallback to the default domain if kmalloc() failed.
918 * See comments in partition_sched_domains().
919 */
920 if (doms == NULL)
921 ndoms = 1;
922
923 *domains = doms;
924 *attributes = dattr;
925 return ndoms;
926 }
927
update_tasks_root_domain(struct cpuset * cs)928 static void update_tasks_root_domain(struct cpuset *cs)
929 {
930 struct css_task_iter it;
931 struct task_struct *task;
932
933 css_task_iter_start(&cs->css, 0, &it);
934
935 while ((task = css_task_iter_next(&it)))
936 dl_add_task_root_domain(task);
937
938 css_task_iter_end(&it);
939 }
940
rebuild_root_domains(void)941 static void rebuild_root_domains(void)
942 {
943 struct cpuset *cs = NULL;
944 struct cgroup_subsys_state *pos_css;
945
946 lockdep_assert_held(&cpuset_mutex);
947 lockdep_assert_cpus_held();
948 lockdep_assert_held(&sched_domains_mutex);
949
950 rcu_read_lock();
951
952 /*
953 * Clear default root domain DL accounting, it will be computed again
954 * if a task belongs to it.
955 */
956 dl_clear_root_domain(&def_root_domain);
957
958 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
959
960 if (cpumask_empty(cs->effective_cpus)) {
961 pos_css = css_rightmost_descendant(pos_css);
962 continue;
963 }
964
965 css_get(&cs->css);
966
967 rcu_read_unlock();
968
969 update_tasks_root_domain(cs);
970
971 rcu_read_lock();
972 css_put(&cs->css);
973 }
974 rcu_read_unlock();
975 }
976
977 static void
partition_and_rebuild_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)978 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
979 struct sched_domain_attr *dattr_new)
980 {
981 mutex_lock(&sched_domains_mutex);
982 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
983 rebuild_root_domains();
984 mutex_unlock(&sched_domains_mutex);
985 }
986
987 /*
988 * Rebuild scheduler domains.
989 *
990 * If the flag 'sched_load_balance' of any cpuset with non-empty
991 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
992 * which has that flag enabled, or if any cpuset with a non-empty
993 * 'cpus' is removed, then call this routine to rebuild the
994 * scheduler's dynamic sched domains.
995 *
996 * Call with cpuset_mutex held. Takes get_online_cpus().
997 */
rebuild_sched_domains_locked(void)998 static void rebuild_sched_domains_locked(void)
999 {
1000 struct cgroup_subsys_state *pos_css;
1001 struct sched_domain_attr *attr;
1002 cpumask_var_t *doms;
1003 struct cpuset *cs;
1004 int ndoms;
1005
1006 lockdep_assert_held(&cpuset_mutex);
1007
1008 /*
1009 * If we have raced with CPU hotplug, return early to avoid
1010 * passing doms with offlined cpu to partition_sched_domains().
1011 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1012 *
1013 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1014 * should be the same as the active CPUs, so checking only top_cpuset
1015 * is enough to detect racing CPU offlines.
1016 */
1017 if (!top_cpuset.nr_subparts_cpus &&
1018 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1019 return;
1020
1021 /*
1022 * With subpartition CPUs, however, the effective CPUs of a partition
1023 * root should be only a subset of the active CPUs. Since a CPU in any
1024 * partition root could be offlined, all must be checked.
1025 */
1026 if (top_cpuset.nr_subparts_cpus) {
1027 rcu_read_lock();
1028 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1029 if (!is_partition_root(cs)) {
1030 pos_css = css_rightmost_descendant(pos_css);
1031 continue;
1032 }
1033 if (!cpumask_subset(cs->effective_cpus,
1034 cpu_active_mask)) {
1035 rcu_read_unlock();
1036 return;
1037 }
1038 }
1039 rcu_read_unlock();
1040 }
1041
1042 /* Generate domain masks and attrs */
1043 ndoms = generate_sched_domains(&doms, &attr);
1044
1045 /* Have scheduler rebuild the domains */
1046 partition_and_rebuild_sched_domains(ndoms, doms, attr);
1047 }
1048 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)1049 static void rebuild_sched_domains_locked(void)
1050 {
1051 }
1052 #endif /* CONFIG_SMP */
1053
rebuild_sched_domains(void)1054 void rebuild_sched_domains(void)
1055 {
1056 get_online_cpus();
1057 mutex_lock(&cpuset_mutex);
1058 rebuild_sched_domains_locked();
1059 mutex_unlock(&cpuset_mutex);
1060 put_online_cpus();
1061 }
1062
update_cpus_allowed(struct cpuset * cs,struct task_struct * p,const struct cpumask * new_mask)1063 static int update_cpus_allowed(struct cpuset *cs, struct task_struct *p,
1064 const struct cpumask *new_mask)
1065 {
1066 int ret = -EINVAL;
1067
1068 trace_android_rvh_update_cpus_allowed(p, cs->cpus_requested, new_mask, &ret);
1069 if (!ret)
1070 return ret;
1071
1072 return set_cpus_allowed_ptr(p, new_mask);
1073 }
1074
1075 /**
1076 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1077 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1078 *
1079 * Iterate through each task of @cs updating its cpus_allowed to the
1080 * effective cpuset's. As this function is called with cpuset_mutex held,
1081 * cpuset membership stays stable.
1082 */
update_tasks_cpumask(struct cpuset * cs)1083 static void update_tasks_cpumask(struct cpuset *cs)
1084 {
1085 struct css_task_iter it;
1086 struct task_struct *task;
1087 bool top_cs = cs == &top_cpuset;
1088
1089 css_task_iter_start(&cs->css, 0, &it);
1090 while ((task = css_task_iter_next(&it))) {
1091 /*
1092 * Percpu kthreads in top_cpuset are ignored
1093 */
1094 if (top_cs && (task->flags & PF_KTHREAD) &&
1095 kthread_is_per_cpu(task))
1096 continue;
1097 update_cpus_allowed(cs, task, cs->effective_cpus);
1098 }
1099 css_task_iter_end(&it);
1100 }
1101
1102 /**
1103 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1104 * @new_cpus: the temp variable for the new effective_cpus mask
1105 * @cs: the cpuset the need to recompute the new effective_cpus mask
1106 * @parent: the parent cpuset
1107 *
1108 * If the parent has subpartition CPUs, include them in the list of
1109 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1110 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1111 * to mask those out.
1112 */
compute_effective_cpumask(struct cpumask * new_cpus,struct cpuset * cs,struct cpuset * parent)1113 static void compute_effective_cpumask(struct cpumask *new_cpus,
1114 struct cpuset *cs, struct cpuset *parent)
1115 {
1116 if (parent->nr_subparts_cpus) {
1117 cpumask_or(new_cpus, parent->effective_cpus,
1118 parent->subparts_cpus);
1119 cpumask_and(new_cpus, new_cpus, cs->cpus_requested);
1120 cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1121 } else {
1122 cpumask_and(new_cpus, cs->cpus_requested, parent_cs(cs)->effective_cpus);
1123 }
1124 }
1125
1126 /*
1127 * Commands for update_parent_subparts_cpumask
1128 */
1129 enum subparts_cmd {
1130 partcmd_enable, /* Enable partition root */
1131 partcmd_disable, /* Disable partition root */
1132 partcmd_update, /* Update parent's subparts_cpus */
1133 };
1134
1135 /**
1136 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1137 * @cpuset: The cpuset that requests change in partition root state
1138 * @cmd: Partition root state change command
1139 * @newmask: Optional new cpumask for partcmd_update
1140 * @tmp: Temporary addmask and delmask
1141 * Return: 0, 1 or an error code
1142 *
1143 * For partcmd_enable, the cpuset is being transformed from a non-partition
1144 * root to a partition root. The cpus_allowed mask of the given cpuset will
1145 * be put into parent's subparts_cpus and taken away from parent's
1146 * effective_cpus. The function will return 0 if all the CPUs listed in
1147 * cpus_allowed can be granted or an error code will be returned.
1148 *
1149 * For partcmd_disable, the cpuset is being transofrmed from a partition
1150 * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1151 * parent's subparts_cpus will be taken away from that cpumask and put back
1152 * into parent's effective_cpus. 0 should always be returned.
1153 *
1154 * For partcmd_update, if the optional newmask is specified, the cpu
1155 * list is to be changed from cpus_allowed to newmask. Otherwise,
1156 * cpus_allowed is assumed to remain the same. The cpuset should either
1157 * be a partition root or an invalid partition root. The partition root
1158 * state may change if newmask is NULL and none of the requested CPUs can
1159 * be granted by the parent. The function will return 1 if changes to
1160 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1161 * Error code should only be returned when newmask is non-NULL.
1162 *
1163 * The partcmd_enable and partcmd_disable commands are used by
1164 * update_prstate(). The partcmd_update command is used by
1165 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1166 * newmask set.
1167 *
1168 * The checking is more strict when enabling partition root than the
1169 * other two commands.
1170 *
1171 * Because of the implicit cpu exclusive nature of a partition root,
1172 * cpumask changes that violates the cpu exclusivity rule will not be
1173 * permitted when checked by validate_change(). The validate_change()
1174 * function will also prevent any changes to the cpu list if it is not
1175 * a superset of children's cpu lists.
1176 */
update_parent_subparts_cpumask(struct cpuset * cpuset,int cmd,struct cpumask * newmask,struct tmpmasks * tmp)1177 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1178 struct cpumask *newmask,
1179 struct tmpmasks *tmp)
1180 {
1181 struct cpuset *parent = parent_cs(cpuset);
1182 int adding; /* Moving cpus from effective_cpus to subparts_cpus */
1183 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */
1184 int new_prs;
1185 bool part_error = false; /* Partition error? */
1186
1187 lockdep_assert_held(&cpuset_mutex);
1188
1189 /*
1190 * The parent must be a partition root.
1191 * The new cpumask, if present, or the current cpus_allowed must
1192 * not be empty.
1193 */
1194 if (!is_partition_root(parent) ||
1195 (newmask && cpumask_empty(newmask)) ||
1196 (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1197 return -EINVAL;
1198
1199 /*
1200 * Enabling/disabling partition root is not allowed if there are
1201 * online children.
1202 */
1203 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1204 return -EBUSY;
1205
1206 /*
1207 * Enabling partition root is not allowed if not all the CPUs
1208 * can be granted from parent's effective_cpus or at least one
1209 * CPU will be left after that.
1210 */
1211 if ((cmd == partcmd_enable) &&
1212 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1213 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1214 return -EINVAL;
1215
1216 /*
1217 * A cpumask update cannot make parent's effective_cpus become empty.
1218 */
1219 adding = deleting = false;
1220 new_prs = cpuset->partition_root_state;
1221 if (cmd == partcmd_enable) {
1222 cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1223 adding = true;
1224 } else if (cmd == partcmd_disable) {
1225 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1226 parent->subparts_cpus);
1227 } else if (newmask) {
1228 /*
1229 * partcmd_update with newmask:
1230 *
1231 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1232 * addmask = newmask & parent->effective_cpus
1233 * & ~parent->subparts_cpus
1234 */
1235 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1236 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1237 parent->subparts_cpus);
1238
1239 cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1240 adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1241 parent->subparts_cpus);
1242 /*
1243 * Return error if the new effective_cpus could become empty.
1244 */
1245 if (adding &&
1246 cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1247 if (!deleting)
1248 return -EINVAL;
1249 /*
1250 * As some of the CPUs in subparts_cpus might have
1251 * been offlined, we need to compute the real delmask
1252 * to confirm that.
1253 */
1254 if (!cpumask_and(tmp->addmask, tmp->delmask,
1255 cpu_active_mask))
1256 return -EINVAL;
1257 cpumask_copy(tmp->addmask, parent->effective_cpus);
1258 }
1259 } else {
1260 /*
1261 * partcmd_update w/o newmask:
1262 *
1263 * addmask = cpus_allowed & parent->effective_cpus
1264 *
1265 * Note that parent's subparts_cpus may have been
1266 * pre-shrunk in case there is a change in the cpu list.
1267 * So no deletion is needed.
1268 */
1269 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1270 parent->effective_cpus);
1271 part_error = cpumask_equal(tmp->addmask,
1272 parent->effective_cpus);
1273 }
1274
1275 if (cmd == partcmd_update) {
1276 int prev_prs = cpuset->partition_root_state;
1277
1278 /*
1279 * Check for possible transition between PRS_ENABLED
1280 * and PRS_ERROR.
1281 */
1282 switch (cpuset->partition_root_state) {
1283 case PRS_ENABLED:
1284 if (part_error)
1285 new_prs = PRS_ERROR;
1286 break;
1287 case PRS_ERROR:
1288 if (!part_error)
1289 new_prs = PRS_ENABLED;
1290 break;
1291 }
1292 /*
1293 * Set part_error if previously in invalid state.
1294 */
1295 part_error = (prev_prs == PRS_ERROR);
1296 }
1297
1298 if (!part_error && (new_prs == PRS_ERROR))
1299 return 0; /* Nothing need to be done */
1300
1301 if (new_prs == PRS_ERROR) {
1302 /*
1303 * Remove all its cpus from parent's subparts_cpus.
1304 */
1305 adding = false;
1306 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1307 parent->subparts_cpus);
1308 }
1309
1310 if (!adding && !deleting && (new_prs == cpuset->partition_root_state))
1311 return 0;
1312
1313 /*
1314 * Change the parent's subparts_cpus.
1315 * Newly added CPUs will be removed from effective_cpus and
1316 * newly deleted ones will be added back to effective_cpus.
1317 */
1318 spin_lock_irq(&callback_lock);
1319 if (adding) {
1320 cpumask_or(parent->subparts_cpus,
1321 parent->subparts_cpus, tmp->addmask);
1322 cpumask_andnot(parent->effective_cpus,
1323 parent->effective_cpus, tmp->addmask);
1324 }
1325 if (deleting) {
1326 cpumask_andnot(parent->subparts_cpus,
1327 parent->subparts_cpus, tmp->delmask);
1328 /*
1329 * Some of the CPUs in subparts_cpus might have been offlined.
1330 */
1331 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1332 cpumask_or(parent->effective_cpus,
1333 parent->effective_cpus, tmp->delmask);
1334 }
1335
1336 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1337
1338 if (cpuset->partition_root_state != new_prs)
1339 cpuset->partition_root_state = new_prs;
1340 spin_unlock_irq(&callback_lock);
1341
1342 return cmd == partcmd_update;
1343 }
1344
1345 /*
1346 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1347 * @cs: the cpuset to consider
1348 * @tmp: temp variables for calculating effective_cpus & partition setup
1349 *
1350 * When congifured cpumask is changed, the effective cpumasks of this cpuset
1351 * and all its descendants need to be updated.
1352 *
1353 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1354 *
1355 * Called with cpuset_mutex held
1356 */
update_cpumasks_hier(struct cpuset * cs,struct tmpmasks * tmp)1357 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1358 {
1359 struct cpuset *cp;
1360 struct cgroup_subsys_state *pos_css;
1361 bool need_rebuild_sched_domains = false;
1362 int new_prs;
1363
1364 rcu_read_lock();
1365 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1366 struct cpuset *parent = parent_cs(cp);
1367
1368 compute_effective_cpumask(tmp->new_cpus, cp, parent);
1369
1370 /*
1371 * If it becomes empty, inherit the effective mask of the
1372 * parent, which is guaranteed to have some CPUs.
1373 */
1374 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1375 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1376 if (!cp->use_parent_ecpus) {
1377 cp->use_parent_ecpus = true;
1378 parent->child_ecpus_count++;
1379 }
1380 } else if (cp->use_parent_ecpus) {
1381 cp->use_parent_ecpus = false;
1382 WARN_ON_ONCE(!parent->child_ecpus_count);
1383 parent->child_ecpus_count--;
1384 }
1385
1386 /*
1387 * Skip the whole subtree if the cpumask remains the same
1388 * and has no partition root state.
1389 */
1390 if (!cp->partition_root_state &&
1391 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1392 pos_css = css_rightmost_descendant(pos_css);
1393 continue;
1394 }
1395
1396 /*
1397 * update_parent_subparts_cpumask() should have been called
1398 * for cs already in update_cpumask(). We should also call
1399 * update_tasks_cpumask() again for tasks in the parent
1400 * cpuset if the parent's subparts_cpus changes.
1401 */
1402 new_prs = cp->partition_root_state;
1403 if ((cp != cs) && new_prs) {
1404 switch (parent->partition_root_state) {
1405 case PRS_DISABLED:
1406 /*
1407 * If parent is not a partition root or an
1408 * invalid partition root, clear its state
1409 * and its CS_CPU_EXCLUSIVE flag.
1410 */
1411 WARN_ON_ONCE(cp->partition_root_state
1412 != PRS_ERROR);
1413 new_prs = PRS_DISABLED;
1414
1415 /*
1416 * clear_bit() is an atomic operation and
1417 * readers aren't interested in the state
1418 * of CS_CPU_EXCLUSIVE anyway. So we can
1419 * just update the flag without holding
1420 * the callback_lock.
1421 */
1422 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1423 break;
1424
1425 case PRS_ENABLED:
1426 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1427 update_tasks_cpumask(parent);
1428 break;
1429
1430 case PRS_ERROR:
1431 /*
1432 * When parent is invalid, it has to be too.
1433 */
1434 new_prs = PRS_ERROR;
1435 break;
1436 }
1437 }
1438
1439 if (!css_tryget_online(&cp->css))
1440 continue;
1441 rcu_read_unlock();
1442
1443 spin_lock_irq(&callback_lock);
1444
1445 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1446 if (cp->nr_subparts_cpus && (new_prs != PRS_ENABLED)) {
1447 cp->nr_subparts_cpus = 0;
1448 cpumask_clear(cp->subparts_cpus);
1449 } else if (cp->nr_subparts_cpus) {
1450 /*
1451 * Make sure that effective_cpus & subparts_cpus
1452 * are mutually exclusive.
1453 *
1454 * In the unlikely event that effective_cpus
1455 * becomes empty. we clear cp->nr_subparts_cpus and
1456 * let its child partition roots to compete for
1457 * CPUs again.
1458 */
1459 cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1460 cp->subparts_cpus);
1461 if (cpumask_empty(cp->effective_cpus)) {
1462 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1463 cpumask_clear(cp->subparts_cpus);
1464 cp->nr_subparts_cpus = 0;
1465 } else if (!cpumask_subset(cp->subparts_cpus,
1466 tmp->new_cpus)) {
1467 cpumask_andnot(cp->subparts_cpus,
1468 cp->subparts_cpus, tmp->new_cpus);
1469 cp->nr_subparts_cpus
1470 = cpumask_weight(cp->subparts_cpus);
1471 }
1472 }
1473
1474 if (new_prs != cp->partition_root_state)
1475 cp->partition_root_state = new_prs;
1476
1477 spin_unlock_irq(&callback_lock);
1478
1479 WARN_ON(!is_in_v2_mode() &&
1480 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1481
1482 update_tasks_cpumask(cp);
1483
1484 /*
1485 * On legacy hierarchy, if the effective cpumask of any non-
1486 * empty cpuset is changed, we need to rebuild sched domains.
1487 * On default hierarchy, the cpuset needs to be a partition
1488 * root as well.
1489 */
1490 if (!cpumask_empty(cp->cpus_allowed) &&
1491 is_sched_load_balance(cp) &&
1492 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1493 is_partition_root(cp)))
1494 need_rebuild_sched_domains = true;
1495
1496 rcu_read_lock();
1497 css_put(&cp->css);
1498 }
1499 rcu_read_unlock();
1500
1501 if (need_rebuild_sched_domains)
1502 rebuild_sched_domains_locked();
1503 }
1504
1505 /**
1506 * update_sibling_cpumasks - Update siblings cpumasks
1507 * @parent: Parent cpuset
1508 * @cs: Current cpuset
1509 * @tmp: Temp variables
1510 */
update_sibling_cpumasks(struct cpuset * parent,struct cpuset * cs,struct tmpmasks * tmp)1511 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1512 struct tmpmasks *tmp)
1513 {
1514 struct cpuset *sibling;
1515 struct cgroup_subsys_state *pos_css;
1516
1517 lockdep_assert_held(&cpuset_mutex);
1518
1519 /*
1520 * Check all its siblings and call update_cpumasks_hier()
1521 * if their use_parent_ecpus flag is set in order for them
1522 * to use the right effective_cpus value.
1523 *
1524 * The update_cpumasks_hier() function may sleep. So we have to
1525 * release the RCU read lock before calling it.
1526 */
1527 rcu_read_lock();
1528 cpuset_for_each_child(sibling, pos_css, parent) {
1529 if (sibling == cs)
1530 continue;
1531 if (!sibling->use_parent_ecpus)
1532 continue;
1533 if (!css_tryget_online(&sibling->css))
1534 continue;
1535
1536 rcu_read_unlock();
1537 update_cpumasks_hier(sibling, tmp);
1538 rcu_read_lock();
1539 css_put(&sibling->css);
1540 }
1541 rcu_read_unlock();
1542 }
1543
1544 /**
1545 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1546 * @cs: the cpuset to consider
1547 * @trialcs: trial cpuset
1548 * @buf: buffer of cpu numbers written to this cpuset
1549 */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1550 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1551 const char *buf)
1552 {
1553 int retval;
1554 struct tmpmasks tmp;
1555
1556 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1557 if (cs == &top_cpuset)
1558 return -EACCES;
1559
1560 /*
1561 * An empty cpus_requested is ok only if the cpuset has no tasks.
1562 * Since cpulist_parse() fails on an empty mask, we special case
1563 * that parsing. The validate_change() call ensures that cpusets
1564 * with tasks have cpus.
1565 */
1566 if (!*buf) {
1567 cpumask_clear(trialcs->cpus_requested);
1568 } else {
1569 retval = cpulist_parse(buf, trialcs->cpus_requested);
1570 if (retval < 0)
1571 return retval;
1572 }
1573
1574 if (!cpumask_subset(trialcs->cpus_requested, cpu_present_mask))
1575 return -EINVAL;
1576
1577 cpumask_and(trialcs->cpus_allowed, trialcs->cpus_requested, cpu_active_mask);
1578
1579 /* Nothing to do if the cpus didn't change */
1580 if (cpumask_equal(cs->cpus_requested, trialcs->cpus_requested))
1581 return 0;
1582
1583 retval = validate_change(cs, trialcs);
1584 if (retval < 0)
1585 return retval;
1586
1587 #ifdef CONFIG_CPUMASK_OFFSTACK
1588 /*
1589 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1590 * to allocated cpumasks.
1591 */
1592 tmp.addmask = trialcs->subparts_cpus;
1593 tmp.delmask = trialcs->effective_cpus;
1594 tmp.new_cpus = trialcs->cpus_allowed;
1595 #endif
1596
1597 if (cs->partition_root_state) {
1598 /* Cpumask of a partition root cannot be empty */
1599 if (cpumask_empty(trialcs->cpus_allowed))
1600 return -EINVAL;
1601 if (update_parent_subparts_cpumask(cs, partcmd_update,
1602 trialcs->cpus_allowed, &tmp) < 0)
1603 return -EINVAL;
1604 }
1605
1606 spin_lock_irq(&callback_lock);
1607 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1608 cpumask_copy(cs->cpus_requested, trialcs->cpus_requested);
1609
1610 /*
1611 * Make sure that subparts_cpus is a subset of cpus_allowed.
1612 */
1613 if (cs->nr_subparts_cpus) {
1614 cpumask_and(cs->subparts_cpus, cs->subparts_cpus, cs->cpus_allowed);
1615 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1616 }
1617 spin_unlock_irq(&callback_lock);
1618
1619 update_cpumasks_hier(cs, &tmp);
1620
1621 if (cs->partition_root_state) {
1622 struct cpuset *parent = parent_cs(cs);
1623
1624 /*
1625 * For partition root, update the cpumasks of sibling
1626 * cpusets if they use parent's effective_cpus.
1627 */
1628 if (parent->child_ecpus_count)
1629 update_sibling_cpumasks(parent, cs, &tmp);
1630 }
1631 return 0;
1632 }
1633
1634 /*
1635 * Migrate memory region from one set of nodes to another. This is
1636 * performed asynchronously as it can be called from process migration path
1637 * holding locks involved in process management. All mm migrations are
1638 * performed in the queued order and can be waited for by flushing
1639 * cpuset_migrate_mm_wq.
1640 */
1641
1642 struct cpuset_migrate_mm_work {
1643 struct work_struct work;
1644 struct mm_struct *mm;
1645 nodemask_t from;
1646 nodemask_t to;
1647 };
1648
cpuset_migrate_mm_workfn(struct work_struct * work)1649 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1650 {
1651 struct cpuset_migrate_mm_work *mwork =
1652 container_of(work, struct cpuset_migrate_mm_work, work);
1653
1654 /* on a wq worker, no need to worry about %current's mems_allowed */
1655 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1656 mmput(mwork->mm);
1657 kfree(mwork);
1658 }
1659
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)1660 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1661 const nodemask_t *to)
1662 {
1663 struct cpuset_migrate_mm_work *mwork;
1664
1665 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1666 if (mwork) {
1667 mwork->mm = mm;
1668 mwork->from = *from;
1669 mwork->to = *to;
1670 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1671 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1672 } else {
1673 mmput(mm);
1674 }
1675 }
1676
cpuset_post_attach(void)1677 static void cpuset_post_attach(void)
1678 {
1679 flush_workqueue(cpuset_migrate_mm_wq);
1680 }
1681
1682 /*
1683 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1684 * @tsk: the task to change
1685 * @newmems: new nodes that the task will be set
1686 *
1687 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1688 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1689 * parallel, it might temporarily see an empty intersection, which results in
1690 * a seqlock check and retry before OOM or allocation failure.
1691 */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)1692 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1693 nodemask_t *newmems)
1694 {
1695 task_lock(tsk);
1696
1697 local_irq_disable();
1698 write_seqcount_begin(&tsk->mems_allowed_seq);
1699
1700 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1701 mpol_rebind_task(tsk, newmems);
1702 tsk->mems_allowed = *newmems;
1703
1704 write_seqcount_end(&tsk->mems_allowed_seq);
1705 local_irq_enable();
1706
1707 task_unlock(tsk);
1708 }
1709
1710 static void *cpuset_being_rebound;
1711
1712 /**
1713 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1714 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1715 *
1716 * Iterate through each task of @cs updating its mems_allowed to the
1717 * effective cpuset's. As this function is called with cpuset_mutex held,
1718 * cpuset membership stays stable.
1719 */
update_tasks_nodemask(struct cpuset * cs)1720 static void update_tasks_nodemask(struct cpuset *cs)
1721 {
1722 static nodemask_t newmems; /* protected by cpuset_mutex */
1723 struct css_task_iter it;
1724 struct task_struct *task;
1725
1726 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1727
1728 guarantee_online_mems(cs, &newmems);
1729
1730 /*
1731 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1732 * take while holding tasklist_lock. Forks can happen - the
1733 * mpol_dup() cpuset_being_rebound check will catch such forks,
1734 * and rebind their vma mempolicies too. Because we still hold
1735 * the global cpuset_mutex, we know that no other rebind effort
1736 * will be contending for the global variable cpuset_being_rebound.
1737 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1738 * is idempotent. Also migrate pages in each mm to new nodes.
1739 */
1740 css_task_iter_start(&cs->css, 0, &it);
1741 while ((task = css_task_iter_next(&it))) {
1742 struct mm_struct *mm;
1743 bool migrate;
1744
1745 cpuset_change_task_nodemask(task, &newmems);
1746
1747 mm = get_task_mm(task);
1748 if (!mm)
1749 continue;
1750
1751 migrate = is_memory_migrate(cs);
1752
1753 mpol_rebind_mm(mm, &cs->mems_allowed);
1754 if (migrate)
1755 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1756 else
1757 mmput(mm);
1758 }
1759 css_task_iter_end(&it);
1760
1761 /*
1762 * All the tasks' nodemasks have been updated, update
1763 * cs->old_mems_allowed.
1764 */
1765 cs->old_mems_allowed = newmems;
1766
1767 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1768 cpuset_being_rebound = NULL;
1769 }
1770
1771 /*
1772 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1773 * @cs: the cpuset to consider
1774 * @new_mems: a temp variable for calculating new effective_mems
1775 *
1776 * When configured nodemask is changed, the effective nodemasks of this cpuset
1777 * and all its descendants need to be updated.
1778 *
1779 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1780 *
1781 * Called with cpuset_mutex held
1782 */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)1783 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1784 {
1785 struct cpuset *cp;
1786 struct cgroup_subsys_state *pos_css;
1787
1788 rcu_read_lock();
1789 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1790 struct cpuset *parent = parent_cs(cp);
1791
1792 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1793
1794 /*
1795 * If it becomes empty, inherit the effective mask of the
1796 * parent, which is guaranteed to have some MEMs.
1797 */
1798 if (is_in_v2_mode() && nodes_empty(*new_mems))
1799 *new_mems = parent->effective_mems;
1800
1801 /* Skip the whole subtree if the nodemask remains the same. */
1802 if (nodes_equal(*new_mems, cp->effective_mems)) {
1803 pos_css = css_rightmost_descendant(pos_css);
1804 continue;
1805 }
1806
1807 if (!css_tryget_online(&cp->css))
1808 continue;
1809 rcu_read_unlock();
1810
1811 spin_lock_irq(&callback_lock);
1812 cp->effective_mems = *new_mems;
1813 spin_unlock_irq(&callback_lock);
1814
1815 WARN_ON(!is_in_v2_mode() &&
1816 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1817
1818 update_tasks_nodemask(cp);
1819
1820 rcu_read_lock();
1821 css_put(&cp->css);
1822 }
1823 rcu_read_unlock();
1824 }
1825
1826 /*
1827 * Handle user request to change the 'mems' memory placement
1828 * of a cpuset. Needs to validate the request, update the
1829 * cpusets mems_allowed, and for each task in the cpuset,
1830 * update mems_allowed and rebind task's mempolicy and any vma
1831 * mempolicies and if the cpuset is marked 'memory_migrate',
1832 * migrate the tasks pages to the new memory.
1833 *
1834 * Call with cpuset_mutex held. May take callback_lock during call.
1835 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1836 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
1837 * their mempolicies to the cpusets new mems_allowed.
1838 */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1839 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1840 const char *buf)
1841 {
1842 int retval;
1843
1844 /*
1845 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1846 * it's read-only
1847 */
1848 if (cs == &top_cpuset) {
1849 retval = -EACCES;
1850 goto done;
1851 }
1852
1853 /*
1854 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1855 * Since nodelist_parse() fails on an empty mask, we special case
1856 * that parsing. The validate_change() call ensures that cpusets
1857 * with tasks have memory.
1858 */
1859 if (!*buf) {
1860 nodes_clear(trialcs->mems_allowed);
1861 } else {
1862 retval = nodelist_parse(buf, trialcs->mems_allowed);
1863 if (retval < 0)
1864 goto done;
1865
1866 if (!nodes_subset(trialcs->mems_allowed,
1867 top_cpuset.mems_allowed)) {
1868 retval = -EINVAL;
1869 goto done;
1870 }
1871 }
1872
1873 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1874 retval = 0; /* Too easy - nothing to do */
1875 goto done;
1876 }
1877 retval = validate_change(cs, trialcs);
1878 if (retval < 0)
1879 goto done;
1880
1881 spin_lock_irq(&callback_lock);
1882 cs->mems_allowed = trialcs->mems_allowed;
1883 spin_unlock_irq(&callback_lock);
1884
1885 /* use trialcs->mems_allowed as a temp variable */
1886 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1887 done:
1888 return retval;
1889 }
1890
current_cpuset_is_being_rebound(void)1891 bool current_cpuset_is_being_rebound(void)
1892 {
1893 bool ret;
1894
1895 rcu_read_lock();
1896 ret = task_cs(current) == cpuset_being_rebound;
1897 rcu_read_unlock();
1898
1899 return ret;
1900 }
1901
update_relax_domain_level(struct cpuset * cs,s64 val)1902 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1903 {
1904 #ifdef CONFIG_SMP
1905 if (val < -1 || val >= sched_domain_level_max)
1906 return -EINVAL;
1907 #endif
1908
1909 if (val != cs->relax_domain_level) {
1910 cs->relax_domain_level = val;
1911 if (!cpumask_empty(cs->cpus_allowed) &&
1912 is_sched_load_balance(cs))
1913 rebuild_sched_domains_locked();
1914 }
1915
1916 return 0;
1917 }
1918
1919 /**
1920 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1921 * @cs: the cpuset in which each task's spread flags needs to be changed
1922 *
1923 * Iterate through each task of @cs updating its spread flags. As this
1924 * function is called with cpuset_mutex held, cpuset membership stays
1925 * stable.
1926 */
update_tasks_flags(struct cpuset * cs)1927 static void update_tasks_flags(struct cpuset *cs)
1928 {
1929 struct css_task_iter it;
1930 struct task_struct *task;
1931
1932 css_task_iter_start(&cs->css, 0, &it);
1933 while ((task = css_task_iter_next(&it)))
1934 cpuset_update_task_spread_flag(cs, task);
1935 css_task_iter_end(&it);
1936 }
1937
1938 /*
1939 * update_flag - read a 0 or a 1 in a file and update associated flag
1940 * bit: the bit to update (see cpuset_flagbits_t)
1941 * cs: the cpuset to update
1942 * turning_on: whether the flag is being set or cleared
1943 *
1944 * Call with cpuset_mutex held.
1945 */
1946
update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)1947 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1948 int turning_on)
1949 {
1950 struct cpuset *trialcs;
1951 int balance_flag_changed;
1952 int spread_flag_changed;
1953 int err;
1954
1955 trialcs = alloc_trial_cpuset(cs);
1956 if (!trialcs)
1957 return -ENOMEM;
1958
1959 if (turning_on)
1960 set_bit(bit, &trialcs->flags);
1961 else
1962 clear_bit(bit, &trialcs->flags);
1963
1964 err = validate_change(cs, trialcs);
1965 if (err < 0)
1966 goto out;
1967
1968 balance_flag_changed = (is_sched_load_balance(cs) !=
1969 is_sched_load_balance(trialcs));
1970
1971 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1972 || (is_spread_page(cs) != is_spread_page(trialcs)));
1973
1974 spin_lock_irq(&callback_lock);
1975 cs->flags = trialcs->flags;
1976 spin_unlock_irq(&callback_lock);
1977
1978 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1979 rebuild_sched_domains_locked();
1980
1981 if (spread_flag_changed)
1982 update_tasks_flags(cs);
1983 out:
1984 free_cpuset(trialcs);
1985 return err;
1986 }
1987
1988 /*
1989 * update_prstate - update partititon_root_state
1990 * cs: the cpuset to update
1991 * new_prs: new partition root state
1992 *
1993 * Call with cpuset_mutex held.
1994 */
update_prstate(struct cpuset * cs,int new_prs)1995 static int update_prstate(struct cpuset *cs, int new_prs)
1996 {
1997 int err, old_prs = cs->partition_root_state;
1998 struct cpuset *parent = parent_cs(cs);
1999 struct tmpmasks tmpmask;
2000
2001 if (old_prs == new_prs)
2002 return 0;
2003
2004 /*
2005 * Cannot force a partial or invalid partition root to a full
2006 * partition root.
2007 */
2008 if (new_prs && (old_prs == PRS_ERROR))
2009 return -EINVAL;
2010
2011 if (alloc_cpumasks(NULL, &tmpmask))
2012 return -ENOMEM;
2013
2014 err = -EINVAL;
2015 if (!old_prs) {
2016 /*
2017 * Turning on partition root requires setting the
2018 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
2019 * cannot be NULL.
2020 */
2021 if (cpumask_empty(cs->cpus_allowed))
2022 goto out;
2023
2024 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
2025 if (err)
2026 goto out;
2027
2028 err = update_parent_subparts_cpumask(cs, partcmd_enable,
2029 NULL, &tmpmask);
2030 if (err) {
2031 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2032 goto out;
2033 }
2034 } else {
2035 /*
2036 * Turning off partition root will clear the
2037 * CS_CPU_EXCLUSIVE bit.
2038 */
2039 if (old_prs == PRS_ERROR) {
2040 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2041 err = 0;
2042 goto out;
2043 }
2044
2045 err = update_parent_subparts_cpumask(cs, partcmd_disable,
2046 NULL, &tmpmask);
2047 if (err)
2048 goto out;
2049
2050 /* Turning off CS_CPU_EXCLUSIVE will not return error */
2051 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2052 }
2053
2054 update_tasks_cpumask(parent);
2055
2056 if (parent->child_ecpus_count)
2057 update_sibling_cpumasks(parent, cs, &tmpmask);
2058
2059 rebuild_sched_domains_locked();
2060 out:
2061 if (!err) {
2062 spin_lock_irq(&callback_lock);
2063 cs->partition_root_state = new_prs;
2064 spin_unlock_irq(&callback_lock);
2065 }
2066
2067 free_cpumasks(NULL, &tmpmask);
2068 return err;
2069 }
2070
2071 /*
2072 * Frequency meter - How fast is some event occurring?
2073 *
2074 * These routines manage a digitally filtered, constant time based,
2075 * event frequency meter. There are four routines:
2076 * fmeter_init() - initialize a frequency meter.
2077 * fmeter_markevent() - called each time the event happens.
2078 * fmeter_getrate() - returns the recent rate of such events.
2079 * fmeter_update() - internal routine used to update fmeter.
2080 *
2081 * A common data structure is passed to each of these routines,
2082 * which is used to keep track of the state required to manage the
2083 * frequency meter and its digital filter.
2084 *
2085 * The filter works on the number of events marked per unit time.
2086 * The filter is single-pole low-pass recursive (IIR). The time unit
2087 * is 1 second. Arithmetic is done using 32-bit integers scaled to
2088 * simulate 3 decimal digits of precision (multiplied by 1000).
2089 *
2090 * With an FM_COEF of 933, and a time base of 1 second, the filter
2091 * has a half-life of 10 seconds, meaning that if the events quit
2092 * happening, then the rate returned from the fmeter_getrate()
2093 * will be cut in half each 10 seconds, until it converges to zero.
2094 *
2095 * It is not worth doing a real infinitely recursive filter. If more
2096 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2097 * just compute FM_MAXTICKS ticks worth, by which point the level
2098 * will be stable.
2099 *
2100 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2101 * arithmetic overflow in the fmeter_update() routine.
2102 *
2103 * Given the simple 32 bit integer arithmetic used, this meter works
2104 * best for reporting rates between one per millisecond (msec) and
2105 * one per 32 (approx) seconds. At constant rates faster than one
2106 * per msec it maxes out at values just under 1,000,000. At constant
2107 * rates between one per msec, and one per second it will stabilize
2108 * to a value N*1000, where N is the rate of events per second.
2109 * At constant rates between one per second and one per 32 seconds,
2110 * it will be choppy, moving up on the seconds that have an event,
2111 * and then decaying until the next event. At rates slower than
2112 * about one in 32 seconds, it decays all the way back to zero between
2113 * each event.
2114 */
2115
2116 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
2117 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
2118 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
2119 #define FM_SCALE 1000 /* faux fixed point scale */
2120
2121 /* Initialize a frequency meter */
fmeter_init(struct fmeter * fmp)2122 static void fmeter_init(struct fmeter *fmp)
2123 {
2124 fmp->cnt = 0;
2125 fmp->val = 0;
2126 fmp->time = 0;
2127 spin_lock_init(&fmp->lock);
2128 }
2129
2130 /* Internal meter update - process cnt events and update value */
fmeter_update(struct fmeter * fmp)2131 static void fmeter_update(struct fmeter *fmp)
2132 {
2133 time64_t now;
2134 u32 ticks;
2135
2136 now = ktime_get_seconds();
2137 ticks = now - fmp->time;
2138
2139 if (ticks == 0)
2140 return;
2141
2142 ticks = min(FM_MAXTICKS, ticks);
2143 while (ticks-- > 0)
2144 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2145 fmp->time = now;
2146
2147 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2148 fmp->cnt = 0;
2149 }
2150
2151 /* Process any previous ticks, then bump cnt by one (times scale). */
fmeter_markevent(struct fmeter * fmp)2152 static void fmeter_markevent(struct fmeter *fmp)
2153 {
2154 spin_lock(&fmp->lock);
2155 fmeter_update(fmp);
2156 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2157 spin_unlock(&fmp->lock);
2158 }
2159
2160 /* Process any previous ticks, then return current value. */
fmeter_getrate(struct fmeter * fmp)2161 static int fmeter_getrate(struct fmeter *fmp)
2162 {
2163 int val;
2164
2165 spin_lock(&fmp->lock);
2166 fmeter_update(fmp);
2167 val = fmp->val;
2168 spin_unlock(&fmp->lock);
2169 return val;
2170 }
2171
2172 static struct cpuset *cpuset_attach_old_cs;
2173
2174 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
cpuset_can_attach(struct cgroup_taskset * tset)2175 static int cpuset_can_attach(struct cgroup_taskset *tset)
2176 {
2177 struct cgroup_subsys_state *css;
2178 struct cpuset *cs;
2179 struct task_struct *task;
2180 int ret;
2181
2182 /* used later by cpuset_attach() */
2183 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2184 cs = css_cs(css);
2185
2186 mutex_lock(&cpuset_mutex);
2187
2188 /* allow moving tasks into an empty cpuset if on default hierarchy */
2189 ret = -ENOSPC;
2190 if (!is_in_v2_mode() &&
2191 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2192 goto out_unlock;
2193
2194 cgroup_taskset_for_each(task, css, tset) {
2195 ret = task_can_attach(task, cs->effective_cpus);
2196 if (ret)
2197 goto out_unlock;
2198 ret = security_task_setscheduler(task);
2199 if (ret)
2200 goto out_unlock;
2201 }
2202
2203 /*
2204 * Mark attach is in progress. This makes validate_change() fail
2205 * changes which zero cpus/mems_allowed.
2206 */
2207 cs->attach_in_progress++;
2208 ret = 0;
2209 out_unlock:
2210 mutex_unlock(&cpuset_mutex);
2211 return ret;
2212 }
2213
cpuset_cancel_attach(struct cgroup_taskset * tset)2214 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2215 {
2216 struct cgroup_subsys_state *css;
2217
2218 cgroup_taskset_first(tset, &css);
2219
2220 mutex_lock(&cpuset_mutex);
2221 css_cs(css)->attach_in_progress--;
2222 mutex_unlock(&cpuset_mutex);
2223 }
2224
2225 /*
2226 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
2227 * but we can't allocate it dynamically there. Define it global and
2228 * allocate from cpuset_init().
2229 */
2230 static cpumask_var_t cpus_attach;
2231
cpuset_attach(struct cgroup_taskset * tset)2232 static void cpuset_attach(struct cgroup_taskset *tset)
2233 {
2234 /* static buf protected by cpuset_mutex */
2235 static nodemask_t cpuset_attach_nodemask_to;
2236 struct task_struct *task;
2237 struct task_struct *leader;
2238 struct cgroup_subsys_state *css;
2239 struct cpuset *cs;
2240 struct cpuset *oldcs = cpuset_attach_old_cs;
2241
2242 cgroup_taskset_first(tset, &css);
2243 cs = css_cs(css);
2244
2245 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */
2246 mutex_lock(&cpuset_mutex);
2247
2248 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2249
2250 cgroup_taskset_for_each(task, css, tset) {
2251 if (cs != &top_cpuset)
2252 guarantee_online_cpus(task, cpus_attach);
2253 else
2254 cpumask_copy(cpus_attach, task_cpu_possible_mask(task));
2255 /*
2256 * can_attach beforehand should guarantee that this doesn't
2257 * fail. TODO: have a better way to handle failure here
2258 */
2259 WARN_ON_ONCE(update_cpus_allowed(cs, task, cpus_attach));
2260
2261 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2262 cpuset_update_task_spread_flag(cs, task);
2263 }
2264
2265 /*
2266 * Change mm for all threadgroup leaders. This is expensive and may
2267 * sleep and should be moved outside migration path proper.
2268 */
2269 cpuset_attach_nodemask_to = cs->effective_mems;
2270 cgroup_taskset_for_each_leader(leader, css, tset) {
2271 struct mm_struct *mm = get_task_mm(leader);
2272
2273 if (mm) {
2274 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2275
2276 /*
2277 * old_mems_allowed is the same with mems_allowed
2278 * here, except if this task is being moved
2279 * automatically due to hotplug. In that case
2280 * @mems_allowed has been updated and is empty, so
2281 * @old_mems_allowed is the right nodesets that we
2282 * migrate mm from.
2283 */
2284 if (is_memory_migrate(cs))
2285 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2286 &cpuset_attach_nodemask_to);
2287 else
2288 mmput(mm);
2289 }
2290 }
2291
2292 cs->old_mems_allowed = cpuset_attach_nodemask_to;
2293
2294 cs->attach_in_progress--;
2295 if (!cs->attach_in_progress)
2296 wake_up(&cpuset_attach_wq);
2297
2298 mutex_unlock(&cpuset_mutex);
2299 }
2300
2301 /* The various types of files and directories in a cpuset file system */
2302
2303 typedef enum {
2304 FILE_MEMORY_MIGRATE,
2305 FILE_CPULIST,
2306 FILE_MEMLIST,
2307 FILE_EFFECTIVE_CPULIST,
2308 FILE_EFFECTIVE_MEMLIST,
2309 FILE_SUBPARTS_CPULIST,
2310 FILE_CPU_EXCLUSIVE,
2311 FILE_MEM_EXCLUSIVE,
2312 FILE_MEM_HARDWALL,
2313 FILE_SCHED_LOAD_BALANCE,
2314 FILE_PARTITION_ROOT,
2315 FILE_SCHED_RELAX_DOMAIN_LEVEL,
2316 FILE_MEMORY_PRESSURE_ENABLED,
2317 FILE_MEMORY_PRESSURE,
2318 FILE_SPREAD_PAGE,
2319 FILE_SPREAD_SLAB,
2320 } cpuset_filetype_t;
2321
cpuset_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2322 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2323 u64 val)
2324 {
2325 struct cpuset *cs = css_cs(css);
2326 cpuset_filetype_t type = cft->private;
2327 int retval = 0;
2328
2329 get_online_cpus();
2330 mutex_lock(&cpuset_mutex);
2331 if (!is_cpuset_online(cs)) {
2332 retval = -ENODEV;
2333 goto out_unlock;
2334 }
2335
2336 switch (type) {
2337 case FILE_CPU_EXCLUSIVE:
2338 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2339 break;
2340 case FILE_MEM_EXCLUSIVE:
2341 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2342 break;
2343 case FILE_MEM_HARDWALL:
2344 retval = update_flag(CS_MEM_HARDWALL, cs, val);
2345 break;
2346 case FILE_SCHED_LOAD_BALANCE:
2347 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2348 break;
2349 case FILE_MEMORY_MIGRATE:
2350 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2351 break;
2352 case FILE_MEMORY_PRESSURE_ENABLED:
2353 cpuset_memory_pressure_enabled = !!val;
2354 break;
2355 case FILE_SPREAD_PAGE:
2356 retval = update_flag(CS_SPREAD_PAGE, cs, val);
2357 break;
2358 case FILE_SPREAD_SLAB:
2359 retval = update_flag(CS_SPREAD_SLAB, cs, val);
2360 break;
2361 default:
2362 retval = -EINVAL;
2363 break;
2364 }
2365 out_unlock:
2366 mutex_unlock(&cpuset_mutex);
2367 put_online_cpus();
2368 return retval;
2369 }
2370
cpuset_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)2371 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2372 s64 val)
2373 {
2374 struct cpuset *cs = css_cs(css);
2375 cpuset_filetype_t type = cft->private;
2376 int retval = -ENODEV;
2377
2378 get_online_cpus();
2379 mutex_lock(&cpuset_mutex);
2380 if (!is_cpuset_online(cs))
2381 goto out_unlock;
2382
2383 switch (type) {
2384 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2385 retval = update_relax_domain_level(cs, val);
2386 break;
2387 default:
2388 retval = -EINVAL;
2389 break;
2390 }
2391 out_unlock:
2392 mutex_unlock(&cpuset_mutex);
2393 put_online_cpus();
2394 return retval;
2395 }
2396
2397 /*
2398 * Common handling for a write to a "cpus" or "mems" file.
2399 */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2400 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2401 char *buf, size_t nbytes, loff_t off)
2402 {
2403 struct cpuset *cs = css_cs(of_css(of));
2404 struct cpuset *trialcs;
2405 int retval = -ENODEV;
2406
2407 buf = strstrip(buf);
2408
2409 /*
2410 * CPU or memory hotunplug may leave @cs w/o any execution
2411 * resources, in which case the hotplug code asynchronously updates
2412 * configuration and transfers all tasks to the nearest ancestor
2413 * which can execute.
2414 *
2415 * As writes to "cpus" or "mems" may restore @cs's execution
2416 * resources, wait for the previously scheduled operations before
2417 * proceeding, so that we don't end up keep removing tasks added
2418 * after execution capability is restored.
2419 *
2420 * cpuset_hotplug_work calls back into cgroup core via
2421 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2422 * operation like this one can lead to a deadlock through kernfs
2423 * active_ref protection. Let's break the protection. Losing the
2424 * protection is okay as we check whether @cs is online after
2425 * grabbing cpuset_mutex anyway. This only happens on the legacy
2426 * hierarchies.
2427 */
2428 css_get(&cs->css);
2429 kernfs_break_active_protection(of->kn);
2430 flush_work(&cpuset_hotplug_work);
2431
2432 get_online_cpus();
2433 mutex_lock(&cpuset_mutex);
2434 if (!is_cpuset_online(cs))
2435 goto out_unlock;
2436
2437 trialcs = alloc_trial_cpuset(cs);
2438 if (!trialcs) {
2439 retval = -ENOMEM;
2440 goto out_unlock;
2441 }
2442
2443 switch (of_cft(of)->private) {
2444 case FILE_CPULIST:
2445 retval = update_cpumask(cs, trialcs, buf);
2446 break;
2447 case FILE_MEMLIST:
2448 retval = update_nodemask(cs, trialcs, buf);
2449 break;
2450 default:
2451 retval = -EINVAL;
2452 break;
2453 }
2454
2455 free_cpuset(trialcs);
2456 out_unlock:
2457 mutex_unlock(&cpuset_mutex);
2458 put_online_cpus();
2459 kernfs_unbreak_active_protection(of->kn);
2460 css_put(&cs->css);
2461 flush_workqueue(cpuset_migrate_mm_wq);
2462 return retval ?: nbytes;
2463 }
2464
2465 /*
2466 * These ascii lists should be read in a single call, by using a user
2467 * buffer large enough to hold the entire map. If read in smaller
2468 * chunks, there is no guarantee of atomicity. Since the display format
2469 * used, list of ranges of sequential numbers, is variable length,
2470 * and since these maps can change value dynamically, one could read
2471 * gibberish by doing partial reads while a list was changing.
2472 */
cpuset_common_seq_show(struct seq_file * sf,void * v)2473 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2474 {
2475 struct cpuset *cs = css_cs(seq_css(sf));
2476 cpuset_filetype_t type = seq_cft(sf)->private;
2477 int ret = 0;
2478
2479 spin_lock_irq(&callback_lock);
2480
2481 switch (type) {
2482 case FILE_CPULIST:
2483 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_requested));
2484 break;
2485 case FILE_MEMLIST:
2486 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2487 break;
2488 case FILE_EFFECTIVE_CPULIST:
2489 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2490 break;
2491 case FILE_EFFECTIVE_MEMLIST:
2492 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2493 break;
2494 case FILE_SUBPARTS_CPULIST:
2495 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2496 break;
2497 default:
2498 ret = -EINVAL;
2499 }
2500
2501 spin_unlock_irq(&callback_lock);
2502 return ret;
2503 }
2504
cpuset_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)2505 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2506 {
2507 struct cpuset *cs = css_cs(css);
2508 cpuset_filetype_t type = cft->private;
2509 switch (type) {
2510 case FILE_CPU_EXCLUSIVE:
2511 return is_cpu_exclusive(cs);
2512 case FILE_MEM_EXCLUSIVE:
2513 return is_mem_exclusive(cs);
2514 case FILE_MEM_HARDWALL:
2515 return is_mem_hardwall(cs);
2516 case FILE_SCHED_LOAD_BALANCE:
2517 return is_sched_load_balance(cs);
2518 case FILE_MEMORY_MIGRATE:
2519 return is_memory_migrate(cs);
2520 case FILE_MEMORY_PRESSURE_ENABLED:
2521 return cpuset_memory_pressure_enabled;
2522 case FILE_MEMORY_PRESSURE:
2523 return fmeter_getrate(&cs->fmeter);
2524 case FILE_SPREAD_PAGE:
2525 return is_spread_page(cs);
2526 case FILE_SPREAD_SLAB:
2527 return is_spread_slab(cs);
2528 default:
2529 BUG();
2530 }
2531
2532 /* Unreachable but makes gcc happy */
2533 return 0;
2534 }
2535
cpuset_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)2536 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2537 {
2538 struct cpuset *cs = css_cs(css);
2539 cpuset_filetype_t type = cft->private;
2540 switch (type) {
2541 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2542 return cs->relax_domain_level;
2543 default:
2544 BUG();
2545 }
2546
2547 /* Unrechable but makes gcc happy */
2548 return 0;
2549 }
2550
sched_partition_show(struct seq_file * seq,void * v)2551 static int sched_partition_show(struct seq_file *seq, void *v)
2552 {
2553 struct cpuset *cs = css_cs(seq_css(seq));
2554
2555 switch (cs->partition_root_state) {
2556 case PRS_ENABLED:
2557 seq_puts(seq, "root\n");
2558 break;
2559 case PRS_DISABLED:
2560 seq_puts(seq, "member\n");
2561 break;
2562 case PRS_ERROR:
2563 seq_puts(seq, "root invalid\n");
2564 break;
2565 }
2566 return 0;
2567 }
2568
sched_partition_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2569 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2570 size_t nbytes, loff_t off)
2571 {
2572 struct cpuset *cs = css_cs(of_css(of));
2573 int val;
2574 int retval = -ENODEV;
2575
2576 buf = strstrip(buf);
2577
2578 /*
2579 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2580 */
2581 if (!strcmp(buf, "root"))
2582 val = PRS_ENABLED;
2583 else if (!strcmp(buf, "member"))
2584 val = PRS_DISABLED;
2585 else
2586 return -EINVAL;
2587
2588 css_get(&cs->css);
2589 get_online_cpus();
2590 mutex_lock(&cpuset_mutex);
2591 if (!is_cpuset_online(cs))
2592 goto out_unlock;
2593
2594 retval = update_prstate(cs, val);
2595 out_unlock:
2596 mutex_unlock(&cpuset_mutex);
2597 put_online_cpus();
2598 css_put(&cs->css);
2599 return retval ?: nbytes;
2600 }
2601
2602 /*
2603 * for the common functions, 'private' gives the type of file
2604 */
2605
2606 static struct cftype legacy_files[] = {
2607 {
2608 .name = "cpus",
2609 .seq_show = cpuset_common_seq_show,
2610 .write = cpuset_write_resmask,
2611 .max_write_len = (100U + 6 * NR_CPUS),
2612 .private = FILE_CPULIST,
2613 },
2614
2615 {
2616 .name = "mems",
2617 .seq_show = cpuset_common_seq_show,
2618 .write = cpuset_write_resmask,
2619 .max_write_len = (100U + 6 * MAX_NUMNODES),
2620 .private = FILE_MEMLIST,
2621 },
2622
2623 {
2624 .name = "effective_cpus",
2625 .seq_show = cpuset_common_seq_show,
2626 .private = FILE_EFFECTIVE_CPULIST,
2627 },
2628
2629 {
2630 .name = "effective_mems",
2631 .seq_show = cpuset_common_seq_show,
2632 .private = FILE_EFFECTIVE_MEMLIST,
2633 },
2634
2635 {
2636 .name = "cpu_exclusive",
2637 .read_u64 = cpuset_read_u64,
2638 .write_u64 = cpuset_write_u64,
2639 .private = FILE_CPU_EXCLUSIVE,
2640 },
2641
2642 {
2643 .name = "mem_exclusive",
2644 .read_u64 = cpuset_read_u64,
2645 .write_u64 = cpuset_write_u64,
2646 .private = FILE_MEM_EXCLUSIVE,
2647 },
2648
2649 {
2650 .name = "mem_hardwall",
2651 .read_u64 = cpuset_read_u64,
2652 .write_u64 = cpuset_write_u64,
2653 .private = FILE_MEM_HARDWALL,
2654 },
2655
2656 {
2657 .name = "sched_load_balance",
2658 .read_u64 = cpuset_read_u64,
2659 .write_u64 = cpuset_write_u64,
2660 .private = FILE_SCHED_LOAD_BALANCE,
2661 },
2662
2663 {
2664 .name = "sched_relax_domain_level",
2665 .read_s64 = cpuset_read_s64,
2666 .write_s64 = cpuset_write_s64,
2667 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2668 },
2669
2670 {
2671 .name = "memory_migrate",
2672 .read_u64 = cpuset_read_u64,
2673 .write_u64 = cpuset_write_u64,
2674 .private = FILE_MEMORY_MIGRATE,
2675 },
2676
2677 {
2678 .name = "memory_pressure",
2679 .read_u64 = cpuset_read_u64,
2680 .private = FILE_MEMORY_PRESSURE,
2681 },
2682
2683 {
2684 .name = "memory_spread_page",
2685 .read_u64 = cpuset_read_u64,
2686 .write_u64 = cpuset_write_u64,
2687 .private = FILE_SPREAD_PAGE,
2688 },
2689
2690 {
2691 .name = "memory_spread_slab",
2692 .read_u64 = cpuset_read_u64,
2693 .write_u64 = cpuset_write_u64,
2694 .private = FILE_SPREAD_SLAB,
2695 },
2696
2697 {
2698 .name = "memory_pressure_enabled",
2699 .flags = CFTYPE_ONLY_ON_ROOT,
2700 .read_u64 = cpuset_read_u64,
2701 .write_u64 = cpuset_write_u64,
2702 .private = FILE_MEMORY_PRESSURE_ENABLED,
2703 },
2704
2705 { } /* terminate */
2706 };
2707
2708 /*
2709 * This is currently a minimal set for the default hierarchy. It can be
2710 * expanded later on by migrating more features and control files from v1.
2711 */
2712 static struct cftype dfl_files[] = {
2713 {
2714 .name = "cpus",
2715 .seq_show = cpuset_common_seq_show,
2716 .write = cpuset_write_resmask,
2717 .max_write_len = (100U + 6 * NR_CPUS),
2718 .private = FILE_CPULIST,
2719 .flags = CFTYPE_NOT_ON_ROOT,
2720 },
2721
2722 {
2723 .name = "mems",
2724 .seq_show = cpuset_common_seq_show,
2725 .write = cpuset_write_resmask,
2726 .max_write_len = (100U + 6 * MAX_NUMNODES),
2727 .private = FILE_MEMLIST,
2728 .flags = CFTYPE_NOT_ON_ROOT,
2729 },
2730
2731 {
2732 .name = "cpus.effective",
2733 .seq_show = cpuset_common_seq_show,
2734 .private = FILE_EFFECTIVE_CPULIST,
2735 },
2736
2737 {
2738 .name = "mems.effective",
2739 .seq_show = cpuset_common_seq_show,
2740 .private = FILE_EFFECTIVE_MEMLIST,
2741 },
2742
2743 {
2744 .name = "cpus.partition",
2745 .seq_show = sched_partition_show,
2746 .write = sched_partition_write,
2747 .private = FILE_PARTITION_ROOT,
2748 .flags = CFTYPE_NOT_ON_ROOT,
2749 },
2750
2751 {
2752 .name = "cpus.subpartitions",
2753 .seq_show = cpuset_common_seq_show,
2754 .private = FILE_SUBPARTS_CPULIST,
2755 .flags = CFTYPE_DEBUG,
2756 },
2757
2758 { } /* terminate */
2759 };
2760
2761
2762 /*
2763 * cpuset_css_alloc - allocate a cpuset css
2764 * cgrp: control group that the new cpuset will be part of
2765 */
2766
2767 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)2768 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2769 {
2770 struct cpuset *cs;
2771
2772 if (!parent_css)
2773 return &top_cpuset.css;
2774
2775 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2776 if (!cs)
2777 return ERR_PTR(-ENOMEM);
2778
2779 if (alloc_cpumasks(cs, NULL)) {
2780 kfree(cs);
2781 return ERR_PTR(-ENOMEM);
2782 }
2783
2784 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2785 nodes_clear(cs->mems_allowed);
2786 nodes_clear(cs->effective_mems);
2787 fmeter_init(&cs->fmeter);
2788 cs->relax_domain_level = -1;
2789
2790 return &cs->css;
2791 }
2792
cpuset_css_online(struct cgroup_subsys_state * css)2793 static int cpuset_css_online(struct cgroup_subsys_state *css)
2794 {
2795 struct cpuset *cs = css_cs(css);
2796 struct cpuset *parent = parent_cs(cs);
2797 struct cpuset *tmp_cs;
2798 struct cgroup_subsys_state *pos_css;
2799
2800 if (!parent)
2801 return 0;
2802
2803 get_online_cpus();
2804 mutex_lock(&cpuset_mutex);
2805
2806 set_bit(CS_ONLINE, &cs->flags);
2807 if (is_spread_page(parent))
2808 set_bit(CS_SPREAD_PAGE, &cs->flags);
2809 if (is_spread_slab(parent))
2810 set_bit(CS_SPREAD_SLAB, &cs->flags);
2811
2812 cpuset_inc();
2813
2814 spin_lock_irq(&callback_lock);
2815 if (is_in_v2_mode()) {
2816 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2817 cs->effective_mems = parent->effective_mems;
2818 cs->use_parent_ecpus = true;
2819 parent->child_ecpus_count++;
2820 }
2821 spin_unlock_irq(&callback_lock);
2822
2823 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2824 goto out_unlock;
2825
2826 /*
2827 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2828 * set. This flag handling is implemented in cgroup core for
2829 * histrical reasons - the flag may be specified during mount.
2830 *
2831 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2832 * refuse to clone the configuration - thereby refusing the task to
2833 * be entered, and as a result refusing the sys_unshare() or
2834 * clone() which initiated it. If this becomes a problem for some
2835 * users who wish to allow that scenario, then this could be
2836 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2837 * (and likewise for mems) to the new cgroup.
2838 */
2839 rcu_read_lock();
2840 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2841 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2842 rcu_read_unlock();
2843 goto out_unlock;
2844 }
2845 }
2846 rcu_read_unlock();
2847
2848 spin_lock_irq(&callback_lock);
2849 cs->mems_allowed = parent->mems_allowed;
2850 cs->effective_mems = parent->mems_allowed;
2851 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2852 cpumask_copy(cs->cpus_requested, parent->cpus_requested);
2853 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2854 spin_unlock_irq(&callback_lock);
2855 out_unlock:
2856 mutex_unlock(&cpuset_mutex);
2857 put_online_cpus();
2858 return 0;
2859 }
2860
2861 /*
2862 * If the cpuset being removed has its flag 'sched_load_balance'
2863 * enabled, then simulate turning sched_load_balance off, which
2864 * will call rebuild_sched_domains_locked(). That is not needed
2865 * in the default hierarchy where only changes in partition
2866 * will cause repartitioning.
2867 *
2868 * If the cpuset has the 'sched.partition' flag enabled, simulate
2869 * turning 'sched.partition" off.
2870 */
2871
cpuset_css_offline(struct cgroup_subsys_state * css)2872 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2873 {
2874 struct cpuset *cs = css_cs(css);
2875
2876 get_online_cpus();
2877 mutex_lock(&cpuset_mutex);
2878
2879 if (is_partition_root(cs))
2880 update_prstate(cs, 0);
2881
2882 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2883 is_sched_load_balance(cs))
2884 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2885
2886 if (cs->use_parent_ecpus) {
2887 struct cpuset *parent = parent_cs(cs);
2888
2889 cs->use_parent_ecpus = false;
2890 parent->child_ecpus_count--;
2891 }
2892
2893 cpuset_dec();
2894 clear_bit(CS_ONLINE, &cs->flags);
2895
2896 mutex_unlock(&cpuset_mutex);
2897 put_online_cpus();
2898 }
2899
cpuset_css_free(struct cgroup_subsys_state * css)2900 static void cpuset_css_free(struct cgroup_subsys_state *css)
2901 {
2902 struct cpuset *cs = css_cs(css);
2903
2904 free_cpuset(cs);
2905 }
2906
cpuset_bind(struct cgroup_subsys_state * root_css)2907 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2908 {
2909 mutex_lock(&cpuset_mutex);
2910 spin_lock_irq(&callback_lock);
2911
2912 if (is_in_v2_mode()) {
2913 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2914 top_cpuset.mems_allowed = node_possible_map;
2915 } else {
2916 cpumask_copy(top_cpuset.cpus_allowed,
2917 top_cpuset.effective_cpus);
2918 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2919 }
2920
2921 spin_unlock_irq(&callback_lock);
2922 mutex_unlock(&cpuset_mutex);
2923 }
2924
2925 /*
2926 * Make sure the new task conform to the current state of its parent,
2927 * which could have been changed by cpuset just after it inherits the
2928 * state from the parent and before it sits on the cgroup's task list.
2929 */
cpuset_fork(struct task_struct * task)2930 static void cpuset_fork(struct task_struct *task)
2931 {
2932 int inherit_cpus = 0;
2933 if (task_css_is_root(task, cpuset_cgrp_id))
2934 return;
2935
2936 trace_android_rvh_cpuset_fork(task, &inherit_cpus);
2937 if (!inherit_cpus)
2938 set_cpus_allowed_ptr(task, current->cpus_ptr);
2939 task->mems_allowed = current->mems_allowed;
2940 }
2941
2942 struct cgroup_subsys cpuset_cgrp_subsys = {
2943 .css_alloc = cpuset_css_alloc,
2944 .css_online = cpuset_css_online,
2945 .css_offline = cpuset_css_offline,
2946 .css_free = cpuset_css_free,
2947 .can_attach = cpuset_can_attach,
2948 .cancel_attach = cpuset_cancel_attach,
2949 .attach = cpuset_attach,
2950 .post_attach = cpuset_post_attach,
2951 .bind = cpuset_bind,
2952 .fork = cpuset_fork,
2953 .legacy_cftypes = legacy_files,
2954 .dfl_cftypes = dfl_files,
2955 .early_init = true,
2956 .threaded = true,
2957 };
2958
2959 /**
2960 * cpuset_init - initialize cpusets at system boot
2961 *
2962 * Description: Initialize top_cpuset
2963 **/
2964
cpuset_init(void)2965 int __init cpuset_init(void)
2966 {
2967 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2968 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2969 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2970 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_requested, GFP_KERNEL));
2971
2972 cpumask_setall(top_cpuset.cpus_allowed);
2973 cpumask_setall(top_cpuset.cpus_requested);
2974 nodes_setall(top_cpuset.mems_allowed);
2975 cpumask_setall(top_cpuset.effective_cpus);
2976 nodes_setall(top_cpuset.effective_mems);
2977
2978 fmeter_init(&top_cpuset.fmeter);
2979 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2980 top_cpuset.relax_domain_level = -1;
2981
2982 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2983
2984 return 0;
2985 }
2986
2987 /*
2988 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2989 * or memory nodes, we need to walk over the cpuset hierarchy,
2990 * removing that CPU or node from all cpusets. If this removes the
2991 * last CPU or node from a cpuset, then move the tasks in the empty
2992 * cpuset to its next-highest non-empty parent.
2993 */
remove_tasks_in_empty_cpuset(struct cpuset * cs)2994 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2995 {
2996 struct cpuset *parent;
2997
2998 /*
2999 * Find its next-highest non-empty parent, (top cpuset
3000 * has online cpus, so can't be empty).
3001 */
3002 parent = parent_cs(cs);
3003 while (cpumask_empty(parent->cpus_allowed) ||
3004 nodes_empty(parent->mems_allowed))
3005 parent = parent_cs(parent);
3006
3007 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3008 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3009 pr_cont_cgroup_name(cs->css.cgroup);
3010 pr_cont("\n");
3011 }
3012 }
3013
3014 static void
hotplug_update_tasks_legacy(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3015 hotplug_update_tasks_legacy(struct cpuset *cs,
3016 struct cpumask *new_cpus, nodemask_t *new_mems,
3017 bool cpus_updated, bool mems_updated)
3018 {
3019 bool is_empty;
3020
3021 spin_lock_irq(&callback_lock);
3022 cpumask_copy(cs->cpus_allowed, new_cpus);
3023 cpumask_copy(cs->effective_cpus, new_cpus);
3024 cs->mems_allowed = *new_mems;
3025 cs->effective_mems = *new_mems;
3026 spin_unlock_irq(&callback_lock);
3027
3028 /*
3029 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3030 * as the tasks will be migratecd to an ancestor.
3031 */
3032 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3033 update_tasks_cpumask(cs);
3034 if (mems_updated && !nodes_empty(cs->mems_allowed))
3035 update_tasks_nodemask(cs);
3036
3037 is_empty = cpumask_empty(cs->cpus_allowed) ||
3038 nodes_empty(cs->mems_allowed);
3039
3040 mutex_unlock(&cpuset_mutex);
3041
3042 /*
3043 * Move tasks to the nearest ancestor with execution resources,
3044 * This is full cgroup operation which will also call back into
3045 * cpuset. Should be done outside any lock.
3046 */
3047 if (is_empty)
3048 remove_tasks_in_empty_cpuset(cs);
3049
3050 mutex_lock(&cpuset_mutex);
3051 }
3052
3053 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3054 hotplug_update_tasks(struct cpuset *cs,
3055 struct cpumask *new_cpus, nodemask_t *new_mems,
3056 bool cpus_updated, bool mems_updated)
3057 {
3058 if (cpumask_empty(new_cpus))
3059 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3060 if (nodes_empty(*new_mems))
3061 *new_mems = parent_cs(cs)->effective_mems;
3062
3063 spin_lock_irq(&callback_lock);
3064 cpumask_copy(cs->effective_cpus, new_cpus);
3065 cs->effective_mems = *new_mems;
3066 spin_unlock_irq(&callback_lock);
3067
3068 if (cpus_updated)
3069 update_tasks_cpumask(cs);
3070 if (mems_updated)
3071 update_tasks_nodemask(cs);
3072 }
3073
3074 static bool force_rebuild;
3075
cpuset_force_rebuild(void)3076 void cpuset_force_rebuild(void)
3077 {
3078 force_rebuild = true;
3079 }
3080
3081 /**
3082 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3083 * @cs: cpuset in interest
3084 * @tmp: the tmpmasks structure pointer
3085 *
3086 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3087 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
3088 * all its tasks are moved to the nearest ancestor with both resources.
3089 */
cpuset_hotplug_update_tasks(struct cpuset * cs,struct tmpmasks * tmp)3090 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3091 {
3092 static cpumask_t new_cpus;
3093 static nodemask_t new_mems;
3094 bool cpus_updated;
3095 bool mems_updated;
3096 struct cpuset *parent;
3097 retry:
3098 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3099
3100 mutex_lock(&cpuset_mutex);
3101
3102 /*
3103 * We have raced with task attaching. We wait until attaching
3104 * is finished, so we won't attach a task to an empty cpuset.
3105 */
3106 if (cs->attach_in_progress) {
3107 mutex_unlock(&cpuset_mutex);
3108 goto retry;
3109 }
3110
3111 parent = parent_cs(cs);
3112 compute_effective_cpumask(&new_cpus, cs, parent);
3113 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3114
3115 if (cs->nr_subparts_cpus)
3116 /*
3117 * Make sure that CPUs allocated to child partitions
3118 * do not show up in effective_cpus.
3119 */
3120 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3121
3122 if (!tmp || !cs->partition_root_state)
3123 goto update_tasks;
3124
3125 /*
3126 * In the unlikely event that a partition root has empty
3127 * effective_cpus or its parent becomes erroneous, we have to
3128 * transition it to the erroneous state.
3129 */
3130 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3131 (parent->partition_root_state == PRS_ERROR))) {
3132 if (cs->nr_subparts_cpus) {
3133 spin_lock_irq(&callback_lock);
3134 cs->nr_subparts_cpus = 0;
3135 cpumask_clear(cs->subparts_cpus);
3136 spin_unlock_irq(&callback_lock);
3137 compute_effective_cpumask(&new_cpus, cs, parent);
3138 }
3139
3140 /*
3141 * If the effective_cpus is empty because the child
3142 * partitions take away all the CPUs, we can keep
3143 * the current partition and let the child partitions
3144 * fight for available CPUs.
3145 */
3146 if ((parent->partition_root_state == PRS_ERROR) ||
3147 cpumask_empty(&new_cpus)) {
3148 update_parent_subparts_cpumask(cs, partcmd_disable,
3149 NULL, tmp);
3150 spin_lock_irq(&callback_lock);
3151 cs->partition_root_state = PRS_ERROR;
3152 spin_unlock_irq(&callback_lock);
3153 }
3154 cpuset_force_rebuild();
3155 }
3156
3157 /*
3158 * On the other hand, an erroneous partition root may be transitioned
3159 * back to a regular one or a partition root with no CPU allocated
3160 * from the parent may change to erroneous.
3161 */
3162 if (is_partition_root(parent) &&
3163 ((cs->partition_root_state == PRS_ERROR) ||
3164 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3165 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3166 cpuset_force_rebuild();
3167
3168 update_tasks:
3169 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3170 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3171
3172 if (is_in_v2_mode())
3173 hotplug_update_tasks(cs, &new_cpus, &new_mems,
3174 cpus_updated, mems_updated);
3175 else
3176 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3177 cpus_updated, mems_updated);
3178
3179 mutex_unlock(&cpuset_mutex);
3180 }
3181
3182 /**
3183 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3184 *
3185 * This function is called after either CPU or memory configuration has
3186 * changed and updates cpuset accordingly. The top_cpuset is always
3187 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3188 * order to make cpusets transparent (of no affect) on systems that are
3189 * actively using CPU hotplug but making no active use of cpusets.
3190 *
3191 * Non-root cpusets are only affected by offlining. If any CPUs or memory
3192 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3193 * all descendants.
3194 *
3195 * Note that CPU offlining during suspend is ignored. We don't modify
3196 * cpusets across suspend/resume cycles at all.
3197 */
cpuset_hotplug_workfn(struct work_struct * work)3198 void cpuset_hotplug_workfn(struct work_struct *work)
3199 {
3200 static cpumask_t new_cpus;
3201 static nodemask_t new_mems;
3202 bool cpus_updated, mems_updated;
3203 bool on_dfl = is_in_v2_mode();
3204 struct tmpmasks tmp, *ptmp = NULL;
3205
3206 if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3207 ptmp = &tmp;
3208
3209 mutex_lock(&cpuset_mutex);
3210
3211 /* fetch the available cpus/mems and find out which changed how */
3212 cpumask_copy(&new_cpus, cpu_active_mask);
3213 new_mems = node_states[N_MEMORY];
3214
3215 /*
3216 * If subparts_cpus is populated, it is likely that the check below
3217 * will produce a false positive on cpus_updated when the cpu list
3218 * isn't changed. It is extra work, but it is better to be safe.
3219 */
3220 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3221 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3222
3223 /*
3224 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3225 * we assumed that cpus are updated.
3226 */
3227 if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3228 cpus_updated = true;
3229
3230 /* synchronize cpus_allowed to cpu_active_mask */
3231 if (cpus_updated) {
3232 spin_lock_irq(&callback_lock);
3233 if (!on_dfl)
3234 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3235 /*
3236 * Make sure that CPUs allocated to child partitions
3237 * do not show up in effective_cpus. If no CPU is left,
3238 * we clear the subparts_cpus & let the child partitions
3239 * fight for the CPUs again.
3240 */
3241 if (top_cpuset.nr_subparts_cpus) {
3242 if (cpumask_subset(&new_cpus,
3243 top_cpuset.subparts_cpus)) {
3244 top_cpuset.nr_subparts_cpus = 0;
3245 cpumask_clear(top_cpuset.subparts_cpus);
3246 } else {
3247 cpumask_andnot(&new_cpus, &new_cpus,
3248 top_cpuset.subparts_cpus);
3249 }
3250 }
3251 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3252 spin_unlock_irq(&callback_lock);
3253 /* we don't mess with cpumasks of tasks in top_cpuset */
3254 }
3255
3256 /* synchronize mems_allowed to N_MEMORY */
3257 if (mems_updated) {
3258 spin_lock_irq(&callback_lock);
3259 if (!on_dfl)
3260 top_cpuset.mems_allowed = new_mems;
3261 top_cpuset.effective_mems = new_mems;
3262 spin_unlock_irq(&callback_lock);
3263 update_tasks_nodemask(&top_cpuset);
3264 }
3265
3266 mutex_unlock(&cpuset_mutex);
3267
3268 /* if cpus or mems changed, we need to propagate to descendants */
3269 if (cpus_updated || mems_updated) {
3270 struct cpuset *cs;
3271 struct cgroup_subsys_state *pos_css;
3272
3273 rcu_read_lock();
3274 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3275 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3276 continue;
3277 rcu_read_unlock();
3278
3279 cpuset_hotplug_update_tasks(cs, ptmp);
3280
3281 rcu_read_lock();
3282 css_put(&cs->css);
3283 }
3284 rcu_read_unlock();
3285 }
3286
3287 /* rebuild sched domains if cpus_allowed has changed */
3288 if (cpus_updated || force_rebuild) {
3289 force_rebuild = false;
3290 rebuild_sched_domains();
3291 }
3292
3293 free_cpumasks(NULL, ptmp);
3294 }
3295
cpuset_update_active_cpus(void)3296 void cpuset_update_active_cpus(void)
3297 {
3298 /*
3299 * We're inside cpu hotplug critical region which usually nests
3300 * inside cgroup synchronization. Bounce actual hotplug processing
3301 * to a work item to avoid reverse locking order.
3302 */
3303 schedule_work(&cpuset_hotplug_work);
3304 }
3305
cpuset_update_active_cpus_affine(int cpu)3306 void cpuset_update_active_cpus_affine(int cpu)
3307 {
3308 schedule_work_on(cpu, &cpuset_hotplug_work);
3309 }
3310
cpuset_wait_for_hotplug(void)3311 void cpuset_wait_for_hotplug(void)
3312 {
3313 flush_work(&cpuset_hotplug_work);
3314 }
3315
3316 /*
3317 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3318 * Call this routine anytime after node_states[N_MEMORY] changes.
3319 * See cpuset_update_active_cpus() for CPU hotplug handling.
3320 */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)3321 static int cpuset_track_online_nodes(struct notifier_block *self,
3322 unsigned long action, void *arg)
3323 {
3324 schedule_work(&cpuset_hotplug_work);
3325 return NOTIFY_OK;
3326 }
3327
3328 static struct notifier_block cpuset_track_online_nodes_nb = {
3329 .notifier_call = cpuset_track_online_nodes,
3330 .priority = 10, /* ??! */
3331 };
3332
3333 /**
3334 * cpuset_init_smp - initialize cpus_allowed
3335 *
3336 * Description: Finish top cpuset after cpu, node maps are initialized
3337 */
cpuset_init_smp(void)3338 void __init cpuset_init_smp(void)
3339 {
3340 /*
3341 * cpus_allowd/mems_allowed set to v2 values in the initial
3342 * cpuset_bind() call will be reset to v1 values in another
3343 * cpuset_bind() call when v1 cpuset is mounted.
3344 */
3345 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3346
3347 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3348 top_cpuset.effective_mems = node_states[N_MEMORY];
3349
3350 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3351
3352 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3353 BUG_ON(!cpuset_migrate_mm_wq);
3354 }
3355
3356 /**
3357 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3358 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3359 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3360 *
3361 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3362 * attached to the specified @tsk. Guaranteed to return some non-empty
3363 * subset of cpu_online_mask, even if this means going outside the
3364 * tasks cpuset.
3365 **/
3366
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)3367 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3368 {
3369 unsigned long flags;
3370
3371 spin_lock_irqsave(&callback_lock, flags);
3372 rcu_read_lock();
3373 guarantee_online_cpus(tsk, pmask);
3374 rcu_read_unlock();
3375 spin_unlock_irqrestore(&callback_lock, flags);
3376 }
3377 EXPORT_SYMBOL_GPL(cpuset_cpus_allowed);
3378 /**
3379 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3380 * @tsk: pointer to task_struct with which the scheduler is struggling
3381 *
3382 * Description: In the case that the scheduler cannot find an allowed cpu in
3383 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3384 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3385 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3386 * This is the absolute last resort for the scheduler and it is only used if
3387 * _every_ other avenue has been traveled.
3388 **/
3389
cpuset_cpus_allowed_fallback(struct task_struct * tsk)3390 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3391 {
3392 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3393 const struct cpumask *cs_mask;
3394
3395 rcu_read_lock();
3396 cs_mask = task_cs(tsk)->cpus_allowed;
3397
3398 if (!is_in_v2_mode() || !cpumask_subset(cs_mask, possible_mask))
3399 goto unlock; /* select_fallback_rq will try harder */
3400
3401 do_set_cpus_allowed(tsk, cs_mask);
3402 unlock:
3403 rcu_read_unlock();
3404
3405 /*
3406 * We own tsk->cpus_allowed, nobody can change it under us.
3407 *
3408 * But we used cs && cs->cpus_allowed lockless and thus can
3409 * race with cgroup_attach_task() or update_cpumask() and get
3410 * the wrong tsk->cpus_allowed. However, both cases imply the
3411 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3412 * which takes task_rq_lock().
3413 *
3414 * If we are called after it dropped the lock we must see all
3415 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3416 * set any mask even if it is not right from task_cs() pov,
3417 * the pending set_cpus_allowed_ptr() will fix things.
3418 *
3419 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3420 * if required.
3421 */
3422 }
3423
cpuset_init_current_mems_allowed(void)3424 void __init cpuset_init_current_mems_allowed(void)
3425 {
3426 nodes_setall(current->mems_allowed);
3427 }
3428
3429 /**
3430 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3431 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3432 *
3433 * Description: Returns the nodemask_t mems_allowed of the cpuset
3434 * attached to the specified @tsk. Guaranteed to return some non-empty
3435 * subset of node_states[N_MEMORY], even if this means going outside the
3436 * tasks cpuset.
3437 **/
3438
cpuset_mems_allowed(struct task_struct * tsk)3439 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3440 {
3441 nodemask_t mask;
3442 unsigned long flags;
3443
3444 spin_lock_irqsave(&callback_lock, flags);
3445 rcu_read_lock();
3446 guarantee_online_mems(task_cs(tsk), &mask);
3447 rcu_read_unlock();
3448 spin_unlock_irqrestore(&callback_lock, flags);
3449
3450 return mask;
3451 }
3452
3453 /**
3454 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3455 * @nodemask: the nodemask to be checked
3456 *
3457 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3458 */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)3459 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3460 {
3461 return nodes_intersects(*nodemask, current->mems_allowed);
3462 }
3463
3464 /*
3465 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3466 * mem_hardwall ancestor to the specified cpuset. Call holding
3467 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
3468 * (an unusual configuration), then returns the root cpuset.
3469 */
nearest_hardwall_ancestor(struct cpuset * cs)3470 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3471 {
3472 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3473 cs = parent_cs(cs);
3474 return cs;
3475 }
3476
3477 /**
3478 * cpuset_node_allowed - Can we allocate on a memory node?
3479 * @node: is this an allowed node?
3480 * @gfp_mask: memory allocation flags
3481 *
3482 * If we're in interrupt, yes, we can always allocate. If @node is set in
3483 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
3484 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3485 * yes. If current has access to memory reserves as an oom victim, yes.
3486 * Otherwise, no.
3487 *
3488 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3489 * and do not allow allocations outside the current tasks cpuset
3490 * unless the task has been OOM killed.
3491 * GFP_KERNEL allocations are not so marked, so can escape to the
3492 * nearest enclosing hardwalled ancestor cpuset.
3493 *
3494 * Scanning up parent cpusets requires callback_lock. The
3495 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3496 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3497 * current tasks mems_allowed came up empty on the first pass over
3498 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
3499 * cpuset are short of memory, might require taking the callback_lock.
3500 *
3501 * The first call here from mm/page_alloc:get_page_from_freelist()
3502 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3503 * so no allocation on a node outside the cpuset is allowed (unless
3504 * in interrupt, of course).
3505 *
3506 * The second pass through get_page_from_freelist() doesn't even call
3507 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
3508 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3509 * in alloc_flags. That logic and the checks below have the combined
3510 * affect that:
3511 * in_interrupt - any node ok (current task context irrelevant)
3512 * GFP_ATOMIC - any node ok
3513 * tsk_is_oom_victim - any node ok
3514 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
3515 * GFP_USER - only nodes in current tasks mems allowed ok.
3516 */
__cpuset_node_allowed(int node,gfp_t gfp_mask)3517 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3518 {
3519 struct cpuset *cs; /* current cpuset ancestors */
3520 int allowed; /* is allocation in zone z allowed? */
3521 unsigned long flags;
3522
3523 if (in_interrupt())
3524 return true;
3525 if (node_isset(node, current->mems_allowed))
3526 return true;
3527 /*
3528 * Allow tasks that have access to memory reserves because they have
3529 * been OOM killed to get memory anywhere.
3530 */
3531 if (unlikely(tsk_is_oom_victim(current)))
3532 return true;
3533 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
3534 return false;
3535
3536 if (current->flags & PF_EXITING) /* Let dying task have memory */
3537 return true;
3538
3539 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3540 spin_lock_irqsave(&callback_lock, flags);
3541
3542 rcu_read_lock();
3543 cs = nearest_hardwall_ancestor(task_cs(current));
3544 allowed = node_isset(node, cs->mems_allowed);
3545 rcu_read_unlock();
3546
3547 spin_unlock_irqrestore(&callback_lock, flags);
3548 return allowed;
3549 }
3550
3551 /**
3552 * cpuset_mem_spread_node() - On which node to begin search for a file page
3553 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3554 *
3555 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3556 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3557 * and if the memory allocation used cpuset_mem_spread_node()
3558 * to determine on which node to start looking, as it will for
3559 * certain page cache or slab cache pages such as used for file
3560 * system buffers and inode caches, then instead of starting on the
3561 * local node to look for a free page, rather spread the starting
3562 * node around the tasks mems_allowed nodes.
3563 *
3564 * We don't have to worry about the returned node being offline
3565 * because "it can't happen", and even if it did, it would be ok.
3566 *
3567 * The routines calling guarantee_online_mems() are careful to
3568 * only set nodes in task->mems_allowed that are online. So it
3569 * should not be possible for the following code to return an
3570 * offline node. But if it did, that would be ok, as this routine
3571 * is not returning the node where the allocation must be, only
3572 * the node where the search should start. The zonelist passed to
3573 * __alloc_pages() will include all nodes. If the slab allocator
3574 * is passed an offline node, it will fall back to the local node.
3575 * See kmem_cache_alloc_node().
3576 */
3577
cpuset_spread_node(int * rotor)3578 static int cpuset_spread_node(int *rotor)
3579 {
3580 return *rotor = next_node_in(*rotor, current->mems_allowed);
3581 }
3582
cpuset_mem_spread_node(void)3583 int cpuset_mem_spread_node(void)
3584 {
3585 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3586 current->cpuset_mem_spread_rotor =
3587 node_random(¤t->mems_allowed);
3588
3589 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
3590 }
3591
cpuset_slab_spread_node(void)3592 int cpuset_slab_spread_node(void)
3593 {
3594 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3595 current->cpuset_slab_spread_rotor =
3596 node_random(¤t->mems_allowed);
3597
3598 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor);
3599 }
3600
3601 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3602
3603 /**
3604 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3605 * @tsk1: pointer to task_struct of some task.
3606 * @tsk2: pointer to task_struct of some other task.
3607 *
3608 * Description: Return true if @tsk1's mems_allowed intersects the
3609 * mems_allowed of @tsk2. Used by the OOM killer to determine if
3610 * one of the task's memory usage might impact the memory available
3611 * to the other.
3612 **/
3613
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)3614 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3615 const struct task_struct *tsk2)
3616 {
3617 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3618 }
3619
3620 /**
3621 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3622 *
3623 * Description: Prints current's name, cpuset name, and cached copy of its
3624 * mems_allowed to the kernel log.
3625 */
cpuset_print_current_mems_allowed(void)3626 void cpuset_print_current_mems_allowed(void)
3627 {
3628 struct cgroup *cgrp;
3629
3630 rcu_read_lock();
3631
3632 cgrp = task_cs(current)->css.cgroup;
3633 pr_cont(",cpuset=");
3634 pr_cont_cgroup_name(cgrp);
3635 pr_cont(",mems_allowed=%*pbl",
3636 nodemask_pr_args(¤t->mems_allowed));
3637
3638 rcu_read_unlock();
3639 }
3640
3641 /*
3642 * Collection of memory_pressure is suppressed unless
3643 * this flag is enabled by writing "1" to the special
3644 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3645 */
3646
3647 int cpuset_memory_pressure_enabled __read_mostly;
3648
3649 /**
3650 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3651 *
3652 * Keep a running average of the rate of synchronous (direct)
3653 * page reclaim efforts initiated by tasks in each cpuset.
3654 *
3655 * This represents the rate at which some task in the cpuset
3656 * ran low on memory on all nodes it was allowed to use, and
3657 * had to enter the kernels page reclaim code in an effort to
3658 * create more free memory by tossing clean pages or swapping
3659 * or writing dirty pages.
3660 *
3661 * Display to user space in the per-cpuset read-only file
3662 * "memory_pressure". Value displayed is an integer
3663 * representing the recent rate of entry into the synchronous
3664 * (direct) page reclaim by any task attached to the cpuset.
3665 **/
3666
__cpuset_memory_pressure_bump(void)3667 void __cpuset_memory_pressure_bump(void)
3668 {
3669 rcu_read_lock();
3670 fmeter_markevent(&task_cs(current)->fmeter);
3671 rcu_read_unlock();
3672 }
3673
3674 #ifdef CONFIG_PROC_PID_CPUSET
3675 /*
3676 * proc_cpuset_show()
3677 * - Print tasks cpuset path into seq_file.
3678 * - Used for /proc/<pid>/cpuset.
3679 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3680 * doesn't really matter if tsk->cpuset changes after we read it,
3681 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
3682 * anyway.
3683 */
proc_cpuset_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)3684 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3685 struct pid *pid, struct task_struct *tsk)
3686 {
3687 char *buf;
3688 struct cgroup_subsys_state *css;
3689 int retval;
3690
3691 retval = -ENOMEM;
3692 buf = kmalloc(PATH_MAX, GFP_KERNEL);
3693 if (!buf)
3694 goto out;
3695
3696 css = task_get_css(tsk, cpuset_cgrp_id);
3697 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3698 current->nsproxy->cgroup_ns);
3699 css_put(css);
3700 if (retval >= PATH_MAX)
3701 retval = -ENAMETOOLONG;
3702 if (retval < 0)
3703 goto out_free;
3704 seq_puts(m, buf);
3705 seq_putc(m, '\n');
3706 retval = 0;
3707 out_free:
3708 kfree(buf);
3709 out:
3710 return retval;
3711 }
3712 #endif /* CONFIG_PROC_PID_CPUSET */
3713
3714 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)3715 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3716 {
3717 seq_printf(m, "Mems_allowed:\t%*pb\n",
3718 nodemask_pr_args(&task->mems_allowed));
3719 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3720 nodemask_pr_args(&task->mems_allowed));
3721 }
3722