xref: /OK3568_Linux_fs/kernel/fs/f2fs/super.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28 #include <linux/zstd.h>
29 #include <linux/lz4.h>
30 
31 #include "f2fs.h"
32 #include "node.h"
33 #include "segment.h"
34 #include "xattr.h"
35 #include "gc.h"
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39 
40 static struct kmem_cache *f2fs_inode_cachep;
41 
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 
44 const char *f2fs_fault_name[FAULT_MAX] = {
45 	[FAULT_KMALLOC]		= "kmalloc",
46 	[FAULT_KVMALLOC]	= "kvmalloc",
47 	[FAULT_PAGE_ALLOC]	= "page alloc",
48 	[FAULT_PAGE_GET]	= "page get",
49 	[FAULT_ALLOC_NID]	= "alloc nid",
50 	[FAULT_ORPHAN]		= "orphan",
51 	[FAULT_BLOCK]		= "no more block",
52 	[FAULT_DIR_DEPTH]	= "too big dir depth",
53 	[FAULT_EVICT_INODE]	= "evict_inode fail",
54 	[FAULT_TRUNCATE]	= "truncate fail",
55 	[FAULT_READ_IO]		= "read IO error",
56 	[FAULT_CHECKPOINT]	= "checkpoint error",
57 	[FAULT_DISCARD]		= "discard error",
58 	[FAULT_WRITE_IO]	= "write IO error",
59 };
60 
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned int rate,unsigned int type)61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
62 							unsigned int type)
63 {
64 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
65 
66 	if (rate) {
67 		atomic_set(&ffi->inject_ops, 0);
68 		ffi->inject_rate = rate;
69 	}
70 
71 	if (type)
72 		ffi->inject_type = type;
73 
74 	if (!rate && !type)
75 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
76 }
77 #endif
78 
79 /* f2fs-wide shrinker description */
80 static struct shrinker f2fs_shrinker_info = {
81 	.scan_objects = f2fs_shrink_scan,
82 	.count_objects = f2fs_shrink_count,
83 	.seeks = DEFAULT_SEEKS,
84 };
85 
86 enum {
87 	Opt_gc_background,
88 	Opt_disable_roll_forward,
89 	Opt_norecovery,
90 	Opt_discard,
91 	Opt_nodiscard,
92 	Opt_noheap,
93 	Opt_heap,
94 	Opt_user_xattr,
95 	Opt_nouser_xattr,
96 	Opt_acl,
97 	Opt_noacl,
98 	Opt_active_logs,
99 	Opt_disable_ext_identify,
100 	Opt_inline_xattr,
101 	Opt_noinline_xattr,
102 	Opt_inline_xattr_size,
103 	Opt_inline_data,
104 	Opt_inline_dentry,
105 	Opt_noinline_dentry,
106 	Opt_flush_merge,
107 	Opt_noflush_merge,
108 	Opt_nobarrier,
109 	Opt_fastboot,
110 	Opt_extent_cache,
111 	Opt_noextent_cache,
112 	Opt_noinline_data,
113 	Opt_data_flush,
114 	Opt_reserve_root,
115 	Opt_resgid,
116 	Opt_resuid,
117 	Opt_mode,
118 	Opt_io_size_bits,
119 	Opt_fault_injection,
120 	Opt_fault_type,
121 	Opt_lazytime,
122 	Opt_nolazytime,
123 	Opt_quota,
124 	Opt_noquota,
125 	Opt_usrquota,
126 	Opt_grpquota,
127 	Opt_prjquota,
128 	Opt_usrjquota,
129 	Opt_grpjquota,
130 	Opt_prjjquota,
131 	Opt_offusrjquota,
132 	Opt_offgrpjquota,
133 	Opt_offprjjquota,
134 	Opt_jqfmt_vfsold,
135 	Opt_jqfmt_vfsv0,
136 	Opt_jqfmt_vfsv1,
137 	Opt_whint,
138 	Opt_alloc,
139 	Opt_fsync,
140 	Opt_test_dummy_encryption,
141 	Opt_inlinecrypt,
142 	Opt_checkpoint_disable,
143 	Opt_checkpoint_disable_cap,
144 	Opt_checkpoint_disable_cap_perc,
145 	Opt_checkpoint_enable,
146 	Opt_checkpoint_merge,
147 	Opt_nocheckpoint_merge,
148 	Opt_compress_algorithm,
149 	Opt_compress_log_size,
150 	Opt_compress_extension,
151 	Opt_compress_chksum,
152 	Opt_compress_mode,
153 	Opt_compress_cache,
154 	Opt_atgc,
155 	Opt_gc_merge,
156 	Opt_nogc_merge,
157 	Opt_memory_mode,
158 	Opt_age_extent_cache,
159 	Opt_err,
160 };
161 
162 static match_table_t f2fs_tokens = {
163 	{Opt_gc_background, "background_gc=%s"},
164 	{Opt_disable_roll_forward, "disable_roll_forward"},
165 	{Opt_norecovery, "norecovery"},
166 	{Opt_discard, "discard"},
167 	{Opt_nodiscard, "nodiscard"},
168 	{Opt_noheap, "no_heap"},
169 	{Opt_heap, "heap"},
170 	{Opt_user_xattr, "user_xattr"},
171 	{Opt_nouser_xattr, "nouser_xattr"},
172 	{Opt_acl, "acl"},
173 	{Opt_noacl, "noacl"},
174 	{Opt_active_logs, "active_logs=%u"},
175 	{Opt_disable_ext_identify, "disable_ext_identify"},
176 	{Opt_inline_xattr, "inline_xattr"},
177 	{Opt_noinline_xattr, "noinline_xattr"},
178 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
179 	{Opt_inline_data, "inline_data"},
180 	{Opt_inline_dentry, "inline_dentry"},
181 	{Opt_noinline_dentry, "noinline_dentry"},
182 	{Opt_flush_merge, "flush_merge"},
183 	{Opt_noflush_merge, "noflush_merge"},
184 	{Opt_nobarrier, "nobarrier"},
185 	{Opt_fastboot, "fastboot"},
186 	{Opt_extent_cache, "extent_cache"},
187 	{Opt_noextent_cache, "noextent_cache"},
188 	{Opt_noinline_data, "noinline_data"},
189 	{Opt_data_flush, "data_flush"},
190 	{Opt_reserve_root, "reserve_root=%u"},
191 	{Opt_resgid, "resgid=%u"},
192 	{Opt_resuid, "resuid=%u"},
193 	{Opt_mode, "mode=%s"},
194 	{Opt_io_size_bits, "io_bits=%u"},
195 	{Opt_fault_injection, "fault_injection=%u"},
196 	{Opt_fault_type, "fault_type=%u"},
197 	{Opt_lazytime, "lazytime"},
198 	{Opt_nolazytime, "nolazytime"},
199 	{Opt_quota, "quota"},
200 	{Opt_noquota, "noquota"},
201 	{Opt_usrquota, "usrquota"},
202 	{Opt_grpquota, "grpquota"},
203 	{Opt_prjquota, "prjquota"},
204 	{Opt_usrjquota, "usrjquota=%s"},
205 	{Opt_grpjquota, "grpjquota=%s"},
206 	{Opt_prjjquota, "prjjquota=%s"},
207 	{Opt_offusrjquota, "usrjquota="},
208 	{Opt_offgrpjquota, "grpjquota="},
209 	{Opt_offprjjquota, "prjjquota="},
210 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
211 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
212 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
213 	{Opt_whint, "whint_mode=%s"},
214 	{Opt_alloc, "alloc_mode=%s"},
215 	{Opt_fsync, "fsync_mode=%s"},
216 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
217 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
218 	{Opt_inlinecrypt, "inlinecrypt"},
219 	{Opt_checkpoint_disable, "checkpoint=disable"},
220 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
221 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
222 	{Opt_checkpoint_enable, "checkpoint=enable"},
223 	{Opt_checkpoint_merge, "checkpoint_merge"},
224 	{Opt_nocheckpoint_merge, "nocheckpoint_merge"},
225 	{Opt_compress_algorithm, "compress_algorithm=%s"},
226 	{Opt_compress_log_size, "compress_log_size=%u"},
227 	{Opt_compress_extension, "compress_extension=%s"},
228 	{Opt_compress_chksum, "compress_chksum"},
229 	{Opt_compress_mode, "compress_mode=%s"},
230 	{Opt_compress_cache, "compress_cache"},
231 	{Opt_atgc, "atgc"},
232 	{Opt_gc_merge, "gc_merge"},
233 	{Opt_nogc_merge, "nogc_merge"},
234 	{Opt_memory_mode, "memory=%s"},
235 	{Opt_age_extent_cache, "age_extent_cache"},
236 	{Opt_err, NULL},
237 };
238 
f2fs_printk(struct f2fs_sb_info * sbi,const char * fmt,...)239 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
240 {
241 	struct va_format vaf;
242 	va_list args;
243 	int level;
244 
245 	va_start(args, fmt);
246 
247 	level = printk_get_level(fmt);
248 	vaf.fmt = printk_skip_level(fmt);
249 	vaf.va = &args;
250 	printk("%c%cF2FS-fs (%s): %pV\n",
251 	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
252 
253 	va_end(args);
254 }
255 
256 #ifdef CONFIG_UNICODE
257 static const struct f2fs_sb_encodings {
258 	__u16 magic;
259 	char *name;
260 	char *version;
261 } f2fs_sb_encoding_map[] = {
262 	{F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
263 };
264 
f2fs_sb_read_encoding(const struct f2fs_super_block * sb,const struct f2fs_sb_encodings ** encoding,__u16 * flags)265 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
266 				 const struct f2fs_sb_encodings **encoding,
267 				 __u16 *flags)
268 {
269 	__u16 magic = le16_to_cpu(sb->s_encoding);
270 	int i;
271 
272 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
273 		if (magic == f2fs_sb_encoding_map[i].magic)
274 			break;
275 
276 	if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
277 		return -EINVAL;
278 
279 	*encoding = &f2fs_sb_encoding_map[i];
280 	*flags = le16_to_cpu(sb->s_encoding_flags);
281 
282 	return 0;
283 }
284 
285 struct kmem_cache *f2fs_cf_name_slab;
f2fs_create_casefold_cache(void)286 static int __init f2fs_create_casefold_cache(void)
287 {
288 	f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name",
289 							F2FS_NAME_LEN);
290 	if (!f2fs_cf_name_slab)
291 		return -ENOMEM;
292 	return 0;
293 }
294 
f2fs_destroy_casefold_cache(void)295 static void f2fs_destroy_casefold_cache(void)
296 {
297 	kmem_cache_destroy(f2fs_cf_name_slab);
298 }
299 #else
f2fs_create_casefold_cache(void)300 static int __init f2fs_create_casefold_cache(void) { return 0; }
f2fs_destroy_casefold_cache(void)301 static void f2fs_destroy_casefold_cache(void) { }
302 #endif
303 
limit_reserve_root(struct f2fs_sb_info * sbi)304 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
305 {
306 	block_t limit = min((sbi->user_block_count >> 3),
307 			sbi->user_block_count - sbi->reserved_blocks);
308 
309 	/* limit is 12.5% */
310 	if (test_opt(sbi, RESERVE_ROOT) &&
311 			F2FS_OPTION(sbi).root_reserved_blocks > limit &&
312 			F2FS_OPTION(sbi).root_reserved_blocks > MIN_ROOT_RESERVED_BLOCKS) {
313 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
314 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
315 			  F2FS_OPTION(sbi).root_reserved_blocks);
316 	}
317 	if (!test_opt(sbi, RESERVE_ROOT) &&
318 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
319 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
320 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
321 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
322 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
323 			  from_kuid_munged(&init_user_ns,
324 					   F2FS_OPTION(sbi).s_resuid),
325 			  from_kgid_munged(&init_user_ns,
326 					   F2FS_OPTION(sbi).s_resgid));
327 }
328 
adjust_reserved_segment(struct f2fs_sb_info * sbi)329 static inline int adjust_reserved_segment(struct f2fs_sb_info *sbi)
330 {
331 	unsigned int sec_blks = sbi->blocks_per_seg * sbi->segs_per_sec;
332 	unsigned int avg_vblocks;
333 	unsigned int wanted_reserved_segments;
334 	block_t avail_user_block_count;
335 
336 	if (!F2FS_IO_ALIGNED(sbi))
337 		return 0;
338 
339 	/* average valid block count in section in worst case */
340 	avg_vblocks = sec_blks / F2FS_IO_SIZE(sbi);
341 
342 	/*
343 	 * we need enough free space when migrating one section in worst case
344 	 */
345 	wanted_reserved_segments = (F2FS_IO_SIZE(sbi) / avg_vblocks) *
346 						reserved_segments(sbi);
347 	wanted_reserved_segments -= reserved_segments(sbi);
348 
349 	avail_user_block_count = sbi->user_block_count -
350 				sbi->current_reserved_blocks -
351 				F2FS_OPTION(sbi).root_reserved_blocks;
352 
353 	if (wanted_reserved_segments * sbi->blocks_per_seg >
354 					avail_user_block_count) {
355 		f2fs_err(sbi, "IO align feature can't grab additional reserved segment: %u, available segments: %u",
356 			wanted_reserved_segments,
357 			avail_user_block_count >> sbi->log_blocks_per_seg);
358 		return -ENOSPC;
359 	}
360 
361 	SM_I(sbi)->additional_reserved_segments = wanted_reserved_segments;
362 
363 	f2fs_info(sbi, "IO align feature needs additional reserved segment: %u",
364 			 wanted_reserved_segments);
365 
366 	return 0;
367 }
368 
adjust_unusable_cap_perc(struct f2fs_sb_info * sbi)369 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
370 {
371 	if (!F2FS_OPTION(sbi).unusable_cap_perc)
372 		return;
373 
374 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
375 		F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
376 	else
377 		F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
378 					F2FS_OPTION(sbi).unusable_cap_perc;
379 
380 	f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
381 			F2FS_OPTION(sbi).unusable_cap,
382 			F2FS_OPTION(sbi).unusable_cap_perc);
383 }
384 
init_once(void * foo)385 static void init_once(void *foo)
386 {
387 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
388 
389 	inode_init_once(&fi->vfs_inode);
390 }
391 
392 #ifdef CONFIG_QUOTA
393 static const char * const quotatypes[] = INITQFNAMES;
394 #define QTYPE2NAME(t) (quotatypes[t])
f2fs_set_qf_name(struct super_block * sb,int qtype,substring_t * args)395 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
396 							substring_t *args)
397 {
398 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
399 	char *qname;
400 	int ret = -EINVAL;
401 
402 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
403 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
404 		return -EINVAL;
405 	}
406 	if (f2fs_sb_has_quota_ino(sbi)) {
407 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
408 		return 0;
409 	}
410 
411 	qname = match_strdup(args);
412 	if (!qname) {
413 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
414 		return -ENOMEM;
415 	}
416 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
417 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
418 			ret = 0;
419 		else
420 			f2fs_err(sbi, "%s quota file already specified",
421 				 QTYPE2NAME(qtype));
422 		goto errout;
423 	}
424 	if (strchr(qname, '/')) {
425 		f2fs_err(sbi, "quotafile must be on filesystem root");
426 		goto errout;
427 	}
428 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
429 	set_opt(sbi, QUOTA);
430 	return 0;
431 errout:
432 	kfree(qname);
433 	return ret;
434 }
435 
f2fs_clear_qf_name(struct super_block * sb,int qtype)436 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
437 {
438 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
439 
440 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
441 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
442 		return -EINVAL;
443 	}
444 	kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
445 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
446 	return 0;
447 }
448 
f2fs_check_quota_options(struct f2fs_sb_info * sbi)449 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
450 {
451 	/*
452 	 * We do the test below only for project quotas. 'usrquota' and
453 	 * 'grpquota' mount options are allowed even without quota feature
454 	 * to support legacy quotas in quota files.
455 	 */
456 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
457 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
458 		return -1;
459 	}
460 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
461 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
462 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
463 		if (test_opt(sbi, USRQUOTA) &&
464 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
465 			clear_opt(sbi, USRQUOTA);
466 
467 		if (test_opt(sbi, GRPQUOTA) &&
468 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
469 			clear_opt(sbi, GRPQUOTA);
470 
471 		if (test_opt(sbi, PRJQUOTA) &&
472 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
473 			clear_opt(sbi, PRJQUOTA);
474 
475 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
476 				test_opt(sbi, PRJQUOTA)) {
477 			f2fs_err(sbi, "old and new quota format mixing");
478 			return -1;
479 		}
480 
481 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
482 			f2fs_err(sbi, "journaled quota format not specified");
483 			return -1;
484 		}
485 	}
486 
487 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
488 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
489 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
490 	}
491 	return 0;
492 }
493 #endif
494 
f2fs_set_test_dummy_encryption(struct super_block * sb,const char * opt,const substring_t * arg,bool is_remount)495 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
496 					  const char *opt,
497 					  const substring_t *arg,
498 					  bool is_remount)
499 {
500 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
501 #ifdef CONFIG_FS_ENCRYPTION
502 	int err;
503 
504 	if (!f2fs_sb_has_encrypt(sbi)) {
505 		f2fs_err(sbi, "Encrypt feature is off");
506 		return -EINVAL;
507 	}
508 
509 	/*
510 	 * This mount option is just for testing, and it's not worthwhile to
511 	 * implement the extra complexity (e.g. RCU protection) that would be
512 	 * needed to allow it to be set or changed during remount.  We do allow
513 	 * it to be specified during remount, but only if there is no change.
514 	 */
515 	if (is_remount && !F2FS_OPTION(sbi).dummy_enc_policy.policy) {
516 		f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
517 		return -EINVAL;
518 	}
519 	err = fscrypt_set_test_dummy_encryption(
520 		sb, arg->from, &F2FS_OPTION(sbi).dummy_enc_policy);
521 	if (err) {
522 		if (err == -EEXIST)
523 			f2fs_warn(sbi,
524 				  "Can't change test_dummy_encryption on remount");
525 		else if (err == -EINVAL)
526 			f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
527 				  opt);
528 		else
529 			f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
530 				  opt, err);
531 		return -EINVAL;
532 	}
533 	f2fs_warn(sbi, "Test dummy encryption mode enabled");
534 #else
535 	f2fs_warn(sbi, "Test dummy encryption mount option ignored");
536 #endif
537 	return 0;
538 }
539 
540 #ifdef CONFIG_F2FS_FS_COMPRESSION
541 #ifdef CONFIG_F2FS_FS_LZ4
f2fs_set_lz4hc_level(struct f2fs_sb_info * sbi,const char * str)542 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str)
543 {
544 #ifdef CONFIG_F2FS_FS_LZ4HC
545 	unsigned int level;
546 #endif
547 
548 	if (strlen(str) == 3) {
549 		F2FS_OPTION(sbi).compress_level = 0;
550 		return 0;
551 	}
552 
553 #ifdef CONFIG_F2FS_FS_LZ4HC
554 	str += 3;
555 
556 	if (str[0] != ':') {
557 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
558 		return -EINVAL;
559 	}
560 	if (kstrtouint(str + 1, 10, &level))
561 		return -EINVAL;
562 
563 	if (level < LZ4HC_MIN_CLEVEL || level > LZ4HC_MAX_CLEVEL) {
564 		f2fs_info(sbi, "invalid lz4hc compress level: %d", level);
565 		return -EINVAL;
566 	}
567 
568 	F2FS_OPTION(sbi).compress_level = level;
569 	return 0;
570 #else
571 	f2fs_info(sbi, "kernel doesn't support lz4hc compression");
572 	return -EINVAL;
573 #endif
574 }
575 #endif
576 
577 #ifdef CONFIG_F2FS_FS_ZSTD
f2fs_set_zstd_level(struct f2fs_sb_info * sbi,const char * str)578 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str)
579 {
580 	unsigned int level;
581 	int len = 4;
582 
583 	if (strlen(str) == len) {
584 		F2FS_OPTION(sbi).compress_level = 0;
585 		return 0;
586 	}
587 
588 	str += len;
589 
590 	if (str[0] != ':') {
591 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
592 		return -EINVAL;
593 	}
594 	if (kstrtouint(str + 1, 10, &level))
595 		return -EINVAL;
596 
597 	if (!level || level > ZSTD_maxCLevel()) {
598 		f2fs_info(sbi, "invalid zstd compress level: %d", level);
599 		return -EINVAL;
600 	}
601 
602 	F2FS_OPTION(sbi).compress_level = level;
603 	return 0;
604 }
605 #endif
606 #endif
607 
parse_options(struct super_block * sb,char * options,bool is_remount)608 static int parse_options(struct super_block *sb, char *options, bool is_remount)
609 {
610 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
611 	substring_t args[MAX_OPT_ARGS];
612 #ifdef CONFIG_F2FS_FS_COMPRESSION
613 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
614 	int ext_cnt;
615 #endif
616 	char *p, *name;
617 	int arg = 0;
618 	kuid_t uid;
619 	kgid_t gid;
620 	int ret;
621 
622 	if (!options)
623 		goto default_check;
624 
625 	while ((p = strsep(&options, ",")) != NULL) {
626 		int token;
627 
628 		if (!*p)
629 			continue;
630 		/*
631 		 * Initialize args struct so we know whether arg was
632 		 * found; some options take optional arguments.
633 		 */
634 		args[0].to = args[0].from = NULL;
635 		token = match_token(p, f2fs_tokens, args);
636 
637 		switch (token) {
638 		case Opt_gc_background:
639 			name = match_strdup(&args[0]);
640 
641 			if (!name)
642 				return -ENOMEM;
643 			if (!strcmp(name, "on")) {
644 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
645 			} else if (!strcmp(name, "off")) {
646 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
647 			} else if (!strcmp(name, "sync")) {
648 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
649 			} else {
650 				kfree(name);
651 				return -EINVAL;
652 			}
653 			kfree(name);
654 			break;
655 		case Opt_disable_roll_forward:
656 			set_opt(sbi, DISABLE_ROLL_FORWARD);
657 			break;
658 		case Opt_norecovery:
659 			/* this option mounts f2fs with ro */
660 			set_opt(sbi, NORECOVERY);
661 			if (!f2fs_readonly(sb))
662 				return -EINVAL;
663 			break;
664 		case Opt_discard:
665 			set_opt(sbi, DISCARD);
666 			break;
667 		case Opt_nodiscard:
668 			if (f2fs_sb_has_blkzoned(sbi)) {
669 				f2fs_warn(sbi, "discard is required for zoned block devices");
670 				return -EINVAL;
671 			}
672 			clear_opt(sbi, DISCARD);
673 			break;
674 		case Opt_noheap:
675 			set_opt(sbi, NOHEAP);
676 			break;
677 		case Opt_heap:
678 			clear_opt(sbi, NOHEAP);
679 			break;
680 #ifdef CONFIG_F2FS_FS_XATTR
681 		case Opt_user_xattr:
682 			set_opt(sbi, XATTR_USER);
683 			break;
684 		case Opt_nouser_xattr:
685 			clear_opt(sbi, XATTR_USER);
686 			break;
687 		case Opt_inline_xattr:
688 			set_opt(sbi, INLINE_XATTR);
689 			break;
690 		case Opt_noinline_xattr:
691 			clear_opt(sbi, INLINE_XATTR);
692 			break;
693 		case Opt_inline_xattr_size:
694 			if (args->from && match_int(args, &arg))
695 				return -EINVAL;
696 			set_opt(sbi, INLINE_XATTR_SIZE);
697 			F2FS_OPTION(sbi).inline_xattr_size = arg;
698 			break;
699 #else
700 		case Opt_user_xattr:
701 			f2fs_info(sbi, "user_xattr options not supported");
702 			break;
703 		case Opt_nouser_xattr:
704 			f2fs_info(sbi, "nouser_xattr options not supported");
705 			break;
706 		case Opt_inline_xattr:
707 			f2fs_info(sbi, "inline_xattr options not supported");
708 			break;
709 		case Opt_noinline_xattr:
710 			f2fs_info(sbi, "noinline_xattr options not supported");
711 			break;
712 #endif
713 #ifdef CONFIG_F2FS_FS_POSIX_ACL
714 		case Opt_acl:
715 			set_opt(sbi, POSIX_ACL);
716 			break;
717 		case Opt_noacl:
718 			clear_opt(sbi, POSIX_ACL);
719 			break;
720 #else
721 		case Opt_acl:
722 			f2fs_info(sbi, "acl options not supported");
723 			break;
724 		case Opt_noacl:
725 			f2fs_info(sbi, "noacl options not supported");
726 			break;
727 #endif
728 		case Opt_active_logs:
729 			if (args->from && match_int(args, &arg))
730 				return -EINVAL;
731 			if (arg != 2 && arg != 4 &&
732 				arg != NR_CURSEG_PERSIST_TYPE)
733 				return -EINVAL;
734 			F2FS_OPTION(sbi).active_logs = arg;
735 			break;
736 		case Opt_disable_ext_identify:
737 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
738 			break;
739 		case Opt_inline_data:
740 			set_opt(sbi, INLINE_DATA);
741 			break;
742 		case Opt_inline_dentry:
743 			set_opt(sbi, INLINE_DENTRY);
744 			break;
745 		case Opt_noinline_dentry:
746 			clear_opt(sbi, INLINE_DENTRY);
747 			break;
748 		case Opt_flush_merge:
749 			set_opt(sbi, FLUSH_MERGE);
750 			break;
751 		case Opt_noflush_merge:
752 			clear_opt(sbi, FLUSH_MERGE);
753 			break;
754 		case Opt_nobarrier:
755 			set_opt(sbi, NOBARRIER);
756 			break;
757 		case Opt_fastboot:
758 			set_opt(sbi, FASTBOOT);
759 			break;
760 		case Opt_extent_cache:
761 			set_opt(sbi, READ_EXTENT_CACHE);
762 			break;
763 		case Opt_noextent_cache:
764 			clear_opt(sbi, READ_EXTENT_CACHE);
765 			break;
766 		case Opt_noinline_data:
767 			clear_opt(sbi, INLINE_DATA);
768 			break;
769 		case Opt_data_flush:
770 			set_opt(sbi, DATA_FLUSH);
771 			break;
772 		case Opt_reserve_root:
773 			if (args->from && match_int(args, &arg))
774 				return -EINVAL;
775 			if (test_opt(sbi, RESERVE_ROOT)) {
776 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
777 					  F2FS_OPTION(sbi).root_reserved_blocks);
778 			} else {
779 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
780 				set_opt(sbi, RESERVE_ROOT);
781 			}
782 			break;
783 		case Opt_resuid:
784 			if (args->from && match_int(args, &arg))
785 				return -EINVAL;
786 			uid = make_kuid(current_user_ns(), arg);
787 			if (!uid_valid(uid)) {
788 				f2fs_err(sbi, "Invalid uid value %d", arg);
789 				return -EINVAL;
790 			}
791 			F2FS_OPTION(sbi).s_resuid = uid;
792 			break;
793 		case Opt_resgid:
794 			if (args->from && match_int(args, &arg))
795 				return -EINVAL;
796 			gid = make_kgid(current_user_ns(), arg);
797 			if (!gid_valid(gid)) {
798 				f2fs_err(sbi, "Invalid gid value %d", arg);
799 				return -EINVAL;
800 			}
801 			F2FS_OPTION(sbi).s_resgid = gid;
802 			break;
803 		case Opt_mode:
804 			name = match_strdup(&args[0]);
805 
806 			if (!name)
807 				return -ENOMEM;
808 			if (!strcmp(name, "adaptive")) {
809 				if (f2fs_sb_has_blkzoned(sbi)) {
810 					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
811 					kfree(name);
812 					return -EINVAL;
813 				}
814 				F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
815 			} else if (!strcmp(name, "lfs")) {
816 				F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
817 			} else {
818 				kfree(name);
819 				return -EINVAL;
820 			}
821 			kfree(name);
822 			break;
823 		case Opt_io_size_bits:
824 			if (args->from && match_int(args, &arg))
825 				return -EINVAL;
826 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
827 				f2fs_warn(sbi, "Not support %d, larger than %d",
828 					  1 << arg, BIO_MAX_PAGES);
829 				return -EINVAL;
830 			}
831 			F2FS_OPTION(sbi).write_io_size_bits = arg;
832 			break;
833 #ifdef CONFIG_F2FS_FAULT_INJECTION
834 		case Opt_fault_injection:
835 			if (args->from && match_int(args, &arg))
836 				return -EINVAL;
837 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
838 			set_opt(sbi, FAULT_INJECTION);
839 			break;
840 
841 		case Opt_fault_type:
842 			if (args->from && match_int(args, &arg))
843 				return -EINVAL;
844 			f2fs_build_fault_attr(sbi, 0, arg);
845 			set_opt(sbi, FAULT_INJECTION);
846 			break;
847 #else
848 		case Opt_fault_injection:
849 			f2fs_info(sbi, "fault_injection options not supported");
850 			break;
851 
852 		case Opt_fault_type:
853 			f2fs_info(sbi, "fault_type options not supported");
854 			break;
855 #endif
856 		case Opt_lazytime:
857 			sb->s_flags |= SB_LAZYTIME;
858 			break;
859 		case Opt_nolazytime:
860 			sb->s_flags &= ~SB_LAZYTIME;
861 			break;
862 #ifdef CONFIG_QUOTA
863 		case Opt_quota:
864 		case Opt_usrquota:
865 			set_opt(sbi, USRQUOTA);
866 			break;
867 		case Opt_grpquota:
868 			set_opt(sbi, GRPQUOTA);
869 			break;
870 		case Opt_prjquota:
871 			set_opt(sbi, PRJQUOTA);
872 			break;
873 		case Opt_usrjquota:
874 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
875 			if (ret)
876 				return ret;
877 			break;
878 		case Opt_grpjquota:
879 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
880 			if (ret)
881 				return ret;
882 			break;
883 		case Opt_prjjquota:
884 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
885 			if (ret)
886 				return ret;
887 			break;
888 		case Opt_offusrjquota:
889 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
890 			if (ret)
891 				return ret;
892 			break;
893 		case Opt_offgrpjquota:
894 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
895 			if (ret)
896 				return ret;
897 			break;
898 		case Opt_offprjjquota:
899 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
900 			if (ret)
901 				return ret;
902 			break;
903 		case Opt_jqfmt_vfsold:
904 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
905 			break;
906 		case Opt_jqfmt_vfsv0:
907 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
908 			break;
909 		case Opt_jqfmt_vfsv1:
910 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
911 			break;
912 		case Opt_noquota:
913 			clear_opt(sbi, QUOTA);
914 			clear_opt(sbi, USRQUOTA);
915 			clear_opt(sbi, GRPQUOTA);
916 			clear_opt(sbi, PRJQUOTA);
917 			break;
918 #else
919 		case Opt_quota:
920 		case Opt_usrquota:
921 		case Opt_grpquota:
922 		case Opt_prjquota:
923 		case Opt_usrjquota:
924 		case Opt_grpjquota:
925 		case Opt_prjjquota:
926 		case Opt_offusrjquota:
927 		case Opt_offgrpjquota:
928 		case Opt_offprjjquota:
929 		case Opt_jqfmt_vfsold:
930 		case Opt_jqfmt_vfsv0:
931 		case Opt_jqfmt_vfsv1:
932 		case Opt_noquota:
933 			f2fs_info(sbi, "quota operations not supported");
934 			break;
935 #endif
936 		case Opt_whint:
937 			name = match_strdup(&args[0]);
938 			if (!name)
939 				return -ENOMEM;
940 			if (!strcmp(name, "user-based")) {
941 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
942 			} else if (!strcmp(name, "off")) {
943 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
944 			} else if (!strcmp(name, "fs-based")) {
945 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
946 			} else {
947 				kfree(name);
948 				return -EINVAL;
949 			}
950 			kfree(name);
951 			break;
952 		case Opt_alloc:
953 			name = match_strdup(&args[0]);
954 			if (!name)
955 				return -ENOMEM;
956 
957 			if (!strcmp(name, "default")) {
958 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
959 			} else if (!strcmp(name, "reuse")) {
960 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
961 			} else {
962 				kfree(name);
963 				return -EINVAL;
964 			}
965 			kfree(name);
966 			break;
967 		case Opt_fsync:
968 			name = match_strdup(&args[0]);
969 			if (!name)
970 				return -ENOMEM;
971 			if (!strcmp(name, "posix")) {
972 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
973 			} else if (!strcmp(name, "strict")) {
974 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
975 			} else if (!strcmp(name, "nobarrier")) {
976 				F2FS_OPTION(sbi).fsync_mode =
977 							FSYNC_MODE_NOBARRIER;
978 			} else {
979 				kfree(name);
980 				return -EINVAL;
981 			}
982 			kfree(name);
983 			break;
984 		case Opt_test_dummy_encryption:
985 			ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
986 							     is_remount);
987 			if (ret)
988 				return ret;
989 			break;
990 		case Opt_inlinecrypt:
991 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
992 			sb->s_flags |= SB_INLINECRYPT;
993 #else
994 			f2fs_info(sbi, "inline encryption not supported");
995 #endif
996 			break;
997 		case Opt_checkpoint_disable_cap_perc:
998 			if (args->from && match_int(args, &arg))
999 				return -EINVAL;
1000 			if (arg < 0 || arg > 100)
1001 				return -EINVAL;
1002 			F2FS_OPTION(sbi).unusable_cap_perc = arg;
1003 			set_opt(sbi, DISABLE_CHECKPOINT);
1004 			break;
1005 		case Opt_checkpoint_disable_cap:
1006 			if (args->from && match_int(args, &arg))
1007 				return -EINVAL;
1008 			F2FS_OPTION(sbi).unusable_cap = arg;
1009 			set_opt(sbi, DISABLE_CHECKPOINT);
1010 			break;
1011 		case Opt_checkpoint_disable:
1012 			set_opt(sbi, DISABLE_CHECKPOINT);
1013 			break;
1014 		case Opt_checkpoint_enable:
1015 			clear_opt(sbi, DISABLE_CHECKPOINT);
1016 			break;
1017 		case Opt_checkpoint_merge:
1018 			set_opt(sbi, MERGE_CHECKPOINT);
1019 			break;
1020 		case Opt_nocheckpoint_merge:
1021 			clear_opt(sbi, MERGE_CHECKPOINT);
1022 			break;
1023 #ifdef CONFIG_F2FS_FS_COMPRESSION
1024 		case Opt_compress_algorithm:
1025 			if (!f2fs_sb_has_compression(sbi)) {
1026 				f2fs_info(sbi, "Image doesn't support compression");
1027 				break;
1028 			}
1029 			name = match_strdup(&args[0]);
1030 			if (!name)
1031 				return -ENOMEM;
1032 			if (!strcmp(name, "lzo")) {
1033 #ifdef CONFIG_F2FS_FS_LZO
1034 				F2FS_OPTION(sbi).compress_level = 0;
1035 				F2FS_OPTION(sbi).compress_algorithm =
1036 								COMPRESS_LZO;
1037 #else
1038 				f2fs_info(sbi, "kernel doesn't support lzo compression");
1039 #endif
1040 			} else if (!strncmp(name, "lz4", 3)) {
1041 #ifdef CONFIG_F2FS_FS_LZ4
1042 				ret = f2fs_set_lz4hc_level(sbi, name);
1043 				if (ret) {
1044 					kfree(name);
1045 					return -EINVAL;
1046 				}
1047 				F2FS_OPTION(sbi).compress_algorithm =
1048 								COMPRESS_LZ4;
1049 #else
1050 				f2fs_info(sbi, "kernel doesn't support lz4 compression");
1051 #endif
1052 			} else if (!strncmp(name, "zstd", 4)) {
1053 #ifdef CONFIG_F2FS_FS_ZSTD
1054 				ret = f2fs_set_zstd_level(sbi, name);
1055 				if (ret) {
1056 					kfree(name);
1057 					return -EINVAL;
1058 				}
1059 				F2FS_OPTION(sbi).compress_algorithm =
1060 								COMPRESS_ZSTD;
1061 #else
1062 				f2fs_info(sbi, "kernel doesn't support zstd compression");
1063 #endif
1064 			} else if (!strcmp(name, "lzo-rle")) {
1065 #ifdef CONFIG_F2FS_FS_LZORLE
1066 				F2FS_OPTION(sbi).compress_level = 0;
1067 				F2FS_OPTION(sbi).compress_algorithm =
1068 								COMPRESS_LZORLE;
1069 #else
1070 				f2fs_info(sbi, "kernel doesn't support lzorle compression");
1071 #endif
1072 			} else {
1073 				kfree(name);
1074 				return -EINVAL;
1075 			}
1076 			kfree(name);
1077 			break;
1078 		case Opt_compress_log_size:
1079 			if (!f2fs_sb_has_compression(sbi)) {
1080 				f2fs_info(sbi, "Image doesn't support compression");
1081 				break;
1082 			}
1083 			if (args->from && match_int(args, &arg))
1084 				return -EINVAL;
1085 			if (arg < MIN_COMPRESS_LOG_SIZE ||
1086 				arg > MAX_COMPRESS_LOG_SIZE) {
1087 				f2fs_err(sbi,
1088 					"Compress cluster log size is out of range");
1089 				return -EINVAL;
1090 			}
1091 			F2FS_OPTION(sbi).compress_log_size = arg;
1092 			break;
1093 		case Opt_compress_extension:
1094 			if (!f2fs_sb_has_compression(sbi)) {
1095 				f2fs_info(sbi, "Image doesn't support compression");
1096 				break;
1097 			}
1098 			name = match_strdup(&args[0]);
1099 			if (!name)
1100 				return -ENOMEM;
1101 
1102 			ext = F2FS_OPTION(sbi).extensions;
1103 			ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
1104 
1105 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
1106 				ext_cnt >= COMPRESS_EXT_NUM) {
1107 				f2fs_err(sbi,
1108 					"invalid extension length/number");
1109 				kfree(name);
1110 				return -EINVAL;
1111 			}
1112 
1113 			strcpy(ext[ext_cnt], name);
1114 			F2FS_OPTION(sbi).compress_ext_cnt++;
1115 			kfree(name);
1116 			break;
1117 		case Opt_compress_chksum:
1118 			F2FS_OPTION(sbi).compress_chksum = true;
1119 			break;
1120 		case Opt_compress_mode:
1121 			name = match_strdup(&args[0]);
1122 			if (!name)
1123 				return -ENOMEM;
1124 			if (!strcmp(name, "fs")) {
1125 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
1126 			} else if (!strcmp(name, "user")) {
1127 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER;
1128 			} else {
1129 				kfree(name);
1130 				return -EINVAL;
1131 			}
1132 			kfree(name);
1133 			break;
1134 		case Opt_compress_cache:
1135 			set_opt(sbi, COMPRESS_CACHE);
1136 			break;
1137 #else
1138 		case Opt_compress_algorithm:
1139 		case Opt_compress_log_size:
1140 		case Opt_compress_extension:
1141 		case Opt_compress_chksum:
1142 		case Opt_compress_mode:
1143 		case Opt_compress_cache:
1144 			f2fs_info(sbi, "compression options not supported");
1145 			break;
1146 #endif
1147 		case Opt_atgc:
1148 			set_opt(sbi, ATGC);
1149 			break;
1150 		case Opt_gc_merge:
1151 			set_opt(sbi, GC_MERGE);
1152 			break;
1153 		case Opt_nogc_merge:
1154 			clear_opt(sbi, GC_MERGE);
1155 			break;
1156 		case Opt_age_extent_cache:
1157 			set_opt(sbi, AGE_EXTENT_CACHE);
1158 			break;
1159 		case Opt_memory_mode:
1160 			name = match_strdup(&args[0]);
1161 			if (!name)
1162 				return -ENOMEM;
1163 			if (!strcmp(name, "normal")) {
1164 				F2FS_OPTION(sbi).memory_mode =
1165 						MEMORY_MODE_NORMAL;
1166 			} else if (!strcmp(name, "low")) {
1167 				F2FS_OPTION(sbi).memory_mode =
1168 						MEMORY_MODE_LOW;
1169 			} else {
1170 				kfree(name);
1171 				return -EINVAL;
1172 			}
1173 			kfree(name);
1174 			break;
1175 		default:
1176 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
1177 				 p);
1178 			return -EINVAL;
1179 		}
1180 	}
1181 default_check:
1182 #ifdef CONFIG_QUOTA
1183 	if (f2fs_check_quota_options(sbi))
1184 		return -EINVAL;
1185 #else
1186 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
1187 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1188 		return -EINVAL;
1189 	}
1190 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
1191 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1192 		return -EINVAL;
1193 	}
1194 #endif
1195 #ifndef CONFIG_UNICODE
1196 	if (f2fs_sb_has_casefold(sbi)) {
1197 		f2fs_err(sbi,
1198 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
1199 		return -EINVAL;
1200 	}
1201 #endif
1202 	/*
1203 	 * The BLKZONED feature indicates that the drive was formatted with
1204 	 * zone alignment optimization. This is optional for host-aware
1205 	 * devices, but mandatory for host-managed zoned block devices.
1206 	 */
1207 #ifndef CONFIG_BLK_DEV_ZONED
1208 	if (f2fs_sb_has_blkzoned(sbi)) {
1209 		f2fs_err(sbi, "Zoned block device support is not enabled");
1210 		return -EINVAL;
1211 	}
1212 #endif
1213 
1214 	if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
1215 		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
1216 			 F2FS_IO_SIZE_KB(sbi));
1217 		return -EINVAL;
1218 	}
1219 
1220 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
1221 		int min_size, max_size;
1222 
1223 		if (!f2fs_sb_has_extra_attr(sbi) ||
1224 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
1225 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
1226 			return -EINVAL;
1227 		}
1228 		if (!test_opt(sbi, INLINE_XATTR)) {
1229 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1230 			return -EINVAL;
1231 		}
1232 
1233 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
1234 		max_size = MAX_INLINE_XATTR_SIZE;
1235 
1236 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1237 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1238 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1239 				 min_size, max_size);
1240 			return -EINVAL;
1241 		}
1242 	}
1243 
1244 	if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
1245 		f2fs_err(sbi, "LFS not compatible with checkpoint=disable");
1246 		return -EINVAL;
1247 	}
1248 
1249 	/* Not pass down write hints if the number of active logs is lesser
1250 	 * than NR_CURSEG_PERSIST_TYPE.
1251 	 */
1252 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_PERSIST_TYPE)
1253 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1254 
1255 	if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) {
1256 		f2fs_err(sbi, "Allow to mount readonly mode only");
1257 		return -EROFS;
1258 	}
1259 	return 0;
1260 }
1261 
f2fs_alloc_inode(struct super_block * sb)1262 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1263 {
1264 	struct f2fs_inode_info *fi;
1265 
1266 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
1267 	if (!fi)
1268 		return NULL;
1269 
1270 	init_once((void *) fi);
1271 
1272 	/* Initialize f2fs-specific inode info */
1273 	atomic_set(&fi->dirty_pages, 0);
1274 	atomic_set(&fi->i_compr_blocks, 0);
1275 	init_f2fs_rwsem(&fi->i_sem);
1276 	spin_lock_init(&fi->i_size_lock);
1277 	INIT_LIST_HEAD(&fi->dirty_list);
1278 	INIT_LIST_HEAD(&fi->gdirty_list);
1279 	INIT_LIST_HEAD(&fi->inmem_ilist);
1280 	INIT_LIST_HEAD(&fi->inmem_pages);
1281 	mutex_init(&fi->inmem_lock);
1282 	init_f2fs_rwsem(&fi->i_gc_rwsem[READ]);
1283 	init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]);
1284 	init_f2fs_rwsem(&fi->i_mmap_sem);
1285 	init_f2fs_rwsem(&fi->i_xattr_sem);
1286 
1287 	/* Will be used by directory only */
1288 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
1289 
1290 	return &fi->vfs_inode;
1291 }
1292 
f2fs_drop_inode(struct inode * inode)1293 static int f2fs_drop_inode(struct inode *inode)
1294 {
1295 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1296 	int ret;
1297 
1298 	/*
1299 	 * during filesystem shutdown, if checkpoint is disabled,
1300 	 * drop useless meta/node dirty pages.
1301 	 */
1302 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1303 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1304 			inode->i_ino == F2FS_META_INO(sbi)) {
1305 			trace_f2fs_drop_inode(inode, 1);
1306 			return 1;
1307 		}
1308 	}
1309 
1310 	/*
1311 	 * This is to avoid a deadlock condition like below.
1312 	 * writeback_single_inode(inode)
1313 	 *  - f2fs_write_data_page
1314 	 *    - f2fs_gc -> iput -> evict
1315 	 *       - inode_wait_for_writeback(inode)
1316 	 */
1317 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1318 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1319 			/* to avoid evict_inode call simultaneously */
1320 			atomic_inc(&inode->i_count);
1321 			spin_unlock(&inode->i_lock);
1322 
1323 			/* some remained atomic pages should discarded */
1324 			if (f2fs_is_atomic_file(inode))
1325 				f2fs_drop_inmem_pages(inode);
1326 
1327 			/* should remain fi->extent_tree for writepage */
1328 			f2fs_destroy_extent_node(inode);
1329 
1330 			sb_start_intwrite(inode->i_sb);
1331 			f2fs_i_size_write(inode, 0);
1332 
1333 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1334 					inode, NULL, 0, DATA);
1335 			truncate_inode_pages_final(inode->i_mapping);
1336 
1337 			if (F2FS_HAS_BLOCKS(inode))
1338 				f2fs_truncate(inode);
1339 
1340 			sb_end_intwrite(inode->i_sb);
1341 
1342 			spin_lock(&inode->i_lock);
1343 			atomic_dec(&inode->i_count);
1344 		}
1345 		trace_f2fs_drop_inode(inode, 0);
1346 		return 0;
1347 	}
1348 	ret = generic_drop_inode(inode);
1349 	if (!ret)
1350 		ret = fscrypt_drop_inode(inode);
1351 	trace_f2fs_drop_inode(inode, ret);
1352 	return ret;
1353 }
1354 
f2fs_inode_dirtied(struct inode * inode,bool sync)1355 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1356 {
1357 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1358 	int ret = 0;
1359 
1360 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1361 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1362 		ret = 1;
1363 	} else {
1364 		set_inode_flag(inode, FI_DIRTY_INODE);
1365 		stat_inc_dirty_inode(sbi, DIRTY_META);
1366 	}
1367 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1368 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1369 				&sbi->inode_list[DIRTY_META]);
1370 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1371 	}
1372 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1373 	return ret;
1374 }
1375 
f2fs_inode_synced(struct inode * inode)1376 void f2fs_inode_synced(struct inode *inode)
1377 {
1378 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1379 
1380 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1381 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1382 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1383 		return;
1384 	}
1385 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1386 		list_del_init(&F2FS_I(inode)->gdirty_list);
1387 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1388 	}
1389 	clear_inode_flag(inode, FI_DIRTY_INODE);
1390 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1391 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1392 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1393 }
1394 
1395 /*
1396  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1397  *
1398  * We should call set_dirty_inode to write the dirty inode through write_inode.
1399  */
f2fs_dirty_inode(struct inode * inode,int flags)1400 static void f2fs_dirty_inode(struct inode *inode, int flags)
1401 {
1402 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1403 
1404 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1405 			inode->i_ino == F2FS_META_INO(sbi))
1406 		return;
1407 
1408 	if (flags == I_DIRTY_TIME)
1409 		return;
1410 
1411 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1412 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1413 
1414 	f2fs_inode_dirtied(inode, false);
1415 }
1416 
f2fs_free_inode(struct inode * inode)1417 static void f2fs_free_inode(struct inode *inode)
1418 {
1419 	fscrypt_free_inode(inode);
1420 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1421 }
1422 
destroy_percpu_info(struct f2fs_sb_info * sbi)1423 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1424 {
1425 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1426 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1427 }
1428 
destroy_device_list(struct f2fs_sb_info * sbi)1429 static void destroy_device_list(struct f2fs_sb_info *sbi)
1430 {
1431 	int i;
1432 
1433 	for (i = 0; i < sbi->s_ndevs; i++) {
1434 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1435 #ifdef CONFIG_BLK_DEV_ZONED
1436 		kvfree(FDEV(i).blkz_seq);
1437 		kfree(FDEV(i).zone_capacity_blocks);
1438 #endif
1439 	}
1440 	kvfree(sbi->devs);
1441 }
1442 
f2fs_put_super(struct super_block * sb)1443 static void f2fs_put_super(struct super_block *sb)
1444 {
1445 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1446 	int i;
1447 	bool dropped;
1448 
1449 	/* unregister procfs/sysfs entries in advance to avoid race case */
1450 	f2fs_unregister_sysfs(sbi);
1451 
1452 	f2fs_quota_off_umount(sb);
1453 
1454 	/* prevent remaining shrinker jobs */
1455 	mutex_lock(&sbi->umount_mutex);
1456 
1457 	/*
1458 	 * flush all issued checkpoints and stop checkpoint issue thread.
1459 	 * after then, all checkpoints should be done by each process context.
1460 	 */
1461 	f2fs_stop_ckpt_thread(sbi);
1462 
1463 	/*
1464 	 * We don't need to do checkpoint when superblock is clean.
1465 	 * But, the previous checkpoint was not done by umount, it needs to do
1466 	 * clean checkpoint again.
1467 	 */
1468 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1469 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1470 		struct cp_control cpc = {
1471 			.reason = CP_UMOUNT,
1472 		};
1473 		f2fs_write_checkpoint(sbi, &cpc);
1474 	}
1475 
1476 	/* be sure to wait for any on-going discard commands */
1477 	dropped = f2fs_issue_discard_timeout(sbi);
1478 
1479 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1480 					!sbi->discard_blks && !dropped) {
1481 		struct cp_control cpc = {
1482 			.reason = CP_UMOUNT | CP_TRIMMED,
1483 		};
1484 		f2fs_write_checkpoint(sbi, &cpc);
1485 	}
1486 
1487 	/*
1488 	 * normally superblock is clean, so we need to release this.
1489 	 * In addition, EIO will skip do checkpoint, we need this as well.
1490 	 */
1491 	f2fs_release_ino_entry(sbi, true);
1492 
1493 	f2fs_leave_shrinker(sbi);
1494 	mutex_unlock(&sbi->umount_mutex);
1495 
1496 	/* our cp_error case, we can wait for any writeback page */
1497 	f2fs_flush_merged_writes(sbi);
1498 
1499 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1500 
1501 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1502 
1503 	f2fs_destroy_compress_inode(sbi);
1504 
1505 	iput(sbi->node_inode);
1506 	sbi->node_inode = NULL;
1507 
1508 	iput(sbi->meta_inode);
1509 	sbi->meta_inode = NULL;
1510 
1511 	/*
1512 	 * iput() can update stat information, if f2fs_write_checkpoint()
1513 	 * above failed with error.
1514 	 */
1515 	f2fs_destroy_stats(sbi);
1516 
1517 	/* destroy f2fs internal modules */
1518 	f2fs_destroy_node_manager(sbi);
1519 	f2fs_destroy_segment_manager(sbi);
1520 
1521 	f2fs_destroy_post_read_wq(sbi);
1522 
1523 	kvfree(sbi->ckpt);
1524 
1525 	sb->s_fs_info = NULL;
1526 	if (sbi->s_chksum_driver)
1527 		crypto_free_shash(sbi->s_chksum_driver);
1528 	kfree(sbi->raw_super);
1529 
1530 	destroy_device_list(sbi);
1531 	f2fs_destroy_page_array_cache(sbi);
1532 	f2fs_destroy_xattr_caches(sbi);
1533 	mempool_destroy(sbi->write_io_dummy);
1534 #ifdef CONFIG_QUOTA
1535 	for (i = 0; i < MAXQUOTAS; i++)
1536 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1537 #endif
1538 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1539 	destroy_percpu_info(sbi);
1540 	for (i = 0; i < NR_PAGE_TYPE; i++)
1541 		kvfree(sbi->write_io[i]);
1542 #ifdef CONFIG_UNICODE
1543 	utf8_unload(sb->s_encoding);
1544 #endif
1545 	kfree(sbi);
1546 }
1547 
f2fs_sync_fs(struct super_block * sb,int sync)1548 int f2fs_sync_fs(struct super_block *sb, int sync)
1549 {
1550 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1551 	int err = 0;
1552 
1553 	if (unlikely(f2fs_cp_error(sbi)))
1554 		return 0;
1555 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1556 		return 0;
1557 
1558 	trace_f2fs_sync_fs(sb, sync);
1559 
1560 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1561 		return -EAGAIN;
1562 
1563 	if (sync) {
1564 		err = f2fs_issue_checkpoint(sbi);
1565 		atomic_set(&sbi->no_cp_fsync_pages, 0);
1566 	}
1567 
1568 	return err;
1569 }
1570 
f2fs_freeze(struct super_block * sb)1571 static int f2fs_freeze(struct super_block *sb)
1572 {
1573 	if (f2fs_readonly(sb))
1574 		return 0;
1575 
1576 	/* IO error happened before */
1577 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1578 		return -EIO;
1579 
1580 	/* must be clean, since sync_filesystem() was already called */
1581 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1582 		return -EINVAL;
1583 
1584 	/* Let's flush checkpoints and stop the thread. */
1585 	f2fs_flush_ckpt_thread(F2FS_SB(sb));
1586 
1587 	/* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */
1588 	set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING);
1589 	return 0;
1590 }
1591 
f2fs_unfreeze(struct super_block * sb)1592 static int f2fs_unfreeze(struct super_block *sb)
1593 {
1594 	clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING);
1595 	return 0;
1596 }
1597 
1598 #ifdef CONFIG_QUOTA
f2fs_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)1599 static int f2fs_statfs_project(struct super_block *sb,
1600 				kprojid_t projid, struct kstatfs *buf)
1601 {
1602 	struct kqid qid;
1603 	struct dquot *dquot;
1604 	u64 limit;
1605 	u64 curblock;
1606 
1607 	qid = make_kqid_projid(projid);
1608 	dquot = dqget(sb, qid);
1609 	if (IS_ERR(dquot))
1610 		return PTR_ERR(dquot);
1611 	spin_lock(&dquot->dq_dqb_lock);
1612 
1613 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1614 					dquot->dq_dqb.dqb_bhardlimit);
1615 	if (limit)
1616 		limit >>= sb->s_blocksize_bits;
1617 
1618 	if (limit && buf->f_blocks > limit) {
1619 		curblock = (dquot->dq_dqb.dqb_curspace +
1620 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1621 		buf->f_blocks = limit;
1622 		buf->f_bfree = buf->f_bavail =
1623 			(buf->f_blocks > curblock) ?
1624 			 (buf->f_blocks - curblock) : 0;
1625 	}
1626 
1627 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1628 					dquot->dq_dqb.dqb_ihardlimit);
1629 
1630 	if (limit && buf->f_files > limit) {
1631 		buf->f_files = limit;
1632 		buf->f_ffree =
1633 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1634 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1635 	}
1636 
1637 	spin_unlock(&dquot->dq_dqb_lock);
1638 	dqput(dquot);
1639 	return 0;
1640 }
1641 #endif
1642 
f2fs_statfs(struct dentry * dentry,struct kstatfs * buf)1643 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1644 {
1645 	struct super_block *sb = dentry->d_sb;
1646 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1647 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1648 	block_t total_count, user_block_count, start_count;
1649 	u64 avail_node_count;
1650 
1651 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1652 	user_block_count = sbi->user_block_count;
1653 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1654 	buf->f_type = F2FS_SUPER_MAGIC;
1655 	buf->f_bsize = sbi->blocksize;
1656 
1657 	/* f_blocks should not include overhead of filesystem */
1658 	buf->f_blocks = user_block_count;
1659 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1660 						sbi->current_reserved_blocks;
1661 
1662 	spin_lock(&sbi->stat_lock);
1663 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1664 		buf->f_bfree = 0;
1665 	else
1666 		buf->f_bfree -= sbi->unusable_block_count;
1667 	spin_unlock(&sbi->stat_lock);
1668 
1669 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1670 		buf->f_bavail = buf->f_bfree -
1671 				F2FS_OPTION(sbi).root_reserved_blocks;
1672 	else
1673 		buf->f_bavail = 0;
1674 
1675 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1676 
1677 	if (avail_node_count > user_block_count) {
1678 		buf->f_files = user_block_count;
1679 		buf->f_ffree = buf->f_bavail;
1680 	} else {
1681 		buf->f_files = avail_node_count;
1682 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1683 					buf->f_bavail);
1684 	}
1685 
1686 	buf->f_namelen = F2FS_NAME_LEN;
1687 	buf->f_fsid    = u64_to_fsid(id);
1688 
1689 #ifdef CONFIG_QUOTA
1690 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1691 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1692 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1693 	}
1694 #endif
1695 	return 0;
1696 }
1697 
f2fs_show_quota_options(struct seq_file * seq,struct super_block * sb)1698 static inline void f2fs_show_quota_options(struct seq_file *seq,
1699 					   struct super_block *sb)
1700 {
1701 #ifdef CONFIG_QUOTA
1702 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1703 
1704 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1705 		char *fmtname = "";
1706 
1707 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1708 		case QFMT_VFS_OLD:
1709 			fmtname = "vfsold";
1710 			break;
1711 		case QFMT_VFS_V0:
1712 			fmtname = "vfsv0";
1713 			break;
1714 		case QFMT_VFS_V1:
1715 			fmtname = "vfsv1";
1716 			break;
1717 		}
1718 		seq_printf(seq, ",jqfmt=%s", fmtname);
1719 	}
1720 
1721 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1722 		seq_show_option(seq, "usrjquota",
1723 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1724 
1725 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1726 		seq_show_option(seq, "grpjquota",
1727 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1728 
1729 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1730 		seq_show_option(seq, "prjjquota",
1731 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1732 #endif
1733 }
1734 
1735 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_show_compress_options(struct seq_file * seq,struct super_block * sb)1736 static inline void f2fs_show_compress_options(struct seq_file *seq,
1737 							struct super_block *sb)
1738 {
1739 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1740 	char *algtype = "";
1741 	int i;
1742 
1743 	if (!f2fs_sb_has_compression(sbi))
1744 		return;
1745 
1746 	switch (F2FS_OPTION(sbi).compress_algorithm) {
1747 	case COMPRESS_LZO:
1748 		algtype = "lzo";
1749 		break;
1750 	case COMPRESS_LZ4:
1751 		algtype = "lz4";
1752 		break;
1753 	case COMPRESS_ZSTD:
1754 		algtype = "zstd";
1755 		break;
1756 	case COMPRESS_LZORLE:
1757 		algtype = "lzo-rle";
1758 		break;
1759 	}
1760 	seq_printf(seq, ",compress_algorithm=%s", algtype);
1761 
1762 	if (F2FS_OPTION(sbi).compress_level)
1763 		seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level);
1764 
1765 	seq_printf(seq, ",compress_log_size=%u",
1766 			F2FS_OPTION(sbi).compress_log_size);
1767 
1768 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1769 		seq_printf(seq, ",compress_extension=%s",
1770 			F2FS_OPTION(sbi).extensions[i]);
1771 	}
1772 
1773 	if (F2FS_OPTION(sbi).compress_chksum)
1774 		seq_puts(seq, ",compress_chksum");
1775 
1776 	if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS)
1777 		seq_printf(seq, ",compress_mode=%s", "fs");
1778 	else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER)
1779 		seq_printf(seq, ",compress_mode=%s", "user");
1780 
1781 	if (test_opt(sbi, COMPRESS_CACHE))
1782 		seq_puts(seq, ",compress_cache");
1783 }
1784 #endif
1785 
f2fs_show_options(struct seq_file * seq,struct dentry * root)1786 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1787 {
1788 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1789 
1790 	if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1791 		seq_printf(seq, ",background_gc=%s", "sync");
1792 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1793 		seq_printf(seq, ",background_gc=%s", "on");
1794 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1795 		seq_printf(seq, ",background_gc=%s", "off");
1796 
1797 	if (test_opt(sbi, GC_MERGE))
1798 		seq_puts(seq, ",gc_merge");
1799 
1800 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1801 		seq_puts(seq, ",disable_roll_forward");
1802 	if (test_opt(sbi, NORECOVERY))
1803 		seq_puts(seq, ",norecovery");
1804 	if (test_opt(sbi, DISCARD))
1805 		seq_puts(seq, ",discard");
1806 	else
1807 		seq_puts(seq, ",nodiscard");
1808 	if (test_opt(sbi, NOHEAP))
1809 		seq_puts(seq, ",no_heap");
1810 	else
1811 		seq_puts(seq, ",heap");
1812 #ifdef CONFIG_F2FS_FS_XATTR
1813 	if (test_opt(sbi, XATTR_USER))
1814 		seq_puts(seq, ",user_xattr");
1815 	else
1816 		seq_puts(seq, ",nouser_xattr");
1817 	if (test_opt(sbi, INLINE_XATTR))
1818 		seq_puts(seq, ",inline_xattr");
1819 	else
1820 		seq_puts(seq, ",noinline_xattr");
1821 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1822 		seq_printf(seq, ",inline_xattr_size=%u",
1823 					F2FS_OPTION(sbi).inline_xattr_size);
1824 #endif
1825 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1826 	if (test_opt(sbi, POSIX_ACL))
1827 		seq_puts(seq, ",acl");
1828 	else
1829 		seq_puts(seq, ",noacl");
1830 #endif
1831 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1832 		seq_puts(seq, ",disable_ext_identify");
1833 	if (test_opt(sbi, INLINE_DATA))
1834 		seq_puts(seq, ",inline_data");
1835 	else
1836 		seq_puts(seq, ",noinline_data");
1837 	if (test_opt(sbi, INLINE_DENTRY))
1838 		seq_puts(seq, ",inline_dentry");
1839 	else
1840 		seq_puts(seq, ",noinline_dentry");
1841 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1842 		seq_puts(seq, ",flush_merge");
1843 	if (test_opt(sbi, NOBARRIER))
1844 		seq_puts(seq, ",nobarrier");
1845 	if (test_opt(sbi, FASTBOOT))
1846 		seq_puts(seq, ",fastboot");
1847 	if (test_opt(sbi, READ_EXTENT_CACHE))
1848 		seq_puts(seq, ",extent_cache");
1849 	else
1850 		seq_puts(seq, ",noextent_cache");
1851 	if (test_opt(sbi, AGE_EXTENT_CACHE))
1852 		seq_puts(seq, ",age_extent_cache");
1853 	if (test_opt(sbi, DATA_FLUSH))
1854 		seq_puts(seq, ",data_flush");
1855 
1856 	seq_puts(seq, ",mode=");
1857 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1858 		seq_puts(seq, "adaptive");
1859 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1860 		seq_puts(seq, "lfs");
1861 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1862 	if (test_opt(sbi, RESERVE_ROOT))
1863 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1864 				F2FS_OPTION(sbi).root_reserved_blocks,
1865 				from_kuid_munged(&init_user_ns,
1866 					F2FS_OPTION(sbi).s_resuid),
1867 				from_kgid_munged(&init_user_ns,
1868 					F2FS_OPTION(sbi).s_resgid));
1869 	if (F2FS_IO_SIZE_BITS(sbi))
1870 		seq_printf(seq, ",io_bits=%u",
1871 				F2FS_OPTION(sbi).write_io_size_bits);
1872 #ifdef CONFIG_F2FS_FAULT_INJECTION
1873 	if (test_opt(sbi, FAULT_INJECTION)) {
1874 		seq_printf(seq, ",fault_injection=%u",
1875 				F2FS_OPTION(sbi).fault_info.inject_rate);
1876 		seq_printf(seq, ",fault_type=%u",
1877 				F2FS_OPTION(sbi).fault_info.inject_type);
1878 	}
1879 #endif
1880 #ifdef CONFIG_QUOTA
1881 	if (test_opt(sbi, QUOTA))
1882 		seq_puts(seq, ",quota");
1883 	if (test_opt(sbi, USRQUOTA))
1884 		seq_puts(seq, ",usrquota");
1885 	if (test_opt(sbi, GRPQUOTA))
1886 		seq_puts(seq, ",grpquota");
1887 	if (test_opt(sbi, PRJQUOTA))
1888 		seq_puts(seq, ",prjquota");
1889 #endif
1890 	f2fs_show_quota_options(seq, sbi->sb);
1891 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1892 		seq_printf(seq, ",whint_mode=%s", "user-based");
1893 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1894 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1895 
1896 	fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
1897 
1898 	if (sbi->sb->s_flags & SB_INLINECRYPT)
1899 		seq_puts(seq, ",inlinecrypt");
1900 
1901 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1902 		seq_printf(seq, ",alloc_mode=%s", "default");
1903 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1904 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1905 
1906 	if (test_opt(sbi, DISABLE_CHECKPOINT))
1907 		seq_printf(seq, ",checkpoint=disable:%u",
1908 				F2FS_OPTION(sbi).unusable_cap);
1909 	if (test_opt(sbi, MERGE_CHECKPOINT))
1910 		seq_puts(seq, ",checkpoint_merge");
1911 	else
1912 		seq_puts(seq, ",nocheckpoint_merge");
1913 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1914 		seq_printf(seq, ",fsync_mode=%s", "posix");
1915 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1916 		seq_printf(seq, ",fsync_mode=%s", "strict");
1917 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1918 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1919 
1920 #ifdef CONFIG_F2FS_FS_COMPRESSION
1921 	f2fs_show_compress_options(seq, sbi->sb);
1922 #endif
1923 
1924 	if (test_opt(sbi, ATGC))
1925 		seq_puts(seq, ",atgc");
1926 
1927 	if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL)
1928 		seq_printf(seq, ",memory=%s", "normal");
1929 	else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW)
1930 		seq_printf(seq, ",memory=%s", "low");
1931 
1932 	return 0;
1933 }
1934 
default_options(struct f2fs_sb_info * sbi)1935 static void default_options(struct f2fs_sb_info *sbi)
1936 {
1937 	/* init some FS parameters */
1938 	if (f2fs_sb_has_readonly(sbi))
1939 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE;
1940 	else
1941 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
1942 
1943 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1944 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1945 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1946 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1947 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1948 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1949 	F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
1950 	F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
1951 	F2FS_OPTION(sbi).compress_ext_cnt = 0;
1952 	F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
1953 	F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
1954 	F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL;
1955 
1956 	sbi->sb->s_flags &= ~SB_INLINECRYPT;
1957 
1958 	set_opt(sbi, INLINE_XATTR);
1959 	set_opt(sbi, INLINE_DATA);
1960 	set_opt(sbi, INLINE_DENTRY);
1961 	set_opt(sbi, READ_EXTENT_CACHE);
1962 	set_opt(sbi, NOHEAP);
1963 	clear_opt(sbi, DISABLE_CHECKPOINT);
1964 	set_opt(sbi, MERGE_CHECKPOINT);
1965 	F2FS_OPTION(sbi).unusable_cap = 0;
1966 	sbi->sb->s_flags |= SB_LAZYTIME;
1967 	set_opt(sbi, FLUSH_MERGE);
1968 	set_opt(sbi, DISCARD);
1969 	if (f2fs_sb_has_blkzoned(sbi))
1970 		F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
1971 	else
1972 		F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
1973 
1974 #ifdef CONFIG_F2FS_FS_XATTR
1975 	set_opt(sbi, XATTR_USER);
1976 #endif
1977 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1978 	set_opt(sbi, POSIX_ACL);
1979 #endif
1980 
1981 	f2fs_build_fault_attr(sbi, 0, 0);
1982 }
1983 
1984 #ifdef CONFIG_QUOTA
1985 static int f2fs_enable_quotas(struct super_block *sb);
1986 #endif
1987 
f2fs_disable_checkpoint(struct f2fs_sb_info * sbi)1988 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1989 {
1990 	unsigned int s_flags = sbi->sb->s_flags;
1991 	struct cp_control cpc;
1992 	int err = 0;
1993 	int ret;
1994 	block_t unusable;
1995 
1996 	if (s_flags & SB_RDONLY) {
1997 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
1998 		return -EINVAL;
1999 	}
2000 	sbi->sb->s_flags |= SB_ACTIVE;
2001 
2002 	f2fs_update_time(sbi, DISABLE_TIME);
2003 
2004 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
2005 		f2fs_down_write(&sbi->gc_lock);
2006 		err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
2007 		if (err == -ENODATA) {
2008 			err = 0;
2009 			break;
2010 		}
2011 		if (err && err != -EAGAIN)
2012 			break;
2013 	}
2014 
2015 	ret = sync_filesystem(sbi->sb);
2016 	if (ret || err) {
2017 		err = ret ? ret : err;
2018 		goto restore_flag;
2019 	}
2020 
2021 	unusable = f2fs_get_unusable_blocks(sbi);
2022 	if (f2fs_disable_cp_again(sbi, unusable)) {
2023 		err = -EAGAIN;
2024 		goto restore_flag;
2025 	}
2026 
2027 	f2fs_down_write(&sbi->gc_lock);
2028 	cpc.reason = CP_PAUSE;
2029 	set_sbi_flag(sbi, SBI_CP_DISABLED);
2030 	err = f2fs_write_checkpoint(sbi, &cpc);
2031 	if (err)
2032 		goto out_unlock;
2033 
2034 	spin_lock(&sbi->stat_lock);
2035 	sbi->unusable_block_count = unusable;
2036 	spin_unlock(&sbi->stat_lock);
2037 
2038 out_unlock:
2039 	f2fs_up_write(&sbi->gc_lock);
2040 restore_flag:
2041 	sbi->sb->s_flags = s_flags;	/* Restore SB_RDONLY status */
2042 	return err;
2043 }
2044 
f2fs_enable_checkpoint(struct f2fs_sb_info * sbi)2045 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
2046 {
2047 	int retry = DEFAULT_RETRY_IO_COUNT;
2048 
2049 	/* we should flush all the data to keep data consistency */
2050 	do {
2051 		sync_inodes_sb(sbi->sb);
2052 		cond_resched();
2053 		congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2054 	} while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--);
2055 
2056 	if (unlikely(retry < 0))
2057 		f2fs_warn(sbi, "checkpoint=enable has some unwritten data.");
2058 
2059 	f2fs_down_write(&sbi->gc_lock);
2060 	f2fs_dirty_to_prefree(sbi);
2061 
2062 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
2063 	set_sbi_flag(sbi, SBI_IS_DIRTY);
2064 	f2fs_up_write(&sbi->gc_lock);
2065 
2066 	f2fs_sync_fs(sbi->sb, 1);
2067 
2068 	/* Let's ensure there's no pending checkpoint anymore */
2069 	f2fs_flush_ckpt_thread(sbi);
2070 }
2071 
f2fs_remount(struct super_block * sb,int * flags,char * data)2072 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
2073 {
2074 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2075 	struct f2fs_mount_info org_mount_opt;
2076 	unsigned long old_sb_flags;
2077 	int err;
2078 	bool need_restart_gc = false, need_stop_gc = false;
2079 	bool need_restart_ckpt = false, need_stop_ckpt = false;
2080 	bool need_restart_flush = false, need_stop_flush = false;
2081 	bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE);
2082 	bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE);
2083 	bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
2084 	bool no_io_align = !F2FS_IO_ALIGNED(sbi);
2085 	bool no_atgc = !test_opt(sbi, ATGC);
2086 	bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE);
2087 	bool checkpoint_changed;
2088 #ifdef CONFIG_QUOTA
2089 	int i, j;
2090 #endif
2091 
2092 	/*
2093 	 * Save the old mount options in case we
2094 	 * need to restore them.
2095 	 */
2096 	org_mount_opt = sbi->mount_opt;
2097 	old_sb_flags = sb->s_flags;
2098 
2099 #ifdef CONFIG_QUOTA
2100 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
2101 	for (i = 0; i < MAXQUOTAS; i++) {
2102 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2103 			org_mount_opt.s_qf_names[i] =
2104 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
2105 				GFP_KERNEL);
2106 			if (!org_mount_opt.s_qf_names[i]) {
2107 				for (j = 0; j < i; j++)
2108 					kfree(org_mount_opt.s_qf_names[j]);
2109 				return -ENOMEM;
2110 			}
2111 		} else {
2112 			org_mount_opt.s_qf_names[i] = NULL;
2113 		}
2114 	}
2115 #endif
2116 
2117 	/* recover superblocks we couldn't write due to previous RO mount */
2118 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
2119 		err = f2fs_commit_super(sbi, false);
2120 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
2121 			  err);
2122 		if (!err)
2123 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2124 	}
2125 
2126 	default_options(sbi);
2127 
2128 	/* parse mount options */
2129 	err = parse_options(sb, data, true);
2130 	if (err)
2131 		goto restore_opts;
2132 	checkpoint_changed =
2133 			disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
2134 
2135 	/*
2136 	 * Previous and new state of filesystem is RO,
2137 	 * so skip checking GC and FLUSH_MERGE conditions.
2138 	 */
2139 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
2140 		goto skip;
2141 
2142 	if (f2fs_sb_has_readonly(sbi) && !(*flags & SB_RDONLY)) {
2143 		err = -EROFS;
2144 		goto restore_opts;
2145 	}
2146 
2147 #ifdef CONFIG_QUOTA
2148 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
2149 		err = dquot_suspend(sb, -1);
2150 		if (err < 0)
2151 			goto restore_opts;
2152 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
2153 		/* dquot_resume needs RW */
2154 		sb->s_flags &= ~SB_RDONLY;
2155 		if (sb_any_quota_suspended(sb)) {
2156 			dquot_resume(sb, -1);
2157 		} else if (f2fs_sb_has_quota_ino(sbi)) {
2158 			err = f2fs_enable_quotas(sb);
2159 			if (err)
2160 				goto restore_opts;
2161 		}
2162 	}
2163 #endif
2164 	/* disallow enable atgc dynamically */
2165 	if (no_atgc == !!test_opt(sbi, ATGC)) {
2166 		err = -EINVAL;
2167 		f2fs_warn(sbi, "switch atgc option is not allowed");
2168 		goto restore_opts;
2169 	}
2170 
2171 	/* disallow enable/disable extent_cache dynamically */
2172 	if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) {
2173 		err = -EINVAL;
2174 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
2175 		goto restore_opts;
2176 	}
2177 	/* disallow enable/disable age extent_cache dynamically */
2178 	if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) {
2179 		err = -EINVAL;
2180 		f2fs_warn(sbi, "switch age_extent_cache option is not allowed");
2181 		goto restore_opts;
2182 	}
2183 
2184 	if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
2185 		err = -EINVAL;
2186 		f2fs_warn(sbi, "switch io_bits option is not allowed");
2187 		goto restore_opts;
2188 	}
2189 
2190 	if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) {
2191 		err = -EINVAL;
2192 		f2fs_warn(sbi, "switch compress_cache option is not allowed");
2193 		goto restore_opts;
2194 	}
2195 
2196 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
2197 		err = -EINVAL;
2198 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
2199 		goto restore_opts;
2200 	}
2201 
2202 	/*
2203 	 * We stop the GC thread if FS is mounted as RO
2204 	 * or if background_gc = off is passed in mount
2205 	 * option. Also sync the filesystem.
2206 	 */
2207 	if ((*flags & SB_RDONLY) ||
2208 			(F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF &&
2209 			!test_opt(sbi, GC_MERGE))) {
2210 		if (sbi->gc_thread) {
2211 			f2fs_stop_gc_thread(sbi);
2212 			need_restart_gc = true;
2213 		}
2214 	} else if (!sbi->gc_thread) {
2215 		err = f2fs_start_gc_thread(sbi);
2216 		if (err)
2217 			goto restore_opts;
2218 		need_stop_gc = true;
2219 	}
2220 
2221 	if (*flags & SB_RDONLY ||
2222 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
2223 		sync_inodes_sb(sb);
2224 
2225 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2226 		set_sbi_flag(sbi, SBI_IS_CLOSE);
2227 		f2fs_sync_fs(sb, 1);
2228 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
2229 	}
2230 
2231 	if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) ||
2232 			!test_opt(sbi, MERGE_CHECKPOINT)) {
2233 		f2fs_stop_ckpt_thread(sbi);
2234 		need_restart_ckpt = true;
2235 	} else {
2236 		/* Flush if the prevous checkpoint, if exists. */
2237 		f2fs_flush_ckpt_thread(sbi);
2238 
2239 		err = f2fs_start_ckpt_thread(sbi);
2240 		if (err) {
2241 			f2fs_err(sbi,
2242 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
2243 			    err);
2244 			goto restore_gc;
2245 		}
2246 		need_stop_ckpt = true;
2247 	}
2248 
2249 	/*
2250 	 * We stop issue flush thread if FS is mounted as RO
2251 	 * or if flush_merge is not passed in mount option.
2252 	 */
2253 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
2254 		clear_opt(sbi, FLUSH_MERGE);
2255 		f2fs_destroy_flush_cmd_control(sbi, false);
2256 		need_restart_flush = true;
2257 	} else {
2258 		err = f2fs_create_flush_cmd_control(sbi);
2259 		if (err)
2260 			goto restore_ckpt;
2261 		need_stop_flush = true;
2262 	}
2263 
2264 	if (checkpoint_changed) {
2265 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2266 			err = f2fs_disable_checkpoint(sbi);
2267 			if (err)
2268 				goto restore_flush;
2269 		} else {
2270 			f2fs_enable_checkpoint(sbi);
2271 		}
2272 	}
2273 
2274 skip:
2275 #ifdef CONFIG_QUOTA
2276 	/* Release old quota file names */
2277 	for (i = 0; i < MAXQUOTAS; i++)
2278 		kfree(org_mount_opt.s_qf_names[i]);
2279 #endif
2280 	/* Update the POSIXACL Flag */
2281 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2282 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2283 
2284 	limit_reserve_root(sbi);
2285 	adjust_unusable_cap_perc(sbi);
2286 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
2287 	return 0;
2288 restore_flush:
2289 	if (need_restart_flush) {
2290 		if (f2fs_create_flush_cmd_control(sbi))
2291 			f2fs_warn(sbi, "background flush thread has stopped");
2292 	} else if (need_stop_flush) {
2293 		clear_opt(sbi, FLUSH_MERGE);
2294 		f2fs_destroy_flush_cmd_control(sbi, false);
2295 	}
2296 restore_ckpt:
2297 	if (need_restart_ckpt) {
2298 		if (f2fs_start_ckpt_thread(sbi))
2299 			f2fs_warn(sbi, "background ckpt thread has stopped");
2300 	} else if (need_stop_ckpt) {
2301 		f2fs_stop_ckpt_thread(sbi);
2302 	}
2303 restore_gc:
2304 	if (need_restart_gc) {
2305 		if (f2fs_start_gc_thread(sbi))
2306 			f2fs_warn(sbi, "background gc thread has stopped");
2307 	} else if (need_stop_gc) {
2308 		f2fs_stop_gc_thread(sbi);
2309 	}
2310 restore_opts:
2311 #ifdef CONFIG_QUOTA
2312 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
2313 	for (i = 0; i < MAXQUOTAS; i++) {
2314 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
2315 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
2316 	}
2317 #endif
2318 	sbi->mount_opt = org_mount_opt;
2319 	sb->s_flags = old_sb_flags;
2320 	return err;
2321 }
2322 
2323 #ifdef CONFIG_QUOTA
2324 /* Read data from quotafile */
f2fs_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)2325 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
2326 			       size_t len, loff_t off)
2327 {
2328 	struct inode *inode = sb_dqopt(sb)->files[type];
2329 	struct address_space *mapping = inode->i_mapping;
2330 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
2331 	int offset = off & (sb->s_blocksize - 1);
2332 	int tocopy;
2333 	size_t toread;
2334 	loff_t i_size = i_size_read(inode);
2335 	struct page *page;
2336 	char *kaddr;
2337 
2338 	if (off > i_size)
2339 		return 0;
2340 
2341 	if (off + len > i_size)
2342 		len = i_size - off;
2343 	toread = len;
2344 	while (toread > 0) {
2345 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
2346 repeat:
2347 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
2348 		if (IS_ERR(page)) {
2349 			if (PTR_ERR(page) == -ENOMEM) {
2350 				congestion_wait(BLK_RW_ASYNC,
2351 						DEFAULT_IO_TIMEOUT);
2352 				goto repeat;
2353 			}
2354 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2355 			return PTR_ERR(page);
2356 		}
2357 
2358 		lock_page(page);
2359 
2360 		if (unlikely(page->mapping != mapping)) {
2361 			f2fs_put_page(page, 1);
2362 			goto repeat;
2363 		}
2364 		if (unlikely(!PageUptodate(page))) {
2365 			f2fs_put_page(page, 1);
2366 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2367 			return -EIO;
2368 		}
2369 
2370 		kaddr = kmap_atomic(page);
2371 		memcpy(data, kaddr + offset, tocopy);
2372 		kunmap_atomic(kaddr);
2373 		f2fs_put_page(page, 1);
2374 
2375 		offset = 0;
2376 		toread -= tocopy;
2377 		data += tocopy;
2378 		blkidx++;
2379 	}
2380 	return len;
2381 }
2382 
2383 /* Write to quotafile */
f2fs_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)2384 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2385 				const char *data, size_t len, loff_t off)
2386 {
2387 	struct inode *inode = sb_dqopt(sb)->files[type];
2388 	struct address_space *mapping = inode->i_mapping;
2389 	const struct address_space_operations *a_ops = mapping->a_ops;
2390 	int offset = off & (sb->s_blocksize - 1);
2391 	size_t towrite = len;
2392 	struct page *page;
2393 	void *fsdata = NULL;
2394 	char *kaddr;
2395 	int err = 0;
2396 	int tocopy;
2397 
2398 	while (towrite > 0) {
2399 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2400 								towrite);
2401 retry:
2402 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
2403 							&page, &fsdata);
2404 		if (unlikely(err)) {
2405 			if (err == -ENOMEM) {
2406 				congestion_wait(BLK_RW_ASYNC,
2407 						DEFAULT_IO_TIMEOUT);
2408 				goto retry;
2409 			}
2410 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2411 			break;
2412 		}
2413 
2414 		kaddr = kmap_atomic(page);
2415 		memcpy(kaddr + offset, data, tocopy);
2416 		kunmap_atomic(kaddr);
2417 		flush_dcache_page(page);
2418 
2419 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2420 						page, fsdata);
2421 		offset = 0;
2422 		towrite -= tocopy;
2423 		off += tocopy;
2424 		data += tocopy;
2425 		cond_resched();
2426 	}
2427 
2428 	if (len == towrite)
2429 		return err;
2430 	inode->i_mtime = inode->i_ctime = current_time(inode);
2431 	f2fs_mark_inode_dirty_sync(inode, false);
2432 	return len - towrite;
2433 }
2434 
f2fs_get_dquots(struct inode * inode)2435 static struct dquot **f2fs_get_dquots(struct inode *inode)
2436 {
2437 	return F2FS_I(inode)->i_dquot;
2438 }
2439 
f2fs_get_reserved_space(struct inode * inode)2440 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2441 {
2442 	return &F2FS_I(inode)->i_reserved_quota;
2443 }
2444 
f2fs_quota_on_mount(struct f2fs_sb_info * sbi,int type)2445 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2446 {
2447 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2448 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2449 		return 0;
2450 	}
2451 
2452 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2453 					F2FS_OPTION(sbi).s_jquota_fmt, type);
2454 }
2455 
f2fs_enable_quota_files(struct f2fs_sb_info * sbi,bool rdonly)2456 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2457 {
2458 	int enabled = 0;
2459 	int i, err;
2460 
2461 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2462 		err = f2fs_enable_quotas(sbi->sb);
2463 		if (err) {
2464 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2465 			return 0;
2466 		}
2467 		return 1;
2468 	}
2469 
2470 	for (i = 0; i < MAXQUOTAS; i++) {
2471 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2472 			err = f2fs_quota_on_mount(sbi, i);
2473 			if (!err) {
2474 				enabled = 1;
2475 				continue;
2476 			}
2477 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2478 				 err, i);
2479 		}
2480 	}
2481 	return enabled;
2482 }
2483 
f2fs_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)2484 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2485 			     unsigned int flags)
2486 {
2487 	struct inode *qf_inode;
2488 	unsigned long qf_inum;
2489 	int err;
2490 
2491 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2492 
2493 	qf_inum = f2fs_qf_ino(sb, type);
2494 	if (!qf_inum)
2495 		return -EPERM;
2496 
2497 	qf_inode = f2fs_iget(sb, qf_inum);
2498 	if (IS_ERR(qf_inode)) {
2499 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2500 		return PTR_ERR(qf_inode);
2501 	}
2502 
2503 	/* Don't account quota for quota files to avoid recursion */
2504 	qf_inode->i_flags |= S_NOQUOTA;
2505 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2506 	iput(qf_inode);
2507 	return err;
2508 }
2509 
f2fs_enable_quotas(struct super_block * sb)2510 static int f2fs_enable_quotas(struct super_block *sb)
2511 {
2512 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2513 	int type, err = 0;
2514 	unsigned long qf_inum;
2515 	bool quota_mopt[MAXQUOTAS] = {
2516 		test_opt(sbi, USRQUOTA),
2517 		test_opt(sbi, GRPQUOTA),
2518 		test_opt(sbi, PRJQUOTA),
2519 	};
2520 
2521 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2522 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2523 		return 0;
2524 	}
2525 
2526 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2527 
2528 	for (type = 0; type < MAXQUOTAS; type++) {
2529 		qf_inum = f2fs_qf_ino(sb, type);
2530 		if (qf_inum) {
2531 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2532 				DQUOT_USAGE_ENABLED |
2533 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2534 			if (err) {
2535 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2536 					 type, err);
2537 				for (type--; type >= 0; type--)
2538 					dquot_quota_off(sb, type);
2539 				set_sbi_flag(F2FS_SB(sb),
2540 						SBI_QUOTA_NEED_REPAIR);
2541 				return err;
2542 			}
2543 		}
2544 	}
2545 	return 0;
2546 }
2547 
f2fs_quota_sync_file(struct f2fs_sb_info * sbi,int type)2548 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type)
2549 {
2550 	struct quota_info *dqopt = sb_dqopt(sbi->sb);
2551 	struct address_space *mapping = dqopt->files[type]->i_mapping;
2552 	int ret = 0;
2553 
2554 	ret = dquot_writeback_dquots(sbi->sb, type);
2555 	if (ret)
2556 		goto out;
2557 
2558 	ret = filemap_fdatawrite(mapping);
2559 	if (ret)
2560 		goto out;
2561 
2562 	/* if we are using journalled quota */
2563 	if (is_journalled_quota(sbi))
2564 		goto out;
2565 
2566 	ret = filemap_fdatawait(mapping);
2567 
2568 	truncate_inode_pages(&dqopt->files[type]->i_data, 0);
2569 out:
2570 	if (ret)
2571 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2572 	return ret;
2573 }
2574 
f2fs_quota_sync(struct super_block * sb,int type)2575 int f2fs_quota_sync(struct super_block *sb, int type)
2576 {
2577 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2578 	struct quota_info *dqopt = sb_dqopt(sb);
2579 	int cnt;
2580 	int ret = 0;
2581 
2582 	/*
2583 	 * Now when everything is written we can discard the pagecache so
2584 	 * that userspace sees the changes.
2585 	 */
2586 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2587 
2588 		if (type != -1 && cnt != type)
2589 			continue;
2590 
2591 		if (!sb_has_quota_active(sb, cnt))
2592 			continue;
2593 
2594 		if (!f2fs_sb_has_quota_ino(sbi))
2595 			inode_lock(dqopt->files[cnt]);
2596 
2597 		/*
2598 		 * do_quotactl
2599 		 *  f2fs_quota_sync
2600 		 *  f2fs_down_read(quota_sem)
2601 		 *  dquot_writeback_dquots()
2602 		 *  f2fs_dquot_commit
2603 		 *			      block_operation
2604 		 *			      f2fs_down_read(quota_sem)
2605 		 */
2606 		f2fs_lock_op(sbi);
2607 		f2fs_down_read(&sbi->quota_sem);
2608 
2609 		ret = f2fs_quota_sync_file(sbi, cnt);
2610 
2611 		f2fs_up_read(&sbi->quota_sem);
2612 		f2fs_unlock_op(sbi);
2613 
2614 		if (!f2fs_sb_has_quota_ino(sbi))
2615 			inode_unlock(dqopt->files[cnt]);
2616 
2617 		if (ret)
2618 			break;
2619 	}
2620 	return ret;
2621 }
2622 
f2fs_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)2623 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2624 							const struct path *path)
2625 {
2626 	struct inode *inode;
2627 	int err;
2628 
2629 	/* if quota sysfile exists, deny enabling quota with specific file */
2630 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2631 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2632 		return -EBUSY;
2633 	}
2634 
2635 	err = f2fs_quota_sync(sb, type);
2636 	if (err)
2637 		return err;
2638 
2639 	err = dquot_quota_on(sb, type, format_id, path);
2640 	if (err)
2641 		return err;
2642 
2643 	inode = d_inode(path->dentry);
2644 
2645 	inode_lock(inode);
2646 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2647 	f2fs_set_inode_flags(inode);
2648 	inode_unlock(inode);
2649 	f2fs_mark_inode_dirty_sync(inode, false);
2650 
2651 	return 0;
2652 }
2653 
__f2fs_quota_off(struct super_block * sb,int type)2654 static int __f2fs_quota_off(struct super_block *sb, int type)
2655 {
2656 	struct inode *inode = sb_dqopt(sb)->files[type];
2657 	int err;
2658 
2659 	if (!inode || !igrab(inode))
2660 		return dquot_quota_off(sb, type);
2661 
2662 	err = f2fs_quota_sync(sb, type);
2663 	if (err)
2664 		goto out_put;
2665 
2666 	err = dquot_quota_off(sb, type);
2667 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2668 		goto out_put;
2669 
2670 	inode_lock(inode);
2671 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2672 	f2fs_set_inode_flags(inode);
2673 	inode_unlock(inode);
2674 	f2fs_mark_inode_dirty_sync(inode, false);
2675 out_put:
2676 	iput(inode);
2677 	return err;
2678 }
2679 
f2fs_quota_off(struct super_block * sb,int type)2680 static int f2fs_quota_off(struct super_block *sb, int type)
2681 {
2682 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2683 	int err;
2684 
2685 	err = __f2fs_quota_off(sb, type);
2686 
2687 	/*
2688 	 * quotactl can shutdown journalled quota, result in inconsistence
2689 	 * between quota record and fs data by following updates, tag the
2690 	 * flag to let fsck be aware of it.
2691 	 */
2692 	if (is_journalled_quota(sbi))
2693 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2694 	return err;
2695 }
2696 
f2fs_quota_off_umount(struct super_block * sb)2697 void f2fs_quota_off_umount(struct super_block *sb)
2698 {
2699 	int type;
2700 	int err;
2701 
2702 	for (type = 0; type < MAXQUOTAS; type++) {
2703 		err = __f2fs_quota_off(sb, type);
2704 		if (err) {
2705 			int ret = dquot_quota_off(sb, type);
2706 
2707 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2708 				 type, err, ret);
2709 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2710 		}
2711 	}
2712 	/*
2713 	 * In case of checkpoint=disable, we must flush quota blocks.
2714 	 * This can cause NULL exception for node_inode in end_io, since
2715 	 * put_super already dropped it.
2716 	 */
2717 	sync_filesystem(sb);
2718 }
2719 
f2fs_truncate_quota_inode_pages(struct super_block * sb)2720 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2721 {
2722 	struct quota_info *dqopt = sb_dqopt(sb);
2723 	int type;
2724 
2725 	for (type = 0; type < MAXQUOTAS; type++) {
2726 		if (!dqopt->files[type])
2727 			continue;
2728 		f2fs_inode_synced(dqopt->files[type]);
2729 	}
2730 }
2731 
f2fs_dquot_commit(struct dquot * dquot)2732 static int f2fs_dquot_commit(struct dquot *dquot)
2733 {
2734 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2735 	int ret;
2736 
2737 	f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2738 	ret = dquot_commit(dquot);
2739 	if (ret < 0)
2740 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2741 	f2fs_up_read(&sbi->quota_sem);
2742 	return ret;
2743 }
2744 
f2fs_dquot_acquire(struct dquot * dquot)2745 static int f2fs_dquot_acquire(struct dquot *dquot)
2746 {
2747 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2748 	int ret;
2749 
2750 	f2fs_down_read(&sbi->quota_sem);
2751 	ret = dquot_acquire(dquot);
2752 	if (ret < 0)
2753 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2754 	f2fs_up_read(&sbi->quota_sem);
2755 	return ret;
2756 }
2757 
f2fs_dquot_release(struct dquot * dquot)2758 static int f2fs_dquot_release(struct dquot *dquot)
2759 {
2760 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2761 	int ret = dquot_release(dquot);
2762 
2763 	if (ret < 0)
2764 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2765 	return ret;
2766 }
2767 
f2fs_dquot_mark_dquot_dirty(struct dquot * dquot)2768 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2769 {
2770 	struct super_block *sb = dquot->dq_sb;
2771 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2772 	int ret = dquot_mark_dquot_dirty(dquot);
2773 
2774 	/* if we are using journalled quota */
2775 	if (is_journalled_quota(sbi))
2776 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2777 
2778 	return ret;
2779 }
2780 
f2fs_dquot_commit_info(struct super_block * sb,int type)2781 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2782 {
2783 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2784 	int ret = dquot_commit_info(sb, type);
2785 
2786 	if (ret < 0)
2787 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2788 	return ret;
2789 }
2790 
f2fs_get_projid(struct inode * inode,kprojid_t * projid)2791 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2792 {
2793 	*projid = F2FS_I(inode)->i_projid;
2794 	return 0;
2795 }
2796 
2797 static const struct dquot_operations f2fs_quota_operations = {
2798 	.get_reserved_space = f2fs_get_reserved_space,
2799 	.write_dquot	= f2fs_dquot_commit,
2800 	.acquire_dquot	= f2fs_dquot_acquire,
2801 	.release_dquot	= f2fs_dquot_release,
2802 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2803 	.write_info	= f2fs_dquot_commit_info,
2804 	.alloc_dquot	= dquot_alloc,
2805 	.destroy_dquot	= dquot_destroy,
2806 	.get_projid	= f2fs_get_projid,
2807 	.get_next_id	= dquot_get_next_id,
2808 };
2809 
2810 static const struct quotactl_ops f2fs_quotactl_ops = {
2811 	.quota_on	= f2fs_quota_on,
2812 	.quota_off	= f2fs_quota_off,
2813 	.quota_sync	= f2fs_quota_sync,
2814 	.get_state	= dquot_get_state,
2815 	.set_info	= dquot_set_dqinfo,
2816 	.get_dqblk	= dquot_get_dqblk,
2817 	.set_dqblk	= dquot_set_dqblk,
2818 	.get_nextdqblk	= dquot_get_next_dqblk,
2819 };
2820 #else
f2fs_quota_sync(struct super_block * sb,int type)2821 int f2fs_quota_sync(struct super_block *sb, int type)
2822 {
2823 	return 0;
2824 }
2825 
f2fs_quota_off_umount(struct super_block * sb)2826 void f2fs_quota_off_umount(struct super_block *sb)
2827 {
2828 }
2829 #endif
2830 
2831 static const struct super_operations f2fs_sops = {
2832 	.alloc_inode	= f2fs_alloc_inode,
2833 	.free_inode	= f2fs_free_inode,
2834 	.drop_inode	= f2fs_drop_inode,
2835 	.write_inode	= f2fs_write_inode,
2836 	.dirty_inode	= f2fs_dirty_inode,
2837 	.show_options	= f2fs_show_options,
2838 #ifdef CONFIG_QUOTA
2839 	.quota_read	= f2fs_quota_read,
2840 	.quota_write	= f2fs_quota_write,
2841 	.get_dquots	= f2fs_get_dquots,
2842 #endif
2843 	.evict_inode	= f2fs_evict_inode,
2844 	.put_super	= f2fs_put_super,
2845 	.sync_fs	= f2fs_sync_fs,
2846 	.freeze_fs	= f2fs_freeze,
2847 	.unfreeze_fs	= f2fs_unfreeze,
2848 	.statfs		= f2fs_statfs,
2849 	.remount_fs	= f2fs_remount,
2850 };
2851 
2852 #ifdef CONFIG_FS_ENCRYPTION
f2fs_get_context(struct inode * inode,void * ctx,size_t len)2853 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2854 {
2855 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2856 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2857 				ctx, len, NULL);
2858 }
2859 
f2fs_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)2860 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2861 							void *fs_data)
2862 {
2863 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2864 
2865 	/*
2866 	 * Encrypting the root directory is not allowed because fsck
2867 	 * expects lost+found directory to exist and remain unencrypted
2868 	 * if LOST_FOUND feature is enabled.
2869 	 *
2870 	 */
2871 	if (f2fs_sb_has_lost_found(sbi) &&
2872 			inode->i_ino == F2FS_ROOT_INO(sbi))
2873 		return -EPERM;
2874 
2875 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2876 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2877 				ctx, len, fs_data, XATTR_CREATE);
2878 }
2879 
f2fs_get_dummy_policy(struct super_block * sb)2880 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
2881 {
2882 	return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
2883 }
2884 
f2fs_has_stable_inodes(struct super_block * sb)2885 static bool f2fs_has_stable_inodes(struct super_block *sb)
2886 {
2887 	return true;
2888 }
2889 
f2fs_get_ino_and_lblk_bits(struct super_block * sb,int * ino_bits_ret,int * lblk_bits_ret)2890 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2891 				       int *ino_bits_ret, int *lblk_bits_ret)
2892 {
2893 	*ino_bits_ret = 8 * sizeof(nid_t);
2894 	*lblk_bits_ret = 8 * sizeof(block_t);
2895 }
2896 
f2fs_get_num_devices(struct super_block * sb)2897 static int f2fs_get_num_devices(struct super_block *sb)
2898 {
2899 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2900 
2901 	if (f2fs_is_multi_device(sbi))
2902 		return sbi->s_ndevs;
2903 	return 1;
2904 }
2905 
f2fs_get_devices(struct super_block * sb,struct request_queue ** devs)2906 static void f2fs_get_devices(struct super_block *sb,
2907 			     struct request_queue **devs)
2908 {
2909 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2910 	int i;
2911 
2912 	for (i = 0; i < sbi->s_ndevs; i++)
2913 		devs[i] = bdev_get_queue(FDEV(i).bdev);
2914 }
2915 
2916 static const struct fscrypt_operations f2fs_cryptops = {
2917 	.key_prefix		= "f2fs:",
2918 	.get_context		= f2fs_get_context,
2919 	.set_context		= f2fs_set_context,
2920 	.get_dummy_policy	= f2fs_get_dummy_policy,
2921 	.empty_dir		= f2fs_empty_dir,
2922 	.max_namelen		= F2FS_NAME_LEN,
2923 	.has_stable_inodes	= f2fs_has_stable_inodes,
2924 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
2925 	.get_num_devices	= f2fs_get_num_devices,
2926 	.get_devices		= f2fs_get_devices,
2927 };
2928 #endif
2929 
f2fs_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)2930 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2931 		u64 ino, u32 generation)
2932 {
2933 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2934 	struct inode *inode;
2935 
2936 	if (f2fs_check_nid_range(sbi, ino))
2937 		return ERR_PTR(-ESTALE);
2938 
2939 	/*
2940 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
2941 	 * However f2fs_iget currently does appropriate checks to handle stale
2942 	 * inodes so everything is OK.
2943 	 */
2944 	inode = f2fs_iget(sb, ino);
2945 	if (IS_ERR(inode))
2946 		return ERR_CAST(inode);
2947 	if (unlikely(generation && inode->i_generation != generation)) {
2948 		/* we didn't find the right inode.. */
2949 		iput(inode);
2950 		return ERR_PTR(-ESTALE);
2951 	}
2952 	return inode;
2953 }
2954 
f2fs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)2955 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2956 		int fh_len, int fh_type)
2957 {
2958 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2959 				    f2fs_nfs_get_inode);
2960 }
2961 
f2fs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)2962 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2963 		int fh_len, int fh_type)
2964 {
2965 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2966 				    f2fs_nfs_get_inode);
2967 }
2968 
2969 static const struct export_operations f2fs_export_ops = {
2970 	.fh_to_dentry = f2fs_fh_to_dentry,
2971 	.fh_to_parent = f2fs_fh_to_parent,
2972 	.get_parent = f2fs_get_parent,
2973 };
2974 
max_file_blocks(struct inode * inode)2975 loff_t max_file_blocks(struct inode *inode)
2976 {
2977 	loff_t result = 0;
2978 	loff_t leaf_count;
2979 
2980 	/*
2981 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2982 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2983 	 * space in inode.i_addr, it will be more safe to reassign
2984 	 * result as zero.
2985 	 */
2986 
2987 	if (inode && f2fs_compressed_file(inode))
2988 		leaf_count = ADDRS_PER_BLOCK(inode);
2989 	else
2990 		leaf_count = DEF_ADDRS_PER_BLOCK;
2991 
2992 	/* two direct node blocks */
2993 	result += (leaf_count * 2);
2994 
2995 	/* two indirect node blocks */
2996 	leaf_count *= NIDS_PER_BLOCK;
2997 	result += (leaf_count * 2);
2998 
2999 	/* one double indirect node block */
3000 	leaf_count *= NIDS_PER_BLOCK;
3001 	result += leaf_count;
3002 
3003 	return result;
3004 }
3005 
__f2fs_commit_super(struct buffer_head * bh,struct f2fs_super_block * super)3006 static int __f2fs_commit_super(struct buffer_head *bh,
3007 			struct f2fs_super_block *super)
3008 {
3009 	lock_buffer(bh);
3010 	if (super)
3011 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
3012 	set_buffer_dirty(bh);
3013 	unlock_buffer(bh);
3014 
3015 	/* it's rare case, we can do fua all the time */
3016 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
3017 }
3018 
sanity_check_area_boundary(struct f2fs_sb_info * sbi,struct buffer_head * bh)3019 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
3020 					struct buffer_head *bh)
3021 {
3022 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3023 					(bh->b_data + F2FS_SUPER_OFFSET);
3024 	struct super_block *sb = sbi->sb;
3025 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3026 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
3027 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
3028 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
3029 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3030 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3031 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
3032 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
3033 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
3034 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
3035 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3036 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
3037 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3038 	u64 main_end_blkaddr = main_blkaddr +
3039 				(segment_count_main << log_blocks_per_seg);
3040 	u64 seg_end_blkaddr = segment0_blkaddr +
3041 				(segment_count << log_blocks_per_seg);
3042 
3043 	if (segment0_blkaddr != cp_blkaddr) {
3044 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
3045 			  segment0_blkaddr, cp_blkaddr);
3046 		return true;
3047 	}
3048 
3049 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
3050 							sit_blkaddr) {
3051 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
3052 			  cp_blkaddr, sit_blkaddr,
3053 			  segment_count_ckpt << log_blocks_per_seg);
3054 		return true;
3055 	}
3056 
3057 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
3058 							nat_blkaddr) {
3059 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
3060 			  sit_blkaddr, nat_blkaddr,
3061 			  segment_count_sit << log_blocks_per_seg);
3062 		return true;
3063 	}
3064 
3065 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
3066 							ssa_blkaddr) {
3067 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
3068 			  nat_blkaddr, ssa_blkaddr,
3069 			  segment_count_nat << log_blocks_per_seg);
3070 		return true;
3071 	}
3072 
3073 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
3074 							main_blkaddr) {
3075 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
3076 			  ssa_blkaddr, main_blkaddr,
3077 			  segment_count_ssa << log_blocks_per_seg);
3078 		return true;
3079 	}
3080 
3081 	if (main_end_blkaddr > seg_end_blkaddr) {
3082 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
3083 			  main_blkaddr, seg_end_blkaddr,
3084 			  segment_count_main << log_blocks_per_seg);
3085 		return true;
3086 	} else if (main_end_blkaddr < seg_end_blkaddr) {
3087 		int err = 0;
3088 		char *res;
3089 
3090 		/* fix in-memory information all the time */
3091 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
3092 				segment0_blkaddr) >> log_blocks_per_seg);
3093 
3094 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
3095 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3096 			res = "internally";
3097 		} else {
3098 			err = __f2fs_commit_super(bh, NULL);
3099 			res = err ? "failed" : "done";
3100 		}
3101 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
3102 			  res, main_blkaddr, seg_end_blkaddr,
3103 			  segment_count_main << log_blocks_per_seg);
3104 		if (err)
3105 			return true;
3106 	}
3107 	return false;
3108 }
3109 
sanity_check_raw_super(struct f2fs_sb_info * sbi,struct buffer_head * bh)3110 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
3111 				struct buffer_head *bh)
3112 {
3113 	block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
3114 	block_t total_sections, blocks_per_seg;
3115 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3116 					(bh->b_data + F2FS_SUPER_OFFSET);
3117 	size_t crc_offset = 0;
3118 	__u32 crc = 0;
3119 
3120 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
3121 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
3122 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
3123 		return -EINVAL;
3124 	}
3125 
3126 	/* Check checksum_offset and crc in superblock */
3127 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
3128 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
3129 		if (crc_offset !=
3130 			offsetof(struct f2fs_super_block, crc)) {
3131 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
3132 				  crc_offset);
3133 			return -EFSCORRUPTED;
3134 		}
3135 		crc = le32_to_cpu(raw_super->crc);
3136 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
3137 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
3138 			return -EFSCORRUPTED;
3139 		}
3140 	}
3141 
3142 	/* Currently, support only 4KB block size */
3143 	if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
3144 		f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
3145 			  le32_to_cpu(raw_super->log_blocksize),
3146 			  F2FS_BLKSIZE_BITS);
3147 		return -EFSCORRUPTED;
3148 	}
3149 
3150 	/* check log blocks per segment */
3151 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
3152 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
3153 			  le32_to_cpu(raw_super->log_blocks_per_seg));
3154 		return -EFSCORRUPTED;
3155 	}
3156 
3157 	/* Currently, support 512/1024/2048/4096 bytes sector size */
3158 	if (le32_to_cpu(raw_super->log_sectorsize) >
3159 				F2FS_MAX_LOG_SECTOR_SIZE ||
3160 		le32_to_cpu(raw_super->log_sectorsize) <
3161 				F2FS_MIN_LOG_SECTOR_SIZE) {
3162 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
3163 			  le32_to_cpu(raw_super->log_sectorsize));
3164 		return -EFSCORRUPTED;
3165 	}
3166 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
3167 		le32_to_cpu(raw_super->log_sectorsize) !=
3168 			F2FS_MAX_LOG_SECTOR_SIZE) {
3169 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
3170 			  le32_to_cpu(raw_super->log_sectors_per_block),
3171 			  le32_to_cpu(raw_super->log_sectorsize));
3172 		return -EFSCORRUPTED;
3173 	}
3174 
3175 	segment_count = le32_to_cpu(raw_super->segment_count);
3176 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3177 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3178 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3179 	total_sections = le32_to_cpu(raw_super->section_count);
3180 
3181 	/* blocks_per_seg should be 512, given the above check */
3182 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
3183 
3184 	if (segment_count > F2FS_MAX_SEGMENT ||
3185 				segment_count < F2FS_MIN_SEGMENTS) {
3186 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
3187 		return -EFSCORRUPTED;
3188 	}
3189 
3190 	if (total_sections > segment_count_main || total_sections < 1 ||
3191 			segs_per_sec > segment_count || !segs_per_sec) {
3192 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
3193 			  segment_count, total_sections, segs_per_sec);
3194 		return -EFSCORRUPTED;
3195 	}
3196 
3197 	if (segment_count_main != total_sections * segs_per_sec) {
3198 		f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
3199 			  segment_count_main, total_sections, segs_per_sec);
3200 		return -EFSCORRUPTED;
3201 	}
3202 
3203 	if ((segment_count / segs_per_sec) < total_sections) {
3204 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
3205 			  segment_count, segs_per_sec, total_sections);
3206 		return -EFSCORRUPTED;
3207 	}
3208 
3209 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
3210 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
3211 			  segment_count, le64_to_cpu(raw_super->block_count));
3212 		return -EFSCORRUPTED;
3213 	}
3214 
3215 	if (RDEV(0).path[0]) {
3216 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
3217 		int i = 1;
3218 
3219 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
3220 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
3221 			i++;
3222 		}
3223 		if (segment_count != dev_seg_count) {
3224 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
3225 					segment_count, dev_seg_count);
3226 			return -EFSCORRUPTED;
3227 		}
3228 	} else {
3229 		if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
3230 					!bdev_is_zoned(sbi->sb->s_bdev)) {
3231 			f2fs_info(sbi, "Zoned block device path is missing");
3232 			return -EFSCORRUPTED;
3233 		}
3234 	}
3235 
3236 	if (secs_per_zone > total_sections || !secs_per_zone) {
3237 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
3238 			  secs_per_zone, total_sections);
3239 		return -EFSCORRUPTED;
3240 	}
3241 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
3242 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
3243 			(le32_to_cpu(raw_super->extension_count) +
3244 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
3245 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
3246 			  le32_to_cpu(raw_super->extension_count),
3247 			  raw_super->hot_ext_count,
3248 			  F2FS_MAX_EXTENSION);
3249 		return -EFSCORRUPTED;
3250 	}
3251 
3252 	if (le32_to_cpu(raw_super->cp_payload) >=
3253 				(blocks_per_seg - F2FS_CP_PACKS -
3254 				NR_CURSEG_PERSIST_TYPE)) {
3255 		f2fs_info(sbi, "Insane cp_payload (%u >= %u)",
3256 			  le32_to_cpu(raw_super->cp_payload),
3257 			  blocks_per_seg - F2FS_CP_PACKS -
3258 			  NR_CURSEG_PERSIST_TYPE);
3259 		return -EFSCORRUPTED;
3260 	}
3261 
3262 	/* check reserved ino info */
3263 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
3264 		le32_to_cpu(raw_super->meta_ino) != 2 ||
3265 		le32_to_cpu(raw_super->root_ino) != 3) {
3266 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
3267 			  le32_to_cpu(raw_super->node_ino),
3268 			  le32_to_cpu(raw_super->meta_ino),
3269 			  le32_to_cpu(raw_super->root_ino));
3270 		return -EFSCORRUPTED;
3271 	}
3272 
3273 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
3274 	if (sanity_check_area_boundary(sbi, bh))
3275 		return -EFSCORRUPTED;
3276 
3277 	return 0;
3278 }
3279 
f2fs_sanity_check_ckpt(struct f2fs_sb_info * sbi)3280 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
3281 {
3282 	unsigned int total, fsmeta;
3283 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3284 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3285 	unsigned int ovp_segments, reserved_segments;
3286 	unsigned int main_segs, blocks_per_seg;
3287 	unsigned int sit_segs, nat_segs;
3288 	unsigned int sit_bitmap_size, nat_bitmap_size;
3289 	unsigned int log_blocks_per_seg;
3290 	unsigned int segment_count_main;
3291 	unsigned int cp_pack_start_sum, cp_payload;
3292 	block_t user_block_count, valid_user_blocks;
3293 	block_t avail_node_count, valid_node_count;
3294 	unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks;
3295 	int i, j;
3296 
3297 	total = le32_to_cpu(raw_super->segment_count);
3298 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
3299 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
3300 	fsmeta += sit_segs;
3301 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
3302 	fsmeta += nat_segs;
3303 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
3304 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
3305 
3306 	if (unlikely(fsmeta >= total))
3307 		return 1;
3308 
3309 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3310 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3311 
3312 	if (!f2fs_sb_has_readonly(sbi) &&
3313 			unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
3314 			ovp_segments == 0 || reserved_segments == 0)) {
3315 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
3316 		return 1;
3317 	}
3318 	user_block_count = le64_to_cpu(ckpt->user_block_count);
3319 	segment_count_main = le32_to_cpu(raw_super->segment_count_main) +
3320 			(f2fs_sb_has_readonly(sbi) ? 1 : 0);
3321 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3322 	if (!user_block_count || user_block_count >=
3323 			segment_count_main << log_blocks_per_seg) {
3324 		f2fs_err(sbi, "Wrong user_block_count: %u",
3325 			 user_block_count);
3326 		return 1;
3327 	}
3328 
3329 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
3330 	if (valid_user_blocks > user_block_count) {
3331 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
3332 			 valid_user_blocks, user_block_count);
3333 		return 1;
3334 	}
3335 
3336 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
3337 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
3338 	if (valid_node_count > avail_node_count) {
3339 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
3340 			 valid_node_count, avail_node_count);
3341 		return 1;
3342 	}
3343 
3344 	main_segs = le32_to_cpu(raw_super->segment_count_main);
3345 	blocks_per_seg = sbi->blocks_per_seg;
3346 
3347 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3348 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
3349 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
3350 			return 1;
3351 
3352 		if (f2fs_sb_has_readonly(sbi))
3353 			goto check_data;
3354 
3355 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
3356 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3357 				le32_to_cpu(ckpt->cur_node_segno[j])) {
3358 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
3359 					 i, j,
3360 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3361 				return 1;
3362 			}
3363 		}
3364 	}
3365 check_data:
3366 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
3367 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
3368 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
3369 			return 1;
3370 
3371 		if (f2fs_sb_has_readonly(sbi))
3372 			goto skip_cross;
3373 
3374 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3375 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3376 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3377 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3378 					 i, j,
3379 					 le32_to_cpu(ckpt->cur_data_segno[i]));
3380 				return 1;
3381 			}
3382 		}
3383 	}
3384 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3385 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3386 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3387 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3388 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3389 					 i, j,
3390 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3391 				return 1;
3392 			}
3393 		}
3394 	}
3395 skip_cross:
3396 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3397 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3398 
3399 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3400 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3401 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3402 			 sit_bitmap_size, nat_bitmap_size);
3403 		return 1;
3404 	}
3405 
3406 	cp_pack_start_sum = __start_sum_addr(sbi);
3407 	cp_payload = __cp_payload(sbi);
3408 	if (cp_pack_start_sum < cp_payload + 1 ||
3409 		cp_pack_start_sum > blocks_per_seg - 1 -
3410 			NR_CURSEG_PERSIST_TYPE) {
3411 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3412 			 cp_pack_start_sum);
3413 		return 1;
3414 	}
3415 
3416 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3417 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3418 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3419 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3420 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3421 			  le32_to_cpu(ckpt->checksum_offset));
3422 		return 1;
3423 	}
3424 
3425 	nat_blocks = nat_segs << log_blocks_per_seg;
3426 	nat_bits_bytes = nat_blocks / BITS_PER_BYTE;
3427 	nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3428 	if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) &&
3429 		(cp_payload + F2FS_CP_PACKS +
3430 		NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) {
3431 		f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)",
3432 			  cp_payload, nat_bits_blocks);
3433 		return 1;
3434 	}
3435 
3436 	if (unlikely(f2fs_cp_error(sbi))) {
3437 		f2fs_err(sbi, "A bug case: need to run fsck");
3438 		return 1;
3439 	}
3440 	return 0;
3441 }
3442 
init_sb_info(struct f2fs_sb_info * sbi)3443 static void init_sb_info(struct f2fs_sb_info *sbi)
3444 {
3445 	struct f2fs_super_block *raw_super = sbi->raw_super;
3446 	int i;
3447 
3448 	sbi->log_sectors_per_block =
3449 		le32_to_cpu(raw_super->log_sectors_per_block);
3450 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3451 	sbi->blocksize = 1 << sbi->log_blocksize;
3452 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3453 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
3454 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3455 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3456 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
3457 	sbi->total_node_count =
3458 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
3459 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
3460 	F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino);
3461 	F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino);
3462 	F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino);
3463 	sbi->cur_victim_sec = NULL_SECNO;
3464 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3465 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3466 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3467 	sbi->migration_granularity = sbi->segs_per_sec;
3468 
3469 	sbi->dir_level = DEF_DIR_LEVEL;
3470 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3471 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3472 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3473 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3474 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3475 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3476 				DEF_UMOUNT_DISCARD_TIMEOUT;
3477 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
3478 
3479 	for (i = 0; i < NR_COUNT_TYPE; i++)
3480 		atomic_set(&sbi->nr_pages[i], 0);
3481 
3482 	for (i = 0; i < META; i++)
3483 		atomic_set(&sbi->wb_sync_req[i], 0);
3484 
3485 	INIT_LIST_HEAD(&sbi->s_list);
3486 	mutex_init(&sbi->umount_mutex);
3487 	init_f2fs_rwsem(&sbi->io_order_lock);
3488 	spin_lock_init(&sbi->cp_lock);
3489 
3490 	sbi->dirty_device = 0;
3491 	spin_lock_init(&sbi->dev_lock);
3492 
3493 	init_f2fs_rwsem(&sbi->sb_lock);
3494 	init_f2fs_rwsem(&sbi->pin_sem);
3495 }
3496 
init_percpu_info(struct f2fs_sb_info * sbi)3497 static int init_percpu_info(struct f2fs_sb_info *sbi)
3498 {
3499 	int err;
3500 
3501 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3502 	if (err)
3503 		return err;
3504 
3505 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3506 								GFP_KERNEL);
3507 	if (err)
3508 		percpu_counter_destroy(&sbi->alloc_valid_block_count);
3509 
3510 	return err;
3511 }
3512 
3513 #ifdef CONFIG_BLK_DEV_ZONED
3514 
3515 struct f2fs_report_zones_args {
3516 	struct f2fs_dev_info *dev;
3517 	bool zone_cap_mismatch;
3518 };
3519 
f2fs_report_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)3520 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3521 			      void *data)
3522 {
3523 	struct f2fs_report_zones_args *rz_args = data;
3524 
3525 	if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
3526 		return 0;
3527 
3528 	set_bit(idx, rz_args->dev->blkz_seq);
3529 	rz_args->dev->zone_capacity_blocks[idx] = zone->capacity >>
3530 						F2FS_LOG_SECTORS_PER_BLOCK;
3531 	if (zone->len != zone->capacity && !rz_args->zone_cap_mismatch)
3532 		rz_args->zone_cap_mismatch = true;
3533 
3534 	return 0;
3535 }
3536 
init_blkz_info(struct f2fs_sb_info * sbi,int devi)3537 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3538 {
3539 	struct block_device *bdev = FDEV(devi).bdev;
3540 	sector_t nr_sectors = bdev->bd_part->nr_sects;
3541 	struct f2fs_report_zones_args rep_zone_arg;
3542 	int ret;
3543 
3544 	if (!f2fs_sb_has_blkzoned(sbi))
3545 		return 0;
3546 
3547 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3548 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3549 		return -EINVAL;
3550 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3551 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3552 				__ilog2_u32(sbi->blocks_per_blkz))
3553 		return -EINVAL;
3554 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3555 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3556 					sbi->log_blocks_per_blkz;
3557 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3558 		FDEV(devi).nr_blkz++;
3559 
3560 	FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3561 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
3562 					* sizeof(unsigned long),
3563 					GFP_KERNEL);
3564 	if (!FDEV(devi).blkz_seq)
3565 		return -ENOMEM;
3566 
3567 	/* Get block zones type and zone-capacity */
3568 	FDEV(devi).zone_capacity_blocks = f2fs_kzalloc(sbi,
3569 					FDEV(devi).nr_blkz * sizeof(block_t),
3570 					GFP_KERNEL);
3571 	if (!FDEV(devi).zone_capacity_blocks)
3572 		return -ENOMEM;
3573 
3574 	rep_zone_arg.dev = &FDEV(devi);
3575 	rep_zone_arg.zone_cap_mismatch = false;
3576 
3577 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3578 				  &rep_zone_arg);
3579 	if (ret < 0)
3580 		return ret;
3581 
3582 	if (!rep_zone_arg.zone_cap_mismatch) {
3583 		kfree(FDEV(devi).zone_capacity_blocks);
3584 		FDEV(devi).zone_capacity_blocks = NULL;
3585 	}
3586 
3587 	return 0;
3588 }
3589 #endif
3590 
3591 /*
3592  * Read f2fs raw super block.
3593  * Because we have two copies of super block, so read both of them
3594  * to get the first valid one. If any one of them is broken, we pass
3595  * them recovery flag back to the caller.
3596  */
read_raw_super_block(struct f2fs_sb_info * sbi,struct f2fs_super_block ** raw_super,int * valid_super_block,int * recovery)3597 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3598 			struct f2fs_super_block **raw_super,
3599 			int *valid_super_block, int *recovery)
3600 {
3601 	struct super_block *sb = sbi->sb;
3602 	int block;
3603 	struct buffer_head *bh;
3604 	struct f2fs_super_block *super;
3605 	int err = 0;
3606 
3607 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3608 	if (!super)
3609 		return -ENOMEM;
3610 
3611 	for (block = 0; block < 2; block++) {
3612 		bh = sb_bread(sb, block);
3613 		if (!bh) {
3614 			f2fs_err(sbi, "Unable to read %dth superblock",
3615 				 block + 1);
3616 			err = -EIO;
3617 			*recovery = 1;
3618 			continue;
3619 		}
3620 
3621 		/* sanity checking of raw super */
3622 		err = sanity_check_raw_super(sbi, bh);
3623 		if (err) {
3624 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3625 				 block + 1);
3626 			brelse(bh);
3627 			*recovery = 1;
3628 			continue;
3629 		}
3630 
3631 		if (!*raw_super) {
3632 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3633 							sizeof(*super));
3634 			*valid_super_block = block;
3635 			*raw_super = super;
3636 		}
3637 		brelse(bh);
3638 	}
3639 
3640 	/* No valid superblock */
3641 	if (!*raw_super)
3642 		kfree(super);
3643 	else
3644 		err = 0;
3645 
3646 	return err;
3647 }
3648 
f2fs_commit_super(struct f2fs_sb_info * sbi,bool recover)3649 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3650 {
3651 	struct buffer_head *bh;
3652 	__u32 crc = 0;
3653 	int err;
3654 
3655 	if ((recover && f2fs_readonly(sbi->sb)) ||
3656 				bdev_read_only(sbi->sb->s_bdev)) {
3657 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3658 		return -EROFS;
3659 	}
3660 
3661 	/* we should update superblock crc here */
3662 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3663 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3664 				offsetof(struct f2fs_super_block, crc));
3665 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3666 	}
3667 
3668 	/* write back-up superblock first */
3669 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3670 	if (!bh)
3671 		return -EIO;
3672 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3673 	brelse(bh);
3674 
3675 	/* if we are in recovery path, skip writing valid superblock */
3676 	if (recover || err)
3677 		return err;
3678 
3679 	/* write current valid superblock */
3680 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3681 	if (!bh)
3682 		return -EIO;
3683 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3684 	brelse(bh);
3685 	return err;
3686 }
3687 
f2fs_handle_stop(struct f2fs_sb_info * sbi,unsigned char reason)3688 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason)
3689 {
3690 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3691 	int err;
3692 
3693 	f2fs_bug_on(sbi, reason >= MAX_STOP_REASON);
3694 
3695 	f2fs_down_write(&sbi->sb_lock);
3696 
3697 	if (raw_super->s_stop_reason[reason] < ((1 << BITS_PER_BYTE) - 1))
3698 		raw_super->s_stop_reason[reason]++;
3699 
3700 	err = f2fs_commit_super(sbi, false);
3701 	if (err)
3702 		f2fs_err(sbi, "f2fs_commit_super fails to record reason:%u err:%d",
3703 								reason, err);
3704 
3705 	f2fs_up_write(&sbi->sb_lock);
3706 }
3707 
f2fs_scan_devices(struct f2fs_sb_info * sbi)3708 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3709 {
3710 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3711 	unsigned int max_devices = MAX_DEVICES;
3712 	int i;
3713 
3714 	/* Initialize single device information */
3715 	if (!RDEV(0).path[0]) {
3716 		if (!bdev_is_zoned(sbi->sb->s_bdev))
3717 			return 0;
3718 		max_devices = 1;
3719 	}
3720 
3721 	/*
3722 	 * Initialize multiple devices information, or single
3723 	 * zoned block device information.
3724 	 */
3725 	sbi->devs = f2fs_kzalloc(sbi,
3726 				 array_size(max_devices,
3727 					    sizeof(struct f2fs_dev_info)),
3728 				 GFP_KERNEL);
3729 	if (!sbi->devs)
3730 		return -ENOMEM;
3731 
3732 	for (i = 0; i < max_devices; i++) {
3733 
3734 		if (i > 0 && !RDEV(i).path[0])
3735 			break;
3736 
3737 		if (max_devices == 1) {
3738 			/* Single zoned block device mount */
3739 			FDEV(0).bdev =
3740 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3741 					sbi->sb->s_mode, sbi->sb->s_type);
3742 		} else {
3743 			/* Multi-device mount */
3744 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3745 			FDEV(i).total_segments =
3746 				le32_to_cpu(RDEV(i).total_segments);
3747 			if (i == 0) {
3748 				FDEV(i).start_blk = 0;
3749 				FDEV(i).end_blk = FDEV(i).start_blk +
3750 				    (FDEV(i).total_segments <<
3751 				    sbi->log_blocks_per_seg) - 1 +
3752 				    le32_to_cpu(raw_super->segment0_blkaddr);
3753 			} else {
3754 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3755 				FDEV(i).end_blk = FDEV(i).start_blk +
3756 					(FDEV(i).total_segments <<
3757 					sbi->log_blocks_per_seg) - 1;
3758 			}
3759 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3760 					sbi->sb->s_mode, sbi->sb->s_type);
3761 		}
3762 		if (IS_ERR(FDEV(i).bdev))
3763 			return PTR_ERR(FDEV(i).bdev);
3764 
3765 		/* to release errored devices */
3766 		sbi->s_ndevs = i + 1;
3767 
3768 #ifdef CONFIG_BLK_DEV_ZONED
3769 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3770 				!f2fs_sb_has_blkzoned(sbi)) {
3771 			f2fs_err(sbi, "Zoned block device feature not enabled");
3772 			return -EINVAL;
3773 		}
3774 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3775 			if (init_blkz_info(sbi, i)) {
3776 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3777 				return -EINVAL;
3778 			}
3779 			if (max_devices == 1)
3780 				break;
3781 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3782 				  i, FDEV(i).path,
3783 				  FDEV(i).total_segments,
3784 				  FDEV(i).start_blk, FDEV(i).end_blk,
3785 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3786 				  "Host-aware" : "Host-managed");
3787 			continue;
3788 		}
3789 #endif
3790 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3791 			  i, FDEV(i).path,
3792 			  FDEV(i).total_segments,
3793 			  FDEV(i).start_blk, FDEV(i).end_blk);
3794 	}
3795 	f2fs_info(sbi,
3796 		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3797 	return 0;
3798 }
3799 
f2fs_setup_casefold(struct f2fs_sb_info * sbi)3800 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3801 {
3802 #ifdef CONFIG_UNICODE
3803 	if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
3804 		const struct f2fs_sb_encodings *encoding_info;
3805 		struct unicode_map *encoding;
3806 		__u16 encoding_flags;
3807 
3808 		if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3809 					  &encoding_flags)) {
3810 			f2fs_err(sbi,
3811 				 "Encoding requested by superblock is unknown");
3812 			return -EINVAL;
3813 		}
3814 
3815 		encoding = utf8_load(encoding_info->version);
3816 		if (IS_ERR(encoding)) {
3817 			f2fs_err(sbi,
3818 				 "can't mount with superblock charset: %s-%s "
3819 				 "not supported by the kernel. flags: 0x%x.",
3820 				 encoding_info->name, encoding_info->version,
3821 				 encoding_flags);
3822 			return PTR_ERR(encoding);
3823 		}
3824 		f2fs_info(sbi, "Using encoding defined by superblock: "
3825 			 "%s-%s with flags 0x%hx", encoding_info->name,
3826 			 encoding_info->version?:"\b", encoding_flags);
3827 
3828 		sbi->sb->s_encoding = encoding;
3829 		sbi->sb->s_encoding_flags = encoding_flags;
3830 	}
3831 #else
3832 	if (f2fs_sb_has_casefold(sbi)) {
3833 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3834 		return -EINVAL;
3835 	}
3836 #endif
3837 	return 0;
3838 }
3839 
f2fs_tuning_parameters(struct f2fs_sb_info * sbi)3840 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3841 {
3842 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3843 
3844 	/* adjust parameters according to the volume size */
3845 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3846 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3847 		sm_i->dcc_info->discard_granularity = 1;
3848 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE |
3849 					1 << F2FS_IPU_HONOR_OPU_WRITE;
3850 	}
3851 
3852 	sbi->readdir_ra = 1;
3853 }
3854 
f2fs_fill_super(struct super_block * sb,void * data,int silent)3855 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3856 {
3857 	struct f2fs_sb_info *sbi;
3858 	struct f2fs_super_block *raw_super;
3859 	struct inode *root;
3860 	int err;
3861 	bool skip_recovery = false, need_fsck = false;
3862 	char *options = NULL;
3863 	int recovery, i, valid_super_block;
3864 	struct curseg_info *seg_i;
3865 	int retry_cnt = 1;
3866 
3867 try_onemore:
3868 	err = -EINVAL;
3869 	raw_super = NULL;
3870 	valid_super_block = -1;
3871 	recovery = 0;
3872 
3873 	/* allocate memory for f2fs-specific super block info */
3874 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3875 	if (!sbi)
3876 		return -ENOMEM;
3877 
3878 	sbi->sb = sb;
3879 
3880 	/* Load the checksum driver */
3881 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3882 	if (IS_ERR(sbi->s_chksum_driver)) {
3883 		f2fs_err(sbi, "Cannot load crc32 driver.");
3884 		err = PTR_ERR(sbi->s_chksum_driver);
3885 		sbi->s_chksum_driver = NULL;
3886 		goto free_sbi;
3887 	}
3888 
3889 	/* set a block size */
3890 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3891 		f2fs_err(sbi, "unable to set blocksize");
3892 		goto free_sbi;
3893 	}
3894 
3895 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3896 								&recovery);
3897 	if (err)
3898 		goto free_sbi;
3899 
3900 	sb->s_fs_info = sbi;
3901 	sbi->raw_super = raw_super;
3902 
3903 	/* precompute checksum seed for metadata */
3904 	if (f2fs_sb_has_inode_chksum(sbi))
3905 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3906 						sizeof(raw_super->uuid));
3907 
3908 	default_options(sbi);
3909 	/* parse mount options */
3910 	options = kstrdup((const char *)data, GFP_KERNEL);
3911 	if (data && !options) {
3912 		err = -ENOMEM;
3913 		goto free_sb_buf;
3914 	}
3915 
3916 	err = parse_options(sb, options, false);
3917 	if (err)
3918 		goto free_options;
3919 
3920 	sb->s_maxbytes = max_file_blocks(NULL) <<
3921 				le32_to_cpu(raw_super->log_blocksize);
3922 	sb->s_max_links = F2FS_LINK_MAX;
3923 
3924 	err = f2fs_setup_casefold(sbi);
3925 	if (err)
3926 		goto free_options;
3927 
3928 #ifdef CONFIG_QUOTA
3929 	sb->dq_op = &f2fs_quota_operations;
3930 	sb->s_qcop = &f2fs_quotactl_ops;
3931 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3932 
3933 	if (f2fs_sb_has_quota_ino(sbi)) {
3934 		for (i = 0; i < MAXQUOTAS; i++) {
3935 			if (f2fs_qf_ino(sbi->sb, i))
3936 				sbi->nquota_files++;
3937 		}
3938 	}
3939 #endif
3940 
3941 	sb->s_op = &f2fs_sops;
3942 #ifdef CONFIG_FS_ENCRYPTION
3943 	sb->s_cop = &f2fs_cryptops;
3944 #endif
3945 #ifdef CONFIG_FS_VERITY
3946 	sb->s_vop = &f2fs_verityops;
3947 #endif
3948 	sb->s_xattr = f2fs_xattr_handlers;
3949 	sb->s_export_op = &f2fs_export_ops;
3950 	sb->s_magic = F2FS_SUPER_MAGIC;
3951 	sb->s_time_gran = 1;
3952 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3953 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3954 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3955 	sb->s_iflags |= SB_I_CGROUPWB;
3956 
3957 	/* init f2fs-specific super block info */
3958 	sbi->valid_super_block = valid_super_block;
3959 	init_f2fs_rwsem(&sbi->gc_lock);
3960 	mutex_init(&sbi->writepages);
3961 	init_f2fs_rwsem(&sbi->cp_global_sem);
3962 	init_f2fs_rwsem(&sbi->node_write);
3963 	init_f2fs_rwsem(&sbi->node_change);
3964 
3965 	/* disallow all the data/node/meta page writes */
3966 	set_sbi_flag(sbi, SBI_POR_DOING);
3967 	spin_lock_init(&sbi->stat_lock);
3968 
3969 	/* init iostat info */
3970 	spin_lock_init(&sbi->iostat_lock);
3971 	sbi->iostat_enable = false;
3972 	sbi->iostat_period_ms = DEFAULT_IOSTAT_PERIOD_MS;
3973 
3974 	for (i = 0; i < NR_PAGE_TYPE; i++) {
3975 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
3976 		int j;
3977 
3978 		sbi->write_io[i] =
3979 			f2fs_kmalloc(sbi,
3980 				     array_size(n,
3981 						sizeof(struct f2fs_bio_info)),
3982 				     GFP_KERNEL);
3983 		if (!sbi->write_io[i]) {
3984 			err = -ENOMEM;
3985 			goto free_bio_info;
3986 		}
3987 
3988 		for (j = HOT; j < n; j++) {
3989 			init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
3990 			sbi->write_io[i][j].sbi = sbi;
3991 			sbi->write_io[i][j].bio = NULL;
3992 			spin_lock_init(&sbi->write_io[i][j].io_lock);
3993 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3994 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
3995 			init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
3996 		}
3997 	}
3998 
3999 	init_f2fs_rwsem(&sbi->cp_rwsem);
4000 	init_f2fs_rwsem(&sbi->quota_sem);
4001 	init_waitqueue_head(&sbi->cp_wait);
4002 	init_sb_info(sbi);
4003 
4004 	err = init_percpu_info(sbi);
4005 	if (err)
4006 		goto free_bio_info;
4007 
4008 	if (F2FS_IO_ALIGNED(sbi)) {
4009 		sbi->write_io_dummy =
4010 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
4011 		if (!sbi->write_io_dummy) {
4012 			err = -ENOMEM;
4013 			goto free_percpu;
4014 		}
4015 	}
4016 
4017 	/* init per sbi slab cache */
4018 	err = f2fs_init_xattr_caches(sbi);
4019 	if (err)
4020 		goto free_io_dummy;
4021 	err = f2fs_init_page_array_cache(sbi);
4022 	if (err)
4023 		goto free_xattr_cache;
4024 
4025 	/* get an inode for meta space */
4026 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
4027 	if (IS_ERR(sbi->meta_inode)) {
4028 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
4029 		err = PTR_ERR(sbi->meta_inode);
4030 		goto free_page_array_cache;
4031 	}
4032 
4033 	err = f2fs_get_valid_checkpoint(sbi);
4034 	if (err) {
4035 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
4036 		goto free_meta_inode;
4037 	}
4038 
4039 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
4040 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
4041 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
4042 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4043 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
4044 	}
4045 
4046 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
4047 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4048 
4049 	/* Initialize device list */
4050 	err = f2fs_scan_devices(sbi);
4051 	if (err) {
4052 		f2fs_err(sbi, "Failed to find devices");
4053 		goto free_devices;
4054 	}
4055 
4056 	err = f2fs_init_post_read_wq(sbi);
4057 	if (err) {
4058 		f2fs_err(sbi, "Failed to initialize post read workqueue");
4059 		goto free_devices;
4060 	}
4061 
4062 	sbi->total_valid_node_count =
4063 				le32_to_cpu(sbi->ckpt->valid_node_count);
4064 	percpu_counter_set(&sbi->total_valid_inode_count,
4065 				le32_to_cpu(sbi->ckpt->valid_inode_count));
4066 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
4067 	sbi->total_valid_block_count =
4068 				le64_to_cpu(sbi->ckpt->valid_block_count);
4069 	sbi->last_valid_block_count = sbi->total_valid_block_count;
4070 	sbi->reserved_blocks = 0;
4071 	sbi->current_reserved_blocks = 0;
4072 	limit_reserve_root(sbi);
4073 	adjust_unusable_cap_perc(sbi);
4074 
4075 	for (i = 0; i < NR_INODE_TYPE; i++) {
4076 		INIT_LIST_HEAD(&sbi->inode_list[i]);
4077 		spin_lock_init(&sbi->inode_lock[i]);
4078 	}
4079 	mutex_init(&sbi->flush_lock);
4080 
4081 	f2fs_init_extent_cache_info(sbi);
4082 
4083 	f2fs_init_ino_entry_info(sbi);
4084 
4085 	f2fs_init_fsync_node_info(sbi);
4086 
4087 	/* setup checkpoint request control and start checkpoint issue thread */
4088 	f2fs_init_ckpt_req_control(sbi);
4089 	if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) &&
4090 			test_opt(sbi, MERGE_CHECKPOINT)) {
4091 		err = f2fs_start_ckpt_thread(sbi);
4092 		if (err) {
4093 			f2fs_err(sbi,
4094 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
4095 			    err);
4096 			goto stop_ckpt_thread;
4097 		}
4098 	}
4099 
4100 	/* setup f2fs internal modules */
4101 	err = f2fs_build_segment_manager(sbi);
4102 	if (err) {
4103 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
4104 			 err);
4105 		goto free_sm;
4106 	}
4107 	err = f2fs_build_node_manager(sbi);
4108 	if (err) {
4109 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
4110 			 err);
4111 		goto free_nm;
4112 	}
4113 
4114 	err = adjust_reserved_segment(sbi);
4115 	if (err)
4116 		goto free_nm;
4117 
4118 	/* For write statistics */
4119 	sbi->sectors_written_start = f2fs_get_sectors_written(sbi);
4120 
4121 	/* Read accumulated write IO statistics if exists */
4122 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
4123 	if (__exist_node_summaries(sbi))
4124 		sbi->kbytes_written =
4125 			le64_to_cpu(seg_i->journal->info.kbytes_written);
4126 
4127 	f2fs_build_gc_manager(sbi);
4128 
4129 	atomic_set(&sbi->no_cp_fsync_pages, 0);
4130 
4131 	err = f2fs_build_stats(sbi);
4132 	if (err)
4133 		goto free_nm;
4134 
4135 	/* get an inode for node space */
4136 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
4137 	if (IS_ERR(sbi->node_inode)) {
4138 		f2fs_err(sbi, "Failed to read node inode");
4139 		err = PTR_ERR(sbi->node_inode);
4140 		goto free_stats;
4141 	}
4142 
4143 	/* read root inode and dentry */
4144 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
4145 	if (IS_ERR(root)) {
4146 		f2fs_err(sbi, "Failed to read root inode");
4147 		err = PTR_ERR(root);
4148 		goto free_node_inode;
4149 	}
4150 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
4151 			!root->i_size || !root->i_nlink) {
4152 		iput(root);
4153 		err = -EINVAL;
4154 		goto free_node_inode;
4155 	}
4156 
4157 	sb->s_root = d_make_root(root); /* allocate root dentry */
4158 	if (!sb->s_root) {
4159 		err = -ENOMEM;
4160 		goto free_node_inode;
4161 	}
4162 
4163 	err = f2fs_init_compress_inode(sbi);
4164 	if (err)
4165 		goto free_root_inode;
4166 
4167 	err = f2fs_register_sysfs(sbi);
4168 	if (err)
4169 		goto free_compress_inode;
4170 
4171 #ifdef CONFIG_QUOTA
4172 	/* Enable quota usage during mount */
4173 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
4174 		err = f2fs_enable_quotas(sb);
4175 		if (err)
4176 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
4177 	}
4178 #endif
4179 	/* if there are any orphan inodes, free them */
4180 	err = f2fs_recover_orphan_inodes(sbi);
4181 	if (err)
4182 		goto free_meta;
4183 
4184 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
4185 		goto reset_checkpoint;
4186 
4187 	/* recover fsynced data */
4188 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
4189 			!test_opt(sbi, NORECOVERY)) {
4190 		/*
4191 		 * mount should be failed, when device has readonly mode, and
4192 		 * previous checkpoint was not done by clean system shutdown.
4193 		 */
4194 		if (f2fs_hw_is_readonly(sbi)) {
4195 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4196 				err = f2fs_recover_fsync_data(sbi, true);
4197 				if (err > 0) {
4198 					err = -EROFS;
4199 					f2fs_err(sbi, "Need to recover fsync data, but "
4200 						"write access unavailable, please try "
4201 						"mount w/ disable_roll_forward or norecovery");
4202 				}
4203 				if (err < 0)
4204 					goto free_meta;
4205 			}
4206 			f2fs_info(sbi, "write access unavailable, skipping recovery");
4207 			goto reset_checkpoint;
4208 		}
4209 
4210 		if (need_fsck)
4211 			set_sbi_flag(sbi, SBI_NEED_FSCK);
4212 
4213 		if (skip_recovery)
4214 			goto reset_checkpoint;
4215 
4216 		err = f2fs_recover_fsync_data(sbi, false);
4217 		if (err < 0) {
4218 			if (err != -ENOMEM)
4219 				skip_recovery = true;
4220 			need_fsck = true;
4221 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
4222 				 err);
4223 			goto free_meta;
4224 		}
4225 	} else {
4226 		err = f2fs_recover_fsync_data(sbi, true);
4227 
4228 		if (!f2fs_readonly(sb) && err > 0) {
4229 			err = -EINVAL;
4230 			f2fs_err(sbi, "Need to recover fsync data");
4231 			goto free_meta;
4232 		}
4233 	}
4234 
4235 	/*
4236 	 * If the f2fs is not readonly and fsync data recovery succeeds,
4237 	 * check zoned block devices' write pointer consistency.
4238 	 */
4239 	if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
4240 		err = f2fs_check_write_pointer(sbi);
4241 		if (err)
4242 			goto free_meta;
4243 	}
4244 
4245 reset_checkpoint:
4246 	f2fs_init_inmem_curseg(sbi);
4247 
4248 	/* f2fs_recover_fsync_data() cleared this already */
4249 	clear_sbi_flag(sbi, SBI_POR_DOING);
4250 
4251 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
4252 		err = f2fs_disable_checkpoint(sbi);
4253 		if (err)
4254 			goto sync_free_meta;
4255 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
4256 		f2fs_enable_checkpoint(sbi);
4257 	}
4258 
4259 	/*
4260 	 * If filesystem is not mounted as read-only then
4261 	 * do start the gc_thread.
4262 	 */
4263 	if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF ||
4264 		test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) {
4265 		/* After POR, we can run background GC thread.*/
4266 		err = f2fs_start_gc_thread(sbi);
4267 		if (err)
4268 			goto sync_free_meta;
4269 	}
4270 	kvfree(options);
4271 
4272 	/* recover broken superblock */
4273 	if (recovery) {
4274 		err = f2fs_commit_super(sbi, true);
4275 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
4276 			  sbi->valid_super_block ? 1 : 2, err);
4277 	}
4278 
4279 	f2fs_join_shrinker(sbi);
4280 
4281 	f2fs_tuning_parameters(sbi);
4282 
4283 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
4284 		    cur_cp_version(F2FS_CKPT(sbi)));
4285 	f2fs_update_time(sbi, CP_TIME);
4286 	f2fs_update_time(sbi, REQ_TIME);
4287 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4288 	return 0;
4289 
4290 sync_free_meta:
4291 	/* safe to flush all the data */
4292 	sync_filesystem(sbi->sb);
4293 	retry_cnt = 0;
4294 
4295 free_meta:
4296 #ifdef CONFIG_QUOTA
4297 	f2fs_truncate_quota_inode_pages(sb);
4298 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
4299 		f2fs_quota_off_umount(sbi->sb);
4300 #endif
4301 	/*
4302 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
4303 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
4304 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
4305 	 * falls into an infinite loop in f2fs_sync_meta_pages().
4306 	 */
4307 	truncate_inode_pages_final(META_MAPPING(sbi));
4308 	/* evict some inodes being cached by GC */
4309 	evict_inodes(sb);
4310 	f2fs_unregister_sysfs(sbi);
4311 free_compress_inode:
4312 	f2fs_destroy_compress_inode(sbi);
4313 free_root_inode:
4314 	dput(sb->s_root);
4315 	sb->s_root = NULL;
4316 free_node_inode:
4317 	f2fs_release_ino_entry(sbi, true);
4318 	truncate_inode_pages_final(NODE_MAPPING(sbi));
4319 	iput(sbi->node_inode);
4320 	sbi->node_inode = NULL;
4321 free_stats:
4322 	f2fs_destroy_stats(sbi);
4323 free_nm:
4324 	/* stop discard thread before destroying node manager */
4325 	f2fs_stop_discard_thread(sbi);
4326 	f2fs_destroy_node_manager(sbi);
4327 free_sm:
4328 	f2fs_destroy_segment_manager(sbi);
4329 	f2fs_destroy_post_read_wq(sbi);
4330 stop_ckpt_thread:
4331 	f2fs_stop_ckpt_thread(sbi);
4332 free_devices:
4333 	destroy_device_list(sbi);
4334 	kvfree(sbi->ckpt);
4335 free_meta_inode:
4336 	make_bad_inode(sbi->meta_inode);
4337 	iput(sbi->meta_inode);
4338 	sbi->meta_inode = NULL;
4339 free_page_array_cache:
4340 	f2fs_destroy_page_array_cache(sbi);
4341 free_xattr_cache:
4342 	f2fs_destroy_xattr_caches(sbi);
4343 free_io_dummy:
4344 	mempool_destroy(sbi->write_io_dummy);
4345 free_percpu:
4346 	destroy_percpu_info(sbi);
4347 free_bio_info:
4348 	for (i = 0; i < NR_PAGE_TYPE; i++)
4349 		kvfree(sbi->write_io[i]);
4350 
4351 #ifdef CONFIG_UNICODE
4352 	utf8_unload(sb->s_encoding);
4353 	sb->s_encoding = NULL;
4354 #endif
4355 free_options:
4356 #ifdef CONFIG_QUOTA
4357 	for (i = 0; i < MAXQUOTAS; i++)
4358 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
4359 #endif
4360 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
4361 	kvfree(options);
4362 free_sb_buf:
4363 	kfree(raw_super);
4364 free_sbi:
4365 	if (sbi->s_chksum_driver)
4366 		crypto_free_shash(sbi->s_chksum_driver);
4367 	kfree(sbi);
4368 
4369 	/* give only one another chance */
4370 	if (retry_cnt > 0 && skip_recovery) {
4371 		retry_cnt--;
4372 		shrink_dcache_sb(sb);
4373 		goto try_onemore;
4374 	}
4375 	return err;
4376 }
4377 
f2fs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)4378 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
4379 			const char *dev_name, void *data)
4380 {
4381 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
4382 }
4383 
kill_f2fs_super(struct super_block * sb)4384 static void kill_f2fs_super(struct super_block *sb)
4385 {
4386 	if (sb->s_root) {
4387 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
4388 
4389 		set_sbi_flag(sbi, SBI_IS_CLOSE);
4390 		f2fs_stop_gc_thread(sbi);
4391 		f2fs_stop_discard_thread(sbi);
4392 
4393 #ifdef CONFIG_F2FS_FS_COMPRESSION
4394 		/*
4395 		 * latter evict_inode() can bypass checking and invalidating
4396 		 * compress inode cache.
4397 		 */
4398 		if (test_opt(sbi, COMPRESS_CACHE))
4399 			truncate_inode_pages_final(COMPRESS_MAPPING(sbi));
4400 #endif
4401 
4402 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
4403 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4404 			struct cp_control cpc = {
4405 				.reason = CP_UMOUNT,
4406 			};
4407 			f2fs_write_checkpoint(sbi, &cpc);
4408 		}
4409 
4410 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
4411 			sb->s_flags &= ~SB_RDONLY;
4412 	}
4413 	kill_block_super(sb);
4414 }
4415 
4416 static struct file_system_type f2fs_fs_type = {
4417 	.owner		= THIS_MODULE,
4418 	.name		= "f2fs",
4419 	.mount		= f2fs_mount,
4420 	.kill_sb	= kill_f2fs_super,
4421 	.fs_flags	= FS_REQUIRES_DEV,
4422 };
4423 MODULE_ALIAS_FS("f2fs");
4424 
init_inodecache(void)4425 static int __init init_inodecache(void)
4426 {
4427 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
4428 			sizeof(struct f2fs_inode_info), 0,
4429 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
4430 	if (!f2fs_inode_cachep)
4431 		return -ENOMEM;
4432 	return 0;
4433 }
4434 
destroy_inodecache(void)4435 static void destroy_inodecache(void)
4436 {
4437 	/*
4438 	 * Make sure all delayed rcu free inodes are flushed before we
4439 	 * destroy cache.
4440 	 */
4441 	rcu_barrier();
4442 	kmem_cache_destroy(f2fs_inode_cachep);
4443 }
4444 
init_f2fs_fs(void)4445 static int __init init_f2fs_fs(void)
4446 {
4447 	int err;
4448 
4449 	if (PAGE_SIZE != F2FS_BLKSIZE) {
4450 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
4451 				PAGE_SIZE, F2FS_BLKSIZE);
4452 		return -EINVAL;
4453 	}
4454 
4455 	err = init_inodecache();
4456 	if (err)
4457 		goto fail;
4458 	err = f2fs_create_node_manager_caches();
4459 	if (err)
4460 		goto free_inodecache;
4461 	err = f2fs_create_segment_manager_caches();
4462 	if (err)
4463 		goto free_node_manager_caches;
4464 	err = f2fs_create_checkpoint_caches();
4465 	if (err)
4466 		goto free_segment_manager_caches;
4467 	err = f2fs_create_recovery_cache();
4468 	if (err)
4469 		goto free_checkpoint_caches;
4470 	err = f2fs_create_extent_cache();
4471 	if (err)
4472 		goto free_recovery_cache;
4473 	err = f2fs_create_garbage_collection_cache();
4474 	if (err)
4475 		goto free_extent_cache;
4476 	err = f2fs_init_sysfs();
4477 	if (err)
4478 		goto free_garbage_collection_cache;
4479 	err = register_shrinker(&f2fs_shrinker_info);
4480 	if (err)
4481 		goto free_sysfs;
4482 	err = register_filesystem(&f2fs_fs_type);
4483 	if (err)
4484 		goto free_shrinker;
4485 	f2fs_create_root_stats();
4486 	err = f2fs_init_post_read_processing();
4487 	if (err)
4488 		goto free_root_stats;
4489 	err = f2fs_init_bio_entry_cache();
4490 	if (err)
4491 		goto free_post_read;
4492 	err = f2fs_init_bioset();
4493 	if (err)
4494 		goto free_bio_enrty_cache;
4495 	err = f2fs_init_compress_mempool();
4496 	if (err)
4497 		goto free_bioset;
4498 	err = f2fs_init_compress_cache();
4499 	if (err)
4500 		goto free_compress_mempool;
4501 	err = f2fs_create_casefold_cache();
4502 	if (err)
4503 		goto free_compress_cache;
4504 	return 0;
4505 free_compress_cache:
4506 	f2fs_destroy_compress_cache();
4507 free_compress_mempool:
4508 	f2fs_destroy_compress_mempool();
4509 free_bioset:
4510 	f2fs_destroy_bioset();
4511 free_bio_enrty_cache:
4512 	f2fs_destroy_bio_entry_cache();
4513 free_post_read:
4514 	f2fs_destroy_post_read_processing();
4515 free_root_stats:
4516 	f2fs_destroy_root_stats();
4517 	unregister_filesystem(&f2fs_fs_type);
4518 free_shrinker:
4519 	unregister_shrinker(&f2fs_shrinker_info);
4520 free_sysfs:
4521 	f2fs_exit_sysfs();
4522 free_garbage_collection_cache:
4523 	f2fs_destroy_garbage_collection_cache();
4524 free_extent_cache:
4525 	f2fs_destroy_extent_cache();
4526 free_recovery_cache:
4527 	f2fs_destroy_recovery_cache();
4528 free_checkpoint_caches:
4529 	f2fs_destroy_checkpoint_caches();
4530 free_segment_manager_caches:
4531 	f2fs_destroy_segment_manager_caches();
4532 free_node_manager_caches:
4533 	f2fs_destroy_node_manager_caches();
4534 free_inodecache:
4535 	destroy_inodecache();
4536 fail:
4537 	return err;
4538 }
4539 
exit_f2fs_fs(void)4540 static void __exit exit_f2fs_fs(void)
4541 {
4542 	f2fs_destroy_casefold_cache();
4543 	f2fs_destroy_compress_cache();
4544 	f2fs_destroy_compress_mempool();
4545 	f2fs_destroy_bioset();
4546 	f2fs_destroy_bio_entry_cache();
4547 	f2fs_destroy_post_read_processing();
4548 	f2fs_destroy_root_stats();
4549 	unregister_filesystem(&f2fs_fs_type);
4550 	unregister_shrinker(&f2fs_shrinker_info);
4551 	f2fs_exit_sysfs();
4552 	f2fs_destroy_garbage_collection_cache();
4553 	f2fs_destroy_extent_cache();
4554 	f2fs_destroy_recovery_cache();
4555 	f2fs_destroy_checkpoint_caches();
4556 	f2fs_destroy_segment_manager_caches();
4557 	f2fs_destroy_node_manager_caches();
4558 	destroy_inodecache();
4559 }
4560 
4561 module_init(init_f2fs_fs)
4562 module_exit(exit_f2fs_fs)
4563 
4564 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
4565 MODULE_DESCRIPTION("Flash Friendly File System");
4566 MODULE_LICENSE("GPL");
4567 MODULE_IMPORT_NS(ANDROID_GKI_VFS_EXPORT_ONLY);
4568 MODULE_SOFTDEP("pre: crc32");
4569 
4570