xref: /OK3568_Linux_fs/kernel/drivers/pwm/pwm-sifive.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017-2018 SiFive
4  * For SiFive's PWM IP block documentation please refer Chapter 14 of
5  * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf
6  *
7  * Limitations:
8  * - When changing both duty cycle and period, we cannot prevent in
9  *   software that the output might produce a period with mixed
10  *   settings (new period length and old duty cycle).
11  * - The hardware cannot generate a 100% duty cycle.
12  * - The hardware generates only inverted output.
13  */
14 #include <linux/clk.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/platform_device.h>
18 #include <linux/pwm.h>
19 #include <linux/slab.h>
20 #include <linux/bitfield.h>
21 
22 /* Register offsets */
23 #define PWM_SIFIVE_PWMCFG		0x0
24 #define PWM_SIFIVE_PWMCOUNT		0x8
25 #define PWM_SIFIVE_PWMS			0x10
26 #define PWM_SIFIVE_PWMCMP(i)		(0x20 + 4 * (i))
27 
28 /* PWMCFG fields */
29 #define PWM_SIFIVE_PWMCFG_SCALE		GENMASK(3, 0)
30 #define PWM_SIFIVE_PWMCFG_STICKY	BIT(8)
31 #define PWM_SIFIVE_PWMCFG_ZERO_CMP	BIT(9)
32 #define PWM_SIFIVE_PWMCFG_DEGLITCH	BIT(10)
33 #define PWM_SIFIVE_PWMCFG_EN_ALWAYS	BIT(12)
34 #define PWM_SIFIVE_PWMCFG_EN_ONCE	BIT(13)
35 #define PWM_SIFIVE_PWMCFG_CENTER	BIT(16)
36 #define PWM_SIFIVE_PWMCFG_GANG		BIT(24)
37 #define PWM_SIFIVE_PWMCFG_IP		BIT(28)
38 
39 #define PWM_SIFIVE_CMPWIDTH		16
40 #define PWM_SIFIVE_DEFAULT_PERIOD	10000000
41 
42 struct pwm_sifive_ddata {
43 	struct pwm_chip	chip;
44 	struct mutex lock; /* lock to protect user_count */
45 	struct notifier_block notifier;
46 	struct clk *clk;
47 	void __iomem *regs;
48 	unsigned int real_period;
49 	unsigned int approx_period;
50 	int user_count;
51 };
52 
53 static inline
pwm_sifive_chip_to_ddata(struct pwm_chip * c)54 struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *c)
55 {
56 	return container_of(c, struct pwm_sifive_ddata, chip);
57 }
58 
pwm_sifive_request(struct pwm_chip * chip,struct pwm_device * pwm)59 static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm)
60 {
61 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
62 
63 	mutex_lock(&ddata->lock);
64 	ddata->user_count++;
65 	mutex_unlock(&ddata->lock);
66 
67 	return 0;
68 }
69 
pwm_sifive_free(struct pwm_chip * chip,struct pwm_device * pwm)70 static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm)
71 {
72 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
73 
74 	mutex_lock(&ddata->lock);
75 	ddata->user_count--;
76 	mutex_unlock(&ddata->lock);
77 }
78 
pwm_sifive_update_clock(struct pwm_sifive_ddata * ddata,unsigned long rate)79 static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata,
80 				    unsigned long rate)
81 {
82 	unsigned long long num;
83 	unsigned long scale_pow;
84 	int scale;
85 	u32 val;
86 	/*
87 	 * The PWM unit is used with pwmzerocmp=0, so the only way to modify the
88 	 * period length is using pwmscale which provides the number of bits the
89 	 * counter is shifted before being feed to the comparators. A period
90 	 * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks.
91 	 * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period
92 	 */
93 	scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC);
94 	scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf);
95 
96 	val = PWM_SIFIVE_PWMCFG_EN_ALWAYS |
97 	      FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale);
98 	writel(val, ddata->regs + PWM_SIFIVE_PWMCFG);
99 
100 	/* As scale <= 15 the shift operation cannot overflow. */
101 	num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale);
102 	ddata->real_period = div64_ul(num, rate);
103 	dev_dbg(ddata->chip.dev,
104 		"New real_period = %u ns\n", ddata->real_period);
105 }
106 
pwm_sifive_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)107 static void pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
108 				 struct pwm_state *state)
109 {
110 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
111 	u32 duty, val;
112 
113 	duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm));
114 
115 	state->enabled = duty > 0;
116 
117 	val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
118 	if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS))
119 		state->enabled = false;
120 
121 	state->period = ddata->real_period;
122 	state->duty_cycle =
123 		(u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH;
124 	state->polarity = PWM_POLARITY_INVERSED;
125 }
126 
pwm_sifive_enable(struct pwm_chip * chip,bool enable)127 static int pwm_sifive_enable(struct pwm_chip *chip, bool enable)
128 {
129 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
130 	int ret;
131 
132 	if (enable) {
133 		ret = clk_enable(ddata->clk);
134 		if (ret) {
135 			dev_err(ddata->chip.dev, "Enable clk failed\n");
136 			return ret;
137 		}
138 	}
139 
140 	if (!enable)
141 		clk_disable(ddata->clk);
142 
143 	return 0;
144 }
145 
pwm_sifive_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)146 static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
147 			    const struct pwm_state *state)
148 {
149 	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
150 	struct pwm_state cur_state;
151 	unsigned int duty_cycle;
152 	unsigned long long num;
153 	bool enabled;
154 	int ret = 0;
155 	u32 frac;
156 
157 	if (state->polarity != PWM_POLARITY_INVERSED)
158 		return -EINVAL;
159 
160 	ret = clk_enable(ddata->clk);
161 	if (ret) {
162 		dev_err(ddata->chip.dev, "Enable clk failed\n");
163 		return ret;
164 	}
165 
166 	mutex_lock(&ddata->lock);
167 	cur_state = pwm->state;
168 	enabled = cur_state.enabled;
169 
170 	duty_cycle = state->duty_cycle;
171 	if (!state->enabled)
172 		duty_cycle = 0;
173 
174 	/*
175 	 * The problem of output producing mixed setting as mentioned at top,
176 	 * occurs here. To minimize the window for this problem, we are
177 	 * calculating the register values first and then writing them
178 	 * consecutively
179 	 */
180 	num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH);
181 	frac = DIV64_U64_ROUND_CLOSEST(num, state->period);
182 	/* The hardware cannot generate a 100% duty cycle */
183 	frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1);
184 
185 	if (state->period != ddata->approx_period) {
186 		if (ddata->user_count != 1) {
187 			ret = -EBUSY;
188 			goto exit;
189 		}
190 		ddata->approx_period = state->period;
191 		pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk));
192 	}
193 
194 	writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm));
195 
196 	if (state->enabled != enabled)
197 		pwm_sifive_enable(chip, state->enabled);
198 
199 exit:
200 	clk_disable(ddata->clk);
201 	mutex_unlock(&ddata->lock);
202 	return ret;
203 }
204 
205 static const struct pwm_ops pwm_sifive_ops = {
206 	.request = pwm_sifive_request,
207 	.free = pwm_sifive_free,
208 	.get_state = pwm_sifive_get_state,
209 	.apply = pwm_sifive_apply,
210 	.owner = THIS_MODULE,
211 };
212 
pwm_sifive_clock_notifier(struct notifier_block * nb,unsigned long event,void * data)213 static int pwm_sifive_clock_notifier(struct notifier_block *nb,
214 				     unsigned long event, void *data)
215 {
216 	struct clk_notifier_data *ndata = data;
217 	struct pwm_sifive_ddata *ddata =
218 		container_of(nb, struct pwm_sifive_ddata, notifier);
219 
220 	if (event == POST_RATE_CHANGE)
221 		pwm_sifive_update_clock(ddata, ndata->new_rate);
222 
223 	return NOTIFY_OK;
224 }
225 
pwm_sifive_probe(struct platform_device * pdev)226 static int pwm_sifive_probe(struct platform_device *pdev)
227 {
228 	struct device *dev = &pdev->dev;
229 	struct pwm_sifive_ddata *ddata;
230 	struct pwm_chip *chip;
231 	struct resource *res;
232 	int ret;
233 	u32 val;
234 	unsigned int enabled_pwms = 0, enabled_clks = 1;
235 
236 	ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL);
237 	if (!ddata)
238 		return -ENOMEM;
239 
240 	mutex_init(&ddata->lock);
241 	chip = &ddata->chip;
242 	chip->dev = dev;
243 	chip->ops = &pwm_sifive_ops;
244 	chip->of_xlate = of_pwm_xlate_with_flags;
245 	chip->of_pwm_n_cells = 3;
246 	chip->base = -1;
247 	chip->npwm = 4;
248 
249 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
250 	ddata->regs = devm_ioremap_resource(dev, res);
251 	if (IS_ERR(ddata->regs))
252 		return PTR_ERR(ddata->regs);
253 
254 	ddata->clk = devm_clk_get(dev, NULL);
255 	if (IS_ERR(ddata->clk))
256 		return dev_err_probe(dev, PTR_ERR(ddata->clk),
257 				     "Unable to find controller clock\n");
258 
259 	ret = clk_prepare_enable(ddata->clk);
260 	if (ret) {
261 		dev_err(dev, "failed to enable clock for pwm: %d\n", ret);
262 		return ret;
263 	}
264 
265 	val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
266 	if (val & PWM_SIFIVE_PWMCFG_EN_ALWAYS) {
267 		unsigned int i;
268 
269 		for (i = 0; i < chip->npwm; ++i) {
270 			val = readl(ddata->regs + PWM_SIFIVE_PWMCMP(i));
271 			if (val > 0)
272 				++enabled_pwms;
273 		}
274 	}
275 
276 	/* The clk should be on once for each running PWM. */
277 	if (enabled_pwms) {
278 		while (enabled_clks < enabled_pwms) {
279 			/* This is not expected to fail as the clk is already on */
280 			ret = clk_enable(ddata->clk);
281 			if (unlikely(ret)) {
282 				dev_err_probe(dev, ret, "Failed to enable clk\n");
283 				goto disable_clk;
284 			}
285 			++enabled_clks;
286 		}
287 	} else {
288 		clk_disable(ddata->clk);
289 		enabled_clks = 0;
290 	}
291 
292 	/* Watch for changes to underlying clock frequency */
293 	ddata->notifier.notifier_call = pwm_sifive_clock_notifier;
294 	ret = clk_notifier_register(ddata->clk, &ddata->notifier);
295 	if (ret) {
296 		dev_err(dev, "failed to register clock notifier: %d\n", ret);
297 		goto disable_clk;
298 	}
299 
300 	ret = pwmchip_add(chip);
301 	if (ret < 0) {
302 		dev_err(dev, "cannot register PWM: %d\n", ret);
303 		goto unregister_clk;
304 	}
305 
306 	platform_set_drvdata(pdev, ddata);
307 	dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm);
308 
309 	return 0;
310 
311 unregister_clk:
312 	clk_notifier_unregister(ddata->clk, &ddata->notifier);
313 disable_clk:
314 	while (enabled_clks) {
315 		clk_disable(ddata->clk);
316 		--enabled_clks;
317 	}
318 	clk_unprepare(ddata->clk);
319 
320 	return ret;
321 }
322 
pwm_sifive_remove(struct platform_device * dev)323 static int pwm_sifive_remove(struct platform_device *dev)
324 {
325 	struct pwm_sifive_ddata *ddata = platform_get_drvdata(dev);
326 	struct pwm_device *pwm;
327 	int ch;
328 
329 	pwmchip_remove(&ddata->chip);
330 	clk_notifier_unregister(ddata->clk, &ddata->notifier);
331 
332 	for (ch = 0; ch < ddata->chip.npwm; ch++) {
333 		pwm = &ddata->chip.pwms[ch];
334 		if (pwm->state.enabled)
335 			clk_disable(ddata->clk);
336 	}
337 
338 	clk_unprepare(ddata->clk);
339 
340 	return 0;
341 }
342 
343 static const struct of_device_id pwm_sifive_of_match[] = {
344 	{ .compatible = "sifive,pwm0" },
345 	{},
346 };
347 MODULE_DEVICE_TABLE(of, pwm_sifive_of_match);
348 
349 static struct platform_driver pwm_sifive_driver = {
350 	.probe = pwm_sifive_probe,
351 	.remove = pwm_sifive_remove,
352 	.driver = {
353 		.name = "pwm-sifive",
354 		.of_match_table = pwm_sifive_of_match,
355 	},
356 };
357 module_platform_driver(pwm_sifive_driver);
358 
359 MODULE_DESCRIPTION("SiFive PWM driver");
360 MODULE_LICENSE("GPL v2");
361