1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
7 *
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
11 */
12
13 /*
14 * BITMAP UNPLUGGING:
15 *
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
19 *
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
24 * new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 * batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
36 */
37
38 #include <linux/blkdev.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/raid/pq.h>
42 #include <linux/async_tx.h>
43 #include <linux/module.h>
44 #include <linux/async.h>
45 #include <linux/seq_file.h>
46 #include <linux/cpu.h>
47 #include <linux/slab.h>
48 #include <linux/ratelimit.h>
49 #include <linux/nodemask.h>
50
51 #include <trace/events/block.h>
52 #include <linux/list_sort.h>
53
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "md-bitmap.h"
58 #include "raid5-log.h"
59
60 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
61
62 #define cpu_to_group(cpu) cpu_to_node(cpu)
63 #define ANY_GROUP NUMA_NO_NODE
64
65 static bool devices_handle_discard_safely = false;
66 module_param(devices_handle_discard_safely, bool, 0644);
67 MODULE_PARM_DESC(devices_handle_discard_safely,
68 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
69 static struct workqueue_struct *raid5_wq;
70
stripe_hash(struct r5conf * conf,sector_t sect)71 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
72 {
73 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
74 return &conf->stripe_hashtbl[hash];
75 }
76
stripe_hash_locks_hash(struct r5conf * conf,sector_t sect)77 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
78 {
79 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
80 }
81
lock_device_hash_lock(struct r5conf * conf,int hash)82 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
83 {
84 spin_lock_irq(conf->hash_locks + hash);
85 spin_lock(&conf->device_lock);
86 }
87
unlock_device_hash_lock(struct r5conf * conf,int hash)88 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
89 {
90 spin_unlock(&conf->device_lock);
91 spin_unlock_irq(conf->hash_locks + hash);
92 }
93
lock_all_device_hash_locks_irq(struct r5conf * conf)94 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
95 {
96 int i;
97 spin_lock_irq(conf->hash_locks);
98 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
99 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
100 spin_lock(&conf->device_lock);
101 }
102
unlock_all_device_hash_locks_irq(struct r5conf * conf)103 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
104 {
105 int i;
106 spin_unlock(&conf->device_lock);
107 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
108 spin_unlock(conf->hash_locks + i);
109 spin_unlock_irq(conf->hash_locks);
110 }
111
112 /* Find first data disk in a raid6 stripe */
raid6_d0(struct stripe_head * sh)113 static inline int raid6_d0(struct stripe_head *sh)
114 {
115 if (sh->ddf_layout)
116 /* ddf always start from first device */
117 return 0;
118 /* md starts just after Q block */
119 if (sh->qd_idx == sh->disks - 1)
120 return 0;
121 else
122 return sh->qd_idx + 1;
123 }
raid6_next_disk(int disk,int raid_disks)124 static inline int raid6_next_disk(int disk, int raid_disks)
125 {
126 disk++;
127 return (disk < raid_disks) ? disk : 0;
128 }
129
130 /* When walking through the disks in a raid5, starting at raid6_d0,
131 * We need to map each disk to a 'slot', where the data disks are slot
132 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
133 * is raid_disks-1. This help does that mapping.
134 */
raid6_idx_to_slot(int idx,struct stripe_head * sh,int * count,int syndrome_disks)135 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
136 int *count, int syndrome_disks)
137 {
138 int slot = *count;
139
140 if (sh->ddf_layout)
141 (*count)++;
142 if (idx == sh->pd_idx)
143 return syndrome_disks;
144 if (idx == sh->qd_idx)
145 return syndrome_disks + 1;
146 if (!sh->ddf_layout)
147 (*count)++;
148 return slot;
149 }
150
151 static void print_raid5_conf (struct r5conf *conf);
152
stripe_operations_active(struct stripe_head * sh)153 static int stripe_operations_active(struct stripe_head *sh)
154 {
155 return sh->check_state || sh->reconstruct_state ||
156 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
157 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
158 }
159
stripe_is_lowprio(struct stripe_head * sh)160 static bool stripe_is_lowprio(struct stripe_head *sh)
161 {
162 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
163 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
164 !test_bit(STRIPE_R5C_CACHING, &sh->state);
165 }
166
raid5_wakeup_stripe_thread(struct stripe_head * sh)167 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
168 {
169 struct r5conf *conf = sh->raid_conf;
170 struct r5worker_group *group;
171 int thread_cnt;
172 int i, cpu = sh->cpu;
173
174 if (!cpu_online(cpu)) {
175 cpu = cpumask_any(cpu_online_mask);
176 sh->cpu = cpu;
177 }
178
179 if (list_empty(&sh->lru)) {
180 struct r5worker_group *group;
181 group = conf->worker_groups + cpu_to_group(cpu);
182 if (stripe_is_lowprio(sh))
183 list_add_tail(&sh->lru, &group->loprio_list);
184 else
185 list_add_tail(&sh->lru, &group->handle_list);
186 group->stripes_cnt++;
187 sh->group = group;
188 }
189
190 if (conf->worker_cnt_per_group == 0) {
191 md_wakeup_thread(conf->mddev->thread);
192 return;
193 }
194
195 group = conf->worker_groups + cpu_to_group(sh->cpu);
196
197 group->workers[0].working = true;
198 /* at least one worker should run to avoid race */
199 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
200
201 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
202 /* wakeup more workers */
203 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
204 if (group->workers[i].working == false) {
205 group->workers[i].working = true;
206 queue_work_on(sh->cpu, raid5_wq,
207 &group->workers[i].work);
208 thread_cnt--;
209 }
210 }
211 }
212
do_release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)213 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
214 struct list_head *temp_inactive_list)
215 {
216 int i;
217 int injournal = 0; /* number of date pages with R5_InJournal */
218
219 BUG_ON(!list_empty(&sh->lru));
220 BUG_ON(atomic_read(&conf->active_stripes)==0);
221
222 if (r5c_is_writeback(conf->log))
223 for (i = sh->disks; i--; )
224 if (test_bit(R5_InJournal, &sh->dev[i].flags))
225 injournal++;
226 /*
227 * In the following cases, the stripe cannot be released to cached
228 * lists. Therefore, we make the stripe write out and set
229 * STRIPE_HANDLE:
230 * 1. when quiesce in r5c write back;
231 * 2. when resync is requested fot the stripe.
232 */
233 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
234 (conf->quiesce && r5c_is_writeback(conf->log) &&
235 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
236 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
237 r5c_make_stripe_write_out(sh);
238 set_bit(STRIPE_HANDLE, &sh->state);
239 }
240
241 if (test_bit(STRIPE_HANDLE, &sh->state)) {
242 if (test_bit(STRIPE_DELAYED, &sh->state) &&
243 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
244 list_add_tail(&sh->lru, &conf->delayed_list);
245 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
246 sh->bm_seq - conf->seq_write > 0)
247 list_add_tail(&sh->lru, &conf->bitmap_list);
248 else {
249 clear_bit(STRIPE_DELAYED, &sh->state);
250 clear_bit(STRIPE_BIT_DELAY, &sh->state);
251 if (conf->worker_cnt_per_group == 0) {
252 if (stripe_is_lowprio(sh))
253 list_add_tail(&sh->lru,
254 &conf->loprio_list);
255 else
256 list_add_tail(&sh->lru,
257 &conf->handle_list);
258 } else {
259 raid5_wakeup_stripe_thread(sh);
260 return;
261 }
262 }
263 md_wakeup_thread(conf->mddev->thread);
264 } else {
265 BUG_ON(stripe_operations_active(sh));
266 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
267 if (atomic_dec_return(&conf->preread_active_stripes)
268 < IO_THRESHOLD)
269 md_wakeup_thread(conf->mddev->thread);
270 atomic_dec(&conf->active_stripes);
271 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
272 if (!r5c_is_writeback(conf->log))
273 list_add_tail(&sh->lru, temp_inactive_list);
274 else {
275 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
276 if (injournal == 0)
277 list_add_tail(&sh->lru, temp_inactive_list);
278 else if (injournal == conf->raid_disks - conf->max_degraded) {
279 /* full stripe */
280 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
281 atomic_inc(&conf->r5c_cached_full_stripes);
282 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
283 atomic_dec(&conf->r5c_cached_partial_stripes);
284 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
285 r5c_check_cached_full_stripe(conf);
286 } else
287 /*
288 * STRIPE_R5C_PARTIAL_STRIPE is set in
289 * r5c_try_caching_write(). No need to
290 * set it again.
291 */
292 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
293 }
294 }
295 }
296 }
297
__release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)298 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
299 struct list_head *temp_inactive_list)
300 {
301 if (atomic_dec_and_test(&sh->count))
302 do_release_stripe(conf, sh, temp_inactive_list);
303 }
304
305 /*
306 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
307 *
308 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
309 * given time. Adding stripes only takes device lock, while deleting stripes
310 * only takes hash lock.
311 */
release_inactive_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list,int hash)312 static void release_inactive_stripe_list(struct r5conf *conf,
313 struct list_head *temp_inactive_list,
314 int hash)
315 {
316 int size;
317 bool do_wakeup = false;
318 unsigned long flags;
319
320 if (hash == NR_STRIPE_HASH_LOCKS) {
321 size = NR_STRIPE_HASH_LOCKS;
322 hash = NR_STRIPE_HASH_LOCKS - 1;
323 } else
324 size = 1;
325 while (size) {
326 struct list_head *list = &temp_inactive_list[size - 1];
327
328 /*
329 * We don't hold any lock here yet, raid5_get_active_stripe() might
330 * remove stripes from the list
331 */
332 if (!list_empty_careful(list)) {
333 spin_lock_irqsave(conf->hash_locks + hash, flags);
334 if (list_empty(conf->inactive_list + hash) &&
335 !list_empty(list))
336 atomic_dec(&conf->empty_inactive_list_nr);
337 list_splice_tail_init(list, conf->inactive_list + hash);
338 do_wakeup = true;
339 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
340 }
341 size--;
342 hash--;
343 }
344
345 if (do_wakeup) {
346 wake_up(&conf->wait_for_stripe);
347 if (atomic_read(&conf->active_stripes) == 0)
348 wake_up(&conf->wait_for_quiescent);
349 if (conf->retry_read_aligned)
350 md_wakeup_thread(conf->mddev->thread);
351 }
352 }
353
354 /* should hold conf->device_lock already */
release_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list)355 static int release_stripe_list(struct r5conf *conf,
356 struct list_head *temp_inactive_list)
357 {
358 struct stripe_head *sh, *t;
359 int count = 0;
360 struct llist_node *head;
361
362 head = llist_del_all(&conf->released_stripes);
363 head = llist_reverse_order(head);
364 llist_for_each_entry_safe(sh, t, head, release_list) {
365 int hash;
366
367 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
368 smp_mb();
369 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
370 /*
371 * Don't worry the bit is set here, because if the bit is set
372 * again, the count is always > 1. This is true for
373 * STRIPE_ON_UNPLUG_LIST bit too.
374 */
375 hash = sh->hash_lock_index;
376 __release_stripe(conf, sh, &temp_inactive_list[hash]);
377 count++;
378 }
379
380 return count;
381 }
382
raid5_release_stripe(struct stripe_head * sh)383 void raid5_release_stripe(struct stripe_head *sh)
384 {
385 struct r5conf *conf = sh->raid_conf;
386 unsigned long flags;
387 struct list_head list;
388 int hash;
389 bool wakeup;
390
391 /* Avoid release_list until the last reference.
392 */
393 if (atomic_add_unless(&sh->count, -1, 1))
394 return;
395
396 if (unlikely(!conf->mddev->thread) ||
397 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
398 goto slow_path;
399 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
400 if (wakeup)
401 md_wakeup_thread(conf->mddev->thread);
402 return;
403 slow_path:
404 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
405 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
406 INIT_LIST_HEAD(&list);
407 hash = sh->hash_lock_index;
408 do_release_stripe(conf, sh, &list);
409 spin_unlock_irqrestore(&conf->device_lock, flags);
410 release_inactive_stripe_list(conf, &list, hash);
411 }
412 }
413
remove_hash(struct stripe_head * sh)414 static inline void remove_hash(struct stripe_head *sh)
415 {
416 pr_debug("remove_hash(), stripe %llu\n",
417 (unsigned long long)sh->sector);
418
419 hlist_del_init(&sh->hash);
420 }
421
insert_hash(struct r5conf * conf,struct stripe_head * sh)422 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
423 {
424 struct hlist_head *hp = stripe_hash(conf, sh->sector);
425
426 pr_debug("insert_hash(), stripe %llu\n",
427 (unsigned long long)sh->sector);
428
429 hlist_add_head(&sh->hash, hp);
430 }
431
432 /* find an idle stripe, make sure it is unhashed, and return it. */
get_free_stripe(struct r5conf * conf,int hash)433 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
434 {
435 struct stripe_head *sh = NULL;
436 struct list_head *first;
437
438 if (list_empty(conf->inactive_list + hash))
439 goto out;
440 first = (conf->inactive_list + hash)->next;
441 sh = list_entry(first, struct stripe_head, lru);
442 list_del_init(first);
443 remove_hash(sh);
444 atomic_inc(&conf->active_stripes);
445 BUG_ON(hash != sh->hash_lock_index);
446 if (list_empty(conf->inactive_list + hash))
447 atomic_inc(&conf->empty_inactive_list_nr);
448 out:
449 return sh;
450 }
451
452 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
free_stripe_pages(struct stripe_head * sh)453 static void free_stripe_pages(struct stripe_head *sh)
454 {
455 int i;
456 struct page *p;
457
458 /* Have not allocate page pool */
459 if (!sh->pages)
460 return;
461
462 for (i = 0; i < sh->nr_pages; i++) {
463 p = sh->pages[i];
464 if (p)
465 put_page(p);
466 sh->pages[i] = NULL;
467 }
468 }
469
alloc_stripe_pages(struct stripe_head * sh,gfp_t gfp)470 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
471 {
472 int i;
473 struct page *p;
474
475 for (i = 0; i < sh->nr_pages; i++) {
476 /* The page have allocated. */
477 if (sh->pages[i])
478 continue;
479
480 p = alloc_page(gfp);
481 if (!p) {
482 free_stripe_pages(sh);
483 return -ENOMEM;
484 }
485 sh->pages[i] = p;
486 }
487 return 0;
488 }
489
490 static int
init_stripe_shared_pages(struct stripe_head * sh,struct r5conf * conf,int disks)491 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
492 {
493 int nr_pages, cnt;
494
495 if (sh->pages)
496 return 0;
497
498 /* Each of the sh->dev[i] need one conf->stripe_size */
499 cnt = PAGE_SIZE / conf->stripe_size;
500 nr_pages = (disks + cnt - 1) / cnt;
501
502 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
503 if (!sh->pages)
504 return -ENOMEM;
505 sh->nr_pages = nr_pages;
506 sh->stripes_per_page = cnt;
507 return 0;
508 }
509 #endif
510
shrink_buffers(struct stripe_head * sh)511 static void shrink_buffers(struct stripe_head *sh)
512 {
513 int i;
514 int num = sh->raid_conf->pool_size;
515
516 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
517 for (i = 0; i < num ; i++) {
518 struct page *p;
519
520 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
521 p = sh->dev[i].page;
522 if (!p)
523 continue;
524 sh->dev[i].page = NULL;
525 put_page(p);
526 }
527 #else
528 for (i = 0; i < num; i++)
529 sh->dev[i].page = NULL;
530 free_stripe_pages(sh); /* Free pages */
531 #endif
532 }
533
grow_buffers(struct stripe_head * sh,gfp_t gfp)534 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
535 {
536 int i;
537 int num = sh->raid_conf->pool_size;
538
539 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
540 for (i = 0; i < num; i++) {
541 struct page *page;
542
543 if (!(page = alloc_page(gfp))) {
544 return 1;
545 }
546 sh->dev[i].page = page;
547 sh->dev[i].orig_page = page;
548 sh->dev[i].offset = 0;
549 }
550 #else
551 if (alloc_stripe_pages(sh, gfp))
552 return -ENOMEM;
553
554 for (i = 0; i < num; i++) {
555 sh->dev[i].page = raid5_get_dev_page(sh, i);
556 sh->dev[i].orig_page = sh->dev[i].page;
557 sh->dev[i].offset = raid5_get_page_offset(sh, i);
558 }
559 #endif
560 return 0;
561 }
562
563 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
564 struct stripe_head *sh);
565
init_stripe(struct stripe_head * sh,sector_t sector,int previous)566 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
567 {
568 struct r5conf *conf = sh->raid_conf;
569 int i, seq;
570
571 BUG_ON(atomic_read(&sh->count) != 0);
572 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
573 BUG_ON(stripe_operations_active(sh));
574 BUG_ON(sh->batch_head);
575
576 pr_debug("init_stripe called, stripe %llu\n",
577 (unsigned long long)sector);
578 retry:
579 seq = read_seqcount_begin(&conf->gen_lock);
580 sh->generation = conf->generation - previous;
581 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
582 sh->sector = sector;
583 stripe_set_idx(sector, conf, previous, sh);
584 sh->state = 0;
585
586 for (i = sh->disks; i--; ) {
587 struct r5dev *dev = &sh->dev[i];
588
589 if (dev->toread || dev->read || dev->towrite || dev->written ||
590 test_bit(R5_LOCKED, &dev->flags)) {
591 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
592 (unsigned long long)sh->sector, i, dev->toread,
593 dev->read, dev->towrite, dev->written,
594 test_bit(R5_LOCKED, &dev->flags));
595 WARN_ON(1);
596 }
597 dev->flags = 0;
598 dev->sector = raid5_compute_blocknr(sh, i, previous);
599 }
600 if (read_seqcount_retry(&conf->gen_lock, seq))
601 goto retry;
602 sh->overwrite_disks = 0;
603 insert_hash(conf, sh);
604 sh->cpu = smp_processor_id();
605 set_bit(STRIPE_BATCH_READY, &sh->state);
606 }
607
__find_stripe(struct r5conf * conf,sector_t sector,short generation)608 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
609 short generation)
610 {
611 struct stripe_head *sh;
612
613 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
614 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
615 if (sh->sector == sector && sh->generation == generation)
616 return sh;
617 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
618 return NULL;
619 }
620
621 /*
622 * Need to check if array has failed when deciding whether to:
623 * - start an array
624 * - remove non-faulty devices
625 * - add a spare
626 * - allow a reshape
627 * This determination is simple when no reshape is happening.
628 * However if there is a reshape, we need to carefully check
629 * both the before and after sections.
630 * This is because some failed devices may only affect one
631 * of the two sections, and some non-in_sync devices may
632 * be insync in the section most affected by failed devices.
633 */
raid5_calc_degraded(struct r5conf * conf)634 int raid5_calc_degraded(struct r5conf *conf)
635 {
636 int degraded, degraded2;
637 int i;
638
639 rcu_read_lock();
640 degraded = 0;
641 for (i = 0; i < conf->previous_raid_disks; i++) {
642 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
643 if (rdev && test_bit(Faulty, &rdev->flags))
644 rdev = rcu_dereference(conf->disks[i].replacement);
645 if (!rdev || test_bit(Faulty, &rdev->flags))
646 degraded++;
647 else if (test_bit(In_sync, &rdev->flags))
648 ;
649 else
650 /* not in-sync or faulty.
651 * If the reshape increases the number of devices,
652 * this is being recovered by the reshape, so
653 * this 'previous' section is not in_sync.
654 * If the number of devices is being reduced however,
655 * the device can only be part of the array if
656 * we are reverting a reshape, so this section will
657 * be in-sync.
658 */
659 if (conf->raid_disks >= conf->previous_raid_disks)
660 degraded++;
661 }
662 rcu_read_unlock();
663 if (conf->raid_disks == conf->previous_raid_disks)
664 return degraded;
665 rcu_read_lock();
666 degraded2 = 0;
667 for (i = 0; i < conf->raid_disks; i++) {
668 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
669 if (rdev && test_bit(Faulty, &rdev->flags))
670 rdev = rcu_dereference(conf->disks[i].replacement);
671 if (!rdev || test_bit(Faulty, &rdev->flags))
672 degraded2++;
673 else if (test_bit(In_sync, &rdev->flags))
674 ;
675 else
676 /* not in-sync or faulty.
677 * If reshape increases the number of devices, this
678 * section has already been recovered, else it
679 * almost certainly hasn't.
680 */
681 if (conf->raid_disks <= conf->previous_raid_disks)
682 degraded2++;
683 }
684 rcu_read_unlock();
685 if (degraded2 > degraded)
686 return degraded2;
687 return degraded;
688 }
689
has_failed(struct r5conf * conf)690 static bool has_failed(struct r5conf *conf)
691 {
692 int degraded = conf->mddev->degraded;
693
694 if (test_bit(MD_BROKEN, &conf->mddev->flags))
695 return true;
696
697 if (conf->mddev->reshape_position != MaxSector)
698 degraded = raid5_calc_degraded(conf);
699
700 return degraded > conf->max_degraded;
701 }
702
703 struct stripe_head *
raid5_get_active_stripe(struct r5conf * conf,sector_t sector,int previous,int noblock,int noquiesce)704 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
705 int previous, int noblock, int noquiesce)
706 {
707 struct stripe_head *sh;
708 int hash = stripe_hash_locks_hash(conf, sector);
709 int inc_empty_inactive_list_flag;
710
711 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
712
713 spin_lock_irq(conf->hash_locks + hash);
714
715 do {
716 wait_event_lock_irq(conf->wait_for_quiescent,
717 conf->quiesce == 0 || noquiesce,
718 *(conf->hash_locks + hash));
719 sh = __find_stripe(conf, sector, conf->generation - previous);
720 if (!sh) {
721 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
722 sh = get_free_stripe(conf, hash);
723 if (!sh && !test_bit(R5_DID_ALLOC,
724 &conf->cache_state))
725 set_bit(R5_ALLOC_MORE,
726 &conf->cache_state);
727 }
728 if (noblock && sh == NULL)
729 break;
730
731 r5c_check_stripe_cache_usage(conf);
732 if (!sh) {
733 set_bit(R5_INACTIVE_BLOCKED,
734 &conf->cache_state);
735 r5l_wake_reclaim(conf->log, 0);
736 wait_event_lock_irq(
737 conf->wait_for_stripe,
738 !list_empty(conf->inactive_list + hash) &&
739 (atomic_read(&conf->active_stripes)
740 < (conf->max_nr_stripes * 3 / 4)
741 || !test_bit(R5_INACTIVE_BLOCKED,
742 &conf->cache_state)),
743 *(conf->hash_locks + hash));
744 clear_bit(R5_INACTIVE_BLOCKED,
745 &conf->cache_state);
746 } else {
747 init_stripe(sh, sector, previous);
748 atomic_inc(&sh->count);
749 }
750 } else if (!atomic_inc_not_zero(&sh->count)) {
751 spin_lock(&conf->device_lock);
752 if (!atomic_read(&sh->count)) {
753 if (!test_bit(STRIPE_HANDLE, &sh->state))
754 atomic_inc(&conf->active_stripes);
755 BUG_ON(list_empty(&sh->lru) &&
756 !test_bit(STRIPE_EXPANDING, &sh->state));
757 inc_empty_inactive_list_flag = 0;
758 if (!list_empty(conf->inactive_list + hash))
759 inc_empty_inactive_list_flag = 1;
760 list_del_init(&sh->lru);
761 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
762 atomic_inc(&conf->empty_inactive_list_nr);
763 if (sh->group) {
764 sh->group->stripes_cnt--;
765 sh->group = NULL;
766 }
767 }
768 atomic_inc(&sh->count);
769 spin_unlock(&conf->device_lock);
770 }
771 } while (sh == NULL);
772
773 spin_unlock_irq(conf->hash_locks + hash);
774 return sh;
775 }
776
is_full_stripe_write(struct stripe_head * sh)777 static bool is_full_stripe_write(struct stripe_head *sh)
778 {
779 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
780 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
781 }
782
lock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)783 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
784 __acquires(&sh1->stripe_lock)
785 __acquires(&sh2->stripe_lock)
786 {
787 if (sh1 > sh2) {
788 spin_lock_irq(&sh2->stripe_lock);
789 spin_lock_nested(&sh1->stripe_lock, 1);
790 } else {
791 spin_lock_irq(&sh1->stripe_lock);
792 spin_lock_nested(&sh2->stripe_lock, 1);
793 }
794 }
795
unlock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)796 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
797 __releases(&sh1->stripe_lock)
798 __releases(&sh2->stripe_lock)
799 {
800 spin_unlock(&sh1->stripe_lock);
801 spin_unlock_irq(&sh2->stripe_lock);
802 }
803
804 /* Only freshly new full stripe normal write stripe can be added to a batch list */
stripe_can_batch(struct stripe_head * sh)805 static bool stripe_can_batch(struct stripe_head *sh)
806 {
807 struct r5conf *conf = sh->raid_conf;
808
809 if (raid5_has_log(conf) || raid5_has_ppl(conf))
810 return false;
811 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
812 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
813 is_full_stripe_write(sh);
814 }
815
816 /* we only do back search */
stripe_add_to_batch_list(struct r5conf * conf,struct stripe_head * sh)817 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
818 {
819 struct stripe_head *head;
820 sector_t head_sector, tmp_sec;
821 int hash;
822 int dd_idx;
823 int inc_empty_inactive_list_flag;
824
825 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
826 tmp_sec = sh->sector;
827 if (!sector_div(tmp_sec, conf->chunk_sectors))
828 return;
829 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
830
831 hash = stripe_hash_locks_hash(conf, head_sector);
832 spin_lock_irq(conf->hash_locks + hash);
833 head = __find_stripe(conf, head_sector, conf->generation);
834 if (head && !atomic_inc_not_zero(&head->count)) {
835 spin_lock(&conf->device_lock);
836 if (!atomic_read(&head->count)) {
837 if (!test_bit(STRIPE_HANDLE, &head->state))
838 atomic_inc(&conf->active_stripes);
839 BUG_ON(list_empty(&head->lru) &&
840 !test_bit(STRIPE_EXPANDING, &head->state));
841 inc_empty_inactive_list_flag = 0;
842 if (!list_empty(conf->inactive_list + hash))
843 inc_empty_inactive_list_flag = 1;
844 list_del_init(&head->lru);
845 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
846 atomic_inc(&conf->empty_inactive_list_nr);
847 if (head->group) {
848 head->group->stripes_cnt--;
849 head->group = NULL;
850 }
851 }
852 atomic_inc(&head->count);
853 spin_unlock(&conf->device_lock);
854 }
855 spin_unlock_irq(conf->hash_locks + hash);
856
857 if (!head)
858 return;
859 if (!stripe_can_batch(head))
860 goto out;
861
862 lock_two_stripes(head, sh);
863 /* clear_batch_ready clear the flag */
864 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
865 goto unlock_out;
866
867 if (sh->batch_head)
868 goto unlock_out;
869
870 dd_idx = 0;
871 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
872 dd_idx++;
873 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
874 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
875 goto unlock_out;
876
877 if (head->batch_head) {
878 spin_lock(&head->batch_head->batch_lock);
879 /* This batch list is already running */
880 if (!stripe_can_batch(head)) {
881 spin_unlock(&head->batch_head->batch_lock);
882 goto unlock_out;
883 }
884 /*
885 * We must assign batch_head of this stripe within the
886 * batch_lock, otherwise clear_batch_ready of batch head
887 * stripe could clear BATCH_READY bit of this stripe and
888 * this stripe->batch_head doesn't get assigned, which
889 * could confuse clear_batch_ready for this stripe
890 */
891 sh->batch_head = head->batch_head;
892
893 /*
894 * at this point, head's BATCH_READY could be cleared, but we
895 * can still add the stripe to batch list
896 */
897 list_add(&sh->batch_list, &head->batch_list);
898 spin_unlock(&head->batch_head->batch_lock);
899 } else {
900 head->batch_head = head;
901 sh->batch_head = head->batch_head;
902 spin_lock(&head->batch_lock);
903 list_add_tail(&sh->batch_list, &head->batch_list);
904 spin_unlock(&head->batch_lock);
905 }
906
907 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
908 if (atomic_dec_return(&conf->preread_active_stripes)
909 < IO_THRESHOLD)
910 md_wakeup_thread(conf->mddev->thread);
911
912 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
913 int seq = sh->bm_seq;
914 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
915 sh->batch_head->bm_seq > seq)
916 seq = sh->batch_head->bm_seq;
917 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
918 sh->batch_head->bm_seq = seq;
919 }
920
921 atomic_inc(&sh->count);
922 unlock_out:
923 unlock_two_stripes(head, sh);
924 out:
925 raid5_release_stripe(head);
926 }
927
928 /* Determine if 'data_offset' or 'new_data_offset' should be used
929 * in this stripe_head.
930 */
use_new_offset(struct r5conf * conf,struct stripe_head * sh)931 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
932 {
933 sector_t progress = conf->reshape_progress;
934 /* Need a memory barrier to make sure we see the value
935 * of conf->generation, or ->data_offset that was set before
936 * reshape_progress was updated.
937 */
938 smp_rmb();
939 if (progress == MaxSector)
940 return 0;
941 if (sh->generation == conf->generation - 1)
942 return 0;
943 /* We are in a reshape, and this is a new-generation stripe,
944 * so use new_data_offset.
945 */
946 return 1;
947 }
948
dispatch_bio_list(struct bio_list * tmp)949 static void dispatch_bio_list(struct bio_list *tmp)
950 {
951 struct bio *bio;
952
953 while ((bio = bio_list_pop(tmp)))
954 submit_bio_noacct(bio);
955 }
956
cmp_stripe(void * priv,struct list_head * a,struct list_head * b)957 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
958 {
959 const struct r5pending_data *da = list_entry(a,
960 struct r5pending_data, sibling);
961 const struct r5pending_data *db = list_entry(b,
962 struct r5pending_data, sibling);
963 if (da->sector > db->sector)
964 return 1;
965 if (da->sector < db->sector)
966 return -1;
967 return 0;
968 }
969
dispatch_defer_bios(struct r5conf * conf,int target,struct bio_list * list)970 static void dispatch_defer_bios(struct r5conf *conf, int target,
971 struct bio_list *list)
972 {
973 struct r5pending_data *data;
974 struct list_head *first, *next = NULL;
975 int cnt = 0;
976
977 if (conf->pending_data_cnt == 0)
978 return;
979
980 list_sort(NULL, &conf->pending_list, cmp_stripe);
981
982 first = conf->pending_list.next;
983
984 /* temporarily move the head */
985 if (conf->next_pending_data)
986 list_move_tail(&conf->pending_list,
987 &conf->next_pending_data->sibling);
988
989 while (!list_empty(&conf->pending_list)) {
990 data = list_first_entry(&conf->pending_list,
991 struct r5pending_data, sibling);
992 if (&data->sibling == first)
993 first = data->sibling.next;
994 next = data->sibling.next;
995
996 bio_list_merge(list, &data->bios);
997 list_move(&data->sibling, &conf->free_list);
998 cnt++;
999 if (cnt >= target)
1000 break;
1001 }
1002 conf->pending_data_cnt -= cnt;
1003 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1004
1005 if (next != &conf->pending_list)
1006 conf->next_pending_data = list_entry(next,
1007 struct r5pending_data, sibling);
1008 else
1009 conf->next_pending_data = NULL;
1010 /* list isn't empty */
1011 if (first != &conf->pending_list)
1012 list_move_tail(&conf->pending_list, first);
1013 }
1014
flush_deferred_bios(struct r5conf * conf)1015 static void flush_deferred_bios(struct r5conf *conf)
1016 {
1017 struct bio_list tmp = BIO_EMPTY_LIST;
1018
1019 if (conf->pending_data_cnt == 0)
1020 return;
1021
1022 spin_lock(&conf->pending_bios_lock);
1023 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1024 BUG_ON(conf->pending_data_cnt != 0);
1025 spin_unlock(&conf->pending_bios_lock);
1026
1027 dispatch_bio_list(&tmp);
1028 }
1029
defer_issue_bios(struct r5conf * conf,sector_t sector,struct bio_list * bios)1030 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1031 struct bio_list *bios)
1032 {
1033 struct bio_list tmp = BIO_EMPTY_LIST;
1034 struct r5pending_data *ent;
1035
1036 spin_lock(&conf->pending_bios_lock);
1037 ent = list_first_entry(&conf->free_list, struct r5pending_data,
1038 sibling);
1039 list_move_tail(&ent->sibling, &conf->pending_list);
1040 ent->sector = sector;
1041 bio_list_init(&ent->bios);
1042 bio_list_merge(&ent->bios, bios);
1043 conf->pending_data_cnt++;
1044 if (conf->pending_data_cnt >= PENDING_IO_MAX)
1045 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1046
1047 spin_unlock(&conf->pending_bios_lock);
1048
1049 dispatch_bio_list(&tmp);
1050 }
1051
1052 static void
1053 raid5_end_read_request(struct bio *bi);
1054 static void
1055 raid5_end_write_request(struct bio *bi);
1056
ops_run_io(struct stripe_head * sh,struct stripe_head_state * s)1057 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1058 {
1059 struct r5conf *conf = sh->raid_conf;
1060 int i, disks = sh->disks;
1061 struct stripe_head *head_sh = sh;
1062 struct bio_list pending_bios = BIO_EMPTY_LIST;
1063 bool should_defer;
1064
1065 might_sleep();
1066
1067 if (log_stripe(sh, s) == 0)
1068 return;
1069
1070 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1071
1072 for (i = disks; i--; ) {
1073 int op, op_flags = 0;
1074 int replace_only = 0;
1075 struct bio *bi, *rbi;
1076 struct md_rdev *rdev, *rrdev = NULL;
1077
1078 sh = head_sh;
1079 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1080 op = REQ_OP_WRITE;
1081 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1082 op_flags = REQ_FUA;
1083 if (test_bit(R5_Discard, &sh->dev[i].flags))
1084 op = REQ_OP_DISCARD;
1085 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1086 op = REQ_OP_READ;
1087 else if (test_and_clear_bit(R5_WantReplace,
1088 &sh->dev[i].flags)) {
1089 op = REQ_OP_WRITE;
1090 replace_only = 1;
1091 } else
1092 continue;
1093 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1094 op_flags |= REQ_SYNC;
1095
1096 again:
1097 bi = &sh->dev[i].req;
1098 rbi = &sh->dev[i].rreq; /* For writing to replacement */
1099
1100 rcu_read_lock();
1101 rrdev = rcu_dereference(conf->disks[i].replacement);
1102 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1103 rdev = rcu_dereference(conf->disks[i].rdev);
1104 if (!rdev) {
1105 rdev = rrdev;
1106 rrdev = NULL;
1107 }
1108 if (op_is_write(op)) {
1109 if (replace_only)
1110 rdev = NULL;
1111 if (rdev == rrdev)
1112 /* We raced and saw duplicates */
1113 rrdev = NULL;
1114 } else {
1115 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1116 rdev = rrdev;
1117 rrdev = NULL;
1118 }
1119
1120 if (rdev && test_bit(Faulty, &rdev->flags))
1121 rdev = NULL;
1122 if (rdev)
1123 atomic_inc(&rdev->nr_pending);
1124 if (rrdev && test_bit(Faulty, &rrdev->flags))
1125 rrdev = NULL;
1126 if (rrdev)
1127 atomic_inc(&rrdev->nr_pending);
1128 rcu_read_unlock();
1129
1130 /* We have already checked bad blocks for reads. Now
1131 * need to check for writes. We never accept write errors
1132 * on the replacement, so we don't to check rrdev.
1133 */
1134 while (op_is_write(op) && rdev &&
1135 test_bit(WriteErrorSeen, &rdev->flags)) {
1136 sector_t first_bad;
1137 int bad_sectors;
1138 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
1139 &first_bad, &bad_sectors);
1140 if (!bad)
1141 break;
1142
1143 if (bad < 0) {
1144 set_bit(BlockedBadBlocks, &rdev->flags);
1145 if (!conf->mddev->external &&
1146 conf->mddev->sb_flags) {
1147 /* It is very unlikely, but we might
1148 * still need to write out the
1149 * bad block log - better give it
1150 * a chance*/
1151 md_check_recovery(conf->mddev);
1152 }
1153 /*
1154 * Because md_wait_for_blocked_rdev
1155 * will dec nr_pending, we must
1156 * increment it first.
1157 */
1158 atomic_inc(&rdev->nr_pending);
1159 md_wait_for_blocked_rdev(rdev, conf->mddev);
1160 } else {
1161 /* Acknowledged bad block - skip the write */
1162 rdev_dec_pending(rdev, conf->mddev);
1163 rdev = NULL;
1164 }
1165 }
1166
1167 if (rdev) {
1168 if (s->syncing || s->expanding || s->expanded
1169 || s->replacing)
1170 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1171
1172 set_bit(STRIPE_IO_STARTED, &sh->state);
1173
1174 bio_set_dev(bi, rdev->bdev);
1175 bio_set_op_attrs(bi, op, op_flags);
1176 bi->bi_end_io = op_is_write(op)
1177 ? raid5_end_write_request
1178 : raid5_end_read_request;
1179 bi->bi_private = sh;
1180
1181 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1182 __func__, (unsigned long long)sh->sector,
1183 bi->bi_opf, i);
1184 atomic_inc(&sh->count);
1185 if (sh != head_sh)
1186 atomic_inc(&head_sh->count);
1187 if (use_new_offset(conf, sh))
1188 bi->bi_iter.bi_sector = (sh->sector
1189 + rdev->new_data_offset);
1190 else
1191 bi->bi_iter.bi_sector = (sh->sector
1192 + rdev->data_offset);
1193 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1194 bi->bi_opf |= REQ_NOMERGE;
1195
1196 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1197 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1198
1199 if (!op_is_write(op) &&
1200 test_bit(R5_InJournal, &sh->dev[i].flags))
1201 /*
1202 * issuing read for a page in journal, this
1203 * must be preparing for prexor in rmw; read
1204 * the data into orig_page
1205 */
1206 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1207 else
1208 sh->dev[i].vec.bv_page = sh->dev[i].page;
1209 bi->bi_vcnt = 1;
1210 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1211 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1212 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1213 bi->bi_write_hint = sh->dev[i].write_hint;
1214 if (!rrdev)
1215 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1216 /*
1217 * If this is discard request, set bi_vcnt 0. We don't
1218 * want to confuse SCSI because SCSI will replace payload
1219 */
1220 if (op == REQ_OP_DISCARD)
1221 bi->bi_vcnt = 0;
1222 if (rrdev)
1223 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1224
1225 if (conf->mddev->gendisk)
1226 trace_block_bio_remap(bi->bi_disk->queue,
1227 bi, disk_devt(conf->mddev->gendisk),
1228 sh->dev[i].sector);
1229 if (should_defer && op_is_write(op))
1230 bio_list_add(&pending_bios, bi);
1231 else
1232 submit_bio_noacct(bi);
1233 }
1234 if (rrdev) {
1235 if (s->syncing || s->expanding || s->expanded
1236 || s->replacing)
1237 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1238
1239 set_bit(STRIPE_IO_STARTED, &sh->state);
1240
1241 bio_set_dev(rbi, rrdev->bdev);
1242 bio_set_op_attrs(rbi, op, op_flags);
1243 BUG_ON(!op_is_write(op));
1244 rbi->bi_end_io = raid5_end_write_request;
1245 rbi->bi_private = sh;
1246
1247 pr_debug("%s: for %llu schedule op %d on "
1248 "replacement disc %d\n",
1249 __func__, (unsigned long long)sh->sector,
1250 rbi->bi_opf, i);
1251 atomic_inc(&sh->count);
1252 if (sh != head_sh)
1253 atomic_inc(&head_sh->count);
1254 if (use_new_offset(conf, sh))
1255 rbi->bi_iter.bi_sector = (sh->sector
1256 + rrdev->new_data_offset);
1257 else
1258 rbi->bi_iter.bi_sector = (sh->sector
1259 + rrdev->data_offset);
1260 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1261 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1262 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1263 rbi->bi_vcnt = 1;
1264 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1265 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1266 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1267 rbi->bi_write_hint = sh->dev[i].write_hint;
1268 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1269 /*
1270 * If this is discard request, set bi_vcnt 0. We don't
1271 * want to confuse SCSI because SCSI will replace payload
1272 */
1273 if (op == REQ_OP_DISCARD)
1274 rbi->bi_vcnt = 0;
1275 if (conf->mddev->gendisk)
1276 trace_block_bio_remap(rbi->bi_disk->queue,
1277 rbi, disk_devt(conf->mddev->gendisk),
1278 sh->dev[i].sector);
1279 if (should_defer && op_is_write(op))
1280 bio_list_add(&pending_bios, rbi);
1281 else
1282 submit_bio_noacct(rbi);
1283 }
1284 if (!rdev && !rrdev) {
1285 if (op_is_write(op))
1286 set_bit(STRIPE_DEGRADED, &sh->state);
1287 pr_debug("skip op %d on disc %d for sector %llu\n",
1288 bi->bi_opf, i, (unsigned long long)sh->sector);
1289 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1290 set_bit(STRIPE_HANDLE, &sh->state);
1291 }
1292
1293 if (!head_sh->batch_head)
1294 continue;
1295 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1296 batch_list);
1297 if (sh != head_sh)
1298 goto again;
1299 }
1300
1301 if (should_defer && !bio_list_empty(&pending_bios))
1302 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1303 }
1304
1305 static struct dma_async_tx_descriptor *
async_copy_data(int frombio,struct bio * bio,struct page ** page,unsigned int poff,sector_t sector,struct dma_async_tx_descriptor * tx,struct stripe_head * sh,int no_skipcopy)1306 async_copy_data(int frombio, struct bio *bio, struct page **page,
1307 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1308 struct stripe_head *sh, int no_skipcopy)
1309 {
1310 struct bio_vec bvl;
1311 struct bvec_iter iter;
1312 struct page *bio_page;
1313 int page_offset;
1314 struct async_submit_ctl submit;
1315 enum async_tx_flags flags = 0;
1316 struct r5conf *conf = sh->raid_conf;
1317
1318 if (bio->bi_iter.bi_sector >= sector)
1319 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1320 else
1321 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1322
1323 if (frombio)
1324 flags |= ASYNC_TX_FENCE;
1325 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1326
1327 bio_for_each_segment(bvl, bio, iter) {
1328 int len = bvl.bv_len;
1329 int clen;
1330 int b_offset = 0;
1331
1332 if (page_offset < 0) {
1333 b_offset = -page_offset;
1334 page_offset += b_offset;
1335 len -= b_offset;
1336 }
1337
1338 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1339 clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1340 else
1341 clen = len;
1342
1343 if (clen > 0) {
1344 b_offset += bvl.bv_offset;
1345 bio_page = bvl.bv_page;
1346 if (frombio) {
1347 if (conf->skip_copy &&
1348 b_offset == 0 && page_offset == 0 &&
1349 clen == RAID5_STRIPE_SIZE(conf) &&
1350 !no_skipcopy)
1351 *page = bio_page;
1352 else
1353 tx = async_memcpy(*page, bio_page, page_offset + poff,
1354 b_offset, clen, &submit);
1355 } else
1356 tx = async_memcpy(bio_page, *page, b_offset,
1357 page_offset + poff, clen, &submit);
1358 }
1359 /* chain the operations */
1360 submit.depend_tx = tx;
1361
1362 if (clen < len) /* hit end of page */
1363 break;
1364 page_offset += len;
1365 }
1366
1367 return tx;
1368 }
1369
ops_complete_biofill(void * stripe_head_ref)1370 static void ops_complete_biofill(void *stripe_head_ref)
1371 {
1372 struct stripe_head *sh = stripe_head_ref;
1373 int i;
1374 struct r5conf *conf = sh->raid_conf;
1375
1376 pr_debug("%s: stripe %llu\n", __func__,
1377 (unsigned long long)sh->sector);
1378
1379 /* clear completed biofills */
1380 for (i = sh->disks; i--; ) {
1381 struct r5dev *dev = &sh->dev[i];
1382
1383 /* acknowledge completion of a biofill operation */
1384 /* and check if we need to reply to a read request,
1385 * new R5_Wantfill requests are held off until
1386 * !STRIPE_BIOFILL_RUN
1387 */
1388 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1389 struct bio *rbi, *rbi2;
1390
1391 BUG_ON(!dev->read);
1392 rbi = dev->read;
1393 dev->read = NULL;
1394 while (rbi && rbi->bi_iter.bi_sector <
1395 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1396 rbi2 = r5_next_bio(conf, rbi, dev->sector);
1397 bio_endio(rbi);
1398 rbi = rbi2;
1399 }
1400 }
1401 }
1402 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1403
1404 set_bit(STRIPE_HANDLE, &sh->state);
1405 raid5_release_stripe(sh);
1406 }
1407
ops_run_biofill(struct stripe_head * sh)1408 static void ops_run_biofill(struct stripe_head *sh)
1409 {
1410 struct dma_async_tx_descriptor *tx = NULL;
1411 struct async_submit_ctl submit;
1412 int i;
1413 struct r5conf *conf = sh->raid_conf;
1414
1415 BUG_ON(sh->batch_head);
1416 pr_debug("%s: stripe %llu\n", __func__,
1417 (unsigned long long)sh->sector);
1418
1419 for (i = sh->disks; i--; ) {
1420 struct r5dev *dev = &sh->dev[i];
1421 if (test_bit(R5_Wantfill, &dev->flags)) {
1422 struct bio *rbi;
1423 spin_lock_irq(&sh->stripe_lock);
1424 dev->read = rbi = dev->toread;
1425 dev->toread = NULL;
1426 spin_unlock_irq(&sh->stripe_lock);
1427 while (rbi && rbi->bi_iter.bi_sector <
1428 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1429 tx = async_copy_data(0, rbi, &dev->page,
1430 dev->offset,
1431 dev->sector, tx, sh, 0);
1432 rbi = r5_next_bio(conf, rbi, dev->sector);
1433 }
1434 }
1435 }
1436
1437 atomic_inc(&sh->count);
1438 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1439 async_trigger_callback(&submit);
1440 }
1441
mark_target_uptodate(struct stripe_head * sh,int target)1442 static void mark_target_uptodate(struct stripe_head *sh, int target)
1443 {
1444 struct r5dev *tgt;
1445
1446 if (target < 0)
1447 return;
1448
1449 tgt = &sh->dev[target];
1450 set_bit(R5_UPTODATE, &tgt->flags);
1451 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1452 clear_bit(R5_Wantcompute, &tgt->flags);
1453 }
1454
ops_complete_compute(void * stripe_head_ref)1455 static void ops_complete_compute(void *stripe_head_ref)
1456 {
1457 struct stripe_head *sh = stripe_head_ref;
1458
1459 pr_debug("%s: stripe %llu\n", __func__,
1460 (unsigned long long)sh->sector);
1461
1462 /* mark the computed target(s) as uptodate */
1463 mark_target_uptodate(sh, sh->ops.target);
1464 mark_target_uptodate(sh, sh->ops.target2);
1465
1466 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1467 if (sh->check_state == check_state_compute_run)
1468 sh->check_state = check_state_compute_result;
1469 set_bit(STRIPE_HANDLE, &sh->state);
1470 raid5_release_stripe(sh);
1471 }
1472
1473 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_page(struct raid5_percpu * percpu,int i)1474 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1475 {
1476 return percpu->scribble + i * percpu->scribble_obj_size;
1477 }
1478
1479 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_conv(struct stripe_head * sh,struct raid5_percpu * percpu,int i)1480 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1481 struct raid5_percpu *percpu, int i)
1482 {
1483 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1484 }
1485
1486 /*
1487 * Return a pointer to record offset address.
1488 */
1489 static unsigned int *
to_addr_offs(struct stripe_head * sh,struct raid5_percpu * percpu)1490 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1491 {
1492 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1493 }
1494
1495 static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head * sh,struct raid5_percpu * percpu)1496 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1497 {
1498 int disks = sh->disks;
1499 struct page **xor_srcs = to_addr_page(percpu, 0);
1500 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1501 int target = sh->ops.target;
1502 struct r5dev *tgt = &sh->dev[target];
1503 struct page *xor_dest = tgt->page;
1504 unsigned int off_dest = tgt->offset;
1505 int count = 0;
1506 struct dma_async_tx_descriptor *tx;
1507 struct async_submit_ctl submit;
1508 int i;
1509
1510 BUG_ON(sh->batch_head);
1511
1512 pr_debug("%s: stripe %llu block: %d\n",
1513 __func__, (unsigned long long)sh->sector, target);
1514 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1515
1516 for (i = disks; i--; ) {
1517 if (i != target) {
1518 off_srcs[count] = sh->dev[i].offset;
1519 xor_srcs[count++] = sh->dev[i].page;
1520 }
1521 }
1522
1523 atomic_inc(&sh->count);
1524
1525 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1526 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1527 if (unlikely(count == 1))
1528 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1529 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1530 else
1531 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1532 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1533
1534 return tx;
1535 }
1536
1537 /* set_syndrome_sources - populate source buffers for gen_syndrome
1538 * @srcs - (struct page *) array of size sh->disks
1539 * @offs - (unsigned int) array of offset for each page
1540 * @sh - stripe_head to parse
1541 *
1542 * Populates srcs in proper layout order for the stripe and returns the
1543 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1544 * destination buffer is recorded in srcs[count] and the Q destination
1545 * is recorded in srcs[count+1]].
1546 */
set_syndrome_sources(struct page ** srcs,unsigned int * offs,struct stripe_head * sh,int srctype)1547 static int set_syndrome_sources(struct page **srcs,
1548 unsigned int *offs,
1549 struct stripe_head *sh,
1550 int srctype)
1551 {
1552 int disks = sh->disks;
1553 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1554 int d0_idx = raid6_d0(sh);
1555 int count;
1556 int i;
1557
1558 for (i = 0; i < disks; i++)
1559 srcs[i] = NULL;
1560
1561 count = 0;
1562 i = d0_idx;
1563 do {
1564 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1565 struct r5dev *dev = &sh->dev[i];
1566
1567 if (i == sh->qd_idx || i == sh->pd_idx ||
1568 (srctype == SYNDROME_SRC_ALL) ||
1569 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1570 (test_bit(R5_Wantdrain, &dev->flags) ||
1571 test_bit(R5_InJournal, &dev->flags))) ||
1572 (srctype == SYNDROME_SRC_WRITTEN &&
1573 (dev->written ||
1574 test_bit(R5_InJournal, &dev->flags)))) {
1575 if (test_bit(R5_InJournal, &dev->flags))
1576 srcs[slot] = sh->dev[i].orig_page;
1577 else
1578 srcs[slot] = sh->dev[i].page;
1579 /*
1580 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1581 * not shared page. In that case, dev[i].offset
1582 * is 0.
1583 */
1584 offs[slot] = sh->dev[i].offset;
1585 }
1586 i = raid6_next_disk(i, disks);
1587 } while (i != d0_idx);
1588
1589 return syndrome_disks;
1590 }
1591
1592 static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head * sh,struct raid5_percpu * percpu)1593 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1594 {
1595 int disks = sh->disks;
1596 struct page **blocks = to_addr_page(percpu, 0);
1597 unsigned int *offs = to_addr_offs(sh, percpu);
1598 int target;
1599 int qd_idx = sh->qd_idx;
1600 struct dma_async_tx_descriptor *tx;
1601 struct async_submit_ctl submit;
1602 struct r5dev *tgt;
1603 struct page *dest;
1604 unsigned int dest_off;
1605 int i;
1606 int count;
1607
1608 BUG_ON(sh->batch_head);
1609 if (sh->ops.target < 0)
1610 target = sh->ops.target2;
1611 else if (sh->ops.target2 < 0)
1612 target = sh->ops.target;
1613 else
1614 /* we should only have one valid target */
1615 BUG();
1616 BUG_ON(target < 0);
1617 pr_debug("%s: stripe %llu block: %d\n",
1618 __func__, (unsigned long long)sh->sector, target);
1619
1620 tgt = &sh->dev[target];
1621 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1622 dest = tgt->page;
1623 dest_off = tgt->offset;
1624
1625 atomic_inc(&sh->count);
1626
1627 if (target == qd_idx) {
1628 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1629 blocks[count] = NULL; /* regenerating p is not necessary */
1630 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1631 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1632 ops_complete_compute, sh,
1633 to_addr_conv(sh, percpu, 0));
1634 tx = async_gen_syndrome(blocks, offs, count+2,
1635 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1636 } else {
1637 /* Compute any data- or p-drive using XOR */
1638 count = 0;
1639 for (i = disks; i-- ; ) {
1640 if (i == target || i == qd_idx)
1641 continue;
1642 offs[count] = sh->dev[i].offset;
1643 blocks[count++] = sh->dev[i].page;
1644 }
1645
1646 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1647 NULL, ops_complete_compute, sh,
1648 to_addr_conv(sh, percpu, 0));
1649 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1650 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1651 }
1652
1653 return tx;
1654 }
1655
1656 static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head * sh,struct raid5_percpu * percpu)1657 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1658 {
1659 int i, count, disks = sh->disks;
1660 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1661 int d0_idx = raid6_d0(sh);
1662 int faila = -1, failb = -1;
1663 int target = sh->ops.target;
1664 int target2 = sh->ops.target2;
1665 struct r5dev *tgt = &sh->dev[target];
1666 struct r5dev *tgt2 = &sh->dev[target2];
1667 struct dma_async_tx_descriptor *tx;
1668 struct page **blocks = to_addr_page(percpu, 0);
1669 unsigned int *offs = to_addr_offs(sh, percpu);
1670 struct async_submit_ctl submit;
1671
1672 BUG_ON(sh->batch_head);
1673 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1674 __func__, (unsigned long long)sh->sector, target, target2);
1675 BUG_ON(target < 0 || target2 < 0);
1676 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1677 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1678
1679 /* we need to open-code set_syndrome_sources to handle the
1680 * slot number conversion for 'faila' and 'failb'
1681 */
1682 for (i = 0; i < disks ; i++) {
1683 offs[i] = 0;
1684 blocks[i] = NULL;
1685 }
1686 count = 0;
1687 i = d0_idx;
1688 do {
1689 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1690
1691 offs[slot] = sh->dev[i].offset;
1692 blocks[slot] = sh->dev[i].page;
1693
1694 if (i == target)
1695 faila = slot;
1696 if (i == target2)
1697 failb = slot;
1698 i = raid6_next_disk(i, disks);
1699 } while (i != d0_idx);
1700
1701 BUG_ON(faila == failb);
1702 if (failb < faila)
1703 swap(faila, failb);
1704 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1705 __func__, (unsigned long long)sh->sector, faila, failb);
1706
1707 atomic_inc(&sh->count);
1708
1709 if (failb == syndrome_disks+1) {
1710 /* Q disk is one of the missing disks */
1711 if (faila == syndrome_disks) {
1712 /* Missing P+Q, just recompute */
1713 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1714 ops_complete_compute, sh,
1715 to_addr_conv(sh, percpu, 0));
1716 return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1717 RAID5_STRIPE_SIZE(sh->raid_conf),
1718 &submit);
1719 } else {
1720 struct page *dest;
1721 unsigned int dest_off;
1722 int data_target;
1723 int qd_idx = sh->qd_idx;
1724
1725 /* Missing D+Q: recompute D from P, then recompute Q */
1726 if (target == qd_idx)
1727 data_target = target2;
1728 else
1729 data_target = target;
1730
1731 count = 0;
1732 for (i = disks; i-- ; ) {
1733 if (i == data_target || i == qd_idx)
1734 continue;
1735 offs[count] = sh->dev[i].offset;
1736 blocks[count++] = sh->dev[i].page;
1737 }
1738 dest = sh->dev[data_target].page;
1739 dest_off = sh->dev[data_target].offset;
1740 init_async_submit(&submit,
1741 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1742 NULL, NULL, NULL,
1743 to_addr_conv(sh, percpu, 0));
1744 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1745 RAID5_STRIPE_SIZE(sh->raid_conf),
1746 &submit);
1747
1748 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1749 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1750 ops_complete_compute, sh,
1751 to_addr_conv(sh, percpu, 0));
1752 return async_gen_syndrome(blocks, offs, count+2,
1753 RAID5_STRIPE_SIZE(sh->raid_conf),
1754 &submit);
1755 }
1756 } else {
1757 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1758 ops_complete_compute, sh,
1759 to_addr_conv(sh, percpu, 0));
1760 if (failb == syndrome_disks) {
1761 /* We're missing D+P. */
1762 return async_raid6_datap_recov(syndrome_disks+2,
1763 RAID5_STRIPE_SIZE(sh->raid_conf),
1764 faila,
1765 blocks, offs, &submit);
1766 } else {
1767 /* We're missing D+D. */
1768 return async_raid6_2data_recov(syndrome_disks+2,
1769 RAID5_STRIPE_SIZE(sh->raid_conf),
1770 faila, failb,
1771 blocks, offs, &submit);
1772 }
1773 }
1774 }
1775
ops_complete_prexor(void * stripe_head_ref)1776 static void ops_complete_prexor(void *stripe_head_ref)
1777 {
1778 struct stripe_head *sh = stripe_head_ref;
1779
1780 pr_debug("%s: stripe %llu\n", __func__,
1781 (unsigned long long)sh->sector);
1782
1783 if (r5c_is_writeback(sh->raid_conf->log))
1784 /*
1785 * raid5-cache write back uses orig_page during prexor.
1786 * After prexor, it is time to free orig_page
1787 */
1788 r5c_release_extra_page(sh);
1789 }
1790
1791 static struct dma_async_tx_descriptor *
ops_run_prexor5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1792 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1793 struct dma_async_tx_descriptor *tx)
1794 {
1795 int disks = sh->disks;
1796 struct page **xor_srcs = to_addr_page(percpu, 0);
1797 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1798 int count = 0, pd_idx = sh->pd_idx, i;
1799 struct async_submit_ctl submit;
1800
1801 /* existing parity data subtracted */
1802 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1803 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1804
1805 BUG_ON(sh->batch_head);
1806 pr_debug("%s: stripe %llu\n", __func__,
1807 (unsigned long long)sh->sector);
1808
1809 for (i = disks; i--; ) {
1810 struct r5dev *dev = &sh->dev[i];
1811 /* Only process blocks that are known to be uptodate */
1812 if (test_bit(R5_InJournal, &dev->flags)) {
1813 /*
1814 * For this case, PAGE_SIZE must be equal to 4KB and
1815 * page offset is zero.
1816 */
1817 off_srcs[count] = dev->offset;
1818 xor_srcs[count++] = dev->orig_page;
1819 } else if (test_bit(R5_Wantdrain, &dev->flags)) {
1820 off_srcs[count] = dev->offset;
1821 xor_srcs[count++] = dev->page;
1822 }
1823 }
1824
1825 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1826 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1827 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1828 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1829
1830 return tx;
1831 }
1832
1833 static struct dma_async_tx_descriptor *
ops_run_prexor6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1834 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1835 struct dma_async_tx_descriptor *tx)
1836 {
1837 struct page **blocks = to_addr_page(percpu, 0);
1838 unsigned int *offs = to_addr_offs(sh, percpu);
1839 int count;
1840 struct async_submit_ctl submit;
1841
1842 pr_debug("%s: stripe %llu\n", __func__,
1843 (unsigned long long)sh->sector);
1844
1845 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1846
1847 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1848 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1849 tx = async_gen_syndrome(blocks, offs, count+2,
1850 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1851
1852 return tx;
1853 }
1854
1855 static struct dma_async_tx_descriptor *
ops_run_biodrain(struct stripe_head * sh,struct dma_async_tx_descriptor * tx)1856 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1857 {
1858 struct r5conf *conf = sh->raid_conf;
1859 int disks = sh->disks;
1860 int i;
1861 struct stripe_head *head_sh = sh;
1862
1863 pr_debug("%s: stripe %llu\n", __func__,
1864 (unsigned long long)sh->sector);
1865
1866 for (i = disks; i--; ) {
1867 struct r5dev *dev;
1868 struct bio *chosen;
1869
1870 sh = head_sh;
1871 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1872 struct bio *wbi;
1873
1874 again:
1875 dev = &sh->dev[i];
1876 /*
1877 * clear R5_InJournal, so when rewriting a page in
1878 * journal, it is not skipped by r5l_log_stripe()
1879 */
1880 clear_bit(R5_InJournal, &dev->flags);
1881 spin_lock_irq(&sh->stripe_lock);
1882 chosen = dev->towrite;
1883 dev->towrite = NULL;
1884 sh->overwrite_disks = 0;
1885 BUG_ON(dev->written);
1886 wbi = dev->written = chosen;
1887 spin_unlock_irq(&sh->stripe_lock);
1888 WARN_ON(dev->page != dev->orig_page);
1889
1890 while (wbi && wbi->bi_iter.bi_sector <
1891 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1892 if (wbi->bi_opf & REQ_FUA)
1893 set_bit(R5_WantFUA, &dev->flags);
1894 if (wbi->bi_opf & REQ_SYNC)
1895 set_bit(R5_SyncIO, &dev->flags);
1896 if (bio_op(wbi) == REQ_OP_DISCARD)
1897 set_bit(R5_Discard, &dev->flags);
1898 else {
1899 tx = async_copy_data(1, wbi, &dev->page,
1900 dev->offset,
1901 dev->sector, tx, sh,
1902 r5c_is_writeback(conf->log));
1903 if (dev->page != dev->orig_page &&
1904 !r5c_is_writeback(conf->log)) {
1905 set_bit(R5_SkipCopy, &dev->flags);
1906 clear_bit(R5_UPTODATE, &dev->flags);
1907 clear_bit(R5_OVERWRITE, &dev->flags);
1908 }
1909 }
1910 wbi = r5_next_bio(conf, wbi, dev->sector);
1911 }
1912
1913 if (head_sh->batch_head) {
1914 sh = list_first_entry(&sh->batch_list,
1915 struct stripe_head,
1916 batch_list);
1917 if (sh == head_sh)
1918 continue;
1919 goto again;
1920 }
1921 }
1922 }
1923
1924 return tx;
1925 }
1926
ops_complete_reconstruct(void * stripe_head_ref)1927 static void ops_complete_reconstruct(void *stripe_head_ref)
1928 {
1929 struct stripe_head *sh = stripe_head_ref;
1930 int disks = sh->disks;
1931 int pd_idx = sh->pd_idx;
1932 int qd_idx = sh->qd_idx;
1933 int i;
1934 bool fua = false, sync = false, discard = false;
1935
1936 pr_debug("%s: stripe %llu\n", __func__,
1937 (unsigned long long)sh->sector);
1938
1939 for (i = disks; i--; ) {
1940 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1941 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1942 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1943 }
1944
1945 for (i = disks; i--; ) {
1946 struct r5dev *dev = &sh->dev[i];
1947
1948 if (dev->written || i == pd_idx || i == qd_idx) {
1949 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1950 set_bit(R5_UPTODATE, &dev->flags);
1951 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1952 set_bit(R5_Expanded, &dev->flags);
1953 }
1954 if (fua)
1955 set_bit(R5_WantFUA, &dev->flags);
1956 if (sync)
1957 set_bit(R5_SyncIO, &dev->flags);
1958 }
1959 }
1960
1961 if (sh->reconstruct_state == reconstruct_state_drain_run)
1962 sh->reconstruct_state = reconstruct_state_drain_result;
1963 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1964 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1965 else {
1966 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1967 sh->reconstruct_state = reconstruct_state_result;
1968 }
1969
1970 set_bit(STRIPE_HANDLE, &sh->state);
1971 raid5_release_stripe(sh);
1972 }
1973
1974 static void
ops_run_reconstruct5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1975 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1976 struct dma_async_tx_descriptor *tx)
1977 {
1978 int disks = sh->disks;
1979 struct page **xor_srcs;
1980 unsigned int *off_srcs;
1981 struct async_submit_ctl submit;
1982 int count, pd_idx = sh->pd_idx, i;
1983 struct page *xor_dest;
1984 unsigned int off_dest;
1985 int prexor = 0;
1986 unsigned long flags;
1987 int j = 0;
1988 struct stripe_head *head_sh = sh;
1989 int last_stripe;
1990
1991 pr_debug("%s: stripe %llu\n", __func__,
1992 (unsigned long long)sh->sector);
1993
1994 for (i = 0; i < sh->disks; i++) {
1995 if (pd_idx == i)
1996 continue;
1997 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1998 break;
1999 }
2000 if (i >= sh->disks) {
2001 atomic_inc(&sh->count);
2002 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2003 ops_complete_reconstruct(sh);
2004 return;
2005 }
2006 again:
2007 count = 0;
2008 xor_srcs = to_addr_page(percpu, j);
2009 off_srcs = to_addr_offs(sh, percpu);
2010 /* check if prexor is active which means only process blocks
2011 * that are part of a read-modify-write (written)
2012 */
2013 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2014 prexor = 1;
2015 off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2016 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2017 for (i = disks; i--; ) {
2018 struct r5dev *dev = &sh->dev[i];
2019 if (head_sh->dev[i].written ||
2020 test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2021 off_srcs[count] = dev->offset;
2022 xor_srcs[count++] = dev->page;
2023 }
2024 }
2025 } else {
2026 xor_dest = sh->dev[pd_idx].page;
2027 off_dest = sh->dev[pd_idx].offset;
2028 for (i = disks; i--; ) {
2029 struct r5dev *dev = &sh->dev[i];
2030 if (i != pd_idx) {
2031 off_srcs[count] = dev->offset;
2032 xor_srcs[count++] = dev->page;
2033 }
2034 }
2035 }
2036
2037 /* 1/ if we prexor'd then the dest is reused as a source
2038 * 2/ if we did not prexor then we are redoing the parity
2039 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2040 * for the synchronous xor case
2041 */
2042 last_stripe = !head_sh->batch_head ||
2043 list_first_entry(&sh->batch_list,
2044 struct stripe_head, batch_list) == head_sh;
2045 if (last_stripe) {
2046 flags = ASYNC_TX_ACK |
2047 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2048
2049 atomic_inc(&head_sh->count);
2050 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2051 to_addr_conv(sh, percpu, j));
2052 } else {
2053 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2054 init_async_submit(&submit, flags, tx, NULL, NULL,
2055 to_addr_conv(sh, percpu, j));
2056 }
2057
2058 if (unlikely(count == 1))
2059 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2060 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2061 else
2062 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2063 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2064 if (!last_stripe) {
2065 j++;
2066 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2067 batch_list);
2068 goto again;
2069 }
2070 }
2071
2072 static void
ops_run_reconstruct6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)2073 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2074 struct dma_async_tx_descriptor *tx)
2075 {
2076 struct async_submit_ctl submit;
2077 struct page **blocks;
2078 unsigned int *offs;
2079 int count, i, j = 0;
2080 struct stripe_head *head_sh = sh;
2081 int last_stripe;
2082 int synflags;
2083 unsigned long txflags;
2084
2085 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2086
2087 for (i = 0; i < sh->disks; i++) {
2088 if (sh->pd_idx == i || sh->qd_idx == i)
2089 continue;
2090 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2091 break;
2092 }
2093 if (i >= sh->disks) {
2094 atomic_inc(&sh->count);
2095 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2096 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2097 ops_complete_reconstruct(sh);
2098 return;
2099 }
2100
2101 again:
2102 blocks = to_addr_page(percpu, j);
2103 offs = to_addr_offs(sh, percpu);
2104
2105 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2106 synflags = SYNDROME_SRC_WRITTEN;
2107 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2108 } else {
2109 synflags = SYNDROME_SRC_ALL;
2110 txflags = ASYNC_TX_ACK;
2111 }
2112
2113 count = set_syndrome_sources(blocks, offs, sh, synflags);
2114 last_stripe = !head_sh->batch_head ||
2115 list_first_entry(&sh->batch_list,
2116 struct stripe_head, batch_list) == head_sh;
2117
2118 if (last_stripe) {
2119 atomic_inc(&head_sh->count);
2120 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2121 head_sh, to_addr_conv(sh, percpu, j));
2122 } else
2123 init_async_submit(&submit, 0, tx, NULL, NULL,
2124 to_addr_conv(sh, percpu, j));
2125 tx = async_gen_syndrome(blocks, offs, count+2,
2126 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2127 if (!last_stripe) {
2128 j++;
2129 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2130 batch_list);
2131 goto again;
2132 }
2133 }
2134
ops_complete_check(void * stripe_head_ref)2135 static void ops_complete_check(void *stripe_head_ref)
2136 {
2137 struct stripe_head *sh = stripe_head_ref;
2138
2139 pr_debug("%s: stripe %llu\n", __func__,
2140 (unsigned long long)sh->sector);
2141
2142 sh->check_state = check_state_check_result;
2143 set_bit(STRIPE_HANDLE, &sh->state);
2144 raid5_release_stripe(sh);
2145 }
2146
ops_run_check_p(struct stripe_head * sh,struct raid5_percpu * percpu)2147 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2148 {
2149 int disks = sh->disks;
2150 int pd_idx = sh->pd_idx;
2151 int qd_idx = sh->qd_idx;
2152 struct page *xor_dest;
2153 unsigned int off_dest;
2154 struct page **xor_srcs = to_addr_page(percpu, 0);
2155 unsigned int *off_srcs = to_addr_offs(sh, percpu);
2156 struct dma_async_tx_descriptor *tx;
2157 struct async_submit_ctl submit;
2158 int count;
2159 int i;
2160
2161 pr_debug("%s: stripe %llu\n", __func__,
2162 (unsigned long long)sh->sector);
2163
2164 BUG_ON(sh->batch_head);
2165 count = 0;
2166 xor_dest = sh->dev[pd_idx].page;
2167 off_dest = sh->dev[pd_idx].offset;
2168 off_srcs[count] = off_dest;
2169 xor_srcs[count++] = xor_dest;
2170 for (i = disks; i--; ) {
2171 if (i == pd_idx || i == qd_idx)
2172 continue;
2173 off_srcs[count] = sh->dev[i].offset;
2174 xor_srcs[count++] = sh->dev[i].page;
2175 }
2176
2177 init_async_submit(&submit, 0, NULL, NULL, NULL,
2178 to_addr_conv(sh, percpu, 0));
2179 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2180 RAID5_STRIPE_SIZE(sh->raid_conf),
2181 &sh->ops.zero_sum_result, &submit);
2182
2183 atomic_inc(&sh->count);
2184 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2185 tx = async_trigger_callback(&submit);
2186 }
2187
ops_run_check_pq(struct stripe_head * sh,struct raid5_percpu * percpu,int checkp)2188 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2189 {
2190 struct page **srcs = to_addr_page(percpu, 0);
2191 unsigned int *offs = to_addr_offs(sh, percpu);
2192 struct async_submit_ctl submit;
2193 int count;
2194
2195 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2196 (unsigned long long)sh->sector, checkp);
2197
2198 BUG_ON(sh->batch_head);
2199 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2200 if (!checkp)
2201 srcs[count] = NULL;
2202
2203 atomic_inc(&sh->count);
2204 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2205 sh, to_addr_conv(sh, percpu, 0));
2206 async_syndrome_val(srcs, offs, count+2,
2207 RAID5_STRIPE_SIZE(sh->raid_conf),
2208 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2209 }
2210
raid_run_ops(struct stripe_head * sh,unsigned long ops_request)2211 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2212 {
2213 int overlap_clear = 0, i, disks = sh->disks;
2214 struct dma_async_tx_descriptor *tx = NULL;
2215 struct r5conf *conf = sh->raid_conf;
2216 int level = conf->level;
2217 struct raid5_percpu *percpu;
2218 unsigned long cpu;
2219
2220 cpu = get_cpu();
2221 percpu = per_cpu_ptr(conf->percpu, cpu);
2222 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2223 ops_run_biofill(sh);
2224 overlap_clear++;
2225 }
2226
2227 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2228 if (level < 6)
2229 tx = ops_run_compute5(sh, percpu);
2230 else {
2231 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2232 tx = ops_run_compute6_1(sh, percpu);
2233 else
2234 tx = ops_run_compute6_2(sh, percpu);
2235 }
2236 /* terminate the chain if reconstruct is not set to be run */
2237 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2238 async_tx_ack(tx);
2239 }
2240
2241 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2242 if (level < 6)
2243 tx = ops_run_prexor5(sh, percpu, tx);
2244 else
2245 tx = ops_run_prexor6(sh, percpu, tx);
2246 }
2247
2248 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2249 tx = ops_run_partial_parity(sh, percpu, tx);
2250
2251 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2252 tx = ops_run_biodrain(sh, tx);
2253 overlap_clear++;
2254 }
2255
2256 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2257 if (level < 6)
2258 ops_run_reconstruct5(sh, percpu, tx);
2259 else
2260 ops_run_reconstruct6(sh, percpu, tx);
2261 }
2262
2263 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2264 if (sh->check_state == check_state_run)
2265 ops_run_check_p(sh, percpu);
2266 else if (sh->check_state == check_state_run_q)
2267 ops_run_check_pq(sh, percpu, 0);
2268 else if (sh->check_state == check_state_run_pq)
2269 ops_run_check_pq(sh, percpu, 1);
2270 else
2271 BUG();
2272 }
2273
2274 if (overlap_clear && !sh->batch_head)
2275 for (i = disks; i--; ) {
2276 struct r5dev *dev = &sh->dev[i];
2277 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2278 wake_up(&sh->raid_conf->wait_for_overlap);
2279 }
2280 put_cpu();
2281 }
2282
free_stripe(struct kmem_cache * sc,struct stripe_head * sh)2283 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2284 {
2285 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2286 kfree(sh->pages);
2287 #endif
2288 if (sh->ppl_page)
2289 __free_page(sh->ppl_page);
2290 kmem_cache_free(sc, sh);
2291 }
2292
alloc_stripe(struct kmem_cache * sc,gfp_t gfp,int disks,struct r5conf * conf)2293 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2294 int disks, struct r5conf *conf)
2295 {
2296 struct stripe_head *sh;
2297 int i;
2298
2299 sh = kmem_cache_zalloc(sc, gfp);
2300 if (sh) {
2301 spin_lock_init(&sh->stripe_lock);
2302 spin_lock_init(&sh->batch_lock);
2303 INIT_LIST_HEAD(&sh->batch_list);
2304 INIT_LIST_HEAD(&sh->lru);
2305 INIT_LIST_HEAD(&sh->r5c);
2306 INIT_LIST_HEAD(&sh->log_list);
2307 atomic_set(&sh->count, 1);
2308 sh->raid_conf = conf;
2309 sh->log_start = MaxSector;
2310 for (i = 0; i < disks; i++) {
2311 struct r5dev *dev = &sh->dev[i];
2312
2313 bio_init(&dev->req, &dev->vec, 1);
2314 bio_init(&dev->rreq, &dev->rvec, 1);
2315 }
2316
2317 if (raid5_has_ppl(conf)) {
2318 sh->ppl_page = alloc_page(gfp);
2319 if (!sh->ppl_page) {
2320 free_stripe(sc, sh);
2321 return NULL;
2322 }
2323 }
2324 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2325 if (init_stripe_shared_pages(sh, conf, disks)) {
2326 free_stripe(sc, sh);
2327 return NULL;
2328 }
2329 #endif
2330 }
2331 return sh;
2332 }
grow_one_stripe(struct r5conf * conf,gfp_t gfp)2333 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2334 {
2335 struct stripe_head *sh;
2336
2337 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2338 if (!sh)
2339 return 0;
2340
2341 if (grow_buffers(sh, gfp)) {
2342 shrink_buffers(sh);
2343 free_stripe(conf->slab_cache, sh);
2344 return 0;
2345 }
2346 sh->hash_lock_index =
2347 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2348 /* we just created an active stripe so... */
2349 atomic_inc(&conf->active_stripes);
2350
2351 raid5_release_stripe(sh);
2352 conf->max_nr_stripes++;
2353 return 1;
2354 }
2355
grow_stripes(struct r5conf * conf,int num)2356 static int grow_stripes(struct r5conf *conf, int num)
2357 {
2358 struct kmem_cache *sc;
2359 size_t namelen = sizeof(conf->cache_name[0]);
2360 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2361
2362 if (conf->mddev->gendisk)
2363 snprintf(conf->cache_name[0], namelen,
2364 "raid%d-%s", conf->level, mdname(conf->mddev));
2365 else
2366 snprintf(conf->cache_name[0], namelen,
2367 "raid%d-%p", conf->level, conf->mddev);
2368 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2369
2370 conf->active_name = 0;
2371 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2372 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2373 0, 0, NULL);
2374 if (!sc)
2375 return 1;
2376 conf->slab_cache = sc;
2377 conf->pool_size = devs;
2378 while (num--)
2379 if (!grow_one_stripe(conf, GFP_KERNEL))
2380 return 1;
2381
2382 return 0;
2383 }
2384
2385 /**
2386 * scribble_alloc - allocate percpu scribble buffer for required size
2387 * of the scribble region
2388 * @percpu: from for_each_present_cpu() of the caller
2389 * @num: total number of disks in the array
2390 * @cnt: scribble objs count for required size of the scribble region
2391 *
2392 * The scribble buffer size must be enough to contain:
2393 * 1/ a struct page pointer for each device in the array +2
2394 * 2/ room to convert each entry in (1) to its corresponding dma
2395 * (dma_map_page()) or page (page_address()) address.
2396 *
2397 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2398 * calculate over all devices (not just the data blocks), using zeros in place
2399 * of the P and Q blocks.
2400 */
scribble_alloc(struct raid5_percpu * percpu,int num,int cnt)2401 static int scribble_alloc(struct raid5_percpu *percpu,
2402 int num, int cnt)
2403 {
2404 size_t obj_size =
2405 sizeof(struct page *) * (num + 2) +
2406 sizeof(addr_conv_t) * (num + 2) +
2407 sizeof(unsigned int) * (num + 2);
2408 void *scribble;
2409
2410 /*
2411 * If here is in raid array suspend context, it is in memalloc noio
2412 * context as well, there is no potential recursive memory reclaim
2413 * I/Os with the GFP_KERNEL flag.
2414 */
2415 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2416 if (!scribble)
2417 return -ENOMEM;
2418
2419 kvfree(percpu->scribble);
2420
2421 percpu->scribble = scribble;
2422 percpu->scribble_obj_size = obj_size;
2423 return 0;
2424 }
2425
resize_chunks(struct r5conf * conf,int new_disks,int new_sectors)2426 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2427 {
2428 unsigned long cpu;
2429 int err = 0;
2430
2431 /*
2432 * Never shrink. And mddev_suspend() could deadlock if this is called
2433 * from raid5d. In that case, scribble_disks and scribble_sectors
2434 * should equal to new_disks and new_sectors
2435 */
2436 if (conf->scribble_disks >= new_disks &&
2437 conf->scribble_sectors >= new_sectors)
2438 return 0;
2439 mddev_suspend(conf->mddev);
2440 get_online_cpus();
2441
2442 for_each_present_cpu(cpu) {
2443 struct raid5_percpu *percpu;
2444
2445 percpu = per_cpu_ptr(conf->percpu, cpu);
2446 err = scribble_alloc(percpu, new_disks,
2447 new_sectors / RAID5_STRIPE_SECTORS(conf));
2448 if (err)
2449 break;
2450 }
2451
2452 put_online_cpus();
2453 mddev_resume(conf->mddev);
2454 if (!err) {
2455 conf->scribble_disks = new_disks;
2456 conf->scribble_sectors = new_sectors;
2457 }
2458 return err;
2459 }
2460
resize_stripes(struct r5conf * conf,int newsize)2461 static int resize_stripes(struct r5conf *conf, int newsize)
2462 {
2463 /* Make all the stripes able to hold 'newsize' devices.
2464 * New slots in each stripe get 'page' set to a new page.
2465 *
2466 * This happens in stages:
2467 * 1/ create a new kmem_cache and allocate the required number of
2468 * stripe_heads.
2469 * 2/ gather all the old stripe_heads and transfer the pages across
2470 * to the new stripe_heads. This will have the side effect of
2471 * freezing the array as once all stripe_heads have been collected,
2472 * no IO will be possible. Old stripe heads are freed once their
2473 * pages have been transferred over, and the old kmem_cache is
2474 * freed when all stripes are done.
2475 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2476 * we simple return a failure status - no need to clean anything up.
2477 * 4/ allocate new pages for the new slots in the new stripe_heads.
2478 * If this fails, we don't bother trying the shrink the
2479 * stripe_heads down again, we just leave them as they are.
2480 * As each stripe_head is processed the new one is released into
2481 * active service.
2482 *
2483 * Once step2 is started, we cannot afford to wait for a write,
2484 * so we use GFP_NOIO allocations.
2485 */
2486 struct stripe_head *osh, *nsh;
2487 LIST_HEAD(newstripes);
2488 struct disk_info *ndisks;
2489 int err = 0;
2490 struct kmem_cache *sc;
2491 int i;
2492 int hash, cnt;
2493
2494 md_allow_write(conf->mddev);
2495
2496 /* Step 1 */
2497 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2498 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2499 0, 0, NULL);
2500 if (!sc)
2501 return -ENOMEM;
2502
2503 /* Need to ensure auto-resizing doesn't interfere */
2504 mutex_lock(&conf->cache_size_mutex);
2505
2506 for (i = conf->max_nr_stripes; i; i--) {
2507 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2508 if (!nsh)
2509 break;
2510
2511 list_add(&nsh->lru, &newstripes);
2512 }
2513 if (i) {
2514 /* didn't get enough, give up */
2515 while (!list_empty(&newstripes)) {
2516 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2517 list_del(&nsh->lru);
2518 free_stripe(sc, nsh);
2519 }
2520 kmem_cache_destroy(sc);
2521 mutex_unlock(&conf->cache_size_mutex);
2522 return -ENOMEM;
2523 }
2524 /* Step 2 - Must use GFP_NOIO now.
2525 * OK, we have enough stripes, start collecting inactive
2526 * stripes and copying them over
2527 */
2528 hash = 0;
2529 cnt = 0;
2530 list_for_each_entry(nsh, &newstripes, lru) {
2531 lock_device_hash_lock(conf, hash);
2532 wait_event_cmd(conf->wait_for_stripe,
2533 !list_empty(conf->inactive_list + hash),
2534 unlock_device_hash_lock(conf, hash),
2535 lock_device_hash_lock(conf, hash));
2536 osh = get_free_stripe(conf, hash);
2537 unlock_device_hash_lock(conf, hash);
2538
2539 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2540 for (i = 0; i < osh->nr_pages; i++) {
2541 nsh->pages[i] = osh->pages[i];
2542 osh->pages[i] = NULL;
2543 }
2544 #endif
2545 for(i=0; i<conf->pool_size; i++) {
2546 nsh->dev[i].page = osh->dev[i].page;
2547 nsh->dev[i].orig_page = osh->dev[i].page;
2548 nsh->dev[i].offset = osh->dev[i].offset;
2549 }
2550 nsh->hash_lock_index = hash;
2551 free_stripe(conf->slab_cache, osh);
2552 cnt++;
2553 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2554 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2555 hash++;
2556 cnt = 0;
2557 }
2558 }
2559 kmem_cache_destroy(conf->slab_cache);
2560
2561 /* Step 3.
2562 * At this point, we are holding all the stripes so the array
2563 * is completely stalled, so now is a good time to resize
2564 * conf->disks and the scribble region
2565 */
2566 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2567 if (ndisks) {
2568 for (i = 0; i < conf->pool_size; i++)
2569 ndisks[i] = conf->disks[i];
2570
2571 for (i = conf->pool_size; i < newsize; i++) {
2572 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2573 if (!ndisks[i].extra_page)
2574 err = -ENOMEM;
2575 }
2576
2577 if (err) {
2578 for (i = conf->pool_size; i < newsize; i++)
2579 if (ndisks[i].extra_page)
2580 put_page(ndisks[i].extra_page);
2581 kfree(ndisks);
2582 } else {
2583 kfree(conf->disks);
2584 conf->disks = ndisks;
2585 }
2586 } else
2587 err = -ENOMEM;
2588
2589 conf->slab_cache = sc;
2590 conf->active_name = 1-conf->active_name;
2591
2592 /* Step 4, return new stripes to service */
2593 while(!list_empty(&newstripes)) {
2594 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2595 list_del_init(&nsh->lru);
2596
2597 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2598 for (i = 0; i < nsh->nr_pages; i++) {
2599 if (nsh->pages[i])
2600 continue;
2601 nsh->pages[i] = alloc_page(GFP_NOIO);
2602 if (!nsh->pages[i])
2603 err = -ENOMEM;
2604 }
2605
2606 for (i = conf->raid_disks; i < newsize; i++) {
2607 if (nsh->dev[i].page)
2608 continue;
2609 nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2610 nsh->dev[i].orig_page = nsh->dev[i].page;
2611 nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2612 }
2613 #else
2614 for (i=conf->raid_disks; i < newsize; i++)
2615 if (nsh->dev[i].page == NULL) {
2616 struct page *p = alloc_page(GFP_NOIO);
2617 nsh->dev[i].page = p;
2618 nsh->dev[i].orig_page = p;
2619 nsh->dev[i].offset = 0;
2620 if (!p)
2621 err = -ENOMEM;
2622 }
2623 #endif
2624 raid5_release_stripe(nsh);
2625 }
2626 /* critical section pass, GFP_NOIO no longer needed */
2627
2628 if (!err)
2629 conf->pool_size = newsize;
2630 mutex_unlock(&conf->cache_size_mutex);
2631
2632 return err;
2633 }
2634
drop_one_stripe(struct r5conf * conf)2635 static int drop_one_stripe(struct r5conf *conf)
2636 {
2637 struct stripe_head *sh;
2638 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2639
2640 spin_lock_irq(conf->hash_locks + hash);
2641 sh = get_free_stripe(conf, hash);
2642 spin_unlock_irq(conf->hash_locks + hash);
2643 if (!sh)
2644 return 0;
2645 BUG_ON(atomic_read(&sh->count));
2646 shrink_buffers(sh);
2647 free_stripe(conf->slab_cache, sh);
2648 atomic_dec(&conf->active_stripes);
2649 conf->max_nr_stripes--;
2650 return 1;
2651 }
2652
shrink_stripes(struct r5conf * conf)2653 static void shrink_stripes(struct r5conf *conf)
2654 {
2655 while (conf->max_nr_stripes &&
2656 drop_one_stripe(conf))
2657 ;
2658
2659 kmem_cache_destroy(conf->slab_cache);
2660 conf->slab_cache = NULL;
2661 }
2662
raid5_end_read_request(struct bio * bi)2663 static void raid5_end_read_request(struct bio * bi)
2664 {
2665 struct stripe_head *sh = bi->bi_private;
2666 struct r5conf *conf = sh->raid_conf;
2667 int disks = sh->disks, i;
2668 char b[BDEVNAME_SIZE];
2669 struct md_rdev *rdev = NULL;
2670 sector_t s;
2671
2672 for (i=0 ; i<disks; i++)
2673 if (bi == &sh->dev[i].req)
2674 break;
2675
2676 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2677 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2678 bi->bi_status);
2679 if (i == disks) {
2680 bio_reset(bi);
2681 BUG();
2682 return;
2683 }
2684 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2685 /* If replacement finished while this request was outstanding,
2686 * 'replacement' might be NULL already.
2687 * In that case it moved down to 'rdev'.
2688 * rdev is not removed until all requests are finished.
2689 */
2690 rdev = conf->disks[i].replacement;
2691 if (!rdev)
2692 rdev = conf->disks[i].rdev;
2693
2694 if (use_new_offset(conf, sh))
2695 s = sh->sector + rdev->new_data_offset;
2696 else
2697 s = sh->sector + rdev->data_offset;
2698 if (!bi->bi_status) {
2699 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2700 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2701 /* Note that this cannot happen on a
2702 * replacement device. We just fail those on
2703 * any error
2704 */
2705 pr_info_ratelimited(
2706 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2707 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2708 (unsigned long long)s,
2709 bdevname(rdev->bdev, b));
2710 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2711 clear_bit(R5_ReadError, &sh->dev[i].flags);
2712 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2713 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2714 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2715
2716 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2717 /*
2718 * end read for a page in journal, this
2719 * must be preparing for prexor in rmw
2720 */
2721 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2722
2723 if (atomic_read(&rdev->read_errors))
2724 atomic_set(&rdev->read_errors, 0);
2725 } else {
2726 const char *bdn = bdevname(rdev->bdev, b);
2727 int retry = 0;
2728 int set_bad = 0;
2729
2730 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2731 if (!(bi->bi_status == BLK_STS_PROTECTION))
2732 atomic_inc(&rdev->read_errors);
2733 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2734 pr_warn_ratelimited(
2735 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2736 mdname(conf->mddev),
2737 (unsigned long long)s,
2738 bdn);
2739 else if (conf->mddev->degraded >= conf->max_degraded) {
2740 set_bad = 1;
2741 pr_warn_ratelimited(
2742 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2743 mdname(conf->mddev),
2744 (unsigned long long)s,
2745 bdn);
2746 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2747 /* Oh, no!!! */
2748 set_bad = 1;
2749 pr_warn_ratelimited(
2750 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2751 mdname(conf->mddev),
2752 (unsigned long long)s,
2753 bdn);
2754 } else if (atomic_read(&rdev->read_errors)
2755 > conf->max_nr_stripes) {
2756 if (!test_bit(Faulty, &rdev->flags)) {
2757 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2758 mdname(conf->mddev),
2759 atomic_read(&rdev->read_errors),
2760 conf->max_nr_stripes);
2761 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2762 mdname(conf->mddev), bdn);
2763 }
2764 } else
2765 retry = 1;
2766 if (set_bad && test_bit(In_sync, &rdev->flags)
2767 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2768 retry = 1;
2769 if (retry)
2770 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2771 set_bit(R5_ReadError, &sh->dev[i].flags);
2772 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2773 set_bit(R5_ReadError, &sh->dev[i].flags);
2774 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2775 } else
2776 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2777 else {
2778 clear_bit(R5_ReadError, &sh->dev[i].flags);
2779 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2780 if (!(set_bad
2781 && test_bit(In_sync, &rdev->flags)
2782 && rdev_set_badblocks(
2783 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2784 md_error(conf->mddev, rdev);
2785 }
2786 }
2787 rdev_dec_pending(rdev, conf->mddev);
2788 bio_reset(bi);
2789 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2790 set_bit(STRIPE_HANDLE, &sh->state);
2791 raid5_release_stripe(sh);
2792 }
2793
raid5_end_write_request(struct bio * bi)2794 static void raid5_end_write_request(struct bio *bi)
2795 {
2796 struct stripe_head *sh = bi->bi_private;
2797 struct r5conf *conf = sh->raid_conf;
2798 int disks = sh->disks, i;
2799 struct md_rdev *rdev;
2800 sector_t first_bad;
2801 int bad_sectors;
2802 int replacement = 0;
2803
2804 for (i = 0 ; i < disks; i++) {
2805 if (bi == &sh->dev[i].req) {
2806 rdev = conf->disks[i].rdev;
2807 break;
2808 }
2809 if (bi == &sh->dev[i].rreq) {
2810 rdev = conf->disks[i].replacement;
2811 if (rdev)
2812 replacement = 1;
2813 else
2814 /* rdev was removed and 'replacement'
2815 * replaced it. rdev is not removed
2816 * until all requests are finished.
2817 */
2818 rdev = conf->disks[i].rdev;
2819 break;
2820 }
2821 }
2822 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2823 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2824 bi->bi_status);
2825 if (i == disks) {
2826 bio_reset(bi);
2827 BUG();
2828 return;
2829 }
2830
2831 if (replacement) {
2832 if (bi->bi_status)
2833 md_error(conf->mddev, rdev);
2834 else if (is_badblock(rdev, sh->sector,
2835 RAID5_STRIPE_SECTORS(conf),
2836 &first_bad, &bad_sectors))
2837 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2838 } else {
2839 if (bi->bi_status) {
2840 set_bit(STRIPE_DEGRADED, &sh->state);
2841 set_bit(WriteErrorSeen, &rdev->flags);
2842 set_bit(R5_WriteError, &sh->dev[i].flags);
2843 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2844 set_bit(MD_RECOVERY_NEEDED,
2845 &rdev->mddev->recovery);
2846 } else if (is_badblock(rdev, sh->sector,
2847 RAID5_STRIPE_SECTORS(conf),
2848 &first_bad, &bad_sectors)) {
2849 set_bit(R5_MadeGood, &sh->dev[i].flags);
2850 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2851 /* That was a successful write so make
2852 * sure it looks like we already did
2853 * a re-write.
2854 */
2855 set_bit(R5_ReWrite, &sh->dev[i].flags);
2856 }
2857 }
2858 rdev_dec_pending(rdev, conf->mddev);
2859
2860 if (sh->batch_head && bi->bi_status && !replacement)
2861 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2862
2863 bio_reset(bi);
2864 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2865 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2866 set_bit(STRIPE_HANDLE, &sh->state);
2867
2868 if (sh->batch_head && sh != sh->batch_head)
2869 raid5_release_stripe(sh->batch_head);
2870 raid5_release_stripe(sh);
2871 }
2872
raid5_error(struct mddev * mddev,struct md_rdev * rdev)2873 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2874 {
2875 char b[BDEVNAME_SIZE];
2876 struct r5conf *conf = mddev->private;
2877 unsigned long flags;
2878 pr_debug("raid456: error called\n");
2879
2880 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n",
2881 mdname(mddev), bdevname(rdev->bdev, b));
2882
2883 spin_lock_irqsave(&conf->device_lock, flags);
2884 set_bit(Faulty, &rdev->flags);
2885 clear_bit(In_sync, &rdev->flags);
2886 mddev->degraded = raid5_calc_degraded(conf);
2887
2888 if (has_failed(conf)) {
2889 set_bit(MD_BROKEN, &conf->mddev->flags);
2890 conf->recovery_disabled = mddev->recovery_disabled;
2891
2892 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2893 mdname(mddev), mddev->degraded, conf->raid_disks);
2894 } else {
2895 pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2896 mdname(mddev), conf->raid_disks - mddev->degraded);
2897 }
2898
2899 spin_unlock_irqrestore(&conf->device_lock, flags);
2900 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2901
2902 set_bit(Blocked, &rdev->flags);
2903 set_mask_bits(&mddev->sb_flags, 0,
2904 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2905 r5c_update_on_rdev_error(mddev, rdev);
2906 }
2907
2908 /*
2909 * Input: a 'big' sector number,
2910 * Output: index of the data and parity disk, and the sector # in them.
2911 */
raid5_compute_sector(struct r5conf * conf,sector_t r_sector,int previous,int * dd_idx,struct stripe_head * sh)2912 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2913 int previous, int *dd_idx,
2914 struct stripe_head *sh)
2915 {
2916 sector_t stripe, stripe2;
2917 sector_t chunk_number;
2918 unsigned int chunk_offset;
2919 int pd_idx, qd_idx;
2920 int ddf_layout = 0;
2921 sector_t new_sector;
2922 int algorithm = previous ? conf->prev_algo
2923 : conf->algorithm;
2924 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2925 : conf->chunk_sectors;
2926 int raid_disks = previous ? conf->previous_raid_disks
2927 : conf->raid_disks;
2928 int data_disks = raid_disks - conf->max_degraded;
2929
2930 /* First compute the information on this sector */
2931
2932 /*
2933 * Compute the chunk number and the sector offset inside the chunk
2934 */
2935 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2936 chunk_number = r_sector;
2937
2938 /*
2939 * Compute the stripe number
2940 */
2941 stripe = chunk_number;
2942 *dd_idx = sector_div(stripe, data_disks);
2943 stripe2 = stripe;
2944 /*
2945 * Select the parity disk based on the user selected algorithm.
2946 */
2947 pd_idx = qd_idx = -1;
2948 switch(conf->level) {
2949 case 4:
2950 pd_idx = data_disks;
2951 break;
2952 case 5:
2953 switch (algorithm) {
2954 case ALGORITHM_LEFT_ASYMMETRIC:
2955 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2956 if (*dd_idx >= pd_idx)
2957 (*dd_idx)++;
2958 break;
2959 case ALGORITHM_RIGHT_ASYMMETRIC:
2960 pd_idx = sector_div(stripe2, raid_disks);
2961 if (*dd_idx >= pd_idx)
2962 (*dd_idx)++;
2963 break;
2964 case ALGORITHM_LEFT_SYMMETRIC:
2965 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2966 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2967 break;
2968 case ALGORITHM_RIGHT_SYMMETRIC:
2969 pd_idx = sector_div(stripe2, raid_disks);
2970 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2971 break;
2972 case ALGORITHM_PARITY_0:
2973 pd_idx = 0;
2974 (*dd_idx)++;
2975 break;
2976 case ALGORITHM_PARITY_N:
2977 pd_idx = data_disks;
2978 break;
2979 default:
2980 BUG();
2981 }
2982 break;
2983 case 6:
2984
2985 switch (algorithm) {
2986 case ALGORITHM_LEFT_ASYMMETRIC:
2987 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2988 qd_idx = pd_idx + 1;
2989 if (pd_idx == raid_disks-1) {
2990 (*dd_idx)++; /* Q D D D P */
2991 qd_idx = 0;
2992 } else if (*dd_idx >= pd_idx)
2993 (*dd_idx) += 2; /* D D P Q D */
2994 break;
2995 case ALGORITHM_RIGHT_ASYMMETRIC:
2996 pd_idx = sector_div(stripe2, raid_disks);
2997 qd_idx = pd_idx + 1;
2998 if (pd_idx == raid_disks-1) {
2999 (*dd_idx)++; /* Q D D D P */
3000 qd_idx = 0;
3001 } else if (*dd_idx >= pd_idx)
3002 (*dd_idx) += 2; /* D D P Q D */
3003 break;
3004 case ALGORITHM_LEFT_SYMMETRIC:
3005 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3006 qd_idx = (pd_idx + 1) % raid_disks;
3007 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3008 break;
3009 case ALGORITHM_RIGHT_SYMMETRIC:
3010 pd_idx = sector_div(stripe2, raid_disks);
3011 qd_idx = (pd_idx + 1) % raid_disks;
3012 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3013 break;
3014
3015 case ALGORITHM_PARITY_0:
3016 pd_idx = 0;
3017 qd_idx = 1;
3018 (*dd_idx) += 2;
3019 break;
3020 case ALGORITHM_PARITY_N:
3021 pd_idx = data_disks;
3022 qd_idx = data_disks + 1;
3023 break;
3024
3025 case ALGORITHM_ROTATING_ZERO_RESTART:
3026 /* Exactly the same as RIGHT_ASYMMETRIC, but or
3027 * of blocks for computing Q is different.
3028 */
3029 pd_idx = sector_div(stripe2, raid_disks);
3030 qd_idx = pd_idx + 1;
3031 if (pd_idx == raid_disks-1) {
3032 (*dd_idx)++; /* Q D D D P */
3033 qd_idx = 0;
3034 } else if (*dd_idx >= pd_idx)
3035 (*dd_idx) += 2; /* D D P Q D */
3036 ddf_layout = 1;
3037 break;
3038
3039 case ALGORITHM_ROTATING_N_RESTART:
3040 /* Same a left_asymmetric, by first stripe is
3041 * D D D P Q rather than
3042 * Q D D D P
3043 */
3044 stripe2 += 1;
3045 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3046 qd_idx = pd_idx + 1;
3047 if (pd_idx == raid_disks-1) {
3048 (*dd_idx)++; /* Q D D D P */
3049 qd_idx = 0;
3050 } else if (*dd_idx >= pd_idx)
3051 (*dd_idx) += 2; /* D D P Q D */
3052 ddf_layout = 1;
3053 break;
3054
3055 case ALGORITHM_ROTATING_N_CONTINUE:
3056 /* Same as left_symmetric but Q is before P */
3057 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3058 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3059 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3060 ddf_layout = 1;
3061 break;
3062
3063 case ALGORITHM_LEFT_ASYMMETRIC_6:
3064 /* RAID5 left_asymmetric, with Q on last device */
3065 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3066 if (*dd_idx >= pd_idx)
3067 (*dd_idx)++;
3068 qd_idx = raid_disks - 1;
3069 break;
3070
3071 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3072 pd_idx = sector_div(stripe2, raid_disks-1);
3073 if (*dd_idx >= pd_idx)
3074 (*dd_idx)++;
3075 qd_idx = raid_disks - 1;
3076 break;
3077
3078 case ALGORITHM_LEFT_SYMMETRIC_6:
3079 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3080 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3081 qd_idx = raid_disks - 1;
3082 break;
3083
3084 case ALGORITHM_RIGHT_SYMMETRIC_6:
3085 pd_idx = sector_div(stripe2, raid_disks-1);
3086 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3087 qd_idx = raid_disks - 1;
3088 break;
3089
3090 case ALGORITHM_PARITY_0_6:
3091 pd_idx = 0;
3092 (*dd_idx)++;
3093 qd_idx = raid_disks - 1;
3094 break;
3095
3096 default:
3097 BUG();
3098 }
3099 break;
3100 }
3101
3102 if (sh) {
3103 sh->pd_idx = pd_idx;
3104 sh->qd_idx = qd_idx;
3105 sh->ddf_layout = ddf_layout;
3106 }
3107 /*
3108 * Finally, compute the new sector number
3109 */
3110 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3111 return new_sector;
3112 }
3113
raid5_compute_blocknr(struct stripe_head * sh,int i,int previous)3114 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3115 {
3116 struct r5conf *conf = sh->raid_conf;
3117 int raid_disks = sh->disks;
3118 int data_disks = raid_disks - conf->max_degraded;
3119 sector_t new_sector = sh->sector, check;
3120 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3121 : conf->chunk_sectors;
3122 int algorithm = previous ? conf->prev_algo
3123 : conf->algorithm;
3124 sector_t stripe;
3125 int chunk_offset;
3126 sector_t chunk_number;
3127 int dummy1, dd_idx = i;
3128 sector_t r_sector;
3129 struct stripe_head sh2;
3130
3131 chunk_offset = sector_div(new_sector, sectors_per_chunk);
3132 stripe = new_sector;
3133
3134 if (i == sh->pd_idx)
3135 return 0;
3136 switch(conf->level) {
3137 case 4: break;
3138 case 5:
3139 switch (algorithm) {
3140 case ALGORITHM_LEFT_ASYMMETRIC:
3141 case ALGORITHM_RIGHT_ASYMMETRIC:
3142 if (i > sh->pd_idx)
3143 i--;
3144 break;
3145 case ALGORITHM_LEFT_SYMMETRIC:
3146 case ALGORITHM_RIGHT_SYMMETRIC:
3147 if (i < sh->pd_idx)
3148 i += raid_disks;
3149 i -= (sh->pd_idx + 1);
3150 break;
3151 case ALGORITHM_PARITY_0:
3152 i -= 1;
3153 break;
3154 case ALGORITHM_PARITY_N:
3155 break;
3156 default:
3157 BUG();
3158 }
3159 break;
3160 case 6:
3161 if (i == sh->qd_idx)
3162 return 0; /* It is the Q disk */
3163 switch (algorithm) {
3164 case ALGORITHM_LEFT_ASYMMETRIC:
3165 case ALGORITHM_RIGHT_ASYMMETRIC:
3166 case ALGORITHM_ROTATING_ZERO_RESTART:
3167 case ALGORITHM_ROTATING_N_RESTART:
3168 if (sh->pd_idx == raid_disks-1)
3169 i--; /* Q D D D P */
3170 else if (i > sh->pd_idx)
3171 i -= 2; /* D D P Q D */
3172 break;
3173 case ALGORITHM_LEFT_SYMMETRIC:
3174 case ALGORITHM_RIGHT_SYMMETRIC:
3175 if (sh->pd_idx == raid_disks-1)
3176 i--; /* Q D D D P */
3177 else {
3178 /* D D P Q D */
3179 if (i < sh->pd_idx)
3180 i += raid_disks;
3181 i -= (sh->pd_idx + 2);
3182 }
3183 break;
3184 case ALGORITHM_PARITY_0:
3185 i -= 2;
3186 break;
3187 case ALGORITHM_PARITY_N:
3188 break;
3189 case ALGORITHM_ROTATING_N_CONTINUE:
3190 /* Like left_symmetric, but P is before Q */
3191 if (sh->pd_idx == 0)
3192 i--; /* P D D D Q */
3193 else {
3194 /* D D Q P D */
3195 if (i < sh->pd_idx)
3196 i += raid_disks;
3197 i -= (sh->pd_idx + 1);
3198 }
3199 break;
3200 case ALGORITHM_LEFT_ASYMMETRIC_6:
3201 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3202 if (i > sh->pd_idx)
3203 i--;
3204 break;
3205 case ALGORITHM_LEFT_SYMMETRIC_6:
3206 case ALGORITHM_RIGHT_SYMMETRIC_6:
3207 if (i < sh->pd_idx)
3208 i += data_disks + 1;
3209 i -= (sh->pd_idx + 1);
3210 break;
3211 case ALGORITHM_PARITY_0_6:
3212 i -= 1;
3213 break;
3214 default:
3215 BUG();
3216 }
3217 break;
3218 }
3219
3220 chunk_number = stripe * data_disks + i;
3221 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3222
3223 check = raid5_compute_sector(conf, r_sector,
3224 previous, &dummy1, &sh2);
3225 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3226 || sh2.qd_idx != sh->qd_idx) {
3227 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3228 mdname(conf->mddev));
3229 return 0;
3230 }
3231 return r_sector;
3232 }
3233
3234 /*
3235 * There are cases where we want handle_stripe_dirtying() and
3236 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3237 *
3238 * This function checks whether we want to delay the towrite. Specifically,
3239 * we delay the towrite when:
3240 *
3241 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3242 * stripe has data in journal (for other devices).
3243 *
3244 * In this case, when reading data for the non-overwrite dev, it is
3245 * necessary to handle complex rmw of write back cache (prexor with
3246 * orig_page, and xor with page). To keep read path simple, we would
3247 * like to flush data in journal to RAID disks first, so complex rmw
3248 * is handled in the write patch (handle_stripe_dirtying).
3249 *
3250 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3251 *
3252 * It is important to be able to flush all stripes in raid5-cache.
3253 * Therefore, we need reserve some space on the journal device for
3254 * these flushes. If flush operation includes pending writes to the
3255 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3256 * for the flush out. If we exclude these pending writes from flush
3257 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3258 * Therefore, excluding pending writes in these cases enables more
3259 * efficient use of the journal device.
3260 *
3261 * Note: To make sure the stripe makes progress, we only delay
3262 * towrite for stripes with data already in journal (injournal > 0).
3263 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3264 * no_space_stripes list.
3265 *
3266 * 3. during journal failure
3267 * In journal failure, we try to flush all cached data to raid disks
3268 * based on data in stripe cache. The array is read-only to upper
3269 * layers, so we would skip all pending writes.
3270 *
3271 */
delay_towrite(struct r5conf * conf,struct r5dev * dev,struct stripe_head_state * s)3272 static inline bool delay_towrite(struct r5conf *conf,
3273 struct r5dev *dev,
3274 struct stripe_head_state *s)
3275 {
3276 /* case 1 above */
3277 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3278 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3279 return true;
3280 /* case 2 above */
3281 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3282 s->injournal > 0)
3283 return true;
3284 /* case 3 above */
3285 if (s->log_failed && s->injournal)
3286 return true;
3287 return false;
3288 }
3289
3290 static void
schedule_reconstruction(struct stripe_head * sh,struct stripe_head_state * s,int rcw,int expand)3291 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3292 int rcw, int expand)
3293 {
3294 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3295 struct r5conf *conf = sh->raid_conf;
3296 int level = conf->level;
3297
3298 if (rcw) {
3299 /*
3300 * In some cases, handle_stripe_dirtying initially decided to
3301 * run rmw and allocates extra page for prexor. However, rcw is
3302 * cheaper later on. We need to free the extra page now,
3303 * because we won't be able to do that in ops_complete_prexor().
3304 */
3305 r5c_release_extra_page(sh);
3306
3307 for (i = disks; i--; ) {
3308 struct r5dev *dev = &sh->dev[i];
3309
3310 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3311 set_bit(R5_LOCKED, &dev->flags);
3312 set_bit(R5_Wantdrain, &dev->flags);
3313 if (!expand)
3314 clear_bit(R5_UPTODATE, &dev->flags);
3315 s->locked++;
3316 } else if (test_bit(R5_InJournal, &dev->flags)) {
3317 set_bit(R5_LOCKED, &dev->flags);
3318 s->locked++;
3319 }
3320 }
3321 /* if we are not expanding this is a proper write request, and
3322 * there will be bios with new data to be drained into the
3323 * stripe cache
3324 */
3325 if (!expand) {
3326 if (!s->locked)
3327 /* False alarm, nothing to do */
3328 return;
3329 sh->reconstruct_state = reconstruct_state_drain_run;
3330 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3331 } else
3332 sh->reconstruct_state = reconstruct_state_run;
3333
3334 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3335
3336 if (s->locked + conf->max_degraded == disks)
3337 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3338 atomic_inc(&conf->pending_full_writes);
3339 } else {
3340 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3341 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3342 BUG_ON(level == 6 &&
3343 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3344 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3345
3346 for (i = disks; i--; ) {
3347 struct r5dev *dev = &sh->dev[i];
3348 if (i == pd_idx || i == qd_idx)
3349 continue;
3350
3351 if (dev->towrite &&
3352 (test_bit(R5_UPTODATE, &dev->flags) ||
3353 test_bit(R5_Wantcompute, &dev->flags))) {
3354 set_bit(R5_Wantdrain, &dev->flags);
3355 set_bit(R5_LOCKED, &dev->flags);
3356 clear_bit(R5_UPTODATE, &dev->flags);
3357 s->locked++;
3358 } else if (test_bit(R5_InJournal, &dev->flags)) {
3359 set_bit(R5_LOCKED, &dev->flags);
3360 s->locked++;
3361 }
3362 }
3363 if (!s->locked)
3364 /* False alarm - nothing to do */
3365 return;
3366 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3367 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3368 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3369 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3370 }
3371
3372 /* keep the parity disk(s) locked while asynchronous operations
3373 * are in flight
3374 */
3375 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3376 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3377 s->locked++;
3378
3379 if (level == 6) {
3380 int qd_idx = sh->qd_idx;
3381 struct r5dev *dev = &sh->dev[qd_idx];
3382
3383 set_bit(R5_LOCKED, &dev->flags);
3384 clear_bit(R5_UPTODATE, &dev->flags);
3385 s->locked++;
3386 }
3387
3388 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3389 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3390 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3391 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3392 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3393
3394 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3395 __func__, (unsigned long long)sh->sector,
3396 s->locked, s->ops_request);
3397 }
3398
3399 /*
3400 * Each stripe/dev can have one or more bion attached.
3401 * toread/towrite point to the first in a chain.
3402 * The bi_next chain must be in order.
3403 */
add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite,int previous)3404 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3405 int forwrite, int previous)
3406 {
3407 struct bio **bip;
3408 struct r5conf *conf = sh->raid_conf;
3409 int firstwrite=0;
3410
3411 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3412 (unsigned long long)bi->bi_iter.bi_sector,
3413 (unsigned long long)sh->sector);
3414
3415 spin_lock_irq(&sh->stripe_lock);
3416 sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3417 /* Don't allow new IO added to stripes in batch list */
3418 if (sh->batch_head)
3419 goto overlap;
3420 if (forwrite) {
3421 bip = &sh->dev[dd_idx].towrite;
3422 if (*bip == NULL)
3423 firstwrite = 1;
3424 } else
3425 bip = &sh->dev[dd_idx].toread;
3426 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3427 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3428 goto overlap;
3429 bip = & (*bip)->bi_next;
3430 }
3431 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3432 goto overlap;
3433
3434 if (forwrite && raid5_has_ppl(conf)) {
3435 /*
3436 * With PPL only writes to consecutive data chunks within a
3437 * stripe are allowed because for a single stripe_head we can
3438 * only have one PPL entry at a time, which describes one data
3439 * range. Not really an overlap, but wait_for_overlap can be
3440 * used to handle this.
3441 */
3442 sector_t sector;
3443 sector_t first = 0;
3444 sector_t last = 0;
3445 int count = 0;
3446 int i;
3447
3448 for (i = 0; i < sh->disks; i++) {
3449 if (i != sh->pd_idx &&
3450 (i == dd_idx || sh->dev[i].towrite)) {
3451 sector = sh->dev[i].sector;
3452 if (count == 0 || sector < first)
3453 first = sector;
3454 if (sector > last)
3455 last = sector;
3456 count++;
3457 }
3458 }
3459
3460 if (first + conf->chunk_sectors * (count - 1) != last)
3461 goto overlap;
3462 }
3463
3464 if (!forwrite || previous)
3465 clear_bit(STRIPE_BATCH_READY, &sh->state);
3466
3467 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3468 if (*bip)
3469 bi->bi_next = *bip;
3470 *bip = bi;
3471 bio_inc_remaining(bi);
3472 md_write_inc(conf->mddev, bi);
3473
3474 if (forwrite) {
3475 /* check if page is covered */
3476 sector_t sector = sh->dev[dd_idx].sector;
3477 for (bi=sh->dev[dd_idx].towrite;
3478 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3479 bi && bi->bi_iter.bi_sector <= sector;
3480 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3481 if (bio_end_sector(bi) >= sector)
3482 sector = bio_end_sector(bi);
3483 }
3484 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3485 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3486 sh->overwrite_disks++;
3487 }
3488
3489 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3490 (unsigned long long)(*bip)->bi_iter.bi_sector,
3491 (unsigned long long)sh->sector, dd_idx);
3492
3493 if (conf->mddev->bitmap && firstwrite) {
3494 /* Cannot hold spinlock over bitmap_startwrite,
3495 * but must ensure this isn't added to a batch until
3496 * we have added to the bitmap and set bm_seq.
3497 * So set STRIPE_BITMAP_PENDING to prevent
3498 * batching.
3499 * If multiple add_stripe_bio() calls race here they
3500 * much all set STRIPE_BITMAP_PENDING. So only the first one
3501 * to complete "bitmap_startwrite" gets to set
3502 * STRIPE_BIT_DELAY. This is important as once a stripe
3503 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3504 * any more.
3505 */
3506 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3507 spin_unlock_irq(&sh->stripe_lock);
3508 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3509 RAID5_STRIPE_SECTORS(conf), 0);
3510 spin_lock_irq(&sh->stripe_lock);
3511 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3512 if (!sh->batch_head) {
3513 sh->bm_seq = conf->seq_flush+1;
3514 set_bit(STRIPE_BIT_DELAY, &sh->state);
3515 }
3516 }
3517 spin_unlock_irq(&sh->stripe_lock);
3518
3519 if (stripe_can_batch(sh))
3520 stripe_add_to_batch_list(conf, sh);
3521 return 1;
3522
3523 overlap:
3524 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3525 spin_unlock_irq(&sh->stripe_lock);
3526 return 0;
3527 }
3528
3529 static void end_reshape(struct r5conf *conf);
3530
stripe_set_idx(sector_t stripe,struct r5conf * conf,int previous,struct stripe_head * sh)3531 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3532 struct stripe_head *sh)
3533 {
3534 int sectors_per_chunk =
3535 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3536 int dd_idx;
3537 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3538 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3539
3540 raid5_compute_sector(conf,
3541 stripe * (disks - conf->max_degraded)
3542 *sectors_per_chunk + chunk_offset,
3543 previous,
3544 &dd_idx, sh);
3545 }
3546
3547 static void
handle_failed_stripe(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3548 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3549 struct stripe_head_state *s, int disks)
3550 {
3551 int i;
3552 BUG_ON(sh->batch_head);
3553 for (i = disks; i--; ) {
3554 struct bio *bi;
3555 int bitmap_end = 0;
3556
3557 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3558 struct md_rdev *rdev;
3559 rcu_read_lock();
3560 rdev = rcu_dereference(conf->disks[i].rdev);
3561 if (rdev && test_bit(In_sync, &rdev->flags) &&
3562 !test_bit(Faulty, &rdev->flags))
3563 atomic_inc(&rdev->nr_pending);
3564 else
3565 rdev = NULL;
3566 rcu_read_unlock();
3567 if (rdev) {
3568 if (!rdev_set_badblocks(
3569 rdev,
3570 sh->sector,
3571 RAID5_STRIPE_SECTORS(conf), 0))
3572 md_error(conf->mddev, rdev);
3573 rdev_dec_pending(rdev, conf->mddev);
3574 }
3575 }
3576 spin_lock_irq(&sh->stripe_lock);
3577 /* fail all writes first */
3578 bi = sh->dev[i].towrite;
3579 sh->dev[i].towrite = NULL;
3580 sh->overwrite_disks = 0;
3581 spin_unlock_irq(&sh->stripe_lock);
3582 if (bi)
3583 bitmap_end = 1;
3584
3585 log_stripe_write_finished(sh);
3586
3587 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3588 wake_up(&conf->wait_for_overlap);
3589
3590 while (bi && bi->bi_iter.bi_sector <
3591 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3592 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3593
3594 md_write_end(conf->mddev);
3595 bio_io_error(bi);
3596 bi = nextbi;
3597 }
3598 if (bitmap_end)
3599 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3600 RAID5_STRIPE_SECTORS(conf), 0, 0);
3601 bitmap_end = 0;
3602 /* and fail all 'written' */
3603 bi = sh->dev[i].written;
3604 sh->dev[i].written = NULL;
3605 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3606 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3607 sh->dev[i].page = sh->dev[i].orig_page;
3608 }
3609
3610 if (bi) bitmap_end = 1;
3611 while (bi && bi->bi_iter.bi_sector <
3612 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3613 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3614
3615 md_write_end(conf->mddev);
3616 bio_io_error(bi);
3617 bi = bi2;
3618 }
3619
3620 /* fail any reads if this device is non-operational and
3621 * the data has not reached the cache yet.
3622 */
3623 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3624 s->failed > conf->max_degraded &&
3625 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3626 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3627 spin_lock_irq(&sh->stripe_lock);
3628 bi = sh->dev[i].toread;
3629 sh->dev[i].toread = NULL;
3630 spin_unlock_irq(&sh->stripe_lock);
3631 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3632 wake_up(&conf->wait_for_overlap);
3633 if (bi)
3634 s->to_read--;
3635 while (bi && bi->bi_iter.bi_sector <
3636 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3637 struct bio *nextbi =
3638 r5_next_bio(conf, bi, sh->dev[i].sector);
3639
3640 bio_io_error(bi);
3641 bi = nextbi;
3642 }
3643 }
3644 if (bitmap_end)
3645 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3646 RAID5_STRIPE_SECTORS(conf), 0, 0);
3647 /* If we were in the middle of a write the parity block might
3648 * still be locked - so just clear all R5_LOCKED flags
3649 */
3650 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3651 }
3652 s->to_write = 0;
3653 s->written = 0;
3654
3655 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3656 if (atomic_dec_and_test(&conf->pending_full_writes))
3657 md_wakeup_thread(conf->mddev->thread);
3658 }
3659
3660 static void
handle_failed_sync(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s)3661 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3662 struct stripe_head_state *s)
3663 {
3664 int abort = 0;
3665 int i;
3666
3667 BUG_ON(sh->batch_head);
3668 clear_bit(STRIPE_SYNCING, &sh->state);
3669 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3670 wake_up(&conf->wait_for_overlap);
3671 s->syncing = 0;
3672 s->replacing = 0;
3673 /* There is nothing more to do for sync/check/repair.
3674 * Don't even need to abort as that is handled elsewhere
3675 * if needed, and not always wanted e.g. if there is a known
3676 * bad block here.
3677 * For recover/replace we need to record a bad block on all
3678 * non-sync devices, or abort the recovery
3679 */
3680 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3681 /* During recovery devices cannot be removed, so
3682 * locking and refcounting of rdevs is not needed
3683 */
3684 rcu_read_lock();
3685 for (i = 0; i < conf->raid_disks; i++) {
3686 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3687 if (rdev
3688 && !test_bit(Faulty, &rdev->flags)
3689 && !test_bit(In_sync, &rdev->flags)
3690 && !rdev_set_badblocks(rdev, sh->sector,
3691 RAID5_STRIPE_SECTORS(conf), 0))
3692 abort = 1;
3693 rdev = rcu_dereference(conf->disks[i].replacement);
3694 if (rdev
3695 && !test_bit(Faulty, &rdev->flags)
3696 && !test_bit(In_sync, &rdev->flags)
3697 && !rdev_set_badblocks(rdev, sh->sector,
3698 RAID5_STRIPE_SECTORS(conf), 0))
3699 abort = 1;
3700 }
3701 rcu_read_unlock();
3702 if (abort)
3703 conf->recovery_disabled =
3704 conf->mddev->recovery_disabled;
3705 }
3706 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3707 }
3708
want_replace(struct stripe_head * sh,int disk_idx)3709 static int want_replace(struct stripe_head *sh, int disk_idx)
3710 {
3711 struct md_rdev *rdev;
3712 int rv = 0;
3713
3714 rcu_read_lock();
3715 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3716 if (rdev
3717 && !test_bit(Faulty, &rdev->flags)
3718 && !test_bit(In_sync, &rdev->flags)
3719 && (rdev->recovery_offset <= sh->sector
3720 || rdev->mddev->recovery_cp <= sh->sector))
3721 rv = 1;
3722 rcu_read_unlock();
3723 return rv;
3724 }
3725
need_this_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3726 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3727 int disk_idx, int disks)
3728 {
3729 struct r5dev *dev = &sh->dev[disk_idx];
3730 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3731 &sh->dev[s->failed_num[1]] };
3732 int i;
3733 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3734
3735
3736 if (test_bit(R5_LOCKED, &dev->flags) ||
3737 test_bit(R5_UPTODATE, &dev->flags))
3738 /* No point reading this as we already have it or have
3739 * decided to get it.
3740 */
3741 return 0;
3742
3743 if (dev->toread ||
3744 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3745 /* We need this block to directly satisfy a request */
3746 return 1;
3747
3748 if (s->syncing || s->expanding ||
3749 (s->replacing && want_replace(sh, disk_idx)))
3750 /* When syncing, or expanding we read everything.
3751 * When replacing, we need the replaced block.
3752 */
3753 return 1;
3754
3755 if ((s->failed >= 1 && fdev[0]->toread) ||
3756 (s->failed >= 2 && fdev[1]->toread))
3757 /* If we want to read from a failed device, then
3758 * we need to actually read every other device.
3759 */
3760 return 1;
3761
3762 /* Sometimes neither read-modify-write nor reconstruct-write
3763 * cycles can work. In those cases we read every block we
3764 * can. Then the parity-update is certain to have enough to
3765 * work with.
3766 * This can only be a problem when we need to write something,
3767 * and some device has failed. If either of those tests
3768 * fail we need look no further.
3769 */
3770 if (!s->failed || !s->to_write)
3771 return 0;
3772
3773 if (test_bit(R5_Insync, &dev->flags) &&
3774 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3775 /* Pre-reads at not permitted until after short delay
3776 * to gather multiple requests. However if this
3777 * device is no Insync, the block could only be computed
3778 * and there is no need to delay that.
3779 */
3780 return 0;
3781
3782 for (i = 0; i < s->failed && i < 2; i++) {
3783 if (fdev[i]->towrite &&
3784 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3785 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3786 /* If we have a partial write to a failed
3787 * device, then we will need to reconstruct
3788 * the content of that device, so all other
3789 * devices must be read.
3790 */
3791 return 1;
3792
3793 if (s->failed >= 2 &&
3794 (fdev[i]->towrite ||
3795 s->failed_num[i] == sh->pd_idx ||
3796 s->failed_num[i] == sh->qd_idx) &&
3797 !test_bit(R5_UPTODATE, &fdev[i]->flags))
3798 /* In max degraded raid6, If the failed disk is P, Q,
3799 * or we want to read the failed disk, we need to do
3800 * reconstruct-write.
3801 */
3802 force_rcw = true;
3803 }
3804
3805 /* If we are forced to do a reconstruct-write, because parity
3806 * cannot be trusted and we are currently recovering it, there
3807 * is extra need to be careful.
3808 * If one of the devices that we would need to read, because
3809 * it is not being overwritten (and maybe not written at all)
3810 * is missing/faulty, then we need to read everything we can.
3811 */
3812 if (!force_rcw &&
3813 sh->sector < sh->raid_conf->mddev->recovery_cp)
3814 /* reconstruct-write isn't being forced */
3815 return 0;
3816 for (i = 0; i < s->failed && i < 2; i++) {
3817 if (s->failed_num[i] != sh->pd_idx &&
3818 s->failed_num[i] != sh->qd_idx &&
3819 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3820 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3821 return 1;
3822 }
3823
3824 return 0;
3825 }
3826
3827 /* fetch_block - checks the given member device to see if its data needs
3828 * to be read or computed to satisfy a request.
3829 *
3830 * Returns 1 when no more member devices need to be checked, otherwise returns
3831 * 0 to tell the loop in handle_stripe_fill to continue
3832 */
fetch_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3833 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3834 int disk_idx, int disks)
3835 {
3836 struct r5dev *dev = &sh->dev[disk_idx];
3837
3838 /* is the data in this block needed, and can we get it? */
3839 if (need_this_block(sh, s, disk_idx, disks)) {
3840 /* we would like to get this block, possibly by computing it,
3841 * otherwise read it if the backing disk is insync
3842 */
3843 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3844 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3845 BUG_ON(sh->batch_head);
3846
3847 /*
3848 * In the raid6 case if the only non-uptodate disk is P
3849 * then we already trusted P to compute the other failed
3850 * drives. It is safe to compute rather than re-read P.
3851 * In other cases we only compute blocks from failed
3852 * devices, otherwise check/repair might fail to detect
3853 * a real inconsistency.
3854 */
3855
3856 if ((s->uptodate == disks - 1) &&
3857 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3858 (s->failed && (disk_idx == s->failed_num[0] ||
3859 disk_idx == s->failed_num[1])))) {
3860 /* have disk failed, and we're requested to fetch it;
3861 * do compute it
3862 */
3863 pr_debug("Computing stripe %llu block %d\n",
3864 (unsigned long long)sh->sector, disk_idx);
3865 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3866 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3867 set_bit(R5_Wantcompute, &dev->flags);
3868 sh->ops.target = disk_idx;
3869 sh->ops.target2 = -1; /* no 2nd target */
3870 s->req_compute = 1;
3871 /* Careful: from this point on 'uptodate' is in the eye
3872 * of raid_run_ops which services 'compute' operations
3873 * before writes. R5_Wantcompute flags a block that will
3874 * be R5_UPTODATE by the time it is needed for a
3875 * subsequent operation.
3876 */
3877 s->uptodate++;
3878 return 1;
3879 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3880 /* Computing 2-failure is *very* expensive; only
3881 * do it if failed >= 2
3882 */
3883 int other;
3884 for (other = disks; other--; ) {
3885 if (other == disk_idx)
3886 continue;
3887 if (!test_bit(R5_UPTODATE,
3888 &sh->dev[other].flags))
3889 break;
3890 }
3891 BUG_ON(other < 0);
3892 pr_debug("Computing stripe %llu blocks %d,%d\n",
3893 (unsigned long long)sh->sector,
3894 disk_idx, other);
3895 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3896 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3897 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3898 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3899 sh->ops.target = disk_idx;
3900 sh->ops.target2 = other;
3901 s->uptodate += 2;
3902 s->req_compute = 1;
3903 return 1;
3904 } else if (test_bit(R5_Insync, &dev->flags)) {
3905 set_bit(R5_LOCKED, &dev->flags);
3906 set_bit(R5_Wantread, &dev->flags);
3907 s->locked++;
3908 pr_debug("Reading block %d (sync=%d)\n",
3909 disk_idx, s->syncing);
3910 }
3911 }
3912
3913 return 0;
3914 }
3915
3916 /*
3917 * handle_stripe_fill - read or compute data to satisfy pending requests.
3918 */
handle_stripe_fill(struct stripe_head * sh,struct stripe_head_state * s,int disks)3919 static void handle_stripe_fill(struct stripe_head *sh,
3920 struct stripe_head_state *s,
3921 int disks)
3922 {
3923 int i;
3924
3925 /* look for blocks to read/compute, skip this if a compute
3926 * is already in flight, or if the stripe contents are in the
3927 * midst of changing due to a write
3928 */
3929 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3930 !sh->reconstruct_state) {
3931
3932 /*
3933 * For degraded stripe with data in journal, do not handle
3934 * read requests yet, instead, flush the stripe to raid
3935 * disks first, this avoids handling complex rmw of write
3936 * back cache (prexor with orig_page, and then xor with
3937 * page) in the read path
3938 */
3939 if (s->to_read && s->injournal && s->failed) {
3940 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3941 r5c_make_stripe_write_out(sh);
3942 goto out;
3943 }
3944
3945 for (i = disks; i--; )
3946 if (fetch_block(sh, s, i, disks))
3947 break;
3948 }
3949 out:
3950 set_bit(STRIPE_HANDLE, &sh->state);
3951 }
3952
3953 static void break_stripe_batch_list(struct stripe_head *head_sh,
3954 unsigned long handle_flags);
3955 /* handle_stripe_clean_event
3956 * any written block on an uptodate or failed drive can be returned.
3957 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3958 * never LOCKED, so we don't need to test 'failed' directly.
3959 */
handle_stripe_clean_event(struct r5conf * conf,struct stripe_head * sh,int disks)3960 static void handle_stripe_clean_event(struct r5conf *conf,
3961 struct stripe_head *sh, int disks)
3962 {
3963 int i;
3964 struct r5dev *dev;
3965 int discard_pending = 0;
3966 struct stripe_head *head_sh = sh;
3967 bool do_endio = false;
3968
3969 for (i = disks; i--; )
3970 if (sh->dev[i].written) {
3971 dev = &sh->dev[i];
3972 if (!test_bit(R5_LOCKED, &dev->flags) &&
3973 (test_bit(R5_UPTODATE, &dev->flags) ||
3974 test_bit(R5_Discard, &dev->flags) ||
3975 test_bit(R5_SkipCopy, &dev->flags))) {
3976 /* We can return any write requests */
3977 struct bio *wbi, *wbi2;
3978 pr_debug("Return write for disc %d\n", i);
3979 if (test_and_clear_bit(R5_Discard, &dev->flags))
3980 clear_bit(R5_UPTODATE, &dev->flags);
3981 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3982 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3983 }
3984 do_endio = true;
3985
3986 returnbi:
3987 dev->page = dev->orig_page;
3988 wbi = dev->written;
3989 dev->written = NULL;
3990 while (wbi && wbi->bi_iter.bi_sector <
3991 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
3992 wbi2 = r5_next_bio(conf, wbi, dev->sector);
3993 md_write_end(conf->mddev);
3994 bio_endio(wbi);
3995 wbi = wbi2;
3996 }
3997 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3998 RAID5_STRIPE_SECTORS(conf),
3999 !test_bit(STRIPE_DEGRADED, &sh->state),
4000 0);
4001 if (head_sh->batch_head) {
4002 sh = list_first_entry(&sh->batch_list,
4003 struct stripe_head,
4004 batch_list);
4005 if (sh != head_sh) {
4006 dev = &sh->dev[i];
4007 goto returnbi;
4008 }
4009 }
4010 sh = head_sh;
4011 dev = &sh->dev[i];
4012 } else if (test_bit(R5_Discard, &dev->flags))
4013 discard_pending = 1;
4014 }
4015
4016 log_stripe_write_finished(sh);
4017
4018 if (!discard_pending &&
4019 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4020 int hash;
4021 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4022 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4023 if (sh->qd_idx >= 0) {
4024 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4025 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4026 }
4027 /* now that discard is done we can proceed with any sync */
4028 clear_bit(STRIPE_DISCARD, &sh->state);
4029 /*
4030 * SCSI discard will change some bio fields and the stripe has
4031 * no updated data, so remove it from hash list and the stripe
4032 * will be reinitialized
4033 */
4034 unhash:
4035 hash = sh->hash_lock_index;
4036 spin_lock_irq(conf->hash_locks + hash);
4037 remove_hash(sh);
4038 spin_unlock_irq(conf->hash_locks + hash);
4039 if (head_sh->batch_head) {
4040 sh = list_first_entry(&sh->batch_list,
4041 struct stripe_head, batch_list);
4042 if (sh != head_sh)
4043 goto unhash;
4044 }
4045 sh = head_sh;
4046
4047 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4048 set_bit(STRIPE_HANDLE, &sh->state);
4049
4050 }
4051
4052 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4053 if (atomic_dec_and_test(&conf->pending_full_writes))
4054 md_wakeup_thread(conf->mddev->thread);
4055
4056 if (head_sh->batch_head && do_endio)
4057 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4058 }
4059
4060 /*
4061 * For RMW in write back cache, we need extra page in prexor to store the
4062 * old data. This page is stored in dev->orig_page.
4063 *
4064 * This function checks whether we have data for prexor. The exact logic
4065 * is:
4066 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4067 */
uptodate_for_rmw(struct r5dev * dev)4068 static inline bool uptodate_for_rmw(struct r5dev *dev)
4069 {
4070 return (test_bit(R5_UPTODATE, &dev->flags)) &&
4071 (!test_bit(R5_InJournal, &dev->flags) ||
4072 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4073 }
4074
handle_stripe_dirtying(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4075 static int handle_stripe_dirtying(struct r5conf *conf,
4076 struct stripe_head *sh,
4077 struct stripe_head_state *s,
4078 int disks)
4079 {
4080 int rmw = 0, rcw = 0, i;
4081 sector_t recovery_cp = conf->mddev->recovery_cp;
4082
4083 /* Check whether resync is now happening or should start.
4084 * If yes, then the array is dirty (after unclean shutdown or
4085 * initial creation), so parity in some stripes might be inconsistent.
4086 * In this case, we need to always do reconstruct-write, to ensure
4087 * that in case of drive failure or read-error correction, we
4088 * generate correct data from the parity.
4089 */
4090 if (conf->rmw_level == PARITY_DISABLE_RMW ||
4091 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4092 s->failed == 0)) {
4093 /* Calculate the real rcw later - for now make it
4094 * look like rcw is cheaper
4095 */
4096 rcw = 1; rmw = 2;
4097 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4098 conf->rmw_level, (unsigned long long)recovery_cp,
4099 (unsigned long long)sh->sector);
4100 } else for (i = disks; i--; ) {
4101 /* would I have to read this buffer for read_modify_write */
4102 struct r5dev *dev = &sh->dev[i];
4103 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4104 i == sh->pd_idx || i == sh->qd_idx ||
4105 test_bit(R5_InJournal, &dev->flags)) &&
4106 !test_bit(R5_LOCKED, &dev->flags) &&
4107 !(uptodate_for_rmw(dev) ||
4108 test_bit(R5_Wantcompute, &dev->flags))) {
4109 if (test_bit(R5_Insync, &dev->flags))
4110 rmw++;
4111 else
4112 rmw += 2*disks; /* cannot read it */
4113 }
4114 /* Would I have to read this buffer for reconstruct_write */
4115 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4116 i != sh->pd_idx && i != sh->qd_idx &&
4117 !test_bit(R5_LOCKED, &dev->flags) &&
4118 !(test_bit(R5_UPTODATE, &dev->flags) ||
4119 test_bit(R5_Wantcompute, &dev->flags))) {
4120 if (test_bit(R5_Insync, &dev->flags))
4121 rcw++;
4122 else
4123 rcw += 2*disks;
4124 }
4125 }
4126
4127 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4128 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4129 set_bit(STRIPE_HANDLE, &sh->state);
4130 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4131 /* prefer read-modify-write, but need to get some data */
4132 if (conf->mddev->queue)
4133 blk_add_trace_msg(conf->mddev->queue,
4134 "raid5 rmw %llu %d",
4135 (unsigned long long)sh->sector, rmw);
4136 for (i = disks; i--; ) {
4137 struct r5dev *dev = &sh->dev[i];
4138 if (test_bit(R5_InJournal, &dev->flags) &&
4139 dev->page == dev->orig_page &&
4140 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4141 /* alloc page for prexor */
4142 struct page *p = alloc_page(GFP_NOIO);
4143
4144 if (p) {
4145 dev->orig_page = p;
4146 continue;
4147 }
4148
4149 /*
4150 * alloc_page() failed, try use
4151 * disk_info->extra_page
4152 */
4153 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4154 &conf->cache_state)) {
4155 r5c_use_extra_page(sh);
4156 break;
4157 }
4158
4159 /* extra_page in use, add to delayed_list */
4160 set_bit(STRIPE_DELAYED, &sh->state);
4161 s->waiting_extra_page = 1;
4162 return -EAGAIN;
4163 }
4164 }
4165
4166 for (i = disks; i--; ) {
4167 struct r5dev *dev = &sh->dev[i];
4168 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4169 i == sh->pd_idx || i == sh->qd_idx ||
4170 test_bit(R5_InJournal, &dev->flags)) &&
4171 !test_bit(R5_LOCKED, &dev->flags) &&
4172 !(uptodate_for_rmw(dev) ||
4173 test_bit(R5_Wantcompute, &dev->flags)) &&
4174 test_bit(R5_Insync, &dev->flags)) {
4175 if (test_bit(STRIPE_PREREAD_ACTIVE,
4176 &sh->state)) {
4177 pr_debug("Read_old block %d for r-m-w\n",
4178 i);
4179 set_bit(R5_LOCKED, &dev->flags);
4180 set_bit(R5_Wantread, &dev->flags);
4181 s->locked++;
4182 } else
4183 set_bit(STRIPE_DELAYED, &sh->state);
4184 }
4185 }
4186 }
4187 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4188 /* want reconstruct write, but need to get some data */
4189 int qread =0;
4190 rcw = 0;
4191 for (i = disks; i--; ) {
4192 struct r5dev *dev = &sh->dev[i];
4193 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4194 i != sh->pd_idx && i != sh->qd_idx &&
4195 !test_bit(R5_LOCKED, &dev->flags) &&
4196 !(test_bit(R5_UPTODATE, &dev->flags) ||
4197 test_bit(R5_Wantcompute, &dev->flags))) {
4198 rcw++;
4199 if (test_bit(R5_Insync, &dev->flags) &&
4200 test_bit(STRIPE_PREREAD_ACTIVE,
4201 &sh->state)) {
4202 pr_debug("Read_old block "
4203 "%d for Reconstruct\n", i);
4204 set_bit(R5_LOCKED, &dev->flags);
4205 set_bit(R5_Wantread, &dev->flags);
4206 s->locked++;
4207 qread++;
4208 } else
4209 set_bit(STRIPE_DELAYED, &sh->state);
4210 }
4211 }
4212 if (rcw && conf->mddev->queue)
4213 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4214 (unsigned long long)sh->sector,
4215 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4216 }
4217
4218 if (rcw > disks && rmw > disks &&
4219 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4220 set_bit(STRIPE_DELAYED, &sh->state);
4221
4222 /* now if nothing is locked, and if we have enough data,
4223 * we can start a write request
4224 */
4225 /* since handle_stripe can be called at any time we need to handle the
4226 * case where a compute block operation has been submitted and then a
4227 * subsequent call wants to start a write request. raid_run_ops only
4228 * handles the case where compute block and reconstruct are requested
4229 * simultaneously. If this is not the case then new writes need to be
4230 * held off until the compute completes.
4231 */
4232 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4233 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4234 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4235 schedule_reconstruction(sh, s, rcw == 0, 0);
4236 return 0;
4237 }
4238
handle_parity_checks5(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4239 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4240 struct stripe_head_state *s, int disks)
4241 {
4242 struct r5dev *dev = NULL;
4243
4244 BUG_ON(sh->batch_head);
4245 set_bit(STRIPE_HANDLE, &sh->state);
4246
4247 switch (sh->check_state) {
4248 case check_state_idle:
4249 /* start a new check operation if there are no failures */
4250 if (s->failed == 0) {
4251 BUG_ON(s->uptodate != disks);
4252 sh->check_state = check_state_run;
4253 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4254 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4255 s->uptodate--;
4256 break;
4257 }
4258 dev = &sh->dev[s->failed_num[0]];
4259 fallthrough;
4260 case check_state_compute_result:
4261 sh->check_state = check_state_idle;
4262 if (!dev)
4263 dev = &sh->dev[sh->pd_idx];
4264
4265 /* check that a write has not made the stripe insync */
4266 if (test_bit(STRIPE_INSYNC, &sh->state))
4267 break;
4268
4269 /* either failed parity check, or recovery is happening */
4270 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4271 BUG_ON(s->uptodate != disks);
4272
4273 set_bit(R5_LOCKED, &dev->flags);
4274 s->locked++;
4275 set_bit(R5_Wantwrite, &dev->flags);
4276
4277 clear_bit(STRIPE_DEGRADED, &sh->state);
4278 set_bit(STRIPE_INSYNC, &sh->state);
4279 break;
4280 case check_state_run:
4281 break; /* we will be called again upon completion */
4282 case check_state_check_result:
4283 sh->check_state = check_state_idle;
4284
4285 /* if a failure occurred during the check operation, leave
4286 * STRIPE_INSYNC not set and let the stripe be handled again
4287 */
4288 if (s->failed)
4289 break;
4290
4291 /* handle a successful check operation, if parity is correct
4292 * we are done. Otherwise update the mismatch count and repair
4293 * parity if !MD_RECOVERY_CHECK
4294 */
4295 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4296 /* parity is correct (on disc,
4297 * not in buffer any more)
4298 */
4299 set_bit(STRIPE_INSYNC, &sh->state);
4300 else {
4301 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4302 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4303 /* don't try to repair!! */
4304 set_bit(STRIPE_INSYNC, &sh->state);
4305 pr_warn_ratelimited("%s: mismatch sector in range "
4306 "%llu-%llu\n", mdname(conf->mddev),
4307 (unsigned long long) sh->sector,
4308 (unsigned long long) sh->sector +
4309 RAID5_STRIPE_SECTORS(conf));
4310 } else {
4311 sh->check_state = check_state_compute_run;
4312 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4313 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4314 set_bit(R5_Wantcompute,
4315 &sh->dev[sh->pd_idx].flags);
4316 sh->ops.target = sh->pd_idx;
4317 sh->ops.target2 = -1;
4318 s->uptodate++;
4319 }
4320 }
4321 break;
4322 case check_state_compute_run:
4323 break;
4324 default:
4325 pr_err("%s: unknown check_state: %d sector: %llu\n",
4326 __func__, sh->check_state,
4327 (unsigned long long) sh->sector);
4328 BUG();
4329 }
4330 }
4331
handle_parity_checks6(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4332 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4333 struct stripe_head_state *s,
4334 int disks)
4335 {
4336 int pd_idx = sh->pd_idx;
4337 int qd_idx = sh->qd_idx;
4338 struct r5dev *dev;
4339
4340 BUG_ON(sh->batch_head);
4341 set_bit(STRIPE_HANDLE, &sh->state);
4342
4343 BUG_ON(s->failed > 2);
4344
4345 /* Want to check and possibly repair P and Q.
4346 * However there could be one 'failed' device, in which
4347 * case we can only check one of them, possibly using the
4348 * other to generate missing data
4349 */
4350
4351 switch (sh->check_state) {
4352 case check_state_idle:
4353 /* start a new check operation if there are < 2 failures */
4354 if (s->failed == s->q_failed) {
4355 /* The only possible failed device holds Q, so it
4356 * makes sense to check P (If anything else were failed,
4357 * we would have used P to recreate it).
4358 */
4359 sh->check_state = check_state_run;
4360 }
4361 if (!s->q_failed && s->failed < 2) {
4362 /* Q is not failed, and we didn't use it to generate
4363 * anything, so it makes sense to check it
4364 */
4365 if (sh->check_state == check_state_run)
4366 sh->check_state = check_state_run_pq;
4367 else
4368 sh->check_state = check_state_run_q;
4369 }
4370
4371 /* discard potentially stale zero_sum_result */
4372 sh->ops.zero_sum_result = 0;
4373
4374 if (sh->check_state == check_state_run) {
4375 /* async_xor_zero_sum destroys the contents of P */
4376 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4377 s->uptodate--;
4378 }
4379 if (sh->check_state >= check_state_run &&
4380 sh->check_state <= check_state_run_pq) {
4381 /* async_syndrome_zero_sum preserves P and Q, so
4382 * no need to mark them !uptodate here
4383 */
4384 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4385 break;
4386 }
4387
4388 /* we have 2-disk failure */
4389 BUG_ON(s->failed != 2);
4390 fallthrough;
4391 case check_state_compute_result:
4392 sh->check_state = check_state_idle;
4393
4394 /* check that a write has not made the stripe insync */
4395 if (test_bit(STRIPE_INSYNC, &sh->state))
4396 break;
4397
4398 /* now write out any block on a failed drive,
4399 * or P or Q if they were recomputed
4400 */
4401 dev = NULL;
4402 if (s->failed == 2) {
4403 dev = &sh->dev[s->failed_num[1]];
4404 s->locked++;
4405 set_bit(R5_LOCKED, &dev->flags);
4406 set_bit(R5_Wantwrite, &dev->flags);
4407 }
4408 if (s->failed >= 1) {
4409 dev = &sh->dev[s->failed_num[0]];
4410 s->locked++;
4411 set_bit(R5_LOCKED, &dev->flags);
4412 set_bit(R5_Wantwrite, &dev->flags);
4413 }
4414 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4415 dev = &sh->dev[pd_idx];
4416 s->locked++;
4417 set_bit(R5_LOCKED, &dev->flags);
4418 set_bit(R5_Wantwrite, &dev->flags);
4419 }
4420 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4421 dev = &sh->dev[qd_idx];
4422 s->locked++;
4423 set_bit(R5_LOCKED, &dev->flags);
4424 set_bit(R5_Wantwrite, &dev->flags);
4425 }
4426 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4427 "%s: disk%td not up to date\n",
4428 mdname(conf->mddev),
4429 dev - (struct r5dev *) &sh->dev)) {
4430 clear_bit(R5_LOCKED, &dev->flags);
4431 clear_bit(R5_Wantwrite, &dev->flags);
4432 s->locked--;
4433 }
4434 clear_bit(STRIPE_DEGRADED, &sh->state);
4435
4436 set_bit(STRIPE_INSYNC, &sh->state);
4437 break;
4438 case check_state_run:
4439 case check_state_run_q:
4440 case check_state_run_pq:
4441 break; /* we will be called again upon completion */
4442 case check_state_check_result:
4443 sh->check_state = check_state_idle;
4444
4445 /* handle a successful check operation, if parity is correct
4446 * we are done. Otherwise update the mismatch count and repair
4447 * parity if !MD_RECOVERY_CHECK
4448 */
4449 if (sh->ops.zero_sum_result == 0) {
4450 /* both parities are correct */
4451 if (!s->failed)
4452 set_bit(STRIPE_INSYNC, &sh->state);
4453 else {
4454 /* in contrast to the raid5 case we can validate
4455 * parity, but still have a failure to write
4456 * back
4457 */
4458 sh->check_state = check_state_compute_result;
4459 /* Returning at this point means that we may go
4460 * off and bring p and/or q uptodate again so
4461 * we make sure to check zero_sum_result again
4462 * to verify if p or q need writeback
4463 */
4464 }
4465 } else {
4466 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4467 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4468 /* don't try to repair!! */
4469 set_bit(STRIPE_INSYNC, &sh->state);
4470 pr_warn_ratelimited("%s: mismatch sector in range "
4471 "%llu-%llu\n", mdname(conf->mddev),
4472 (unsigned long long) sh->sector,
4473 (unsigned long long) sh->sector +
4474 RAID5_STRIPE_SECTORS(conf));
4475 } else {
4476 int *target = &sh->ops.target;
4477
4478 sh->ops.target = -1;
4479 sh->ops.target2 = -1;
4480 sh->check_state = check_state_compute_run;
4481 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4482 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4483 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4484 set_bit(R5_Wantcompute,
4485 &sh->dev[pd_idx].flags);
4486 *target = pd_idx;
4487 target = &sh->ops.target2;
4488 s->uptodate++;
4489 }
4490 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4491 set_bit(R5_Wantcompute,
4492 &sh->dev[qd_idx].flags);
4493 *target = qd_idx;
4494 s->uptodate++;
4495 }
4496 }
4497 }
4498 break;
4499 case check_state_compute_run:
4500 break;
4501 default:
4502 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4503 __func__, sh->check_state,
4504 (unsigned long long) sh->sector);
4505 BUG();
4506 }
4507 }
4508
handle_stripe_expansion(struct r5conf * conf,struct stripe_head * sh)4509 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4510 {
4511 int i;
4512
4513 /* We have read all the blocks in this stripe and now we need to
4514 * copy some of them into a target stripe for expand.
4515 */
4516 struct dma_async_tx_descriptor *tx = NULL;
4517 BUG_ON(sh->batch_head);
4518 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4519 for (i = 0; i < sh->disks; i++)
4520 if (i != sh->pd_idx && i != sh->qd_idx) {
4521 int dd_idx, j;
4522 struct stripe_head *sh2;
4523 struct async_submit_ctl submit;
4524
4525 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4526 sector_t s = raid5_compute_sector(conf, bn, 0,
4527 &dd_idx, NULL);
4528 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4529 if (sh2 == NULL)
4530 /* so far only the early blocks of this stripe
4531 * have been requested. When later blocks
4532 * get requested, we will try again
4533 */
4534 continue;
4535 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4536 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4537 /* must have already done this block */
4538 raid5_release_stripe(sh2);
4539 continue;
4540 }
4541
4542 /* place all the copies on one channel */
4543 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4544 tx = async_memcpy(sh2->dev[dd_idx].page,
4545 sh->dev[i].page, sh2->dev[dd_idx].offset,
4546 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4547 &submit);
4548
4549 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4550 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4551 for (j = 0; j < conf->raid_disks; j++)
4552 if (j != sh2->pd_idx &&
4553 j != sh2->qd_idx &&
4554 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4555 break;
4556 if (j == conf->raid_disks) {
4557 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4558 set_bit(STRIPE_HANDLE, &sh2->state);
4559 }
4560 raid5_release_stripe(sh2);
4561
4562 }
4563 /* done submitting copies, wait for them to complete */
4564 async_tx_quiesce(&tx);
4565 }
4566
4567 /*
4568 * handle_stripe - do things to a stripe.
4569 *
4570 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4571 * state of various bits to see what needs to be done.
4572 * Possible results:
4573 * return some read requests which now have data
4574 * return some write requests which are safely on storage
4575 * schedule a read on some buffers
4576 * schedule a write of some buffers
4577 * return confirmation of parity correctness
4578 *
4579 */
4580
analyse_stripe(struct stripe_head * sh,struct stripe_head_state * s)4581 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4582 {
4583 struct r5conf *conf = sh->raid_conf;
4584 int disks = sh->disks;
4585 struct r5dev *dev;
4586 int i;
4587 int do_recovery = 0;
4588
4589 memset(s, 0, sizeof(*s));
4590
4591 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4592 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4593 s->failed_num[0] = -1;
4594 s->failed_num[1] = -1;
4595 s->log_failed = r5l_log_disk_error(conf);
4596
4597 /* Now to look around and see what can be done */
4598 rcu_read_lock();
4599 for (i=disks; i--; ) {
4600 struct md_rdev *rdev;
4601 sector_t first_bad;
4602 int bad_sectors;
4603 int is_bad = 0;
4604
4605 dev = &sh->dev[i];
4606
4607 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4608 i, dev->flags,
4609 dev->toread, dev->towrite, dev->written);
4610 /* maybe we can reply to a read
4611 *
4612 * new wantfill requests are only permitted while
4613 * ops_complete_biofill is guaranteed to be inactive
4614 */
4615 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4616 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4617 set_bit(R5_Wantfill, &dev->flags);
4618
4619 /* now count some things */
4620 if (test_bit(R5_LOCKED, &dev->flags))
4621 s->locked++;
4622 if (test_bit(R5_UPTODATE, &dev->flags))
4623 s->uptodate++;
4624 if (test_bit(R5_Wantcompute, &dev->flags)) {
4625 s->compute++;
4626 BUG_ON(s->compute > 2);
4627 }
4628
4629 if (test_bit(R5_Wantfill, &dev->flags))
4630 s->to_fill++;
4631 else if (dev->toread)
4632 s->to_read++;
4633 if (dev->towrite) {
4634 s->to_write++;
4635 if (!test_bit(R5_OVERWRITE, &dev->flags))
4636 s->non_overwrite++;
4637 }
4638 if (dev->written)
4639 s->written++;
4640 /* Prefer to use the replacement for reads, but only
4641 * if it is recovered enough and has no bad blocks.
4642 */
4643 rdev = rcu_dereference(conf->disks[i].replacement);
4644 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4645 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4646 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4647 &first_bad, &bad_sectors))
4648 set_bit(R5_ReadRepl, &dev->flags);
4649 else {
4650 if (rdev && !test_bit(Faulty, &rdev->flags))
4651 set_bit(R5_NeedReplace, &dev->flags);
4652 else
4653 clear_bit(R5_NeedReplace, &dev->flags);
4654 rdev = rcu_dereference(conf->disks[i].rdev);
4655 clear_bit(R5_ReadRepl, &dev->flags);
4656 }
4657 if (rdev && test_bit(Faulty, &rdev->flags))
4658 rdev = NULL;
4659 if (rdev) {
4660 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4661 &first_bad, &bad_sectors);
4662 if (s->blocked_rdev == NULL
4663 && (test_bit(Blocked, &rdev->flags)
4664 || is_bad < 0)) {
4665 if (is_bad < 0)
4666 set_bit(BlockedBadBlocks,
4667 &rdev->flags);
4668 s->blocked_rdev = rdev;
4669 atomic_inc(&rdev->nr_pending);
4670 }
4671 }
4672 clear_bit(R5_Insync, &dev->flags);
4673 if (!rdev)
4674 /* Not in-sync */;
4675 else if (is_bad) {
4676 /* also not in-sync */
4677 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4678 test_bit(R5_UPTODATE, &dev->flags)) {
4679 /* treat as in-sync, but with a read error
4680 * which we can now try to correct
4681 */
4682 set_bit(R5_Insync, &dev->flags);
4683 set_bit(R5_ReadError, &dev->flags);
4684 }
4685 } else if (test_bit(In_sync, &rdev->flags))
4686 set_bit(R5_Insync, &dev->flags);
4687 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4688 /* in sync if before recovery_offset */
4689 set_bit(R5_Insync, &dev->flags);
4690 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4691 test_bit(R5_Expanded, &dev->flags))
4692 /* If we've reshaped into here, we assume it is Insync.
4693 * We will shortly update recovery_offset to make
4694 * it official.
4695 */
4696 set_bit(R5_Insync, &dev->flags);
4697
4698 if (test_bit(R5_WriteError, &dev->flags)) {
4699 /* This flag does not apply to '.replacement'
4700 * only to .rdev, so make sure to check that*/
4701 struct md_rdev *rdev2 = rcu_dereference(
4702 conf->disks[i].rdev);
4703 if (rdev2 == rdev)
4704 clear_bit(R5_Insync, &dev->flags);
4705 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4706 s->handle_bad_blocks = 1;
4707 atomic_inc(&rdev2->nr_pending);
4708 } else
4709 clear_bit(R5_WriteError, &dev->flags);
4710 }
4711 if (test_bit(R5_MadeGood, &dev->flags)) {
4712 /* This flag does not apply to '.replacement'
4713 * only to .rdev, so make sure to check that*/
4714 struct md_rdev *rdev2 = rcu_dereference(
4715 conf->disks[i].rdev);
4716 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4717 s->handle_bad_blocks = 1;
4718 atomic_inc(&rdev2->nr_pending);
4719 } else
4720 clear_bit(R5_MadeGood, &dev->flags);
4721 }
4722 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4723 struct md_rdev *rdev2 = rcu_dereference(
4724 conf->disks[i].replacement);
4725 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4726 s->handle_bad_blocks = 1;
4727 atomic_inc(&rdev2->nr_pending);
4728 } else
4729 clear_bit(R5_MadeGoodRepl, &dev->flags);
4730 }
4731 if (!test_bit(R5_Insync, &dev->flags)) {
4732 /* The ReadError flag will just be confusing now */
4733 clear_bit(R5_ReadError, &dev->flags);
4734 clear_bit(R5_ReWrite, &dev->flags);
4735 }
4736 if (test_bit(R5_ReadError, &dev->flags))
4737 clear_bit(R5_Insync, &dev->flags);
4738 if (!test_bit(R5_Insync, &dev->flags)) {
4739 if (s->failed < 2)
4740 s->failed_num[s->failed] = i;
4741 s->failed++;
4742 if (rdev && !test_bit(Faulty, &rdev->flags))
4743 do_recovery = 1;
4744 else if (!rdev) {
4745 rdev = rcu_dereference(
4746 conf->disks[i].replacement);
4747 if (rdev && !test_bit(Faulty, &rdev->flags))
4748 do_recovery = 1;
4749 }
4750 }
4751
4752 if (test_bit(R5_InJournal, &dev->flags))
4753 s->injournal++;
4754 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4755 s->just_cached++;
4756 }
4757 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4758 /* If there is a failed device being replaced,
4759 * we must be recovering.
4760 * else if we are after recovery_cp, we must be syncing
4761 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4762 * else we can only be replacing
4763 * sync and recovery both need to read all devices, and so
4764 * use the same flag.
4765 */
4766 if (do_recovery ||
4767 sh->sector >= conf->mddev->recovery_cp ||
4768 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4769 s->syncing = 1;
4770 else
4771 s->replacing = 1;
4772 }
4773 rcu_read_unlock();
4774 }
4775
4776 /*
4777 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4778 * a head which can now be handled.
4779 */
clear_batch_ready(struct stripe_head * sh)4780 static int clear_batch_ready(struct stripe_head *sh)
4781 {
4782 struct stripe_head *tmp;
4783 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4784 return (sh->batch_head && sh->batch_head != sh);
4785 spin_lock(&sh->stripe_lock);
4786 if (!sh->batch_head) {
4787 spin_unlock(&sh->stripe_lock);
4788 return 0;
4789 }
4790
4791 /*
4792 * this stripe could be added to a batch list before we check
4793 * BATCH_READY, skips it
4794 */
4795 if (sh->batch_head != sh) {
4796 spin_unlock(&sh->stripe_lock);
4797 return 1;
4798 }
4799 spin_lock(&sh->batch_lock);
4800 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4801 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4802 spin_unlock(&sh->batch_lock);
4803 spin_unlock(&sh->stripe_lock);
4804
4805 /*
4806 * BATCH_READY is cleared, no new stripes can be added.
4807 * batch_list can be accessed without lock
4808 */
4809 return 0;
4810 }
4811
break_stripe_batch_list(struct stripe_head * head_sh,unsigned long handle_flags)4812 static void break_stripe_batch_list(struct stripe_head *head_sh,
4813 unsigned long handle_flags)
4814 {
4815 struct stripe_head *sh, *next;
4816 int i;
4817 int do_wakeup = 0;
4818
4819 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4820
4821 list_del_init(&sh->batch_list);
4822
4823 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4824 (1 << STRIPE_SYNCING) |
4825 (1 << STRIPE_REPLACED) |
4826 (1 << STRIPE_DELAYED) |
4827 (1 << STRIPE_BIT_DELAY) |
4828 (1 << STRIPE_FULL_WRITE) |
4829 (1 << STRIPE_BIOFILL_RUN) |
4830 (1 << STRIPE_COMPUTE_RUN) |
4831 (1 << STRIPE_DISCARD) |
4832 (1 << STRIPE_BATCH_READY) |
4833 (1 << STRIPE_BATCH_ERR) |
4834 (1 << STRIPE_BITMAP_PENDING)),
4835 "stripe state: %lx\n", sh->state);
4836 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4837 (1 << STRIPE_REPLACED)),
4838 "head stripe state: %lx\n", head_sh->state);
4839
4840 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4841 (1 << STRIPE_PREREAD_ACTIVE) |
4842 (1 << STRIPE_DEGRADED) |
4843 (1 << STRIPE_ON_UNPLUG_LIST)),
4844 head_sh->state & (1 << STRIPE_INSYNC));
4845
4846 sh->check_state = head_sh->check_state;
4847 sh->reconstruct_state = head_sh->reconstruct_state;
4848 spin_lock_irq(&sh->stripe_lock);
4849 sh->batch_head = NULL;
4850 spin_unlock_irq(&sh->stripe_lock);
4851 for (i = 0; i < sh->disks; i++) {
4852 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4853 do_wakeup = 1;
4854 sh->dev[i].flags = head_sh->dev[i].flags &
4855 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4856 }
4857 if (handle_flags == 0 ||
4858 sh->state & handle_flags)
4859 set_bit(STRIPE_HANDLE, &sh->state);
4860 raid5_release_stripe(sh);
4861 }
4862 spin_lock_irq(&head_sh->stripe_lock);
4863 head_sh->batch_head = NULL;
4864 spin_unlock_irq(&head_sh->stripe_lock);
4865 for (i = 0; i < head_sh->disks; i++)
4866 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4867 do_wakeup = 1;
4868 if (head_sh->state & handle_flags)
4869 set_bit(STRIPE_HANDLE, &head_sh->state);
4870
4871 if (do_wakeup)
4872 wake_up(&head_sh->raid_conf->wait_for_overlap);
4873 }
4874
handle_stripe(struct stripe_head * sh)4875 static void handle_stripe(struct stripe_head *sh)
4876 {
4877 struct stripe_head_state s;
4878 struct r5conf *conf = sh->raid_conf;
4879 int i;
4880 int prexor;
4881 int disks = sh->disks;
4882 struct r5dev *pdev, *qdev;
4883
4884 clear_bit(STRIPE_HANDLE, &sh->state);
4885
4886 /*
4887 * handle_stripe should not continue handle the batched stripe, only
4888 * the head of batch list or lone stripe can continue. Otherwise we
4889 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4890 * is set for the batched stripe.
4891 */
4892 if (clear_batch_ready(sh))
4893 return;
4894
4895 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4896 /* already being handled, ensure it gets handled
4897 * again when current action finishes */
4898 set_bit(STRIPE_HANDLE, &sh->state);
4899 return;
4900 }
4901
4902 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4903 break_stripe_batch_list(sh, 0);
4904
4905 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4906 spin_lock(&sh->stripe_lock);
4907 /*
4908 * Cannot process 'sync' concurrently with 'discard'.
4909 * Flush data in r5cache before 'sync'.
4910 */
4911 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4912 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4913 !test_bit(STRIPE_DISCARD, &sh->state) &&
4914 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4915 set_bit(STRIPE_SYNCING, &sh->state);
4916 clear_bit(STRIPE_INSYNC, &sh->state);
4917 clear_bit(STRIPE_REPLACED, &sh->state);
4918 }
4919 spin_unlock(&sh->stripe_lock);
4920 }
4921 clear_bit(STRIPE_DELAYED, &sh->state);
4922
4923 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4924 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4925 (unsigned long long)sh->sector, sh->state,
4926 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4927 sh->check_state, sh->reconstruct_state);
4928
4929 analyse_stripe(sh, &s);
4930
4931 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4932 goto finish;
4933
4934 if (s.handle_bad_blocks ||
4935 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4936 set_bit(STRIPE_HANDLE, &sh->state);
4937 goto finish;
4938 }
4939
4940 if (unlikely(s.blocked_rdev)) {
4941 if (s.syncing || s.expanding || s.expanded ||
4942 s.replacing || s.to_write || s.written) {
4943 set_bit(STRIPE_HANDLE, &sh->state);
4944 goto finish;
4945 }
4946 /* There is nothing for the blocked_rdev to block */
4947 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4948 s.blocked_rdev = NULL;
4949 }
4950
4951 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4952 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4953 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4954 }
4955
4956 pr_debug("locked=%d uptodate=%d to_read=%d"
4957 " to_write=%d failed=%d failed_num=%d,%d\n",
4958 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4959 s.failed_num[0], s.failed_num[1]);
4960 /*
4961 * check if the array has lost more than max_degraded devices and,
4962 * if so, some requests might need to be failed.
4963 *
4964 * When journal device failed (log_failed), we will only process
4965 * the stripe if there is data need write to raid disks
4966 */
4967 if (s.failed > conf->max_degraded ||
4968 (s.log_failed && s.injournal == 0)) {
4969 sh->check_state = 0;
4970 sh->reconstruct_state = 0;
4971 break_stripe_batch_list(sh, 0);
4972 if (s.to_read+s.to_write+s.written)
4973 handle_failed_stripe(conf, sh, &s, disks);
4974 if (s.syncing + s.replacing)
4975 handle_failed_sync(conf, sh, &s);
4976 }
4977
4978 /* Now we check to see if any write operations have recently
4979 * completed
4980 */
4981 prexor = 0;
4982 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4983 prexor = 1;
4984 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4985 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4986 sh->reconstruct_state = reconstruct_state_idle;
4987
4988 /* All the 'written' buffers and the parity block are ready to
4989 * be written back to disk
4990 */
4991 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4992 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4993 BUG_ON(sh->qd_idx >= 0 &&
4994 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4995 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4996 for (i = disks; i--; ) {
4997 struct r5dev *dev = &sh->dev[i];
4998 if (test_bit(R5_LOCKED, &dev->flags) &&
4999 (i == sh->pd_idx || i == sh->qd_idx ||
5000 dev->written || test_bit(R5_InJournal,
5001 &dev->flags))) {
5002 pr_debug("Writing block %d\n", i);
5003 set_bit(R5_Wantwrite, &dev->flags);
5004 if (prexor)
5005 continue;
5006 if (s.failed > 1)
5007 continue;
5008 if (!test_bit(R5_Insync, &dev->flags) ||
5009 ((i == sh->pd_idx || i == sh->qd_idx) &&
5010 s.failed == 0))
5011 set_bit(STRIPE_INSYNC, &sh->state);
5012 }
5013 }
5014 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5015 s.dec_preread_active = 1;
5016 }
5017
5018 /*
5019 * might be able to return some write requests if the parity blocks
5020 * are safe, or on a failed drive
5021 */
5022 pdev = &sh->dev[sh->pd_idx];
5023 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5024 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5025 qdev = &sh->dev[sh->qd_idx];
5026 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5027 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5028 || conf->level < 6;
5029
5030 if (s.written &&
5031 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5032 && !test_bit(R5_LOCKED, &pdev->flags)
5033 && (test_bit(R5_UPTODATE, &pdev->flags) ||
5034 test_bit(R5_Discard, &pdev->flags))))) &&
5035 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5036 && !test_bit(R5_LOCKED, &qdev->flags)
5037 && (test_bit(R5_UPTODATE, &qdev->flags) ||
5038 test_bit(R5_Discard, &qdev->flags))))))
5039 handle_stripe_clean_event(conf, sh, disks);
5040
5041 if (s.just_cached)
5042 r5c_handle_cached_data_endio(conf, sh, disks);
5043 log_stripe_write_finished(sh);
5044
5045 /* Now we might consider reading some blocks, either to check/generate
5046 * parity, or to satisfy requests
5047 * or to load a block that is being partially written.
5048 */
5049 if (s.to_read || s.non_overwrite
5050 || (s.to_write && s.failed)
5051 || (s.syncing && (s.uptodate + s.compute < disks))
5052 || s.replacing
5053 || s.expanding)
5054 handle_stripe_fill(sh, &s, disks);
5055
5056 /*
5057 * When the stripe finishes full journal write cycle (write to journal
5058 * and raid disk), this is the clean up procedure so it is ready for
5059 * next operation.
5060 */
5061 r5c_finish_stripe_write_out(conf, sh, &s);
5062
5063 /*
5064 * Now to consider new write requests, cache write back and what else,
5065 * if anything should be read. We do not handle new writes when:
5066 * 1/ A 'write' operation (copy+xor) is already in flight.
5067 * 2/ A 'check' operation is in flight, as it may clobber the parity
5068 * block.
5069 * 3/ A r5c cache log write is in flight.
5070 */
5071
5072 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5073 if (!r5c_is_writeback(conf->log)) {
5074 if (s.to_write)
5075 handle_stripe_dirtying(conf, sh, &s, disks);
5076 } else { /* write back cache */
5077 int ret = 0;
5078
5079 /* First, try handle writes in caching phase */
5080 if (s.to_write)
5081 ret = r5c_try_caching_write(conf, sh, &s,
5082 disks);
5083 /*
5084 * If caching phase failed: ret == -EAGAIN
5085 * OR
5086 * stripe under reclaim: !caching && injournal
5087 *
5088 * fall back to handle_stripe_dirtying()
5089 */
5090 if (ret == -EAGAIN ||
5091 /* stripe under reclaim: !caching && injournal */
5092 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5093 s.injournal > 0)) {
5094 ret = handle_stripe_dirtying(conf, sh, &s,
5095 disks);
5096 if (ret == -EAGAIN)
5097 goto finish;
5098 }
5099 }
5100 }
5101
5102 /* maybe we need to check and possibly fix the parity for this stripe
5103 * Any reads will already have been scheduled, so we just see if enough
5104 * data is available. The parity check is held off while parity
5105 * dependent operations are in flight.
5106 */
5107 if (sh->check_state ||
5108 (s.syncing && s.locked == 0 &&
5109 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5110 !test_bit(STRIPE_INSYNC, &sh->state))) {
5111 if (conf->level == 6)
5112 handle_parity_checks6(conf, sh, &s, disks);
5113 else
5114 handle_parity_checks5(conf, sh, &s, disks);
5115 }
5116
5117 if ((s.replacing || s.syncing) && s.locked == 0
5118 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5119 && !test_bit(STRIPE_REPLACED, &sh->state)) {
5120 /* Write out to replacement devices where possible */
5121 for (i = 0; i < conf->raid_disks; i++)
5122 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5123 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5124 set_bit(R5_WantReplace, &sh->dev[i].flags);
5125 set_bit(R5_LOCKED, &sh->dev[i].flags);
5126 s.locked++;
5127 }
5128 if (s.replacing)
5129 set_bit(STRIPE_INSYNC, &sh->state);
5130 set_bit(STRIPE_REPLACED, &sh->state);
5131 }
5132 if ((s.syncing || s.replacing) && s.locked == 0 &&
5133 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5134 test_bit(STRIPE_INSYNC, &sh->state)) {
5135 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5136 clear_bit(STRIPE_SYNCING, &sh->state);
5137 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5138 wake_up(&conf->wait_for_overlap);
5139 }
5140
5141 /* If the failed drives are just a ReadError, then we might need
5142 * to progress the repair/check process
5143 */
5144 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5145 for (i = 0; i < s.failed; i++) {
5146 struct r5dev *dev = &sh->dev[s.failed_num[i]];
5147 if (test_bit(R5_ReadError, &dev->flags)
5148 && !test_bit(R5_LOCKED, &dev->flags)
5149 && test_bit(R5_UPTODATE, &dev->flags)
5150 ) {
5151 if (!test_bit(R5_ReWrite, &dev->flags)) {
5152 set_bit(R5_Wantwrite, &dev->flags);
5153 set_bit(R5_ReWrite, &dev->flags);
5154 } else
5155 /* let's read it back */
5156 set_bit(R5_Wantread, &dev->flags);
5157 set_bit(R5_LOCKED, &dev->flags);
5158 s.locked++;
5159 }
5160 }
5161
5162 /* Finish reconstruct operations initiated by the expansion process */
5163 if (sh->reconstruct_state == reconstruct_state_result) {
5164 struct stripe_head *sh_src
5165 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
5166 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5167 /* sh cannot be written until sh_src has been read.
5168 * so arrange for sh to be delayed a little
5169 */
5170 set_bit(STRIPE_DELAYED, &sh->state);
5171 set_bit(STRIPE_HANDLE, &sh->state);
5172 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5173 &sh_src->state))
5174 atomic_inc(&conf->preread_active_stripes);
5175 raid5_release_stripe(sh_src);
5176 goto finish;
5177 }
5178 if (sh_src)
5179 raid5_release_stripe(sh_src);
5180
5181 sh->reconstruct_state = reconstruct_state_idle;
5182 clear_bit(STRIPE_EXPANDING, &sh->state);
5183 for (i = conf->raid_disks; i--; ) {
5184 set_bit(R5_Wantwrite, &sh->dev[i].flags);
5185 set_bit(R5_LOCKED, &sh->dev[i].flags);
5186 s.locked++;
5187 }
5188 }
5189
5190 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5191 !sh->reconstruct_state) {
5192 /* Need to write out all blocks after computing parity */
5193 sh->disks = conf->raid_disks;
5194 stripe_set_idx(sh->sector, conf, 0, sh);
5195 schedule_reconstruction(sh, &s, 1, 1);
5196 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5197 clear_bit(STRIPE_EXPAND_READY, &sh->state);
5198 atomic_dec(&conf->reshape_stripes);
5199 wake_up(&conf->wait_for_overlap);
5200 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5201 }
5202
5203 if (s.expanding && s.locked == 0 &&
5204 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5205 handle_stripe_expansion(conf, sh);
5206
5207 finish:
5208 /* wait for this device to become unblocked */
5209 if (unlikely(s.blocked_rdev)) {
5210 if (conf->mddev->external)
5211 md_wait_for_blocked_rdev(s.blocked_rdev,
5212 conf->mddev);
5213 else
5214 /* Internal metadata will immediately
5215 * be written by raid5d, so we don't
5216 * need to wait here.
5217 */
5218 rdev_dec_pending(s.blocked_rdev,
5219 conf->mddev);
5220 }
5221
5222 if (s.handle_bad_blocks)
5223 for (i = disks; i--; ) {
5224 struct md_rdev *rdev;
5225 struct r5dev *dev = &sh->dev[i];
5226 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5227 /* We own a safe reference to the rdev */
5228 rdev = conf->disks[i].rdev;
5229 if (!rdev_set_badblocks(rdev, sh->sector,
5230 RAID5_STRIPE_SECTORS(conf), 0))
5231 md_error(conf->mddev, rdev);
5232 rdev_dec_pending(rdev, conf->mddev);
5233 }
5234 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5235 rdev = conf->disks[i].rdev;
5236 rdev_clear_badblocks(rdev, sh->sector,
5237 RAID5_STRIPE_SECTORS(conf), 0);
5238 rdev_dec_pending(rdev, conf->mddev);
5239 }
5240 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5241 rdev = conf->disks[i].replacement;
5242 if (!rdev)
5243 /* rdev have been moved down */
5244 rdev = conf->disks[i].rdev;
5245 rdev_clear_badblocks(rdev, sh->sector,
5246 RAID5_STRIPE_SECTORS(conf), 0);
5247 rdev_dec_pending(rdev, conf->mddev);
5248 }
5249 }
5250
5251 if (s.ops_request)
5252 raid_run_ops(sh, s.ops_request);
5253
5254 ops_run_io(sh, &s);
5255
5256 if (s.dec_preread_active) {
5257 /* We delay this until after ops_run_io so that if make_request
5258 * is waiting on a flush, it won't continue until the writes
5259 * have actually been submitted.
5260 */
5261 atomic_dec(&conf->preread_active_stripes);
5262 if (atomic_read(&conf->preread_active_stripes) <
5263 IO_THRESHOLD)
5264 md_wakeup_thread(conf->mddev->thread);
5265 }
5266
5267 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5268 }
5269
raid5_activate_delayed(struct r5conf * conf)5270 static void raid5_activate_delayed(struct r5conf *conf)
5271 {
5272 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5273 while (!list_empty(&conf->delayed_list)) {
5274 struct list_head *l = conf->delayed_list.next;
5275 struct stripe_head *sh;
5276 sh = list_entry(l, struct stripe_head, lru);
5277 list_del_init(l);
5278 clear_bit(STRIPE_DELAYED, &sh->state);
5279 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5280 atomic_inc(&conf->preread_active_stripes);
5281 list_add_tail(&sh->lru, &conf->hold_list);
5282 raid5_wakeup_stripe_thread(sh);
5283 }
5284 }
5285 }
5286
activate_bit_delay(struct r5conf * conf,struct list_head * temp_inactive_list)5287 static void activate_bit_delay(struct r5conf *conf,
5288 struct list_head *temp_inactive_list)
5289 {
5290 /* device_lock is held */
5291 struct list_head head;
5292 list_add(&head, &conf->bitmap_list);
5293 list_del_init(&conf->bitmap_list);
5294 while (!list_empty(&head)) {
5295 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5296 int hash;
5297 list_del_init(&sh->lru);
5298 atomic_inc(&sh->count);
5299 hash = sh->hash_lock_index;
5300 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5301 }
5302 }
5303
in_chunk_boundary(struct mddev * mddev,struct bio * bio)5304 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5305 {
5306 struct r5conf *conf = mddev->private;
5307 sector_t sector = bio->bi_iter.bi_sector;
5308 unsigned int chunk_sectors;
5309 unsigned int bio_sectors = bio_sectors(bio);
5310
5311 WARN_ON_ONCE(bio->bi_partno);
5312
5313 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5314 return chunk_sectors >=
5315 ((sector & (chunk_sectors - 1)) + bio_sectors);
5316 }
5317
5318 /*
5319 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5320 * later sampled by raid5d.
5321 */
add_bio_to_retry(struct bio * bi,struct r5conf * conf)5322 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5323 {
5324 unsigned long flags;
5325
5326 spin_lock_irqsave(&conf->device_lock, flags);
5327
5328 bi->bi_next = conf->retry_read_aligned_list;
5329 conf->retry_read_aligned_list = bi;
5330
5331 spin_unlock_irqrestore(&conf->device_lock, flags);
5332 md_wakeup_thread(conf->mddev->thread);
5333 }
5334
remove_bio_from_retry(struct r5conf * conf,unsigned int * offset)5335 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5336 unsigned int *offset)
5337 {
5338 struct bio *bi;
5339
5340 bi = conf->retry_read_aligned;
5341 if (bi) {
5342 *offset = conf->retry_read_offset;
5343 conf->retry_read_aligned = NULL;
5344 return bi;
5345 }
5346 bi = conf->retry_read_aligned_list;
5347 if(bi) {
5348 conf->retry_read_aligned_list = bi->bi_next;
5349 bi->bi_next = NULL;
5350 *offset = 0;
5351 }
5352
5353 return bi;
5354 }
5355
5356 /*
5357 * The "raid5_align_endio" should check if the read succeeded and if it
5358 * did, call bio_endio on the original bio (having bio_put the new bio
5359 * first).
5360 * If the read failed..
5361 */
raid5_align_endio(struct bio * bi)5362 static void raid5_align_endio(struct bio *bi)
5363 {
5364 struct bio* raid_bi = bi->bi_private;
5365 struct mddev *mddev;
5366 struct r5conf *conf;
5367 struct md_rdev *rdev;
5368 blk_status_t error = bi->bi_status;
5369
5370 bio_put(bi);
5371
5372 rdev = (void*)raid_bi->bi_next;
5373 raid_bi->bi_next = NULL;
5374 mddev = rdev->mddev;
5375 conf = mddev->private;
5376
5377 rdev_dec_pending(rdev, conf->mddev);
5378
5379 if (!error) {
5380 bio_endio(raid_bi);
5381 if (atomic_dec_and_test(&conf->active_aligned_reads))
5382 wake_up(&conf->wait_for_quiescent);
5383 return;
5384 }
5385
5386 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5387
5388 add_bio_to_retry(raid_bi, conf);
5389 }
5390
raid5_read_one_chunk(struct mddev * mddev,struct bio * raid_bio)5391 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5392 {
5393 struct r5conf *conf = mddev->private;
5394 int dd_idx;
5395 struct bio* align_bi;
5396 struct md_rdev *rdev;
5397 sector_t end_sector;
5398
5399 if (!in_chunk_boundary(mddev, raid_bio)) {
5400 pr_debug("%s: non aligned\n", __func__);
5401 return 0;
5402 }
5403 /*
5404 * use bio_clone_fast to make a copy of the bio
5405 */
5406 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5407 if (!align_bi)
5408 return 0;
5409 /*
5410 * set bi_end_io to a new function, and set bi_private to the
5411 * original bio.
5412 */
5413 align_bi->bi_end_io = raid5_align_endio;
5414 align_bi->bi_private = raid_bio;
5415 /*
5416 * compute position
5417 */
5418 align_bi->bi_iter.bi_sector =
5419 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5420 0, &dd_idx, NULL);
5421
5422 end_sector = bio_end_sector(align_bi);
5423 rcu_read_lock();
5424 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5425 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5426 rdev->recovery_offset < end_sector) {
5427 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5428 if (rdev &&
5429 (test_bit(Faulty, &rdev->flags) ||
5430 !(test_bit(In_sync, &rdev->flags) ||
5431 rdev->recovery_offset >= end_sector)))
5432 rdev = NULL;
5433 }
5434
5435 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5436 rcu_read_unlock();
5437 bio_put(align_bi);
5438 return 0;
5439 }
5440
5441 if (rdev) {
5442 sector_t first_bad;
5443 int bad_sectors;
5444
5445 atomic_inc(&rdev->nr_pending);
5446 rcu_read_unlock();
5447 raid_bio->bi_next = (void*)rdev;
5448 bio_set_dev(align_bi, rdev->bdev);
5449
5450 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5451 bio_sectors(align_bi),
5452 &first_bad, &bad_sectors)) {
5453 bio_put(align_bi);
5454 rdev_dec_pending(rdev, mddev);
5455 return 0;
5456 }
5457
5458 /* No reshape active, so we can trust rdev->data_offset */
5459 align_bi->bi_iter.bi_sector += rdev->data_offset;
5460
5461 spin_lock_irq(&conf->device_lock);
5462 wait_event_lock_irq(conf->wait_for_quiescent,
5463 conf->quiesce == 0,
5464 conf->device_lock);
5465 atomic_inc(&conf->active_aligned_reads);
5466 spin_unlock_irq(&conf->device_lock);
5467
5468 if (mddev->gendisk)
5469 trace_block_bio_remap(align_bi->bi_disk->queue,
5470 align_bi, disk_devt(mddev->gendisk),
5471 raid_bio->bi_iter.bi_sector);
5472 submit_bio_noacct(align_bi);
5473 return 1;
5474 } else {
5475 rcu_read_unlock();
5476 bio_put(align_bi);
5477 return 0;
5478 }
5479 }
5480
chunk_aligned_read(struct mddev * mddev,struct bio * raid_bio)5481 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5482 {
5483 struct bio *split;
5484 sector_t sector = raid_bio->bi_iter.bi_sector;
5485 unsigned chunk_sects = mddev->chunk_sectors;
5486 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5487
5488 if (sectors < bio_sectors(raid_bio)) {
5489 struct r5conf *conf = mddev->private;
5490 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5491 bio_chain(split, raid_bio);
5492 submit_bio_noacct(raid_bio);
5493 raid_bio = split;
5494 }
5495
5496 if (!raid5_read_one_chunk(mddev, raid_bio))
5497 return raid_bio;
5498
5499 return NULL;
5500 }
5501
5502 /* __get_priority_stripe - get the next stripe to process
5503 *
5504 * Full stripe writes are allowed to pass preread active stripes up until
5505 * the bypass_threshold is exceeded. In general the bypass_count
5506 * increments when the handle_list is handled before the hold_list; however, it
5507 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5508 * stripe with in flight i/o. The bypass_count will be reset when the
5509 * head of the hold_list has changed, i.e. the head was promoted to the
5510 * handle_list.
5511 */
__get_priority_stripe(struct r5conf * conf,int group)5512 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5513 {
5514 struct stripe_head *sh, *tmp;
5515 struct list_head *handle_list = NULL;
5516 struct r5worker_group *wg;
5517 bool second_try = !r5c_is_writeback(conf->log) &&
5518 !r5l_log_disk_error(conf);
5519 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5520 r5l_log_disk_error(conf);
5521
5522 again:
5523 wg = NULL;
5524 sh = NULL;
5525 if (conf->worker_cnt_per_group == 0) {
5526 handle_list = try_loprio ? &conf->loprio_list :
5527 &conf->handle_list;
5528 } else if (group != ANY_GROUP) {
5529 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5530 &conf->worker_groups[group].handle_list;
5531 wg = &conf->worker_groups[group];
5532 } else {
5533 int i;
5534 for (i = 0; i < conf->group_cnt; i++) {
5535 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5536 &conf->worker_groups[i].handle_list;
5537 wg = &conf->worker_groups[i];
5538 if (!list_empty(handle_list))
5539 break;
5540 }
5541 }
5542
5543 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5544 __func__,
5545 list_empty(handle_list) ? "empty" : "busy",
5546 list_empty(&conf->hold_list) ? "empty" : "busy",
5547 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5548
5549 if (!list_empty(handle_list)) {
5550 sh = list_entry(handle_list->next, typeof(*sh), lru);
5551
5552 if (list_empty(&conf->hold_list))
5553 conf->bypass_count = 0;
5554 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5555 if (conf->hold_list.next == conf->last_hold)
5556 conf->bypass_count++;
5557 else {
5558 conf->last_hold = conf->hold_list.next;
5559 conf->bypass_count -= conf->bypass_threshold;
5560 if (conf->bypass_count < 0)
5561 conf->bypass_count = 0;
5562 }
5563 }
5564 } else if (!list_empty(&conf->hold_list) &&
5565 ((conf->bypass_threshold &&
5566 conf->bypass_count > conf->bypass_threshold) ||
5567 atomic_read(&conf->pending_full_writes) == 0)) {
5568
5569 list_for_each_entry(tmp, &conf->hold_list, lru) {
5570 if (conf->worker_cnt_per_group == 0 ||
5571 group == ANY_GROUP ||
5572 !cpu_online(tmp->cpu) ||
5573 cpu_to_group(tmp->cpu) == group) {
5574 sh = tmp;
5575 break;
5576 }
5577 }
5578
5579 if (sh) {
5580 conf->bypass_count -= conf->bypass_threshold;
5581 if (conf->bypass_count < 0)
5582 conf->bypass_count = 0;
5583 }
5584 wg = NULL;
5585 }
5586
5587 if (!sh) {
5588 if (second_try)
5589 return NULL;
5590 second_try = true;
5591 try_loprio = !try_loprio;
5592 goto again;
5593 }
5594
5595 if (wg) {
5596 wg->stripes_cnt--;
5597 sh->group = NULL;
5598 }
5599 list_del_init(&sh->lru);
5600 BUG_ON(atomic_inc_return(&sh->count) != 1);
5601 return sh;
5602 }
5603
5604 struct raid5_plug_cb {
5605 struct blk_plug_cb cb;
5606 struct list_head list;
5607 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5608 };
5609
raid5_unplug(struct blk_plug_cb * blk_cb,bool from_schedule)5610 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5611 {
5612 struct raid5_plug_cb *cb = container_of(
5613 blk_cb, struct raid5_plug_cb, cb);
5614 struct stripe_head *sh;
5615 struct mddev *mddev = cb->cb.data;
5616 struct r5conf *conf = mddev->private;
5617 int cnt = 0;
5618 int hash;
5619
5620 if (cb->list.next && !list_empty(&cb->list)) {
5621 spin_lock_irq(&conf->device_lock);
5622 while (!list_empty(&cb->list)) {
5623 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5624 list_del_init(&sh->lru);
5625 /*
5626 * avoid race release_stripe_plug() sees
5627 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5628 * is still in our list
5629 */
5630 smp_mb__before_atomic();
5631 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5632 /*
5633 * STRIPE_ON_RELEASE_LIST could be set here. In that
5634 * case, the count is always > 1 here
5635 */
5636 hash = sh->hash_lock_index;
5637 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5638 cnt++;
5639 }
5640 spin_unlock_irq(&conf->device_lock);
5641 }
5642 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5643 NR_STRIPE_HASH_LOCKS);
5644 if (mddev->queue)
5645 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5646 kfree(cb);
5647 }
5648
release_stripe_plug(struct mddev * mddev,struct stripe_head * sh)5649 static void release_stripe_plug(struct mddev *mddev,
5650 struct stripe_head *sh)
5651 {
5652 struct blk_plug_cb *blk_cb = blk_check_plugged(
5653 raid5_unplug, mddev,
5654 sizeof(struct raid5_plug_cb));
5655 struct raid5_plug_cb *cb;
5656
5657 if (!blk_cb) {
5658 raid5_release_stripe(sh);
5659 return;
5660 }
5661
5662 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5663
5664 if (cb->list.next == NULL) {
5665 int i;
5666 INIT_LIST_HEAD(&cb->list);
5667 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5668 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5669 }
5670
5671 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5672 list_add_tail(&sh->lru, &cb->list);
5673 else
5674 raid5_release_stripe(sh);
5675 }
5676
make_discard_request(struct mddev * mddev,struct bio * bi)5677 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5678 {
5679 struct r5conf *conf = mddev->private;
5680 sector_t logical_sector, last_sector;
5681 struct stripe_head *sh;
5682 int stripe_sectors;
5683
5684 if (mddev->reshape_position != MaxSector)
5685 /* Skip discard while reshape is happening */
5686 return;
5687
5688 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5689 last_sector = bio_end_sector(bi);
5690
5691 bi->bi_next = NULL;
5692
5693 stripe_sectors = conf->chunk_sectors *
5694 (conf->raid_disks - conf->max_degraded);
5695 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5696 stripe_sectors);
5697 sector_div(last_sector, stripe_sectors);
5698
5699 logical_sector *= conf->chunk_sectors;
5700 last_sector *= conf->chunk_sectors;
5701
5702 for (; logical_sector < last_sector;
5703 logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5704 DEFINE_WAIT(w);
5705 int d;
5706 again:
5707 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5708 prepare_to_wait(&conf->wait_for_overlap, &w,
5709 TASK_UNINTERRUPTIBLE);
5710 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5711 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5712 raid5_release_stripe(sh);
5713 schedule();
5714 goto again;
5715 }
5716 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5717 spin_lock_irq(&sh->stripe_lock);
5718 for (d = 0; d < conf->raid_disks; d++) {
5719 if (d == sh->pd_idx || d == sh->qd_idx)
5720 continue;
5721 if (sh->dev[d].towrite || sh->dev[d].toread) {
5722 set_bit(R5_Overlap, &sh->dev[d].flags);
5723 spin_unlock_irq(&sh->stripe_lock);
5724 raid5_release_stripe(sh);
5725 schedule();
5726 goto again;
5727 }
5728 }
5729 set_bit(STRIPE_DISCARD, &sh->state);
5730 finish_wait(&conf->wait_for_overlap, &w);
5731 sh->overwrite_disks = 0;
5732 for (d = 0; d < conf->raid_disks; d++) {
5733 if (d == sh->pd_idx || d == sh->qd_idx)
5734 continue;
5735 sh->dev[d].towrite = bi;
5736 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5737 bio_inc_remaining(bi);
5738 md_write_inc(mddev, bi);
5739 sh->overwrite_disks++;
5740 }
5741 spin_unlock_irq(&sh->stripe_lock);
5742 if (conf->mddev->bitmap) {
5743 for (d = 0;
5744 d < conf->raid_disks - conf->max_degraded;
5745 d++)
5746 md_bitmap_startwrite(mddev->bitmap,
5747 sh->sector,
5748 RAID5_STRIPE_SECTORS(conf),
5749 0);
5750 sh->bm_seq = conf->seq_flush + 1;
5751 set_bit(STRIPE_BIT_DELAY, &sh->state);
5752 }
5753
5754 set_bit(STRIPE_HANDLE, &sh->state);
5755 clear_bit(STRIPE_DELAYED, &sh->state);
5756 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5757 atomic_inc(&conf->preread_active_stripes);
5758 release_stripe_plug(mddev, sh);
5759 }
5760
5761 bio_endio(bi);
5762 }
5763
raid5_make_request(struct mddev * mddev,struct bio * bi)5764 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5765 {
5766 struct r5conf *conf = mddev->private;
5767 int dd_idx;
5768 sector_t new_sector;
5769 sector_t logical_sector, last_sector;
5770 struct stripe_head *sh;
5771 const int rw = bio_data_dir(bi);
5772 DEFINE_WAIT(w);
5773 bool do_prepare;
5774 bool do_flush = false;
5775
5776 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5777 int ret = log_handle_flush_request(conf, bi);
5778
5779 if (ret == 0)
5780 return true;
5781 if (ret == -ENODEV) {
5782 if (md_flush_request(mddev, bi))
5783 return true;
5784 }
5785 /* ret == -EAGAIN, fallback */
5786 /*
5787 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5788 * we need to flush journal device
5789 */
5790 do_flush = bi->bi_opf & REQ_PREFLUSH;
5791 }
5792
5793 if (!md_write_start(mddev, bi))
5794 return false;
5795 /*
5796 * If array is degraded, better not do chunk aligned read because
5797 * later we might have to read it again in order to reconstruct
5798 * data on failed drives.
5799 */
5800 if (rw == READ && mddev->degraded == 0 &&
5801 mddev->reshape_position == MaxSector) {
5802 bi = chunk_aligned_read(mddev, bi);
5803 if (!bi)
5804 return true;
5805 }
5806
5807 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5808 make_discard_request(mddev, bi);
5809 md_write_end(mddev);
5810 return true;
5811 }
5812
5813 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5814 last_sector = bio_end_sector(bi);
5815 bi->bi_next = NULL;
5816
5817 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5818 for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5819 int previous;
5820 int seq;
5821
5822 do_prepare = false;
5823 retry:
5824 seq = read_seqcount_begin(&conf->gen_lock);
5825 previous = 0;
5826 if (do_prepare)
5827 prepare_to_wait(&conf->wait_for_overlap, &w,
5828 TASK_UNINTERRUPTIBLE);
5829 if (unlikely(conf->reshape_progress != MaxSector)) {
5830 /* spinlock is needed as reshape_progress may be
5831 * 64bit on a 32bit platform, and so it might be
5832 * possible to see a half-updated value
5833 * Of course reshape_progress could change after
5834 * the lock is dropped, so once we get a reference
5835 * to the stripe that we think it is, we will have
5836 * to check again.
5837 */
5838 spin_lock_irq(&conf->device_lock);
5839 if (mddev->reshape_backwards
5840 ? logical_sector < conf->reshape_progress
5841 : logical_sector >= conf->reshape_progress) {
5842 previous = 1;
5843 } else {
5844 if (mddev->reshape_backwards
5845 ? logical_sector < conf->reshape_safe
5846 : logical_sector >= conf->reshape_safe) {
5847 spin_unlock_irq(&conf->device_lock);
5848 schedule();
5849 do_prepare = true;
5850 goto retry;
5851 }
5852 }
5853 spin_unlock_irq(&conf->device_lock);
5854 }
5855
5856 new_sector = raid5_compute_sector(conf, logical_sector,
5857 previous,
5858 &dd_idx, NULL);
5859 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5860 (unsigned long long)new_sector,
5861 (unsigned long long)logical_sector);
5862
5863 sh = raid5_get_active_stripe(conf, new_sector, previous,
5864 (bi->bi_opf & REQ_RAHEAD), 0);
5865 if (sh) {
5866 if (unlikely(previous)) {
5867 /* expansion might have moved on while waiting for a
5868 * stripe, so we must do the range check again.
5869 * Expansion could still move past after this
5870 * test, but as we are holding a reference to
5871 * 'sh', we know that if that happens,
5872 * STRIPE_EXPANDING will get set and the expansion
5873 * won't proceed until we finish with the stripe.
5874 */
5875 int must_retry = 0;
5876 spin_lock_irq(&conf->device_lock);
5877 if (mddev->reshape_backwards
5878 ? logical_sector >= conf->reshape_progress
5879 : logical_sector < conf->reshape_progress)
5880 /* mismatch, need to try again */
5881 must_retry = 1;
5882 spin_unlock_irq(&conf->device_lock);
5883 if (must_retry) {
5884 raid5_release_stripe(sh);
5885 schedule();
5886 do_prepare = true;
5887 goto retry;
5888 }
5889 }
5890 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5891 /* Might have got the wrong stripe_head
5892 * by accident
5893 */
5894 raid5_release_stripe(sh);
5895 goto retry;
5896 }
5897
5898 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5899 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5900 /* Stripe is busy expanding or
5901 * add failed due to overlap. Flush everything
5902 * and wait a while
5903 */
5904 md_wakeup_thread(mddev->thread);
5905 raid5_release_stripe(sh);
5906 schedule();
5907 do_prepare = true;
5908 goto retry;
5909 }
5910 if (do_flush) {
5911 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5912 /* we only need flush for one stripe */
5913 do_flush = false;
5914 }
5915
5916 set_bit(STRIPE_HANDLE, &sh->state);
5917 clear_bit(STRIPE_DELAYED, &sh->state);
5918 if ((!sh->batch_head || sh == sh->batch_head) &&
5919 (bi->bi_opf & REQ_SYNC) &&
5920 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5921 atomic_inc(&conf->preread_active_stripes);
5922 release_stripe_plug(mddev, sh);
5923 } else {
5924 /* cannot get stripe for read-ahead, just give-up */
5925 bi->bi_status = BLK_STS_IOERR;
5926 break;
5927 }
5928 }
5929 finish_wait(&conf->wait_for_overlap, &w);
5930
5931 if (rw == WRITE)
5932 md_write_end(mddev);
5933 bio_endio(bi);
5934 return true;
5935 }
5936
5937 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5938
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)5939 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5940 {
5941 /* reshaping is quite different to recovery/resync so it is
5942 * handled quite separately ... here.
5943 *
5944 * On each call to sync_request, we gather one chunk worth of
5945 * destination stripes and flag them as expanding.
5946 * Then we find all the source stripes and request reads.
5947 * As the reads complete, handle_stripe will copy the data
5948 * into the destination stripe and release that stripe.
5949 */
5950 struct r5conf *conf = mddev->private;
5951 struct stripe_head *sh;
5952 struct md_rdev *rdev;
5953 sector_t first_sector, last_sector;
5954 int raid_disks = conf->previous_raid_disks;
5955 int data_disks = raid_disks - conf->max_degraded;
5956 int new_data_disks = conf->raid_disks - conf->max_degraded;
5957 int i;
5958 int dd_idx;
5959 sector_t writepos, readpos, safepos;
5960 sector_t stripe_addr;
5961 int reshape_sectors;
5962 struct list_head stripes;
5963 sector_t retn;
5964
5965 if (sector_nr == 0) {
5966 /* If restarting in the middle, skip the initial sectors */
5967 if (mddev->reshape_backwards &&
5968 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5969 sector_nr = raid5_size(mddev, 0, 0)
5970 - conf->reshape_progress;
5971 } else if (mddev->reshape_backwards &&
5972 conf->reshape_progress == MaxSector) {
5973 /* shouldn't happen, but just in case, finish up.*/
5974 sector_nr = MaxSector;
5975 } else if (!mddev->reshape_backwards &&
5976 conf->reshape_progress > 0)
5977 sector_nr = conf->reshape_progress;
5978 sector_div(sector_nr, new_data_disks);
5979 if (sector_nr) {
5980 mddev->curr_resync_completed = sector_nr;
5981 sysfs_notify_dirent_safe(mddev->sysfs_completed);
5982 *skipped = 1;
5983 retn = sector_nr;
5984 goto finish;
5985 }
5986 }
5987
5988 /* We need to process a full chunk at a time.
5989 * If old and new chunk sizes differ, we need to process the
5990 * largest of these
5991 */
5992
5993 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5994
5995 /* We update the metadata at least every 10 seconds, or when
5996 * the data about to be copied would over-write the source of
5997 * the data at the front of the range. i.e. one new_stripe
5998 * along from reshape_progress new_maps to after where
5999 * reshape_safe old_maps to
6000 */
6001 writepos = conf->reshape_progress;
6002 sector_div(writepos, new_data_disks);
6003 readpos = conf->reshape_progress;
6004 sector_div(readpos, data_disks);
6005 safepos = conf->reshape_safe;
6006 sector_div(safepos, data_disks);
6007 if (mddev->reshape_backwards) {
6008 BUG_ON(writepos < reshape_sectors);
6009 writepos -= reshape_sectors;
6010 readpos += reshape_sectors;
6011 safepos += reshape_sectors;
6012 } else {
6013 writepos += reshape_sectors;
6014 /* readpos and safepos are worst-case calculations.
6015 * A negative number is overly pessimistic, and causes
6016 * obvious problems for unsigned storage. So clip to 0.
6017 */
6018 readpos -= min_t(sector_t, reshape_sectors, readpos);
6019 safepos -= min_t(sector_t, reshape_sectors, safepos);
6020 }
6021
6022 /* Having calculated the 'writepos' possibly use it
6023 * to set 'stripe_addr' which is where we will write to.
6024 */
6025 if (mddev->reshape_backwards) {
6026 BUG_ON(conf->reshape_progress == 0);
6027 stripe_addr = writepos;
6028 BUG_ON((mddev->dev_sectors &
6029 ~((sector_t)reshape_sectors - 1))
6030 - reshape_sectors - stripe_addr
6031 != sector_nr);
6032 } else {
6033 BUG_ON(writepos != sector_nr + reshape_sectors);
6034 stripe_addr = sector_nr;
6035 }
6036
6037 /* 'writepos' is the most advanced device address we might write.
6038 * 'readpos' is the least advanced device address we might read.
6039 * 'safepos' is the least address recorded in the metadata as having
6040 * been reshaped.
6041 * If there is a min_offset_diff, these are adjusted either by
6042 * increasing the safepos/readpos if diff is negative, or
6043 * increasing writepos if diff is positive.
6044 * If 'readpos' is then behind 'writepos', there is no way that we can
6045 * ensure safety in the face of a crash - that must be done by userspace
6046 * making a backup of the data. So in that case there is no particular
6047 * rush to update metadata.
6048 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6049 * update the metadata to advance 'safepos' to match 'readpos' so that
6050 * we can be safe in the event of a crash.
6051 * So we insist on updating metadata if safepos is behind writepos and
6052 * readpos is beyond writepos.
6053 * In any case, update the metadata every 10 seconds.
6054 * Maybe that number should be configurable, but I'm not sure it is
6055 * worth it.... maybe it could be a multiple of safemode_delay???
6056 */
6057 if (conf->min_offset_diff < 0) {
6058 safepos += -conf->min_offset_diff;
6059 readpos += -conf->min_offset_diff;
6060 } else
6061 writepos += conf->min_offset_diff;
6062
6063 if ((mddev->reshape_backwards
6064 ? (safepos > writepos && readpos < writepos)
6065 : (safepos < writepos && readpos > writepos)) ||
6066 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6067 /* Cannot proceed until we've updated the superblock... */
6068 wait_event(conf->wait_for_overlap,
6069 atomic_read(&conf->reshape_stripes)==0
6070 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6071 if (atomic_read(&conf->reshape_stripes) != 0)
6072 return 0;
6073 mddev->reshape_position = conf->reshape_progress;
6074 mddev->curr_resync_completed = sector_nr;
6075 if (!mddev->reshape_backwards)
6076 /* Can update recovery_offset */
6077 rdev_for_each(rdev, mddev)
6078 if (rdev->raid_disk >= 0 &&
6079 !test_bit(Journal, &rdev->flags) &&
6080 !test_bit(In_sync, &rdev->flags) &&
6081 rdev->recovery_offset < sector_nr)
6082 rdev->recovery_offset = sector_nr;
6083
6084 conf->reshape_checkpoint = jiffies;
6085 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6086 md_wakeup_thread(mddev->thread);
6087 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6088 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6089 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6090 return 0;
6091 spin_lock_irq(&conf->device_lock);
6092 conf->reshape_safe = mddev->reshape_position;
6093 spin_unlock_irq(&conf->device_lock);
6094 wake_up(&conf->wait_for_overlap);
6095 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6096 }
6097
6098 INIT_LIST_HEAD(&stripes);
6099 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6100 int j;
6101 int skipped_disk = 0;
6102 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
6103 set_bit(STRIPE_EXPANDING, &sh->state);
6104 atomic_inc(&conf->reshape_stripes);
6105 /* If any of this stripe is beyond the end of the old
6106 * array, then we need to zero those blocks
6107 */
6108 for (j=sh->disks; j--;) {
6109 sector_t s;
6110 if (j == sh->pd_idx)
6111 continue;
6112 if (conf->level == 6 &&
6113 j == sh->qd_idx)
6114 continue;
6115 s = raid5_compute_blocknr(sh, j, 0);
6116 if (s < raid5_size(mddev, 0, 0)) {
6117 skipped_disk = 1;
6118 continue;
6119 }
6120 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6121 set_bit(R5_Expanded, &sh->dev[j].flags);
6122 set_bit(R5_UPTODATE, &sh->dev[j].flags);
6123 }
6124 if (!skipped_disk) {
6125 set_bit(STRIPE_EXPAND_READY, &sh->state);
6126 set_bit(STRIPE_HANDLE, &sh->state);
6127 }
6128 list_add(&sh->lru, &stripes);
6129 }
6130 spin_lock_irq(&conf->device_lock);
6131 if (mddev->reshape_backwards)
6132 conf->reshape_progress -= reshape_sectors * new_data_disks;
6133 else
6134 conf->reshape_progress += reshape_sectors * new_data_disks;
6135 spin_unlock_irq(&conf->device_lock);
6136 /* Ok, those stripe are ready. We can start scheduling
6137 * reads on the source stripes.
6138 * The source stripes are determined by mapping the first and last
6139 * block on the destination stripes.
6140 */
6141 first_sector =
6142 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6143 1, &dd_idx, NULL);
6144 last_sector =
6145 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6146 * new_data_disks - 1),
6147 1, &dd_idx, NULL);
6148 if (last_sector >= mddev->dev_sectors)
6149 last_sector = mddev->dev_sectors - 1;
6150 while (first_sector <= last_sector) {
6151 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
6152 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6153 set_bit(STRIPE_HANDLE, &sh->state);
6154 raid5_release_stripe(sh);
6155 first_sector += RAID5_STRIPE_SECTORS(conf);
6156 }
6157 /* Now that the sources are clearly marked, we can release
6158 * the destination stripes
6159 */
6160 while (!list_empty(&stripes)) {
6161 sh = list_entry(stripes.next, struct stripe_head, lru);
6162 list_del_init(&sh->lru);
6163 raid5_release_stripe(sh);
6164 }
6165 /* If this takes us to the resync_max point where we have to pause,
6166 * then we need to write out the superblock.
6167 */
6168 sector_nr += reshape_sectors;
6169 retn = reshape_sectors;
6170 finish:
6171 if (mddev->curr_resync_completed > mddev->resync_max ||
6172 (sector_nr - mddev->curr_resync_completed) * 2
6173 >= mddev->resync_max - mddev->curr_resync_completed) {
6174 /* Cannot proceed until we've updated the superblock... */
6175 wait_event(conf->wait_for_overlap,
6176 atomic_read(&conf->reshape_stripes) == 0
6177 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6178 if (atomic_read(&conf->reshape_stripes) != 0)
6179 goto ret;
6180 mddev->reshape_position = conf->reshape_progress;
6181 mddev->curr_resync_completed = sector_nr;
6182 if (!mddev->reshape_backwards)
6183 /* Can update recovery_offset */
6184 rdev_for_each(rdev, mddev)
6185 if (rdev->raid_disk >= 0 &&
6186 !test_bit(Journal, &rdev->flags) &&
6187 !test_bit(In_sync, &rdev->flags) &&
6188 rdev->recovery_offset < sector_nr)
6189 rdev->recovery_offset = sector_nr;
6190 conf->reshape_checkpoint = jiffies;
6191 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6192 md_wakeup_thread(mddev->thread);
6193 wait_event(mddev->sb_wait,
6194 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6195 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6196 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6197 goto ret;
6198 spin_lock_irq(&conf->device_lock);
6199 conf->reshape_safe = mddev->reshape_position;
6200 spin_unlock_irq(&conf->device_lock);
6201 wake_up(&conf->wait_for_overlap);
6202 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6203 }
6204 ret:
6205 return retn;
6206 }
6207
raid5_sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped)6208 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6209 int *skipped)
6210 {
6211 struct r5conf *conf = mddev->private;
6212 struct stripe_head *sh;
6213 sector_t max_sector = mddev->dev_sectors;
6214 sector_t sync_blocks;
6215 int still_degraded = 0;
6216 int i;
6217
6218 if (sector_nr >= max_sector) {
6219 /* just being told to finish up .. nothing much to do */
6220
6221 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6222 end_reshape(conf);
6223 return 0;
6224 }
6225
6226 if (mddev->curr_resync < max_sector) /* aborted */
6227 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6228 &sync_blocks, 1);
6229 else /* completed sync */
6230 conf->fullsync = 0;
6231 md_bitmap_close_sync(mddev->bitmap);
6232
6233 return 0;
6234 }
6235
6236 /* Allow raid5_quiesce to complete */
6237 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6238
6239 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6240 return reshape_request(mddev, sector_nr, skipped);
6241
6242 /* No need to check resync_max as we never do more than one
6243 * stripe, and as resync_max will always be on a chunk boundary,
6244 * if the check in md_do_sync didn't fire, there is no chance
6245 * of overstepping resync_max here
6246 */
6247
6248 /* if there is too many failed drives and we are trying
6249 * to resync, then assert that we are finished, because there is
6250 * nothing we can do.
6251 */
6252 if (mddev->degraded >= conf->max_degraded &&
6253 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6254 sector_t rv = mddev->dev_sectors - sector_nr;
6255 *skipped = 1;
6256 return rv;
6257 }
6258 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6259 !conf->fullsync &&
6260 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6261 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6262 /* we can skip this block, and probably more */
6263 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6264 *skipped = 1;
6265 /* keep things rounded to whole stripes */
6266 return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6267 }
6268
6269 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6270
6271 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6272 if (sh == NULL) {
6273 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6274 /* make sure we don't swamp the stripe cache if someone else
6275 * is trying to get access
6276 */
6277 schedule_timeout_uninterruptible(1);
6278 }
6279 /* Need to check if array will still be degraded after recovery/resync
6280 * Note in case of > 1 drive failures it's possible we're rebuilding
6281 * one drive while leaving another faulty drive in array.
6282 */
6283 rcu_read_lock();
6284 for (i = 0; i < conf->raid_disks; i++) {
6285 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6286
6287 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6288 still_degraded = 1;
6289 }
6290 rcu_read_unlock();
6291
6292 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6293
6294 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6295 set_bit(STRIPE_HANDLE, &sh->state);
6296
6297 raid5_release_stripe(sh);
6298
6299 return RAID5_STRIPE_SECTORS(conf);
6300 }
6301
retry_aligned_read(struct r5conf * conf,struct bio * raid_bio,unsigned int offset)6302 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6303 unsigned int offset)
6304 {
6305 /* We may not be able to submit a whole bio at once as there
6306 * may not be enough stripe_heads available.
6307 * We cannot pre-allocate enough stripe_heads as we may need
6308 * more than exist in the cache (if we allow ever large chunks).
6309 * So we do one stripe head at a time and record in
6310 * ->bi_hw_segments how many have been done.
6311 *
6312 * We *know* that this entire raid_bio is in one chunk, so
6313 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6314 */
6315 struct stripe_head *sh;
6316 int dd_idx;
6317 sector_t sector, logical_sector, last_sector;
6318 int scnt = 0;
6319 int handled = 0;
6320
6321 logical_sector = raid_bio->bi_iter.bi_sector &
6322 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6323 sector = raid5_compute_sector(conf, logical_sector,
6324 0, &dd_idx, NULL);
6325 last_sector = bio_end_sector(raid_bio);
6326
6327 for (; logical_sector < last_sector;
6328 logical_sector += RAID5_STRIPE_SECTORS(conf),
6329 sector += RAID5_STRIPE_SECTORS(conf),
6330 scnt++) {
6331
6332 if (scnt < offset)
6333 /* already done this stripe */
6334 continue;
6335
6336 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6337
6338 if (!sh) {
6339 /* failed to get a stripe - must wait */
6340 conf->retry_read_aligned = raid_bio;
6341 conf->retry_read_offset = scnt;
6342 return handled;
6343 }
6344
6345 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6346 raid5_release_stripe(sh);
6347 conf->retry_read_aligned = raid_bio;
6348 conf->retry_read_offset = scnt;
6349 return handled;
6350 }
6351
6352 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6353 handle_stripe(sh);
6354 raid5_release_stripe(sh);
6355 handled++;
6356 }
6357
6358 bio_endio(raid_bio);
6359
6360 if (atomic_dec_and_test(&conf->active_aligned_reads))
6361 wake_up(&conf->wait_for_quiescent);
6362 return handled;
6363 }
6364
handle_active_stripes(struct r5conf * conf,int group,struct r5worker * worker,struct list_head * temp_inactive_list)6365 static int handle_active_stripes(struct r5conf *conf, int group,
6366 struct r5worker *worker,
6367 struct list_head *temp_inactive_list)
6368 __releases(&conf->device_lock)
6369 __acquires(&conf->device_lock)
6370 {
6371 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6372 int i, batch_size = 0, hash;
6373 bool release_inactive = false;
6374
6375 while (batch_size < MAX_STRIPE_BATCH &&
6376 (sh = __get_priority_stripe(conf, group)) != NULL)
6377 batch[batch_size++] = sh;
6378
6379 if (batch_size == 0) {
6380 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6381 if (!list_empty(temp_inactive_list + i))
6382 break;
6383 if (i == NR_STRIPE_HASH_LOCKS) {
6384 spin_unlock_irq(&conf->device_lock);
6385 log_flush_stripe_to_raid(conf);
6386 spin_lock_irq(&conf->device_lock);
6387 return batch_size;
6388 }
6389 release_inactive = true;
6390 }
6391 spin_unlock_irq(&conf->device_lock);
6392
6393 release_inactive_stripe_list(conf, temp_inactive_list,
6394 NR_STRIPE_HASH_LOCKS);
6395
6396 r5l_flush_stripe_to_raid(conf->log);
6397 if (release_inactive) {
6398 spin_lock_irq(&conf->device_lock);
6399 return 0;
6400 }
6401
6402 for (i = 0; i < batch_size; i++)
6403 handle_stripe(batch[i]);
6404 log_write_stripe_run(conf);
6405
6406 cond_resched();
6407
6408 spin_lock_irq(&conf->device_lock);
6409 for (i = 0; i < batch_size; i++) {
6410 hash = batch[i]->hash_lock_index;
6411 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6412 }
6413 return batch_size;
6414 }
6415
raid5_do_work(struct work_struct * work)6416 static void raid5_do_work(struct work_struct *work)
6417 {
6418 struct r5worker *worker = container_of(work, struct r5worker, work);
6419 struct r5worker_group *group = worker->group;
6420 struct r5conf *conf = group->conf;
6421 struct mddev *mddev = conf->mddev;
6422 int group_id = group - conf->worker_groups;
6423 int handled;
6424 struct blk_plug plug;
6425
6426 pr_debug("+++ raid5worker active\n");
6427
6428 blk_start_plug(&plug);
6429 handled = 0;
6430 spin_lock_irq(&conf->device_lock);
6431 while (1) {
6432 int batch_size, released;
6433
6434 released = release_stripe_list(conf, worker->temp_inactive_list);
6435
6436 batch_size = handle_active_stripes(conf, group_id, worker,
6437 worker->temp_inactive_list);
6438 worker->working = false;
6439 if (!batch_size && !released)
6440 break;
6441 handled += batch_size;
6442 wait_event_lock_irq(mddev->sb_wait,
6443 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6444 conf->device_lock);
6445 }
6446 pr_debug("%d stripes handled\n", handled);
6447
6448 spin_unlock_irq(&conf->device_lock);
6449
6450 flush_deferred_bios(conf);
6451
6452 r5l_flush_stripe_to_raid(conf->log);
6453
6454 async_tx_issue_pending_all();
6455 blk_finish_plug(&plug);
6456
6457 pr_debug("--- raid5worker inactive\n");
6458 }
6459
6460 /*
6461 * This is our raid5 kernel thread.
6462 *
6463 * We scan the hash table for stripes which can be handled now.
6464 * During the scan, completed stripes are saved for us by the interrupt
6465 * handler, so that they will not have to wait for our next wakeup.
6466 */
raid5d(struct md_thread * thread)6467 static void raid5d(struct md_thread *thread)
6468 {
6469 struct mddev *mddev = thread->mddev;
6470 struct r5conf *conf = mddev->private;
6471 int handled;
6472 struct blk_plug plug;
6473
6474 pr_debug("+++ raid5d active\n");
6475
6476 md_check_recovery(mddev);
6477
6478 blk_start_plug(&plug);
6479 handled = 0;
6480 spin_lock_irq(&conf->device_lock);
6481 while (1) {
6482 struct bio *bio;
6483 int batch_size, released;
6484 unsigned int offset;
6485
6486 released = release_stripe_list(conf, conf->temp_inactive_list);
6487 if (released)
6488 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6489
6490 if (
6491 !list_empty(&conf->bitmap_list)) {
6492 /* Now is a good time to flush some bitmap updates */
6493 conf->seq_flush++;
6494 spin_unlock_irq(&conf->device_lock);
6495 md_bitmap_unplug(mddev->bitmap);
6496 spin_lock_irq(&conf->device_lock);
6497 conf->seq_write = conf->seq_flush;
6498 activate_bit_delay(conf, conf->temp_inactive_list);
6499 }
6500 raid5_activate_delayed(conf);
6501
6502 while ((bio = remove_bio_from_retry(conf, &offset))) {
6503 int ok;
6504 spin_unlock_irq(&conf->device_lock);
6505 ok = retry_aligned_read(conf, bio, offset);
6506 spin_lock_irq(&conf->device_lock);
6507 if (!ok)
6508 break;
6509 handled++;
6510 }
6511
6512 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6513 conf->temp_inactive_list);
6514 if (!batch_size && !released)
6515 break;
6516 handled += batch_size;
6517
6518 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6519 spin_unlock_irq(&conf->device_lock);
6520 md_check_recovery(mddev);
6521 spin_lock_irq(&conf->device_lock);
6522
6523 /*
6524 * Waiting on MD_SB_CHANGE_PENDING below may deadlock
6525 * seeing md_check_recovery() is needed to clear
6526 * the flag when using mdmon.
6527 */
6528 continue;
6529 }
6530
6531 wait_event_lock_irq(mddev->sb_wait,
6532 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6533 conf->device_lock);
6534 }
6535 pr_debug("%d stripes handled\n", handled);
6536
6537 spin_unlock_irq(&conf->device_lock);
6538 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6539 mutex_trylock(&conf->cache_size_mutex)) {
6540 grow_one_stripe(conf, __GFP_NOWARN);
6541 /* Set flag even if allocation failed. This helps
6542 * slow down allocation requests when mem is short
6543 */
6544 set_bit(R5_DID_ALLOC, &conf->cache_state);
6545 mutex_unlock(&conf->cache_size_mutex);
6546 }
6547
6548 flush_deferred_bios(conf);
6549
6550 r5l_flush_stripe_to_raid(conf->log);
6551
6552 async_tx_issue_pending_all();
6553 blk_finish_plug(&plug);
6554
6555 pr_debug("--- raid5d inactive\n");
6556 }
6557
6558 static ssize_t
raid5_show_stripe_cache_size(struct mddev * mddev,char * page)6559 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6560 {
6561 struct r5conf *conf;
6562 int ret = 0;
6563 spin_lock(&mddev->lock);
6564 conf = mddev->private;
6565 if (conf)
6566 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6567 spin_unlock(&mddev->lock);
6568 return ret;
6569 }
6570
6571 int
raid5_set_cache_size(struct mddev * mddev,int size)6572 raid5_set_cache_size(struct mddev *mddev, int size)
6573 {
6574 int result = 0;
6575 struct r5conf *conf = mddev->private;
6576
6577 if (size <= 16 || size > 32768)
6578 return -EINVAL;
6579
6580 conf->min_nr_stripes = size;
6581 mutex_lock(&conf->cache_size_mutex);
6582 while (size < conf->max_nr_stripes &&
6583 drop_one_stripe(conf))
6584 ;
6585 mutex_unlock(&conf->cache_size_mutex);
6586
6587 md_allow_write(mddev);
6588
6589 mutex_lock(&conf->cache_size_mutex);
6590 while (size > conf->max_nr_stripes)
6591 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6592 conf->min_nr_stripes = conf->max_nr_stripes;
6593 result = -ENOMEM;
6594 break;
6595 }
6596 mutex_unlock(&conf->cache_size_mutex);
6597
6598 return result;
6599 }
6600 EXPORT_SYMBOL(raid5_set_cache_size);
6601
6602 static ssize_t
raid5_store_stripe_cache_size(struct mddev * mddev,const char * page,size_t len)6603 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6604 {
6605 struct r5conf *conf;
6606 unsigned long new;
6607 int err;
6608
6609 if (len >= PAGE_SIZE)
6610 return -EINVAL;
6611 if (kstrtoul(page, 10, &new))
6612 return -EINVAL;
6613 err = mddev_lock(mddev);
6614 if (err)
6615 return err;
6616 conf = mddev->private;
6617 if (!conf)
6618 err = -ENODEV;
6619 else
6620 err = raid5_set_cache_size(mddev, new);
6621 mddev_unlock(mddev);
6622
6623 return err ?: len;
6624 }
6625
6626 static struct md_sysfs_entry
6627 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6628 raid5_show_stripe_cache_size,
6629 raid5_store_stripe_cache_size);
6630
6631 static ssize_t
raid5_show_rmw_level(struct mddev * mddev,char * page)6632 raid5_show_rmw_level(struct mddev *mddev, char *page)
6633 {
6634 struct r5conf *conf = mddev->private;
6635 if (conf)
6636 return sprintf(page, "%d\n", conf->rmw_level);
6637 else
6638 return 0;
6639 }
6640
6641 static ssize_t
raid5_store_rmw_level(struct mddev * mddev,const char * page,size_t len)6642 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6643 {
6644 struct r5conf *conf = mddev->private;
6645 unsigned long new;
6646
6647 if (!conf)
6648 return -ENODEV;
6649
6650 if (len >= PAGE_SIZE)
6651 return -EINVAL;
6652
6653 if (kstrtoul(page, 10, &new))
6654 return -EINVAL;
6655
6656 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6657 return -EINVAL;
6658
6659 if (new != PARITY_DISABLE_RMW &&
6660 new != PARITY_ENABLE_RMW &&
6661 new != PARITY_PREFER_RMW)
6662 return -EINVAL;
6663
6664 conf->rmw_level = new;
6665 return len;
6666 }
6667
6668 static struct md_sysfs_entry
6669 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6670 raid5_show_rmw_level,
6671 raid5_store_rmw_level);
6672
6673 static ssize_t
raid5_show_stripe_size(struct mddev * mddev,char * page)6674 raid5_show_stripe_size(struct mddev *mddev, char *page)
6675 {
6676 struct r5conf *conf;
6677 int ret = 0;
6678
6679 spin_lock(&mddev->lock);
6680 conf = mddev->private;
6681 if (conf)
6682 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6683 spin_unlock(&mddev->lock);
6684 return ret;
6685 }
6686
6687 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6688 static ssize_t
raid5_store_stripe_size(struct mddev * mddev,const char * page,size_t len)6689 raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len)
6690 {
6691 struct r5conf *conf;
6692 unsigned long new;
6693 int err;
6694 int size;
6695
6696 if (len >= PAGE_SIZE)
6697 return -EINVAL;
6698 if (kstrtoul(page, 10, &new))
6699 return -EINVAL;
6700
6701 /*
6702 * The value should not be bigger than PAGE_SIZE. It requires to
6703 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6704 * of two.
6705 */
6706 if (new % DEFAULT_STRIPE_SIZE != 0 ||
6707 new > PAGE_SIZE || new == 0 ||
6708 new != roundup_pow_of_two(new))
6709 return -EINVAL;
6710
6711 err = mddev_lock(mddev);
6712 if (err)
6713 return err;
6714
6715 conf = mddev->private;
6716 if (!conf) {
6717 err = -ENODEV;
6718 goto out_unlock;
6719 }
6720
6721 if (new == conf->stripe_size)
6722 goto out_unlock;
6723
6724 pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6725 conf->stripe_size, new);
6726
6727 if (mddev->sync_thread ||
6728 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6729 mddev->reshape_position != MaxSector ||
6730 mddev->sysfs_active) {
6731 err = -EBUSY;
6732 goto out_unlock;
6733 }
6734
6735 mddev_suspend(mddev);
6736 mutex_lock(&conf->cache_size_mutex);
6737 size = conf->max_nr_stripes;
6738
6739 shrink_stripes(conf);
6740
6741 conf->stripe_size = new;
6742 conf->stripe_shift = ilog2(new) - 9;
6743 conf->stripe_sectors = new >> 9;
6744 if (grow_stripes(conf, size)) {
6745 pr_warn("md/raid:%s: couldn't allocate buffers\n",
6746 mdname(mddev));
6747 err = -ENOMEM;
6748 }
6749 mutex_unlock(&conf->cache_size_mutex);
6750 mddev_resume(mddev);
6751
6752 out_unlock:
6753 mddev_unlock(mddev);
6754 return err ?: len;
6755 }
6756
6757 static struct md_sysfs_entry
6758 raid5_stripe_size = __ATTR(stripe_size, 0644,
6759 raid5_show_stripe_size,
6760 raid5_store_stripe_size);
6761 #else
6762 static struct md_sysfs_entry
6763 raid5_stripe_size = __ATTR(stripe_size, 0444,
6764 raid5_show_stripe_size,
6765 NULL);
6766 #endif
6767
6768 static ssize_t
raid5_show_preread_threshold(struct mddev * mddev,char * page)6769 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6770 {
6771 struct r5conf *conf;
6772 int ret = 0;
6773 spin_lock(&mddev->lock);
6774 conf = mddev->private;
6775 if (conf)
6776 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6777 spin_unlock(&mddev->lock);
6778 return ret;
6779 }
6780
6781 static ssize_t
raid5_store_preread_threshold(struct mddev * mddev,const char * page,size_t len)6782 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6783 {
6784 struct r5conf *conf;
6785 unsigned long new;
6786 int err;
6787
6788 if (len >= PAGE_SIZE)
6789 return -EINVAL;
6790 if (kstrtoul(page, 10, &new))
6791 return -EINVAL;
6792
6793 err = mddev_lock(mddev);
6794 if (err)
6795 return err;
6796 conf = mddev->private;
6797 if (!conf)
6798 err = -ENODEV;
6799 else if (new > conf->min_nr_stripes)
6800 err = -EINVAL;
6801 else
6802 conf->bypass_threshold = new;
6803 mddev_unlock(mddev);
6804 return err ?: len;
6805 }
6806
6807 static struct md_sysfs_entry
6808 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6809 S_IRUGO | S_IWUSR,
6810 raid5_show_preread_threshold,
6811 raid5_store_preread_threshold);
6812
6813 static ssize_t
raid5_show_skip_copy(struct mddev * mddev,char * page)6814 raid5_show_skip_copy(struct mddev *mddev, char *page)
6815 {
6816 struct r5conf *conf;
6817 int ret = 0;
6818 spin_lock(&mddev->lock);
6819 conf = mddev->private;
6820 if (conf)
6821 ret = sprintf(page, "%d\n", conf->skip_copy);
6822 spin_unlock(&mddev->lock);
6823 return ret;
6824 }
6825
6826 static ssize_t
raid5_store_skip_copy(struct mddev * mddev,const char * page,size_t len)6827 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6828 {
6829 struct r5conf *conf;
6830 unsigned long new;
6831 int err;
6832
6833 if (len >= PAGE_SIZE)
6834 return -EINVAL;
6835 if (kstrtoul(page, 10, &new))
6836 return -EINVAL;
6837 new = !!new;
6838
6839 err = mddev_lock(mddev);
6840 if (err)
6841 return err;
6842 conf = mddev->private;
6843 if (!conf)
6844 err = -ENODEV;
6845 else if (new != conf->skip_copy) {
6846 struct request_queue *q = mddev->queue;
6847
6848 mddev_suspend(mddev);
6849 conf->skip_copy = new;
6850 if (new)
6851 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
6852 else
6853 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
6854 mddev_resume(mddev);
6855 }
6856 mddev_unlock(mddev);
6857 return err ?: len;
6858 }
6859
6860 static struct md_sysfs_entry
6861 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6862 raid5_show_skip_copy,
6863 raid5_store_skip_copy);
6864
6865 static ssize_t
stripe_cache_active_show(struct mddev * mddev,char * page)6866 stripe_cache_active_show(struct mddev *mddev, char *page)
6867 {
6868 struct r5conf *conf = mddev->private;
6869 if (conf)
6870 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6871 else
6872 return 0;
6873 }
6874
6875 static struct md_sysfs_entry
6876 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6877
6878 static ssize_t
raid5_show_group_thread_cnt(struct mddev * mddev,char * page)6879 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6880 {
6881 struct r5conf *conf;
6882 int ret = 0;
6883 spin_lock(&mddev->lock);
6884 conf = mddev->private;
6885 if (conf)
6886 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6887 spin_unlock(&mddev->lock);
6888 return ret;
6889 }
6890
6891 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6892 int *group_cnt,
6893 struct r5worker_group **worker_groups);
6894 static ssize_t
raid5_store_group_thread_cnt(struct mddev * mddev,const char * page,size_t len)6895 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6896 {
6897 struct r5conf *conf;
6898 unsigned int new;
6899 int err;
6900 struct r5worker_group *new_groups, *old_groups;
6901 int group_cnt;
6902
6903 if (len >= PAGE_SIZE)
6904 return -EINVAL;
6905 if (kstrtouint(page, 10, &new))
6906 return -EINVAL;
6907 /* 8192 should be big enough */
6908 if (new > 8192)
6909 return -EINVAL;
6910
6911 err = mddev_lock(mddev);
6912 if (err)
6913 return err;
6914 conf = mddev->private;
6915 if (!conf)
6916 err = -ENODEV;
6917 else if (new != conf->worker_cnt_per_group) {
6918 mddev_suspend(mddev);
6919
6920 old_groups = conf->worker_groups;
6921 if (old_groups)
6922 flush_workqueue(raid5_wq);
6923
6924 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6925 if (!err) {
6926 spin_lock_irq(&conf->device_lock);
6927 conf->group_cnt = group_cnt;
6928 conf->worker_cnt_per_group = new;
6929 conf->worker_groups = new_groups;
6930 spin_unlock_irq(&conf->device_lock);
6931
6932 if (old_groups)
6933 kfree(old_groups[0].workers);
6934 kfree(old_groups);
6935 }
6936 mddev_resume(mddev);
6937 }
6938 mddev_unlock(mddev);
6939
6940 return err ?: len;
6941 }
6942
6943 static struct md_sysfs_entry
6944 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6945 raid5_show_group_thread_cnt,
6946 raid5_store_group_thread_cnt);
6947
6948 static struct attribute *raid5_attrs[] = {
6949 &raid5_stripecache_size.attr,
6950 &raid5_stripecache_active.attr,
6951 &raid5_preread_bypass_threshold.attr,
6952 &raid5_group_thread_cnt.attr,
6953 &raid5_skip_copy.attr,
6954 &raid5_rmw_level.attr,
6955 &raid5_stripe_size.attr,
6956 &r5c_journal_mode.attr,
6957 &ppl_write_hint.attr,
6958 NULL,
6959 };
6960 static struct attribute_group raid5_attrs_group = {
6961 .name = NULL,
6962 .attrs = raid5_attrs,
6963 };
6964
alloc_thread_groups(struct r5conf * conf,int cnt,int * group_cnt,struct r5worker_group ** worker_groups)6965 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
6966 struct r5worker_group **worker_groups)
6967 {
6968 int i, j, k;
6969 ssize_t size;
6970 struct r5worker *workers;
6971
6972 if (cnt == 0) {
6973 *group_cnt = 0;
6974 *worker_groups = NULL;
6975 return 0;
6976 }
6977 *group_cnt = num_possible_nodes();
6978 size = sizeof(struct r5worker) * cnt;
6979 workers = kcalloc(size, *group_cnt, GFP_NOIO);
6980 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6981 GFP_NOIO);
6982 if (!*worker_groups || !workers) {
6983 kfree(workers);
6984 kfree(*worker_groups);
6985 return -ENOMEM;
6986 }
6987
6988 for (i = 0; i < *group_cnt; i++) {
6989 struct r5worker_group *group;
6990
6991 group = &(*worker_groups)[i];
6992 INIT_LIST_HEAD(&group->handle_list);
6993 INIT_LIST_HEAD(&group->loprio_list);
6994 group->conf = conf;
6995 group->workers = workers + i * cnt;
6996
6997 for (j = 0; j < cnt; j++) {
6998 struct r5worker *worker = group->workers + j;
6999 worker->group = group;
7000 INIT_WORK(&worker->work, raid5_do_work);
7001
7002 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7003 INIT_LIST_HEAD(worker->temp_inactive_list + k);
7004 }
7005 }
7006
7007 return 0;
7008 }
7009
free_thread_groups(struct r5conf * conf)7010 static void free_thread_groups(struct r5conf *conf)
7011 {
7012 if (conf->worker_groups)
7013 kfree(conf->worker_groups[0].workers);
7014 kfree(conf->worker_groups);
7015 conf->worker_groups = NULL;
7016 }
7017
7018 static sector_t
raid5_size(struct mddev * mddev,sector_t sectors,int raid_disks)7019 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7020 {
7021 struct r5conf *conf = mddev->private;
7022
7023 if (!sectors)
7024 sectors = mddev->dev_sectors;
7025 if (!raid_disks)
7026 /* size is defined by the smallest of previous and new size */
7027 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7028
7029 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7030 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7031 return sectors * (raid_disks - conf->max_degraded);
7032 }
7033
free_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)7034 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7035 {
7036 safe_put_page(percpu->spare_page);
7037 percpu->spare_page = NULL;
7038 kvfree(percpu->scribble);
7039 percpu->scribble = NULL;
7040 }
7041
alloc_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)7042 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7043 {
7044 if (conf->level == 6 && !percpu->spare_page) {
7045 percpu->spare_page = alloc_page(GFP_KERNEL);
7046 if (!percpu->spare_page)
7047 return -ENOMEM;
7048 }
7049
7050 if (scribble_alloc(percpu,
7051 max(conf->raid_disks,
7052 conf->previous_raid_disks),
7053 max(conf->chunk_sectors,
7054 conf->prev_chunk_sectors)
7055 / RAID5_STRIPE_SECTORS(conf))) {
7056 free_scratch_buffer(conf, percpu);
7057 return -ENOMEM;
7058 }
7059
7060 return 0;
7061 }
7062
raid456_cpu_dead(unsigned int cpu,struct hlist_node * node)7063 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7064 {
7065 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7066
7067 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7068 return 0;
7069 }
7070
raid5_free_percpu(struct r5conf * conf)7071 static void raid5_free_percpu(struct r5conf *conf)
7072 {
7073 if (!conf->percpu)
7074 return;
7075
7076 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7077 free_percpu(conf->percpu);
7078 }
7079
free_conf(struct r5conf * conf)7080 static void free_conf(struct r5conf *conf)
7081 {
7082 int i;
7083
7084 log_exit(conf);
7085
7086 unregister_shrinker(&conf->shrinker);
7087 free_thread_groups(conf);
7088 shrink_stripes(conf);
7089 raid5_free_percpu(conf);
7090 for (i = 0; i < conf->pool_size; i++)
7091 if (conf->disks[i].extra_page)
7092 put_page(conf->disks[i].extra_page);
7093 kfree(conf->disks);
7094 bioset_exit(&conf->bio_split);
7095 kfree(conf->stripe_hashtbl);
7096 kfree(conf->pending_data);
7097 kfree(conf);
7098 }
7099
raid456_cpu_up_prepare(unsigned int cpu,struct hlist_node * node)7100 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7101 {
7102 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7103 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7104
7105 if (alloc_scratch_buffer(conf, percpu)) {
7106 pr_warn("%s: failed memory allocation for cpu%u\n",
7107 __func__, cpu);
7108 return -ENOMEM;
7109 }
7110 return 0;
7111 }
7112
raid5_alloc_percpu(struct r5conf * conf)7113 static int raid5_alloc_percpu(struct r5conf *conf)
7114 {
7115 int err = 0;
7116
7117 conf->percpu = alloc_percpu(struct raid5_percpu);
7118 if (!conf->percpu)
7119 return -ENOMEM;
7120
7121 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7122 if (!err) {
7123 conf->scribble_disks = max(conf->raid_disks,
7124 conf->previous_raid_disks);
7125 conf->scribble_sectors = max(conf->chunk_sectors,
7126 conf->prev_chunk_sectors);
7127 }
7128 return err;
7129 }
7130
raid5_cache_scan(struct shrinker * shrink,struct shrink_control * sc)7131 static unsigned long raid5_cache_scan(struct shrinker *shrink,
7132 struct shrink_control *sc)
7133 {
7134 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7135 unsigned long ret = SHRINK_STOP;
7136
7137 if (mutex_trylock(&conf->cache_size_mutex)) {
7138 ret= 0;
7139 while (ret < sc->nr_to_scan &&
7140 conf->max_nr_stripes > conf->min_nr_stripes) {
7141 if (drop_one_stripe(conf) == 0) {
7142 ret = SHRINK_STOP;
7143 break;
7144 }
7145 ret++;
7146 }
7147 mutex_unlock(&conf->cache_size_mutex);
7148 }
7149 return ret;
7150 }
7151
raid5_cache_count(struct shrinker * shrink,struct shrink_control * sc)7152 static unsigned long raid5_cache_count(struct shrinker *shrink,
7153 struct shrink_control *sc)
7154 {
7155 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7156
7157 if (conf->max_nr_stripes < conf->min_nr_stripes)
7158 /* unlikely, but not impossible */
7159 return 0;
7160 return conf->max_nr_stripes - conf->min_nr_stripes;
7161 }
7162
setup_conf(struct mddev * mddev)7163 static struct r5conf *setup_conf(struct mddev *mddev)
7164 {
7165 struct r5conf *conf;
7166 int raid_disk, memory, max_disks;
7167 struct md_rdev *rdev;
7168 struct disk_info *disk;
7169 char pers_name[6];
7170 int i;
7171 int group_cnt;
7172 struct r5worker_group *new_group;
7173 int ret;
7174
7175 if (mddev->new_level != 5
7176 && mddev->new_level != 4
7177 && mddev->new_level != 6) {
7178 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7179 mdname(mddev), mddev->new_level);
7180 return ERR_PTR(-EIO);
7181 }
7182 if ((mddev->new_level == 5
7183 && !algorithm_valid_raid5(mddev->new_layout)) ||
7184 (mddev->new_level == 6
7185 && !algorithm_valid_raid6(mddev->new_layout))) {
7186 pr_warn("md/raid:%s: layout %d not supported\n",
7187 mdname(mddev), mddev->new_layout);
7188 return ERR_PTR(-EIO);
7189 }
7190 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7191 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7192 mdname(mddev), mddev->raid_disks);
7193 return ERR_PTR(-EINVAL);
7194 }
7195
7196 if (!mddev->new_chunk_sectors ||
7197 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7198 !is_power_of_2(mddev->new_chunk_sectors)) {
7199 pr_warn("md/raid:%s: invalid chunk size %d\n",
7200 mdname(mddev), mddev->new_chunk_sectors << 9);
7201 return ERR_PTR(-EINVAL);
7202 }
7203
7204 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7205 if (conf == NULL)
7206 goto abort;
7207
7208 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7209 conf->stripe_size = DEFAULT_STRIPE_SIZE;
7210 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7211 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7212 #endif
7213 INIT_LIST_HEAD(&conf->free_list);
7214 INIT_LIST_HEAD(&conf->pending_list);
7215 conf->pending_data = kcalloc(PENDING_IO_MAX,
7216 sizeof(struct r5pending_data),
7217 GFP_KERNEL);
7218 if (!conf->pending_data)
7219 goto abort;
7220 for (i = 0; i < PENDING_IO_MAX; i++)
7221 list_add(&conf->pending_data[i].sibling, &conf->free_list);
7222 /* Don't enable multi-threading by default*/
7223 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7224 conf->group_cnt = group_cnt;
7225 conf->worker_cnt_per_group = 0;
7226 conf->worker_groups = new_group;
7227 } else
7228 goto abort;
7229 spin_lock_init(&conf->device_lock);
7230 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7231 mutex_init(&conf->cache_size_mutex);
7232 init_waitqueue_head(&conf->wait_for_quiescent);
7233 init_waitqueue_head(&conf->wait_for_stripe);
7234 init_waitqueue_head(&conf->wait_for_overlap);
7235 INIT_LIST_HEAD(&conf->handle_list);
7236 INIT_LIST_HEAD(&conf->loprio_list);
7237 INIT_LIST_HEAD(&conf->hold_list);
7238 INIT_LIST_HEAD(&conf->delayed_list);
7239 INIT_LIST_HEAD(&conf->bitmap_list);
7240 init_llist_head(&conf->released_stripes);
7241 atomic_set(&conf->active_stripes, 0);
7242 atomic_set(&conf->preread_active_stripes, 0);
7243 atomic_set(&conf->active_aligned_reads, 0);
7244 spin_lock_init(&conf->pending_bios_lock);
7245 conf->batch_bio_dispatch = true;
7246 rdev_for_each(rdev, mddev) {
7247 if (test_bit(Journal, &rdev->flags))
7248 continue;
7249 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
7250 conf->batch_bio_dispatch = false;
7251 break;
7252 }
7253 }
7254
7255 conf->bypass_threshold = BYPASS_THRESHOLD;
7256 conf->recovery_disabled = mddev->recovery_disabled - 1;
7257
7258 conf->raid_disks = mddev->raid_disks;
7259 if (mddev->reshape_position == MaxSector)
7260 conf->previous_raid_disks = mddev->raid_disks;
7261 else
7262 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7263 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7264
7265 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7266 GFP_KERNEL);
7267
7268 if (!conf->disks)
7269 goto abort;
7270
7271 for (i = 0; i < max_disks; i++) {
7272 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7273 if (!conf->disks[i].extra_page)
7274 goto abort;
7275 }
7276
7277 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7278 if (ret)
7279 goto abort;
7280 conf->mddev = mddev;
7281
7282 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
7283 goto abort;
7284
7285 /* We init hash_locks[0] separately to that it can be used
7286 * as the reference lock in the spin_lock_nest_lock() call
7287 * in lock_all_device_hash_locks_irq in order to convince
7288 * lockdep that we know what we are doing.
7289 */
7290 spin_lock_init(conf->hash_locks);
7291 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7292 spin_lock_init(conf->hash_locks + i);
7293
7294 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7295 INIT_LIST_HEAD(conf->inactive_list + i);
7296
7297 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7298 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7299
7300 atomic_set(&conf->r5c_cached_full_stripes, 0);
7301 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7302 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7303 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7304 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7305 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7306
7307 conf->level = mddev->new_level;
7308 conf->chunk_sectors = mddev->new_chunk_sectors;
7309 if (raid5_alloc_percpu(conf) != 0)
7310 goto abort;
7311
7312 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7313
7314 rdev_for_each(rdev, mddev) {
7315 raid_disk = rdev->raid_disk;
7316 if (raid_disk >= max_disks
7317 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7318 continue;
7319 disk = conf->disks + raid_disk;
7320
7321 if (test_bit(Replacement, &rdev->flags)) {
7322 if (disk->replacement)
7323 goto abort;
7324 disk->replacement = rdev;
7325 } else {
7326 if (disk->rdev)
7327 goto abort;
7328 disk->rdev = rdev;
7329 }
7330
7331 if (test_bit(In_sync, &rdev->flags)) {
7332 char b[BDEVNAME_SIZE];
7333 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7334 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7335 } else if (rdev->saved_raid_disk != raid_disk)
7336 /* Cannot rely on bitmap to complete recovery */
7337 conf->fullsync = 1;
7338 }
7339
7340 conf->level = mddev->new_level;
7341 if (conf->level == 6) {
7342 conf->max_degraded = 2;
7343 if (raid6_call.xor_syndrome)
7344 conf->rmw_level = PARITY_ENABLE_RMW;
7345 else
7346 conf->rmw_level = PARITY_DISABLE_RMW;
7347 } else {
7348 conf->max_degraded = 1;
7349 conf->rmw_level = PARITY_ENABLE_RMW;
7350 }
7351 conf->algorithm = mddev->new_layout;
7352 conf->reshape_progress = mddev->reshape_position;
7353 if (conf->reshape_progress != MaxSector) {
7354 conf->prev_chunk_sectors = mddev->chunk_sectors;
7355 conf->prev_algo = mddev->layout;
7356 } else {
7357 conf->prev_chunk_sectors = conf->chunk_sectors;
7358 conf->prev_algo = conf->algorithm;
7359 }
7360
7361 conf->min_nr_stripes = NR_STRIPES;
7362 if (mddev->reshape_position != MaxSector) {
7363 int stripes = max_t(int,
7364 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7365 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7366 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7367 if (conf->min_nr_stripes != NR_STRIPES)
7368 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7369 mdname(mddev), conf->min_nr_stripes);
7370 }
7371 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7372 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7373 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7374 if (grow_stripes(conf, conf->min_nr_stripes)) {
7375 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7376 mdname(mddev), memory);
7377 goto abort;
7378 } else
7379 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7380 /*
7381 * Losing a stripe head costs more than the time to refill it,
7382 * it reduces the queue depth and so can hurt throughput.
7383 * So set it rather large, scaled by number of devices.
7384 */
7385 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7386 conf->shrinker.scan_objects = raid5_cache_scan;
7387 conf->shrinker.count_objects = raid5_cache_count;
7388 conf->shrinker.batch = 128;
7389 conf->shrinker.flags = 0;
7390 if (register_shrinker(&conf->shrinker)) {
7391 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7392 mdname(mddev));
7393 goto abort;
7394 }
7395
7396 sprintf(pers_name, "raid%d", mddev->new_level);
7397 conf->thread = md_register_thread(raid5d, mddev, pers_name);
7398 if (!conf->thread) {
7399 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7400 mdname(mddev));
7401 goto abort;
7402 }
7403
7404 return conf;
7405
7406 abort:
7407 if (conf) {
7408 free_conf(conf);
7409 return ERR_PTR(-EIO);
7410 } else
7411 return ERR_PTR(-ENOMEM);
7412 }
7413
only_parity(int raid_disk,int algo,int raid_disks,int max_degraded)7414 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7415 {
7416 switch (algo) {
7417 case ALGORITHM_PARITY_0:
7418 if (raid_disk < max_degraded)
7419 return 1;
7420 break;
7421 case ALGORITHM_PARITY_N:
7422 if (raid_disk >= raid_disks - max_degraded)
7423 return 1;
7424 break;
7425 case ALGORITHM_PARITY_0_6:
7426 if (raid_disk == 0 ||
7427 raid_disk == raid_disks - 1)
7428 return 1;
7429 break;
7430 case ALGORITHM_LEFT_ASYMMETRIC_6:
7431 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7432 case ALGORITHM_LEFT_SYMMETRIC_6:
7433 case ALGORITHM_RIGHT_SYMMETRIC_6:
7434 if (raid_disk == raid_disks - 1)
7435 return 1;
7436 }
7437 return 0;
7438 }
7439
raid5_set_io_opt(struct r5conf * conf)7440 static void raid5_set_io_opt(struct r5conf *conf)
7441 {
7442 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
7443 (conf->raid_disks - conf->max_degraded));
7444 }
7445
raid5_run(struct mddev * mddev)7446 static int raid5_run(struct mddev *mddev)
7447 {
7448 struct r5conf *conf;
7449 int working_disks = 0;
7450 int dirty_parity_disks = 0;
7451 struct md_rdev *rdev;
7452 struct md_rdev *journal_dev = NULL;
7453 sector_t reshape_offset = 0;
7454 int i;
7455 long long min_offset_diff = 0;
7456 int first = 1;
7457
7458 if (mddev_init_writes_pending(mddev) < 0)
7459 return -ENOMEM;
7460
7461 if (mddev->recovery_cp != MaxSector)
7462 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7463 mdname(mddev));
7464
7465 rdev_for_each(rdev, mddev) {
7466 long long diff;
7467
7468 if (test_bit(Journal, &rdev->flags)) {
7469 journal_dev = rdev;
7470 continue;
7471 }
7472 if (rdev->raid_disk < 0)
7473 continue;
7474 diff = (rdev->new_data_offset - rdev->data_offset);
7475 if (first) {
7476 min_offset_diff = diff;
7477 first = 0;
7478 } else if (mddev->reshape_backwards &&
7479 diff < min_offset_diff)
7480 min_offset_diff = diff;
7481 else if (!mddev->reshape_backwards &&
7482 diff > min_offset_diff)
7483 min_offset_diff = diff;
7484 }
7485
7486 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7487 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7488 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7489 mdname(mddev));
7490 return -EINVAL;
7491 }
7492
7493 if (mddev->reshape_position != MaxSector) {
7494 /* Check that we can continue the reshape.
7495 * Difficulties arise if the stripe we would write to
7496 * next is at or after the stripe we would read from next.
7497 * For a reshape that changes the number of devices, this
7498 * is only possible for a very short time, and mdadm makes
7499 * sure that time appears to have past before assembling
7500 * the array. So we fail if that time hasn't passed.
7501 * For a reshape that keeps the number of devices the same
7502 * mdadm must be monitoring the reshape can keeping the
7503 * critical areas read-only and backed up. It will start
7504 * the array in read-only mode, so we check for that.
7505 */
7506 sector_t here_new, here_old;
7507 int old_disks;
7508 int max_degraded = (mddev->level == 6 ? 2 : 1);
7509 int chunk_sectors;
7510 int new_data_disks;
7511
7512 if (journal_dev) {
7513 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7514 mdname(mddev));
7515 return -EINVAL;
7516 }
7517
7518 if (mddev->new_level != mddev->level) {
7519 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7520 mdname(mddev));
7521 return -EINVAL;
7522 }
7523 old_disks = mddev->raid_disks - mddev->delta_disks;
7524 /* reshape_position must be on a new-stripe boundary, and one
7525 * further up in new geometry must map after here in old
7526 * geometry.
7527 * If the chunk sizes are different, then as we perform reshape
7528 * in units of the largest of the two, reshape_position needs
7529 * be a multiple of the largest chunk size times new data disks.
7530 */
7531 here_new = mddev->reshape_position;
7532 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7533 new_data_disks = mddev->raid_disks - max_degraded;
7534 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7535 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7536 mdname(mddev));
7537 return -EINVAL;
7538 }
7539 reshape_offset = here_new * chunk_sectors;
7540 /* here_new is the stripe we will write to */
7541 here_old = mddev->reshape_position;
7542 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7543 /* here_old is the first stripe that we might need to read
7544 * from */
7545 if (mddev->delta_disks == 0) {
7546 /* We cannot be sure it is safe to start an in-place
7547 * reshape. It is only safe if user-space is monitoring
7548 * and taking constant backups.
7549 * mdadm always starts a situation like this in
7550 * readonly mode so it can take control before
7551 * allowing any writes. So just check for that.
7552 */
7553 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7554 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7555 /* not really in-place - so OK */;
7556 else if (mddev->ro == 0) {
7557 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7558 mdname(mddev));
7559 return -EINVAL;
7560 }
7561 } else if (mddev->reshape_backwards
7562 ? (here_new * chunk_sectors + min_offset_diff <=
7563 here_old * chunk_sectors)
7564 : (here_new * chunk_sectors >=
7565 here_old * chunk_sectors + (-min_offset_diff))) {
7566 /* Reading from the same stripe as writing to - bad */
7567 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7568 mdname(mddev));
7569 return -EINVAL;
7570 }
7571 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7572 /* OK, we should be able to continue; */
7573 } else {
7574 BUG_ON(mddev->level != mddev->new_level);
7575 BUG_ON(mddev->layout != mddev->new_layout);
7576 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7577 BUG_ON(mddev->delta_disks != 0);
7578 }
7579
7580 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7581 test_bit(MD_HAS_PPL, &mddev->flags)) {
7582 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7583 mdname(mddev));
7584 clear_bit(MD_HAS_PPL, &mddev->flags);
7585 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7586 }
7587
7588 if (mddev->private == NULL)
7589 conf = setup_conf(mddev);
7590 else
7591 conf = mddev->private;
7592
7593 if (IS_ERR(conf))
7594 return PTR_ERR(conf);
7595
7596 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7597 if (!journal_dev) {
7598 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7599 mdname(mddev));
7600 mddev->ro = 1;
7601 set_disk_ro(mddev->gendisk, 1);
7602 } else if (mddev->recovery_cp == MaxSector)
7603 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7604 }
7605
7606 conf->min_offset_diff = min_offset_diff;
7607 mddev->thread = conf->thread;
7608 conf->thread = NULL;
7609 mddev->private = conf;
7610
7611 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7612 i++) {
7613 rdev = conf->disks[i].rdev;
7614 if (!rdev && conf->disks[i].replacement) {
7615 /* The replacement is all we have yet */
7616 rdev = conf->disks[i].replacement;
7617 conf->disks[i].replacement = NULL;
7618 clear_bit(Replacement, &rdev->flags);
7619 conf->disks[i].rdev = rdev;
7620 }
7621 if (!rdev)
7622 continue;
7623 if (conf->disks[i].replacement &&
7624 conf->reshape_progress != MaxSector) {
7625 /* replacements and reshape simply do not mix. */
7626 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7627 goto abort;
7628 }
7629 if (test_bit(In_sync, &rdev->flags)) {
7630 working_disks++;
7631 continue;
7632 }
7633 /* This disc is not fully in-sync. However if it
7634 * just stored parity (beyond the recovery_offset),
7635 * when we don't need to be concerned about the
7636 * array being dirty.
7637 * When reshape goes 'backwards', we never have
7638 * partially completed devices, so we only need
7639 * to worry about reshape going forwards.
7640 */
7641 /* Hack because v0.91 doesn't store recovery_offset properly. */
7642 if (mddev->major_version == 0 &&
7643 mddev->minor_version > 90)
7644 rdev->recovery_offset = reshape_offset;
7645
7646 if (rdev->recovery_offset < reshape_offset) {
7647 /* We need to check old and new layout */
7648 if (!only_parity(rdev->raid_disk,
7649 conf->algorithm,
7650 conf->raid_disks,
7651 conf->max_degraded))
7652 continue;
7653 }
7654 if (!only_parity(rdev->raid_disk,
7655 conf->prev_algo,
7656 conf->previous_raid_disks,
7657 conf->max_degraded))
7658 continue;
7659 dirty_parity_disks++;
7660 }
7661
7662 /*
7663 * 0 for a fully functional array, 1 or 2 for a degraded array.
7664 */
7665 mddev->degraded = raid5_calc_degraded(conf);
7666
7667 if (has_failed(conf)) {
7668 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7669 mdname(mddev), mddev->degraded, conf->raid_disks);
7670 goto abort;
7671 }
7672
7673 /* device size must be a multiple of chunk size */
7674 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7675 mddev->resync_max_sectors = mddev->dev_sectors;
7676
7677 if (mddev->degraded > dirty_parity_disks &&
7678 mddev->recovery_cp != MaxSector) {
7679 if (test_bit(MD_HAS_PPL, &mddev->flags))
7680 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7681 mdname(mddev));
7682 else if (mddev->ok_start_degraded)
7683 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7684 mdname(mddev));
7685 else {
7686 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7687 mdname(mddev));
7688 goto abort;
7689 }
7690 }
7691
7692 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7693 mdname(mddev), conf->level,
7694 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7695 mddev->new_layout);
7696
7697 print_raid5_conf(conf);
7698
7699 if (conf->reshape_progress != MaxSector) {
7700 conf->reshape_safe = conf->reshape_progress;
7701 atomic_set(&conf->reshape_stripes, 0);
7702 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7703 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7704 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7705 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7706 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7707 "reshape");
7708 if (!mddev->sync_thread)
7709 goto abort;
7710 }
7711
7712 /* Ok, everything is just fine now */
7713 if (mddev->to_remove == &raid5_attrs_group)
7714 mddev->to_remove = NULL;
7715 else if (mddev->kobj.sd &&
7716 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7717 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7718 mdname(mddev));
7719 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7720
7721 if (mddev->queue) {
7722 int chunk_size;
7723 /* read-ahead size must cover two whole stripes, which
7724 * is 2 * (datadisks) * chunksize where 'n' is the
7725 * number of raid devices
7726 */
7727 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7728 int stripe = data_disks *
7729 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7730
7731 chunk_size = mddev->chunk_sectors << 9;
7732 blk_queue_io_min(mddev->queue, chunk_size);
7733 raid5_set_io_opt(conf);
7734 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7735 /*
7736 * We can only discard a whole stripe. It doesn't make sense to
7737 * discard data disk but write parity disk
7738 */
7739 stripe = stripe * PAGE_SIZE;
7740 /* Round up to power of 2, as discard handling
7741 * currently assumes that */
7742 while ((stripe-1) & stripe)
7743 stripe = (stripe | (stripe-1)) + 1;
7744 mddev->queue->limits.discard_alignment = stripe;
7745 mddev->queue->limits.discard_granularity = stripe;
7746
7747 blk_queue_max_write_same_sectors(mddev->queue, 0);
7748 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7749
7750 rdev_for_each(rdev, mddev) {
7751 disk_stack_limits(mddev->gendisk, rdev->bdev,
7752 rdev->data_offset << 9);
7753 disk_stack_limits(mddev->gendisk, rdev->bdev,
7754 rdev->new_data_offset << 9);
7755 }
7756
7757 /*
7758 * zeroing is required, otherwise data
7759 * could be lost. Consider a scenario: discard a stripe
7760 * (the stripe could be inconsistent if
7761 * discard_zeroes_data is 0); write one disk of the
7762 * stripe (the stripe could be inconsistent again
7763 * depending on which disks are used to calculate
7764 * parity); the disk is broken; The stripe data of this
7765 * disk is lost.
7766 *
7767 * We only allow DISCARD if the sysadmin has confirmed that
7768 * only safe devices are in use by setting a module parameter.
7769 * A better idea might be to turn DISCARD into WRITE_ZEROES
7770 * requests, as that is required to be safe.
7771 */
7772 if (devices_handle_discard_safely &&
7773 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7774 mddev->queue->limits.discard_granularity >= stripe)
7775 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7776 mddev->queue);
7777 else
7778 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7779 mddev->queue);
7780
7781 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7782 }
7783
7784 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7785 goto abort;
7786
7787 return 0;
7788 abort:
7789 md_unregister_thread(&mddev->thread);
7790 print_raid5_conf(conf);
7791 free_conf(conf);
7792 mddev->private = NULL;
7793 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7794 return -EIO;
7795 }
7796
raid5_free(struct mddev * mddev,void * priv)7797 static void raid5_free(struct mddev *mddev, void *priv)
7798 {
7799 struct r5conf *conf = priv;
7800
7801 free_conf(conf);
7802 mddev->to_remove = &raid5_attrs_group;
7803 }
7804
raid5_status(struct seq_file * seq,struct mddev * mddev)7805 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7806 {
7807 struct r5conf *conf = mddev->private;
7808 int i;
7809
7810 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7811 conf->chunk_sectors / 2, mddev->layout);
7812 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7813 rcu_read_lock();
7814 for (i = 0; i < conf->raid_disks; i++) {
7815 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7816 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7817 }
7818 rcu_read_unlock();
7819 seq_printf (seq, "]");
7820 }
7821
print_raid5_conf(struct r5conf * conf)7822 static void print_raid5_conf (struct r5conf *conf)
7823 {
7824 int i;
7825 struct disk_info *tmp;
7826
7827 pr_debug("RAID conf printout:\n");
7828 if (!conf) {
7829 pr_debug("(conf==NULL)\n");
7830 return;
7831 }
7832 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7833 conf->raid_disks,
7834 conf->raid_disks - conf->mddev->degraded);
7835
7836 for (i = 0; i < conf->raid_disks; i++) {
7837 char b[BDEVNAME_SIZE];
7838 tmp = conf->disks + i;
7839 if (tmp->rdev)
7840 pr_debug(" disk %d, o:%d, dev:%s\n",
7841 i, !test_bit(Faulty, &tmp->rdev->flags),
7842 bdevname(tmp->rdev->bdev, b));
7843 }
7844 }
7845
raid5_spare_active(struct mddev * mddev)7846 static int raid5_spare_active(struct mddev *mddev)
7847 {
7848 int i;
7849 struct r5conf *conf = mddev->private;
7850 struct disk_info *tmp;
7851 int count = 0;
7852 unsigned long flags;
7853
7854 for (i = 0; i < conf->raid_disks; i++) {
7855 tmp = conf->disks + i;
7856 if (tmp->replacement
7857 && tmp->replacement->recovery_offset == MaxSector
7858 && !test_bit(Faulty, &tmp->replacement->flags)
7859 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7860 /* Replacement has just become active. */
7861 if (!tmp->rdev
7862 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7863 count++;
7864 if (tmp->rdev) {
7865 /* Replaced device not technically faulty,
7866 * but we need to be sure it gets removed
7867 * and never re-added.
7868 */
7869 set_bit(Faulty, &tmp->rdev->flags);
7870 sysfs_notify_dirent_safe(
7871 tmp->rdev->sysfs_state);
7872 }
7873 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7874 } else if (tmp->rdev
7875 && tmp->rdev->recovery_offset == MaxSector
7876 && !test_bit(Faulty, &tmp->rdev->flags)
7877 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7878 count++;
7879 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7880 }
7881 }
7882 spin_lock_irqsave(&conf->device_lock, flags);
7883 mddev->degraded = raid5_calc_degraded(conf);
7884 spin_unlock_irqrestore(&conf->device_lock, flags);
7885 print_raid5_conf(conf);
7886 return count;
7887 }
7888
raid5_remove_disk(struct mddev * mddev,struct md_rdev * rdev)7889 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7890 {
7891 struct r5conf *conf = mddev->private;
7892 int err = 0;
7893 int number = rdev->raid_disk;
7894 struct md_rdev **rdevp;
7895 struct disk_info *p = conf->disks + number;
7896
7897 print_raid5_conf(conf);
7898 if (test_bit(Journal, &rdev->flags) && conf->log) {
7899 /*
7900 * we can't wait pending write here, as this is called in
7901 * raid5d, wait will deadlock.
7902 * neilb: there is no locking about new writes here,
7903 * so this cannot be safe.
7904 */
7905 if (atomic_read(&conf->active_stripes) ||
7906 atomic_read(&conf->r5c_cached_full_stripes) ||
7907 atomic_read(&conf->r5c_cached_partial_stripes)) {
7908 return -EBUSY;
7909 }
7910 log_exit(conf);
7911 return 0;
7912 }
7913 if (rdev == p->rdev)
7914 rdevp = &p->rdev;
7915 else if (rdev == p->replacement)
7916 rdevp = &p->replacement;
7917 else
7918 return 0;
7919
7920 if (number >= conf->raid_disks &&
7921 conf->reshape_progress == MaxSector)
7922 clear_bit(In_sync, &rdev->flags);
7923
7924 if (test_bit(In_sync, &rdev->flags) ||
7925 atomic_read(&rdev->nr_pending)) {
7926 err = -EBUSY;
7927 goto abort;
7928 }
7929 /* Only remove non-faulty devices if recovery
7930 * isn't possible.
7931 */
7932 if (!test_bit(Faulty, &rdev->flags) &&
7933 mddev->recovery_disabled != conf->recovery_disabled &&
7934 !has_failed(conf) &&
7935 (!p->replacement || p->replacement == rdev) &&
7936 number < conf->raid_disks) {
7937 err = -EBUSY;
7938 goto abort;
7939 }
7940 *rdevp = NULL;
7941 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7942 synchronize_rcu();
7943 if (atomic_read(&rdev->nr_pending)) {
7944 /* lost the race, try later */
7945 err = -EBUSY;
7946 *rdevp = rdev;
7947 }
7948 }
7949 if (!err) {
7950 err = log_modify(conf, rdev, false);
7951 if (err)
7952 goto abort;
7953 }
7954 if (p->replacement) {
7955 /* We must have just cleared 'rdev' */
7956 p->rdev = p->replacement;
7957 clear_bit(Replacement, &p->replacement->flags);
7958 smp_mb(); /* Make sure other CPUs may see both as identical
7959 * but will never see neither - if they are careful
7960 */
7961 p->replacement = NULL;
7962
7963 if (!err)
7964 err = log_modify(conf, p->rdev, true);
7965 }
7966
7967 clear_bit(WantReplacement, &rdev->flags);
7968 abort:
7969
7970 print_raid5_conf(conf);
7971 return err;
7972 }
7973
raid5_add_disk(struct mddev * mddev,struct md_rdev * rdev)7974 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7975 {
7976 struct r5conf *conf = mddev->private;
7977 int ret, err = -EEXIST;
7978 int disk;
7979 struct disk_info *p;
7980 int first = 0;
7981 int last = conf->raid_disks - 1;
7982
7983 if (test_bit(Journal, &rdev->flags)) {
7984 if (conf->log)
7985 return -EBUSY;
7986
7987 rdev->raid_disk = 0;
7988 /*
7989 * The array is in readonly mode if journal is missing, so no
7990 * write requests running. We should be safe
7991 */
7992 ret = log_init(conf, rdev, false);
7993 if (ret)
7994 return ret;
7995
7996 ret = r5l_start(conf->log);
7997 if (ret)
7998 return ret;
7999
8000 return 0;
8001 }
8002 if (mddev->recovery_disabled == conf->recovery_disabled)
8003 return -EBUSY;
8004
8005 if (rdev->saved_raid_disk < 0 && has_failed(conf))
8006 /* no point adding a device */
8007 return -EINVAL;
8008
8009 if (rdev->raid_disk >= 0)
8010 first = last = rdev->raid_disk;
8011
8012 /*
8013 * find the disk ... but prefer rdev->saved_raid_disk
8014 * if possible.
8015 */
8016 if (rdev->saved_raid_disk >= 0 &&
8017 rdev->saved_raid_disk >= first &&
8018 rdev->saved_raid_disk <= last &&
8019 conf->disks[rdev->saved_raid_disk].rdev == NULL)
8020 first = rdev->saved_raid_disk;
8021
8022 for (disk = first; disk <= last; disk++) {
8023 p = conf->disks + disk;
8024 if (p->rdev == NULL) {
8025 clear_bit(In_sync, &rdev->flags);
8026 rdev->raid_disk = disk;
8027 if (rdev->saved_raid_disk != disk)
8028 conf->fullsync = 1;
8029 rcu_assign_pointer(p->rdev, rdev);
8030
8031 err = log_modify(conf, rdev, true);
8032
8033 goto out;
8034 }
8035 }
8036 for (disk = first; disk <= last; disk++) {
8037 p = conf->disks + disk;
8038 if (test_bit(WantReplacement, &p->rdev->flags) &&
8039 p->replacement == NULL) {
8040 clear_bit(In_sync, &rdev->flags);
8041 set_bit(Replacement, &rdev->flags);
8042 rdev->raid_disk = disk;
8043 err = 0;
8044 conf->fullsync = 1;
8045 rcu_assign_pointer(p->replacement, rdev);
8046 break;
8047 }
8048 }
8049 out:
8050 print_raid5_conf(conf);
8051 return err;
8052 }
8053
raid5_resize(struct mddev * mddev,sector_t sectors)8054 static int raid5_resize(struct mddev *mddev, sector_t sectors)
8055 {
8056 /* no resync is happening, and there is enough space
8057 * on all devices, so we can resize.
8058 * We need to make sure resync covers any new space.
8059 * If the array is shrinking we should possibly wait until
8060 * any io in the removed space completes, but it hardly seems
8061 * worth it.
8062 */
8063 sector_t newsize;
8064 struct r5conf *conf = mddev->private;
8065
8066 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8067 return -EINVAL;
8068 sectors &= ~((sector_t)conf->chunk_sectors - 1);
8069 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8070 if (mddev->external_size &&
8071 mddev->array_sectors > newsize)
8072 return -EINVAL;
8073 if (mddev->bitmap) {
8074 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
8075 if (ret)
8076 return ret;
8077 }
8078 md_set_array_sectors(mddev, newsize);
8079 if (sectors > mddev->dev_sectors &&
8080 mddev->recovery_cp > mddev->dev_sectors) {
8081 mddev->recovery_cp = mddev->dev_sectors;
8082 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8083 }
8084 mddev->dev_sectors = sectors;
8085 mddev->resync_max_sectors = sectors;
8086 return 0;
8087 }
8088
check_stripe_cache(struct mddev * mddev)8089 static int check_stripe_cache(struct mddev *mddev)
8090 {
8091 /* Can only proceed if there are plenty of stripe_heads.
8092 * We need a minimum of one full stripe,, and for sensible progress
8093 * it is best to have about 4 times that.
8094 * If we require 4 times, then the default 256 4K stripe_heads will
8095 * allow for chunk sizes up to 256K, which is probably OK.
8096 * If the chunk size is greater, user-space should request more
8097 * stripe_heads first.
8098 */
8099 struct r5conf *conf = mddev->private;
8100 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8101 > conf->min_nr_stripes ||
8102 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8103 > conf->min_nr_stripes) {
8104 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
8105 mdname(mddev),
8106 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8107 / RAID5_STRIPE_SIZE(conf))*4);
8108 return 0;
8109 }
8110 return 1;
8111 }
8112
check_reshape(struct mddev * mddev)8113 static int check_reshape(struct mddev *mddev)
8114 {
8115 struct r5conf *conf = mddev->private;
8116
8117 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8118 return -EINVAL;
8119 if (mddev->delta_disks == 0 &&
8120 mddev->new_layout == mddev->layout &&
8121 mddev->new_chunk_sectors == mddev->chunk_sectors)
8122 return 0; /* nothing to do */
8123 if (has_failed(conf))
8124 return -EINVAL;
8125 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8126 /* We might be able to shrink, but the devices must
8127 * be made bigger first.
8128 * For raid6, 4 is the minimum size.
8129 * Otherwise 2 is the minimum
8130 */
8131 int min = 2;
8132 if (mddev->level == 6)
8133 min = 4;
8134 if (mddev->raid_disks + mddev->delta_disks < min)
8135 return -EINVAL;
8136 }
8137
8138 if (!check_stripe_cache(mddev))
8139 return -ENOSPC;
8140
8141 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8142 mddev->delta_disks > 0)
8143 if (resize_chunks(conf,
8144 conf->previous_raid_disks
8145 + max(0, mddev->delta_disks),
8146 max(mddev->new_chunk_sectors,
8147 mddev->chunk_sectors)
8148 ) < 0)
8149 return -ENOMEM;
8150
8151 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8152 return 0; /* never bother to shrink */
8153 return resize_stripes(conf, (conf->previous_raid_disks
8154 + mddev->delta_disks));
8155 }
8156
raid5_start_reshape(struct mddev * mddev)8157 static int raid5_start_reshape(struct mddev *mddev)
8158 {
8159 struct r5conf *conf = mddev->private;
8160 struct md_rdev *rdev;
8161 int spares = 0;
8162 unsigned long flags;
8163
8164 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8165 return -EBUSY;
8166
8167 if (!check_stripe_cache(mddev))
8168 return -ENOSPC;
8169
8170 if (has_failed(conf))
8171 return -EINVAL;
8172
8173 rdev_for_each(rdev, mddev) {
8174 if (!test_bit(In_sync, &rdev->flags)
8175 && !test_bit(Faulty, &rdev->flags))
8176 spares++;
8177 }
8178
8179 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8180 /* Not enough devices even to make a degraded array
8181 * of that size
8182 */
8183 return -EINVAL;
8184
8185 /* Refuse to reduce size of the array. Any reductions in
8186 * array size must be through explicit setting of array_size
8187 * attribute.
8188 */
8189 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8190 < mddev->array_sectors) {
8191 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8192 mdname(mddev));
8193 return -EINVAL;
8194 }
8195
8196 atomic_set(&conf->reshape_stripes, 0);
8197 spin_lock_irq(&conf->device_lock);
8198 write_seqcount_begin(&conf->gen_lock);
8199 conf->previous_raid_disks = conf->raid_disks;
8200 conf->raid_disks += mddev->delta_disks;
8201 conf->prev_chunk_sectors = conf->chunk_sectors;
8202 conf->chunk_sectors = mddev->new_chunk_sectors;
8203 conf->prev_algo = conf->algorithm;
8204 conf->algorithm = mddev->new_layout;
8205 conf->generation++;
8206 /* Code that selects data_offset needs to see the generation update
8207 * if reshape_progress has been set - so a memory barrier needed.
8208 */
8209 smp_mb();
8210 if (mddev->reshape_backwards)
8211 conf->reshape_progress = raid5_size(mddev, 0, 0);
8212 else
8213 conf->reshape_progress = 0;
8214 conf->reshape_safe = conf->reshape_progress;
8215 write_seqcount_end(&conf->gen_lock);
8216 spin_unlock_irq(&conf->device_lock);
8217
8218 /* Now make sure any requests that proceeded on the assumption
8219 * the reshape wasn't running - like Discard or Read - have
8220 * completed.
8221 */
8222 mddev_suspend(mddev);
8223 mddev_resume(mddev);
8224
8225 /* Add some new drives, as many as will fit.
8226 * We know there are enough to make the newly sized array work.
8227 * Don't add devices if we are reducing the number of
8228 * devices in the array. This is because it is not possible
8229 * to correctly record the "partially reconstructed" state of
8230 * such devices during the reshape and confusion could result.
8231 */
8232 if (mddev->delta_disks >= 0) {
8233 rdev_for_each(rdev, mddev)
8234 if (rdev->raid_disk < 0 &&
8235 !test_bit(Faulty, &rdev->flags)) {
8236 if (raid5_add_disk(mddev, rdev) == 0) {
8237 if (rdev->raid_disk
8238 >= conf->previous_raid_disks)
8239 set_bit(In_sync, &rdev->flags);
8240 else
8241 rdev->recovery_offset = 0;
8242
8243 /* Failure here is OK */
8244 sysfs_link_rdev(mddev, rdev);
8245 }
8246 } else if (rdev->raid_disk >= conf->previous_raid_disks
8247 && !test_bit(Faulty, &rdev->flags)) {
8248 /* This is a spare that was manually added */
8249 set_bit(In_sync, &rdev->flags);
8250 }
8251
8252 /* When a reshape changes the number of devices,
8253 * ->degraded is measured against the larger of the
8254 * pre and post number of devices.
8255 */
8256 spin_lock_irqsave(&conf->device_lock, flags);
8257 mddev->degraded = raid5_calc_degraded(conf);
8258 spin_unlock_irqrestore(&conf->device_lock, flags);
8259 }
8260 mddev->raid_disks = conf->raid_disks;
8261 mddev->reshape_position = conf->reshape_progress;
8262 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8263
8264 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8265 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8266 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8267 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8268 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8269 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
8270 "reshape");
8271 if (!mddev->sync_thread) {
8272 mddev->recovery = 0;
8273 spin_lock_irq(&conf->device_lock);
8274 write_seqcount_begin(&conf->gen_lock);
8275 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
8276 mddev->new_chunk_sectors =
8277 conf->chunk_sectors = conf->prev_chunk_sectors;
8278 mddev->new_layout = conf->algorithm = conf->prev_algo;
8279 rdev_for_each(rdev, mddev)
8280 rdev->new_data_offset = rdev->data_offset;
8281 smp_wmb();
8282 conf->generation --;
8283 conf->reshape_progress = MaxSector;
8284 mddev->reshape_position = MaxSector;
8285 write_seqcount_end(&conf->gen_lock);
8286 spin_unlock_irq(&conf->device_lock);
8287 return -EAGAIN;
8288 }
8289 conf->reshape_checkpoint = jiffies;
8290 md_wakeup_thread(mddev->sync_thread);
8291 md_new_event(mddev);
8292 return 0;
8293 }
8294
8295 /* This is called from the reshape thread and should make any
8296 * changes needed in 'conf'
8297 */
end_reshape(struct r5conf * conf)8298 static void end_reshape(struct r5conf *conf)
8299 {
8300
8301 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8302 struct md_rdev *rdev;
8303
8304 spin_lock_irq(&conf->device_lock);
8305 conf->previous_raid_disks = conf->raid_disks;
8306 md_finish_reshape(conf->mddev);
8307 smp_wmb();
8308 conf->reshape_progress = MaxSector;
8309 conf->mddev->reshape_position = MaxSector;
8310 rdev_for_each(rdev, conf->mddev)
8311 if (rdev->raid_disk >= 0 &&
8312 !test_bit(Journal, &rdev->flags) &&
8313 !test_bit(In_sync, &rdev->flags))
8314 rdev->recovery_offset = MaxSector;
8315 spin_unlock_irq(&conf->device_lock);
8316 wake_up(&conf->wait_for_overlap);
8317
8318 if (conf->mddev->queue)
8319 raid5_set_io_opt(conf);
8320 }
8321 }
8322
8323 /* This is called from the raid5d thread with mddev_lock held.
8324 * It makes config changes to the device.
8325 */
raid5_finish_reshape(struct mddev * mddev)8326 static void raid5_finish_reshape(struct mddev *mddev)
8327 {
8328 struct r5conf *conf = mddev->private;
8329
8330 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8331
8332 if (mddev->delta_disks <= 0) {
8333 int d;
8334 spin_lock_irq(&conf->device_lock);
8335 mddev->degraded = raid5_calc_degraded(conf);
8336 spin_unlock_irq(&conf->device_lock);
8337 for (d = conf->raid_disks ;
8338 d < conf->raid_disks - mddev->delta_disks;
8339 d++) {
8340 struct md_rdev *rdev = conf->disks[d].rdev;
8341 if (rdev)
8342 clear_bit(In_sync, &rdev->flags);
8343 rdev = conf->disks[d].replacement;
8344 if (rdev)
8345 clear_bit(In_sync, &rdev->flags);
8346 }
8347 }
8348 mddev->layout = conf->algorithm;
8349 mddev->chunk_sectors = conf->chunk_sectors;
8350 mddev->reshape_position = MaxSector;
8351 mddev->delta_disks = 0;
8352 mddev->reshape_backwards = 0;
8353 }
8354 }
8355
raid5_quiesce(struct mddev * mddev,int quiesce)8356 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8357 {
8358 struct r5conf *conf = mddev->private;
8359
8360 if (quiesce) {
8361 /* stop all writes */
8362 lock_all_device_hash_locks_irq(conf);
8363 /* '2' tells resync/reshape to pause so that all
8364 * active stripes can drain
8365 */
8366 r5c_flush_cache(conf, INT_MAX);
8367 conf->quiesce = 2;
8368 wait_event_cmd(conf->wait_for_quiescent,
8369 atomic_read(&conf->active_stripes) == 0 &&
8370 atomic_read(&conf->active_aligned_reads) == 0,
8371 unlock_all_device_hash_locks_irq(conf),
8372 lock_all_device_hash_locks_irq(conf));
8373 conf->quiesce = 1;
8374 unlock_all_device_hash_locks_irq(conf);
8375 /* allow reshape to continue */
8376 wake_up(&conf->wait_for_overlap);
8377 } else {
8378 /* re-enable writes */
8379 lock_all_device_hash_locks_irq(conf);
8380 conf->quiesce = 0;
8381 wake_up(&conf->wait_for_quiescent);
8382 wake_up(&conf->wait_for_overlap);
8383 unlock_all_device_hash_locks_irq(conf);
8384 }
8385 log_quiesce(conf, quiesce);
8386 }
8387
raid45_takeover_raid0(struct mddev * mddev,int level)8388 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8389 {
8390 struct r0conf *raid0_conf = mddev->private;
8391 sector_t sectors;
8392
8393 /* for raid0 takeover only one zone is supported */
8394 if (raid0_conf->nr_strip_zones > 1) {
8395 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8396 mdname(mddev));
8397 return ERR_PTR(-EINVAL);
8398 }
8399
8400 sectors = raid0_conf->strip_zone[0].zone_end;
8401 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8402 mddev->dev_sectors = sectors;
8403 mddev->new_level = level;
8404 mddev->new_layout = ALGORITHM_PARITY_N;
8405 mddev->new_chunk_sectors = mddev->chunk_sectors;
8406 mddev->raid_disks += 1;
8407 mddev->delta_disks = 1;
8408 /* make sure it will be not marked as dirty */
8409 mddev->recovery_cp = MaxSector;
8410
8411 return setup_conf(mddev);
8412 }
8413
raid5_takeover_raid1(struct mddev * mddev)8414 static void *raid5_takeover_raid1(struct mddev *mddev)
8415 {
8416 int chunksect;
8417 void *ret;
8418
8419 if (mddev->raid_disks != 2 ||
8420 mddev->degraded > 1)
8421 return ERR_PTR(-EINVAL);
8422
8423 /* Should check if there are write-behind devices? */
8424
8425 chunksect = 64*2; /* 64K by default */
8426
8427 /* The array must be an exact multiple of chunksize */
8428 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8429 chunksect >>= 1;
8430
8431 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8432 /* array size does not allow a suitable chunk size */
8433 return ERR_PTR(-EINVAL);
8434
8435 mddev->new_level = 5;
8436 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8437 mddev->new_chunk_sectors = chunksect;
8438
8439 ret = setup_conf(mddev);
8440 if (!IS_ERR(ret))
8441 mddev_clear_unsupported_flags(mddev,
8442 UNSUPPORTED_MDDEV_FLAGS);
8443 return ret;
8444 }
8445
raid5_takeover_raid6(struct mddev * mddev)8446 static void *raid5_takeover_raid6(struct mddev *mddev)
8447 {
8448 int new_layout;
8449
8450 switch (mddev->layout) {
8451 case ALGORITHM_LEFT_ASYMMETRIC_6:
8452 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8453 break;
8454 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8455 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8456 break;
8457 case ALGORITHM_LEFT_SYMMETRIC_6:
8458 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8459 break;
8460 case ALGORITHM_RIGHT_SYMMETRIC_6:
8461 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8462 break;
8463 case ALGORITHM_PARITY_0_6:
8464 new_layout = ALGORITHM_PARITY_0;
8465 break;
8466 case ALGORITHM_PARITY_N:
8467 new_layout = ALGORITHM_PARITY_N;
8468 break;
8469 default:
8470 return ERR_PTR(-EINVAL);
8471 }
8472 mddev->new_level = 5;
8473 mddev->new_layout = new_layout;
8474 mddev->delta_disks = -1;
8475 mddev->raid_disks -= 1;
8476 return setup_conf(mddev);
8477 }
8478
raid5_check_reshape(struct mddev * mddev)8479 static int raid5_check_reshape(struct mddev *mddev)
8480 {
8481 /* For a 2-drive array, the layout and chunk size can be changed
8482 * immediately as not restriping is needed.
8483 * For larger arrays we record the new value - after validation
8484 * to be used by a reshape pass.
8485 */
8486 struct r5conf *conf = mddev->private;
8487 int new_chunk = mddev->new_chunk_sectors;
8488
8489 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8490 return -EINVAL;
8491 if (new_chunk > 0) {
8492 if (!is_power_of_2(new_chunk))
8493 return -EINVAL;
8494 if (new_chunk < (PAGE_SIZE>>9))
8495 return -EINVAL;
8496 if (mddev->array_sectors & (new_chunk-1))
8497 /* not factor of array size */
8498 return -EINVAL;
8499 }
8500
8501 /* They look valid */
8502
8503 if (mddev->raid_disks == 2) {
8504 /* can make the change immediately */
8505 if (mddev->new_layout >= 0) {
8506 conf->algorithm = mddev->new_layout;
8507 mddev->layout = mddev->new_layout;
8508 }
8509 if (new_chunk > 0) {
8510 conf->chunk_sectors = new_chunk ;
8511 mddev->chunk_sectors = new_chunk;
8512 }
8513 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8514 md_wakeup_thread(mddev->thread);
8515 }
8516 return check_reshape(mddev);
8517 }
8518
raid6_check_reshape(struct mddev * mddev)8519 static int raid6_check_reshape(struct mddev *mddev)
8520 {
8521 int new_chunk = mddev->new_chunk_sectors;
8522
8523 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8524 return -EINVAL;
8525 if (new_chunk > 0) {
8526 if (!is_power_of_2(new_chunk))
8527 return -EINVAL;
8528 if (new_chunk < (PAGE_SIZE >> 9))
8529 return -EINVAL;
8530 if (mddev->array_sectors & (new_chunk-1))
8531 /* not factor of array size */
8532 return -EINVAL;
8533 }
8534
8535 /* They look valid */
8536 return check_reshape(mddev);
8537 }
8538
raid5_takeover(struct mddev * mddev)8539 static void *raid5_takeover(struct mddev *mddev)
8540 {
8541 /* raid5 can take over:
8542 * raid0 - if there is only one strip zone - make it a raid4 layout
8543 * raid1 - if there are two drives. We need to know the chunk size
8544 * raid4 - trivial - just use a raid4 layout.
8545 * raid6 - Providing it is a *_6 layout
8546 */
8547 if (mddev->level == 0)
8548 return raid45_takeover_raid0(mddev, 5);
8549 if (mddev->level == 1)
8550 return raid5_takeover_raid1(mddev);
8551 if (mddev->level == 4) {
8552 mddev->new_layout = ALGORITHM_PARITY_N;
8553 mddev->new_level = 5;
8554 return setup_conf(mddev);
8555 }
8556 if (mddev->level == 6)
8557 return raid5_takeover_raid6(mddev);
8558
8559 return ERR_PTR(-EINVAL);
8560 }
8561
raid4_takeover(struct mddev * mddev)8562 static void *raid4_takeover(struct mddev *mddev)
8563 {
8564 /* raid4 can take over:
8565 * raid0 - if there is only one strip zone
8566 * raid5 - if layout is right
8567 */
8568 if (mddev->level == 0)
8569 return raid45_takeover_raid0(mddev, 4);
8570 if (mddev->level == 5 &&
8571 mddev->layout == ALGORITHM_PARITY_N) {
8572 mddev->new_layout = 0;
8573 mddev->new_level = 4;
8574 return setup_conf(mddev);
8575 }
8576 return ERR_PTR(-EINVAL);
8577 }
8578
8579 static struct md_personality raid5_personality;
8580
raid6_takeover(struct mddev * mddev)8581 static void *raid6_takeover(struct mddev *mddev)
8582 {
8583 /* Currently can only take over a raid5. We map the
8584 * personality to an equivalent raid6 personality
8585 * with the Q block at the end.
8586 */
8587 int new_layout;
8588
8589 if (mddev->pers != &raid5_personality)
8590 return ERR_PTR(-EINVAL);
8591 if (mddev->degraded > 1)
8592 return ERR_PTR(-EINVAL);
8593 if (mddev->raid_disks > 253)
8594 return ERR_PTR(-EINVAL);
8595 if (mddev->raid_disks < 3)
8596 return ERR_PTR(-EINVAL);
8597
8598 switch (mddev->layout) {
8599 case ALGORITHM_LEFT_ASYMMETRIC:
8600 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8601 break;
8602 case ALGORITHM_RIGHT_ASYMMETRIC:
8603 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8604 break;
8605 case ALGORITHM_LEFT_SYMMETRIC:
8606 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8607 break;
8608 case ALGORITHM_RIGHT_SYMMETRIC:
8609 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8610 break;
8611 case ALGORITHM_PARITY_0:
8612 new_layout = ALGORITHM_PARITY_0_6;
8613 break;
8614 case ALGORITHM_PARITY_N:
8615 new_layout = ALGORITHM_PARITY_N;
8616 break;
8617 default:
8618 return ERR_PTR(-EINVAL);
8619 }
8620 mddev->new_level = 6;
8621 mddev->new_layout = new_layout;
8622 mddev->delta_disks = 1;
8623 mddev->raid_disks += 1;
8624 return setup_conf(mddev);
8625 }
8626
raid5_change_consistency_policy(struct mddev * mddev,const char * buf)8627 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8628 {
8629 struct r5conf *conf;
8630 int err;
8631
8632 err = mddev_lock(mddev);
8633 if (err)
8634 return err;
8635 conf = mddev->private;
8636 if (!conf) {
8637 mddev_unlock(mddev);
8638 return -ENODEV;
8639 }
8640
8641 if (strncmp(buf, "ppl", 3) == 0) {
8642 /* ppl only works with RAID 5 */
8643 if (!raid5_has_ppl(conf) && conf->level == 5) {
8644 err = log_init(conf, NULL, true);
8645 if (!err) {
8646 err = resize_stripes(conf, conf->pool_size);
8647 if (err)
8648 log_exit(conf);
8649 }
8650 } else
8651 err = -EINVAL;
8652 } else if (strncmp(buf, "resync", 6) == 0) {
8653 if (raid5_has_ppl(conf)) {
8654 mddev_suspend(mddev);
8655 log_exit(conf);
8656 mddev_resume(mddev);
8657 err = resize_stripes(conf, conf->pool_size);
8658 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8659 r5l_log_disk_error(conf)) {
8660 bool journal_dev_exists = false;
8661 struct md_rdev *rdev;
8662
8663 rdev_for_each(rdev, mddev)
8664 if (test_bit(Journal, &rdev->flags)) {
8665 journal_dev_exists = true;
8666 break;
8667 }
8668
8669 if (!journal_dev_exists) {
8670 mddev_suspend(mddev);
8671 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8672 mddev_resume(mddev);
8673 } else /* need remove journal device first */
8674 err = -EBUSY;
8675 } else
8676 err = -EINVAL;
8677 } else {
8678 err = -EINVAL;
8679 }
8680
8681 if (!err)
8682 md_update_sb(mddev, 1);
8683
8684 mddev_unlock(mddev);
8685
8686 return err;
8687 }
8688
raid5_start(struct mddev * mddev)8689 static int raid5_start(struct mddev *mddev)
8690 {
8691 struct r5conf *conf = mddev->private;
8692
8693 return r5l_start(conf->log);
8694 }
8695
8696 static struct md_personality raid6_personality =
8697 {
8698 .name = "raid6",
8699 .level = 6,
8700 .owner = THIS_MODULE,
8701 .make_request = raid5_make_request,
8702 .run = raid5_run,
8703 .start = raid5_start,
8704 .free = raid5_free,
8705 .status = raid5_status,
8706 .error_handler = raid5_error,
8707 .hot_add_disk = raid5_add_disk,
8708 .hot_remove_disk= raid5_remove_disk,
8709 .spare_active = raid5_spare_active,
8710 .sync_request = raid5_sync_request,
8711 .resize = raid5_resize,
8712 .size = raid5_size,
8713 .check_reshape = raid6_check_reshape,
8714 .start_reshape = raid5_start_reshape,
8715 .finish_reshape = raid5_finish_reshape,
8716 .quiesce = raid5_quiesce,
8717 .takeover = raid6_takeover,
8718 .change_consistency_policy = raid5_change_consistency_policy,
8719 };
8720 static struct md_personality raid5_personality =
8721 {
8722 .name = "raid5",
8723 .level = 5,
8724 .owner = THIS_MODULE,
8725 .make_request = raid5_make_request,
8726 .run = raid5_run,
8727 .start = raid5_start,
8728 .free = raid5_free,
8729 .status = raid5_status,
8730 .error_handler = raid5_error,
8731 .hot_add_disk = raid5_add_disk,
8732 .hot_remove_disk= raid5_remove_disk,
8733 .spare_active = raid5_spare_active,
8734 .sync_request = raid5_sync_request,
8735 .resize = raid5_resize,
8736 .size = raid5_size,
8737 .check_reshape = raid5_check_reshape,
8738 .start_reshape = raid5_start_reshape,
8739 .finish_reshape = raid5_finish_reshape,
8740 .quiesce = raid5_quiesce,
8741 .takeover = raid5_takeover,
8742 .change_consistency_policy = raid5_change_consistency_policy,
8743 };
8744
8745 static struct md_personality raid4_personality =
8746 {
8747 .name = "raid4",
8748 .level = 4,
8749 .owner = THIS_MODULE,
8750 .make_request = raid5_make_request,
8751 .run = raid5_run,
8752 .start = raid5_start,
8753 .free = raid5_free,
8754 .status = raid5_status,
8755 .error_handler = raid5_error,
8756 .hot_add_disk = raid5_add_disk,
8757 .hot_remove_disk= raid5_remove_disk,
8758 .spare_active = raid5_spare_active,
8759 .sync_request = raid5_sync_request,
8760 .resize = raid5_resize,
8761 .size = raid5_size,
8762 .check_reshape = raid5_check_reshape,
8763 .start_reshape = raid5_start_reshape,
8764 .finish_reshape = raid5_finish_reshape,
8765 .quiesce = raid5_quiesce,
8766 .takeover = raid4_takeover,
8767 .change_consistency_policy = raid5_change_consistency_policy,
8768 };
8769
raid5_init(void)8770 static int __init raid5_init(void)
8771 {
8772 int ret;
8773
8774 raid5_wq = alloc_workqueue("raid5wq",
8775 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8776 if (!raid5_wq)
8777 return -ENOMEM;
8778
8779 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8780 "md/raid5:prepare",
8781 raid456_cpu_up_prepare,
8782 raid456_cpu_dead);
8783 if (ret) {
8784 destroy_workqueue(raid5_wq);
8785 return ret;
8786 }
8787 register_md_personality(&raid6_personality);
8788 register_md_personality(&raid5_personality);
8789 register_md_personality(&raid4_personality);
8790 return 0;
8791 }
8792
raid5_exit(void)8793 static void raid5_exit(void)
8794 {
8795 unregister_md_personality(&raid6_personality);
8796 unregister_md_personality(&raid5_personality);
8797 unregister_md_personality(&raid4_personality);
8798 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8799 destroy_workqueue(raid5_wq);
8800 }
8801
8802 module_init(raid5_init);
8803 module_exit(raid5_exit);
8804 MODULE_LICENSE("GPL");
8805 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8806 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8807 MODULE_ALIAS("md-raid5");
8808 MODULE_ALIAS("md-raid4");
8809 MODULE_ALIAS("md-level-5");
8810 MODULE_ALIAS("md-level-4");
8811 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8812 MODULE_ALIAS("md-raid6");
8813 MODULE_ALIAS("md-level-6");
8814
8815 /* This used to be two separate modules, they were: */
8816 MODULE_ALIAS("raid5");
8817 MODULE_ALIAS("raid6");
8818