1 // Boost.Geometry 2 3 // Copyright (c) 2016-2017 Oracle and/or its affiliates. 4 5 // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle 6 7 // Use, modification and distribution is subject to the Boost Software License, 8 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at 9 // http://www.boost.org/LICENSE_1_0.txt) 10 11 #ifndef BOOST_GEOMETRY_FORMULAS_INVERSE_DIFFERENTIAL_QUANTITIES_HPP 12 #define BOOST_GEOMETRY_FORMULAS_INVERSE_DIFFERENTIAL_QUANTITIES_HPP 13 14 15 #include <boost/geometry/util/condition.hpp> 16 #include <boost/geometry/util/math.hpp> 17 18 19 namespace boost { namespace geometry { namespace formula 20 { 21 22 /*! 23 \brief The solution of a part of the inverse problem - differential quantities. 24 \author See 25 - Charles F.F Karney, Algorithms for geodesics, 2011 26 https://arxiv.org/pdf/1109.4448.pdf 27 */ 28 template < 29 typename CT, 30 bool EnableReducedLength, 31 bool EnableGeodesicScale, 32 unsigned int Order = 2, 33 bool ApproxF = true 34 > 35 class differential_quantities 36 { 37 public: apply(CT const & lon1,CT const & lat1,CT const & lon2,CT const & lat2,CT const & azimuth,CT const & reverse_azimuth,CT const & b,CT const & f,CT & reduced_length,CT & geodesic_scale)38 static inline void apply(CT const& lon1, CT const& lat1, 39 CT const& lon2, CT const& lat2, 40 CT const& azimuth, CT const& reverse_azimuth, 41 CT const& b, CT const& f, 42 CT & reduced_length, CT & geodesic_scale) 43 { 44 CT const dlon = lon2 - lon1; 45 CT const sin_lat1 = sin(lat1); 46 CT const cos_lat1 = cos(lat1); 47 CT const sin_lat2 = sin(lat2); 48 CT const cos_lat2 = cos(lat2); 49 50 apply(dlon, sin_lat1, cos_lat1, sin_lat2, cos_lat2, 51 azimuth, reverse_azimuth, 52 b, f, 53 reduced_length, geodesic_scale); 54 } 55 apply(CT const & dlon,CT const & sin_lat1,CT const & cos_lat1,CT const & sin_lat2,CT const & cos_lat2,CT const & azimuth,CT const & reverse_azimuth,CT const & b,CT const & f,CT & reduced_length,CT & geodesic_scale)56 static inline void apply(CT const& dlon, 57 CT const& sin_lat1, CT const& cos_lat1, 58 CT const& sin_lat2, CT const& cos_lat2, 59 CT const& azimuth, CT const& reverse_azimuth, 60 CT const& b, CT const& f, 61 CT & reduced_length, CT & geodesic_scale) 62 { 63 CT const c0 = 0; 64 CT const c1 = 1; 65 CT const one_minus_f = c1 - f; 66 67 CT sin_bet1 = one_minus_f * sin_lat1; 68 CT sin_bet2 = one_minus_f * sin_lat2; 69 70 // equator 71 if (math::equals(sin_bet1, c0) && math::equals(sin_bet2, c0)) 72 { 73 CT const sig_12 = math::abs(dlon) / one_minus_f; 74 if (BOOST_GEOMETRY_CONDITION(EnableReducedLength)) 75 { 76 CT m12 = sin(sig_12) * b; 77 reduced_length = m12; 78 } 79 80 if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale)) 81 { 82 CT M12 = cos(sig_12); 83 geodesic_scale = M12; 84 } 85 } 86 else 87 { 88 CT const c2 = 2; 89 CT const e2 = f * (c2 - f); 90 CT const ep2 = e2 / math::sqr(one_minus_f); 91 92 CT const sin_alp1 = sin(azimuth); 93 CT const cos_alp1 = cos(azimuth); 94 //CT const sin_alp2 = sin(reverse_azimuth); 95 CT const cos_alp2 = cos(reverse_azimuth); 96 97 CT cos_bet1 = cos_lat1; 98 CT cos_bet2 = cos_lat2; 99 100 normalize(sin_bet1, cos_bet1); 101 normalize(sin_bet2, cos_bet2); 102 103 CT sin_sig1 = sin_bet1; 104 CT cos_sig1 = cos_alp1 * cos_bet1; 105 CT sin_sig2 = sin_bet2; 106 CT cos_sig2 = cos_alp2 * cos_bet2; 107 108 normalize(sin_sig1, cos_sig1); 109 normalize(sin_sig2, cos_sig2); 110 111 CT const sin_alp0 = sin_alp1 * cos_bet1; 112 CT const cos_alp0_sqr = c1 - math::sqr(sin_alp0); 113 114 CT const J12 = BOOST_GEOMETRY_CONDITION(ApproxF) ? 115 J12_f(sin_sig1, cos_sig1, sin_sig2, cos_sig2, cos_alp0_sqr, f) : 116 J12_ep_sqr(sin_sig1, cos_sig1, sin_sig2, cos_sig2, cos_alp0_sqr, ep2) ; 117 118 CT const dn1 = math::sqrt(c1 + ep2 * math::sqr(sin_bet1)); 119 CT const dn2 = math::sqrt(c1 + ep2 * math::sqr(sin_bet2)); 120 121 if (BOOST_GEOMETRY_CONDITION(EnableReducedLength)) 122 { 123 CT const m12_b = dn2 * (cos_sig1 * sin_sig2) 124 - dn1 * (sin_sig1 * cos_sig2) 125 - cos_sig1 * cos_sig2 * J12; 126 CT const m12 = m12_b * b; 127 128 reduced_length = m12; 129 } 130 131 if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale)) 132 { 133 CT const cos_sig12 = cos_sig1 * cos_sig2 + sin_sig1 * sin_sig2; 134 CT const t = ep2 * (cos_bet1 - cos_bet2) * (cos_bet1 + cos_bet2) / (dn1 + dn2); 135 CT const M12 = cos_sig12 + (t * sin_sig2 - cos_sig2 * J12) * sin_sig1 / dn1; 136 137 geodesic_scale = M12; 138 } 139 } 140 } 141 142 private: 143 /*! Approximation of J12, expanded into taylor series in f 144 Maxima script: 145 ep2: f * (2-f) / ((1-f)^2); 146 k2: ca02 * ep2; 147 assume(f < 1); 148 assume(sig > 0); 149 I1(sig):= integrate(sqrt(1 + k2 * sin(s)^2), s, 0, sig); 150 I2(sig):= integrate(1/sqrt(1 + k2 * sin(s)^2), s, 0, sig); 151 J(sig):= I1(sig) - I2(sig); 152 S: taylor(J(sig), f, 0, 3); 153 S1: factor( 2*integrate(sin(s)^2,s,0,sig)*ca02*f ); 154 S2: factor( ((integrate(-6*ca02^2*sin(s)^4+6*ca02*sin(s)^2,s,0,sig)+integrate(-2*ca02^2*sin(s)^4+6*ca02*sin(s)^2,s,0,sig))*f^2)/4 ); 155 S3: factor( ((integrate(30*ca02^3*sin(s)^6-54*ca02^2*sin(s)^4+24*ca02*sin(s)^2,s,0,sig)+integrate(6*ca02^3*sin(s)^6-18*ca02^2*sin(s)^4+24*ca02*sin(s)^2,s,0,sig))*f^3)/12 ); 156 */ J12_f(CT const & sin_sig1,CT const & cos_sig1,CT const & sin_sig2,CT const & cos_sig2,CT const & cos_alp0_sqr,CT const & f)157 static inline CT J12_f(CT const& sin_sig1, CT const& cos_sig1, 158 CT const& sin_sig2, CT const& cos_sig2, 159 CT const& cos_alp0_sqr, CT const& f) 160 { 161 if (Order == 0) 162 { 163 return 0; 164 } 165 166 CT const c2 = 2; 167 168 CT const sig_12 = atan2(cos_sig1 * sin_sig2 - sin_sig1 * cos_sig2, 169 cos_sig1 * cos_sig2 + sin_sig1 * sin_sig2); 170 CT const sin_2sig1 = c2 * cos_sig1 * sin_sig1; // sin(2sig1) 171 CT const sin_2sig2 = c2 * cos_sig2 * sin_sig2; // sin(2sig2) 172 CT const sin_2sig_12 = sin_2sig2 - sin_2sig1; 173 CT const L1 = sig_12 - sin_2sig_12 / c2; 174 175 if (Order == 1) 176 { 177 return cos_alp0_sqr * f * L1; 178 } 179 180 CT const sin_4sig1 = c2 * sin_2sig1 * (math::sqr(cos_sig1) - math::sqr(sin_sig1)); // sin(4sig1) 181 CT const sin_4sig2 = c2 * sin_2sig2 * (math::sqr(cos_sig2) - math::sqr(sin_sig2)); // sin(4sig2) 182 CT const sin_4sig_12 = sin_4sig2 - sin_4sig1; 183 184 CT const c8 = 8; 185 CT const c12 = 12; 186 CT const c16 = 16; 187 CT const c24 = 24; 188 189 CT const L2 = -( cos_alp0_sqr * sin_4sig_12 190 + (-c8 * cos_alp0_sqr + c12) * sin_2sig_12 191 + (c12 * cos_alp0_sqr - c24) * sig_12) 192 / c16; 193 194 if (Order == 2) 195 { 196 return cos_alp0_sqr * f * (L1 + f * L2); 197 } 198 199 CT const c4 = 4; 200 CT const c9 = 9; 201 CT const c48 = 48; 202 CT const c60 = 60; 203 CT const c64 = 64; 204 CT const c96 = 96; 205 CT const c128 = 128; 206 CT const c144 = 144; 207 208 CT const cos_alp0_quad = math::sqr(cos_alp0_sqr); 209 CT const sin3_2sig1 = math::sqr(sin_2sig1) * sin_2sig1; 210 CT const sin3_2sig2 = math::sqr(sin_2sig2) * sin_2sig2; 211 CT const sin3_2sig_12 = sin3_2sig2 - sin3_2sig1; 212 213 CT const A = (c9 * cos_alp0_quad - c12 * cos_alp0_sqr) * sin_4sig_12; 214 CT const B = c4 * cos_alp0_quad * sin3_2sig_12; 215 CT const C = (-c48 * cos_alp0_quad + c96 * cos_alp0_sqr - c64) * sin_2sig_12; 216 CT const D = (c60 * cos_alp0_quad - c144 * cos_alp0_sqr + c128) * sig_12; 217 218 CT const L3 = (A + B + C + D) / c64; 219 220 // Order 3 and higher 221 return cos_alp0_sqr * f * (L1 + f * (L2 + f * L3)); 222 } 223 224 /*! Approximation of J12, expanded into taylor series in e'^2 225 Maxima script: 226 k2: ca02 * ep2; 227 assume(sig > 0); 228 I1(sig):= integrate(sqrt(1 + k2 * sin(s)^2), s, 0, sig); 229 I2(sig):= integrate(1/sqrt(1 + k2 * sin(s)^2), s, 0, sig); 230 J(sig):= I1(sig) - I2(sig); 231 S: taylor(J(sig), ep2, 0, 3); 232 S1: factor( integrate(sin(s)^2,s,0,sig)*ca02*ep2 ); 233 S2: factor( (integrate(sin(s)^4,s,0,sig)*ca02^2*ep2^2)/2 ); 234 S3: factor( (3*integrate(sin(s)^6,s,0,sig)*ca02^3*ep2^3)/8 ); 235 */ J12_ep_sqr(CT const & sin_sig1,CT const & cos_sig1,CT const & sin_sig2,CT const & cos_sig2,CT const & cos_alp0_sqr,CT const & ep_sqr)236 static inline CT J12_ep_sqr(CT const& sin_sig1, CT const& cos_sig1, 237 CT const& sin_sig2, CT const& cos_sig2, 238 CT const& cos_alp0_sqr, CT const& ep_sqr) 239 { 240 if (Order == 0) 241 { 242 return 0; 243 } 244 245 CT const c2 = 2; 246 CT const c4 = 4; 247 248 CT const c2a0ep2 = cos_alp0_sqr * ep_sqr; 249 250 CT const sig_12 = atan2(cos_sig1 * sin_sig2 - sin_sig1 * cos_sig2, 251 cos_sig1 * cos_sig2 + sin_sig1 * sin_sig2); // sig2 - sig1 252 CT const sin_2sig1 = c2 * cos_sig1 * sin_sig1; // sin(2sig1) 253 CT const sin_2sig2 = c2 * cos_sig2 * sin_sig2; // sin(2sig2) 254 CT const sin_2sig_12 = sin_2sig2 - sin_2sig1; 255 256 CT const L1 = (c2 * sig_12 - sin_2sig_12) / c4; 257 258 if (Order == 1) 259 { 260 return c2a0ep2 * L1; 261 } 262 263 CT const c8 = 8; 264 CT const c64 = 64; 265 266 CT const sin_4sig1 = c2 * sin_2sig1 * (math::sqr(cos_sig1) - math::sqr(sin_sig1)); // sin(4sig1) 267 CT const sin_4sig2 = c2 * sin_2sig2 * (math::sqr(cos_sig2) - math::sqr(sin_sig2)); // sin(4sig2) 268 CT const sin_4sig_12 = sin_4sig2 - sin_4sig1; 269 270 CT const L2 = (sin_4sig_12 - c8 * sin_2sig_12 + 12 * sig_12) / c64; 271 272 if (Order == 2) 273 { 274 return c2a0ep2 * (L1 + c2a0ep2 * L2); 275 } 276 277 CT const sin3_2sig1 = math::sqr(sin_2sig1) * sin_2sig1; 278 CT const sin3_2sig2 = math::sqr(sin_2sig2) * sin_2sig2; 279 CT const sin3_2sig_12 = sin3_2sig2 - sin3_2sig1; 280 281 CT const c9 = 9; 282 CT const c48 = 48; 283 CT const c60 = 60; 284 CT const c512 = 512; 285 286 CT const L3 = (c9 * sin_4sig_12 + c4 * sin3_2sig_12 - c48 * sin_2sig_12 + c60 * sig_12) / c512; 287 288 // Order 3 and higher 289 return c2a0ep2 * (L1 + c2a0ep2 * (L2 + c2a0ep2 * L3)); 290 } 291 normalize(CT & x,CT & y)292 static inline void normalize(CT & x, CT & y) 293 { 294 CT const len = math::sqrt(math::sqr(x) + math::sqr(y)); 295 x /= len; 296 y /= len; 297 } 298 }; 299 300 }}} // namespace boost::geometry::formula 301 302 303 #endif // BOOST_GEOMETRY_FORMULAS_INVERSE_DIFFERENTIAL_QUANTITIES_HPP 304