1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/blk-cgroup.h>
38 #include <linux/t10-pi.h>
39 #include <linux/debugfs.h>
40 #include <linux/bpf.h>
41 #include <linux/psi.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/blk-crypto.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/block.h>
47
48 #include "blk.h"
49 #include "blk-mq.h"
50 #include "blk-mq-sched.h"
51 #include "blk-pm.h"
52 #include "blk-rq-qos.h"
53
54 struct dentry *blk_debugfs_root;
55
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_queue);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_getrq);
63 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
64 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_issue);
65 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_merge);
66 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_requeue);
67 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_complete);
68
69 DEFINE_IDA(blk_queue_ida);
70
71 /*
72 * For queue allocation
73 */
74 struct kmem_cache *blk_requestq_cachep;
75
76 /*
77 * Controlling structure to kblockd
78 */
79 static struct workqueue_struct *kblockd_workqueue;
80
81 /**
82 * blk_queue_flag_set - atomically set a queue flag
83 * @flag: flag to be set
84 * @q: request queue
85 */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)86 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
87 {
88 set_bit(flag, &q->queue_flags);
89 }
90 EXPORT_SYMBOL(blk_queue_flag_set);
91
92 /**
93 * blk_queue_flag_clear - atomically clear a queue flag
94 * @flag: flag to be cleared
95 * @q: request queue
96 */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)97 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
98 {
99 clear_bit(flag, &q->queue_flags);
100 }
101 EXPORT_SYMBOL(blk_queue_flag_clear);
102
103 /**
104 * blk_queue_flag_test_and_set - atomically test and set a queue flag
105 * @flag: flag to be set
106 * @q: request queue
107 *
108 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
109 * the flag was already set.
110 */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)111 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
112 {
113 return test_and_set_bit(flag, &q->queue_flags);
114 }
115 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
116
blk_rq_init(struct request_queue * q,struct request * rq)117 void blk_rq_init(struct request_queue *q, struct request *rq)
118 {
119 memset(rq, 0, sizeof(*rq));
120
121 INIT_LIST_HEAD(&rq->queuelist);
122 rq->q = q;
123 rq->__sector = (sector_t) -1;
124 INIT_HLIST_NODE(&rq->hash);
125 RB_CLEAR_NODE(&rq->rb_node);
126 rq->tag = BLK_MQ_NO_TAG;
127 rq->internal_tag = BLK_MQ_NO_TAG;
128 rq->start_time_ns = ktime_get_ns();
129 rq->part = NULL;
130 blk_crypto_rq_set_defaults(rq);
131 }
132 EXPORT_SYMBOL(blk_rq_init);
133
134 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
135 static const char *const blk_op_name[] = {
136 REQ_OP_NAME(READ),
137 REQ_OP_NAME(WRITE),
138 REQ_OP_NAME(FLUSH),
139 REQ_OP_NAME(DISCARD),
140 REQ_OP_NAME(SECURE_ERASE),
141 REQ_OP_NAME(ZONE_RESET),
142 REQ_OP_NAME(ZONE_RESET_ALL),
143 REQ_OP_NAME(ZONE_OPEN),
144 REQ_OP_NAME(ZONE_CLOSE),
145 REQ_OP_NAME(ZONE_FINISH),
146 REQ_OP_NAME(ZONE_APPEND),
147 REQ_OP_NAME(WRITE_SAME),
148 REQ_OP_NAME(WRITE_ZEROES),
149 REQ_OP_NAME(SCSI_IN),
150 REQ_OP_NAME(SCSI_OUT),
151 REQ_OP_NAME(DRV_IN),
152 REQ_OP_NAME(DRV_OUT),
153 };
154 #undef REQ_OP_NAME
155
156 /**
157 * blk_op_str - Return string XXX in the REQ_OP_XXX.
158 * @op: REQ_OP_XXX.
159 *
160 * Description: Centralize block layer function to convert REQ_OP_XXX into
161 * string format. Useful in the debugging and tracing bio or request. For
162 * invalid REQ_OP_XXX it returns string "UNKNOWN".
163 */
blk_op_str(unsigned int op)164 inline const char *blk_op_str(unsigned int op)
165 {
166 const char *op_str = "UNKNOWN";
167
168 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
169 op_str = blk_op_name[op];
170
171 return op_str;
172 }
173 EXPORT_SYMBOL_GPL(blk_op_str);
174
175 static const struct {
176 int errno;
177 const char *name;
178 } blk_errors[] = {
179 [BLK_STS_OK] = { 0, "" },
180 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
181 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
182 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
183 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
184 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
185 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
186 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
187 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
188 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
189 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
190 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
191
192 /* device mapper special case, should not leak out: */
193 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
194
195 /* zone device specific errors */
196 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
197 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
198
199 /* everything else not covered above: */
200 [BLK_STS_IOERR] = { -EIO, "I/O" },
201 };
202
errno_to_blk_status(int errno)203 blk_status_t errno_to_blk_status(int errno)
204 {
205 int i;
206
207 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
208 if (blk_errors[i].errno == errno)
209 return (__force blk_status_t)i;
210 }
211
212 return BLK_STS_IOERR;
213 }
214 EXPORT_SYMBOL_GPL(errno_to_blk_status);
215
blk_status_to_errno(blk_status_t status)216 int blk_status_to_errno(blk_status_t status)
217 {
218 int idx = (__force int)status;
219
220 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
221 return -EIO;
222 return blk_errors[idx].errno;
223 }
224 EXPORT_SYMBOL_GPL(blk_status_to_errno);
225
print_req_error(struct request * req,blk_status_t status,const char * caller)226 static void print_req_error(struct request *req, blk_status_t status,
227 const char *caller)
228 {
229 int idx = (__force int)status;
230
231 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
232 return;
233
234 printk_ratelimited(KERN_ERR
235 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
236 "phys_seg %u prio class %u\n",
237 caller, blk_errors[idx].name,
238 req->rq_disk ? req->rq_disk->disk_name : "?",
239 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
240 req->cmd_flags & ~REQ_OP_MASK,
241 req->nr_phys_segments,
242 IOPRIO_PRIO_CLASS(req->ioprio));
243 }
244
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)245 static void req_bio_endio(struct request *rq, struct bio *bio,
246 unsigned int nbytes, blk_status_t error)
247 {
248 if (error)
249 bio->bi_status = error;
250
251 if (unlikely(rq->rq_flags & RQF_QUIET))
252 bio_set_flag(bio, BIO_QUIET);
253
254 bio_advance(bio, nbytes);
255
256 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
257 /*
258 * Partial zone append completions cannot be supported as the
259 * BIO fragments may end up not being written sequentially.
260 */
261 if (bio->bi_iter.bi_size)
262 bio->bi_status = BLK_STS_IOERR;
263 else
264 bio->bi_iter.bi_sector = rq->__sector;
265 }
266
267 /* don't actually finish bio if it's part of flush sequence */
268 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
269 bio_endio(bio);
270 }
271
blk_dump_rq_flags(struct request * rq,char * msg)272 void blk_dump_rq_flags(struct request *rq, char *msg)
273 {
274 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
275 rq->rq_disk ? rq->rq_disk->disk_name : "?",
276 (unsigned long long) rq->cmd_flags);
277
278 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
279 (unsigned long long)blk_rq_pos(rq),
280 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
281 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
282 rq->bio, rq->biotail, blk_rq_bytes(rq));
283 }
284 EXPORT_SYMBOL(blk_dump_rq_flags);
285
286 /**
287 * blk_sync_queue - cancel any pending callbacks on a queue
288 * @q: the queue
289 *
290 * Description:
291 * The block layer may perform asynchronous callback activity
292 * on a queue, such as calling the unplug function after a timeout.
293 * A block device may call blk_sync_queue to ensure that any
294 * such activity is cancelled, thus allowing it to release resources
295 * that the callbacks might use. The caller must already have made sure
296 * that its ->submit_bio will not re-add plugging prior to calling
297 * this function.
298 *
299 * This function does not cancel any asynchronous activity arising
300 * out of elevator or throttling code. That would require elevator_exit()
301 * and blkcg_exit_queue() to be called with queue lock initialized.
302 *
303 */
blk_sync_queue(struct request_queue * q)304 void blk_sync_queue(struct request_queue *q)
305 {
306 del_timer_sync(&q->timeout);
307 cancel_work_sync(&q->timeout_work);
308 }
309 EXPORT_SYMBOL(blk_sync_queue);
310
311 /**
312 * blk_set_pm_only - increment pm_only counter
313 * @q: request queue pointer
314 */
blk_set_pm_only(struct request_queue * q)315 void blk_set_pm_only(struct request_queue *q)
316 {
317 atomic_inc(&q->pm_only);
318 }
319 EXPORT_SYMBOL_GPL(blk_set_pm_only);
320
blk_clear_pm_only(struct request_queue * q)321 void blk_clear_pm_only(struct request_queue *q)
322 {
323 int pm_only;
324
325 pm_only = atomic_dec_return(&q->pm_only);
326 WARN_ON_ONCE(pm_only < 0);
327 if (pm_only == 0)
328 wake_up_all(&q->mq_freeze_wq);
329 }
330 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
331
332 /**
333 * blk_put_queue - decrement the request_queue refcount
334 * @q: the request_queue structure to decrement the refcount for
335 *
336 * Decrements the refcount of the request_queue kobject. When this reaches 0
337 * we'll have blk_release_queue() called.
338 *
339 * Context: Any context, but the last reference must not be dropped from
340 * atomic context.
341 */
blk_put_queue(struct request_queue * q)342 void blk_put_queue(struct request_queue *q)
343 {
344 kobject_put(&q->kobj);
345 }
346 EXPORT_SYMBOL(blk_put_queue);
347
blk_set_queue_dying(struct request_queue * q)348 void blk_set_queue_dying(struct request_queue *q)
349 {
350 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
351
352 /*
353 * When queue DYING flag is set, we need to block new req
354 * entering queue, so we call blk_freeze_queue_start() to
355 * prevent I/O from crossing blk_queue_enter().
356 */
357 blk_freeze_queue_start(q);
358
359 if (queue_is_mq(q))
360 blk_mq_wake_waiters(q);
361
362 /* Make blk_queue_enter() reexamine the DYING flag. */
363 wake_up_all(&q->mq_freeze_wq);
364 }
365 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
366
367 /**
368 * blk_cleanup_queue - shutdown a request queue
369 * @q: request queue to shutdown
370 *
371 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
372 * put it. All future requests will be failed immediately with -ENODEV.
373 *
374 * Context: can sleep
375 */
blk_cleanup_queue(struct request_queue * q)376 void blk_cleanup_queue(struct request_queue *q)
377 {
378 /* cannot be called from atomic context */
379 might_sleep();
380
381 WARN_ON_ONCE(blk_queue_registered(q));
382
383 /* mark @q DYING, no new request or merges will be allowed afterwards */
384 blk_set_queue_dying(q);
385
386 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
387 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
388
389 /*
390 * Drain all requests queued before DYING marking. Set DEAD flag to
391 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
392 * after draining finished.
393 */
394 blk_freeze_queue(q);
395
396 rq_qos_exit(q);
397
398 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
399
400 /* for synchronous bio-based driver finish in-flight integrity i/o */
401 blk_flush_integrity();
402
403 /* @q won't process any more request, flush async actions */
404 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
405 blk_sync_queue(q);
406
407 if (queue_is_mq(q))
408 blk_mq_exit_queue(q);
409
410 /*
411 * In theory, request pool of sched_tags belongs to request queue.
412 * However, the current implementation requires tag_set for freeing
413 * requests, so free the pool now.
414 *
415 * Queue has become frozen, there can't be any in-queue requests, so
416 * it is safe to free requests now.
417 */
418 mutex_lock(&q->sysfs_lock);
419 if (q->elevator)
420 blk_mq_sched_free_requests(q);
421 mutex_unlock(&q->sysfs_lock);
422
423 percpu_ref_exit(&q->q_usage_counter);
424
425 /* @q is and will stay empty, shutdown and put */
426 blk_put_queue(q);
427 }
428 EXPORT_SYMBOL(blk_cleanup_queue);
429
430 /**
431 * blk_queue_enter() - try to increase q->q_usage_counter
432 * @q: request queue pointer
433 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
434 */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)435 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
436 {
437 const bool pm = flags & BLK_MQ_REQ_PM;
438
439 while (true) {
440 bool success = false;
441
442 rcu_read_lock();
443 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
444 /*
445 * The code that increments the pm_only counter is
446 * responsible for ensuring that that counter is
447 * globally visible before the queue is unfrozen.
448 */
449 if (pm || !blk_queue_pm_only(q)) {
450 success = true;
451 } else {
452 percpu_ref_put(&q->q_usage_counter);
453 }
454 }
455 rcu_read_unlock();
456
457 if (success)
458 return 0;
459
460 if (flags & BLK_MQ_REQ_NOWAIT)
461 return -EBUSY;
462
463 /*
464 * read pair of barrier in blk_freeze_queue_start(),
465 * we need to order reading __PERCPU_REF_DEAD flag of
466 * .q_usage_counter and reading .mq_freeze_depth or
467 * queue dying flag, otherwise the following wait may
468 * never return if the two reads are reordered.
469 */
470 smp_rmb();
471
472 wait_event(q->mq_freeze_wq,
473 (!q->mq_freeze_depth &&
474 (pm || (blk_pm_request_resume(q),
475 !blk_queue_pm_only(q)))) ||
476 blk_queue_dying(q));
477 if (blk_queue_dying(q))
478 return -ENODEV;
479 }
480 }
481
bio_queue_enter(struct bio * bio)482 static inline int bio_queue_enter(struct bio *bio)
483 {
484 struct request_queue *q = bio->bi_disk->queue;
485 bool nowait = bio->bi_opf & REQ_NOWAIT;
486 int ret;
487
488 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
489 if (unlikely(ret)) {
490 if (nowait && !blk_queue_dying(q))
491 bio_wouldblock_error(bio);
492 else
493 bio_io_error(bio);
494 }
495
496 return ret;
497 }
498
blk_queue_exit(struct request_queue * q)499 void blk_queue_exit(struct request_queue *q)
500 {
501 percpu_ref_put(&q->q_usage_counter);
502 }
503
blk_queue_usage_counter_release(struct percpu_ref * ref)504 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
505 {
506 struct request_queue *q =
507 container_of(ref, struct request_queue, q_usage_counter);
508
509 wake_up_all(&q->mq_freeze_wq);
510 }
511
blk_rq_timed_out_timer(struct timer_list * t)512 static void blk_rq_timed_out_timer(struct timer_list *t)
513 {
514 struct request_queue *q = from_timer(q, t, timeout);
515
516 kblockd_schedule_work(&q->timeout_work);
517 }
518
blk_timeout_work(struct work_struct * work)519 static void blk_timeout_work(struct work_struct *work)
520 {
521 }
522
blk_alloc_queue(int node_id)523 struct request_queue *blk_alloc_queue(int node_id)
524 {
525 struct request_queue *q;
526 int ret;
527
528 q = kmem_cache_alloc_node(blk_requestq_cachep,
529 GFP_KERNEL | __GFP_ZERO, node_id);
530 if (!q)
531 return NULL;
532
533 q->last_merge = NULL;
534
535 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
536 if (q->id < 0)
537 goto fail_q;
538
539 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
540 if (ret)
541 goto fail_id;
542
543 q->backing_dev_info = bdi_alloc(node_id);
544 if (!q->backing_dev_info)
545 goto fail_split;
546
547 q->stats = blk_alloc_queue_stats();
548 if (!q->stats)
549 goto fail_stats;
550
551 q->node = node_id;
552
553 atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
554
555 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
556 laptop_mode_timer_fn, 0);
557 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
558 INIT_WORK(&q->timeout_work, blk_timeout_work);
559 INIT_LIST_HEAD(&q->icq_list);
560 #ifdef CONFIG_BLK_CGROUP
561 INIT_LIST_HEAD(&q->blkg_list);
562 #endif
563
564 kobject_init(&q->kobj, &blk_queue_ktype);
565
566 mutex_init(&q->debugfs_mutex);
567 mutex_init(&q->sysfs_lock);
568 mutex_init(&q->sysfs_dir_lock);
569 spin_lock_init(&q->queue_lock);
570
571 init_waitqueue_head(&q->mq_freeze_wq);
572 mutex_init(&q->mq_freeze_lock);
573
574 /*
575 * Init percpu_ref in atomic mode so that it's faster to shutdown.
576 * See blk_register_queue() for details.
577 */
578 if (percpu_ref_init(&q->q_usage_counter,
579 blk_queue_usage_counter_release,
580 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
581 goto fail_bdi;
582
583 if (blkcg_init_queue(q))
584 goto fail_ref;
585
586 blk_queue_dma_alignment(q, 511);
587 blk_set_default_limits(&q->limits);
588 q->nr_requests = BLKDEV_MAX_RQ;
589
590 return q;
591
592 fail_ref:
593 percpu_ref_exit(&q->q_usage_counter);
594 fail_bdi:
595 blk_free_queue_stats(q->stats);
596 fail_stats:
597 bdi_put(q->backing_dev_info);
598 fail_split:
599 bioset_exit(&q->bio_split);
600 fail_id:
601 ida_simple_remove(&blk_queue_ida, q->id);
602 fail_q:
603 kmem_cache_free(blk_requestq_cachep, q);
604 return NULL;
605 }
606 EXPORT_SYMBOL(blk_alloc_queue);
607
608 /**
609 * blk_get_queue - increment the request_queue refcount
610 * @q: the request_queue structure to increment the refcount for
611 *
612 * Increment the refcount of the request_queue kobject.
613 *
614 * Context: Any context.
615 */
blk_get_queue(struct request_queue * q)616 bool blk_get_queue(struct request_queue *q)
617 {
618 if (likely(!blk_queue_dying(q))) {
619 __blk_get_queue(q);
620 return true;
621 }
622
623 return false;
624 }
625 EXPORT_SYMBOL(blk_get_queue);
626
627 /**
628 * blk_get_request - allocate a request
629 * @q: request queue to allocate a request for
630 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
631 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
632 */
blk_get_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)633 struct request *blk_get_request(struct request_queue *q, unsigned int op,
634 blk_mq_req_flags_t flags)
635 {
636 struct request *req;
637
638 WARN_ON_ONCE(op & REQ_NOWAIT);
639 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
640
641 req = blk_mq_alloc_request(q, op, flags);
642 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
643 q->mq_ops->initialize_rq_fn(req);
644
645 return req;
646 }
647 EXPORT_SYMBOL(blk_get_request);
648
blk_put_request(struct request * req)649 void blk_put_request(struct request *req)
650 {
651 blk_mq_free_request(req);
652 }
653 EXPORT_SYMBOL(blk_put_request);
654
handle_bad_sector(struct bio * bio,sector_t maxsector)655 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
656 {
657 char b[BDEVNAME_SIZE];
658
659 pr_info_ratelimited("attempt to access beyond end of device\n"
660 "%s: rw=%d, want=%llu, limit=%llu\n",
661 bio_devname(bio, b), bio->bi_opf,
662 bio_end_sector(bio), maxsector);
663 }
664
665 #ifdef CONFIG_FAIL_MAKE_REQUEST
666
667 static DECLARE_FAULT_ATTR(fail_make_request);
668
setup_fail_make_request(char * str)669 static int __init setup_fail_make_request(char *str)
670 {
671 return setup_fault_attr(&fail_make_request, str);
672 }
673 __setup("fail_make_request=", setup_fail_make_request);
674
should_fail_request(struct hd_struct * part,unsigned int bytes)675 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
676 {
677 return part->make_it_fail && should_fail(&fail_make_request, bytes);
678 }
679
fail_make_request_debugfs(void)680 static int __init fail_make_request_debugfs(void)
681 {
682 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
683 NULL, &fail_make_request);
684
685 return PTR_ERR_OR_ZERO(dir);
686 }
687
688 late_initcall(fail_make_request_debugfs);
689
690 #else /* CONFIG_FAIL_MAKE_REQUEST */
691
should_fail_request(struct hd_struct * part,unsigned int bytes)692 static inline bool should_fail_request(struct hd_struct *part,
693 unsigned int bytes)
694 {
695 return false;
696 }
697
698 #endif /* CONFIG_FAIL_MAKE_REQUEST */
699
bio_check_ro(struct bio * bio,struct hd_struct * part)700 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
701 {
702 const int op = bio_op(bio);
703
704 if (part->policy && op_is_write(op)) {
705 char b[BDEVNAME_SIZE];
706
707 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
708 return false;
709
710 WARN_ONCE(1,
711 "Trying to write to read-only block-device %s (partno %d)\n",
712 bio_devname(bio, b), part->partno);
713 /* Older lvm-tools actually trigger this */
714 return false;
715 }
716
717 return false;
718 }
719
should_fail_bio(struct bio * bio)720 static noinline int should_fail_bio(struct bio *bio)
721 {
722 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
723 return -EIO;
724 return 0;
725 }
726 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
727
728 /*
729 * Check whether this bio extends beyond the end of the device or partition.
730 * This may well happen - the kernel calls bread() without checking the size of
731 * the device, e.g., when mounting a file system.
732 */
bio_check_eod(struct bio * bio,sector_t maxsector)733 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
734 {
735 unsigned int nr_sectors = bio_sectors(bio);
736
737 if (nr_sectors && maxsector &&
738 (nr_sectors > maxsector ||
739 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
740 handle_bad_sector(bio, maxsector);
741 return -EIO;
742 }
743 return 0;
744 }
745
746 /*
747 * Remap block n of partition p to block n+start(p) of the disk.
748 */
blk_partition_remap(struct bio * bio)749 static inline int blk_partition_remap(struct bio *bio)
750 {
751 struct hd_struct *p;
752 int ret = -EIO;
753
754 rcu_read_lock();
755 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
756 if (unlikely(!p))
757 goto out;
758 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
759 goto out;
760 if (unlikely(bio_check_ro(bio, p)))
761 goto out;
762
763 if (bio_sectors(bio)) {
764 if (bio_check_eod(bio, part_nr_sects_read(p)))
765 goto out;
766 bio->bi_iter.bi_sector += p->start_sect;
767 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
768 bio->bi_iter.bi_sector - p->start_sect);
769 }
770 bio->bi_partno = 0;
771 ret = 0;
772 out:
773 rcu_read_unlock();
774 return ret;
775 }
776
777 /*
778 * Check write append to a zoned block device.
779 */
blk_check_zone_append(struct request_queue * q,struct bio * bio)780 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
781 struct bio *bio)
782 {
783 sector_t pos = bio->bi_iter.bi_sector;
784 int nr_sectors = bio_sectors(bio);
785
786 /* Only applicable to zoned block devices */
787 if (!blk_queue_is_zoned(q))
788 return BLK_STS_NOTSUPP;
789
790 /* The bio sector must point to the start of a sequential zone */
791 if (pos & (blk_queue_zone_sectors(q) - 1) ||
792 !blk_queue_zone_is_seq(q, pos))
793 return BLK_STS_IOERR;
794
795 /*
796 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
797 * split and could result in non-contiguous sectors being written in
798 * different zones.
799 */
800 if (nr_sectors > q->limits.chunk_sectors)
801 return BLK_STS_IOERR;
802
803 /* Make sure the BIO is small enough and will not get split */
804 if (nr_sectors > q->limits.max_zone_append_sectors)
805 return BLK_STS_IOERR;
806
807 bio->bi_opf |= REQ_NOMERGE;
808
809 return BLK_STS_OK;
810 }
811
submit_bio_checks(struct bio * bio)812 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
813 {
814 struct request_queue *q = bio->bi_disk->queue;
815 blk_status_t status = BLK_STS_IOERR;
816 struct blk_plug *plug;
817
818 might_sleep();
819
820 plug = blk_mq_plug(q, bio);
821 if (plug && plug->nowait)
822 bio->bi_opf |= REQ_NOWAIT;
823
824 /*
825 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
826 * if queue does not support NOWAIT.
827 */
828 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
829 goto not_supported;
830
831 if (should_fail_bio(bio))
832 goto end_io;
833
834 if (bio->bi_partno) {
835 if (unlikely(blk_partition_remap(bio)))
836 goto end_io;
837 } else {
838 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
839 goto end_io;
840 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
841 goto end_io;
842 }
843
844 /*
845 * Filter flush bio's early so that bio based drivers without flush
846 * support don't have to worry about them.
847 */
848 if (op_is_flush(bio->bi_opf) &&
849 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
850 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
851 if (!bio_sectors(bio)) {
852 status = BLK_STS_OK;
853 goto end_io;
854 }
855 }
856
857 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
858 bio->bi_opf &= ~REQ_HIPRI;
859
860 switch (bio_op(bio)) {
861 case REQ_OP_DISCARD:
862 if (!blk_queue_discard(q))
863 goto not_supported;
864 break;
865 case REQ_OP_SECURE_ERASE:
866 if (!blk_queue_secure_erase(q))
867 goto not_supported;
868 break;
869 case REQ_OP_WRITE_SAME:
870 if (!q->limits.max_write_same_sectors)
871 goto not_supported;
872 break;
873 case REQ_OP_ZONE_APPEND:
874 status = blk_check_zone_append(q, bio);
875 if (status != BLK_STS_OK)
876 goto end_io;
877 break;
878 case REQ_OP_ZONE_RESET:
879 case REQ_OP_ZONE_OPEN:
880 case REQ_OP_ZONE_CLOSE:
881 case REQ_OP_ZONE_FINISH:
882 if (!blk_queue_is_zoned(q))
883 goto not_supported;
884 break;
885 case REQ_OP_ZONE_RESET_ALL:
886 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
887 goto not_supported;
888 break;
889 case REQ_OP_WRITE_ZEROES:
890 if (!q->limits.max_write_zeroes_sectors)
891 goto not_supported;
892 break;
893 default:
894 break;
895 }
896
897 /*
898 * Various block parts want %current->io_context, so allocate it up
899 * front rather than dealing with lots of pain to allocate it only
900 * where needed. This may fail and the block layer knows how to live
901 * with it.
902 */
903 if (unlikely(!current->io_context))
904 create_task_io_context(current, GFP_ATOMIC, q->node);
905
906 if (blk_throtl_bio(bio))
907 return false;
908
909 blk_cgroup_bio_start(bio);
910 blkcg_bio_issue_init(bio);
911
912 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
913 trace_block_bio_queue(q, bio);
914 /* Now that enqueuing has been traced, we need to trace
915 * completion as well.
916 */
917 bio_set_flag(bio, BIO_TRACE_COMPLETION);
918 }
919 return true;
920
921 not_supported:
922 status = BLK_STS_NOTSUPP;
923 end_io:
924 bio->bi_status = status;
925 bio_endio(bio);
926 return false;
927 }
928
__submit_bio(struct bio * bio)929 static blk_qc_t __submit_bio(struct bio *bio)
930 {
931 struct gendisk *disk = bio->bi_disk;
932 blk_qc_t ret = BLK_QC_T_NONE;
933
934 if (blk_crypto_bio_prep(&bio)) {
935 if (!disk->fops->submit_bio)
936 return blk_mq_submit_bio(bio);
937 ret = disk->fops->submit_bio(bio);
938 }
939 blk_queue_exit(disk->queue);
940 return ret;
941 }
942
943 /*
944 * The loop in this function may be a bit non-obvious, and so deserves some
945 * explanation:
946 *
947 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
948 * that), so we have a list with a single bio.
949 * - We pretend that we have just taken it off a longer list, so we assign
950 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
951 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
952 * bios through a recursive call to submit_bio_noacct. If it did, we find a
953 * non-NULL value in bio_list and re-enter the loop from the top.
954 * - In this case we really did just take the bio of the top of the list (no
955 * pretending) and so remove it from bio_list, and call into ->submit_bio()
956 * again.
957 *
958 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
959 * bio_list_on_stack[1] contains bios that were submitted before the current
960 * ->submit_bio_bio, but that haven't been processed yet.
961 */
__submit_bio_noacct(struct bio * bio)962 static blk_qc_t __submit_bio_noacct(struct bio *bio)
963 {
964 struct bio_list bio_list_on_stack[2];
965 blk_qc_t ret = BLK_QC_T_NONE;
966
967 BUG_ON(bio->bi_next);
968
969 bio_list_init(&bio_list_on_stack[0]);
970 current->bio_list = bio_list_on_stack;
971
972 do {
973 struct request_queue *q = bio->bi_disk->queue;
974 struct bio_list lower, same;
975
976 if (unlikely(bio_queue_enter(bio) != 0))
977 continue;
978
979 /*
980 * Create a fresh bio_list for all subordinate requests.
981 */
982 bio_list_on_stack[1] = bio_list_on_stack[0];
983 bio_list_init(&bio_list_on_stack[0]);
984
985 ret = __submit_bio(bio);
986
987 /*
988 * Sort new bios into those for a lower level and those for the
989 * same level.
990 */
991 bio_list_init(&lower);
992 bio_list_init(&same);
993 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
994 if (q == bio->bi_disk->queue)
995 bio_list_add(&same, bio);
996 else
997 bio_list_add(&lower, bio);
998
999 /*
1000 * Now assemble so we handle the lowest level first.
1001 */
1002 bio_list_merge(&bio_list_on_stack[0], &lower);
1003 bio_list_merge(&bio_list_on_stack[0], &same);
1004 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1005 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
1006
1007 current->bio_list = NULL;
1008 return ret;
1009 }
1010
__submit_bio_noacct_mq(struct bio * bio)1011 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1012 {
1013 struct bio_list bio_list[2] = { };
1014 blk_qc_t ret = BLK_QC_T_NONE;
1015
1016 current->bio_list = bio_list;
1017
1018 do {
1019 struct gendisk *disk = bio->bi_disk;
1020
1021 if (unlikely(bio_queue_enter(bio) != 0))
1022 continue;
1023
1024 if (!blk_crypto_bio_prep(&bio)) {
1025 blk_queue_exit(disk->queue);
1026 ret = BLK_QC_T_NONE;
1027 continue;
1028 }
1029
1030 ret = blk_mq_submit_bio(bio);
1031 } while ((bio = bio_list_pop(&bio_list[0])));
1032
1033 current->bio_list = NULL;
1034 return ret;
1035 }
1036
1037 /**
1038 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1039 * @bio: The bio describing the location in memory and on the device.
1040 *
1041 * This is a version of submit_bio() that shall only be used for I/O that is
1042 * resubmitted to lower level drivers by stacking block drivers. All file
1043 * systems and other upper level users of the block layer should use
1044 * submit_bio() instead.
1045 */
submit_bio_noacct(struct bio * bio)1046 blk_qc_t submit_bio_noacct(struct bio *bio)
1047 {
1048 if (!submit_bio_checks(bio))
1049 return BLK_QC_T_NONE;
1050
1051 /*
1052 * We only want one ->submit_bio to be active at a time, else stack
1053 * usage with stacked devices could be a problem. Use current->bio_list
1054 * to collect a list of requests submited by a ->submit_bio method while
1055 * it is active, and then process them after it returned.
1056 */
1057 if (current->bio_list) {
1058 bio_list_add(¤t->bio_list[0], bio);
1059 return BLK_QC_T_NONE;
1060 }
1061
1062 if (!bio->bi_disk->fops->submit_bio)
1063 return __submit_bio_noacct_mq(bio);
1064 return __submit_bio_noacct(bio);
1065 }
1066 EXPORT_SYMBOL(submit_bio_noacct);
1067
1068 /**
1069 * submit_bio - submit a bio to the block device layer for I/O
1070 * @bio: The &struct bio which describes the I/O
1071 *
1072 * submit_bio() is used to submit I/O requests to block devices. It is passed a
1073 * fully set up &struct bio that describes the I/O that needs to be done. The
1074 * bio will be send to the device described by the bi_disk and bi_partno fields.
1075 *
1076 * The success/failure status of the request, along with notification of
1077 * completion, is delivered asynchronously through the ->bi_end_io() callback
1078 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
1079 * been called.
1080 */
submit_bio(struct bio * bio)1081 blk_qc_t submit_bio(struct bio *bio)
1082 {
1083 if (blkcg_punt_bio_submit(bio))
1084 return BLK_QC_T_NONE;
1085
1086 /*
1087 * If it's a regular read/write or a barrier with data attached,
1088 * go through the normal accounting stuff before submission.
1089 */
1090 if (bio_has_data(bio)) {
1091 unsigned int count;
1092
1093 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1094 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1095 else
1096 count = bio_sectors(bio);
1097
1098 if (op_is_write(bio_op(bio))) {
1099 count_vm_events(PGPGOUT, count);
1100 } else {
1101 task_io_account_read(bio->bi_iter.bi_size);
1102 count_vm_events(PGPGIN, count);
1103 }
1104
1105 if (unlikely(block_dump)) {
1106 char b[BDEVNAME_SIZE];
1107 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1108 current->comm, task_pid_nr(current),
1109 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1110 (unsigned long long)bio->bi_iter.bi_sector,
1111 bio_devname(bio, b), count);
1112 }
1113 }
1114
1115 /*
1116 * If we're reading data that is part of the userspace workingset, count
1117 * submission time as memory stall. When the device is congested, or
1118 * the submitting cgroup IO-throttled, submission can be a significant
1119 * part of overall IO time.
1120 */
1121 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1122 bio_flagged(bio, BIO_WORKINGSET))) {
1123 unsigned long pflags;
1124 blk_qc_t ret;
1125
1126 psi_memstall_enter(&pflags);
1127 ret = submit_bio_noacct(bio);
1128 psi_memstall_leave(&pflags);
1129
1130 return ret;
1131 }
1132
1133 return submit_bio_noacct(bio);
1134 }
1135 EXPORT_SYMBOL(submit_bio);
1136
1137 /**
1138 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1139 * for the new queue limits
1140 * @q: the queue
1141 * @rq: the request being checked
1142 *
1143 * Description:
1144 * @rq may have been made based on weaker limitations of upper-level queues
1145 * in request stacking drivers, and it may violate the limitation of @q.
1146 * Since the block layer and the underlying device driver trust @rq
1147 * after it is inserted to @q, it should be checked against @q before
1148 * the insertion using this generic function.
1149 *
1150 * Request stacking drivers like request-based dm may change the queue
1151 * limits when retrying requests on other queues. Those requests need
1152 * to be checked against the new queue limits again during dispatch.
1153 */
blk_cloned_rq_check_limits(struct request_queue * q,struct request * rq)1154 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1155 struct request *rq)
1156 {
1157 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1158
1159 if (blk_rq_sectors(rq) > max_sectors) {
1160 /*
1161 * SCSI device does not have a good way to return if
1162 * Write Same/Zero is actually supported. If a device rejects
1163 * a non-read/write command (discard, write same,etc.) the
1164 * low-level device driver will set the relevant queue limit to
1165 * 0 to prevent blk-lib from issuing more of the offending
1166 * operations. Commands queued prior to the queue limit being
1167 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1168 * errors being propagated to upper layers.
1169 */
1170 if (max_sectors == 0)
1171 return BLK_STS_NOTSUPP;
1172
1173 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1174 __func__, blk_rq_sectors(rq), max_sectors);
1175 return BLK_STS_IOERR;
1176 }
1177
1178 /*
1179 * queue's settings related to segment counting like q->bounce_pfn
1180 * may differ from that of other stacking queues.
1181 * Recalculate it to check the request correctly on this queue's
1182 * limitation.
1183 */
1184 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1185 if (rq->nr_phys_segments > queue_max_segments(q)) {
1186 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1187 __func__, rq->nr_phys_segments, queue_max_segments(q));
1188 return BLK_STS_IOERR;
1189 }
1190
1191 return BLK_STS_OK;
1192 }
1193
1194 /**
1195 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1196 * @q: the queue to submit the request
1197 * @rq: the request being queued
1198 */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)1199 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1200 {
1201 blk_status_t ret;
1202
1203 ret = blk_cloned_rq_check_limits(q, rq);
1204 if (ret != BLK_STS_OK)
1205 return ret;
1206
1207 if (rq->rq_disk &&
1208 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1209 return BLK_STS_IOERR;
1210
1211 if (blk_crypto_insert_cloned_request(rq))
1212 return BLK_STS_IOERR;
1213
1214 if (blk_queue_io_stat(q))
1215 blk_account_io_start(rq);
1216
1217 /*
1218 * Since we have a scheduler attached on the top device,
1219 * bypass a potential scheduler on the bottom device for
1220 * insert.
1221 */
1222 return blk_mq_request_issue_directly(rq, true);
1223 }
1224 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1225
1226 /**
1227 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1228 * @rq: request to examine
1229 *
1230 * Description:
1231 * A request could be merge of IOs which require different failure
1232 * handling. This function determines the number of bytes which
1233 * can be failed from the beginning of the request without
1234 * crossing into area which need to be retried further.
1235 *
1236 * Return:
1237 * The number of bytes to fail.
1238 */
blk_rq_err_bytes(const struct request * rq)1239 unsigned int blk_rq_err_bytes(const struct request *rq)
1240 {
1241 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1242 unsigned int bytes = 0;
1243 struct bio *bio;
1244
1245 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1246 return blk_rq_bytes(rq);
1247
1248 /*
1249 * Currently the only 'mixing' which can happen is between
1250 * different fastfail types. We can safely fail portions
1251 * which have all the failfast bits that the first one has -
1252 * the ones which are at least as eager to fail as the first
1253 * one.
1254 */
1255 for (bio = rq->bio; bio; bio = bio->bi_next) {
1256 if ((bio->bi_opf & ff) != ff)
1257 break;
1258 bytes += bio->bi_iter.bi_size;
1259 }
1260
1261 /* this could lead to infinite loop */
1262 BUG_ON(blk_rq_bytes(rq) && !bytes);
1263 return bytes;
1264 }
1265 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1266
update_io_ticks(struct hd_struct * part,unsigned long now,bool end)1267 static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1268 {
1269 unsigned long stamp;
1270 again:
1271 stamp = READ_ONCE(part->stamp);
1272 if (unlikely(stamp != now)) {
1273 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp))
1274 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1275 }
1276 if (part->partno) {
1277 part = &part_to_disk(part)->part0;
1278 goto again;
1279 }
1280 }
1281
blk_account_io_completion(struct request * req,unsigned int bytes)1282 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1283 {
1284 if (req->part && blk_do_io_stat(req)) {
1285 const int sgrp = op_stat_group(req_op(req));
1286 struct hd_struct *part;
1287
1288 part_stat_lock();
1289 part = req->part;
1290 part_stat_add(part, sectors[sgrp], bytes >> 9);
1291 part_stat_unlock();
1292 }
1293 }
1294
blk_account_io_done(struct request * req,u64 now)1295 void blk_account_io_done(struct request *req, u64 now)
1296 {
1297 /*
1298 * Account IO completion. flush_rq isn't accounted as a
1299 * normal IO on queueing nor completion. Accounting the
1300 * containing request is enough.
1301 */
1302 if (req->part && blk_do_io_stat(req) &&
1303 !(req->rq_flags & RQF_FLUSH_SEQ)) {
1304 const int sgrp = op_stat_group(req_op(req));
1305 struct hd_struct *part;
1306
1307 part_stat_lock();
1308 part = req->part;
1309
1310 update_io_ticks(part, jiffies, true);
1311 part_stat_inc(part, ios[sgrp]);
1312 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1313 part_stat_unlock();
1314
1315 hd_struct_put(part);
1316 }
1317 }
1318
blk_account_io_start(struct request * rq)1319 void blk_account_io_start(struct request *rq)
1320 {
1321 if (!blk_do_io_stat(rq))
1322 return;
1323
1324 rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1325
1326 part_stat_lock();
1327 update_io_ticks(rq->part, jiffies, false);
1328 part_stat_unlock();
1329 }
1330
__part_start_io_acct(struct hd_struct * part,unsigned int sectors,unsigned int op)1331 static unsigned long __part_start_io_acct(struct hd_struct *part,
1332 unsigned int sectors, unsigned int op)
1333 {
1334 const int sgrp = op_stat_group(op);
1335 unsigned long now = READ_ONCE(jiffies);
1336
1337 part_stat_lock();
1338 update_io_ticks(part, now, false);
1339 part_stat_inc(part, ios[sgrp]);
1340 part_stat_add(part, sectors[sgrp], sectors);
1341 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1342 part_stat_unlock();
1343
1344 return now;
1345 }
1346
part_start_io_acct(struct gendisk * disk,struct hd_struct ** part,struct bio * bio)1347 unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part,
1348 struct bio *bio)
1349 {
1350 *part = disk_map_sector_rcu(disk, bio->bi_iter.bi_sector);
1351
1352 return __part_start_io_acct(*part, bio_sectors(bio), bio_op(bio));
1353 }
1354 EXPORT_SYMBOL_GPL(part_start_io_acct);
1355
disk_start_io_acct(struct gendisk * disk,unsigned int sectors,unsigned int op)1356 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1357 unsigned int op)
1358 {
1359 return __part_start_io_acct(&disk->part0, sectors, op);
1360 }
1361 EXPORT_SYMBOL(disk_start_io_acct);
1362
__part_end_io_acct(struct hd_struct * part,unsigned int op,unsigned long start_time)1363 static void __part_end_io_acct(struct hd_struct *part, unsigned int op,
1364 unsigned long start_time)
1365 {
1366 const int sgrp = op_stat_group(op);
1367 unsigned long now = READ_ONCE(jiffies);
1368 unsigned long duration = now - start_time;
1369
1370 part_stat_lock();
1371 update_io_ticks(part, now, true);
1372 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1373 part_stat_local_dec(part, in_flight[op_is_write(op)]);
1374 part_stat_unlock();
1375 }
1376
part_end_io_acct(struct hd_struct * part,struct bio * bio,unsigned long start_time)1377 void part_end_io_acct(struct hd_struct *part, struct bio *bio,
1378 unsigned long start_time)
1379 {
1380 __part_end_io_acct(part, bio_op(bio), start_time);
1381 hd_struct_put(part);
1382 }
1383 EXPORT_SYMBOL_GPL(part_end_io_acct);
1384
disk_end_io_acct(struct gendisk * disk,unsigned int op,unsigned long start_time)1385 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1386 unsigned long start_time)
1387 {
1388 __part_end_io_acct(&disk->part0, op, start_time);
1389 }
1390 EXPORT_SYMBOL(disk_end_io_acct);
1391
1392 /*
1393 * Steal bios from a request and add them to a bio list.
1394 * The request must not have been partially completed before.
1395 */
blk_steal_bios(struct bio_list * list,struct request * rq)1396 void blk_steal_bios(struct bio_list *list, struct request *rq)
1397 {
1398 if (rq->bio) {
1399 if (list->tail)
1400 list->tail->bi_next = rq->bio;
1401 else
1402 list->head = rq->bio;
1403 list->tail = rq->biotail;
1404
1405 rq->bio = NULL;
1406 rq->biotail = NULL;
1407 }
1408
1409 rq->__data_len = 0;
1410 }
1411 EXPORT_SYMBOL_GPL(blk_steal_bios);
1412
1413 /**
1414 * blk_update_request - Special helper function for request stacking drivers
1415 * @req: the request being processed
1416 * @error: block status code
1417 * @nr_bytes: number of bytes to complete @req
1418 *
1419 * Description:
1420 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1421 * the request structure even if @req doesn't have leftover.
1422 * If @req has leftover, sets it up for the next range of segments.
1423 *
1424 * This special helper function is only for request stacking drivers
1425 * (e.g. request-based dm) so that they can handle partial completion.
1426 * Actual device drivers should use blk_mq_end_request instead.
1427 *
1428 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1429 * %false return from this function.
1430 *
1431 * Note:
1432 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1433 * blk_rq_bytes() and in blk_update_request().
1434 *
1435 * Return:
1436 * %false - this request doesn't have any more data
1437 * %true - this request has more data
1438 **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)1439 bool blk_update_request(struct request *req, blk_status_t error,
1440 unsigned int nr_bytes)
1441 {
1442 int total_bytes;
1443
1444 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1445
1446 if (!req->bio)
1447 return false;
1448
1449 #ifdef CONFIG_BLK_DEV_INTEGRITY
1450 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1451 error == BLK_STS_OK)
1452 req->q->integrity.profile->complete_fn(req, nr_bytes);
1453 #endif
1454
1455 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1456 !(req->rq_flags & RQF_QUIET)))
1457 print_req_error(req, error, __func__);
1458
1459 blk_account_io_completion(req, nr_bytes);
1460
1461 total_bytes = 0;
1462 while (req->bio) {
1463 struct bio *bio = req->bio;
1464 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1465
1466 if (bio_bytes == bio->bi_iter.bi_size)
1467 req->bio = bio->bi_next;
1468
1469 /* Completion has already been traced */
1470 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1471 req_bio_endio(req, bio, bio_bytes, error);
1472
1473 total_bytes += bio_bytes;
1474 nr_bytes -= bio_bytes;
1475
1476 if (!nr_bytes)
1477 break;
1478 }
1479
1480 /*
1481 * completely done
1482 */
1483 if (!req->bio) {
1484 /*
1485 * Reset counters so that the request stacking driver
1486 * can find how many bytes remain in the request
1487 * later.
1488 */
1489 req->__data_len = 0;
1490 return false;
1491 }
1492
1493 req->__data_len -= total_bytes;
1494
1495 /* update sector only for requests with clear definition of sector */
1496 if (!blk_rq_is_passthrough(req))
1497 req->__sector += total_bytes >> 9;
1498
1499 /* mixed attributes always follow the first bio */
1500 if (req->rq_flags & RQF_MIXED_MERGE) {
1501 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1502 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1503 }
1504
1505 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1506 /*
1507 * If total number of sectors is less than the first segment
1508 * size, something has gone terribly wrong.
1509 */
1510 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1511 blk_dump_rq_flags(req, "request botched");
1512 req->__data_len = blk_rq_cur_bytes(req);
1513 }
1514
1515 /* recalculate the number of segments */
1516 req->nr_phys_segments = blk_recalc_rq_segments(req);
1517 }
1518
1519 return true;
1520 }
1521 EXPORT_SYMBOL_GPL(blk_update_request);
1522
1523 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1524 /**
1525 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1526 * @rq: the request to be flushed
1527 *
1528 * Description:
1529 * Flush all pages in @rq.
1530 */
rq_flush_dcache_pages(struct request * rq)1531 void rq_flush_dcache_pages(struct request *rq)
1532 {
1533 struct req_iterator iter;
1534 struct bio_vec bvec;
1535
1536 rq_for_each_segment(bvec, rq, iter)
1537 flush_dcache_page(bvec.bv_page);
1538 }
1539 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1540 #endif
1541
1542 /**
1543 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1544 * @q : the queue of the device being checked
1545 *
1546 * Description:
1547 * Check if underlying low-level drivers of a device are busy.
1548 * If the drivers want to export their busy state, they must set own
1549 * exporting function using blk_queue_lld_busy() first.
1550 *
1551 * Basically, this function is used only by request stacking drivers
1552 * to stop dispatching requests to underlying devices when underlying
1553 * devices are busy. This behavior helps more I/O merging on the queue
1554 * of the request stacking driver and prevents I/O throughput regression
1555 * on burst I/O load.
1556 *
1557 * Return:
1558 * 0 - Not busy (The request stacking driver should dispatch request)
1559 * 1 - Busy (The request stacking driver should stop dispatching request)
1560 */
blk_lld_busy(struct request_queue * q)1561 int blk_lld_busy(struct request_queue *q)
1562 {
1563 if (queue_is_mq(q) && q->mq_ops->busy)
1564 return q->mq_ops->busy(q);
1565
1566 return 0;
1567 }
1568 EXPORT_SYMBOL_GPL(blk_lld_busy);
1569
1570 /**
1571 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1572 * @rq: the clone request to be cleaned up
1573 *
1574 * Description:
1575 * Free all bios in @rq for a cloned request.
1576 */
blk_rq_unprep_clone(struct request * rq)1577 void blk_rq_unprep_clone(struct request *rq)
1578 {
1579 struct bio *bio;
1580
1581 while ((bio = rq->bio) != NULL) {
1582 rq->bio = bio->bi_next;
1583
1584 bio_put(bio);
1585 }
1586 }
1587 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1588
1589 /**
1590 * blk_rq_prep_clone - Helper function to setup clone request
1591 * @rq: the request to be setup
1592 * @rq_src: original request to be cloned
1593 * @bs: bio_set that bios for clone are allocated from
1594 * @gfp_mask: memory allocation mask for bio
1595 * @bio_ctr: setup function to be called for each clone bio.
1596 * Returns %0 for success, non %0 for failure.
1597 * @data: private data to be passed to @bio_ctr
1598 *
1599 * Description:
1600 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1601 * Also, pages which the original bios are pointing to are not copied
1602 * and the cloned bios just point same pages.
1603 * So cloned bios must be completed before original bios, which means
1604 * the caller must complete @rq before @rq_src.
1605 */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)1606 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1607 struct bio_set *bs, gfp_t gfp_mask,
1608 int (*bio_ctr)(struct bio *, struct bio *, void *),
1609 void *data)
1610 {
1611 struct bio *bio, *bio_src;
1612
1613 if (!bs)
1614 bs = &fs_bio_set;
1615
1616 __rq_for_each_bio(bio_src, rq_src) {
1617 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1618 if (!bio)
1619 goto free_and_out;
1620
1621 if (bio_ctr && bio_ctr(bio, bio_src, data))
1622 goto free_and_out;
1623
1624 if (rq->bio) {
1625 rq->biotail->bi_next = bio;
1626 rq->biotail = bio;
1627 } else {
1628 rq->bio = rq->biotail = bio;
1629 }
1630 bio = NULL;
1631 }
1632
1633 /* Copy attributes of the original request to the clone request. */
1634 rq->__sector = blk_rq_pos(rq_src);
1635 rq->__data_len = blk_rq_bytes(rq_src);
1636 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1637 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1638 rq->special_vec = rq_src->special_vec;
1639 }
1640 rq->nr_phys_segments = rq_src->nr_phys_segments;
1641 rq->ioprio = rq_src->ioprio;
1642
1643 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1644 goto free_and_out;
1645
1646 return 0;
1647
1648 free_and_out:
1649 if (bio)
1650 bio_put(bio);
1651 blk_rq_unprep_clone(rq);
1652
1653 return -ENOMEM;
1654 }
1655 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1656
kblockd_schedule_work(struct work_struct * work)1657 int kblockd_schedule_work(struct work_struct *work)
1658 {
1659 return queue_work(kblockd_workqueue, work);
1660 }
1661 EXPORT_SYMBOL(kblockd_schedule_work);
1662
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1663 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1664 unsigned long delay)
1665 {
1666 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1667 }
1668 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1669
1670 /**
1671 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1672 * @plug: The &struct blk_plug that needs to be initialized
1673 *
1674 * Description:
1675 * blk_start_plug() indicates to the block layer an intent by the caller
1676 * to submit multiple I/O requests in a batch. The block layer may use
1677 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1678 * is called. However, the block layer may choose to submit requests
1679 * before a call to blk_finish_plug() if the number of queued I/Os
1680 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1681 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1682 * the task schedules (see below).
1683 *
1684 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1685 * pending I/O should the task end up blocking between blk_start_plug() and
1686 * blk_finish_plug(). This is important from a performance perspective, but
1687 * also ensures that we don't deadlock. For instance, if the task is blocking
1688 * for a memory allocation, memory reclaim could end up wanting to free a
1689 * page belonging to that request that is currently residing in our private
1690 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1691 * this kind of deadlock.
1692 */
blk_start_plug(struct blk_plug * plug)1693 void blk_start_plug(struct blk_plug *plug)
1694 {
1695 struct task_struct *tsk = current;
1696
1697 /*
1698 * If this is a nested plug, don't actually assign it.
1699 */
1700 if (tsk->plug)
1701 return;
1702
1703 INIT_LIST_HEAD(&plug->mq_list);
1704 INIT_LIST_HEAD(&plug->cb_list);
1705 plug->rq_count = 0;
1706 plug->multiple_queues = false;
1707 plug->nowait = false;
1708
1709 /*
1710 * Store ordering should not be needed here, since a potential
1711 * preempt will imply a full memory barrier
1712 */
1713 tsk->plug = plug;
1714 }
1715 EXPORT_SYMBOL(blk_start_plug);
1716
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1717 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1718 {
1719 LIST_HEAD(callbacks);
1720
1721 while (!list_empty(&plug->cb_list)) {
1722 list_splice_init(&plug->cb_list, &callbacks);
1723
1724 while (!list_empty(&callbacks)) {
1725 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1726 struct blk_plug_cb,
1727 list);
1728 list_del(&cb->list);
1729 cb->callback(cb, from_schedule);
1730 }
1731 }
1732 }
1733
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1734 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1735 int size)
1736 {
1737 struct blk_plug *plug = current->plug;
1738 struct blk_plug_cb *cb;
1739
1740 if (!plug)
1741 return NULL;
1742
1743 list_for_each_entry(cb, &plug->cb_list, list)
1744 if (cb->callback == unplug && cb->data == data)
1745 return cb;
1746
1747 /* Not currently on the callback list */
1748 BUG_ON(size < sizeof(*cb));
1749 cb = kzalloc(size, GFP_ATOMIC);
1750 if (cb) {
1751 cb->data = data;
1752 cb->callback = unplug;
1753 list_add(&cb->list, &plug->cb_list);
1754 }
1755 return cb;
1756 }
1757 EXPORT_SYMBOL(blk_check_plugged);
1758
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)1759 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1760 {
1761 flush_plug_callbacks(plug, from_schedule);
1762
1763 if (!list_empty(&plug->mq_list))
1764 blk_mq_flush_plug_list(plug, from_schedule);
1765 }
1766
1767 /**
1768 * blk_finish_plug - mark the end of a batch of submitted I/O
1769 * @plug: The &struct blk_plug passed to blk_start_plug()
1770 *
1771 * Description:
1772 * Indicate that a batch of I/O submissions is complete. This function
1773 * must be paired with an initial call to blk_start_plug(). The intent
1774 * is to allow the block layer to optimize I/O submission. See the
1775 * documentation for blk_start_plug() for more information.
1776 */
blk_finish_plug(struct blk_plug * plug)1777 void blk_finish_plug(struct blk_plug *plug)
1778 {
1779 if (plug != current->plug)
1780 return;
1781 blk_flush_plug_list(plug, false);
1782
1783 current->plug = NULL;
1784 }
1785 EXPORT_SYMBOL(blk_finish_plug);
1786
blk_io_schedule(void)1787 void blk_io_schedule(void)
1788 {
1789 /* Prevent hang_check timer from firing at us during very long I/O */
1790 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1791
1792 if (timeout)
1793 io_schedule_timeout(timeout);
1794 else
1795 io_schedule();
1796 }
1797 EXPORT_SYMBOL_GPL(blk_io_schedule);
1798
blk_dev_init(void)1799 int __init blk_dev_init(void)
1800 {
1801 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1802 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1803 sizeof_field(struct request, cmd_flags));
1804 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1805 sizeof_field(struct bio, bi_opf));
1806
1807 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1808 kblockd_workqueue = alloc_workqueue("kblockd",
1809 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1810 if (!kblockd_workqueue)
1811 panic("Failed to create kblockd\n");
1812
1813 blk_requestq_cachep = kmem_cache_create("request_queue",
1814 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1815
1816 blk_debugfs_root = debugfs_create_dir("block", NULL);
1817
1818 return 0;
1819 }
1820