xref: /OK3568_Linux_fs/u-boot/drivers/mtd/nand/raw/atmel_nand.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2  * (C) Copyright 2007-2008
3  * Stelian Pop <stelian@popies.net>
4  * Lead Tech Design <www.leadtechdesign.com>
5  *
6  * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
7  *
8  * Add Programmable Multibit ECC support for various AT91 SoC
9  *     (C) Copyright 2012 ATMEL, Hong Xu
10  *
11  * SPDX-License-Identifier:	GPL-2.0+
12  */
13 
14 #include <common.h>
15 #include <asm/gpio.h>
16 #include <asm/arch/gpio.h>
17 
18 #include <malloc.h>
19 #include <nand.h>
20 #include <watchdog.h>
21 #include <linux/mtd/nand_ecc.h>
22 
23 #ifdef CONFIG_ATMEL_NAND_HWECC
24 
25 /* Register access macros */
26 #define ecc_readl(add, reg)				\
27 	readl(add + ATMEL_ECC_##reg)
28 #define ecc_writel(add, reg, value)			\
29 	writel((value), add + ATMEL_ECC_##reg)
30 
31 #include "atmel_nand_ecc.h"	/* Hardware ECC registers */
32 
33 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
34 
35 #ifdef CONFIG_SPL_BUILD
36 #undef CONFIG_SYS_NAND_ONFI_DETECTION
37 #endif
38 
39 struct atmel_nand_host {
40 	struct pmecc_regs __iomem *pmecc;
41 	struct pmecc_errloc_regs __iomem *pmerrloc;
42 	void __iomem		*pmecc_rom_base;
43 
44 	u8		pmecc_corr_cap;
45 	u16		pmecc_sector_size;
46 	u32		pmecc_index_table_offset;
47 	u32		pmecc_version;
48 
49 	int		pmecc_bytes_per_sector;
50 	int		pmecc_sector_number;
51 	int		pmecc_degree;	/* Degree of remainders */
52 	int		pmecc_cw_len;	/* Length of codeword */
53 
54 	/* lookup table for alpha_to and index_of */
55 	void __iomem	*pmecc_alpha_to;
56 	void __iomem	*pmecc_index_of;
57 
58 	/* data for pmecc computation */
59 	int16_t	*pmecc_smu;
60 	int16_t	*pmecc_partial_syn;
61 	int16_t	*pmecc_si;
62 	int16_t	*pmecc_lmu; /* polynomal order */
63 	int	*pmecc_mu;
64 	int	*pmecc_dmu;
65 	int	*pmecc_delta;
66 };
67 
68 static struct atmel_nand_host pmecc_host;
69 static struct nand_ecclayout atmel_pmecc_oobinfo;
70 
71 /*
72  * Return number of ecc bytes per sector according to sector size and
73  * correction capability
74  *
75  * Following table shows what at91 PMECC supported:
76  * Correction Capability	Sector_512_bytes	Sector_1024_bytes
77  * =====================	================	=================
78  *                2-bits                 4-bytes                  4-bytes
79  *                4-bits                 7-bytes                  7-bytes
80  *                8-bits                13-bytes                 14-bytes
81  *               12-bits                20-bytes                 21-bytes
82  *               24-bits                39-bytes                 42-bytes
83  *               32-bits                52-bytes                 56-bytes
84  */
pmecc_get_ecc_bytes(int cap,int sector_size)85 static int pmecc_get_ecc_bytes(int cap, int sector_size)
86 {
87 	int m = 12 + sector_size / 512;
88 	return (m * cap + 7) / 8;
89 }
90 
pmecc_config_ecc_layout(struct nand_ecclayout * layout,int oobsize,int ecc_len)91 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
92 	int oobsize, int ecc_len)
93 {
94 	int i;
95 
96 	layout->eccbytes = ecc_len;
97 
98 	/* ECC will occupy the last ecc_len bytes continuously */
99 	for (i = 0; i < ecc_len; i++)
100 		layout->eccpos[i] = oobsize - ecc_len + i;
101 
102 	layout->oobfree[0].offset = 2;
103 	layout->oobfree[0].length =
104 		oobsize - ecc_len - layout->oobfree[0].offset;
105 }
106 
pmecc_get_alpha_to(struct atmel_nand_host * host)107 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
108 {
109 	int table_size;
110 
111 	table_size = host->pmecc_sector_size == 512 ?
112 		PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;
113 
114 	/* the ALPHA lookup table is right behind the INDEX lookup table. */
115 	return host->pmecc_rom_base + host->pmecc_index_table_offset +
116 			table_size * sizeof(int16_t);
117 }
118 
pmecc_data_free(struct atmel_nand_host * host)119 static void pmecc_data_free(struct atmel_nand_host *host)
120 {
121 	free(host->pmecc_partial_syn);
122 	free(host->pmecc_si);
123 	free(host->pmecc_lmu);
124 	free(host->pmecc_smu);
125 	free(host->pmecc_mu);
126 	free(host->pmecc_dmu);
127 	free(host->pmecc_delta);
128 }
129 
pmecc_data_alloc(struct atmel_nand_host * host)130 static int pmecc_data_alloc(struct atmel_nand_host *host)
131 {
132 	const int cap = host->pmecc_corr_cap;
133 	int size;
134 
135 	size = (2 * cap + 1) * sizeof(int16_t);
136 	host->pmecc_partial_syn = malloc(size);
137 	host->pmecc_si = malloc(size);
138 	host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t));
139 	host->pmecc_smu = malloc((cap + 2) * size);
140 
141 	size = (cap + 1) * sizeof(int);
142 	host->pmecc_mu = malloc(size);
143 	host->pmecc_dmu = malloc(size);
144 	host->pmecc_delta = malloc(size);
145 
146 	if (host->pmecc_partial_syn &&
147 			host->pmecc_si &&
148 			host->pmecc_lmu &&
149 			host->pmecc_smu &&
150 			host->pmecc_mu &&
151 			host->pmecc_dmu &&
152 			host->pmecc_delta)
153 		return 0;
154 
155 	/* error happened */
156 	pmecc_data_free(host);
157 	return -ENOMEM;
158 
159 }
160 
pmecc_gen_syndrome(struct mtd_info * mtd,int sector)161 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
162 {
163 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
164 	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
165 	int i;
166 	uint32_t value;
167 
168 	/* Fill odd syndromes */
169 	for (i = 0; i < host->pmecc_corr_cap; i++) {
170 		value = pmecc_readl(host->pmecc, rem_port[sector].rem[i / 2]);
171 		if (i & 1)
172 			value >>= 16;
173 		value &= 0xffff;
174 		host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
175 	}
176 }
177 
pmecc_substitute(struct mtd_info * mtd)178 static void pmecc_substitute(struct mtd_info *mtd)
179 {
180 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
181 	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
182 	int16_t __iomem *alpha_to = host->pmecc_alpha_to;
183 	int16_t __iomem *index_of = host->pmecc_index_of;
184 	int16_t *partial_syn = host->pmecc_partial_syn;
185 	const int cap = host->pmecc_corr_cap;
186 	int16_t *si;
187 	int i, j;
188 
189 	/* si[] is a table that holds the current syndrome value,
190 	 * an element of that table belongs to the field
191 	 */
192 	si = host->pmecc_si;
193 
194 	memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
195 
196 	/* Computation 2t syndromes based on S(x) */
197 	/* Odd syndromes */
198 	for (i = 1; i < 2 * cap; i += 2) {
199 		for (j = 0; j < host->pmecc_degree; j++) {
200 			if (partial_syn[i] & (0x1 << j))
201 				si[i] = readw(alpha_to + i * j) ^ si[i];
202 		}
203 	}
204 	/* Even syndrome = (Odd syndrome) ** 2 */
205 	for (i = 2, j = 1; j <= cap; i = ++j << 1) {
206 		if (si[j] == 0) {
207 			si[i] = 0;
208 		} else {
209 			int16_t tmp;
210 
211 			tmp = readw(index_of + si[j]);
212 			tmp = (tmp * 2) % host->pmecc_cw_len;
213 			si[i] = readw(alpha_to + tmp);
214 		}
215 	}
216 }
217 
218 /*
219  * This function defines a Berlekamp iterative procedure for
220  * finding the value of the error location polynomial.
221  * The input is si[], initialize by pmecc_substitute().
222  * The output is smu[][].
223  *
224  * This function is written according to chip datasheet Chapter:
225  * Find the Error Location Polynomial Sigma(x) of Section:
226  * Programmable Multibit ECC Control (PMECC).
227  */
pmecc_get_sigma(struct mtd_info * mtd)228 static void pmecc_get_sigma(struct mtd_info *mtd)
229 {
230 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
231 	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
232 
233 	int16_t *lmu = host->pmecc_lmu;
234 	int16_t *si = host->pmecc_si;
235 	int *mu = host->pmecc_mu;
236 	int *dmu = host->pmecc_dmu;	/* Discrepancy */
237 	int *delta = host->pmecc_delta; /* Delta order */
238 	int cw_len = host->pmecc_cw_len;
239 	const int16_t cap = host->pmecc_corr_cap;
240 	const int num = 2 * cap + 1;
241 	int16_t __iomem	*index_of = host->pmecc_index_of;
242 	int16_t __iomem	*alpha_to = host->pmecc_alpha_to;
243 	int i, j, k;
244 	uint32_t dmu_0_count, tmp;
245 	int16_t *smu = host->pmecc_smu;
246 
247 	/* index of largest delta */
248 	int ro;
249 	int largest;
250 	int diff;
251 
252 	/* Init the Sigma(x) */
253 	memset(smu, 0, sizeof(int16_t) * num * (cap + 2));
254 
255 	dmu_0_count = 0;
256 
257 	/* First Row */
258 
259 	/* Mu */
260 	mu[0] = -1;
261 
262 	smu[0] = 1;
263 
264 	/* discrepancy set to 1 */
265 	dmu[0] = 1;
266 	/* polynom order set to 0 */
267 	lmu[0] = 0;
268 	/* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
269 	delta[0] = -1;
270 
271 	/* Second Row */
272 
273 	/* Mu */
274 	mu[1] = 0;
275 	/* Sigma(x) set to 1 */
276 	smu[num] = 1;
277 
278 	/* discrepancy set to S1 */
279 	dmu[1] = si[1];
280 
281 	/* polynom order set to 0 */
282 	lmu[1] = 0;
283 
284 	/* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
285 	delta[1] = 0;
286 
287 	for (i = 1; i <= cap; i++) {
288 		mu[i + 1] = i << 1;
289 		/* Begin Computing Sigma (Mu+1) and L(mu) */
290 		/* check if discrepancy is set to 0 */
291 		if (dmu[i] == 0) {
292 			dmu_0_count++;
293 
294 			tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
295 			if ((cap - (lmu[i] >> 1) - 1) & 0x1)
296 				tmp += 2;
297 			else
298 				tmp += 1;
299 
300 			if (dmu_0_count == tmp) {
301 				for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
302 					smu[(cap + 1) * num + j] =
303 							smu[i * num + j];
304 
305 				lmu[cap + 1] = lmu[i];
306 				return;
307 			}
308 
309 			/* copy polynom */
310 			for (j = 0; j <= lmu[i] >> 1; j++)
311 				smu[(i + 1) * num + j] = smu[i * num + j];
312 
313 			/* copy previous polynom order to the next */
314 			lmu[i + 1] = lmu[i];
315 		} else {
316 			ro = 0;
317 			largest = -1;
318 			/* find largest delta with dmu != 0 */
319 			for (j = 0; j < i; j++) {
320 				if ((dmu[j]) && (delta[j] > largest)) {
321 					largest = delta[j];
322 					ro = j;
323 				}
324 			}
325 
326 			/* compute difference */
327 			diff = (mu[i] - mu[ro]);
328 
329 			/* Compute degree of the new smu polynomial */
330 			if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
331 				lmu[i + 1] = lmu[i];
332 			else
333 				lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
334 
335 			/* Init smu[i+1] with 0 */
336 			for (k = 0; k < num; k++)
337 				smu[(i + 1) * num + k] = 0;
338 
339 			/* Compute smu[i+1] */
340 			for (k = 0; k <= lmu[ro] >> 1; k++) {
341 				int16_t a, b, c;
342 
343 				if (!(smu[ro * num + k] && dmu[i]))
344 					continue;
345 				a = readw(index_of + dmu[i]);
346 				b = readw(index_of + dmu[ro]);
347 				c = readw(index_of + smu[ro * num + k]);
348 				tmp = a + (cw_len - b) + c;
349 				a = readw(alpha_to + tmp % cw_len);
350 				smu[(i + 1) * num + (k + diff)] = a;
351 			}
352 
353 			for (k = 0; k <= lmu[i] >> 1; k++)
354 				smu[(i + 1) * num + k] ^= smu[i * num + k];
355 		}
356 
357 		/* End Computing Sigma (Mu+1) and L(mu) */
358 		/* In either case compute delta */
359 		delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
360 
361 		/* Do not compute discrepancy for the last iteration */
362 		if (i >= cap)
363 			continue;
364 
365 		for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
366 			tmp = 2 * (i - 1);
367 			if (k == 0) {
368 				dmu[i + 1] = si[tmp + 3];
369 			} else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
370 				int16_t a, b, c;
371 				a = readw(index_of +
372 						smu[(i + 1) * num + k]);
373 				b = si[2 * (i - 1) + 3 - k];
374 				c = readw(index_of + b);
375 				tmp = a + c;
376 				tmp %= cw_len;
377 				dmu[i + 1] = readw(alpha_to + tmp) ^
378 					dmu[i + 1];
379 			}
380 		}
381 	}
382 }
383 
pmecc_err_location(struct mtd_info * mtd)384 static int pmecc_err_location(struct mtd_info *mtd)
385 {
386 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
387 	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
388 	const int cap = host->pmecc_corr_cap;
389 	const int num = 2 * cap + 1;
390 	int sector_size = host->pmecc_sector_size;
391 	int err_nbr = 0;	/* number of error */
392 	int roots_nbr;		/* number of roots */
393 	int i;
394 	uint32_t val;
395 	int16_t *smu = host->pmecc_smu;
396 	int timeout = PMECC_MAX_TIMEOUT_US;
397 
398 	pmecc_writel(host->pmerrloc, eldis, PMERRLOC_DISABLE);
399 
400 	for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
401 		pmecc_writel(host->pmerrloc, sigma[i],
402 			     smu[(cap + 1) * num + i]);
403 		err_nbr++;
404 	}
405 
406 	val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
407 	if (sector_size == 1024)
408 		val |= PMERRLOC_ELCFG_SECTOR_1024;
409 
410 	pmecc_writel(host->pmerrloc, elcfg, val);
411 	pmecc_writel(host->pmerrloc, elen,
412 		     sector_size * 8 + host->pmecc_degree * cap);
413 
414 	while (--timeout) {
415 		if (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_CALC_DONE)
416 			break;
417 		WATCHDOG_RESET();
418 		udelay(1);
419 	}
420 
421 	if (!timeout) {
422 		dev_err(host->dev, "atmel_nand : Timeout to calculate PMECC error location\n");
423 		return -1;
424 	}
425 
426 	roots_nbr = (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_ERR_NUM_MASK)
427 			>> 8;
428 	/* Number of roots == degree of smu hence <= cap */
429 	if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
430 		return err_nbr - 1;
431 
432 	/* Number of roots does not match the degree of smu
433 	 * unable to correct error */
434 	return -1;
435 }
436 
pmecc_correct_data(struct mtd_info * mtd,uint8_t * buf,uint8_t * ecc,int sector_num,int extra_bytes,int err_nbr)437 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
438 		int sector_num, int extra_bytes, int err_nbr)
439 {
440 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
441 	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
442 	int i = 0;
443 	int byte_pos, bit_pos, sector_size, pos;
444 	uint32_t tmp;
445 	uint8_t err_byte;
446 
447 	sector_size = host->pmecc_sector_size;
448 
449 	while (err_nbr) {
450 		tmp = pmecc_readl(host->pmerrloc, el[i]) - 1;
451 		byte_pos = tmp / 8;
452 		bit_pos  = tmp % 8;
453 
454 		if (byte_pos >= (sector_size + extra_bytes))
455 			BUG();	/* should never happen */
456 
457 		if (byte_pos < sector_size) {
458 			err_byte = *(buf + byte_pos);
459 			*(buf + byte_pos) ^= (1 << bit_pos);
460 
461 			pos = sector_num * host->pmecc_sector_size + byte_pos;
462 			dev_dbg(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
463 				pos, bit_pos, err_byte, *(buf + byte_pos));
464 		} else {
465 			/* Bit flip in OOB area */
466 			tmp = sector_num * host->pmecc_bytes_per_sector
467 					+ (byte_pos - sector_size);
468 			err_byte = ecc[tmp];
469 			ecc[tmp] ^= (1 << bit_pos);
470 
471 			pos = tmp + nand_chip->ecc.layout->eccpos[0];
472 			dev_dbg(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
473 				pos, bit_pos, err_byte, ecc[tmp]);
474 		}
475 
476 		i++;
477 		err_nbr--;
478 	}
479 
480 	return;
481 }
482 
pmecc_correction(struct mtd_info * mtd,u32 pmecc_stat,uint8_t * buf,u8 * ecc)483 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
484 	u8 *ecc)
485 {
486 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
487 	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
488 	int i, err_nbr, eccbytes;
489 	uint8_t *buf_pos;
490 
491 	/* SAMA5D4 PMECC IP can correct errors for all 0xff page */
492 	if (host->pmecc_version >= PMECC_VERSION_SAMA5D4)
493 		goto normal_check;
494 
495 	eccbytes = nand_chip->ecc.bytes;
496 	for (i = 0; i < eccbytes; i++)
497 		if (ecc[i] != 0xff)
498 			goto normal_check;
499 	/* Erased page, return OK */
500 	return 0;
501 
502 normal_check:
503 	for (i = 0; i < host->pmecc_sector_number; i++) {
504 		err_nbr = 0;
505 		if (pmecc_stat & 0x1) {
506 			buf_pos = buf + i * host->pmecc_sector_size;
507 
508 			pmecc_gen_syndrome(mtd, i);
509 			pmecc_substitute(mtd);
510 			pmecc_get_sigma(mtd);
511 
512 			err_nbr = pmecc_err_location(mtd);
513 			if (err_nbr == -1) {
514 				dev_err(host->dev, "PMECC: Too many errors\n");
515 				mtd->ecc_stats.failed++;
516 				return -EBADMSG;
517 			} else {
518 				pmecc_correct_data(mtd, buf_pos, ecc, i,
519 					host->pmecc_bytes_per_sector, err_nbr);
520 				mtd->ecc_stats.corrected += err_nbr;
521 			}
522 		}
523 		pmecc_stat >>= 1;
524 	}
525 
526 	return 0;
527 }
528 
atmel_nand_pmecc_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)529 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
530 	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
531 {
532 	struct atmel_nand_host *host = nand_get_controller_data(chip);
533 	int eccsize = chip->ecc.size;
534 	uint8_t *oob = chip->oob_poi;
535 	uint32_t *eccpos = chip->ecc.layout->eccpos;
536 	uint32_t stat;
537 	int timeout = PMECC_MAX_TIMEOUT_US;
538 
539 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
540 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
541 	pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
542 		& ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
543 
544 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
545 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
546 
547 	chip->read_buf(mtd, buf, eccsize);
548 	chip->read_buf(mtd, oob, mtd->oobsize);
549 
550 	while (--timeout) {
551 		if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
552 			break;
553 		WATCHDOG_RESET();
554 		udelay(1);
555 	}
556 
557 	if (!timeout) {
558 		dev_err(host->dev, "atmel_nand : Timeout to read PMECC page\n");
559 		return -1;
560 	}
561 
562 	stat = pmecc_readl(host->pmecc, isr);
563 	if (stat != 0)
564 		if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
565 			return -EBADMSG;
566 
567 	return 0;
568 }
569 
atmel_nand_pmecc_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)570 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
571 		struct nand_chip *chip, const uint8_t *buf,
572 		int oob_required, int page)
573 {
574 	struct atmel_nand_host *host = nand_get_controller_data(chip);
575 	uint32_t *eccpos = chip->ecc.layout->eccpos;
576 	int i, j;
577 	int timeout = PMECC_MAX_TIMEOUT_US;
578 
579 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
580 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
581 
582 	pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
583 		PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
584 
585 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
586 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
587 
588 	chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
589 
590 	while (--timeout) {
591 		if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
592 			break;
593 		WATCHDOG_RESET();
594 		udelay(1);
595 	}
596 
597 	if (!timeout) {
598 		dev_err(host->dev, "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n");
599 		goto out;
600 	}
601 
602 	for (i = 0; i < host->pmecc_sector_number; i++) {
603 		for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
604 			int pos;
605 
606 			pos = i * host->pmecc_bytes_per_sector + j;
607 			chip->oob_poi[eccpos[pos]] =
608 				pmecc_readb(host->pmecc, ecc_port[i].ecc[j]);
609 		}
610 	}
611 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
612 out:
613 	return 0;
614 }
615 
atmel_pmecc_core_init(struct mtd_info * mtd)616 static void atmel_pmecc_core_init(struct mtd_info *mtd)
617 {
618 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
619 	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
620 	uint32_t val = 0;
621 	struct nand_ecclayout *ecc_layout;
622 
623 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
624 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
625 
626 	switch (host->pmecc_corr_cap) {
627 	case 2:
628 		val = PMECC_CFG_BCH_ERR2;
629 		break;
630 	case 4:
631 		val = PMECC_CFG_BCH_ERR4;
632 		break;
633 	case 8:
634 		val = PMECC_CFG_BCH_ERR8;
635 		break;
636 	case 12:
637 		val = PMECC_CFG_BCH_ERR12;
638 		break;
639 	case 24:
640 		val = PMECC_CFG_BCH_ERR24;
641 		break;
642 	case 32:
643 		val = PMECC_CFG_BCH_ERR32;
644 		break;
645 	}
646 
647 	if (host->pmecc_sector_size == 512)
648 		val |= PMECC_CFG_SECTOR512;
649 	else if (host->pmecc_sector_size == 1024)
650 		val |= PMECC_CFG_SECTOR1024;
651 
652 	switch (host->pmecc_sector_number) {
653 	case 1:
654 		val |= PMECC_CFG_PAGE_1SECTOR;
655 		break;
656 	case 2:
657 		val |= PMECC_CFG_PAGE_2SECTORS;
658 		break;
659 	case 4:
660 		val |= PMECC_CFG_PAGE_4SECTORS;
661 		break;
662 	case 8:
663 		val |= PMECC_CFG_PAGE_8SECTORS;
664 		break;
665 	}
666 
667 	val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
668 		| PMECC_CFG_AUTO_DISABLE);
669 	pmecc_writel(host->pmecc, cfg, val);
670 
671 	ecc_layout = nand_chip->ecc.layout;
672 	pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
673 	pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
674 	pmecc_writel(host->pmecc, eaddr,
675 			ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
676 	/* See datasheet about PMECC Clock Control Register */
677 	pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
678 	pmecc_writel(host->pmecc, idr, 0xff);
679 	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
680 }
681 
682 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
683 /*
684  * pmecc_choose_ecc - Get ecc requirement from ONFI parameters. If
685  *                    pmecc_corr_cap or pmecc_sector_size is 0, then set it as
686  *                    ONFI ECC parameters.
687  * @host: point to an atmel_nand_host structure.
688  *        if host->pmecc_corr_cap is 0 then set it as the ONFI ecc_bits.
689  *        if host->pmecc_sector_size is 0 then set it as the ONFI sector_size.
690  * @chip: point to an nand_chip structure.
691  * @cap: store the ONFI ECC correct bits capbility
692  * @sector_size: in how many bytes that ONFI require to correct @ecc_bits
693  *
694  * Return 0 if success. otherwise return the error code.
695  */
pmecc_choose_ecc(struct atmel_nand_host * host,struct nand_chip * chip,int * cap,int * sector_size)696 static int pmecc_choose_ecc(struct atmel_nand_host *host,
697 		struct nand_chip *chip,
698 		int *cap, int *sector_size)
699 {
700 	/* Get ECC requirement from ONFI parameters */
701 	*cap = *sector_size = 0;
702 	if (chip->onfi_version) {
703 		*cap = chip->ecc_strength_ds;
704 		*sector_size = chip->ecc_step_ds;
705 		pr_debug("ONFI params, minimum required ECC: %d bits in %d bytes\n",
706 			 *cap, *sector_size);
707 	}
708 
709 	if (*cap == 0 && *sector_size == 0) {
710 		/* Non-ONFI compliant */
711 		dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes\n");
712 		*cap = 2;
713 		*sector_size = 512;
714 	}
715 
716 	/* If head file doesn't specify then use the one in ONFI parameters */
717 	if (host->pmecc_corr_cap == 0) {
718 		/* use the most fitable ecc bits (the near bigger one ) */
719 		if (*cap <= 2)
720 			host->pmecc_corr_cap = 2;
721 		else if (*cap <= 4)
722 			host->pmecc_corr_cap = 4;
723 		else if (*cap <= 8)
724 			host->pmecc_corr_cap = 8;
725 		else if (*cap <= 12)
726 			host->pmecc_corr_cap = 12;
727 		else if (*cap <= 24)
728 			host->pmecc_corr_cap = 24;
729 		else
730 #ifdef CONFIG_SAMA5D2
731 			host->pmecc_corr_cap = 32;
732 #else
733 			host->pmecc_corr_cap = 24;
734 #endif
735 	}
736 	if (host->pmecc_sector_size == 0) {
737 		/* use the most fitable sector size (the near smaller one ) */
738 		if (*sector_size >= 1024)
739 			host->pmecc_sector_size = 1024;
740 		else if (*sector_size >= 512)
741 			host->pmecc_sector_size = 512;
742 		else
743 			return -EINVAL;
744 	}
745 	return 0;
746 }
747 #endif
748 
749 #if defined(NO_GALOIS_TABLE_IN_ROM)
750 static uint16_t *pmecc_galois_table;
deg(unsigned int poly)751 static inline int deg(unsigned int poly)
752 {
753 	/* polynomial degree is the most-significant bit index */
754 	return fls(poly) - 1;
755 }
756 
build_gf_tables(int mm,unsigned int poly,int16_t * index_of,int16_t * alpha_to)757 static int build_gf_tables(int mm, unsigned int poly,
758 			   int16_t *index_of, int16_t *alpha_to)
759 {
760 	unsigned int i, x = 1;
761 	const unsigned int k = 1 << deg(poly);
762 	unsigned int nn = (1 << mm) - 1;
763 
764 	/* primitive polynomial must be of degree m */
765 	if (k != (1u << mm))
766 		return -EINVAL;
767 
768 	for (i = 0; i < nn; i++) {
769 		alpha_to[i] = x;
770 		index_of[x] = i;
771 		if (i && (x == 1))
772 			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
773 			return -EINVAL;
774 		x <<= 1;
775 		if (x & k)
776 			x ^= poly;
777 	}
778 
779 	alpha_to[nn] = 1;
780 	index_of[0] = 0;
781 
782 	return 0;
783 }
784 
create_lookup_table(int sector_size)785 static uint16_t *create_lookup_table(int sector_size)
786 {
787 	int degree = (sector_size == 512) ?
788 			PMECC_GF_DIMENSION_13 :
789 			PMECC_GF_DIMENSION_14;
790 	unsigned int poly = (sector_size == 512) ?
791 			PMECC_GF_13_PRIMITIVE_POLY :
792 			PMECC_GF_14_PRIMITIVE_POLY;
793 	int table_size = (sector_size == 512) ?
794 			PMECC_INDEX_TABLE_SIZE_512 :
795 			PMECC_INDEX_TABLE_SIZE_1024;
796 
797 	int16_t *addr = kzalloc(2 * table_size * sizeof(uint16_t), GFP_KERNEL);
798 	if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
799 		return NULL;
800 
801 	return (uint16_t *)addr;
802 }
803 #endif
804 
atmel_pmecc_nand_init_params(struct nand_chip * nand,struct mtd_info * mtd)805 static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
806 		struct mtd_info *mtd)
807 {
808 	struct atmel_nand_host *host;
809 	int cap, sector_size;
810 
811 	host = &pmecc_host;
812 	nand_set_controller_data(nand, host);
813 
814 	nand->ecc.mode = NAND_ECC_HW;
815 	nand->ecc.calculate = NULL;
816 	nand->ecc.correct = NULL;
817 	nand->ecc.hwctl = NULL;
818 
819 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
820 	host->pmecc_corr_cap = host->pmecc_sector_size = 0;
821 
822 #ifdef CONFIG_PMECC_CAP
823 	host->pmecc_corr_cap = CONFIG_PMECC_CAP;
824 #endif
825 #ifdef CONFIG_PMECC_SECTOR_SIZE
826 	host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
827 #endif
828 	/* Get ECC requirement of ONFI parameters. And if CONFIG_PMECC_CAP or
829 	 * CONFIG_PMECC_SECTOR_SIZE not defined, then use ecc_bits, sector_size
830 	 * from ONFI.
831 	 */
832 	if (pmecc_choose_ecc(host, nand, &cap, &sector_size)) {
833 		dev_err(host->dev, "Required ECC %d bits in %d bytes not supported!\n",
834 			cap, sector_size);
835 		return -EINVAL;
836 	}
837 
838 	if (cap > host->pmecc_corr_cap)
839 		dev_info(host->dev, "WARNING: Using different ecc correct bits(%d bit) from Nand ONFI ECC reqirement (%d bit).\n",
840 				host->pmecc_corr_cap, cap);
841 	if (sector_size < host->pmecc_sector_size)
842 		dev_info(host->dev, "WARNING: Using different ecc correct sector size (%d bytes) from Nand ONFI ECC reqirement (%d bytes).\n",
843 				host->pmecc_sector_size, sector_size);
844 #else	/* CONFIG_SYS_NAND_ONFI_DETECTION */
845 	host->pmecc_corr_cap = CONFIG_PMECC_CAP;
846 	host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
847 #endif
848 
849 	cap = host->pmecc_corr_cap;
850 	sector_size = host->pmecc_sector_size;
851 
852 	/* TODO: need check whether cap & sector_size is validate */
853 #if defined(NO_GALOIS_TABLE_IN_ROM)
854 	/*
855 	 * As pmecc_rom_base is the begin of the gallois field table, So the
856 	 * index offset just set as 0.
857 	 */
858 	host->pmecc_index_table_offset = 0;
859 #else
860 	if (host->pmecc_sector_size == 512)
861 		host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512;
862 	else
863 		host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024;
864 #endif
865 
866 	pr_debug("Initialize PMECC params, cap: %d, sector: %d\n",
867 		 cap, sector_size);
868 
869 	host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
870 	host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
871 			ATMEL_BASE_PMERRLOC;
872 #if defined(NO_GALOIS_TABLE_IN_ROM)
873 	pmecc_galois_table = create_lookup_table(host->pmecc_sector_size);
874 	if (!pmecc_galois_table) {
875 		dev_err(host->dev, "out of memory\n");
876 		return -ENOMEM;
877 	}
878 
879 	host->pmecc_rom_base = (void __iomem *)pmecc_galois_table;
880 #else
881 	host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;
882 #endif
883 
884 	/* ECC is calculated for the whole page (1 step) */
885 	nand->ecc.size = mtd->writesize;
886 
887 	/* set ECC page size and oob layout */
888 	switch (mtd->writesize) {
889 	case 2048:
890 	case 4096:
891 	case 8192:
892 		host->pmecc_degree = (sector_size == 512) ?
893 			PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
894 		host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
895 		host->pmecc_sector_number = mtd->writesize / sector_size;
896 		host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
897 			cap, sector_size);
898 		host->pmecc_alpha_to = pmecc_get_alpha_to(host);
899 		host->pmecc_index_of = host->pmecc_rom_base +
900 			host->pmecc_index_table_offset;
901 
902 		nand->ecc.steps = 1;
903 		nand->ecc.bytes = host->pmecc_bytes_per_sector *
904 				       host->pmecc_sector_number;
905 
906 		if (nand->ecc.bytes > MTD_MAX_ECCPOS_ENTRIES_LARGE) {
907 			dev_err(host->dev, "too large eccpos entries. max support ecc.bytes is %d\n",
908 					MTD_MAX_ECCPOS_ENTRIES_LARGE);
909 			return -EINVAL;
910 		}
911 
912 		if (nand->ecc.bytes > mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {
913 			dev_err(host->dev, "No room for ECC bytes\n");
914 			return -EINVAL;
915 		}
916 		pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
917 					mtd->oobsize,
918 					nand->ecc.bytes);
919 		nand->ecc.layout = &atmel_pmecc_oobinfo;
920 		break;
921 	case 512:
922 	case 1024:
923 		/* TODO */
924 		dev_err(host->dev, "Unsupported page size for PMECC, use Software ECC\n");
925 	default:
926 		/* page size not handled by HW ECC */
927 		/* switching back to soft ECC */
928 		nand->ecc.mode = NAND_ECC_SOFT;
929 		nand->ecc.read_page = NULL;
930 		nand->ecc.postpad = 0;
931 		nand->ecc.prepad = 0;
932 		nand->ecc.bytes = 0;
933 		return 0;
934 	}
935 
936 	/* Allocate data for PMECC computation */
937 	if (pmecc_data_alloc(host)) {
938 		dev_err(host->dev, "Cannot allocate memory for PMECC computation!\n");
939 		return -ENOMEM;
940 	}
941 
942 	nand->options |= NAND_NO_SUBPAGE_WRITE;
943 	nand->ecc.read_page = atmel_nand_pmecc_read_page;
944 	nand->ecc.write_page = atmel_nand_pmecc_write_page;
945 	nand->ecc.strength = cap;
946 
947 	/* Check the PMECC ip version */
948 	host->pmecc_version = pmecc_readl(host->pmerrloc, version);
949 	dev_dbg(host->dev, "PMECC IP version is: %x\n", host->pmecc_version);
950 
951 	atmel_pmecc_core_init(mtd);
952 
953 	return 0;
954 }
955 
956 #else
957 
958 /* oob layout for large page size
959  * bad block info is on bytes 0 and 1
960  * the bytes have to be consecutives to avoid
961  * several NAND_CMD_RNDOUT during read
962  */
963 static struct nand_ecclayout atmel_oobinfo_large = {
964 	.eccbytes = 4,
965 	.eccpos = {60, 61, 62, 63},
966 	.oobfree = {
967 		{2, 58}
968 	},
969 };
970 
971 /* oob layout for small page size
972  * bad block info is on bytes 4 and 5
973  * the bytes have to be consecutives to avoid
974  * several NAND_CMD_RNDOUT during read
975  */
976 static struct nand_ecclayout atmel_oobinfo_small = {
977 	.eccbytes = 4,
978 	.eccpos = {0, 1, 2, 3},
979 	.oobfree = {
980 		{6, 10}
981 	},
982 };
983 
984 /*
985  * Calculate HW ECC
986  *
987  * function called after a write
988  *
989  * mtd:        MTD block structure
990  * dat:        raw data (unused)
991  * ecc_code:   buffer for ECC
992  */
atmel_nand_calculate(struct mtd_info * mtd,const u_char * dat,unsigned char * ecc_code)993 static int atmel_nand_calculate(struct mtd_info *mtd,
994 		const u_char *dat, unsigned char *ecc_code)
995 {
996 	unsigned int ecc_value;
997 
998 	/* get the first 2 ECC bytes */
999 	ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);
1000 
1001 	ecc_code[0] = ecc_value & 0xFF;
1002 	ecc_code[1] = (ecc_value >> 8) & 0xFF;
1003 
1004 	/* get the last 2 ECC bytes */
1005 	ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;
1006 
1007 	ecc_code[2] = ecc_value & 0xFF;
1008 	ecc_code[3] = (ecc_value >> 8) & 0xFF;
1009 
1010 	return 0;
1011 }
1012 
1013 /*
1014  * HW ECC read page function
1015  *
1016  * mtd:        mtd info structure
1017  * chip:       nand chip info structure
1018  * buf:        buffer to store read data
1019  * oob_required:    caller expects OOB data read to chip->oob_poi
1020  */
atmel_nand_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1021 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1022 				uint8_t *buf, int oob_required, int page)
1023 {
1024 	int eccsize = chip->ecc.size;
1025 	int eccbytes = chip->ecc.bytes;
1026 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1027 	uint8_t *p = buf;
1028 	uint8_t *oob = chip->oob_poi;
1029 	uint8_t *ecc_pos;
1030 	int stat;
1031 
1032 	/* read the page */
1033 	chip->read_buf(mtd, p, eccsize);
1034 
1035 	/* move to ECC position if needed */
1036 	if (eccpos[0] != 0) {
1037 		/* This only works on large pages
1038 		 * because the ECC controller waits for
1039 		 * NAND_CMD_RNDOUTSTART after the
1040 		 * NAND_CMD_RNDOUT.
1041 		 * anyway, for small pages, the eccpos[0] == 0
1042 		 */
1043 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1044 				mtd->writesize + eccpos[0], -1);
1045 	}
1046 
1047 	/* the ECC controller needs to read the ECC just after the data */
1048 	ecc_pos = oob + eccpos[0];
1049 	chip->read_buf(mtd, ecc_pos, eccbytes);
1050 
1051 	/* check if there's an error */
1052 	stat = chip->ecc.correct(mtd, p, oob, NULL);
1053 
1054 	if (stat < 0)
1055 		mtd->ecc_stats.failed++;
1056 	else
1057 		mtd->ecc_stats.corrected += stat;
1058 
1059 	/* get back to oob start (end of page) */
1060 	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1061 
1062 	/* read the oob */
1063 	chip->read_buf(mtd, oob, mtd->oobsize);
1064 
1065 	return 0;
1066 }
1067 
1068 /*
1069  * HW ECC Correction
1070  *
1071  * function called after a read
1072  *
1073  * mtd:        MTD block structure
1074  * dat:        raw data read from the chip
1075  * read_ecc:   ECC from the chip (unused)
1076  * isnull:     unused
1077  *
1078  * Detect and correct a 1 bit error for a page
1079  */
atmel_nand_correct(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * isnull)1080 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1081 		u_char *read_ecc, u_char *isnull)
1082 {
1083 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
1084 	unsigned int ecc_status;
1085 	unsigned int ecc_word, ecc_bit;
1086 
1087 	/* get the status from the Status Register */
1088 	ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);
1089 
1090 	/* if there's no error */
1091 	if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1092 		return 0;
1093 
1094 	/* get error bit offset (4 bits) */
1095 	ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;
1096 	/* get word address (12 bits) */
1097 	ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;
1098 	ecc_word >>= 4;
1099 
1100 	/* if there are multiple errors */
1101 	if (ecc_status & ATMEL_ECC_MULERR) {
1102 		/* check if it is a freshly erased block
1103 		 * (filled with 0xff) */
1104 		if ((ecc_bit == ATMEL_ECC_BITADDR)
1105 				&& (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1106 			/* the block has just been erased, return OK */
1107 			return 0;
1108 		}
1109 		/* it doesn't seems to be a freshly
1110 		 * erased block.
1111 		 * We can't correct so many errors */
1112 		dev_warn(host->dev, "atmel_nand : multiple errors detected."
1113 				" Unable to correct.\n");
1114 		return -EBADMSG;
1115 	}
1116 
1117 	/* if there's a single bit error : we can correct it */
1118 	if (ecc_status & ATMEL_ECC_ECCERR) {
1119 		/* there's nothing much to do here.
1120 		 * the bit error is on the ECC itself.
1121 		 */
1122 		dev_warn(host->dev, "atmel_nand : one bit error on ECC code."
1123 				" Nothing to correct\n");
1124 		return 0;
1125 	}
1126 
1127 	dev_warn(host->dev, "atmel_nand : one bit error on data."
1128 			" (word offset in the page :"
1129 			" 0x%x bit offset : 0x%x)\n",
1130 			ecc_word, ecc_bit);
1131 	/* correct the error */
1132 	if (nand_chip->options & NAND_BUSWIDTH_16) {
1133 		/* 16 bits words */
1134 		((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1135 	} else {
1136 		/* 8 bits words */
1137 		dat[ecc_word] ^= (1 << ecc_bit);
1138 	}
1139 	dev_warn(host->dev, "atmel_nand : error corrected\n");
1140 	return 1;
1141 }
1142 
1143 /*
1144  * Enable HW ECC : unused on most chips
1145  */
atmel_nand_hwctl(struct mtd_info * mtd,int mode)1146 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1147 {
1148 }
1149 
atmel_hwecc_nand_init_param(struct nand_chip * nand,struct mtd_info * mtd)1150 int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd)
1151 {
1152 	nand->ecc.mode = NAND_ECC_HW;
1153 	nand->ecc.calculate = atmel_nand_calculate;
1154 	nand->ecc.correct = atmel_nand_correct;
1155 	nand->ecc.hwctl = atmel_nand_hwctl;
1156 	nand->ecc.read_page = atmel_nand_read_page;
1157 	nand->ecc.bytes = 4;
1158 	nand->ecc.strength = 4;
1159 
1160 	if (nand->ecc.mode == NAND_ECC_HW) {
1161 		/* ECC is calculated for the whole page (1 step) */
1162 		nand->ecc.size = mtd->writesize;
1163 
1164 		/* set ECC page size and oob layout */
1165 		switch (mtd->writesize) {
1166 		case 512:
1167 			nand->ecc.layout = &atmel_oobinfo_small;
1168 			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1169 					ATMEL_ECC_PAGESIZE_528);
1170 			break;
1171 		case 1024:
1172 			nand->ecc.layout = &atmel_oobinfo_large;
1173 			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1174 					ATMEL_ECC_PAGESIZE_1056);
1175 			break;
1176 		case 2048:
1177 			nand->ecc.layout = &atmel_oobinfo_large;
1178 			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1179 					ATMEL_ECC_PAGESIZE_2112);
1180 			break;
1181 		case 4096:
1182 			nand->ecc.layout = &atmel_oobinfo_large;
1183 			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1184 					ATMEL_ECC_PAGESIZE_4224);
1185 			break;
1186 		default:
1187 			/* page size not handled by HW ECC */
1188 			/* switching back to soft ECC */
1189 			nand->ecc.mode = NAND_ECC_SOFT;
1190 			nand->ecc.calculate = NULL;
1191 			nand->ecc.correct = NULL;
1192 			nand->ecc.hwctl = NULL;
1193 			nand->ecc.read_page = NULL;
1194 			nand->ecc.postpad = 0;
1195 			nand->ecc.prepad = 0;
1196 			nand->ecc.bytes = 0;
1197 			break;
1198 		}
1199 	}
1200 
1201 	return 0;
1202 }
1203 
1204 #endif /* CONFIG_ATMEL_NAND_HW_PMECC */
1205 
1206 #endif /* CONFIG_ATMEL_NAND_HWECC */
1207 
at91_nand_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)1208 static void at91_nand_hwcontrol(struct mtd_info *mtd,
1209 					 int cmd, unsigned int ctrl)
1210 {
1211 	struct nand_chip *this = mtd_to_nand(mtd);
1212 
1213 	if (ctrl & NAND_CTRL_CHANGE) {
1214 		ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
1215 		IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE
1216 			     | CONFIG_SYS_NAND_MASK_CLE);
1217 
1218 		if (ctrl & NAND_CLE)
1219 			IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;
1220 		if (ctrl & NAND_ALE)
1221 			IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;
1222 
1223 #ifdef CONFIG_SYS_NAND_ENABLE_PIN
1224 		at91_set_gpio_value(CONFIG_SYS_NAND_ENABLE_PIN,
1225 				    !(ctrl & NAND_NCE));
1226 #endif
1227 		this->IO_ADDR_W = (void *) IO_ADDR_W;
1228 	}
1229 
1230 	if (cmd != NAND_CMD_NONE)
1231 		writeb(cmd, this->IO_ADDR_W);
1232 }
1233 
1234 #ifdef CONFIG_SYS_NAND_READY_PIN
at91_nand_ready(struct mtd_info * mtd)1235 static int at91_nand_ready(struct mtd_info *mtd)
1236 {
1237 	return at91_get_gpio_value(CONFIG_SYS_NAND_READY_PIN);
1238 }
1239 #endif
1240 
1241 #ifdef CONFIG_SPL_BUILD
1242 /* The following code is for SPL */
1243 static struct mtd_info *mtd;
1244 static struct nand_chip nand_chip;
1245 
nand_command(int block,int page,uint32_t offs,u8 cmd)1246 static int nand_command(int block, int page, uint32_t offs, u8 cmd)
1247 {
1248 	struct nand_chip *this = mtd_to_nand(mtd);
1249 	int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
1250 	void (*hwctrl)(struct mtd_info *mtd, int cmd,
1251 			unsigned int ctrl) = this->cmd_ctrl;
1252 
1253 	while (!this->dev_ready(mtd))
1254 		;
1255 
1256 	if (cmd == NAND_CMD_READOOB) {
1257 		offs += CONFIG_SYS_NAND_PAGE_SIZE;
1258 		cmd = NAND_CMD_READ0;
1259 	}
1260 
1261 	hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1262 
1263 	if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
1264 		offs >>= 1;
1265 
1266 	hwctrl(mtd, offs & 0xff, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1267 	hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE);
1268 	hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE);
1269 	hwctrl(mtd, ((page_addr >> 8) & 0xff), NAND_CTRL_ALE);
1270 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
1271 	hwctrl(mtd, (page_addr >> 16) & 0x0f, NAND_CTRL_ALE);
1272 #endif
1273 	hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
1274 
1275 	hwctrl(mtd, NAND_CMD_READSTART, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1276 	hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
1277 
1278 	while (!this->dev_ready(mtd))
1279 		;
1280 
1281 	return 0;
1282 }
1283 
nand_is_bad_block(int block)1284 static int nand_is_bad_block(int block)
1285 {
1286 	struct nand_chip *this = mtd_to_nand(mtd);
1287 
1288 	nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
1289 
1290 	if (this->options & NAND_BUSWIDTH_16) {
1291 		if (readw(this->IO_ADDR_R) != 0xffff)
1292 			return 1;
1293 	} else {
1294 		if (readb(this->IO_ADDR_R) != 0xff)
1295 			return 1;
1296 	}
1297 
1298 	return 0;
1299 }
1300 
1301 #ifdef CONFIG_SPL_NAND_ECC
1302 static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
1303 #define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
1304 		  CONFIG_SYS_NAND_ECCSIZE)
1305 #define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
1306 
nand_read_page(int block,int page,void * dst)1307 static int nand_read_page(int block, int page, void *dst)
1308 {
1309 	struct nand_chip *this = mtd_to_nand(mtd);
1310 	u_char ecc_calc[ECCTOTAL];
1311 	u_char ecc_code[ECCTOTAL];
1312 	u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
1313 	int eccsize = CONFIG_SYS_NAND_ECCSIZE;
1314 	int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
1315 	int eccsteps = ECCSTEPS;
1316 	int i;
1317 	uint8_t *p = dst;
1318 	nand_command(block, page, 0, NAND_CMD_READ0);
1319 
1320 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1321 		if (this->ecc.mode != NAND_ECC_SOFT)
1322 			this->ecc.hwctl(mtd, NAND_ECC_READ);
1323 		this->read_buf(mtd, p, eccsize);
1324 		this->ecc.calculate(mtd, p, &ecc_calc[i]);
1325 	}
1326 	this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
1327 
1328 	for (i = 0; i < ECCTOTAL; i++)
1329 		ecc_code[i] = oob_data[nand_ecc_pos[i]];
1330 
1331 	eccsteps = ECCSTEPS;
1332 	p = dst;
1333 
1334 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1335 		this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1336 
1337 	return 0;
1338 }
1339 
spl_nand_erase_one(int block,int page)1340 int spl_nand_erase_one(int block, int page)
1341 {
1342 	struct nand_chip *this = mtd_to_nand(mtd);
1343 	void (*hwctrl)(struct mtd_info *mtd, int cmd,
1344 			unsigned int ctrl) = this->cmd_ctrl;
1345 	int page_addr;
1346 
1347 	if (nand_chip.select_chip)
1348 		nand_chip.select_chip(mtd, 0);
1349 
1350 	page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
1351 	hwctrl(mtd, NAND_CMD_ERASE1, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1352 	/* Row address */
1353 	hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1354 	hwctrl(mtd, ((page_addr >> 8) & 0xff),
1355 	       NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1356 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
1357 	/* One more address cycle for devices > 128MiB */
1358 	hwctrl(mtd, (page_addr >> 16) & 0x0f,
1359 	       NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1360 #endif
1361 	hwctrl(mtd, NAND_CMD_ERASE2, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1362 
1363 	while (!this->dev_ready(mtd))
1364 		;
1365 
1366 	nand_deselect();
1367 
1368 	return 0;
1369 }
1370 #else
nand_read_page(int block,int page,void * dst)1371 static int nand_read_page(int block, int page, void *dst)
1372 {
1373 	struct nand_chip *this = mtd_to_nand(mtd);
1374 
1375 	nand_command(block, page, 0, NAND_CMD_READ0);
1376 	atmel_nand_pmecc_read_page(mtd, this, dst, 0, page);
1377 
1378 	return 0;
1379 }
1380 #endif /* CONFIG_SPL_NAND_ECC */
1381 
at91_nand_wait_ready(struct mtd_info * mtd)1382 int at91_nand_wait_ready(struct mtd_info *mtd)
1383 {
1384 	struct nand_chip *this = mtd_to_nand(mtd);
1385 
1386 	udelay(this->chip_delay);
1387 
1388 	return 1;
1389 }
1390 
board_nand_init(struct nand_chip * nand)1391 int board_nand_init(struct nand_chip *nand)
1392 {
1393 	int ret = 0;
1394 
1395 	nand->ecc.mode = NAND_ECC_SOFT;
1396 #ifdef CONFIG_SYS_NAND_DBW_16
1397 	nand->options = NAND_BUSWIDTH_16;
1398 	nand->read_buf = nand_read_buf16;
1399 #else
1400 	nand->read_buf = nand_read_buf;
1401 #endif
1402 	nand->cmd_ctrl = at91_nand_hwcontrol;
1403 #ifdef CONFIG_SYS_NAND_READY_PIN
1404 	nand->dev_ready = at91_nand_ready;
1405 #else
1406 	nand->dev_ready = at91_nand_wait_ready;
1407 #endif
1408 	nand->chip_delay = 20;
1409 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1410 	nand->bbt_options |= NAND_BBT_USE_FLASH;
1411 #endif
1412 
1413 #ifdef CONFIG_ATMEL_NAND_HWECC
1414 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
1415 	ret = atmel_pmecc_nand_init_params(nand, mtd);
1416 #endif
1417 #endif
1418 
1419 	return ret;
1420 }
1421 
nand_init(void)1422 void nand_init(void)
1423 {
1424 	mtd = nand_to_mtd(&nand_chip);
1425 	mtd->writesize = CONFIG_SYS_NAND_PAGE_SIZE;
1426 	mtd->oobsize = CONFIG_SYS_NAND_OOBSIZE;
1427 	nand_chip.IO_ADDR_R = (void __iomem *)CONFIG_SYS_NAND_BASE;
1428 	nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
1429 	board_nand_init(&nand_chip);
1430 
1431 #ifdef CONFIG_SPL_NAND_ECC
1432 	if (nand_chip.ecc.mode == NAND_ECC_SOFT) {
1433 		nand_chip.ecc.calculate = nand_calculate_ecc;
1434 		nand_chip.ecc.correct = nand_correct_data;
1435 	}
1436 #endif
1437 
1438 	if (nand_chip.select_chip)
1439 		nand_chip.select_chip(mtd, 0);
1440 }
1441 
nand_deselect(void)1442 void nand_deselect(void)
1443 {
1444 	if (nand_chip.select_chip)
1445 		nand_chip.select_chip(mtd, -1);
1446 }
1447 
1448 #include "nand_spl_loaders.c"
1449 
1450 #else
1451 
1452 #ifndef CONFIG_SYS_NAND_BASE_LIST
1453 #define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
1454 #endif
1455 static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
1456 static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;
1457 
atmel_nand_chip_init(int devnum,ulong base_addr)1458 int atmel_nand_chip_init(int devnum, ulong base_addr)
1459 {
1460 	int ret;
1461 	struct nand_chip *nand = &nand_chip[devnum];
1462 	struct mtd_info *mtd = nand_to_mtd(nand);
1463 
1464 	nand->IO_ADDR_R = nand->IO_ADDR_W = (void  __iomem *)base_addr;
1465 
1466 #ifdef CONFIG_NAND_ECC_BCH
1467 	nand->ecc.mode = NAND_ECC_SOFT_BCH;
1468 #else
1469 	nand->ecc.mode = NAND_ECC_SOFT;
1470 #endif
1471 #ifdef CONFIG_SYS_NAND_DBW_16
1472 	nand->options = NAND_BUSWIDTH_16;
1473 #endif
1474 	nand->cmd_ctrl = at91_nand_hwcontrol;
1475 #ifdef CONFIG_SYS_NAND_READY_PIN
1476 	nand->dev_ready = at91_nand_ready;
1477 #endif
1478 	nand->chip_delay = 75;
1479 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1480 	nand->bbt_options |= NAND_BBT_USE_FLASH;
1481 #endif
1482 
1483 	ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
1484 	if (ret)
1485 		return ret;
1486 
1487 #ifdef CONFIG_ATMEL_NAND_HWECC
1488 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
1489 	ret = atmel_pmecc_nand_init_params(nand, mtd);
1490 #else
1491 	ret = atmel_hwecc_nand_init_param(nand, mtd);
1492 #endif
1493 	if (ret)
1494 		return ret;
1495 #endif
1496 
1497 	ret = nand_scan_tail(mtd);
1498 	if (!ret)
1499 		nand_register(devnum, mtd);
1500 
1501 	return ret;
1502 }
1503 
board_nand_init(void)1504 void board_nand_init(void)
1505 {
1506 	int i;
1507 	for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
1508 		if (atmel_nand_chip_init(i, base_addr[i]))
1509 			dev_err(host->dev, "atmel_nand: Fail to initialize #%d chip",
1510 				i);
1511 }
1512 #endif /* CONFIG_SPL_BUILD */
1513