xref: /OK3568_Linux_fs/kernel/arch/arm64/kernel/process.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/process.c
4  *
5  * Original Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <stdarg.h>
11 
12 #include <linux/compat.h>
13 #include <linux/efi.h>
14 #include <linux/elf.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/sched/debug.h>
18 #include <linux/sched/task.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/kernel.h>
21 #include <linux/lockdep.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/nospec.h>
25 #include <linux/stddef.h>
26 #include <linux/sysctl.h>
27 #include <linux/unistd.h>
28 #include <linux/user.h>
29 #include <linux/delay.h>
30 #include <linux/reboot.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/cpu.h>
34 #include <linux/elfcore.h>
35 #include <linux/pm.h>
36 #include <linux/tick.h>
37 #include <linux/utsname.h>
38 #include <linux/uaccess.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/personality.h>
42 #include <linux/notifier.h>
43 #include <trace/events/power.h>
44 #include <linux/percpu.h>
45 #include <linux/thread_info.h>
46 #include <linux/prctl.h>
47 #include <trace/hooks/fpsimd.h>
48 
49 #include <asm/alternative.h>
50 #include <asm/arch_gicv3.h>
51 #include <asm/compat.h>
52 #include <asm/cpufeature.h>
53 #include <asm/cacheflush.h>
54 #include <asm/exec.h>
55 #include <asm/fpsimd.h>
56 #include <asm/mmu_context.h>
57 #include <asm/mte.h>
58 #include <asm/processor.h>
59 #include <asm/pointer_auth.h>
60 #include <asm/stacktrace.h>
61 
62 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
63 #include <linux/stackprotector.h>
64 unsigned long __stack_chk_guard __ro_after_init;
65 EXPORT_SYMBOL(__stack_chk_guard);
66 #endif
67 
68 /*
69  * Function pointers to optional machine specific functions
70  */
71 void (*pm_power_off)(void);
72 EXPORT_SYMBOL_GPL(pm_power_off);
73 
__cpu_do_idle(void)74 static void noinstr __cpu_do_idle(void)
75 {
76 	dsb(sy);
77 	wfi();
78 }
79 
__cpu_do_idle_irqprio(void)80 static void noinstr __cpu_do_idle_irqprio(void)
81 {
82 	unsigned long pmr;
83 	unsigned long daif_bits;
84 
85 	daif_bits = read_sysreg(daif);
86 	write_sysreg(daif_bits | PSR_I_BIT, daif);
87 
88 	/*
89 	 * Unmask PMR before going idle to make sure interrupts can
90 	 * be raised.
91 	 */
92 	pmr = gic_read_pmr();
93 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
94 
95 	__cpu_do_idle();
96 
97 	gic_write_pmr(pmr);
98 	write_sysreg(daif_bits, daif);
99 }
100 
101 /*
102  *	cpu_do_idle()
103  *
104  *	Idle the processor (wait for interrupt).
105  *
106  *	If the CPU supports priority masking we must do additional work to
107  *	ensure that interrupts are not masked at the PMR (because the core will
108  *	not wake up if we block the wake up signal in the interrupt controller).
109  */
cpu_do_idle(void)110 void noinstr cpu_do_idle(void)
111 {
112 	if (system_uses_irq_prio_masking())
113 		__cpu_do_idle_irqprio();
114 	else
115 		__cpu_do_idle();
116 }
117 
118 /*
119  * This is our default idle handler.
120  */
arch_cpu_idle(void)121 void noinstr arch_cpu_idle(void)
122 {
123 	/*
124 	 * This should do all the clock switching and wait for interrupt
125 	 * tricks
126 	 */
127 	cpu_do_idle();
128 	raw_local_irq_enable();
129 }
130 
arch_cpu_idle_enter(void)131 void arch_cpu_idle_enter(void)
132 {
133 	idle_notifier_call_chain(IDLE_START);
134 }
135 
arch_cpu_idle_exit(void)136 void arch_cpu_idle_exit(void)
137 {
138 	idle_notifier_call_chain(IDLE_END);
139 }
140 
141 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)142 void arch_cpu_idle_dead(void)
143 {
144        cpu_die();
145 }
146 #endif
147 
148 /*
149  * Called by kexec, immediately prior to machine_kexec().
150  *
151  * This must completely disable all secondary CPUs; simply causing those CPUs
152  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
153  * kexec'd kernel to use any and all RAM as it sees fit, without having to
154  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
155  * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
156  */
machine_shutdown(void)157 void machine_shutdown(void)
158 {
159 	smp_shutdown_nonboot_cpus(reboot_cpu);
160 }
161 
162 /*
163  * Halting simply requires that the secondary CPUs stop performing any
164  * activity (executing tasks, handling interrupts). smp_send_stop()
165  * achieves this.
166  */
machine_halt(void)167 void machine_halt(void)
168 {
169 	local_irq_disable();
170 	smp_send_stop();
171 	while (1);
172 }
173 
174 /*
175  * Power-off simply requires that the secondary CPUs stop performing any
176  * activity (executing tasks, handling interrupts). smp_send_stop()
177  * achieves this. When the system power is turned off, it will take all CPUs
178  * with it.
179  */
machine_power_off(void)180 void machine_power_off(void)
181 {
182 	local_irq_disable();
183 	smp_send_stop();
184 	if (pm_power_off)
185 		pm_power_off();
186 }
187 
188 /*
189  * Restart requires that the secondary CPUs stop performing any activity
190  * while the primary CPU resets the system. Systems with multiple CPUs must
191  * provide a HW restart implementation, to ensure that all CPUs reset at once.
192  * This is required so that any code running after reset on the primary CPU
193  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
194  * executing pre-reset code, and using RAM that the primary CPU's code wishes
195  * to use. Implementing such co-ordination would be essentially impossible.
196  */
machine_restart(char * cmd)197 void machine_restart(char *cmd)
198 {
199 	/* Disable interrupts first */
200 	local_irq_disable();
201 	smp_send_stop();
202 
203 	do_kernel_pre_restart(cmd);
204 
205 	/*
206 	 * UpdateCapsule() depends on the system being reset via
207 	 * ResetSystem().
208 	 */
209 	if (efi_enabled(EFI_RUNTIME_SERVICES))
210 		efi_reboot(reboot_mode, NULL);
211 
212 	/* Now call the architecture specific reboot code. */
213 	do_kernel_restart(cmd);
214 
215 	/*
216 	 * Whoops - the architecture was unable to reboot.
217 	 */
218 	printk("Reboot failed -- System halted\n");
219 	while (1);
220 }
221 
222 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
223 static const char *const btypes[] = {
224 	bstr(NONE, "--"),
225 	bstr(  JC, "jc"),
226 	bstr(   C, "-c"),
227 	bstr(  J , "j-")
228 };
229 #undef bstr
230 
print_pstate(struct pt_regs * regs)231 static void print_pstate(struct pt_regs *regs)
232 {
233 	u64 pstate = regs->pstate;
234 
235 	if (compat_user_mode(regs)) {
236 		printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
237 			pstate,
238 			pstate & PSR_AA32_N_BIT ? 'N' : 'n',
239 			pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
240 			pstate & PSR_AA32_C_BIT ? 'C' : 'c',
241 			pstate & PSR_AA32_V_BIT ? 'V' : 'v',
242 			pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
243 			pstate & PSR_AA32_T_BIT ? "T32" : "A32",
244 			pstate & PSR_AA32_E_BIT ? "BE" : "LE",
245 			pstate & PSR_AA32_A_BIT ? 'A' : 'a',
246 			pstate & PSR_AA32_I_BIT ? 'I' : 'i',
247 			pstate & PSR_AA32_F_BIT ? 'F' : 'f');
248 	} else {
249 		const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
250 					       PSR_BTYPE_SHIFT];
251 
252 		printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n",
253 			pstate,
254 			pstate & PSR_N_BIT ? 'N' : 'n',
255 			pstate & PSR_Z_BIT ? 'Z' : 'z',
256 			pstate & PSR_C_BIT ? 'C' : 'c',
257 			pstate & PSR_V_BIT ? 'V' : 'v',
258 			pstate & PSR_D_BIT ? 'D' : 'd',
259 			pstate & PSR_A_BIT ? 'A' : 'a',
260 			pstate & PSR_I_BIT ? 'I' : 'i',
261 			pstate & PSR_F_BIT ? 'F' : 'f',
262 			pstate & PSR_PAN_BIT ? '+' : '-',
263 			pstate & PSR_UAO_BIT ? '+' : '-',
264 			pstate & PSR_TCO_BIT ? '+' : '-',
265 			btype_str);
266 	}
267 }
268 
269 /*
270  * dump a block of kernel memory from around the given address
271  */
show_data(unsigned long addr,int nbytes,const char * name)272 static void show_data(unsigned long addr, int nbytes, const char *name)
273 {
274 	int	i, j;
275 	int	nlines;
276 	u32	*p;
277 
278 	/*
279 	 * don't attempt to dump non-kernel addresses or
280 	 * values that are probably just small negative numbers
281 	 */
282 	if (addr < PAGE_OFFSET || addr > -4096UL)
283 		return;
284 
285 	printk("\n%s: %#lx:\n", name, addr + nbytes / 2);
286 
287 	/*
288 	 * round address down to a 32 bit boundary
289 	 * and always dump a multiple of 32 bytes
290 	 */
291 	p = (u32 *)(addr & ~(sizeof(u32) - 1));
292 	nbytes += (addr & (sizeof(u32) - 1));
293 	nlines = (nbytes + 31) / 32;
294 
295 
296 	for (i = 0; i < nlines; i++) {
297 		/*
298 		 * just display low 16 bits of address to keep
299 		 * each line of the dump < 80 characters
300 		 */
301 		if (i == (nlines / 2))
302 			printk("%04lx*", (unsigned long)p & 0xffff);
303 		else
304 			printk("%04lx ", (unsigned long)p & 0xffff);
305 
306 		for (j = 0; j < 8; j++) {
307 			u32	data;
308 
309 			if (aarch64_insn_read((void *)p, &data)) {
310 				pr_cont(" ********");
311 			} else {
312 				pr_cont(" %08x", data);
313 			}
314 			++p;
315 		}
316 		pr_cont("\n");
317 	}
318 }
319 
show_extra_register_data(struct pt_regs * regs,int nbytes)320 static void show_extra_register_data(struct pt_regs *regs, int nbytes)
321 {
322 	mm_segment_t fs;
323 	unsigned int i;
324 
325 	fs = get_fs();
326 	set_fs(KERNEL_DS);
327 	show_data(regs->pc - nbytes, nbytes * 2, "PC");
328 	show_data(regs->regs[30] - nbytes, nbytes * 2, "LR");
329 	show_data(regs->sp - nbytes, nbytes * 2, "SP");
330 	for (i = 0; i < 30; i++) {
331 		char name[4];
332 		snprintf(name, sizeof(name), "X%u", i);
333 		show_data(regs->regs[i] - nbytes, nbytes * 2, name);
334 	}
335 	set_fs(fs);
336 }
337 
__show_regs(struct pt_regs * regs)338 void __show_regs(struct pt_regs *regs)
339 {
340 	int i, top_reg;
341 	u64 lr, sp;
342 
343 	if (compat_user_mode(regs)) {
344 		lr = regs->compat_lr;
345 		sp = regs->compat_sp;
346 		top_reg = 12;
347 	} else {
348 		lr = regs->regs[30];
349 		sp = regs->sp;
350 		top_reg = 29;
351 	}
352 
353 	show_regs_print_info(KERN_DEFAULT);
354 	print_pstate(regs);
355 
356 	if (!user_mode(regs)) {
357 		printk("pc : %pS\n", (void *)regs->pc);
358 		printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
359 	} else {
360 		printk("pc : %016llx\n", regs->pc);
361 		printk("lr : %016llx\n", lr);
362 	}
363 
364 	printk("sp : %016llx\n", sp);
365 
366 	if (system_uses_irq_prio_masking())
367 		printk("pmr_save: %08llx\n", regs->pmr_save);
368 
369 	i = top_reg;
370 
371 	while (i >= 0) {
372 		printk("x%-2d: %016llx ", i, regs->regs[i]);
373 		i--;
374 
375 		if (i % 2 == 0) {
376 			pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
377 			i--;
378 		}
379 
380 		pr_cont("\n");
381 	}
382 }
383 
show_regs(struct pt_regs * regs)384 void show_regs(struct pt_regs * regs)
385 {
386 	__show_regs(regs);
387 	dump_backtrace(regs, NULL, KERN_DEFAULT);
388 
389 	if (!user_mode(regs))
390 		show_extra_register_data(regs, 512);
391 }
392 EXPORT_SYMBOL_GPL(show_regs);
393 
tls_thread_flush(void)394 static void tls_thread_flush(void)
395 {
396 	write_sysreg(0, tpidr_el0);
397 
398 	if (is_compat_task()) {
399 		current->thread.uw.tp_value = 0;
400 
401 		/*
402 		 * We need to ensure ordering between the shadow state and the
403 		 * hardware state, so that we don't corrupt the hardware state
404 		 * with a stale shadow state during context switch.
405 		 */
406 		barrier();
407 		write_sysreg(0, tpidrro_el0);
408 	}
409 }
410 
flush_tagged_addr_state(void)411 static void flush_tagged_addr_state(void)
412 {
413 	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
414 		clear_thread_flag(TIF_TAGGED_ADDR);
415 }
416 
flush_thread(void)417 void flush_thread(void)
418 {
419 	fpsimd_flush_thread();
420 	tls_thread_flush();
421 	flush_ptrace_hw_breakpoint(current);
422 	flush_tagged_addr_state();
423 }
424 
release_thread(struct task_struct * dead_task)425 void release_thread(struct task_struct *dead_task)
426 {
427 }
428 
arch_release_task_struct(struct task_struct * tsk)429 void arch_release_task_struct(struct task_struct *tsk)
430 {
431 	fpsimd_release_task(tsk);
432 }
433 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)434 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
435 {
436 	if (current->mm)
437 		fpsimd_preserve_current_state();
438 	*dst = *src;
439 
440 	/* We rely on the above assignment to initialize dst's thread_flags: */
441 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
442 
443 	/*
444 	 * Detach src's sve_state (if any) from dst so that it does not
445 	 * get erroneously used or freed prematurely.  dst's sve_state
446 	 * will be allocated on demand later on if dst uses SVE.
447 	 * For consistency, also clear TIF_SVE here: this could be done
448 	 * later in copy_process(), but to avoid tripping up future
449 	 * maintainers it is best not to leave TIF_SVE and sve_state in
450 	 * an inconsistent state, even temporarily.
451 	 */
452 	dst->thread.sve_state = NULL;
453 	clear_tsk_thread_flag(dst, TIF_SVE);
454 
455 	/* clear any pending asynchronous tag fault raised by the parent */
456 	clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
457 
458 	return 0;
459 }
460 
461 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
462 
copy_thread(unsigned long clone_flags,unsigned long stack_start,unsigned long stk_sz,struct task_struct * p,unsigned long tls)463 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
464 		unsigned long stk_sz, struct task_struct *p, unsigned long tls)
465 {
466 	struct pt_regs *childregs = task_pt_regs(p);
467 
468 	memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
469 
470 	/*
471 	 * In case p was allocated the same task_struct pointer as some
472 	 * other recently-exited task, make sure p is disassociated from
473 	 * any cpu that may have run that now-exited task recently.
474 	 * Otherwise we could erroneously skip reloading the FPSIMD
475 	 * registers for p.
476 	 */
477 	fpsimd_flush_task_state(p);
478 
479 	ptrauth_thread_init_kernel(p);
480 
481 	if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) {
482 		*childregs = *current_pt_regs();
483 		childregs->regs[0] = 0;
484 
485 		/*
486 		 * Read the current TLS pointer from tpidr_el0 as it may be
487 		 * out-of-sync with the saved value.
488 		 */
489 		*task_user_tls(p) = read_sysreg(tpidr_el0);
490 
491 		if (stack_start) {
492 			if (is_compat_thread(task_thread_info(p)))
493 				childregs->compat_sp = stack_start;
494 			else
495 				childregs->sp = stack_start;
496 		}
497 
498 		/*
499 		 * If a TLS pointer was passed to clone, use it for the new
500 		 * thread.
501 		 */
502 		if (clone_flags & CLONE_SETTLS)
503 			p->thread.uw.tp_value = tls;
504 	} else {
505 		/*
506 		 * A kthread has no context to ERET to, so ensure any buggy
507 		 * ERET is treated as an illegal exception return.
508 		 *
509 		 * When a user task is created from a kthread, childregs will
510 		 * be initialized by start_thread() or start_compat_thread().
511 		 */
512 		memset(childregs, 0, sizeof(struct pt_regs));
513 		childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
514 
515 		p->thread.cpu_context.x19 = stack_start;
516 		p->thread.cpu_context.x20 = stk_sz;
517 	}
518 	p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
519 	p->thread.cpu_context.sp = (unsigned long)childregs;
520 
521 	ptrace_hw_copy_thread(p);
522 
523 	return 0;
524 }
525 
tls_preserve_current_state(void)526 void tls_preserve_current_state(void)
527 {
528 	*task_user_tls(current) = read_sysreg(tpidr_el0);
529 }
530 
tls_thread_switch(struct task_struct * next)531 static void tls_thread_switch(struct task_struct *next)
532 {
533 	tls_preserve_current_state();
534 
535 	if (is_compat_thread(task_thread_info(next)))
536 		write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
537 	else if (!arm64_kernel_unmapped_at_el0())
538 		write_sysreg(0, tpidrro_el0);
539 
540 	write_sysreg(*task_user_tls(next), tpidr_el0);
541 }
542 
543 /* Restore the UAO state depending on next's addr_limit */
uao_thread_switch(struct task_struct * next)544 void uao_thread_switch(struct task_struct *next)
545 {
546 	if (IS_ENABLED(CONFIG_ARM64_UAO)) {
547 		if (task_thread_info(next)->addr_limit == KERNEL_DS)
548 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
549 		else
550 			asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
551 	}
552 }
553 
554 /*
555  * Force SSBS state on context-switch, since it may be lost after migrating
556  * from a CPU which treats the bit as RES0 in a heterogeneous system.
557  */
ssbs_thread_switch(struct task_struct * next)558 static void ssbs_thread_switch(struct task_struct *next)
559 {
560 	/*
561 	 * Nothing to do for kernel threads, but 'regs' may be junk
562 	 * (e.g. idle task) so check the flags and bail early.
563 	 */
564 	if (unlikely(next->flags & PF_KTHREAD))
565 		return;
566 
567 	/*
568 	 * If all CPUs implement the SSBS extension, then we just need to
569 	 * context-switch the PSTATE field.
570 	 */
571 	if (cpus_have_const_cap(ARM64_SSBS))
572 		return;
573 
574 	spectre_v4_enable_task_mitigation(next);
575 }
576 
577 /*
578  * We store our current task in sp_el0, which is clobbered by userspace. Keep a
579  * shadow copy so that we can restore this upon entry from userspace.
580  *
581  * This is *only* for exception entry from EL0, and is not valid until we
582  * __switch_to() a user task.
583  */
584 DEFINE_PER_CPU(struct task_struct *, __entry_task);
585 
entry_task_switch(struct task_struct * next)586 static void entry_task_switch(struct task_struct *next)
587 {
588 	__this_cpu_write(__entry_task, next);
589 }
590 
591 /*
592  * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
593  * Ensure access is disabled when switching to a 32bit task, ensure
594  * access is enabled when switching to a 64bit task.
595  */
erratum_1418040_thread_switch(struct task_struct * next)596 static void erratum_1418040_thread_switch(struct task_struct *next)
597 {
598 	if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) ||
599 	    !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
600 		return;
601 
602 	if (is_compat_thread(task_thread_info(next)))
603 		sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0);
604 	else
605 		sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN);
606 }
607 
erratum_1418040_new_exec(void)608 static void erratum_1418040_new_exec(void)
609 {
610 	preempt_disable();
611 	erratum_1418040_thread_switch(current);
612 	preempt_enable();
613 }
614 
615 /*
616  * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
617  * this function must be called with preemption disabled and the update to
618  * sctlr_user must be made in the same preemption disabled block so that
619  * __switch_to() does not see the variable update before the SCTLR_EL1 one.
620  */
update_sctlr_el1(u64 sctlr)621 void update_sctlr_el1(u64 sctlr)
622 {
623 	/*
624 	 * EnIA must not be cleared while in the kernel as this is necessary for
625 	 * in-kernel PAC. It will be cleared on kernel exit if needed.
626 	 */
627 	sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
628 
629 	/* ISB required for the kernel uaccess routines when setting TCF0. */
630 	isb();
631 }
632 
633 /*
634  * Thread switching.
635  */
__switch_to(struct task_struct * prev,struct task_struct * next)636 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
637 				struct task_struct *next)
638 {
639 	struct task_struct *last;
640 
641 	fpsimd_thread_switch(next);
642 	tls_thread_switch(next);
643 	hw_breakpoint_thread_switch(next);
644 	contextidr_thread_switch(next);
645 	entry_task_switch(next);
646 	uao_thread_switch(next);
647 	ssbs_thread_switch(next);
648 	erratum_1418040_thread_switch(next);
649 	ptrauth_thread_switch_user(next);
650 
651 	/*
652 	 * Complete any pending TLB or cache maintenance on this CPU in case
653 	 * the thread migrates to a different CPU.
654 	 * This full barrier is also required by the membarrier system
655 	 * call.
656 	 */
657 	dsb(ish);
658 
659 	/*
660 	 * MTE thread switching must happen after the DSB above to ensure that
661 	 * any asynchronous tag check faults have been logged in the TFSR*_EL1
662 	 * registers.
663 	 */
664 	mte_thread_switch(next);
665 	/* avoid expensive SCTLR_EL1 accesses if no change */
666 	if (prev->thread.sctlr_user != next->thread.sctlr_user)
667 		update_sctlr_el1(next->thread.sctlr_user);
668 
669 	trace_android_vh_is_fpsimd_save(prev, next);
670 
671 	/* the actual thread switch */
672 	last = cpu_switch_to(prev, next);
673 
674 	return last;
675 }
676 
get_wchan(struct task_struct * p)677 unsigned long get_wchan(struct task_struct *p)
678 {
679 	struct stackframe frame;
680 	unsigned long stack_page, ret = 0;
681 	int count = 0;
682 	if (!p || p == current || p->state == TASK_RUNNING)
683 		return 0;
684 
685 	stack_page = (unsigned long)try_get_task_stack(p);
686 	if (!stack_page)
687 		return 0;
688 
689 	start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
690 
691 	do {
692 		if (unwind_frame(p, &frame))
693 			goto out;
694 		if (!in_sched_functions(frame.pc)) {
695 			ret = frame.pc;
696 			goto out;
697 		}
698 	} while (count ++ < 16);
699 
700 out:
701 	put_task_stack(p);
702 	return ret;
703 }
704 EXPORT_SYMBOL_GPL(get_wchan);
705 
arch_align_stack(unsigned long sp)706 unsigned long arch_align_stack(unsigned long sp)
707 {
708 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
709 		sp -= get_random_int() & ~PAGE_MASK;
710 	return sp & ~0xf;
711 }
712 
713 /*
714  * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
715  */
arch_setup_new_exec(void)716 void arch_setup_new_exec(void)
717 {
718 	unsigned long mmflags = 0;
719 
720 	if (is_compat_task()) {
721 		mmflags = MMCF_AARCH32;
722 
723 		/*
724 		 * Restrict the CPU affinity mask for a 32-bit task so that
725 		 * it contains only 32-bit-capable CPUs.
726 		 *
727 		 * From the perspective of the task, this looks similar to
728 		 * what would happen if the 64-bit-only CPUs were hot-unplugged
729 		 * at the point of execve(), although we try a bit harder to
730 		 * honour the cpuset hierarchy.
731 		 */
732 		if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
733 			force_compatible_cpus_allowed_ptr(current);
734 	}
735 
736 	current->mm->context.flags = mmflags;
737 	ptrauth_thread_init_user();
738 	mte_thread_init_user();
739 	erratum_1418040_new_exec();
740 
741 	if (task_spec_ssb_noexec(current)) {
742 		arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
743 					 PR_SPEC_ENABLE);
744 	}
745 }
746 
747 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
748 /*
749  * Control the relaxed ABI allowing tagged user addresses into the kernel.
750  */
751 static unsigned int tagged_addr_disabled;
752 
set_tagged_addr_ctrl(struct task_struct * task,unsigned long arg)753 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
754 {
755 	unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
756 	struct thread_info *ti = task_thread_info(task);
757 
758 	if (is_compat_thread(ti))
759 		return -EINVAL;
760 
761 	if (system_supports_mte())
762 		valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK;
763 
764 	if (arg & ~valid_mask)
765 		return -EINVAL;
766 
767 	/*
768 	 * Do not allow the enabling of the tagged address ABI if globally
769 	 * disabled via sysctl abi.tagged_addr_disabled.
770 	 */
771 	if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
772 		return -EINVAL;
773 
774 	if (set_mte_ctrl(task, arg) != 0)
775 		return -EINVAL;
776 
777 	update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
778 
779 	return 0;
780 }
781 
get_tagged_addr_ctrl(struct task_struct * task)782 long get_tagged_addr_ctrl(struct task_struct *task)
783 {
784 	long ret = 0;
785 	struct thread_info *ti = task_thread_info(task);
786 
787 	if (is_compat_thread(ti))
788 		return -EINVAL;
789 
790 	if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
791 		ret = PR_TAGGED_ADDR_ENABLE;
792 
793 	ret |= get_mte_ctrl(task);
794 
795 	return ret;
796 }
797 
798 /*
799  * Global sysctl to disable the tagged user addresses support. This control
800  * only prevents the tagged address ABI enabling via prctl() and does not
801  * disable it for tasks that already opted in to the relaxed ABI.
802  */
803 
804 static struct ctl_table tagged_addr_sysctl_table[] = {
805 	{
806 		.procname	= "tagged_addr_disabled",
807 		.mode		= 0644,
808 		.data		= &tagged_addr_disabled,
809 		.maxlen		= sizeof(int),
810 		.proc_handler	= proc_dointvec_minmax,
811 		.extra1		= SYSCTL_ZERO,
812 		.extra2		= SYSCTL_ONE,
813 	},
814 	{ }
815 };
816 
tagged_addr_init(void)817 static int __init tagged_addr_init(void)
818 {
819 	if (!register_sysctl("abi", tagged_addr_sysctl_table))
820 		return -EINVAL;
821 	return 0;
822 }
823 
824 core_initcall(tagged_addr_init);
825 #endif	/* CONFIG_ARM64_TAGGED_ADDR_ABI */
826 
arm64_preempt_schedule_irq(void)827 asmlinkage void __sched arm64_preempt_schedule_irq(void)
828 {
829 	lockdep_assert_irqs_disabled();
830 
831 	/*
832 	 * Preempting a task from an IRQ means we leave copies of PSTATE
833 	 * on the stack. cpufeature's enable calls may modify PSTATE, but
834 	 * resuming one of these preempted tasks would undo those changes.
835 	 *
836 	 * Only allow a task to be preempted once cpufeatures have been
837 	 * enabled.
838 	 */
839 	if (system_capabilities_finalized())
840 		preempt_schedule_irq();
841 }
842 
843 #ifdef CONFIG_BINFMT_ELF
arch_elf_adjust_prot(int prot,const struct arch_elf_state * state,bool has_interp,bool is_interp)844 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
845 			 bool has_interp, bool is_interp)
846 {
847 	/*
848 	 * For dynamically linked executables the interpreter is
849 	 * responsible for setting PROT_BTI on everything except
850 	 * itself.
851 	 */
852 	if (is_interp != has_interp)
853 		return prot;
854 
855 	if (!(state->flags & ARM64_ELF_BTI))
856 		return prot;
857 
858 	if (prot & PROT_EXEC)
859 		prot |= PROT_BTI;
860 
861 	return prot;
862 }
863 #endif
864