xref: /OK3568_Linux_fs/kernel/arch/arm/mm/mmu.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/mmu.c
4  *
5  *  Copyright (C) 1995-2005 Russell King
6  */
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/mman.h>
12 #include <linux/nodemask.h>
13 #include <linux/memblock.h>
14 #include <linux/fs.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sizes.h>
17 
18 #include <asm/cp15.h>
19 #include <asm/cputype.h>
20 #include <asm/cachetype.h>
21 #include <asm/fixmap.h>
22 #include <asm/sections.h>
23 #include <asm/setup.h>
24 #include <asm/smp_plat.h>
25 #include <asm/tlb.h>
26 #include <asm/highmem.h>
27 #include <asm/system_info.h>
28 #include <asm/traps.h>
29 #include <asm/procinfo.h>
30 #include <asm/memory.h>
31 #include <asm/pgalloc.h>
32 
33 #include <asm/mach/arch.h>
34 #include <asm/mach/map.h>
35 #include <asm/mach/pci.h>
36 #include <asm/fixmap.h>
37 
38 #include "fault.h"
39 #include "mm.h"
40 #include "tcm.h"
41 
42 extern unsigned long __atags_pointer;
43 
44 /*
45  * empty_zero_page is a special page that is used for
46  * zero-initialized data and COW.
47  */
48 struct page *empty_zero_page;
49 EXPORT_SYMBOL(empty_zero_page);
50 
51 /*
52  * The pmd table for the upper-most set of pages.
53  */
54 pmd_t *top_pmd;
55 
56 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
57 
58 #define CPOLICY_UNCACHED	0
59 #define CPOLICY_BUFFERED	1
60 #define CPOLICY_WRITETHROUGH	2
61 #define CPOLICY_WRITEBACK	3
62 #define CPOLICY_WRITEALLOC	4
63 
64 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
65 static unsigned int ecc_mask __initdata = 0;
66 pgprot_t pgprot_user;
67 pgprot_t pgprot_kernel;
68 
69 EXPORT_SYMBOL(pgprot_user);
70 EXPORT_SYMBOL(pgprot_kernel);
71 
72 struct cachepolicy {
73 	const char	policy[16];
74 	unsigned int	cr_mask;
75 	pmdval_t	pmd;
76 	pteval_t	pte;
77 };
78 
79 static struct cachepolicy cache_policies[] __initdata = {
80 	{
81 		.policy		= "uncached",
82 		.cr_mask	= CR_W|CR_C,
83 		.pmd		= PMD_SECT_UNCACHED,
84 		.pte		= L_PTE_MT_UNCACHED,
85 	}, {
86 		.policy		= "buffered",
87 		.cr_mask	= CR_C,
88 		.pmd		= PMD_SECT_BUFFERED,
89 		.pte		= L_PTE_MT_BUFFERABLE,
90 	}, {
91 		.policy		= "writethrough",
92 		.cr_mask	= 0,
93 		.pmd		= PMD_SECT_WT,
94 		.pte		= L_PTE_MT_WRITETHROUGH,
95 	}, {
96 		.policy		= "writeback",
97 		.cr_mask	= 0,
98 		.pmd		= PMD_SECT_WB,
99 		.pte		= L_PTE_MT_WRITEBACK,
100 	}, {
101 		.policy		= "writealloc",
102 		.cr_mask	= 0,
103 		.pmd		= PMD_SECT_WBWA,
104 		.pte		= L_PTE_MT_WRITEALLOC,
105 	}
106 };
107 
108 #ifdef CONFIG_CPU_CP15
109 static unsigned long initial_pmd_value __initdata = 0;
110 
111 /*
112  * Initialise the cache_policy variable with the initial state specified
113  * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
114  * the C code sets the page tables up with the same policy as the head
115  * assembly code, which avoids an illegal state where the TLBs can get
116  * confused.  See comments in early_cachepolicy() for more information.
117  */
init_default_cache_policy(unsigned long pmd)118 void __init init_default_cache_policy(unsigned long pmd)
119 {
120 	int i;
121 
122 	initial_pmd_value = pmd;
123 
124 	pmd &= PMD_SECT_CACHE_MASK;
125 
126 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
127 		if (cache_policies[i].pmd == pmd) {
128 			cachepolicy = i;
129 			break;
130 		}
131 
132 	if (i == ARRAY_SIZE(cache_policies))
133 		pr_err("ERROR: could not find cache policy\n");
134 }
135 
136 /*
137  * These are useful for identifying cache coherency problems by allowing
138  * the cache or the cache and writebuffer to be turned off.  (Note: the
139  * write buffer should not be on and the cache off).
140  */
early_cachepolicy(char * p)141 static int __init early_cachepolicy(char *p)
142 {
143 	int i, selected = -1;
144 
145 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
146 		int len = strlen(cache_policies[i].policy);
147 
148 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
149 			selected = i;
150 			break;
151 		}
152 	}
153 
154 	if (selected == -1)
155 		pr_err("ERROR: unknown or unsupported cache policy\n");
156 
157 	/*
158 	 * This restriction is partly to do with the way we boot; it is
159 	 * unpredictable to have memory mapped using two different sets of
160 	 * memory attributes (shared, type, and cache attribs).  We can not
161 	 * change these attributes once the initial assembly has setup the
162 	 * page tables.
163 	 */
164 	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
165 		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
166 			cache_policies[cachepolicy].policy);
167 		return 0;
168 	}
169 
170 	if (selected != cachepolicy) {
171 		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
172 		cachepolicy = selected;
173 		flush_cache_all();
174 		set_cr(cr);
175 	}
176 	return 0;
177 }
178 early_param("cachepolicy", early_cachepolicy);
179 
early_nocache(char * __unused)180 static int __init early_nocache(char *__unused)
181 {
182 	char *p = "buffered";
183 	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
184 	early_cachepolicy(p);
185 	return 0;
186 }
187 early_param("nocache", early_nocache);
188 
early_nowrite(char * __unused)189 static int __init early_nowrite(char *__unused)
190 {
191 	char *p = "uncached";
192 	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
193 	early_cachepolicy(p);
194 	return 0;
195 }
196 early_param("nowb", early_nowrite);
197 
198 #ifndef CONFIG_ARM_LPAE
early_ecc(char * p)199 static int __init early_ecc(char *p)
200 {
201 	if (memcmp(p, "on", 2) == 0)
202 		ecc_mask = PMD_PROTECTION;
203 	else if (memcmp(p, "off", 3) == 0)
204 		ecc_mask = 0;
205 	return 0;
206 }
207 early_param("ecc", early_ecc);
208 #endif
209 
210 #else /* ifdef CONFIG_CPU_CP15 */
211 
early_cachepolicy(char * p)212 static int __init early_cachepolicy(char *p)
213 {
214 	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
215 	return 0;
216 }
217 early_param("cachepolicy", early_cachepolicy);
218 
noalign_setup(char * __unused)219 static int __init noalign_setup(char *__unused)
220 {
221 	pr_warn("noalign kernel parameter not supported without cp15\n");
222 	return 1;
223 }
224 __setup("noalign", noalign_setup);
225 
226 #endif /* ifdef CONFIG_CPU_CP15 / else */
227 
228 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
229 #define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
230 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
231 
232 static struct mem_type mem_types[] __ro_after_init = {
233 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
234 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
235 				  L_PTE_SHARED,
236 		.prot_l1	= PMD_TYPE_TABLE,
237 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
238 		.domain		= DOMAIN_IO,
239 	},
240 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
241 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
242 		.prot_l1	= PMD_TYPE_TABLE,
243 		.prot_sect	= PROT_SECT_DEVICE,
244 		.domain		= DOMAIN_IO,
245 	},
246 	[MT_DEVICE_CACHED] = {	  /* ioremap_cache */
247 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
248 		.prot_l1	= PMD_TYPE_TABLE,
249 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
250 		.domain		= DOMAIN_IO,
251 	},
252 	[MT_DEVICE_WC] = {	/* ioremap_wc */
253 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
254 		.prot_l1	= PMD_TYPE_TABLE,
255 		.prot_sect	= PROT_SECT_DEVICE,
256 		.domain		= DOMAIN_IO,
257 	},
258 	[MT_UNCACHED] = {
259 		.prot_pte	= PROT_PTE_DEVICE,
260 		.prot_l1	= PMD_TYPE_TABLE,
261 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
262 		.domain		= DOMAIN_IO,
263 	},
264 	[MT_CACHECLEAN] = {
265 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
266 		.domain    = DOMAIN_KERNEL,
267 	},
268 #ifndef CONFIG_ARM_LPAE
269 	[MT_MINICLEAN] = {
270 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
271 		.domain    = DOMAIN_KERNEL,
272 	},
273 #endif
274 	[MT_LOW_VECTORS] = {
275 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
276 				L_PTE_RDONLY,
277 		.prot_l1   = PMD_TYPE_TABLE,
278 		.domain    = DOMAIN_VECTORS,
279 	},
280 	[MT_HIGH_VECTORS] = {
281 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
282 				L_PTE_USER | L_PTE_RDONLY,
283 		.prot_l1   = PMD_TYPE_TABLE,
284 		.domain    = DOMAIN_VECTORS,
285 	},
286 	[MT_MEMORY_RWX] = {
287 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
288 		.prot_l1   = PMD_TYPE_TABLE,
289 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
290 		.domain    = DOMAIN_KERNEL,
291 	},
292 	[MT_MEMORY_RW] = {
293 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
294 			     L_PTE_XN,
295 		.prot_l1   = PMD_TYPE_TABLE,
296 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
297 		.domain    = DOMAIN_KERNEL,
298 	},
299 	[MT_MEMORY_RO] = {
300 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
301 			     L_PTE_XN | L_PTE_RDONLY,
302 		.prot_l1   = PMD_TYPE_TABLE,
303 #ifdef CONFIG_ARM_LPAE
304 		.prot_sect = PMD_TYPE_SECT | L_PMD_SECT_RDONLY | PMD_SECT_AP2,
305 #else
306 		.prot_sect = PMD_TYPE_SECT,
307 #endif
308 		.domain    = DOMAIN_KERNEL,
309 	},
310 	[MT_ROM] = {
311 		.prot_sect = PMD_TYPE_SECT,
312 		.domain    = DOMAIN_KERNEL,
313 	},
314 	[MT_MEMORY_RWX_NONCACHED] = {
315 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
316 				L_PTE_MT_BUFFERABLE,
317 		.prot_l1   = PMD_TYPE_TABLE,
318 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
319 		.domain    = DOMAIN_KERNEL,
320 	},
321 	[MT_MEMORY_RW_DTCM] = {
322 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
323 				L_PTE_XN,
324 		.prot_l1   = PMD_TYPE_TABLE,
325 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
326 		.domain    = DOMAIN_KERNEL,
327 	},
328 	[MT_MEMORY_RWX_ITCM] = {
329 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
330 		.prot_l1   = PMD_TYPE_TABLE,
331 		.domain    = DOMAIN_KERNEL,
332 	},
333 	[MT_MEMORY_RW_SO] = {
334 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
335 				L_PTE_MT_UNCACHED | L_PTE_XN,
336 		.prot_l1   = PMD_TYPE_TABLE,
337 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
338 				PMD_SECT_UNCACHED | PMD_SECT_XN,
339 		.domain    = DOMAIN_KERNEL,
340 	},
341 	[MT_MEMORY_DMA_READY] = {
342 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
343 				L_PTE_XN,
344 		.prot_l1   = PMD_TYPE_TABLE,
345 		.domain    = DOMAIN_KERNEL,
346 	},
347 };
348 
get_mem_type(unsigned int type)349 const struct mem_type *get_mem_type(unsigned int type)
350 {
351 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
352 }
353 EXPORT_SYMBOL(get_mem_type);
354 
355 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
356 
357 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
358 	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
359 
pte_offset_early_fixmap(pmd_t * dir,unsigned long addr)360 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
361 {
362 	return &bm_pte[pte_index(addr)];
363 }
364 
pte_offset_late_fixmap(pmd_t * dir,unsigned long addr)365 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
366 {
367 	return pte_offset_kernel(dir, addr);
368 }
369 
fixmap_pmd(unsigned long addr)370 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
371 {
372 	return pmd_off_k(addr);
373 }
374 
early_fixmap_init(void)375 void __init early_fixmap_init(void)
376 {
377 	pmd_t *pmd;
378 
379 	/*
380 	 * The early fixmap range spans multiple pmds, for which
381 	 * we are not prepared:
382 	 */
383 	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
384 		     != FIXADDR_TOP >> PMD_SHIFT);
385 
386 	pmd = fixmap_pmd(FIXADDR_TOP);
387 	pmd_populate_kernel(&init_mm, pmd, bm_pte);
388 
389 	pte_offset_fixmap = pte_offset_early_fixmap;
390 }
391 
392 /*
393  * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
394  * As a result, this can only be called with preemption disabled, as under
395  * stop_machine().
396  */
__set_fixmap(enum fixed_addresses idx,phys_addr_t phys,pgprot_t prot)397 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
398 {
399 	unsigned long vaddr = __fix_to_virt(idx);
400 	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
401 
402 	/* Make sure fixmap region does not exceed available allocation. */
403 	BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
404 		     FIXADDR_END);
405 	BUG_ON(idx >= __end_of_fixed_addresses);
406 
407 	/* We support only device mappings before pgprot_kernel is set. */
408 	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
409 		    pgprot_val(prot) && pgprot_val(pgprot_kernel) == 0))
410 		return;
411 
412 	if (pgprot_val(prot))
413 		set_pte_at(NULL, vaddr, pte,
414 			pfn_pte(phys >> PAGE_SHIFT, prot));
415 	else
416 		pte_clear(NULL, vaddr, pte);
417 	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
418 }
419 
420 /*
421  * Adjust the PMD section entries according to the CPU in use.
422  */
build_mem_type_table(void)423 static void __init build_mem_type_table(void)
424 {
425 	struct cachepolicy *cp;
426 	unsigned int cr = get_cr();
427 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
428 	int cpu_arch = cpu_architecture();
429 	int i;
430 
431 	if (cpu_arch < CPU_ARCH_ARMv6) {
432 #if defined(CONFIG_CPU_DCACHE_DISABLE)
433 		if (cachepolicy > CPOLICY_BUFFERED)
434 			cachepolicy = CPOLICY_BUFFERED;
435 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
436 		if (cachepolicy > CPOLICY_WRITETHROUGH)
437 			cachepolicy = CPOLICY_WRITETHROUGH;
438 #endif
439 	}
440 	if (cpu_arch < CPU_ARCH_ARMv5) {
441 		if (cachepolicy >= CPOLICY_WRITEALLOC)
442 			cachepolicy = CPOLICY_WRITEBACK;
443 		ecc_mask = 0;
444 	}
445 
446 	if (is_smp()) {
447 		if (cachepolicy != CPOLICY_WRITEALLOC) {
448 			pr_warn("Forcing write-allocate cache policy for SMP\n");
449 			cachepolicy = CPOLICY_WRITEALLOC;
450 		}
451 		if (!(initial_pmd_value & PMD_SECT_S)) {
452 			pr_warn("Forcing shared mappings for SMP\n");
453 			initial_pmd_value |= PMD_SECT_S;
454 		}
455 	}
456 
457 	/*
458 	 * Strip out features not present on earlier architectures.
459 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
460 	 * without extended page tables don't have the 'Shared' bit.
461 	 */
462 	if (cpu_arch < CPU_ARCH_ARMv5)
463 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
464 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
465 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
466 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
467 			mem_types[i].prot_sect &= ~PMD_SECT_S;
468 
469 	/*
470 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
471 	 * "update-able on write" bit on ARM610).  However, Xscale and
472 	 * Xscale3 require this bit to be cleared.
473 	 */
474 	if (cpu_is_xscale_family()) {
475 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
476 			mem_types[i].prot_sect &= ~PMD_BIT4;
477 			mem_types[i].prot_l1 &= ~PMD_BIT4;
478 		}
479 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
480 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
481 			if (mem_types[i].prot_l1)
482 				mem_types[i].prot_l1 |= PMD_BIT4;
483 			if (mem_types[i].prot_sect)
484 				mem_types[i].prot_sect |= PMD_BIT4;
485 		}
486 	}
487 
488 	/*
489 	 * Mark the device areas according to the CPU/architecture.
490 	 */
491 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
492 		if (!cpu_is_xsc3()) {
493 			/*
494 			 * Mark device regions on ARMv6+ as execute-never
495 			 * to prevent speculative instruction fetches.
496 			 */
497 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
498 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
499 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
500 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
501 
502 			/* Also setup NX memory mapping */
503 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
504 			mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_XN;
505 		}
506 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
507 			/*
508 			 * For ARMv7 with TEX remapping,
509 			 * - shared device is SXCB=1100
510 			 * - nonshared device is SXCB=0100
511 			 * - write combine device mem is SXCB=0001
512 			 * (Uncached Normal memory)
513 			 */
514 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
515 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
516 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
517 		} else if (cpu_is_xsc3()) {
518 			/*
519 			 * For Xscale3,
520 			 * - shared device is TEXCB=00101
521 			 * - nonshared device is TEXCB=01000
522 			 * - write combine device mem is TEXCB=00100
523 			 * (Inner/Outer Uncacheable in xsc3 parlance)
524 			 */
525 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
526 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
527 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
528 		} else {
529 			/*
530 			 * For ARMv6 and ARMv7 without TEX remapping,
531 			 * - shared device is TEXCB=00001
532 			 * - nonshared device is TEXCB=01000
533 			 * - write combine device mem is TEXCB=00100
534 			 * (Uncached Normal in ARMv6 parlance).
535 			 */
536 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
537 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
538 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
539 		}
540 	} else {
541 		/*
542 		 * On others, write combining is "Uncached/Buffered"
543 		 */
544 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
545 	}
546 
547 	/*
548 	 * Now deal with the memory-type mappings
549 	 */
550 	cp = &cache_policies[cachepolicy];
551 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
552 
553 #ifndef CONFIG_ARM_LPAE
554 	/*
555 	 * We don't use domains on ARMv6 (since this causes problems with
556 	 * v6/v7 kernels), so we must use a separate memory type for user
557 	 * r/o, kernel r/w to map the vectors page.
558 	 */
559 	if (cpu_arch == CPU_ARCH_ARMv6)
560 		vecs_pgprot |= L_PTE_MT_VECTORS;
561 
562 	/*
563 	 * Check is it with support for the PXN bit
564 	 * in the Short-descriptor translation table format descriptors.
565 	 */
566 	if (cpu_arch == CPU_ARCH_ARMv7 &&
567 		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
568 		user_pmd_table |= PMD_PXNTABLE;
569 	}
570 #endif
571 
572 	/*
573 	 * ARMv6 and above have extended page tables.
574 	 */
575 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
576 #ifndef CONFIG_ARM_LPAE
577 		/*
578 		 * Mark cache clean areas and XIP ROM read only
579 		 * from SVC mode and no access from userspace.
580 		 */
581 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
582 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
583 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
584 		mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
585 #endif
586 
587 		/*
588 		 * If the initial page tables were created with the S bit
589 		 * set, then we need to do the same here for the same
590 		 * reasons given in early_cachepolicy().
591 		 */
592 		if (initial_pmd_value & PMD_SECT_S) {
593 			user_pgprot |= L_PTE_SHARED;
594 			kern_pgprot |= L_PTE_SHARED;
595 			vecs_pgprot |= L_PTE_SHARED;
596 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
597 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
598 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
599 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
600 			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
601 			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
602 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
603 			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
604 			mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_S;
605 			mem_types[MT_MEMORY_RO].prot_pte |= L_PTE_SHARED;
606 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
607 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
608 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
609 		}
610 	}
611 
612 	/*
613 	 * Non-cacheable Normal - intended for memory areas that must
614 	 * not cause dirty cache line writebacks when used
615 	 */
616 	if (cpu_arch >= CPU_ARCH_ARMv6) {
617 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
618 			/* Non-cacheable Normal is XCB = 001 */
619 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
620 				PMD_SECT_BUFFERED;
621 		} else {
622 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
623 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
624 				PMD_SECT_TEX(1);
625 		}
626 	} else {
627 		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
628 	}
629 
630 #ifdef CONFIG_ARM_LPAE
631 	/*
632 	 * Do not generate access flag faults for the kernel mappings.
633 	 */
634 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
635 		mem_types[i].prot_pte |= PTE_EXT_AF;
636 		if (mem_types[i].prot_sect)
637 			mem_types[i].prot_sect |= PMD_SECT_AF;
638 	}
639 	kern_pgprot |= PTE_EXT_AF;
640 	vecs_pgprot |= PTE_EXT_AF;
641 
642 	/*
643 	 * Set PXN for user mappings
644 	 */
645 	user_pgprot |= PTE_EXT_PXN;
646 #endif
647 
648 	for (i = 0; i < 16; i++) {
649 		pteval_t v = pgprot_val(protection_map[i]);
650 		protection_map[i] = __pgprot(v | user_pgprot);
651 	}
652 
653 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
654 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
655 
656 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
657 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
658 				 L_PTE_DIRTY | kern_pgprot);
659 
660 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
661 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
662 	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
663 	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
664 	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
665 	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
666 	mem_types[MT_MEMORY_RO].prot_sect |= ecc_mask | cp->pmd;
667 	mem_types[MT_MEMORY_RO].prot_pte |= kern_pgprot;
668 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
669 	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
670 	mem_types[MT_ROM].prot_sect |= cp->pmd;
671 
672 	switch (cp->pmd) {
673 	case PMD_SECT_WT:
674 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
675 		break;
676 	case PMD_SECT_WB:
677 	case PMD_SECT_WBWA:
678 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
679 		break;
680 	}
681 	pr_info("Memory policy: %sData cache %s\n",
682 		ecc_mask ? "ECC enabled, " : "", cp->policy);
683 
684 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
685 		struct mem_type *t = &mem_types[i];
686 		if (t->prot_l1)
687 			t->prot_l1 |= PMD_DOMAIN(t->domain);
688 		if (t->prot_sect)
689 			t->prot_sect |= PMD_DOMAIN(t->domain);
690 	}
691 }
692 
693 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)694 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
695 			      unsigned long size, pgprot_t vma_prot)
696 {
697 	if (!pfn_valid(pfn))
698 		return pgprot_noncached(vma_prot);
699 	else if (file->f_flags & O_SYNC)
700 		return pgprot_writecombine(vma_prot);
701 	return vma_prot;
702 }
703 EXPORT_SYMBOL(phys_mem_access_prot);
704 #endif
705 
706 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
707 
early_alloc(unsigned long sz)708 static void __init *early_alloc(unsigned long sz)
709 {
710 	void *ptr = memblock_alloc(sz, sz);
711 
712 	if (!ptr)
713 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
714 		      __func__, sz, sz);
715 
716 	return ptr;
717 }
718 
late_alloc(unsigned long sz)719 static void *__init late_alloc(unsigned long sz)
720 {
721 	void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
722 
723 	if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
724 		BUG();
725 	return ptr;
726 }
727 
arm_pte_alloc(pmd_t * pmd,unsigned long addr,unsigned long prot,void * (* alloc)(unsigned long sz))728 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
729 				unsigned long prot,
730 				void *(*alloc)(unsigned long sz))
731 {
732 	if (pmd_none(*pmd)) {
733 		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
734 		__pmd_populate(pmd, __pa(pte), prot);
735 	}
736 	BUG_ON(pmd_bad(*pmd));
737 	return pte_offset_kernel(pmd, addr);
738 }
739 
early_pte_alloc(pmd_t * pmd,unsigned long addr,unsigned long prot)740 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
741 				      unsigned long prot)
742 {
743 	return arm_pte_alloc(pmd, addr, prot, early_alloc);
744 }
745 
alloc_init_pte(pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)746 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
747 				  unsigned long end, unsigned long pfn,
748 				  const struct mem_type *type,
749 				  void *(*alloc)(unsigned long sz),
750 				  bool ng)
751 {
752 	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
753 	do {
754 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
755 			    ng ? PTE_EXT_NG : 0);
756 		pfn++;
757 	} while (pte++, addr += PAGE_SIZE, addr != end);
758 }
759 
__map_init_section(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,bool ng)760 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
761 			unsigned long end, phys_addr_t phys,
762 			const struct mem_type *type, bool ng)
763 {
764 	pmd_t *p = pmd;
765 
766 #ifndef CONFIG_ARM_LPAE
767 	/*
768 	 * In classic MMU format, puds and pmds are folded in to
769 	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
770 	 * group of L1 entries making up one logical pointer to
771 	 * an L2 table (2MB), where as PMDs refer to the individual
772 	 * L1 entries (1MB). Hence increment to get the correct
773 	 * offset for odd 1MB sections.
774 	 * (See arch/arm/include/asm/pgtable-2level.h)
775 	 */
776 	if (addr & SECTION_SIZE)
777 		pmd++;
778 #endif
779 	do {
780 		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
781 		phys += SECTION_SIZE;
782 	} while (pmd++, addr += SECTION_SIZE, addr != end);
783 
784 	flush_pmd_entry(p);
785 }
786 
alloc_init_pmd(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)787 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
788 				      unsigned long end, phys_addr_t phys,
789 				      const struct mem_type *type,
790 				      void *(*alloc)(unsigned long sz), bool ng)
791 {
792 	pmd_t *pmd = pmd_offset(pud, addr);
793 	unsigned long next;
794 
795 	do {
796 		/*
797 		 * With LPAE, we must loop over to map
798 		 * all the pmds for the given range.
799 		 */
800 		next = pmd_addr_end(addr, end);
801 
802 		/*
803 		 * Try a section mapping - addr, next and phys must all be
804 		 * aligned to a section boundary.
805 		 */
806 		if (type->prot_sect &&
807 				((addr | next | phys) & ~SECTION_MASK) == 0) {
808 			__map_init_section(pmd, addr, next, phys, type, ng);
809 		} else {
810 			alloc_init_pte(pmd, addr, next,
811 				       __phys_to_pfn(phys), type, alloc, ng);
812 		}
813 
814 		phys += next - addr;
815 
816 	} while (pmd++, addr = next, addr != end);
817 }
818 
alloc_init_pud(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)819 static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
820 				  unsigned long end, phys_addr_t phys,
821 				  const struct mem_type *type,
822 				  void *(*alloc)(unsigned long sz), bool ng)
823 {
824 	pud_t *pud = pud_offset(p4d, addr);
825 	unsigned long next;
826 
827 	do {
828 		next = pud_addr_end(addr, end);
829 		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
830 		phys += next - addr;
831 	} while (pud++, addr = next, addr != end);
832 }
833 
alloc_init_p4d(pgd_t * pgd,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type,void * (* alloc)(unsigned long sz),bool ng)834 static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
835 				  unsigned long end, phys_addr_t phys,
836 				  const struct mem_type *type,
837 				  void *(*alloc)(unsigned long sz), bool ng)
838 {
839 	p4d_t *p4d = p4d_offset(pgd, addr);
840 	unsigned long next;
841 
842 	do {
843 		next = p4d_addr_end(addr, end);
844 		alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
845 		phys += next - addr;
846 	} while (p4d++, addr = next, addr != end);
847 }
848 
849 #ifndef CONFIG_ARM_LPAE
create_36bit_mapping(struct mm_struct * mm,struct map_desc * md,const struct mem_type * type,bool ng)850 static void __init create_36bit_mapping(struct mm_struct *mm,
851 					struct map_desc *md,
852 					const struct mem_type *type,
853 					bool ng)
854 {
855 	unsigned long addr, length, end;
856 	phys_addr_t phys;
857 	pgd_t *pgd;
858 
859 	addr = md->virtual;
860 	phys = __pfn_to_phys(md->pfn);
861 	length = PAGE_ALIGN(md->length);
862 
863 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
864 		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
865 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
866 		return;
867 	}
868 
869 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
870 	 *	Since domain assignments can in fact be arbitrary, the
871 	 *	'domain == 0' check below is required to insure that ARMv6
872 	 *	supersections are only allocated for domain 0 regardless
873 	 *	of the actual domain assignments in use.
874 	 */
875 	if (type->domain) {
876 		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
877 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
878 		return;
879 	}
880 
881 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
882 		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
883 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
884 		return;
885 	}
886 
887 	/*
888 	 * Shift bits [35:32] of address into bits [23:20] of PMD
889 	 * (See ARMv6 spec).
890 	 */
891 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
892 
893 	pgd = pgd_offset(mm, addr);
894 	end = addr + length;
895 	do {
896 		p4d_t *p4d = p4d_offset(pgd, addr);
897 		pud_t *pud = pud_offset(p4d, addr);
898 		pmd_t *pmd = pmd_offset(pud, addr);
899 		int i;
900 
901 		for (i = 0; i < 16; i++)
902 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
903 				       (ng ? PMD_SECT_nG : 0));
904 
905 		addr += SUPERSECTION_SIZE;
906 		phys += SUPERSECTION_SIZE;
907 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
908 	} while (addr != end);
909 }
910 #endif	/* !CONFIG_ARM_LPAE */
911 
__create_mapping(struct mm_struct * mm,struct map_desc * md,void * (* alloc)(unsigned long sz),bool ng)912 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
913 				    void *(*alloc)(unsigned long sz),
914 				    bool ng)
915 {
916 	unsigned long addr, length, end;
917 	phys_addr_t phys;
918 	const struct mem_type *type;
919 	pgd_t *pgd;
920 
921 	type = &mem_types[md->type];
922 
923 #ifndef CONFIG_ARM_LPAE
924 	/*
925 	 * Catch 36-bit addresses
926 	 */
927 	if (md->pfn >= 0x100000) {
928 		create_36bit_mapping(mm, md, type, ng);
929 		return;
930 	}
931 #endif
932 
933 	addr = md->virtual & PAGE_MASK;
934 	phys = __pfn_to_phys(md->pfn);
935 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
936 
937 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
938 		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
939 			(long long)__pfn_to_phys(md->pfn), addr);
940 		return;
941 	}
942 
943 	pgd = pgd_offset(mm, addr);
944 	end = addr + length;
945 	do {
946 		unsigned long next = pgd_addr_end(addr, end);
947 
948 		alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
949 
950 		phys += next - addr;
951 		addr = next;
952 	} while (pgd++, addr != end);
953 }
954 
955 /*
956  * Create the page directory entries and any necessary
957  * page tables for the mapping specified by `md'.  We
958  * are able to cope here with varying sizes and address
959  * offsets, and we take full advantage of sections and
960  * supersections.
961  */
create_mapping(struct map_desc * md)962 static void __init create_mapping(struct map_desc *md)
963 {
964 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
965 		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
966 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
967 		return;
968 	}
969 
970 	if (md->type == MT_DEVICE &&
971 	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
972 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
973 		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
974 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
975 	}
976 
977 	__create_mapping(&init_mm, md, early_alloc, false);
978 }
979 
create_mapping_late(struct mm_struct * mm,struct map_desc * md,bool ng)980 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
981 				bool ng)
982 {
983 #ifdef CONFIG_ARM_LPAE
984 	p4d_t *p4d;
985 	pud_t *pud;
986 
987 	p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
988 	if (WARN_ON(!p4d))
989 		return;
990 	pud = pud_alloc(mm, p4d, md->virtual);
991 	if (WARN_ON(!pud))
992 		return;
993 	pmd_alloc(mm, pud, 0);
994 #endif
995 	__create_mapping(mm, md, late_alloc, ng);
996 }
997 
998 /*
999  * Create the architecture specific mappings
1000  */
iotable_init(struct map_desc * io_desc,int nr)1001 void __init iotable_init(struct map_desc *io_desc, int nr)
1002 {
1003 	struct map_desc *md;
1004 	struct vm_struct *vm;
1005 	struct static_vm *svm;
1006 
1007 	if (!nr)
1008 		return;
1009 
1010 	svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
1011 	if (!svm)
1012 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1013 		      __func__, sizeof(*svm) * nr, __alignof__(*svm));
1014 
1015 	for (md = io_desc; nr; md++, nr--) {
1016 		create_mapping(md);
1017 
1018 		vm = &svm->vm;
1019 		vm->addr = (void *)(md->virtual & PAGE_MASK);
1020 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1021 		vm->phys_addr = __pfn_to_phys(md->pfn);
1022 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1023 		vm->flags |= VM_ARM_MTYPE(md->type);
1024 		vm->caller = iotable_init;
1025 		add_static_vm_early(svm++);
1026 	}
1027 }
1028 
vm_reserve_area_early(unsigned long addr,unsigned long size,void * caller)1029 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1030 				  void *caller)
1031 {
1032 	struct vm_struct *vm;
1033 	struct static_vm *svm;
1034 
1035 	svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1036 	if (!svm)
1037 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1038 		      __func__, sizeof(*svm), __alignof__(*svm));
1039 
1040 	vm = &svm->vm;
1041 	vm->addr = (void *)addr;
1042 	vm->size = size;
1043 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1044 	vm->caller = caller;
1045 	add_static_vm_early(svm);
1046 }
1047 
1048 #ifndef CONFIG_ARM_LPAE
1049 
1050 /*
1051  * The Linux PMD is made of two consecutive section entries covering 2MB
1052  * (see definition in include/asm/pgtable-2level.h).  However a call to
1053  * create_mapping() may optimize static mappings by using individual
1054  * 1MB section mappings.  This leaves the actual PMD potentially half
1055  * initialized if the top or bottom section entry isn't used, leaving it
1056  * open to problems if a subsequent ioremap() or vmalloc() tries to use
1057  * the virtual space left free by that unused section entry.
1058  *
1059  * Let's avoid the issue by inserting dummy vm entries covering the unused
1060  * PMD halves once the static mappings are in place.
1061  */
1062 
pmd_empty_section_gap(unsigned long addr)1063 static void __init pmd_empty_section_gap(unsigned long addr)
1064 {
1065 	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1066 }
1067 
fill_pmd_gaps(void)1068 static void __init fill_pmd_gaps(void)
1069 {
1070 	struct static_vm *svm;
1071 	struct vm_struct *vm;
1072 	unsigned long addr, next = 0;
1073 	pmd_t *pmd;
1074 
1075 	list_for_each_entry(svm, &static_vmlist, list) {
1076 		vm = &svm->vm;
1077 		addr = (unsigned long)vm->addr;
1078 		if (addr < next)
1079 			continue;
1080 
1081 		/*
1082 		 * Check if this vm starts on an odd section boundary.
1083 		 * If so and the first section entry for this PMD is free
1084 		 * then we block the corresponding virtual address.
1085 		 */
1086 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1087 			pmd = pmd_off_k(addr);
1088 			if (pmd_none(*pmd))
1089 				pmd_empty_section_gap(addr & PMD_MASK);
1090 		}
1091 
1092 		/*
1093 		 * Then check if this vm ends on an odd section boundary.
1094 		 * If so and the second section entry for this PMD is empty
1095 		 * then we block the corresponding virtual address.
1096 		 */
1097 		addr += vm->size;
1098 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1099 			pmd = pmd_off_k(addr) + 1;
1100 			if (pmd_none(*pmd))
1101 				pmd_empty_section_gap(addr);
1102 		}
1103 
1104 		/* no need to look at any vm entry until we hit the next PMD */
1105 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
1106 	}
1107 }
1108 
1109 #else
1110 #define fill_pmd_gaps() do { } while (0)
1111 #endif
1112 
1113 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
pci_reserve_io(void)1114 static void __init pci_reserve_io(void)
1115 {
1116 	struct static_vm *svm;
1117 
1118 	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1119 	if (svm)
1120 		return;
1121 
1122 	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1123 }
1124 #else
1125 #define pci_reserve_io() do { } while (0)
1126 #endif
1127 
1128 #ifdef CONFIG_DEBUG_LL
debug_ll_io_init(void)1129 void __init debug_ll_io_init(void)
1130 {
1131 	struct map_desc map;
1132 
1133 	debug_ll_addr(&map.pfn, &map.virtual);
1134 	if (!map.pfn || !map.virtual)
1135 		return;
1136 	map.pfn = __phys_to_pfn(map.pfn);
1137 	map.virtual &= PAGE_MASK;
1138 	map.length = PAGE_SIZE;
1139 	map.type = MT_DEVICE;
1140 	iotable_init(&map, 1);
1141 }
1142 #endif
1143 
1144 static void * __initdata vmalloc_min =
1145 	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1146 
1147 /*
1148  * vmalloc=size forces the vmalloc area to be exactly 'size'
1149  * bytes. This can be used to increase (or decrease) the vmalloc
1150  * area - the default is 240m.
1151  */
early_vmalloc(char * arg)1152 static int __init early_vmalloc(char *arg)
1153 {
1154 	unsigned long vmalloc_reserve = memparse(arg, NULL);
1155 
1156 	if (vmalloc_reserve < SZ_16M) {
1157 		vmalloc_reserve = SZ_16M;
1158 		pr_warn("vmalloc area too small, limiting to %luMB\n",
1159 			vmalloc_reserve >> 20);
1160 	}
1161 
1162 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1163 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1164 		pr_warn("vmalloc area is too big, limiting to %luMB\n",
1165 			vmalloc_reserve >> 20);
1166 	}
1167 
1168 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1169 	return 0;
1170 }
1171 early_param("vmalloc", early_vmalloc);
1172 
1173 phys_addr_t arm_lowmem_limit __initdata = 0;
1174 
adjust_lowmem_bounds(void)1175 void __init adjust_lowmem_bounds(void)
1176 {
1177 	phys_addr_t block_start, block_end, memblock_limit = 0;
1178 	u64 vmalloc_limit, i;
1179 	phys_addr_t lowmem_limit = 0;
1180 
1181 	/*
1182 	 * Let's use our own (unoptimized) equivalent of __pa() that is
1183 	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1184 	 * The result is used as the upper bound on physical memory address
1185 	 * and may itself be outside the valid range for which phys_addr_t
1186 	 * and therefore __pa() is defined.
1187 	 */
1188 	vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1189 
1190 	/*
1191 	 * The first usable region must be PMD aligned. Mark its start
1192 	 * as MEMBLOCK_NOMAP if it isn't
1193 	 */
1194 	for_each_mem_range(i, &block_start, &block_end) {
1195 		if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1196 			phys_addr_t len;
1197 
1198 			len = round_up(block_start, PMD_SIZE) - block_start;
1199 			memblock_mark_nomap(block_start, len);
1200 		}
1201 		break;
1202 	}
1203 
1204 	for_each_mem_range(i, &block_start, &block_end) {
1205 		if (block_start < vmalloc_limit) {
1206 			if (block_end > lowmem_limit)
1207 				/*
1208 				 * Compare as u64 to ensure vmalloc_limit does
1209 				 * not get truncated. block_end should always
1210 				 * fit in phys_addr_t so there should be no
1211 				 * issue with assignment.
1212 				 */
1213 				lowmem_limit = min_t(u64,
1214 							 vmalloc_limit,
1215 							 block_end);
1216 
1217 			/*
1218 			 * Find the first non-pmd-aligned page, and point
1219 			 * memblock_limit at it. This relies on rounding the
1220 			 * limit down to be pmd-aligned, which happens at the
1221 			 * end of this function.
1222 			 *
1223 			 * With this algorithm, the start or end of almost any
1224 			 * bank can be non-pmd-aligned. The only exception is
1225 			 * that the start of the bank 0 must be section-
1226 			 * aligned, since otherwise memory would need to be
1227 			 * allocated when mapping the start of bank 0, which
1228 			 * occurs before any free memory is mapped.
1229 			 */
1230 			if (!memblock_limit) {
1231 				if (!IS_ALIGNED(block_start, PMD_SIZE))
1232 					memblock_limit = block_start;
1233 				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1234 					memblock_limit = lowmem_limit;
1235 			}
1236 
1237 		}
1238 	}
1239 
1240 	arm_lowmem_limit = lowmem_limit;
1241 
1242 	high_memory = __va(arm_lowmem_limit - 1) + 1;
1243 
1244 	if (!memblock_limit)
1245 		memblock_limit = arm_lowmem_limit;
1246 
1247 	/*
1248 	 * Round the memblock limit down to a pmd size.  This
1249 	 * helps to ensure that we will allocate memory from the
1250 	 * last full pmd, which should be mapped.
1251 	 */
1252 	memblock_limit = round_down(memblock_limit, PMD_SIZE);
1253 
1254 	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1255 		if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1256 			phys_addr_t end = memblock_end_of_DRAM();
1257 
1258 			pr_notice("Ignoring RAM at %pa-%pa\n",
1259 				  &memblock_limit, &end);
1260 			pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1261 
1262 			memblock_remove(memblock_limit, end - memblock_limit);
1263 		}
1264 	}
1265 
1266 	memblock_set_current_limit(memblock_limit);
1267 }
1268 
prepare_page_table(void)1269 static inline void prepare_page_table(void)
1270 {
1271 	unsigned long addr;
1272 	phys_addr_t end;
1273 
1274 	/*
1275 	 * Clear out all the mappings below the kernel image.
1276 	 */
1277 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1278 		pmd_clear(pmd_off_k(addr));
1279 
1280 #ifdef CONFIG_XIP_KERNEL
1281 	/* The XIP kernel is mapped in the module area -- skip over it */
1282 	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1283 #endif
1284 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1285 		pmd_clear(pmd_off_k(addr));
1286 
1287 	/*
1288 	 * Find the end of the first block of lowmem.
1289 	 */
1290 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1291 	if (end >= arm_lowmem_limit)
1292 		end = arm_lowmem_limit;
1293 
1294 	/*
1295 	 * Clear out all the kernel space mappings, except for the first
1296 	 * memory bank, up to the vmalloc region.
1297 	 */
1298 	for (addr = __phys_to_virt(end);
1299 	     addr < VMALLOC_START; addr += PMD_SIZE)
1300 		pmd_clear(pmd_off_k(addr));
1301 }
1302 
1303 #ifdef CONFIG_ARM_LPAE
1304 /* the first page is reserved for pgd */
1305 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1306 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1307 #else
1308 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1309 #endif
1310 
1311 /*
1312  * Reserve the special regions of memory
1313  */
arm_mm_memblock_reserve(void)1314 void __init arm_mm_memblock_reserve(void)
1315 {
1316 	/*
1317 	 * Reserve the page tables.  These are already in use,
1318 	 * and can only be in node 0.
1319 	 */
1320 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1321 
1322 #ifdef CONFIG_SA1111
1323 	/*
1324 	 * Because of the SA1111 DMA bug, we want to preserve our
1325 	 * precious DMA-able memory...
1326 	 */
1327 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1328 #endif
1329 }
1330 
1331 /*
1332  * Set up the device mappings.  Since we clear out the page tables for all
1333  * mappings above VMALLOC_START, except early fixmap, we might remove debug
1334  * device mappings.  This means earlycon can be used to debug this function
1335  * Any other function or debugging method which may touch any device _will_
1336  * crash the kernel.
1337  */
devicemaps_init(const struct machine_desc * mdesc)1338 static void __init devicemaps_init(const struct machine_desc *mdesc)
1339 {
1340 	struct map_desc map;
1341 	unsigned long addr;
1342 	void *vectors;
1343 
1344 	/*
1345 	 * Allocate the vector page early.
1346 	 */
1347 	vectors = early_alloc(PAGE_SIZE * 2);
1348 
1349 	early_trap_init(vectors);
1350 
1351 	/*
1352 	 * Clear page table except top pmd used by early fixmaps
1353 	 */
1354 	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1355 		pmd_clear(pmd_off_k(addr));
1356 
1357 	if (__atags_pointer) {
1358 		/* create a read-only mapping of the device tree */
1359 		map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
1360 		map.virtual = FDT_FIXED_BASE;
1361 		map.length = FDT_FIXED_SIZE;
1362 		map.type = MT_MEMORY_RO;
1363 		create_mapping(&map);
1364 	}
1365 
1366 	/*
1367 	 * Map the kernel if it is XIP.
1368 	 * It is always first in the modulearea.
1369 	 */
1370 #ifdef CONFIG_XIP_KERNEL
1371 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1372 	map.virtual = MODULES_VADDR;
1373 	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1374 	map.type = MT_ROM;
1375 	create_mapping(&map);
1376 #endif
1377 
1378 	/*
1379 	 * Map the cache flushing regions.
1380 	 */
1381 #ifdef FLUSH_BASE
1382 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1383 	map.virtual = FLUSH_BASE;
1384 	map.length = SZ_1M;
1385 	map.type = MT_CACHECLEAN;
1386 	create_mapping(&map);
1387 #endif
1388 #ifdef FLUSH_BASE_MINICACHE
1389 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1390 	map.virtual = FLUSH_BASE_MINICACHE;
1391 	map.length = SZ_1M;
1392 	map.type = MT_MINICLEAN;
1393 	create_mapping(&map);
1394 #endif
1395 
1396 	/*
1397 	 * Create a mapping for the machine vectors at the high-vectors
1398 	 * location (0xffff0000).  If we aren't using high-vectors, also
1399 	 * create a mapping at the low-vectors virtual address.
1400 	 */
1401 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1402 	map.virtual = 0xffff0000;
1403 	map.length = PAGE_SIZE;
1404 #ifdef CONFIG_KUSER_HELPERS
1405 	map.type = MT_HIGH_VECTORS;
1406 #else
1407 	map.type = MT_LOW_VECTORS;
1408 #endif
1409 	create_mapping(&map);
1410 
1411 	if (!vectors_high()) {
1412 		map.virtual = 0;
1413 		map.length = PAGE_SIZE * 2;
1414 		map.type = MT_LOW_VECTORS;
1415 		create_mapping(&map);
1416 	}
1417 
1418 	/* Now create a kernel read-only mapping */
1419 	map.pfn += 1;
1420 	map.virtual = 0xffff0000 + PAGE_SIZE;
1421 	map.length = PAGE_SIZE;
1422 	map.type = MT_LOW_VECTORS;
1423 	create_mapping(&map);
1424 
1425 	/*
1426 	 * Ask the machine support to map in the statically mapped devices.
1427 	 */
1428 	if (mdesc->map_io)
1429 		mdesc->map_io();
1430 	else
1431 		debug_ll_io_init();
1432 	fill_pmd_gaps();
1433 
1434 	/* Reserve fixed i/o space in VMALLOC region */
1435 	pci_reserve_io();
1436 
1437 	/*
1438 	 * Finally flush the caches and tlb to ensure that we're in a
1439 	 * consistent state wrt the writebuffer.  This also ensures that
1440 	 * any write-allocated cache lines in the vector page are written
1441 	 * back.  After this point, we can start to touch devices again.
1442 	 */
1443 	local_flush_tlb_all();
1444 	flush_cache_all();
1445 
1446 	/* Enable asynchronous aborts */
1447 	early_abt_enable();
1448 }
1449 
kmap_init(void)1450 static void __init kmap_init(void)
1451 {
1452 #ifdef CONFIG_HIGHMEM
1453 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1454 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1455 #endif
1456 
1457 	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1458 			_PAGE_KERNEL_TABLE);
1459 }
1460 
map_lowmem(void)1461 static void __init map_lowmem(void)
1462 {
1463 	phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
1464 	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1465 	phys_addr_t start, end;
1466 	u64 i;
1467 
1468 	/* Map all the lowmem memory banks. */
1469 	for_each_mem_range(i, &start, &end) {
1470 		struct map_desc map;
1471 
1472 		if (end > arm_lowmem_limit)
1473 			end = arm_lowmem_limit;
1474 		if (start >= end)
1475 			break;
1476 
1477 		if (end < kernel_x_start) {
1478 			map.pfn = __phys_to_pfn(start);
1479 			map.virtual = __phys_to_virt(start);
1480 			map.length = end - start;
1481 			map.type = MT_MEMORY_RWX;
1482 
1483 			create_mapping(&map);
1484 		} else if (start >= kernel_x_end) {
1485 			map.pfn = __phys_to_pfn(start);
1486 			map.virtual = __phys_to_virt(start);
1487 			map.length = end - start;
1488 			map.type = MT_MEMORY_RW;
1489 
1490 			create_mapping(&map);
1491 		} else {
1492 			/* This better cover the entire kernel */
1493 			if (start < kernel_x_start) {
1494 				map.pfn = __phys_to_pfn(start);
1495 				map.virtual = __phys_to_virt(start);
1496 				map.length = kernel_x_start - start;
1497 				map.type = MT_MEMORY_RW;
1498 
1499 				create_mapping(&map);
1500 			}
1501 
1502 			map.pfn = __phys_to_pfn(kernel_x_start);
1503 			map.virtual = __phys_to_virt(kernel_x_start);
1504 			map.length = kernel_x_end - kernel_x_start;
1505 			map.type = MT_MEMORY_RWX;
1506 
1507 			create_mapping(&map);
1508 
1509 			if (kernel_x_end < end) {
1510 				map.pfn = __phys_to_pfn(kernel_x_end);
1511 				map.virtual = __phys_to_virt(kernel_x_end);
1512 				map.length = end - kernel_x_end;
1513 				map.type = MT_MEMORY_RW;
1514 
1515 				create_mapping(&map);
1516 			}
1517 		}
1518 	}
1519 }
1520 
1521 #ifdef CONFIG_ARM_PV_FIXUP
1522 typedef void pgtables_remap(long long offset, unsigned long pgd);
1523 pgtables_remap lpae_pgtables_remap_asm;
1524 
1525 /*
1526  * early_paging_init() recreates boot time page table setup, allowing machines
1527  * to switch over to a high (>4G) address space on LPAE systems
1528  */
early_paging_init(const struct machine_desc * mdesc)1529 static void __init early_paging_init(const struct machine_desc *mdesc)
1530 {
1531 	pgtables_remap *lpae_pgtables_remap;
1532 	unsigned long pa_pgd;
1533 	unsigned int cr, ttbcr;
1534 	long long offset;
1535 
1536 	if (!mdesc->pv_fixup)
1537 		return;
1538 
1539 	offset = mdesc->pv_fixup();
1540 	if (offset == 0)
1541 		return;
1542 
1543 	/*
1544 	 * Get the address of the remap function in the 1:1 identity
1545 	 * mapping setup by the early page table assembly code.  We
1546 	 * must get this prior to the pv update.  The following barrier
1547 	 * ensures that this is complete before we fixup any P:V offsets.
1548 	 */
1549 	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1550 	pa_pgd = __pa(swapper_pg_dir);
1551 	barrier();
1552 
1553 	pr_info("Switching physical address space to 0x%08llx\n",
1554 		(u64)PHYS_OFFSET + offset);
1555 
1556 	/* Re-set the phys pfn offset, and the pv offset */
1557 	__pv_offset += offset;
1558 	__pv_phys_pfn_offset += PFN_DOWN(offset);
1559 
1560 	/* Run the patch stub to update the constants */
1561 	fixup_pv_table(&__pv_table_begin,
1562 		(&__pv_table_end - &__pv_table_begin) << 2);
1563 
1564 	/*
1565 	 * We changing not only the virtual to physical mapping, but also
1566 	 * the physical addresses used to access memory.  We need to flush
1567 	 * all levels of cache in the system with caching disabled to
1568 	 * ensure that all data is written back, and nothing is prefetched
1569 	 * into the caches.  We also need to prevent the TLB walkers
1570 	 * allocating into the caches too.  Note that this is ARMv7 LPAE
1571 	 * specific.
1572 	 */
1573 	cr = get_cr();
1574 	set_cr(cr & ~(CR_I | CR_C));
1575 	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1576 	asm volatile("mcr p15, 0, %0, c2, c0, 2"
1577 		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1578 	flush_cache_all();
1579 
1580 	/*
1581 	 * Fixup the page tables - this must be in the idmap region as
1582 	 * we need to disable the MMU to do this safely, and hence it
1583 	 * needs to be assembly.  It's fairly simple, as we're using the
1584 	 * temporary tables setup by the initial assembly code.
1585 	 */
1586 	lpae_pgtables_remap(offset, pa_pgd);
1587 
1588 	/* Re-enable the caches and cacheable TLB walks */
1589 	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1590 	set_cr(cr);
1591 }
1592 
1593 #else
1594 
early_paging_init(const struct machine_desc * mdesc)1595 static void __init early_paging_init(const struct machine_desc *mdesc)
1596 {
1597 	long long offset;
1598 
1599 	if (!mdesc->pv_fixup)
1600 		return;
1601 
1602 	offset = mdesc->pv_fixup();
1603 	if (offset == 0)
1604 		return;
1605 
1606 	pr_crit("Physical address space modification is only to support Keystone2.\n");
1607 	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1608 	pr_crit("feature. Your kernel may crash now, have a good day.\n");
1609 	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1610 }
1611 
1612 #endif
1613 
early_fixmap_shutdown(void)1614 static void __init early_fixmap_shutdown(void)
1615 {
1616 	int i;
1617 	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1618 
1619 	pte_offset_fixmap = pte_offset_late_fixmap;
1620 	pmd_clear(fixmap_pmd(va));
1621 	local_flush_tlb_kernel_page(va);
1622 
1623 	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1624 		pte_t *pte;
1625 		struct map_desc map;
1626 
1627 		map.virtual = fix_to_virt(i);
1628 		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1629 
1630 		/* Only i/o device mappings are supported ATM */
1631 		if (pte_none(*pte) ||
1632 		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1633 			continue;
1634 
1635 		map.pfn = pte_pfn(*pte);
1636 		map.type = MT_DEVICE;
1637 		map.length = PAGE_SIZE;
1638 
1639 		create_mapping(&map);
1640 	}
1641 }
1642 
1643 /*
1644  * paging_init() sets up the page tables, initialises the zone memory
1645  * maps, and sets up the zero page, bad page and bad page tables.
1646  */
paging_init(const struct machine_desc * mdesc)1647 void __init paging_init(const struct machine_desc *mdesc)
1648 {
1649 	void *zero_page;
1650 
1651 	prepare_page_table();
1652 	map_lowmem();
1653 	memblock_set_current_limit(arm_lowmem_limit);
1654 	dma_contiguous_remap();
1655 	early_fixmap_shutdown();
1656 	devicemaps_init(mdesc);
1657 	kmap_init();
1658 	tcm_init();
1659 
1660 	top_pmd = pmd_off_k(0xffff0000);
1661 
1662 	/* allocate the zero page. */
1663 	zero_page = early_alloc(PAGE_SIZE);
1664 
1665 	bootmem_init();
1666 
1667 	empty_zero_page = virt_to_page(zero_page);
1668 	__flush_dcache_page(NULL, empty_zero_page);
1669 }
1670 
early_mm_init(const struct machine_desc * mdesc)1671 void __init early_mm_init(const struct machine_desc *mdesc)
1672 {
1673 	build_mem_type_table();
1674 	early_paging_init(mdesc);
1675 }
1676 
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval)1677 void set_pte_at(struct mm_struct *mm, unsigned long addr,
1678 			      pte_t *ptep, pte_t pteval)
1679 {
1680 	unsigned long ext = 0;
1681 
1682 	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1683 		if (!pte_special(pteval))
1684 			__sync_icache_dcache(pteval);
1685 		ext |= PTE_EXT_NG;
1686 	}
1687 
1688 	set_pte_ext(ptep, pteval, ext);
1689 }
1690