xref: /OK3568_Linux_fs/external/xserver/hw/xfree86/common/xf86Mode.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2  * Copyright (c) 1997-2003 by The XFree86 Project, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Except as contained in this notice, the name of the copyright holder(s)
23  * and author(s) shall not be used in advertising or otherwise to promote
24  * the sale, use or other dealings in this Software without prior written
25  * authorization from the copyright holder(s) and author(s).
26  */
27 
28 /*
29  * LCM() and scanLineWidth() are:
30  *
31  * Copyright 1997 through 2004 by Marc Aurele La France (TSI @ UQV), tsi@xfree86.org
32  *
33  * Permission to use, copy, modify, distribute, and sell this software and its
34  * documentation for any purpose is hereby granted without fee, provided that
35  * the above copyright notice appear in all copies and that both that copyright
36  * notice and this permission notice appear in supporting documentation, and
37  * that the name of Marc Aurele La France not be used in advertising or
38  * publicity pertaining to distribution of the software without specific,
39  * written prior permission.  Marc Aurele La France makes no representations
40  * about the suitability of this software for any purpose.  It is provided
41  * "as-is" without express or implied warranty.
42  *
43  * MARC AURELE LA FRANCE DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
44  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.  IN NO
45  * EVENT SHALL MARC AURELE LA FRANCE BE LIABLE FOR ANY SPECIAL, INDIRECT OR
46  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
47  * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
48  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
49  * PERFORMANCE OF THIS SOFTWARE.
50  *
51  * Copyright 1990,91,92,93 by Thomas Roell, Germany.
52  * Copyright 1991,92,93    by SGCS (Snitily Graphics Consulting Services), USA.
53  *
54  * Permission to use, copy, modify, distribute, and sell this software
55  * and its documentation for any purpose is hereby granted without fee,
56  * provided that the above copyright notice appear in all copies and
57  * that both that copyright notice and this  permission notice appear
58  * in supporting documentation, and that the name of Thomas Roell nor
59  * SGCS be used in advertising or publicity pertaining to distribution
60  * of the software without specific, written prior permission.
61  * Thomas Roell nor SGCS makes no representations about the suitability
62  * of this software for any purpose. It is provided "as is" without
63  * express or implied warranty.
64  *
65  * THOMAS ROELL AND SGCS DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
66  * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
67  * FITNESS, IN NO EVENT SHALL THOMAS ROELL OR SGCS BE LIABLE FOR ANY
68  * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
69  * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
70  * CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
71  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
72  */
73 
74 /*
75  * Authors: Dirk Hohndel <hohndel@XFree86.Org>
76  *          David Dawes <dawes@XFree86.Org>
77  *          Marc La France <tsi@XFree86.Org>
78  *          ... and others
79  *
80  * This file includes helper functions for mode related things.
81  */
82 
83 #ifdef HAVE_XORG_CONFIG_H
84 #include <xorg-config.h>
85 #endif
86 
87 #include <X11/X.h>
88 #include "xf86Modes.h"
89 #include "xf86Crtc.h"
90 #include "os.h"
91 #include "servermd.h"
92 #include "globals.h"
93 #include "xf86.h"
94 #include "xf86Priv.h"
95 #include "edid.h"
96 
97 static void
printModeRejectMessage(int index,DisplayModePtr p,int status)98 printModeRejectMessage(int index, DisplayModePtr p, int status)
99 {
100     const char *type;
101 
102     if (p->type & M_T_BUILTIN)
103         type = "built-in ";
104     else if (p->type & M_T_DEFAULT)
105         type = "default ";
106     else if (p->type & M_T_DRIVER)
107         type = "driver ";
108     else
109         type = "";
110 
111     xf86DrvMsg(index, X_INFO, "Not using %smode \"%s\" (%s)\n", type, p->name,
112                xf86ModeStatusToString(status));
113 }
114 
115 /*
116  * Find closest clock to given frequency (in kHz).  This assumes the
117  * number of clocks is greater than zero.
118  */
119 static int
xf86GetNearestClock(ScrnInfoPtr scrp,int freq,Bool allowDiv2,int DivFactor,int MulFactor,int * divider)120 xf86GetNearestClock(ScrnInfoPtr scrp, int freq, Bool allowDiv2,
121                     int DivFactor, int MulFactor, int *divider)
122 {
123     int nearestClock = 0, nearestDiv = 1;
124     int minimumGap = abs(freq - scrp->clock[0]);
125     int i, j, k, gap;
126 
127     if (allowDiv2)
128         k = 2;
129     else
130         k = 1;
131 
132     /* Must set this here in case the best match is scrp->clock[0] */
133     if (divider != NULL)
134         *divider = 0;
135 
136     for (i = 0; i < scrp->numClocks; i++) {
137         for (j = 1; j <= k; j++) {
138             gap = abs((freq * j) - ((scrp->clock[i] * DivFactor) / MulFactor));
139             if ((gap < minimumGap) || ((gap == minimumGap) && (j < nearestDiv))) {
140                 minimumGap = gap;
141                 nearestClock = i;
142                 nearestDiv = j;
143                 if (divider != NULL)
144                     *divider = (j - 1) * V_CLKDIV2;
145             }
146         }
147     }
148     return nearestClock;
149 }
150 
151 /*
152  * xf86ModeStatusToString
153  *
154  * Convert a ModeStatus value to a printable message
155  */
156 
157 const char *
xf86ModeStatusToString(ModeStatus status)158 xf86ModeStatusToString(ModeStatus status)
159 {
160     switch (status) {
161     case MODE_OK:
162         return "Mode OK";
163     case MODE_HSYNC:
164         return "hsync out of range";
165     case MODE_VSYNC:
166         return "vrefresh out of range";
167     case MODE_H_ILLEGAL:
168         return "illegal horizontal timings";
169     case MODE_V_ILLEGAL:
170         return "illegal vertical timings";
171     case MODE_BAD_WIDTH:
172         return "width requires unsupported line pitch";
173     case MODE_NOMODE:
174         return "no mode of this name";
175     case MODE_NO_INTERLACE:
176         return "interlace mode not supported";
177     case MODE_NO_DBLESCAN:
178         return "doublescan mode not supported";
179     case MODE_NO_VSCAN:
180         return "multiscan mode not supported";
181     case MODE_MEM:
182         return "insufficient memory for mode";
183     case MODE_VIRTUAL_X:
184         return "width too large for virtual size";
185     case MODE_VIRTUAL_Y:
186         return "height too large for virtual size";
187     case MODE_MEM_VIRT:
188         return "insufficient memory given virtual size";
189     case MODE_NOCLOCK:
190         return "no clock available for mode";
191     case MODE_CLOCK_HIGH:
192         return "mode clock too high";
193     case MODE_CLOCK_LOW:
194         return "mode clock too low";
195     case MODE_CLOCK_RANGE:
196         return "bad mode clock/interlace/doublescan";
197     case MODE_BAD_HVALUE:
198         return "horizontal timing out of range";
199     case MODE_BAD_VVALUE:
200         return "vertical timing out of range";
201     case MODE_BAD_VSCAN:
202         return "VScan value out of range";
203     case MODE_HSYNC_NARROW:
204         return "horizontal sync too narrow";
205     case MODE_HSYNC_WIDE:
206         return "horizontal sync too wide";
207     case MODE_HBLANK_NARROW:
208         return "horizontal blanking too narrow";
209     case MODE_HBLANK_WIDE:
210         return "horizontal blanking too wide";
211     case MODE_VSYNC_NARROW:
212         return "vertical sync too narrow";
213     case MODE_VSYNC_WIDE:
214         return "vertical sync too wide";
215     case MODE_VBLANK_NARROW:
216         return "vertical blanking too narrow";
217     case MODE_VBLANK_WIDE:
218         return "vertical blanking too wide";
219     case MODE_PANEL:
220         return "exceeds panel dimensions";
221     case MODE_INTERLACE_WIDTH:
222         return "width too large for interlaced mode";
223     case MODE_ONE_WIDTH:
224         return "all modes must have the same width";
225     case MODE_ONE_HEIGHT:
226         return "all modes must have the same height";
227     case MODE_ONE_SIZE:
228         return "all modes must have the same resolution";
229     case MODE_NO_REDUCED:
230         return "monitor doesn't support reduced blanking";
231     case MODE_BANDWIDTH:
232         return "mode requires too much memory bandwidth";
233     case MODE_BAD:
234         return "unknown reason";
235     case MODE_ERROR:
236         return "internal error";
237     default:
238         return "unknown";
239     }
240 }
241 
242 /*
243  * xf86ShowClockRanges() -- Print the clock ranges allowed
244  * and the clock values scaled by ClockMulFactor and ClockDivFactor
245  */
246 void
xf86ShowClockRanges(ScrnInfoPtr scrp,ClockRangePtr clockRanges)247 xf86ShowClockRanges(ScrnInfoPtr scrp, ClockRangePtr clockRanges)
248 {
249     ClockRangePtr cp;
250     int MulFactor = 1;
251     int DivFactor = 1;
252     int i, j;
253     int scaledClock;
254 
255     for (cp = clockRanges; cp != NULL; cp = cp->next) {
256         DivFactor = max(1, cp->ClockDivFactor);
257         MulFactor = max(1, cp->ClockMulFactor);
258         if (scrp->progClock) {
259             if (cp->minClock) {
260                 if (cp->maxClock) {
261                     xf86DrvMsg(scrp->scrnIndex, X_INFO,
262                                "Clock range: %6.2f to %6.2f MHz\n",
263                                (double) cp->minClock / 1000.0,
264                                (double) cp->maxClock / 1000.0);
265                 }
266                 else {
267                     xf86DrvMsg(scrp->scrnIndex, X_INFO,
268                                "Minimum clock: %6.2f MHz\n",
269                                (double) cp->minClock / 1000.0);
270                 }
271             }
272             else {
273                 if (cp->maxClock) {
274                     xf86DrvMsg(scrp->scrnIndex, X_INFO,
275                                "Maximum clock: %6.2f MHz\n",
276                                (double) cp->maxClock / 1000.0);
277                 }
278             }
279         }
280         else if (DivFactor > 1 || MulFactor > 1) {
281             j = 0;
282             for (i = 0; i < scrp->numClocks; i++) {
283                 scaledClock = (scrp->clock[i] * DivFactor) / MulFactor;
284                 if (scaledClock >= cp->minClock && scaledClock <= cp->maxClock) {
285                     if ((j % 8) == 0) {
286                         if (j > 0)
287                             xf86ErrorF("\n");
288                         xf86DrvMsg(scrp->scrnIndex, X_INFO, "scaled clocks:");
289                     }
290                     xf86ErrorF(" %6.2f", (double) scaledClock / 1000.0);
291                     j++;
292                 }
293             }
294             xf86ErrorF("\n");
295         }
296     }
297 }
298 
299 static Bool
modeInClockRange(ClockRangePtr cp,DisplayModePtr p)300 modeInClockRange(ClockRangePtr cp, DisplayModePtr p)
301 {
302     return ((p->Clock >= cp->minClock) &&
303             (p->Clock <= cp->maxClock) &&
304             (cp->interlaceAllowed || !(p->Flags & V_INTERLACE)) &&
305             (cp->doubleScanAllowed ||
306              ((p->VScan <= 1) && !(p->Flags & V_DBLSCAN))));
307 }
308 
309 /*
310  * xf86FindClockRangeForMode()    [... like the name says ...]
311  */
312 static ClockRangePtr
xf86FindClockRangeForMode(ClockRangePtr clockRanges,DisplayModePtr p)313 xf86FindClockRangeForMode(ClockRangePtr clockRanges, DisplayModePtr p)
314 {
315     ClockRangePtr cp;
316 
317     for (cp = clockRanges;; cp = cp->next)
318         if (!cp || modeInClockRange(cp, p))
319             return cp;
320 }
321 
322 /*
323  * xf86HandleBuiltinMode() - handles built-in modes
324  */
325 static ModeStatus
xf86HandleBuiltinMode(ScrnInfoPtr scrp,DisplayModePtr p,DisplayModePtr modep,ClockRangePtr clockRanges,Bool allowDiv2)326 xf86HandleBuiltinMode(ScrnInfoPtr scrp,
327                       DisplayModePtr p,
328                       DisplayModePtr modep,
329                       ClockRangePtr clockRanges, Bool allowDiv2)
330 {
331     ClockRangePtr cp;
332     int extraFlags = 0;
333     int MulFactor = 1;
334     int DivFactor = 1;
335     int clockIndex;
336 
337     /* Reject previously rejected modes */
338     if (p->status != MODE_OK)
339         return p->status;
340 
341     /* Reject previously considered modes */
342     if (p->prev)
343         return MODE_NOMODE;
344 
345     if ((p->type & M_T_CLOCK_C) == M_T_CLOCK_C) {
346         /* Check clock is in range */
347         cp = xf86FindClockRangeForMode(clockRanges, p);
348         if (cp == NULL) {
349             modep->type = p->type;
350             p->status = MODE_CLOCK_RANGE;
351             return MODE_CLOCK_RANGE;
352         }
353         DivFactor = cp->ClockDivFactor;
354         MulFactor = cp->ClockMulFactor;
355         if (!scrp->progClock) {
356             clockIndex = xf86GetNearestClock(scrp, p->Clock, allowDiv2,
357                                              cp->ClockDivFactor,
358                                              cp->ClockMulFactor, &extraFlags);
359             modep->Clock = (scrp->clock[clockIndex] * DivFactor)
360                 / MulFactor;
361             modep->ClockIndex = clockIndex;
362             modep->SynthClock = scrp->clock[clockIndex];
363             if (extraFlags & V_CLKDIV2) {
364                 modep->Clock /= 2;
365                 modep->SynthClock /= 2;
366             }
367         }
368         else {
369             modep->Clock = p->Clock;
370             modep->ClockIndex = -1;
371             modep->SynthClock = (modep->Clock * MulFactor)
372                 / DivFactor;
373         }
374         modep->PrivFlags = cp->PrivFlags;
375     }
376     else {
377         if (!scrp->progClock) {
378             modep->Clock = p->Clock;
379             modep->ClockIndex = p->ClockIndex;
380             modep->SynthClock = p->SynthClock;
381         }
382         else {
383             modep->Clock = p->Clock;
384             modep->ClockIndex = -1;
385             modep->SynthClock = p->SynthClock;
386         }
387         modep->PrivFlags = p->PrivFlags;
388     }
389     modep->type = p->type;
390     modep->HDisplay = p->HDisplay;
391     modep->HSyncStart = p->HSyncStart;
392     modep->HSyncEnd = p->HSyncEnd;
393     modep->HTotal = p->HTotal;
394     modep->HSkew = p->HSkew;
395     modep->VDisplay = p->VDisplay;
396     modep->VSyncStart = p->VSyncStart;
397     modep->VSyncEnd = p->VSyncEnd;
398     modep->VTotal = p->VTotal;
399     modep->VScan = p->VScan;
400     modep->Flags = p->Flags | extraFlags;
401     modep->CrtcHDisplay = p->CrtcHDisplay;
402     modep->CrtcHBlankStart = p->CrtcHBlankStart;
403     modep->CrtcHSyncStart = p->CrtcHSyncStart;
404     modep->CrtcHSyncEnd = p->CrtcHSyncEnd;
405     modep->CrtcHBlankEnd = p->CrtcHBlankEnd;
406     modep->CrtcHTotal = p->CrtcHTotal;
407     modep->CrtcHSkew = p->CrtcHSkew;
408     modep->CrtcVDisplay = p->CrtcVDisplay;
409     modep->CrtcVBlankStart = p->CrtcVBlankStart;
410     modep->CrtcVSyncStart = p->CrtcVSyncStart;
411     modep->CrtcVSyncEnd = p->CrtcVSyncEnd;
412     modep->CrtcVBlankEnd = p->CrtcVBlankEnd;
413     modep->CrtcVTotal = p->CrtcVTotal;
414     modep->CrtcHAdjusted = p->CrtcHAdjusted;
415     modep->CrtcVAdjusted = p->CrtcVAdjusted;
416     modep->HSync = p->HSync;
417     modep->VRefresh = p->VRefresh;
418     modep->Private = p->Private;
419     modep->PrivSize = p->PrivSize;
420 
421     p->prev = modep;
422 
423     return MODE_OK;
424 }
425 
426 /*
427  * xf86LookupMode
428  *
429  * This function returns a mode from the given list which matches the
430  * given name.  When multiple modes with the same name are available,
431  * the method of picking the matching mode is determined by the
432  * strategy selected.
433  *
434  * This function takes the following parameters:
435  *    scrp         ScrnInfoPtr
436  *    modep        pointer to the returned mode, which must have the name
437  *                 field filled in.
438  *    clockRanges  a list of clock ranges.   This is optional when all the
439  *                 modes are built-in modes.
440  *    strategy     how to decide which mode to use from multiple modes with
441  *                 the same name
442  *
443  * In addition, the following fields from the ScrnInfoRec are used:
444  *    modePool     the list of monitor modes compatible with the driver
445  *    clocks       a list of discrete clocks
446  *    numClocks    number of discrete clocks
447  *    progClock    clock is programmable
448  *
449  * If a mode was found, its values are filled in to the area pointed to
450  * by modep,  If a mode was not found the return value indicates the
451  * reason.
452  */
453 
454 static ModeStatus
xf86LookupMode(ScrnInfoPtr scrp,DisplayModePtr modep,ClockRangePtr clockRanges,LookupModeFlags strategy)455 xf86LookupMode(ScrnInfoPtr scrp, DisplayModePtr modep,
456                ClockRangePtr clockRanges, LookupModeFlags strategy)
457 {
458     DisplayModePtr p, bestMode = NULL;
459     ClockRangePtr cp;
460     int i, k, gap, minimumGap = CLOCK_TOLERANCE + 1;
461     double refresh, bestRefresh = 0.0;
462     Bool found = FALSE;
463     int extraFlags = 0;
464     int clockIndex = -1;
465     int MulFactor = 1;
466     int DivFactor = 1;
467     int ModePrivFlags = 0;
468     ModeStatus status = MODE_NOMODE;
469     Bool allowDiv2 = (strategy & LOOKUP_CLKDIV2) != 0;
470     int n;
471 
472     const int types[] = {
473         M_T_BUILTIN | M_T_PREFERRED,
474         M_T_BUILTIN,
475         M_T_USERDEF | M_T_PREFERRED,
476         M_T_USERDEF,
477         M_T_DRIVER | M_T_PREFERRED,
478         M_T_DRIVER,
479         0
480     };
481     const int ntypes = ARRAY_SIZE(types);
482 
483     strategy &= ~(LOOKUP_CLKDIV2 | LOOKUP_OPTIONAL_TOLERANCES);
484 
485     /* Some sanity checking */
486     if (scrp == NULL || scrp->modePool == NULL ||
487         (!scrp->progClock && scrp->numClocks == 0)) {
488         ErrorF("xf86LookupMode: called with invalid scrnInfoRec\n");
489         return MODE_ERROR;
490     }
491     if (modep == NULL || modep->name == NULL) {
492         ErrorF("xf86LookupMode: called with invalid modep\n");
493         return MODE_ERROR;
494     }
495     for (cp = clockRanges; cp != NULL; cp = cp->next) {
496         /* DivFactor and MulFactor must be > 0 */
497         cp->ClockDivFactor = max(1, cp->ClockDivFactor);
498         cp->ClockMulFactor = max(1, cp->ClockMulFactor);
499     }
500 
501     /* Scan the mode pool for matching names */
502     for (n = 0; n < ntypes; n++) {
503         int type = types[n];
504 
505         for (p = scrp->modePool; p != NULL; p = p->next) {
506 
507             /* scan through the modes in the sort order above */
508             if ((p->type & type) != type)
509                 continue;
510 
511             if (strcmp(p->name, modep->name) == 0) {
512 
513                 /* Skip over previously rejected modes */
514                 if (p->status != MODE_OK) {
515                     if (!found)
516                         status = p->status;
517                     continue;
518                 }
519 
520                 /* Skip over previously considered modes */
521                 if (p->prev)
522                     continue;
523 
524                 if (p->type & M_T_BUILTIN) {
525                     return xf86HandleBuiltinMode(scrp, p, modep, clockRanges,
526                                                  allowDiv2);
527                 }
528 
529                 /* Check clock is in range */
530                 cp = xf86FindClockRangeForMode(clockRanges, p);
531                 if (cp == NULL) {
532                     /*
533                      * XXX Could do more here to provide a more detailed
534                      * reason for not finding a mode.
535                      */
536                     p->status = MODE_CLOCK_RANGE;
537                     if (!found)
538                         status = MODE_CLOCK_RANGE;
539                     continue;
540                 }
541 
542                 /*
543                  * If programmable clock and strategy is not
544                  * LOOKUP_BEST_REFRESH, the required mode has been found,
545                  * otherwise record the refresh and continue looking.
546                  */
547                 if (scrp->progClock) {
548                     found = TRUE;
549                     if (strategy != LOOKUP_BEST_REFRESH) {
550                         bestMode = p;
551                         DivFactor = cp->ClockDivFactor;
552                         MulFactor = cp->ClockMulFactor;
553                         ModePrivFlags = cp->PrivFlags;
554                         break;
555                     }
556                     refresh = xf86ModeVRefresh(p);
557                     if (p->Flags & V_INTERLACE)
558                         refresh /= INTERLACE_REFRESH_WEIGHT;
559                     if (refresh > bestRefresh) {
560                         bestMode = p;
561                         DivFactor = cp->ClockDivFactor;
562                         MulFactor = cp->ClockMulFactor;
563                         ModePrivFlags = cp->PrivFlags;
564                         bestRefresh = refresh;
565                     }
566                     continue;
567                 }
568 
569                 /*
570                  * Clock is in range, so if it is not a programmable clock, find
571                  * a matching clock.
572                  */
573 
574                 i = xf86GetNearestClock(scrp, p->Clock, allowDiv2,
575                                         cp->ClockDivFactor, cp->ClockMulFactor,
576                                         &k);
577                 /*
578                  * If the clock is too far from the requested clock, this
579                  * mode is no good.
580                  */
581                 if (k & V_CLKDIV2)
582                     gap = abs((p->Clock * 2) -
583                               ((scrp->clock[i] * cp->ClockDivFactor) /
584                                cp->ClockMulFactor));
585                 else
586                     gap = abs(p->Clock -
587                               ((scrp->clock[i] * cp->ClockDivFactor) /
588                                cp->ClockMulFactor));
589                 if (gap > minimumGap) {
590                     p->status = MODE_NOCLOCK;
591                     if (!found)
592                         status = MODE_NOCLOCK;
593                     continue;
594                 }
595                 found = TRUE;
596 
597                 if (strategy == LOOKUP_BEST_REFRESH) {
598                     refresh = xf86ModeVRefresh(p);
599                     if (p->Flags & V_INTERLACE)
600                         refresh /= INTERLACE_REFRESH_WEIGHT;
601                     if (refresh > bestRefresh) {
602                         bestMode = p;
603                         DivFactor = cp->ClockDivFactor;
604                         MulFactor = cp->ClockMulFactor;
605                         ModePrivFlags = cp->PrivFlags;
606                         extraFlags = k;
607                         clockIndex = i;
608                         bestRefresh = refresh;
609                     }
610                     continue;
611                 }
612                 if (strategy == LOOKUP_CLOSEST_CLOCK) {
613                     if (gap < minimumGap) {
614                         bestMode = p;
615                         DivFactor = cp->ClockDivFactor;
616                         MulFactor = cp->ClockMulFactor;
617                         ModePrivFlags = cp->PrivFlags;
618                         extraFlags = k;
619                         clockIndex = i;
620                         minimumGap = gap;
621                     }
622                     continue;
623                 }
624                 /*
625                  * If strategy is neither LOOKUP_BEST_REFRESH or
626                  * LOOKUP_CLOSEST_CLOCK the required mode has been found.
627                  */
628                 bestMode = p;
629                 DivFactor = cp->ClockDivFactor;
630                 MulFactor = cp->ClockMulFactor;
631                 ModePrivFlags = cp->PrivFlags;
632                 extraFlags = k;
633                 clockIndex = i;
634                 break;
635             }
636         }
637         if (found)
638             break;
639     }
640     if (!found || bestMode == NULL)
641         return status;
642 
643     /* Fill in the mode parameters */
644     if (scrp->progClock) {
645         modep->Clock = bestMode->Clock;
646         modep->ClockIndex = -1;
647         modep->SynthClock = (modep->Clock * MulFactor) / DivFactor;
648     }
649     else {
650         modep->Clock = (scrp->clock[clockIndex] * DivFactor) / MulFactor;
651         modep->ClockIndex = clockIndex;
652         modep->SynthClock = scrp->clock[clockIndex];
653         if (extraFlags & V_CLKDIV2) {
654             modep->Clock /= 2;
655             modep->SynthClock /= 2;
656         }
657     }
658     modep->type = bestMode->type;
659     modep->PrivFlags = ModePrivFlags;
660     modep->HDisplay = bestMode->HDisplay;
661     modep->HSyncStart = bestMode->HSyncStart;
662     modep->HSyncEnd = bestMode->HSyncEnd;
663     modep->HTotal = bestMode->HTotal;
664     modep->HSkew = bestMode->HSkew;
665     modep->VDisplay = bestMode->VDisplay;
666     modep->VSyncStart = bestMode->VSyncStart;
667     modep->VSyncEnd = bestMode->VSyncEnd;
668     modep->VTotal = bestMode->VTotal;
669     modep->VScan = bestMode->VScan;
670     modep->Flags = bestMode->Flags | extraFlags;
671     modep->CrtcHDisplay = bestMode->CrtcHDisplay;
672     modep->CrtcHBlankStart = bestMode->CrtcHBlankStart;
673     modep->CrtcHSyncStart = bestMode->CrtcHSyncStart;
674     modep->CrtcHSyncEnd = bestMode->CrtcHSyncEnd;
675     modep->CrtcHBlankEnd = bestMode->CrtcHBlankEnd;
676     modep->CrtcHTotal = bestMode->CrtcHTotal;
677     modep->CrtcHSkew = bestMode->CrtcHSkew;
678     modep->CrtcVDisplay = bestMode->CrtcVDisplay;
679     modep->CrtcVBlankStart = bestMode->CrtcVBlankStart;
680     modep->CrtcVSyncStart = bestMode->CrtcVSyncStart;
681     modep->CrtcVSyncEnd = bestMode->CrtcVSyncEnd;
682     modep->CrtcVBlankEnd = bestMode->CrtcVBlankEnd;
683     modep->CrtcVTotal = bestMode->CrtcVTotal;
684     modep->CrtcHAdjusted = bestMode->CrtcHAdjusted;
685     modep->CrtcVAdjusted = bestMode->CrtcVAdjusted;
686     modep->HSync = bestMode->HSync;
687     modep->VRefresh = bestMode->VRefresh;
688     modep->Private = bestMode->Private;
689     modep->PrivSize = bestMode->PrivSize;
690 
691     bestMode->prev = modep;
692 
693     return MODE_OK;
694 }
695 
696 /*
697  * xf86CheckModeForMonitor
698  *
699  * This function takes a mode and monitor description, and determines
700  * if the mode is valid for the monitor.
701  */
702 ModeStatus
xf86CheckModeForMonitor(DisplayModePtr mode,MonPtr monitor)703 xf86CheckModeForMonitor(DisplayModePtr mode, MonPtr monitor)
704 {
705     int i;
706 
707     /* Sanity checks */
708     if (mode == NULL || monitor == NULL) {
709         ErrorF("xf86CheckModeForMonitor: called with invalid parameters\n");
710         return MODE_ERROR;
711     }
712 
713     DebugF("xf86CheckModeForMonitor(%p %s, %p %s)\n",
714            mode, mode->name, monitor, monitor->id);
715 
716     /* Some basic mode validity checks */
717     if (0 >= mode->HDisplay || mode->HDisplay > mode->HSyncStart ||
718         mode->HSyncStart >= mode->HSyncEnd || mode->HSyncEnd >= mode->HTotal)
719         return MODE_H_ILLEGAL;
720 
721     if (0 >= mode->VDisplay || mode->VDisplay > mode->VSyncStart ||
722         mode->VSyncStart >= mode->VSyncEnd || mode->VSyncEnd >= mode->VTotal)
723         return MODE_V_ILLEGAL;
724 
725     if (monitor->nHsync > 0) {
726         /* Check hsync against the allowed ranges */
727         float hsync = xf86ModeHSync(mode);
728 
729         for (i = 0; i < monitor->nHsync; i++)
730             if ((hsync > monitor->hsync[i].lo * (1.0 - SYNC_TOLERANCE)) &&
731                 (hsync < monitor->hsync[i].hi * (1.0 + SYNC_TOLERANCE)))
732                 break;
733 
734         /* Now see whether we ran out of sync ranges without finding a match */
735         if (i == monitor->nHsync)
736             return MODE_HSYNC;
737     }
738 
739     if (monitor->nVrefresh > 0) {
740         /* Check vrefresh against the allowed ranges */
741         float vrefrsh = xf86ModeVRefresh(mode);
742 
743         for (i = 0; i < monitor->nVrefresh; i++)
744             if ((vrefrsh > monitor->vrefresh[i].lo * (1.0 - SYNC_TOLERANCE)) &&
745                 (vrefrsh < monitor->vrefresh[i].hi * (1.0 + SYNC_TOLERANCE)))
746                 break;
747 
748         /* Now see whether we ran out of refresh ranges without finding a match */
749         if (i == monitor->nVrefresh)
750             return MODE_VSYNC;
751     }
752 
753     /* Force interlaced modes to have an odd VTotal */
754     if (mode->Flags & V_INTERLACE)
755         mode->CrtcVTotal = mode->VTotal |= 1;
756 
757     /*
758      * This code stops cvt -r modes, and only cvt -r modes, from hitting 15y+
759      * old CRTs which might, when there is a lot of solar flare activity and
760      * when the celestial bodies are unfavourably aligned, implode trying to
761      * sync to it. It's called "Protecting the user from doing anything stupid".
762      * -- libv
763      */
764 
765     if (xf86ModeIsReduced(mode)) {
766         if (!monitor->reducedblanking && !(mode->type & M_T_DRIVER))
767             return MODE_NO_REDUCED;
768     }
769 
770     if ((monitor->maxPixClock) && (mode->Clock > monitor->maxPixClock))
771         return MODE_CLOCK_HIGH;
772 
773     return MODE_OK;
774 }
775 
776 /*
777  * xf86CheckModeSize
778  *
779  * An internal routine to check if a mode fits in video memory.  This tries to
780  * avoid overflows that would otherwise occur when video memory size is greater
781  * than 256MB.
782  */
783 static Bool
xf86CheckModeSize(ScrnInfoPtr scrp,int w,int x,int y)784 xf86CheckModeSize(ScrnInfoPtr scrp, int w, int x, int y)
785 {
786     int bpp = scrp->fbFormat.bitsPerPixel, pad = scrp->fbFormat.scanlinePad;
787     int lineWidth, lastWidth;
788 
789     if (scrp->depth == 4)
790         pad *= 4;               /* 4 planes */
791 
792     /* Sanity check */
793     if ((w < 0) || (x < 0) || (y <= 0))
794         return FALSE;
795 
796     lineWidth = (((w * bpp) + pad - 1) / pad) * pad;
797     lastWidth = x * bpp;
798 
799     /*
800      * At this point, we need to compare
801      *
802      *  (lineWidth * (y - 1)) + lastWidth
803      *
804      * against
805      *
806      *  scrp->videoRam * (1024 * 8)
807      *
808      * These are bit quantities.  To avoid overflows, do the comparison in
809      * terms of BITMAP_SCANLINE_PAD units.  This assumes BITMAP_SCANLINE_PAD
810      * is a power of 2.  We currently use 32, which limits us to a video
811      * memory size of 8GB.
812      */
813 
814     lineWidth = (lineWidth + (BITMAP_SCANLINE_PAD - 1)) / BITMAP_SCANLINE_PAD;
815     lastWidth = (lastWidth + (BITMAP_SCANLINE_PAD - 1)) / BITMAP_SCANLINE_PAD;
816 
817     if ((lineWidth * (y - 1) + lastWidth) >
818         (scrp->videoRam * ((1024 * 8) / BITMAP_SCANLINE_PAD)))
819         return FALSE;
820 
821     return TRUE;
822 }
823 
824 /*
825  * xf86InitialCheckModeForDriver
826  *
827  * This function checks if a mode satisfies a driver's initial requirements:
828  *   -  mode size fits within the available pixel area (memory)
829  *   -  width lies within the range of supported line pitches
830  *   -  mode size fits within virtual size (if fixed)
831  *   -  horizontal timings are in range
832  *
833  * This function takes the following parameters:
834  *    scrp         ScrnInfoPtr
835  *    mode         mode to check
836  *    maxPitch     (optional) maximum line pitch
837  *    virtualX     (optional) virtual width requested
838  *    virtualY     (optional) virtual height requested
839  *
840  * In addition, the following fields from the ScrnInfoRec are used:
841  *    monitor      pointer to structure for monitor section
842  *    fbFormat     pixel format for the framebuffer
843  *    videoRam     video memory size (in kB)
844  */
845 
846 static ModeStatus
xf86InitialCheckModeForDriver(ScrnInfoPtr scrp,DisplayModePtr mode,ClockRangePtr clockRanges,LookupModeFlags strategy,int maxPitch,int virtualX,int virtualY)847 xf86InitialCheckModeForDriver(ScrnInfoPtr scrp, DisplayModePtr mode,
848                               ClockRangePtr clockRanges,
849                               LookupModeFlags strategy,
850                               int maxPitch, int virtualX, int virtualY)
851 {
852     ClockRangePtr cp;
853     ModeStatus status;
854     Bool allowDiv2 = (strategy & LOOKUP_CLKDIV2) != 0;
855     int i, needDiv2;
856 
857     /* Sanity checks */
858     if (!scrp || !mode || !clockRanges) {
859         ErrorF("xf86InitialCheckModeForDriver: "
860                "called with invalid parameters\n");
861         return MODE_ERROR;
862     }
863 
864     DebugF("xf86InitialCheckModeForDriver(%p, %p %s, %p, 0x%x, %d, %d, %d)\n",
865            scrp, mode, mode->name, clockRanges, strategy, maxPitch, virtualX,
866            virtualY);
867 
868     /* Some basic mode validity checks */
869     if (0 >= mode->HDisplay || mode->HDisplay > mode->HSyncStart ||
870         mode->HSyncStart >= mode->HSyncEnd || mode->HSyncEnd >= mode->HTotal)
871         return MODE_H_ILLEGAL;
872 
873     if (0 >= mode->VDisplay || mode->VDisplay > mode->VSyncStart ||
874         mode->VSyncStart >= mode->VSyncEnd || mode->VSyncEnd >= mode->VTotal)
875         return MODE_V_ILLEGAL;
876 
877     if (!xf86CheckModeSize(scrp, mode->HDisplay, mode->HDisplay,
878                            mode->VDisplay))
879         return MODE_MEM;
880 
881     if (maxPitch > 0 && mode->HDisplay > maxPitch)
882         return MODE_BAD_WIDTH;
883 
884     if (virtualX > 0 && mode->HDisplay > virtualX)
885         return MODE_VIRTUAL_X;
886 
887     if (virtualY > 0 && mode->VDisplay > virtualY)
888         return MODE_VIRTUAL_Y;
889 
890     /*
891      * The use of the DisplayModeRec's Crtc* and SynthClock elements below is
892      * provisional, in that they are later reused by the driver at mode-set
893      * time.  Here, they are temporarily enlisted to contain the mode timings
894      * as seen by the CRT or panel (rather than the CRTC).  The driver's
895      * ValidMode() is allowed to modify these so it can deal with such things
896      * as mode stretching and/or centering.  The driver should >NOT< modify the
897      * user-supplied values as these are reported back when mode validation is
898      * said and done.
899      */
900     /*
901      * NOTE: We (ab)use the mode->Crtc* values here to store timing
902      * information for the calculation of Hsync and Vrefresh. Before
903      * these values are calculated the driver is given the opportunity
904      * to either set these HSync and VRefresh itself or modify the timing
905      * values.
906      * The difference to the final calculation is small but imortand:
907      * here we pass the flag INTERLACE_HALVE_V regardless if the driver
908      * sets it or not. This way our calculation of VRefresh has the same
909      * effect as if we do if (flags & V_INTERLACE) refresh *= 2.0
910      * This dual use of the mode->Crtc* values will certainly create
911      * confusion and is bad software design. However since it's part of
912      * the driver API it's hard to change.
913      */
914 
915     if (scrp->ValidMode) {
916 
917         xf86SetModeCrtc(mode, INTERLACE_HALVE_V);
918 
919         cp = xf86FindClockRangeForMode(clockRanges, mode);
920         if (!cp)
921             return MODE_CLOCK_RANGE;
922 
923         if (cp->ClockMulFactor < 1)
924             cp->ClockMulFactor = 1;
925         if (cp->ClockDivFactor < 1)
926             cp->ClockDivFactor = 1;
927 
928         /*
929          * XXX  The effect of clock dividers and multipliers on the monitor's
930          *      pixel clock needs to be verified.
931          */
932         if (scrp->progClock) {
933             mode->SynthClock = mode->Clock;
934         }
935         else {
936             i = xf86GetNearestClock(scrp, mode->Clock, allowDiv2,
937                                     cp->ClockDivFactor, cp->ClockMulFactor,
938                                     &needDiv2);
939             mode->SynthClock = (scrp->clock[i] * cp->ClockDivFactor) /
940                 cp->ClockMulFactor;
941             if (needDiv2 & V_CLKDIV2)
942                 mode->SynthClock /= 2;
943         }
944 
945         status = (*scrp->ValidMode) (scrp, mode, FALSE,
946                                      MODECHECK_INITIAL);
947         if (status != MODE_OK)
948             return status;
949 
950         if (mode->HSync <= 0.0)
951             mode->HSync = (float) mode->SynthClock / (float) mode->CrtcHTotal;
952         if (mode->VRefresh <= 0.0)
953             mode->VRefresh = (mode->SynthClock * 1000.0)
954                 / (mode->CrtcHTotal * mode->CrtcVTotal);
955     }
956 
957     mode->HSync = xf86ModeHSync(mode);
958     mode->VRefresh = xf86ModeVRefresh(mode);
959 
960     /* Assume it is OK */
961     return MODE_OK;
962 }
963 
964 /*
965  * xf86CheckModeForDriver
966  *
967  * This function is for checking modes while the server is running (for
968  * use mainly by the VidMode extension).
969  *
970  * This function checks if a mode satisfies a driver's requirements:
971  *   -  width lies within the line pitch
972  *   -  mode size fits within virtual size
973  *   -  horizontal/vertical timings are in range
974  *
975  * This function takes the following parameters:
976  *    scrp         ScrnInfoPtr
977  *    mode         mode to check
978  *    flags        not (currently) used
979  *
980  * In addition, the following fields from the ScrnInfoRec are used:
981  *    virtualX     virtual width
982  *    virtualY     virtual height
983  *    clockRanges  allowable clock ranges
984  */
985 
986 ModeStatus
xf86CheckModeForDriver(ScrnInfoPtr scrp,DisplayModePtr mode,int flags)987 xf86CheckModeForDriver(ScrnInfoPtr scrp, DisplayModePtr mode, int flags)
988 {
989     ClockRangePtr cp;
990     int i, k, gap, minimumGap = CLOCK_TOLERANCE + 1;
991     int extraFlags = 0;
992     int clockIndex = -1;
993     int MulFactor = 1;
994     int DivFactor = 1;
995     int ModePrivFlags = 0;
996     ModeStatus status = MODE_NOMODE;
997 
998     /* Some sanity checking */
999     if (scrp == NULL || (!scrp->progClock && scrp->numClocks == 0)) {
1000         ErrorF("xf86CheckModeForDriver: called with invalid scrnInfoRec\n");
1001         return MODE_ERROR;
1002     }
1003     if (mode == NULL) {
1004         ErrorF("xf86CheckModeForDriver: called with invalid modep\n");
1005         return MODE_ERROR;
1006     }
1007 
1008     /* Check the mode size */
1009     if (mode->HDisplay > scrp->virtualX)
1010         return MODE_VIRTUAL_X;
1011 
1012     if (mode->VDisplay > scrp->virtualY)
1013         return MODE_VIRTUAL_Y;
1014 
1015     for (cp = scrp->clockRanges; cp != NULL; cp = cp->next) {
1016         /* DivFactor and MulFactor must be > 0 */
1017         cp->ClockDivFactor = max(1, cp->ClockDivFactor);
1018         cp->ClockMulFactor = max(1, cp->ClockMulFactor);
1019     }
1020 
1021     if (scrp->progClock) {
1022         /* Check clock is in range */
1023         for (cp = scrp->clockRanges; cp != NULL; cp = cp->next) {
1024             if (modeInClockRange(cp, mode))
1025                 break;
1026         }
1027         if (cp == NULL) {
1028             return MODE_CLOCK_RANGE;
1029         }
1030         /*
1031          * If programmable clock the required mode has been found
1032          */
1033         DivFactor = cp->ClockDivFactor;
1034         MulFactor = cp->ClockMulFactor;
1035         ModePrivFlags = cp->PrivFlags;
1036     }
1037     else {
1038         status = MODE_CLOCK_RANGE;
1039         /* Check clock is in range */
1040         for (cp = scrp->clockRanges; cp != NULL; cp = cp->next) {
1041             if (modeInClockRange(cp, mode)) {
1042                 /*
1043                  * Clock is in range, so if it is not a programmable clock,
1044                  * find a matching clock.
1045                  */
1046 
1047                 i = xf86GetNearestClock(scrp, mode->Clock, 0,
1048                                         cp->ClockDivFactor, cp->ClockMulFactor,
1049                                         &k);
1050                 /*
1051                  * If the clock is too far from the requested clock, this
1052                  * mode is no good.
1053                  */
1054                 if (k & V_CLKDIV2)
1055                     gap = abs((mode->Clock * 2) -
1056                               ((scrp->clock[i] * cp->ClockDivFactor) /
1057                                cp->ClockMulFactor));
1058                 else
1059                     gap = abs(mode->Clock -
1060                               ((scrp->clock[i] * cp->ClockDivFactor) /
1061                                cp->ClockMulFactor));
1062                 if (gap > minimumGap) {
1063                     status = MODE_NOCLOCK;
1064                     continue;
1065                 }
1066 
1067                 DivFactor = cp->ClockDivFactor;
1068                 MulFactor = cp->ClockMulFactor;
1069                 ModePrivFlags = cp->PrivFlags;
1070                 extraFlags = k;
1071                 clockIndex = i;
1072                 break;
1073             }
1074         }
1075         if (cp == NULL)
1076             return status;
1077     }
1078 
1079     /* Fill in the mode parameters */
1080     if (scrp->progClock) {
1081         mode->ClockIndex = -1;
1082         mode->SynthClock = (mode->Clock * MulFactor) / DivFactor;
1083     }
1084     else {
1085         mode->Clock = (scrp->clock[clockIndex] * DivFactor) / MulFactor;
1086         mode->ClockIndex = clockIndex;
1087         mode->SynthClock = scrp->clock[clockIndex];
1088         if (extraFlags & V_CLKDIV2) {
1089             mode->Clock /= 2;
1090             mode->SynthClock /= 2;
1091         }
1092     }
1093     mode->PrivFlags = ModePrivFlags;
1094 
1095     return MODE_OK;
1096 }
1097 
1098 static int
inferVirtualSize(ScrnInfoPtr scrp,DisplayModePtr modes,int * vx,int * vy)1099 inferVirtualSize(ScrnInfoPtr scrp, DisplayModePtr modes, int *vx, int *vy)
1100 {
1101     float aspect = 0.0;
1102     MonPtr mon = scrp->monitor;
1103     xf86MonPtr DDC;
1104     int x = 0, y = 0;
1105     DisplayModePtr mode;
1106 
1107     if (!mon)
1108         return 0;
1109     DDC = mon->DDC;
1110 
1111     if (DDC && DDC->ver.revision >= 4) {
1112         /* For 1.4, we might actually get native pixel format.  How novel. */
1113         if (PREFERRED_TIMING_MODE(DDC->features.msc)) {
1114             for (mode = modes; mode; mode = mode->next) {
1115                 if (mode->type & (M_T_DRIVER | M_T_PREFERRED)) {
1116                     x = mode->HDisplay;
1117                     y = mode->VDisplay;
1118                     goto found;
1119                 }
1120             }
1121         }
1122         /*
1123          * Even if we don't, we might get aspect ratio from extra CVT info
1124          * or from the monitor size fields.  TODO.
1125          */
1126     }
1127 
1128     /*
1129      * Technically this triggers if either is zero.  That wasn't legal
1130      * before EDID 1.4, but right now we'll get that wrong. TODO.
1131      */
1132     if (!aspect) {
1133         if (!mon->widthmm || !mon->heightmm)
1134             aspect = 4.0 / 3.0;
1135         else
1136             aspect = (float) mon->widthmm / (float) mon->heightmm;
1137     }
1138 
1139     /* find the largest M_T_DRIVER mode with that aspect ratio */
1140     for (mode = modes; mode; mode = mode->next) {
1141         float mode_aspect, metaspect;
1142 
1143         if (!(mode->type & (M_T_DRIVER | M_T_USERDEF)))
1144             continue;
1145         mode_aspect = (float) mode->HDisplay / (float) mode->VDisplay;
1146         metaspect = aspect / mode_aspect;
1147         /* 5% slop or so, since we only get size in centimeters */
1148         if (fabs(1.0 - metaspect) < 0.05) {
1149             if ((mode->HDisplay > x) && (mode->VDisplay > y)) {
1150                 x = mode->HDisplay;
1151                 y = mode->VDisplay;
1152             }
1153         }
1154     }
1155 
1156     if (!x || !y) {
1157         xf86DrvMsg(scrp->scrnIndex, X_WARNING,
1158                    "Unable to estimate virtual size\n");
1159         return 0;
1160     }
1161 
1162  found:
1163     *vx = x;
1164     *vy = y;
1165 
1166     xf86DrvMsg(scrp->scrnIndex, X_INFO,
1167                "Estimated virtual size for aspect ratio %.4f is %dx%d\n",
1168                aspect, *vx, *vy);
1169 
1170     return 1;
1171 }
1172 
1173 /* Least common multiple */
1174 static unsigned int
LCM(unsigned int x,unsigned int y)1175 LCM(unsigned int x, unsigned int y)
1176 {
1177     unsigned int m = x, n = y, o;
1178 
1179     while ((o = m % n)) {
1180         m = n;
1181         n = o;
1182     }
1183 
1184     return (x / n) * y;
1185 }
1186 
1187 /*
1188  * Given various screen attributes, determine the minimum scanline width such
1189  * that each scanline is server and DDX padded and any pixels with imbedded
1190  * bank boundaries are off-screen.  This function returns -1 if such a width
1191  * cannot exist.
1192  */
1193 static int
scanLineWidth(unsigned int xsize,unsigned int ysize,unsigned int width,unsigned long BankSize,PixmapFormatRec * pBankFormat,unsigned int nWidthUnit)1194 scanLineWidth(unsigned int xsize,       /* pixels */
1195               unsigned int ysize,       /* pixels */
1196               unsigned int width,       /* pixels */
1197               unsigned long BankSize,   /* char's */
1198               PixmapFormatRec * pBankFormat, unsigned int nWidthUnit    /* bits */
1199     )
1200 {
1201     unsigned long nBitsPerBank, nBitsPerScanline, nBitsPerScanlinePadUnit;
1202     unsigned long minBitsPerScanline, maxBitsPerScanline;
1203 
1204     /* Sanity checks */
1205 
1206     if (!nWidthUnit || !pBankFormat)
1207         return -1;
1208 
1209     nBitsPerBank = BankSize * 8;
1210     if (nBitsPerBank % pBankFormat->scanlinePad)
1211         return -1;
1212 
1213     if (xsize > width)
1214         width = xsize;
1215     nBitsPerScanlinePadUnit = LCM(pBankFormat->scanlinePad, nWidthUnit);
1216     nBitsPerScanline =
1217         (((width * pBankFormat->bitsPerPixel) + nBitsPerScanlinePadUnit - 1) /
1218          nBitsPerScanlinePadUnit) * nBitsPerScanlinePadUnit;
1219     width = nBitsPerScanline / pBankFormat->bitsPerPixel;
1220 
1221     if (!xsize || !(nBitsPerBank % pBankFormat->bitsPerPixel))
1222         return (int) width;
1223 
1224     /*
1225      * Scanlines will be server-pad aligned at this point.  They will also be
1226      * a multiple of nWidthUnit bits long.  Ensure that pixels with imbedded
1227      * bank boundaries are off-screen.
1228      *
1229      * It seems reasonable to limit total frame buffer size to 1/16 of the
1230      * theoretical maximum address space size.  On a machine with 32-bit
1231      * addresses (to 8-bit quantities) this turns out to be 256MB.  Not only
1232      * does this provide a simple limiting condition for the loops below, but
1233      * it also prevents unsigned long wraparounds.
1234      */
1235     if (!ysize)
1236         return -1;
1237 
1238     minBitsPerScanline = xsize * pBankFormat->bitsPerPixel;
1239     if (minBitsPerScanline > nBitsPerBank)
1240         return -1;
1241 
1242     if (ysize == 1)
1243         return (int) width;
1244 
1245     maxBitsPerScanline =
1246         (((unsigned long) (-1) >> 1) - minBitsPerScanline) / (ysize - 1);
1247     while (nBitsPerScanline <= maxBitsPerScanline) {
1248         unsigned long BankBase, BankUnit;
1249 
1250         BankUnit = ((nBitsPerBank + nBitsPerScanline - 1) / nBitsPerBank) *
1251             nBitsPerBank;
1252         if (!(BankUnit % nBitsPerScanline))
1253             return (int) width;
1254 
1255         for (BankBase = BankUnit;; BankBase += nBitsPerBank) {
1256             unsigned long x, y;
1257 
1258             y = BankBase / nBitsPerScanline;
1259             if (y >= ysize)
1260                 return (int) width;
1261 
1262             x = BankBase % nBitsPerScanline;
1263             if (!(x % pBankFormat->bitsPerPixel))
1264                 continue;
1265 
1266             if (x < minBitsPerScanline) {
1267                 /*
1268                  * Skip ahead certain widths by dividing the excess scanline
1269                  * amongst the y's.
1270                  */
1271                 y *= nBitsPerScanlinePadUnit;
1272                 nBitsPerScanline += ((x + y - 1) / y) * nBitsPerScanlinePadUnit;
1273                 width = nBitsPerScanline / pBankFormat->bitsPerPixel;
1274                 break;
1275             }
1276 
1277             if (BankBase != BankUnit)
1278                 continue;
1279 
1280             if (!(nBitsPerScanline % x))
1281                 return (int) width;
1282 
1283             BankBase = ((nBitsPerScanline - minBitsPerScanline) /
1284                         (nBitsPerScanline - x)) * BankUnit;
1285         }
1286     }
1287 
1288     return -1;
1289 }
1290 
1291 /*
1292  * xf86ValidateModes
1293  *
1294  * This function takes a set of mode names, modes and limiting conditions,
1295  * and selects a set of modes and parameters based on those conditions.
1296  *
1297  * This function takes the following parameters:
1298  *    scrp         ScrnInfoPtr
1299  *    availModes   the list of modes available for the monitor
1300  *    modeNames    (optional) list of mode names that the screen is requesting
1301  *    clockRanges  a list of clock ranges
1302  *    linePitches  (optional) a list of line pitches
1303  *    minPitch     (optional) minimum line pitch (in pixels)
1304  *    maxPitch     (optional) maximum line pitch (in pixels)
1305  *    pitchInc     (mandatory) pitch increment (in bits)
1306  *    minHeight    (optional) minimum virtual height (in pixels)
1307  *    maxHeight    (optional) maximum virtual height (in pixels)
1308  *    virtualX     (optional) virtual width requested (in pixels)
1309  *    virtualY     (optional) virtual height requested (in pixels)
1310  *    apertureSize size of video aperture (in bytes)
1311  *    strategy     how to decide which mode to use from multiple modes with
1312  *                 the same name
1313  *
1314  * In addition, the following fields from the ScrnInfoRec are used:
1315  *    clocks       a list of discrete clocks
1316  *    numClocks    number of discrete clocks
1317  *    progClock    clock is programmable
1318  *    monitor      pointer to structure for monitor section
1319  *    fbFormat     format of the framebuffer
1320  *    videoRam     video memory size
1321  *    xInc         horizontal timing increment (defaults to 8 pixels)
1322  *
1323  * The function fills in the following ScrnInfoRec fields:
1324  *    modePool     A subset of the modes available to the monitor which
1325  *		   are compatible with the driver.
1326  *    modes        one mode entry for each of the requested modes, with the
1327  *                 status field filled in to indicate if the mode has been
1328  *                 accepted or not.
1329  *    virtualX     the resulting virtual width
1330  *    virtualY     the resulting virtual height
1331  *    displayWidth the resulting line pitch
1332  *
1333  * The function's return value is the number of matching modes found, or -1
1334  * if an unrecoverable error was encountered.
1335  */
1336 
1337 int
xf86ValidateModes(ScrnInfoPtr scrp,DisplayModePtr availModes,const char ** modeNames,ClockRangePtr clockRanges,int * linePitches,int minPitch,int maxPitch,int pitchInc,int minHeight,int maxHeight,int virtualX,int virtualY,int apertureSize,LookupModeFlags strategy)1338 xf86ValidateModes(ScrnInfoPtr scrp, DisplayModePtr availModes,
1339                   const char **modeNames, ClockRangePtr clockRanges,
1340                   int *linePitches, int minPitch, int maxPitch, int pitchInc,
1341                   int minHeight, int maxHeight, int virtualX, int virtualY,
1342                   int apertureSize, LookupModeFlags strategy)
1343 {
1344     DisplayModePtr p, q, r, new, last, *endp;
1345     int i, numModes = 0;
1346     ModeStatus status;
1347     int linePitch = -1, virtX = 0, virtY = 0;
1348     int newLinePitch, newVirtX, newVirtY;
1349     int modeSize;               /* in pixels */
1350     Bool validateAllDefaultModes = FALSE;
1351     Bool userModes = FALSE;
1352     int saveType;
1353     PixmapFormatRec *BankFormat;
1354     ClockRangePtr cp;
1355     int numTimings = 0;
1356     range hsync[MAX_HSYNC];
1357     range vrefresh[MAX_VREFRESH];
1358     Bool inferred_virtual = FALSE;
1359 
1360     DebugF
1361         ("xf86ValidateModes(%p, %p, %p, %p,\n\t\t  %p, %d, %d, %d, %d, %d, %d, %d, %d, 0x%x)\n",
1362          scrp, availModes, modeNames, clockRanges, linePitches, minPitch,
1363          maxPitch, pitchInc, minHeight, maxHeight, virtualX, virtualY,
1364          apertureSize, strategy);
1365 
1366     /* Some sanity checking */
1367     if (scrp == NULL || scrp->name == NULL || !scrp->monitor ||
1368         (!scrp->progClock && scrp->numClocks == 0)) {
1369         ErrorF("xf86ValidateModes: called with invalid scrnInfoRec\n");
1370         return -1;
1371     }
1372     if (linePitches != NULL && linePitches[0] <= 0) {
1373         ErrorF("xf86ValidateModes: called with invalid linePitches\n");
1374         return -1;
1375     }
1376     if (pitchInc <= 0) {
1377         ErrorF("xf86ValidateModes: called with invalid pitchInc\n");
1378         return -1;
1379     }
1380     if ((virtualX > 0) != (virtualY > 0)) {
1381         ErrorF("xf86ValidateModes: called with invalid virtual resolution\n");
1382         return -1;
1383     }
1384 
1385     /*
1386      * If requested by the driver, allow missing hsync and/or vrefresh ranges
1387      * in the monitor section.
1388      */
1389     if (strategy & LOOKUP_OPTIONAL_TOLERANCES) {
1390         strategy &= ~LOOKUP_OPTIONAL_TOLERANCES;
1391     }
1392     else {
1393         const char *type = "";
1394         Bool specified = FALSE;
1395 
1396         if (scrp->monitor->nHsync <= 0) {
1397             if (numTimings > 0) {
1398                 scrp->monitor->nHsync = numTimings;
1399                 for (i = 0; i < numTimings; i++) {
1400                     scrp->monitor->hsync[i].lo = hsync[i].lo;
1401                     scrp->monitor->hsync[i].hi = hsync[i].hi;
1402                 }
1403             }
1404             else {
1405                 scrp->monitor->hsync[0].lo = 31.5;
1406                 scrp->monitor->hsync[0].hi = 48.0;
1407                 scrp->monitor->nHsync = 1;
1408             }
1409             type = "default ";
1410         }
1411         else {
1412             specified = TRUE;
1413         }
1414         for (i = 0; i < scrp->monitor->nHsync; i++) {
1415             if (scrp->monitor->hsync[i].lo == scrp->monitor->hsync[i].hi)
1416                 xf86DrvMsg(scrp->scrnIndex, X_INFO,
1417                            "%s: Using %shsync value of %.2f kHz\n",
1418                            scrp->monitor->id, type, scrp->monitor->hsync[i].lo);
1419             else
1420                 xf86DrvMsg(scrp->scrnIndex, X_INFO,
1421                            "%s: Using %shsync range of %.2f-%.2f kHz\n",
1422                            scrp->monitor->id, type,
1423                            scrp->monitor->hsync[i].lo,
1424                            scrp->monitor->hsync[i].hi);
1425         }
1426 
1427         type = "";
1428         if (scrp->monitor->nVrefresh <= 0) {
1429             if (numTimings > 0) {
1430                 scrp->monitor->nVrefresh = numTimings;
1431                 for (i = 0; i < numTimings; i++) {
1432                     scrp->monitor->vrefresh[i].lo = vrefresh[i].lo;
1433                     scrp->monitor->vrefresh[i].hi = vrefresh[i].hi;
1434                 }
1435             }
1436             else {
1437                 scrp->monitor->vrefresh[0].lo = 50;
1438                 scrp->monitor->vrefresh[0].hi = 70;
1439                 scrp->monitor->nVrefresh = 1;
1440             }
1441             type = "default ";
1442         }
1443         else {
1444             specified = TRUE;
1445         }
1446         for (i = 0; i < scrp->monitor->nVrefresh; i++) {
1447             if (scrp->monitor->vrefresh[i].lo == scrp->monitor->vrefresh[i].hi)
1448                 xf86DrvMsg(scrp->scrnIndex, X_INFO,
1449                            "%s: Using %svrefresh value of %.2f Hz\n",
1450                            scrp->monitor->id, type,
1451                            scrp->monitor->vrefresh[i].lo);
1452             else
1453                 xf86DrvMsg(scrp->scrnIndex, X_INFO,
1454                            "%s: Using %svrefresh range of %.2f-%.2f Hz\n",
1455                            scrp->monitor->id, type,
1456                            scrp->monitor->vrefresh[i].lo,
1457                            scrp->monitor->vrefresh[i].hi);
1458         }
1459 
1460         type = "";
1461         if (!scrp->monitor->maxPixClock && !specified) {
1462             type = "default ";
1463             scrp->monitor->maxPixClock = 65000.0;
1464         }
1465         if (scrp->monitor->maxPixClock) {
1466             xf86DrvMsg(scrp->scrnIndex, X_INFO,
1467                        "%s: Using %smaximum pixel clock of %.2f MHz\n",
1468                        scrp->monitor->id, type,
1469                        (float) scrp->monitor->maxPixClock / 1000.0);
1470         }
1471     }
1472 
1473     /*
1474      * Store the clockRanges for later use by the VidMode extension.
1475      */
1476     nt_list_for_each_entry(cp, clockRanges, next) {
1477         ClockRangePtr newCR = xnfalloc(sizeof(ClockRange));
1478         memcpy(newCR, cp, sizeof(ClockRange));
1479         newCR->next = NULL;
1480         if (scrp->clockRanges == NULL)
1481             scrp->clockRanges = newCR;
1482         else
1483             nt_list_append(newCR, scrp->clockRanges, ClockRange, next);
1484     }
1485 
1486     /* Determine which pixmap format to pass to scanLineWidth() */
1487     if (scrp->depth > 4)
1488         BankFormat = &scrp->fbFormat;
1489     else
1490         BankFormat = xf86GetPixFormat(scrp, 1); /* >not< scrp->depth! */
1491 
1492     if (scrp->xInc <= 0)
1493         scrp->xInc = 8;         /* Suitable for VGA and others */
1494 
1495 #define _VIRTUALX(x) ((((x) + scrp->xInc - 1) / scrp->xInc) * scrp->xInc)
1496 
1497     /*
1498      * Determine maxPitch if it wasn't given explicitly.  Note linePitches
1499      * always takes precedence if is non-NULL.  In that case the minPitch and
1500      * maxPitch values passed are ignored.
1501      */
1502     if (linePitches) {
1503         minPitch = maxPitch = linePitches[0];
1504         for (i = 1; linePitches[i] > 0; i++) {
1505             if (linePitches[i] > maxPitch)
1506                 maxPitch = linePitches[i];
1507             if (linePitches[i] < minPitch)
1508                 minPitch = linePitches[i];
1509         }
1510     }
1511 
1512     /*
1513      * Initialise virtX and virtY if the values are fixed.
1514      */
1515     if (virtualY > 0) {
1516         if (maxHeight > 0 && virtualY > maxHeight) {
1517             xf86DrvMsg(scrp->scrnIndex, X_ERROR,
1518                        "Virtual height (%d) is too large for the hardware "
1519                        "(max %d)\n", virtualY, maxHeight);
1520             return -1;
1521         }
1522 
1523         if (minHeight > 0 && virtualY < minHeight) {
1524             xf86DrvMsg(scrp->scrnIndex, X_ERROR,
1525                        "Virtual height (%d) is too small for the hardware "
1526                        "(min %d)\n", virtualY, minHeight);
1527             return -1;
1528         }
1529 
1530         virtualX = _VIRTUALX(virtualX);
1531         if (linePitches != NULL) {
1532             for (i = 0; linePitches[i] != 0; i++) {
1533                 if ((linePitches[i] >= virtualX) &&
1534                     (linePitches[i] ==
1535                      scanLineWidth(virtualX, virtualY, linePitches[i],
1536                                    apertureSize, BankFormat, pitchInc))) {
1537                     linePitch = linePitches[i];
1538                     break;
1539                 }
1540             }
1541         }
1542         else {
1543             linePitch = scanLineWidth(virtualX, virtualY, minPitch,
1544                                       apertureSize, BankFormat, pitchInc);
1545         }
1546 
1547         if ((linePitch < minPitch) || (linePitch > maxPitch)) {
1548             xf86DrvMsg(scrp->scrnIndex, X_ERROR,
1549                        "Virtual width (%d) is too large for the hardware "
1550                        "(max %d)\n", virtualX, maxPitch);
1551             return -1;
1552         }
1553 
1554         if (!xf86CheckModeSize(scrp, linePitch, virtualX, virtualY)) {
1555             xf86DrvMsg(scrp->scrnIndex, X_ERROR,
1556                        "Virtual size (%dx%d) (pitch %d) exceeds video memory\n",
1557                        virtualX, virtualY, linePitch);
1558             return -1;
1559         }
1560 
1561         virtX = virtualX;
1562         virtY = virtualY;
1563     }
1564     else if (!modeNames || !*modeNames) {
1565         /* No virtual size given in the config, try to infer */
1566         /* XXX this doesn't take m{in,ax}Pitch into account; oh well */
1567         inferred_virtual = inferVirtualSize(scrp, availModes, &virtX, &virtY);
1568         if (inferred_virtual)
1569             linePitch = scanLineWidth(virtX, virtY, minPitch, apertureSize,
1570                                       BankFormat, pitchInc);
1571     }
1572 
1573     /* Print clock ranges and scaled clocks */
1574     xf86ShowClockRanges(scrp, clockRanges);
1575 
1576     /*
1577      * If scrp->modePool hasn't been setup yet, set it up now.  This allows the
1578      * modes that the driver definitely can't use to be weeded out early.  Note
1579      * that a modePool mode's prev field is used to hold a pointer to the
1580      * member of the scrp->modes list for which a match was considered.
1581      */
1582     if (scrp->modePool == NULL) {
1583         q = NULL;
1584         for (p = availModes; p != NULL; p = p->next) {
1585             status = xf86InitialCheckModeForDriver(scrp, p, clockRanges,
1586                                                    strategy, maxPitch,
1587                                                    virtX, virtY);
1588 
1589             if (status == MODE_OK) {
1590                 status = xf86CheckModeForMonitor(p, scrp->monitor);
1591             }
1592 
1593             if (status == MODE_OK) {
1594                 new = xnfalloc(sizeof(DisplayModeRec));
1595                 *new = *p;
1596                 new->next = NULL;
1597                 if (!q) {
1598                     scrp->modePool = new;
1599                 }
1600                 else {
1601                     q->next = new;
1602                 }
1603                 new->prev = NULL;
1604                 q = new;
1605                 q->name = xnfstrdup(p->name);
1606                 q->status = MODE_OK;
1607             }
1608             else {
1609                 printModeRejectMessage(scrp->scrnIndex, p, status);
1610             }
1611         }
1612 
1613         if (scrp->modePool == NULL) {
1614             xf86DrvMsg(scrp->scrnIndex, X_WARNING, "Mode pool is empty\n");
1615             return 0;
1616         }
1617     }
1618     else {
1619         for (p = scrp->modePool; p != NULL; p = p->next) {
1620             p->prev = NULL;
1621             p->status = MODE_OK;
1622         }
1623     }
1624 
1625     /*
1626      * Allocate one entry in scrp->modes for each named mode.
1627      */
1628     while (scrp->modes)
1629         xf86DeleteMode(&scrp->modes, scrp->modes);
1630     endp = &scrp->modes;
1631     last = NULL;
1632     if (modeNames != NULL) {
1633         for (i = 0; modeNames[i] != NULL; i++) {
1634             userModes = TRUE;
1635             new = xnfcalloc(1, sizeof(DisplayModeRec));
1636             new->prev = last;
1637             new->type = M_T_USERDEF;
1638             new->name = xnfstrdup(modeNames[i]);
1639             if (new->prev)
1640                 new->prev->next = new;
1641             *endp = last = new;
1642             endp = &new->next;
1643         }
1644     }
1645 
1646     /* Lookup each mode */
1647 #ifdef PANORAMIX
1648     if (noPanoramiXExtension)
1649         validateAllDefaultModes = TRUE;
1650 #endif
1651 
1652     for (p = scrp->modes;; p = p->next) {
1653         Bool repeat;
1654 
1655         /*
1656          * If the supplied mode names don't produce a valid mode, scan through
1657          * unconsidered modePool members until one survives validation.  This
1658          * is done in decreasing order by mode pixel area.
1659          */
1660 
1661         if (p == NULL) {
1662             if ((numModes > 0) && !validateAllDefaultModes)
1663                 break;
1664 
1665             validateAllDefaultModes = TRUE;
1666             r = NULL;
1667             modeSize = 0;
1668             for (q = scrp->modePool; q != NULL; q = q->next) {
1669                 if ((q->prev == NULL) && (q->status == MODE_OK)) {
1670                     /*
1671                      * Deal with the case where this mode wasn't considered
1672                      * because of a builtin mode of the same name.
1673                      */
1674                     for (p = scrp->modes; p != NULL; p = p->next) {
1675                         if ((p->status != MODE_OK) && !strcmp(p->name, q->name))
1676                             break;
1677                     }
1678 
1679                     if (p != NULL)
1680                         q->prev = p;
1681                     else {
1682                         /*
1683                          * A quick check to not allow default modes with
1684                          * horizontal timing parameters that CRTs may have
1685                          * problems with.
1686                          */
1687                         if (!scrp->monitor->reducedblanking &&
1688                             (q->type & M_T_DEFAULT) &&
1689                             ((double) q->HTotal / (double) q->HDisplay) < 1.15)
1690                             continue;
1691 
1692                         if (modeSize < (q->HDisplay * q->VDisplay)) {
1693                             r = q;
1694                             modeSize = q->HDisplay * q->VDisplay;
1695                         }
1696                     }
1697                 }
1698             }
1699 
1700             if (r == NULL)
1701                 break;
1702 
1703             p = xnfcalloc(1, sizeof(DisplayModeRec));
1704             p->prev = last;
1705             p->name = xnfstrdup(r->name);
1706             if (!userModes)
1707                 p->type = M_T_USERDEF;
1708             if (p->prev)
1709                 p->prev->next = p;
1710             *endp = last = p;
1711             endp = &p->next;
1712         }
1713 
1714         repeat = FALSE;
1715  lookupNext:
1716         if (repeat && ((status = p->status) != MODE_OK))
1717             printModeRejectMessage(scrp->scrnIndex, p, status);
1718         saveType = p->type;
1719         status = xf86LookupMode(scrp, p, clockRanges, strategy);
1720         if (repeat && status == MODE_NOMODE)
1721             continue;
1722         if (status != MODE_OK)
1723             printModeRejectMessage(scrp->scrnIndex, p, status);
1724         if (status == MODE_ERROR) {
1725             ErrorF("xf86ValidateModes: "
1726                    "unexpected result from xf86LookupMode()\n");
1727             return -1;
1728         }
1729         if (status != MODE_OK) {
1730             if (p->status == MODE_OK)
1731                 p->status = status;
1732             continue;
1733         }
1734         p->type |= saveType;
1735         repeat = TRUE;
1736 
1737         newLinePitch = linePitch;
1738         newVirtX = virtX;
1739         newVirtY = virtY;
1740 
1741         /*
1742          * Don't let non-user defined modes increase the virtual size
1743          */
1744         if (!(p->type & M_T_USERDEF) && (numModes > 0)) {
1745             if (p->HDisplay > virtX) {
1746                 p->status = MODE_VIRTUAL_X;
1747                 goto lookupNext;
1748             }
1749             if (p->VDisplay > virtY) {
1750                 p->status = MODE_VIRTUAL_Y;
1751                 goto lookupNext;
1752             }
1753         }
1754         /*
1755          * Adjust virtual width and height if the mode is too large for the
1756          * current values and if they are not fixed.
1757          */
1758         if (virtualX <= 0 && p->HDisplay > newVirtX)
1759             newVirtX = _VIRTUALX(p->HDisplay);
1760         if (virtualY <= 0 && p->VDisplay > newVirtY) {
1761             if (maxHeight > 0 && p->VDisplay > maxHeight) {
1762                 p->status = MODE_VIRTUAL_Y;     /* ? */
1763                 goto lookupNext;
1764             }
1765             newVirtY = p->VDisplay;
1766         }
1767 
1768         /*
1769          * If virtual resolution is to be increased, revalidate it.
1770          */
1771         if ((virtX != newVirtX) || (virtY != newVirtY)) {
1772             if (linePitches != NULL) {
1773                 newLinePitch = -1;
1774                 for (i = 0; linePitches[i] != 0; i++) {
1775                     if ((linePitches[i] >= newVirtX) &&
1776                         (linePitches[i] >= linePitch) &&
1777                         (linePitches[i] ==
1778                          scanLineWidth(newVirtX, newVirtY, linePitches[i],
1779                                        apertureSize, BankFormat, pitchInc))) {
1780                         newLinePitch = linePitches[i];
1781                         break;
1782                     }
1783                 }
1784             }
1785             else {
1786                 if (linePitch < minPitch)
1787                     linePitch = minPitch;
1788                 newLinePitch = scanLineWidth(newVirtX, newVirtY, linePitch,
1789                                              apertureSize, BankFormat,
1790                                              pitchInc);
1791             }
1792             if ((newLinePitch < minPitch) || (newLinePitch > maxPitch)) {
1793                 p->status = MODE_BAD_WIDTH;
1794                 goto lookupNext;
1795             }
1796 
1797             /*
1798              * Check that the pixel area required by the new virtual height
1799              * and line pitch isn't too large.
1800              */
1801             if (!xf86CheckModeSize(scrp, newLinePitch, newVirtX, newVirtY)) {
1802                 p->status = MODE_MEM_VIRT;
1803                 goto lookupNext;
1804             }
1805         }
1806 
1807         if (scrp->ValidMode) {
1808             /*
1809              * Give the driver a final say, passing it the proposed virtual
1810              * geometry.
1811              */
1812             scrp->virtualX = newVirtX;
1813             scrp->virtualY = newVirtY;
1814             scrp->displayWidth = newLinePitch;
1815             p->status = (scrp->ValidMode) (scrp, p, FALSE,
1816                                            MODECHECK_FINAL);
1817 
1818             if (p->status != MODE_OK) {
1819                 goto lookupNext;
1820             }
1821         }
1822 
1823         /* Mode has passed all the tests */
1824         virtX = newVirtX;
1825         virtY = newVirtY;
1826         linePitch = newLinePitch;
1827         p->status = MODE_OK;
1828         numModes++;
1829     }
1830 
1831     /*
1832      * If we estimated the virtual size above, we may have filtered away all
1833      * the modes that maximally match that size; scan again to find out and
1834      * fix up if so.
1835      */
1836     if (inferred_virtual) {
1837         int vx = 0, vy = 0;
1838 
1839         for (p = scrp->modes; p; p = p->next) {
1840             if (p->HDisplay > vx && p->VDisplay > vy) {
1841                 vx = p->HDisplay;
1842                 vy = p->VDisplay;
1843             }
1844         }
1845         if (vx < virtX || vy < virtY) {
1846             const int types[] = {
1847                 M_T_BUILTIN | M_T_PREFERRED,
1848                 M_T_BUILTIN,
1849                 M_T_DRIVER | M_T_PREFERRED,
1850                 M_T_DRIVER,
1851                 0
1852             };
1853             const int ntypes = ARRAY_SIZE(types);
1854             int n;
1855 
1856             /*
1857              * We did not find the estimated virtual size. So now we want to
1858              * find the largest mode available, but we want to search in the
1859              * modes in the order of "types" listed above.
1860              */
1861             for (n = 0; n < ntypes; n++) {
1862                 int type = types[n];
1863 
1864                 vx = 0;
1865                 vy = 0;
1866                 for (p = scrp->modes; p; p = p->next) {
1867                     /* scan through the modes in the sort order above */
1868                     if ((p->type & type) != type)
1869                         continue;
1870                     if (p->HDisplay > vx && p->VDisplay > vy) {
1871                         vx = p->HDisplay;
1872                         vy = p->VDisplay;
1873                     }
1874                 }
1875                 if (vx && vy)
1876                     /* Found one */
1877                     break;
1878             }
1879             xf86DrvMsg(scrp->scrnIndex, X_WARNING,
1880                        "Shrinking virtual size estimate from %dx%d to %dx%d\n",
1881                        virtX, virtY, vx, vy);
1882             virtX = _VIRTUALX(vx);
1883             virtY = vy;
1884             for (p = scrp->modes; p; p = p->next) {
1885                 if (numModes > 0) {
1886                     if (p->HDisplay > virtX)
1887                         p->status = MODE_VIRTUAL_X;
1888                     if (p->VDisplay > virtY)
1889                         p->status = MODE_VIRTUAL_Y;
1890                     if (p->status != MODE_OK) {
1891                         numModes--;
1892                         printModeRejectMessage(scrp->scrnIndex, p, p->status);
1893                     }
1894                 }
1895             }
1896             if (linePitches != NULL) {
1897                 for (i = 0; linePitches[i] != 0; i++) {
1898                     if ((linePitches[i] >= virtX) &&
1899                         (linePitches[i] ==
1900                          scanLineWidth(virtX, virtY, linePitches[i],
1901                                        apertureSize, BankFormat, pitchInc))) {
1902                         linePitch = linePitches[i];
1903                         break;
1904                     }
1905                 }
1906             }
1907             else {
1908                 linePitch = scanLineWidth(virtX, virtY, minPitch,
1909                                           apertureSize, BankFormat, pitchInc);
1910             }
1911         }
1912     }
1913 
1914     /* Update the ScrnInfoRec parameters */
1915 
1916     scrp->virtualX = virtX;
1917     scrp->virtualY = virtY;
1918     scrp->displayWidth = linePitch;
1919 
1920     if (numModes <= 0)
1921         return 0;
1922 
1923     /* Make the mode list into a circular list by joining up the ends */
1924     p = scrp->modes;
1925     while (p->next != NULL)
1926         p = p->next;
1927     /* p is now the last mode on the list */
1928     p->next = scrp->modes;
1929     scrp->modes->prev = p;
1930 
1931     if (minHeight > 0 && virtY < minHeight) {
1932         xf86DrvMsg(scrp->scrnIndex, X_ERROR,
1933                    "Virtual height (%d) is too small for the hardware "
1934                    "(min %d)\n", virtY, minHeight);
1935         return -1;
1936     }
1937 
1938     return numModes;
1939 }
1940 
1941 /*
1942  * xf86DeleteMode
1943  *
1944  * This function removes a mode from a list of modes.
1945  *
1946  * There are different types of mode lists:
1947  *
1948  *  - singly linked linear lists, ending in NULL
1949  *  - doubly linked linear lists, starting and ending in NULL
1950  *  - doubly linked circular lists
1951  *
1952  */
1953 
1954 void
xf86DeleteMode(DisplayModePtr * modeList,DisplayModePtr mode)1955 xf86DeleteMode(DisplayModePtr * modeList, DisplayModePtr mode)
1956 {
1957     /* Catch the easy/insane cases */
1958     if (modeList == NULL || *modeList == NULL || mode == NULL)
1959         return;
1960 
1961     /* If the mode is at the start of the list, move the start of the list */
1962     if (*modeList == mode)
1963         *modeList = mode->next;
1964 
1965     /* If mode is the only one on the list, set the list to NULL */
1966     if ((mode == mode->prev) && (mode == mode->next)) {
1967         *modeList = NULL;
1968     }
1969     else {
1970         if ((mode->prev != NULL) && (mode->prev->next == mode))
1971             mode->prev->next = mode->next;
1972         if ((mode->next != NULL) && (mode->next->prev == mode))
1973             mode->next->prev = mode->prev;
1974     }
1975 
1976     free((void *) mode->name);
1977     free(mode);
1978 }
1979 
1980 /*
1981  * xf86PruneDriverModes
1982  *
1983  * Remove modes from the driver's mode list which have been marked as
1984  * invalid.
1985  */
1986 
1987 void
xf86PruneDriverModes(ScrnInfoPtr scrp)1988 xf86PruneDriverModes(ScrnInfoPtr scrp)
1989 {
1990     DisplayModePtr first, p, n;
1991 
1992     p = scrp->modes;
1993     if (p == NULL)
1994         return;
1995 
1996     do {
1997         if (!(first = scrp->modes))
1998             return;
1999         n = p->next;
2000         if (p->status != MODE_OK) {
2001             xf86DeleteMode(&(scrp->modes), p);
2002         }
2003         p = n;
2004     } while (p != NULL && p != first);
2005 
2006     /* modePool is no longer needed, turf it */
2007     while (scrp->modePool) {
2008         /*
2009          * A modePool mode's prev field is used to hold a pointer to the
2010          * member of the scrp->modes list for which a match was considered.
2011          * Clear that pointer first, otherwise xf86DeleteMode might get
2012          * confused
2013          */
2014         scrp->modePool->prev = NULL;
2015         xf86DeleteMode(&scrp->modePool, scrp->modePool);
2016     }
2017 }
2018 
2019 /*
2020  * xf86SetCrtcForModes
2021  *
2022  * Goes through the screen's mode list, and initialises the Crtc
2023  * parameters for each mode.  The initialisation includes adjustments
2024  * for interlaced and double scan modes.
2025  */
2026 void
xf86SetCrtcForModes(ScrnInfoPtr scrp,int adjustFlags)2027 xf86SetCrtcForModes(ScrnInfoPtr scrp, int adjustFlags)
2028 {
2029     DisplayModePtr p;
2030 
2031     /*
2032      * Store adjustFlags for use with the VidMode extension. There is an
2033      * implicit assumption here that SetCrtcForModes is called once.
2034      */
2035     scrp->adjustFlags = adjustFlags;
2036 
2037     p = scrp->modes;
2038     if (p == NULL)
2039         return;
2040 
2041     do {
2042         xf86SetModeCrtc(p, adjustFlags);
2043         DebugF("%sMode %s: %d (%d) %d %d (%d) %d %d (%d) %d %d (%d) %d\n",
2044                (p->type & M_T_DEFAULT) ? "Default " : "",
2045                p->name, p->CrtcHDisplay, p->CrtcHBlankStart,
2046                p->CrtcHSyncStart, p->CrtcHSyncEnd, p->CrtcHBlankEnd,
2047                p->CrtcHTotal, p->CrtcVDisplay, p->CrtcVBlankStart,
2048                p->CrtcVSyncStart, p->CrtcVSyncEnd, p->CrtcVBlankEnd,
2049                p->CrtcVTotal);
2050         p = p->next;
2051     } while (p != NULL && p != scrp->modes);
2052 }
2053 
2054 void
xf86PrintModes(ScrnInfoPtr scrp)2055 xf86PrintModes(ScrnInfoPtr scrp)
2056 {
2057     DisplayModePtr p;
2058     float hsync, refresh = 0;
2059     const char *desc, *desc2, *prefix, *uprefix;
2060 
2061     if (scrp == NULL)
2062         return;
2063 
2064     xf86DrvMsg(scrp->scrnIndex, X_INFO, "Virtual size is %dx%d (pitch %d)\n",
2065                scrp->virtualX, scrp->virtualY, scrp->displayWidth);
2066 
2067     p = scrp->modes;
2068     if (p == NULL)
2069         return;
2070 
2071     do {
2072         desc = desc2 = "";
2073         hsync = xf86ModeHSync(p);
2074         refresh = xf86ModeVRefresh(p);
2075         if (p->Flags & V_INTERLACE) {
2076             desc = " (I)";
2077         }
2078         if (p->Flags & V_DBLSCAN) {
2079             desc = " (D)";
2080         }
2081         if (p->VScan > 1) {
2082             desc2 = " (VScan)";
2083         }
2084         if (p->type & M_T_BUILTIN)
2085             prefix = "Built-in mode";
2086         else if (p->type & M_T_DEFAULT)
2087             prefix = "Default mode";
2088         else if (p->type & M_T_DRIVER)
2089             prefix = "Driver mode";
2090         else
2091             prefix = "Mode";
2092         if (p->type & M_T_USERDEF)
2093             uprefix = "*";
2094         else
2095             uprefix = " ";
2096         if (hsync == 0 || refresh == 0) {
2097             if (p->name)
2098                 xf86DrvMsg(scrp->scrnIndex, X_CONFIG,
2099                            "%s%s \"%s\"\n", uprefix, prefix, p->name);
2100             else
2101                 xf86DrvMsg(scrp->scrnIndex, X_PROBED,
2102                            "%s%s %dx%d (unnamed)\n",
2103                            uprefix, prefix, p->HDisplay, p->VDisplay);
2104         }
2105         else if (p->Clock == p->SynthClock) {
2106             xf86DrvMsg(scrp->scrnIndex, X_CONFIG,
2107                        "%s%s \"%s\": %.1f MHz, %.1f kHz, %.1f Hz%s%s\n",
2108                        uprefix, prefix, p->name, p->Clock / 1000.0,
2109                        hsync, refresh, desc, desc2);
2110         }
2111         else {
2112             xf86DrvMsg(scrp->scrnIndex, X_CONFIG,
2113                        "%s%s \"%s\": %.1f MHz (scaled from %.1f MHz), "
2114                        "%.1f kHz, %.1f Hz%s%s\n",
2115                        uprefix, prefix, p->name, p->Clock / 1000.0,
2116                        p->SynthClock / 1000.0, hsync, refresh, desc, desc2);
2117         }
2118         if (hsync != 0 && refresh != 0)
2119             xf86PrintModeline(scrp->scrnIndex, p);
2120         p = p->next;
2121     } while (p != NULL && p != scrp->modes);
2122 }
2123