xref: /OK3568_Linux_fs/kernel/kernel/workqueue.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54 #include <uapi/linux/sched/types.h>
55 
56 #include "workqueue_internal.h"
57 
58 #include <trace/hooks/wqlockup.h>
59 /* events/workqueue.h uses default TRACE_INCLUDE_PATH */
60 #undef TRACE_INCLUDE_PATH
61 
62 enum {
63 	/*
64 	 * worker_pool flags
65 	 *
66 	 * A bound pool is either associated or disassociated with its CPU.
67 	 * While associated (!DISASSOCIATED), all workers are bound to the
68 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
69 	 * is in effect.
70 	 *
71 	 * While DISASSOCIATED, the cpu may be offline and all workers have
72 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
73 	 * be executing on any CPU.  The pool behaves as an unbound one.
74 	 *
75 	 * Note that DISASSOCIATED should be flipped only while holding
76 	 * wq_pool_attach_mutex to avoid changing binding state while
77 	 * worker_attach_to_pool() is in progress.
78 	 */
79 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
80 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
81 
82 	/* worker flags */
83 	WORKER_DIE		= 1 << 1,	/* die die die */
84 	WORKER_IDLE		= 1 << 2,	/* is idle */
85 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
86 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
87 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
88 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
89 
90 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
91 				  WORKER_UNBOUND | WORKER_REBOUND,
92 
93 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
94 
95 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
96 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
97 
98 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
99 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
100 
101 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
102 						/* call for help after 10ms
103 						   (min two ticks) */
104 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
105 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
106 
107 	/*
108 	 * Rescue workers are used only on emergencies and shared by
109 	 * all cpus.  Give MIN_NICE.
110 	 */
111 	RESCUER_NICE_LEVEL	= MIN_NICE,
112 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
113 
114 	WQ_NAME_LEN		= 24,
115 };
116 
117 /*
118  * Structure fields follow one of the following exclusion rules.
119  *
120  * I: Modifiable by initialization/destruction paths and read-only for
121  *    everyone else.
122  *
123  * P: Preemption protected.  Disabling preemption is enough and should
124  *    only be modified and accessed from the local cpu.
125  *
126  * L: pool->lock protected.  Access with pool->lock held.
127  *
128  * X: During normal operation, modification requires pool->lock and should
129  *    be done only from local cpu.  Either disabling preemption on local
130  *    cpu or grabbing pool->lock is enough for read access.  If
131  *    POOL_DISASSOCIATED is set, it's identical to L.
132  *
133  * A: wq_pool_attach_mutex protected.
134  *
135  * PL: wq_pool_mutex protected.
136  *
137  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
138  *
139  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
140  *
141  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
142  *      RCU for reads.
143  *
144  * WQ: wq->mutex protected.
145  *
146  * WR: wq->mutex protected for writes.  RCU protected for reads.
147  *
148  * MD: wq_mayday_lock protected.
149  */
150 
151 /* struct worker is defined in workqueue_internal.h */
152 
153 struct worker_pool {
154 	raw_spinlock_t		lock;		/* the pool lock */
155 	int			cpu;		/* I: the associated cpu */
156 	int			node;		/* I: the associated node ID */
157 	int			id;		/* I: pool ID */
158 	unsigned int		flags;		/* X: flags */
159 
160 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
161 
162 	struct list_head	worklist;	/* L: list of pending works */
163 
164 	int			nr_workers;	/* L: total number of workers */
165 	int			nr_idle;	/* L: currently idle workers */
166 
167 	struct list_head	idle_list;	/* X: list of idle workers */
168 	struct timer_list	idle_timer;	/* L: worker idle timeout */
169 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
170 
171 	/* a workers is either on busy_hash or idle_list, or the manager */
172 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
173 						/* L: hash of busy workers */
174 
175 	struct worker		*manager;	/* L: purely informational */
176 	struct list_head	workers;	/* A: attached workers */
177 	struct completion	*detach_completion; /* all workers detached */
178 
179 	struct ida		worker_ida;	/* worker IDs for task name */
180 
181 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
182 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
183 	int			refcnt;		/* PL: refcnt for unbound pools */
184 
185 	/*
186 	 * The current concurrency level.  As it's likely to be accessed
187 	 * from other CPUs during try_to_wake_up(), put it in a separate
188 	 * cacheline.
189 	 */
190 	atomic_t		nr_running ____cacheline_aligned_in_smp;
191 
192 	/*
193 	 * Destruction of pool is RCU protected to allow dereferences
194 	 * from get_work_pool().
195 	 */
196 	struct rcu_head		rcu;
197 } ____cacheline_aligned_in_smp;
198 
199 /*
200  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
201  * of work_struct->data are used for flags and the remaining high bits
202  * point to the pwq; thus, pwqs need to be aligned at two's power of the
203  * number of flag bits.
204  */
205 struct pool_workqueue {
206 	struct worker_pool	*pool;		/* I: the associated pool */
207 	struct workqueue_struct *wq;		/* I: the owning workqueue */
208 	int			work_color;	/* L: current color */
209 	int			flush_color;	/* L: flushing color */
210 	int			refcnt;		/* L: reference count */
211 	int			nr_in_flight[WORK_NR_COLORS];
212 						/* L: nr of in_flight works */
213 	int			nr_active;	/* L: nr of active works */
214 	int			max_active;	/* L: max active works */
215 	struct list_head	delayed_works;	/* L: delayed works */
216 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
217 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
218 
219 	/*
220 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
221 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
222 	 * itself is also RCU protected so that the first pwq can be
223 	 * determined without grabbing wq->mutex.
224 	 */
225 	struct work_struct	unbound_release_work;
226 	struct rcu_head		rcu;
227 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
228 
229 /*
230  * Structure used to wait for workqueue flush.
231  */
232 struct wq_flusher {
233 	struct list_head	list;		/* WQ: list of flushers */
234 	int			flush_color;	/* WQ: flush color waiting for */
235 	struct completion	done;		/* flush completion */
236 };
237 
238 struct wq_device;
239 
240 /*
241  * The externally visible workqueue.  It relays the issued work items to
242  * the appropriate worker_pool through its pool_workqueues.
243  */
244 struct workqueue_struct {
245 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
246 	struct list_head	list;		/* PR: list of all workqueues */
247 
248 	struct mutex		mutex;		/* protects this wq */
249 	int			work_color;	/* WQ: current work color */
250 	int			flush_color;	/* WQ: current flush color */
251 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
252 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
253 	struct list_head	flusher_queue;	/* WQ: flush waiters */
254 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
255 
256 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
257 	struct worker		*rescuer;	/* MD: rescue worker */
258 
259 	int			nr_drainers;	/* WQ: drain in progress */
260 	int			saved_max_active; /* WQ: saved pwq max_active */
261 
262 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
263 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
264 
265 #ifdef CONFIG_SYSFS
266 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
267 #endif
268 #ifdef CONFIG_LOCKDEP
269 	char			*lock_name;
270 	struct lock_class_key	key;
271 	struct lockdep_map	lockdep_map;
272 #endif
273 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
274 
275 	/*
276 	 * Destruction of workqueue_struct is RCU protected to allow walking
277 	 * the workqueues list without grabbing wq_pool_mutex.
278 	 * This is used to dump all workqueues from sysrq.
279 	 */
280 	struct rcu_head		rcu;
281 
282 	/* hot fields used during command issue, aligned to cacheline */
283 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
284 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
285 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
286 };
287 
288 static struct kmem_cache *pwq_cache;
289 
290 static cpumask_var_t *wq_numa_possible_cpumask;
291 					/* possible CPUs of each node */
292 
293 static bool wq_disable_numa;
294 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
295 
296 /* see the comment above the definition of WQ_POWER_EFFICIENT */
297 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
298 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
299 
300 static bool wq_online;			/* can kworkers be created yet? */
301 
302 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
303 
304 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
305 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
306 
307 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
308 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
309 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
310 /* wait for manager to go away */
311 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
312 
313 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
314 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
315 
316 /* PL: allowable cpus for unbound wqs and work items */
317 static cpumask_var_t wq_unbound_cpumask;
318 
319 /* CPU where unbound work was last round robin scheduled from this CPU */
320 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
321 
322 /*
323  * Local execution of unbound work items is no longer guaranteed.  The
324  * following always forces round-robin CPU selection on unbound work items
325  * to uncover usages which depend on it.
326  */
327 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
328 static bool wq_debug_force_rr_cpu = true;
329 #else
330 static bool wq_debug_force_rr_cpu = false;
331 #endif
332 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
333 
334 /* the per-cpu worker pools */
335 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
336 
337 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
338 
339 /* PL: hash of all unbound pools keyed by pool->attrs */
340 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
341 
342 /* I: attributes used when instantiating standard unbound pools on demand */
343 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
344 
345 /* I: attributes used when instantiating ordered pools on demand */
346 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
347 
348 struct workqueue_struct *system_wq __read_mostly;
349 EXPORT_SYMBOL(system_wq);
350 struct workqueue_struct *system_highpri_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_highpri_wq);
352 struct workqueue_struct *system_long_wq __read_mostly;
353 EXPORT_SYMBOL_GPL(system_long_wq);
354 struct workqueue_struct *system_unbound_wq __read_mostly;
355 EXPORT_SYMBOL_GPL(system_unbound_wq);
356 struct workqueue_struct *system_freezable_wq __read_mostly;
357 EXPORT_SYMBOL_GPL(system_freezable_wq);
358 struct workqueue_struct *system_power_efficient_wq __read_mostly;
359 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
360 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
361 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
362 
363 static int worker_thread(void *__worker);
364 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
365 static void show_pwq(struct pool_workqueue *pwq);
366 
367 #define CREATE_TRACE_POINTS
368 #include <trace/events/workqueue.h>
369 
370 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_start);
371 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_end);
372 
373 #define assert_rcu_or_pool_mutex()					\
374 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
375 			 !lockdep_is_held(&wq_pool_mutex),		\
376 			 "RCU or wq_pool_mutex should be held")
377 
378 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
379 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
380 			 !lockdep_is_held(&wq->mutex) &&		\
381 			 !lockdep_is_held(&wq_pool_mutex),		\
382 			 "RCU, wq->mutex or wq_pool_mutex should be held")
383 
384 #define for_each_cpu_worker_pool(pool, cpu)				\
385 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
386 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
387 	     (pool)++)
388 
389 /**
390  * for_each_pool - iterate through all worker_pools in the system
391  * @pool: iteration cursor
392  * @pi: integer used for iteration
393  *
394  * This must be called either with wq_pool_mutex held or RCU read
395  * locked.  If the pool needs to be used beyond the locking in effect, the
396  * caller is responsible for guaranteeing that the pool stays online.
397  *
398  * The if/else clause exists only for the lockdep assertion and can be
399  * ignored.
400  */
401 #define for_each_pool(pool, pi)						\
402 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
403 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
404 		else
405 
406 /**
407  * for_each_pool_worker - iterate through all workers of a worker_pool
408  * @worker: iteration cursor
409  * @pool: worker_pool to iterate workers of
410  *
411  * This must be called with wq_pool_attach_mutex.
412  *
413  * The if/else clause exists only for the lockdep assertion and can be
414  * ignored.
415  */
416 #define for_each_pool_worker(worker, pool)				\
417 	list_for_each_entry((worker), &(pool)->workers, node)		\
418 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
419 		else
420 
421 /**
422  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
423  * @pwq: iteration cursor
424  * @wq: the target workqueue
425  *
426  * This must be called either with wq->mutex held or RCU read locked.
427  * If the pwq needs to be used beyond the locking in effect, the caller is
428  * responsible for guaranteeing that the pwq stays online.
429  *
430  * The if/else clause exists only for the lockdep assertion and can be
431  * ignored.
432  */
433 #define for_each_pwq(pwq, wq)						\
434 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
435 				 lockdep_is_held(&(wq->mutex)))
436 
437 #ifdef CONFIG_DEBUG_OBJECTS_WORK
438 
439 static const struct debug_obj_descr work_debug_descr;
440 
work_debug_hint(void * addr)441 static void *work_debug_hint(void *addr)
442 {
443 	return ((struct work_struct *) addr)->func;
444 }
445 
work_is_static_object(void * addr)446 static bool work_is_static_object(void *addr)
447 {
448 	struct work_struct *work = addr;
449 
450 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
451 }
452 
453 /*
454  * fixup_init is called when:
455  * - an active object is initialized
456  */
work_fixup_init(void * addr,enum debug_obj_state state)457 static bool work_fixup_init(void *addr, enum debug_obj_state state)
458 {
459 	struct work_struct *work = addr;
460 
461 	switch (state) {
462 	case ODEBUG_STATE_ACTIVE:
463 		cancel_work_sync(work);
464 		debug_object_init(work, &work_debug_descr);
465 		return true;
466 	default:
467 		return false;
468 	}
469 }
470 
471 /*
472  * fixup_free is called when:
473  * - an active object is freed
474  */
work_fixup_free(void * addr,enum debug_obj_state state)475 static bool work_fixup_free(void *addr, enum debug_obj_state state)
476 {
477 	struct work_struct *work = addr;
478 
479 	switch (state) {
480 	case ODEBUG_STATE_ACTIVE:
481 		cancel_work_sync(work);
482 		debug_object_free(work, &work_debug_descr);
483 		return true;
484 	default:
485 		return false;
486 	}
487 }
488 
489 static const struct debug_obj_descr work_debug_descr = {
490 	.name		= "work_struct",
491 	.debug_hint	= work_debug_hint,
492 	.is_static_object = work_is_static_object,
493 	.fixup_init	= work_fixup_init,
494 	.fixup_free	= work_fixup_free,
495 };
496 
debug_work_activate(struct work_struct * work)497 static inline void debug_work_activate(struct work_struct *work)
498 {
499 	debug_object_activate(work, &work_debug_descr);
500 }
501 
debug_work_deactivate(struct work_struct * work)502 static inline void debug_work_deactivate(struct work_struct *work)
503 {
504 	debug_object_deactivate(work, &work_debug_descr);
505 }
506 
__init_work(struct work_struct * work,int onstack)507 void __init_work(struct work_struct *work, int onstack)
508 {
509 	if (onstack)
510 		debug_object_init_on_stack(work, &work_debug_descr);
511 	else
512 		debug_object_init(work, &work_debug_descr);
513 }
514 EXPORT_SYMBOL_GPL(__init_work);
515 
destroy_work_on_stack(struct work_struct * work)516 void destroy_work_on_stack(struct work_struct *work)
517 {
518 	debug_object_free(work, &work_debug_descr);
519 }
520 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
521 
destroy_delayed_work_on_stack(struct delayed_work * work)522 void destroy_delayed_work_on_stack(struct delayed_work *work)
523 {
524 	destroy_timer_on_stack(&work->timer);
525 	debug_object_free(&work->work, &work_debug_descr);
526 }
527 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
528 
529 #else
debug_work_activate(struct work_struct * work)530 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)531 static inline void debug_work_deactivate(struct work_struct *work) { }
532 #endif
533 
534 /**
535  * worker_pool_assign_id - allocate ID and assing it to @pool
536  * @pool: the pool pointer of interest
537  *
538  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
539  * successfully, -errno on failure.
540  */
worker_pool_assign_id(struct worker_pool * pool)541 static int worker_pool_assign_id(struct worker_pool *pool)
542 {
543 	int ret;
544 
545 	lockdep_assert_held(&wq_pool_mutex);
546 
547 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
548 			GFP_KERNEL);
549 	if (ret >= 0) {
550 		pool->id = ret;
551 		return 0;
552 	}
553 	return ret;
554 }
555 
556 /**
557  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
558  * @wq: the target workqueue
559  * @node: the node ID
560  *
561  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
562  * read locked.
563  * If the pwq needs to be used beyond the locking in effect, the caller is
564  * responsible for guaranteeing that the pwq stays online.
565  *
566  * Return: The unbound pool_workqueue for @node.
567  */
unbound_pwq_by_node(struct workqueue_struct * wq,int node)568 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
569 						  int node)
570 {
571 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
572 
573 	/*
574 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
575 	 * delayed item is pending.  The plan is to keep CPU -> NODE
576 	 * mapping valid and stable across CPU on/offlines.  Once that
577 	 * happens, this workaround can be removed.
578 	 */
579 	if (unlikely(node == NUMA_NO_NODE))
580 		return wq->dfl_pwq;
581 
582 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
583 }
584 
work_color_to_flags(int color)585 static unsigned int work_color_to_flags(int color)
586 {
587 	return color << WORK_STRUCT_COLOR_SHIFT;
588 }
589 
get_work_color(struct work_struct * work)590 static int get_work_color(struct work_struct *work)
591 {
592 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
593 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
594 }
595 
work_next_color(int color)596 static int work_next_color(int color)
597 {
598 	return (color + 1) % WORK_NR_COLORS;
599 }
600 
601 /*
602  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
603  * contain the pointer to the queued pwq.  Once execution starts, the flag
604  * is cleared and the high bits contain OFFQ flags and pool ID.
605  *
606  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
607  * and clear_work_data() can be used to set the pwq, pool or clear
608  * work->data.  These functions should only be called while the work is
609  * owned - ie. while the PENDING bit is set.
610  *
611  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
612  * corresponding to a work.  Pool is available once the work has been
613  * queued anywhere after initialization until it is sync canceled.  pwq is
614  * available only while the work item is queued.
615  *
616  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
617  * canceled.  While being canceled, a work item may have its PENDING set
618  * but stay off timer and worklist for arbitrarily long and nobody should
619  * try to steal the PENDING bit.
620  */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)621 static inline void set_work_data(struct work_struct *work, unsigned long data,
622 				 unsigned long flags)
623 {
624 	WARN_ON_ONCE(!work_pending(work));
625 	atomic_long_set(&work->data, data | flags | work_static(work));
626 }
627 
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)628 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
629 			 unsigned long extra_flags)
630 {
631 	set_work_data(work, (unsigned long)pwq,
632 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
633 }
634 
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)635 static void set_work_pool_and_keep_pending(struct work_struct *work,
636 					   int pool_id)
637 {
638 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
639 		      WORK_STRUCT_PENDING);
640 }
641 
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)642 static void set_work_pool_and_clear_pending(struct work_struct *work,
643 					    int pool_id)
644 {
645 	/*
646 	 * The following wmb is paired with the implied mb in
647 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
648 	 * here are visible to and precede any updates by the next PENDING
649 	 * owner.
650 	 */
651 	smp_wmb();
652 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
653 	/*
654 	 * The following mb guarantees that previous clear of a PENDING bit
655 	 * will not be reordered with any speculative LOADS or STORES from
656 	 * work->current_func, which is executed afterwards.  This possible
657 	 * reordering can lead to a missed execution on attempt to queue
658 	 * the same @work.  E.g. consider this case:
659 	 *
660 	 *   CPU#0                         CPU#1
661 	 *   ----------------------------  --------------------------------
662 	 *
663 	 * 1  STORE event_indicated
664 	 * 2  queue_work_on() {
665 	 * 3    test_and_set_bit(PENDING)
666 	 * 4 }                             set_..._and_clear_pending() {
667 	 * 5                                 set_work_data() # clear bit
668 	 * 6                                 smp_mb()
669 	 * 7                               work->current_func() {
670 	 * 8				      LOAD event_indicated
671 	 *				   }
672 	 *
673 	 * Without an explicit full barrier speculative LOAD on line 8 can
674 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
675 	 * CPU#0 observes the PENDING bit is still set and new execution of
676 	 * a @work is not queued in a hope, that CPU#1 will eventually
677 	 * finish the queued @work.  Meanwhile CPU#1 does not see
678 	 * event_indicated is set, because speculative LOAD was executed
679 	 * before actual STORE.
680 	 */
681 	smp_mb();
682 }
683 
clear_work_data(struct work_struct * work)684 static void clear_work_data(struct work_struct *work)
685 {
686 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
687 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
688 }
689 
get_work_pwq(struct work_struct * work)690 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
691 {
692 	unsigned long data = atomic_long_read(&work->data);
693 
694 	if (data & WORK_STRUCT_PWQ)
695 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
696 	else
697 		return NULL;
698 }
699 
700 /**
701  * get_work_pool - return the worker_pool a given work was associated with
702  * @work: the work item of interest
703  *
704  * Pools are created and destroyed under wq_pool_mutex, and allows read
705  * access under RCU read lock.  As such, this function should be
706  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
707  *
708  * All fields of the returned pool are accessible as long as the above
709  * mentioned locking is in effect.  If the returned pool needs to be used
710  * beyond the critical section, the caller is responsible for ensuring the
711  * returned pool is and stays online.
712  *
713  * Return: The worker_pool @work was last associated with.  %NULL if none.
714  */
get_work_pool(struct work_struct * work)715 static struct worker_pool *get_work_pool(struct work_struct *work)
716 {
717 	unsigned long data = atomic_long_read(&work->data);
718 	int pool_id;
719 
720 	assert_rcu_or_pool_mutex();
721 
722 	if (data & WORK_STRUCT_PWQ)
723 		return ((struct pool_workqueue *)
724 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
725 
726 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
727 	if (pool_id == WORK_OFFQ_POOL_NONE)
728 		return NULL;
729 
730 	return idr_find(&worker_pool_idr, pool_id);
731 }
732 
733 /**
734  * get_work_pool_id - return the worker pool ID a given work is associated with
735  * @work: the work item of interest
736  *
737  * Return: The worker_pool ID @work was last associated with.
738  * %WORK_OFFQ_POOL_NONE if none.
739  */
get_work_pool_id(struct work_struct * work)740 static int get_work_pool_id(struct work_struct *work)
741 {
742 	unsigned long data = atomic_long_read(&work->data);
743 
744 	if (data & WORK_STRUCT_PWQ)
745 		return ((struct pool_workqueue *)
746 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
747 
748 	return data >> WORK_OFFQ_POOL_SHIFT;
749 }
750 
mark_work_canceling(struct work_struct * work)751 static void mark_work_canceling(struct work_struct *work)
752 {
753 	unsigned long pool_id = get_work_pool_id(work);
754 
755 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
756 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
757 }
758 
work_is_canceling(struct work_struct * work)759 static bool work_is_canceling(struct work_struct *work)
760 {
761 	unsigned long data = atomic_long_read(&work->data);
762 
763 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
764 }
765 
766 /*
767  * Policy functions.  These define the policies on how the global worker
768  * pools are managed.  Unless noted otherwise, these functions assume that
769  * they're being called with pool->lock held.
770  */
771 
__need_more_worker(struct worker_pool * pool)772 static bool __need_more_worker(struct worker_pool *pool)
773 {
774 	return !atomic_read(&pool->nr_running);
775 }
776 
777 /*
778  * Need to wake up a worker?  Called from anything but currently
779  * running workers.
780  *
781  * Note that, because unbound workers never contribute to nr_running, this
782  * function will always return %true for unbound pools as long as the
783  * worklist isn't empty.
784  */
need_more_worker(struct worker_pool * pool)785 static bool need_more_worker(struct worker_pool *pool)
786 {
787 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
788 }
789 
790 /* Can I start working?  Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)791 static bool may_start_working(struct worker_pool *pool)
792 {
793 	return pool->nr_idle;
794 }
795 
796 /* Do I need to keep working?  Called from currently running workers. */
keep_working(struct worker_pool * pool)797 static bool keep_working(struct worker_pool *pool)
798 {
799 	return !list_empty(&pool->worklist) &&
800 		atomic_read(&pool->nr_running) <= 1;
801 }
802 
803 /* Do we need a new worker?  Called from manager. */
need_to_create_worker(struct worker_pool * pool)804 static bool need_to_create_worker(struct worker_pool *pool)
805 {
806 	return need_more_worker(pool) && !may_start_working(pool);
807 }
808 
809 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)810 static bool too_many_workers(struct worker_pool *pool)
811 {
812 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
813 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
814 	int nr_busy = pool->nr_workers - nr_idle;
815 
816 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
817 }
818 
819 /*
820  * Wake up functions.
821  */
822 
823 /* Return the first idle worker.  Safe with preemption disabled */
first_idle_worker(struct worker_pool * pool)824 static struct worker *first_idle_worker(struct worker_pool *pool)
825 {
826 	if (unlikely(list_empty(&pool->idle_list)))
827 		return NULL;
828 
829 	return list_first_entry(&pool->idle_list, struct worker, entry);
830 }
831 
832 /**
833  * wake_up_worker - wake up an idle worker
834  * @pool: worker pool to wake worker from
835  *
836  * Wake up the first idle worker of @pool.
837  *
838  * CONTEXT:
839  * raw_spin_lock_irq(pool->lock).
840  */
wake_up_worker(struct worker_pool * pool)841 static void wake_up_worker(struct worker_pool *pool)
842 {
843 	struct worker *worker = first_idle_worker(pool);
844 
845 	if (likely(worker))
846 		wake_up_process(worker->task);
847 }
848 
849 /**
850  * wq_worker_running - a worker is running again
851  * @task: task waking up
852  *
853  * This function is called when a worker returns from schedule()
854  */
wq_worker_running(struct task_struct * task)855 void wq_worker_running(struct task_struct *task)
856 {
857 	struct worker *worker = kthread_data(task);
858 
859 	if (!worker->sleeping)
860 		return;
861 
862 	/*
863 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
864 	 * and the nr_running increment below, we may ruin the nr_running reset
865 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
866 	 * pool. Protect against such race.
867 	 */
868 	preempt_disable();
869 	if (!(worker->flags & WORKER_NOT_RUNNING))
870 		atomic_inc(&worker->pool->nr_running);
871 	preempt_enable();
872 	worker->sleeping = 0;
873 }
874 
875 /**
876  * wq_worker_sleeping - a worker is going to sleep
877  * @task: task going to sleep
878  *
879  * This function is called from schedule() when a busy worker is
880  * going to sleep. Preemption needs to be disabled to protect ->sleeping
881  * assignment.
882  */
wq_worker_sleeping(struct task_struct * task)883 void wq_worker_sleeping(struct task_struct *task)
884 {
885 	struct worker *next, *worker = kthread_data(task);
886 	struct worker_pool *pool;
887 
888 	/*
889 	 * Rescuers, which may not have all the fields set up like normal
890 	 * workers, also reach here, let's not access anything before
891 	 * checking NOT_RUNNING.
892 	 */
893 	if (worker->flags & WORKER_NOT_RUNNING)
894 		return;
895 
896 	pool = worker->pool;
897 
898 	/* Return if preempted before wq_worker_running() was reached */
899 	if (worker->sleeping)
900 		return;
901 
902 	worker->sleeping = 1;
903 	raw_spin_lock_irq(&pool->lock);
904 
905 	/*
906 	 * The counterpart of the following dec_and_test, implied mb,
907 	 * worklist not empty test sequence is in insert_work().
908 	 * Please read comment there.
909 	 *
910 	 * NOT_RUNNING is clear.  This means that we're bound to and
911 	 * running on the local cpu w/ rq lock held and preemption
912 	 * disabled, which in turn means that none else could be
913 	 * manipulating idle_list, so dereferencing idle_list without pool
914 	 * lock is safe.
915 	 */
916 	if (atomic_dec_and_test(&pool->nr_running) &&
917 	    !list_empty(&pool->worklist)) {
918 		next = first_idle_worker(pool);
919 		if (next)
920 			wake_up_process(next->task);
921 	}
922 	raw_spin_unlock_irq(&pool->lock);
923 }
924 
925 /**
926  * wq_worker_last_func - retrieve worker's last work function
927  * @task: Task to retrieve last work function of.
928  *
929  * Determine the last function a worker executed. This is called from
930  * the scheduler to get a worker's last known identity.
931  *
932  * CONTEXT:
933  * raw_spin_lock_irq(rq->lock)
934  *
935  * This function is called during schedule() when a kworker is going
936  * to sleep. It's used by psi to identify aggregation workers during
937  * dequeuing, to allow periodic aggregation to shut-off when that
938  * worker is the last task in the system or cgroup to go to sleep.
939  *
940  * As this function doesn't involve any workqueue-related locking, it
941  * only returns stable values when called from inside the scheduler's
942  * queuing and dequeuing paths, when @task, which must be a kworker,
943  * is guaranteed to not be processing any works.
944  *
945  * Return:
946  * The last work function %current executed as a worker, NULL if it
947  * hasn't executed any work yet.
948  */
wq_worker_last_func(struct task_struct * task)949 work_func_t wq_worker_last_func(struct task_struct *task)
950 {
951 	struct worker *worker = kthread_data(task);
952 
953 	return worker->last_func;
954 }
955 
956 /**
957  * worker_set_flags - set worker flags and adjust nr_running accordingly
958  * @worker: self
959  * @flags: flags to set
960  *
961  * Set @flags in @worker->flags and adjust nr_running accordingly.
962  *
963  * CONTEXT:
964  * raw_spin_lock_irq(pool->lock)
965  */
worker_set_flags(struct worker * worker,unsigned int flags)966 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
967 {
968 	struct worker_pool *pool = worker->pool;
969 
970 	WARN_ON_ONCE(worker->task != current);
971 
972 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
973 	if ((flags & WORKER_NOT_RUNNING) &&
974 	    !(worker->flags & WORKER_NOT_RUNNING)) {
975 		atomic_dec(&pool->nr_running);
976 	}
977 
978 	worker->flags |= flags;
979 }
980 
981 /**
982  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
983  * @worker: self
984  * @flags: flags to clear
985  *
986  * Clear @flags in @worker->flags and adjust nr_running accordingly.
987  *
988  * CONTEXT:
989  * raw_spin_lock_irq(pool->lock)
990  */
worker_clr_flags(struct worker * worker,unsigned int flags)991 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
992 {
993 	struct worker_pool *pool = worker->pool;
994 	unsigned int oflags = worker->flags;
995 
996 	WARN_ON_ONCE(worker->task != current);
997 
998 	worker->flags &= ~flags;
999 
1000 	/*
1001 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1002 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1003 	 * of multiple flags, not a single flag.
1004 	 */
1005 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1006 		if (!(worker->flags & WORKER_NOT_RUNNING))
1007 			atomic_inc(&pool->nr_running);
1008 }
1009 
1010 /**
1011  * find_worker_executing_work - find worker which is executing a work
1012  * @pool: pool of interest
1013  * @work: work to find worker for
1014  *
1015  * Find a worker which is executing @work on @pool by searching
1016  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1017  * to match, its current execution should match the address of @work and
1018  * its work function.  This is to avoid unwanted dependency between
1019  * unrelated work executions through a work item being recycled while still
1020  * being executed.
1021  *
1022  * This is a bit tricky.  A work item may be freed once its execution
1023  * starts and nothing prevents the freed area from being recycled for
1024  * another work item.  If the same work item address ends up being reused
1025  * before the original execution finishes, workqueue will identify the
1026  * recycled work item as currently executing and make it wait until the
1027  * current execution finishes, introducing an unwanted dependency.
1028  *
1029  * This function checks the work item address and work function to avoid
1030  * false positives.  Note that this isn't complete as one may construct a
1031  * work function which can introduce dependency onto itself through a
1032  * recycled work item.  Well, if somebody wants to shoot oneself in the
1033  * foot that badly, there's only so much we can do, and if such deadlock
1034  * actually occurs, it should be easy to locate the culprit work function.
1035  *
1036  * CONTEXT:
1037  * raw_spin_lock_irq(pool->lock).
1038  *
1039  * Return:
1040  * Pointer to worker which is executing @work if found, %NULL
1041  * otherwise.
1042  */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1043 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1044 						 struct work_struct *work)
1045 {
1046 	struct worker *worker;
1047 
1048 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1049 			       (unsigned long)work)
1050 		if (worker->current_work == work &&
1051 		    worker->current_func == work->func)
1052 			return worker;
1053 
1054 	return NULL;
1055 }
1056 
1057 /**
1058  * move_linked_works - move linked works to a list
1059  * @work: start of series of works to be scheduled
1060  * @head: target list to append @work to
1061  * @nextp: out parameter for nested worklist walking
1062  *
1063  * Schedule linked works starting from @work to @head.  Work series to
1064  * be scheduled starts at @work and includes any consecutive work with
1065  * WORK_STRUCT_LINKED set in its predecessor.
1066  *
1067  * If @nextp is not NULL, it's updated to point to the next work of
1068  * the last scheduled work.  This allows move_linked_works() to be
1069  * nested inside outer list_for_each_entry_safe().
1070  *
1071  * CONTEXT:
1072  * raw_spin_lock_irq(pool->lock).
1073  */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1074 static void move_linked_works(struct work_struct *work, struct list_head *head,
1075 			      struct work_struct **nextp)
1076 {
1077 	struct work_struct *n;
1078 
1079 	/*
1080 	 * Linked worklist will always end before the end of the list,
1081 	 * use NULL for list head.
1082 	 */
1083 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1084 		list_move_tail(&work->entry, head);
1085 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1086 			break;
1087 	}
1088 
1089 	/*
1090 	 * If we're already inside safe list traversal and have moved
1091 	 * multiple works to the scheduled queue, the next position
1092 	 * needs to be updated.
1093 	 */
1094 	if (nextp)
1095 		*nextp = n;
1096 }
1097 
1098 /**
1099  * get_pwq - get an extra reference on the specified pool_workqueue
1100  * @pwq: pool_workqueue to get
1101  *
1102  * Obtain an extra reference on @pwq.  The caller should guarantee that
1103  * @pwq has positive refcnt and be holding the matching pool->lock.
1104  */
get_pwq(struct pool_workqueue * pwq)1105 static void get_pwq(struct pool_workqueue *pwq)
1106 {
1107 	lockdep_assert_held(&pwq->pool->lock);
1108 	WARN_ON_ONCE(pwq->refcnt <= 0);
1109 	pwq->refcnt++;
1110 }
1111 
1112 /**
1113  * put_pwq - put a pool_workqueue reference
1114  * @pwq: pool_workqueue to put
1115  *
1116  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1117  * destruction.  The caller should be holding the matching pool->lock.
1118  */
put_pwq(struct pool_workqueue * pwq)1119 static void put_pwq(struct pool_workqueue *pwq)
1120 {
1121 	lockdep_assert_held(&pwq->pool->lock);
1122 	if (likely(--pwq->refcnt))
1123 		return;
1124 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1125 		return;
1126 	/*
1127 	 * @pwq can't be released under pool->lock, bounce to
1128 	 * pwq_unbound_release_workfn().  This never recurses on the same
1129 	 * pool->lock as this path is taken only for unbound workqueues and
1130 	 * the release work item is scheduled on a per-cpu workqueue.  To
1131 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1132 	 * subclass of 1 in get_unbound_pool().
1133 	 */
1134 	schedule_work(&pwq->unbound_release_work);
1135 }
1136 
1137 /**
1138  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1139  * @pwq: pool_workqueue to put (can be %NULL)
1140  *
1141  * put_pwq() with locking.  This function also allows %NULL @pwq.
1142  */
put_pwq_unlocked(struct pool_workqueue * pwq)1143 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1144 {
1145 	if (pwq) {
1146 		/*
1147 		 * As both pwqs and pools are RCU protected, the
1148 		 * following lock operations are safe.
1149 		 */
1150 		raw_spin_lock_irq(&pwq->pool->lock);
1151 		put_pwq(pwq);
1152 		raw_spin_unlock_irq(&pwq->pool->lock);
1153 	}
1154 }
1155 
pwq_activate_delayed_work(struct work_struct * work)1156 static void pwq_activate_delayed_work(struct work_struct *work)
1157 {
1158 	struct pool_workqueue *pwq = get_work_pwq(work);
1159 
1160 	trace_workqueue_activate_work(work);
1161 	if (list_empty(&pwq->pool->worklist))
1162 		pwq->pool->watchdog_ts = jiffies;
1163 	move_linked_works(work, &pwq->pool->worklist, NULL);
1164 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1165 	pwq->nr_active++;
1166 }
1167 
pwq_activate_first_delayed(struct pool_workqueue * pwq)1168 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1169 {
1170 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1171 						    struct work_struct, entry);
1172 
1173 	pwq_activate_delayed_work(work);
1174 }
1175 
1176 /**
1177  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1178  * @pwq: pwq of interest
1179  * @color: color of work which left the queue
1180  *
1181  * A work either has completed or is removed from pending queue,
1182  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1183  *
1184  * CONTEXT:
1185  * raw_spin_lock_irq(pool->lock).
1186  */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,int color)1187 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1188 {
1189 	/* uncolored work items don't participate in flushing or nr_active */
1190 	if (color == WORK_NO_COLOR)
1191 		goto out_put;
1192 
1193 	pwq->nr_in_flight[color]--;
1194 
1195 	pwq->nr_active--;
1196 	if (!list_empty(&pwq->delayed_works)) {
1197 		/* one down, submit a delayed one */
1198 		if (pwq->nr_active < pwq->max_active)
1199 			pwq_activate_first_delayed(pwq);
1200 	}
1201 
1202 	/* is flush in progress and are we at the flushing tip? */
1203 	if (likely(pwq->flush_color != color))
1204 		goto out_put;
1205 
1206 	/* are there still in-flight works? */
1207 	if (pwq->nr_in_flight[color])
1208 		goto out_put;
1209 
1210 	/* this pwq is done, clear flush_color */
1211 	pwq->flush_color = -1;
1212 
1213 	/*
1214 	 * If this was the last pwq, wake up the first flusher.  It
1215 	 * will handle the rest.
1216 	 */
1217 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1218 		complete(&pwq->wq->first_flusher->done);
1219 out_put:
1220 	put_pwq(pwq);
1221 }
1222 
1223 /**
1224  * try_to_grab_pending - steal work item from worklist and disable irq
1225  * @work: work item to steal
1226  * @is_dwork: @work is a delayed_work
1227  * @flags: place to store irq state
1228  *
1229  * Try to grab PENDING bit of @work.  This function can handle @work in any
1230  * stable state - idle, on timer or on worklist.
1231  *
1232  * Return:
1233  *
1234  *  ========	================================================================
1235  *  1		if @work was pending and we successfully stole PENDING
1236  *  0		if @work was idle and we claimed PENDING
1237  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1238  *  -ENOENT	if someone else is canceling @work, this state may persist
1239  *		for arbitrarily long
1240  *  ========	================================================================
1241  *
1242  * Note:
1243  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1244  * interrupted while holding PENDING and @work off queue, irq must be
1245  * disabled on entry.  This, combined with delayed_work->timer being
1246  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1247  *
1248  * On successful return, >= 0, irq is disabled and the caller is
1249  * responsible for releasing it using local_irq_restore(*@flags).
1250  *
1251  * This function is safe to call from any context including IRQ handler.
1252  */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1253 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1254 			       unsigned long *flags)
1255 {
1256 	struct worker_pool *pool;
1257 	struct pool_workqueue *pwq;
1258 
1259 	local_irq_save(*flags);
1260 
1261 	/* try to steal the timer if it exists */
1262 	if (is_dwork) {
1263 		struct delayed_work *dwork = to_delayed_work(work);
1264 
1265 		/*
1266 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1267 		 * guaranteed that the timer is not queued anywhere and not
1268 		 * running on the local CPU.
1269 		 */
1270 		if (likely(del_timer(&dwork->timer)))
1271 			return 1;
1272 	}
1273 
1274 	/* try to claim PENDING the normal way */
1275 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1276 		return 0;
1277 
1278 	rcu_read_lock();
1279 	/*
1280 	 * The queueing is in progress, or it is already queued. Try to
1281 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1282 	 */
1283 	pool = get_work_pool(work);
1284 	if (!pool)
1285 		goto fail;
1286 
1287 	raw_spin_lock(&pool->lock);
1288 	/*
1289 	 * work->data is guaranteed to point to pwq only while the work
1290 	 * item is queued on pwq->wq, and both updating work->data to point
1291 	 * to pwq on queueing and to pool on dequeueing are done under
1292 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1293 	 * points to pwq which is associated with a locked pool, the work
1294 	 * item is currently queued on that pool.
1295 	 */
1296 	pwq = get_work_pwq(work);
1297 	if (pwq && pwq->pool == pool) {
1298 		debug_work_deactivate(work);
1299 
1300 		/*
1301 		 * A delayed work item cannot be grabbed directly because
1302 		 * it might have linked NO_COLOR work items which, if left
1303 		 * on the delayed_list, will confuse pwq->nr_active
1304 		 * management later on and cause stall.  Make sure the work
1305 		 * item is activated before grabbing.
1306 		 */
1307 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1308 			pwq_activate_delayed_work(work);
1309 
1310 		list_del_init(&work->entry);
1311 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1312 
1313 		/* work->data points to pwq iff queued, point to pool */
1314 		set_work_pool_and_keep_pending(work, pool->id);
1315 
1316 		raw_spin_unlock(&pool->lock);
1317 		rcu_read_unlock();
1318 		return 1;
1319 	}
1320 	raw_spin_unlock(&pool->lock);
1321 fail:
1322 	rcu_read_unlock();
1323 	local_irq_restore(*flags);
1324 	if (work_is_canceling(work))
1325 		return -ENOENT;
1326 	cpu_relax();
1327 	return -EAGAIN;
1328 }
1329 
1330 /**
1331  * insert_work - insert a work into a pool
1332  * @pwq: pwq @work belongs to
1333  * @work: work to insert
1334  * @head: insertion point
1335  * @extra_flags: extra WORK_STRUCT_* flags to set
1336  *
1337  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1338  * work_struct flags.
1339  *
1340  * CONTEXT:
1341  * raw_spin_lock_irq(pool->lock).
1342  */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1343 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1344 			struct list_head *head, unsigned int extra_flags)
1345 {
1346 	struct worker_pool *pool = pwq->pool;
1347 
1348 	/* record the work call stack in order to print it in KASAN reports */
1349 	kasan_record_aux_stack(work);
1350 
1351 	/* we own @work, set data and link */
1352 	set_work_pwq(work, pwq, extra_flags);
1353 	list_add_tail(&work->entry, head);
1354 	get_pwq(pwq);
1355 
1356 	/*
1357 	 * Ensure either wq_worker_sleeping() sees the above
1358 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1359 	 * around lazily while there are works to be processed.
1360 	 */
1361 	smp_mb();
1362 
1363 	if (__need_more_worker(pool))
1364 		wake_up_worker(pool);
1365 }
1366 
1367 /*
1368  * Test whether @work is being queued from another work executing on the
1369  * same workqueue.
1370  */
is_chained_work(struct workqueue_struct * wq)1371 static bool is_chained_work(struct workqueue_struct *wq)
1372 {
1373 	struct worker *worker;
1374 
1375 	worker = current_wq_worker();
1376 	/*
1377 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1378 	 * I'm @worker, it's safe to dereference it without locking.
1379 	 */
1380 	return worker && worker->current_pwq->wq == wq;
1381 }
1382 
1383 /*
1384  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1385  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1386  * avoid perturbing sensitive tasks.
1387  */
wq_select_unbound_cpu(int cpu)1388 static int wq_select_unbound_cpu(int cpu)
1389 {
1390 	static bool printed_dbg_warning;
1391 	int new_cpu;
1392 
1393 	if (likely(!wq_debug_force_rr_cpu)) {
1394 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1395 			return cpu;
1396 	} else if (!printed_dbg_warning) {
1397 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1398 		printed_dbg_warning = true;
1399 	}
1400 
1401 	if (cpumask_empty(wq_unbound_cpumask))
1402 		return cpu;
1403 
1404 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1405 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1406 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1407 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1408 		if (unlikely(new_cpu >= nr_cpu_ids))
1409 			return cpu;
1410 	}
1411 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1412 
1413 	return new_cpu;
1414 }
1415 
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1416 static void __queue_work(int cpu, struct workqueue_struct *wq,
1417 			 struct work_struct *work)
1418 {
1419 	struct pool_workqueue *pwq;
1420 	struct worker_pool *last_pool;
1421 	struct list_head *worklist;
1422 	unsigned int work_flags;
1423 	unsigned int req_cpu = cpu;
1424 
1425 	/*
1426 	 * While a work item is PENDING && off queue, a task trying to
1427 	 * steal the PENDING will busy-loop waiting for it to either get
1428 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1429 	 * happen with IRQ disabled.
1430 	 */
1431 	lockdep_assert_irqs_disabled();
1432 
1433 
1434 	/* if draining, only works from the same workqueue are allowed */
1435 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1436 	    WARN_ON_ONCE(!is_chained_work(wq)))
1437 		return;
1438 	rcu_read_lock();
1439 retry:
1440 	/* pwq which will be used unless @work is executing elsewhere */
1441 	if (wq->flags & WQ_UNBOUND) {
1442 		if (req_cpu == WORK_CPU_UNBOUND)
1443 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1444 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1445 	} else {
1446 		if (req_cpu == WORK_CPU_UNBOUND)
1447 			cpu = raw_smp_processor_id();
1448 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1449 	}
1450 
1451 	/*
1452 	 * If @work was previously on a different pool, it might still be
1453 	 * running there, in which case the work needs to be queued on that
1454 	 * pool to guarantee non-reentrancy.
1455 	 */
1456 	last_pool = get_work_pool(work);
1457 	if (last_pool && last_pool != pwq->pool) {
1458 		struct worker *worker;
1459 
1460 		raw_spin_lock(&last_pool->lock);
1461 
1462 		worker = find_worker_executing_work(last_pool, work);
1463 
1464 		if (worker && worker->current_pwq->wq == wq) {
1465 			pwq = worker->current_pwq;
1466 		} else {
1467 			/* meh... not running there, queue here */
1468 			raw_spin_unlock(&last_pool->lock);
1469 			raw_spin_lock(&pwq->pool->lock);
1470 		}
1471 	} else {
1472 		raw_spin_lock(&pwq->pool->lock);
1473 	}
1474 
1475 	/*
1476 	 * pwq is determined and locked.  For unbound pools, we could have
1477 	 * raced with pwq release and it could already be dead.  If its
1478 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1479 	 * without another pwq replacing it in the numa_pwq_tbl or while
1480 	 * work items are executing on it, so the retrying is guaranteed to
1481 	 * make forward-progress.
1482 	 */
1483 	if (unlikely(!pwq->refcnt)) {
1484 		if (wq->flags & WQ_UNBOUND) {
1485 			raw_spin_unlock(&pwq->pool->lock);
1486 			cpu_relax();
1487 			goto retry;
1488 		}
1489 		/* oops */
1490 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1491 			  wq->name, cpu);
1492 	}
1493 
1494 	/* pwq determined, queue */
1495 	trace_workqueue_queue_work(req_cpu, pwq, work);
1496 
1497 	if (WARN_ON(!list_empty(&work->entry)))
1498 		goto out;
1499 
1500 	pwq->nr_in_flight[pwq->work_color]++;
1501 	work_flags = work_color_to_flags(pwq->work_color);
1502 
1503 	if (likely(pwq->nr_active < pwq->max_active)) {
1504 		trace_workqueue_activate_work(work);
1505 		pwq->nr_active++;
1506 		worklist = &pwq->pool->worklist;
1507 		if (list_empty(worklist))
1508 			pwq->pool->watchdog_ts = jiffies;
1509 	} else {
1510 		work_flags |= WORK_STRUCT_DELAYED;
1511 		worklist = &pwq->delayed_works;
1512 	}
1513 
1514 	debug_work_activate(work);
1515 	insert_work(pwq, work, worklist, work_flags);
1516 
1517 out:
1518 	raw_spin_unlock(&pwq->pool->lock);
1519 	rcu_read_unlock();
1520 }
1521 
1522 /**
1523  * queue_work_on - queue work on specific cpu
1524  * @cpu: CPU number to execute work on
1525  * @wq: workqueue to use
1526  * @work: work to queue
1527  *
1528  * We queue the work to a specific CPU, the caller must ensure it
1529  * can't go away.
1530  *
1531  * Return: %false if @work was already on a queue, %true otherwise.
1532  */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1533 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1534 		   struct work_struct *work)
1535 {
1536 	bool ret = false;
1537 	unsigned long flags;
1538 
1539 	local_irq_save(flags);
1540 
1541 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1542 		__queue_work(cpu, wq, work);
1543 		ret = true;
1544 	}
1545 
1546 	local_irq_restore(flags);
1547 	return ret;
1548 }
1549 EXPORT_SYMBOL(queue_work_on);
1550 
1551 /**
1552  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1553  * @node: NUMA node ID that we want to select a CPU from
1554  *
1555  * This function will attempt to find a "random" cpu available on a given
1556  * node. If there are no CPUs available on the given node it will return
1557  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1558  * available CPU if we need to schedule this work.
1559  */
workqueue_select_cpu_near(int node)1560 static int workqueue_select_cpu_near(int node)
1561 {
1562 	int cpu;
1563 
1564 	/* No point in doing this if NUMA isn't enabled for workqueues */
1565 	if (!wq_numa_enabled)
1566 		return WORK_CPU_UNBOUND;
1567 
1568 	/* Delay binding to CPU if node is not valid or online */
1569 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1570 		return WORK_CPU_UNBOUND;
1571 
1572 	/* Use local node/cpu if we are already there */
1573 	cpu = raw_smp_processor_id();
1574 	if (node == cpu_to_node(cpu))
1575 		return cpu;
1576 
1577 	/* Use "random" otherwise know as "first" online CPU of node */
1578 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1579 
1580 	/* If CPU is valid return that, otherwise just defer */
1581 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1582 }
1583 
1584 /**
1585  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1586  * @node: NUMA node that we are targeting the work for
1587  * @wq: workqueue to use
1588  * @work: work to queue
1589  *
1590  * We queue the work to a "random" CPU within a given NUMA node. The basic
1591  * idea here is to provide a way to somehow associate work with a given
1592  * NUMA node.
1593  *
1594  * This function will only make a best effort attempt at getting this onto
1595  * the right NUMA node. If no node is requested or the requested node is
1596  * offline then we just fall back to standard queue_work behavior.
1597  *
1598  * Currently the "random" CPU ends up being the first available CPU in the
1599  * intersection of cpu_online_mask and the cpumask of the node, unless we
1600  * are running on the node. In that case we just use the current CPU.
1601  *
1602  * Return: %false if @work was already on a queue, %true otherwise.
1603  */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)1604 bool queue_work_node(int node, struct workqueue_struct *wq,
1605 		     struct work_struct *work)
1606 {
1607 	unsigned long flags;
1608 	bool ret = false;
1609 
1610 	/*
1611 	 * This current implementation is specific to unbound workqueues.
1612 	 * Specifically we only return the first available CPU for a given
1613 	 * node instead of cycling through individual CPUs within the node.
1614 	 *
1615 	 * If this is used with a per-cpu workqueue then the logic in
1616 	 * workqueue_select_cpu_near would need to be updated to allow for
1617 	 * some round robin type logic.
1618 	 */
1619 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1620 
1621 	local_irq_save(flags);
1622 
1623 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1624 		int cpu = workqueue_select_cpu_near(node);
1625 
1626 		__queue_work(cpu, wq, work);
1627 		ret = true;
1628 	}
1629 
1630 	local_irq_restore(flags);
1631 	return ret;
1632 }
1633 EXPORT_SYMBOL_GPL(queue_work_node);
1634 
delayed_work_timer_fn(struct timer_list * t)1635 void delayed_work_timer_fn(struct timer_list *t)
1636 {
1637 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1638 
1639 	/* should have been called from irqsafe timer with irq already off */
1640 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1641 }
1642 EXPORT_SYMBOL(delayed_work_timer_fn);
1643 
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1644 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1645 				struct delayed_work *dwork, unsigned long delay)
1646 {
1647 	struct timer_list *timer = &dwork->timer;
1648 	struct work_struct *work = &dwork->work;
1649 
1650 	WARN_ON_ONCE(!wq);
1651 	/*
1652 	 * With CFI, timer->function can point to a jump table entry in a module,
1653 	 * which fails the comparison. Disable the warning if CFI and modules are
1654 	 * both enabled.
1655 	 */
1656 	if (!IS_ENABLED(CONFIG_CFI_CLANG) || !IS_ENABLED(CONFIG_MODULES))
1657 		WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1658 
1659 	WARN_ON_ONCE(timer_pending(timer));
1660 	WARN_ON_ONCE(!list_empty(&work->entry));
1661 
1662 	/*
1663 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1664 	 * both optimization and correctness.  The earliest @timer can
1665 	 * expire is on the closest next tick and delayed_work users depend
1666 	 * on that there's no such delay when @delay is 0.
1667 	 */
1668 	if (!delay) {
1669 		__queue_work(cpu, wq, &dwork->work);
1670 		return;
1671 	}
1672 
1673 	dwork->wq = wq;
1674 	dwork->cpu = cpu;
1675 	timer->expires = jiffies + delay;
1676 
1677 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1678 		add_timer_on(timer, cpu);
1679 	else
1680 		add_timer(timer);
1681 }
1682 
1683 /**
1684  * queue_delayed_work_on - queue work on specific CPU after delay
1685  * @cpu: CPU number to execute work on
1686  * @wq: workqueue to use
1687  * @dwork: work to queue
1688  * @delay: number of jiffies to wait before queueing
1689  *
1690  * Return: %false if @work was already on a queue, %true otherwise.  If
1691  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1692  * execution.
1693  */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1694 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1695 			   struct delayed_work *dwork, unsigned long delay)
1696 {
1697 	struct work_struct *work = &dwork->work;
1698 	bool ret = false;
1699 	unsigned long flags;
1700 
1701 	/* read the comment in __queue_work() */
1702 	local_irq_save(flags);
1703 
1704 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1705 		__queue_delayed_work(cpu, wq, dwork, delay);
1706 		ret = true;
1707 	}
1708 
1709 	local_irq_restore(flags);
1710 	return ret;
1711 }
1712 EXPORT_SYMBOL(queue_delayed_work_on);
1713 
1714 /**
1715  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1716  * @cpu: CPU number to execute work on
1717  * @wq: workqueue to use
1718  * @dwork: work to queue
1719  * @delay: number of jiffies to wait before queueing
1720  *
1721  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1722  * modify @dwork's timer so that it expires after @delay.  If @delay is
1723  * zero, @work is guaranteed to be scheduled immediately regardless of its
1724  * current state.
1725  *
1726  * Return: %false if @dwork was idle and queued, %true if @dwork was
1727  * pending and its timer was modified.
1728  *
1729  * This function is safe to call from any context including IRQ handler.
1730  * See try_to_grab_pending() for details.
1731  */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1732 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1733 			 struct delayed_work *dwork, unsigned long delay)
1734 {
1735 	unsigned long flags;
1736 	int ret;
1737 
1738 	do {
1739 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1740 	} while (unlikely(ret == -EAGAIN));
1741 
1742 	if (likely(ret >= 0)) {
1743 		__queue_delayed_work(cpu, wq, dwork, delay);
1744 		local_irq_restore(flags);
1745 	}
1746 
1747 	/* -ENOENT from try_to_grab_pending() becomes %true */
1748 	return ret;
1749 }
1750 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1751 
rcu_work_rcufn(struct rcu_head * rcu)1752 static void rcu_work_rcufn(struct rcu_head *rcu)
1753 {
1754 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1755 
1756 	/* read the comment in __queue_work() */
1757 	local_irq_disable();
1758 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1759 	local_irq_enable();
1760 }
1761 
1762 /**
1763  * queue_rcu_work - queue work after a RCU grace period
1764  * @wq: workqueue to use
1765  * @rwork: work to queue
1766  *
1767  * Return: %false if @rwork was already pending, %true otherwise.  Note
1768  * that a full RCU grace period is guaranteed only after a %true return.
1769  * While @rwork is guaranteed to be executed after a %false return, the
1770  * execution may happen before a full RCU grace period has passed.
1771  */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)1772 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1773 {
1774 	struct work_struct *work = &rwork->work;
1775 
1776 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1777 		rwork->wq = wq;
1778 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1779 		return true;
1780 	}
1781 
1782 	return false;
1783 }
1784 EXPORT_SYMBOL(queue_rcu_work);
1785 
1786 /**
1787  * worker_enter_idle - enter idle state
1788  * @worker: worker which is entering idle state
1789  *
1790  * @worker is entering idle state.  Update stats and idle timer if
1791  * necessary.
1792  *
1793  * LOCKING:
1794  * raw_spin_lock_irq(pool->lock).
1795  */
worker_enter_idle(struct worker * worker)1796 static void worker_enter_idle(struct worker *worker)
1797 {
1798 	struct worker_pool *pool = worker->pool;
1799 
1800 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1801 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1802 			 (worker->hentry.next || worker->hentry.pprev)))
1803 		return;
1804 
1805 	/* can't use worker_set_flags(), also called from create_worker() */
1806 	worker->flags |= WORKER_IDLE;
1807 	pool->nr_idle++;
1808 	worker->last_active = jiffies;
1809 
1810 	/* idle_list is LIFO */
1811 	list_add(&worker->entry, &pool->idle_list);
1812 
1813 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1814 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1815 
1816 	/*
1817 	 * Sanity check nr_running.  Because unbind_workers() releases
1818 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1819 	 * nr_running, the warning may trigger spuriously.  Check iff
1820 	 * unbind is not in progress.
1821 	 */
1822 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1823 		     pool->nr_workers == pool->nr_idle &&
1824 		     atomic_read(&pool->nr_running));
1825 }
1826 
1827 /**
1828  * worker_leave_idle - leave idle state
1829  * @worker: worker which is leaving idle state
1830  *
1831  * @worker is leaving idle state.  Update stats.
1832  *
1833  * LOCKING:
1834  * raw_spin_lock_irq(pool->lock).
1835  */
worker_leave_idle(struct worker * worker)1836 static void worker_leave_idle(struct worker *worker)
1837 {
1838 	struct worker_pool *pool = worker->pool;
1839 
1840 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1841 		return;
1842 	worker_clr_flags(worker, WORKER_IDLE);
1843 	pool->nr_idle--;
1844 	list_del_init(&worker->entry);
1845 }
1846 
alloc_worker(int node)1847 static struct worker *alloc_worker(int node)
1848 {
1849 	struct worker *worker;
1850 
1851 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1852 	if (worker) {
1853 		INIT_LIST_HEAD(&worker->entry);
1854 		INIT_LIST_HEAD(&worker->scheduled);
1855 		INIT_LIST_HEAD(&worker->node);
1856 		/* on creation a worker is in !idle && prep state */
1857 		worker->flags = WORKER_PREP;
1858 	}
1859 	return worker;
1860 }
1861 
1862 /**
1863  * worker_attach_to_pool() - attach a worker to a pool
1864  * @worker: worker to be attached
1865  * @pool: the target pool
1866  *
1867  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1868  * cpu-binding of @worker are kept coordinated with the pool across
1869  * cpu-[un]hotplugs.
1870  */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)1871 static void worker_attach_to_pool(struct worker *worker,
1872 				   struct worker_pool *pool)
1873 {
1874 	mutex_lock(&wq_pool_attach_mutex);
1875 
1876 	/*
1877 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1878 	 * stable across this function.  See the comments above the flag
1879 	 * definition for details.
1880 	 */
1881 	if (pool->flags & POOL_DISASSOCIATED)
1882 		worker->flags |= WORKER_UNBOUND;
1883 
1884 	if (worker->rescue_wq)
1885 		set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1886 
1887 	list_add_tail(&worker->node, &pool->workers);
1888 	worker->pool = pool;
1889 
1890 	mutex_unlock(&wq_pool_attach_mutex);
1891 }
1892 
1893 /**
1894  * worker_detach_from_pool() - detach a worker from its pool
1895  * @worker: worker which is attached to its pool
1896  *
1897  * Undo the attaching which had been done in worker_attach_to_pool().  The
1898  * caller worker shouldn't access to the pool after detached except it has
1899  * other reference to the pool.
1900  */
worker_detach_from_pool(struct worker * worker)1901 static void worker_detach_from_pool(struct worker *worker)
1902 {
1903 	struct worker_pool *pool = worker->pool;
1904 	struct completion *detach_completion = NULL;
1905 
1906 	mutex_lock(&wq_pool_attach_mutex);
1907 
1908 	list_del(&worker->node);
1909 	worker->pool = NULL;
1910 
1911 	if (list_empty(&pool->workers))
1912 		detach_completion = pool->detach_completion;
1913 	mutex_unlock(&wq_pool_attach_mutex);
1914 
1915 	/* clear leftover flags without pool->lock after it is detached */
1916 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1917 
1918 	if (detach_completion)
1919 		complete(detach_completion);
1920 }
1921 
1922 /**
1923  * create_worker - create a new workqueue worker
1924  * @pool: pool the new worker will belong to
1925  *
1926  * Create and start a new worker which is attached to @pool.
1927  *
1928  * CONTEXT:
1929  * Might sleep.  Does GFP_KERNEL allocations.
1930  *
1931  * Return:
1932  * Pointer to the newly created worker.
1933  */
create_worker(struct worker_pool * pool)1934 static struct worker *create_worker(struct worker_pool *pool)
1935 {
1936 	struct worker *worker = NULL;
1937 	int id = -1;
1938 	char id_buf[16];
1939 
1940 	/* ID is needed to determine kthread name */
1941 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1942 	if (id < 0)
1943 		goto fail;
1944 
1945 	worker = alloc_worker(pool->node);
1946 	if (!worker)
1947 		goto fail;
1948 
1949 	worker->id = id;
1950 
1951 	if (pool->cpu >= 0)
1952 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1953 			 pool->attrs->nice < 0  ? "H" : "");
1954 	else
1955 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1956 
1957 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1958 					      "kworker/%s", id_buf);
1959 	if (IS_ERR(worker->task))
1960 		goto fail;
1961 
1962 	set_user_nice(worker->task, pool->attrs->nice);
1963 	if (IS_ENABLED(CONFIG_ROCKCHIP_OPTIMIZE_RT_PRIO)) {
1964 		struct sched_param param;
1965 
1966 		if (pool->attrs->nice == 0)
1967 			param.sched_priority = MAX_RT_PRIO / 2 - 4;
1968 		else
1969 			param.sched_priority = MAX_RT_PRIO / 2 - 2;
1970 		sched_setscheduler_nocheck(worker->task, SCHED_RR, &param);
1971 	}
1972 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1973 
1974 	/* successful, attach the worker to the pool */
1975 	worker_attach_to_pool(worker, pool);
1976 
1977 	/* start the newly created worker */
1978 	raw_spin_lock_irq(&pool->lock);
1979 	worker->pool->nr_workers++;
1980 	worker_enter_idle(worker);
1981 	wake_up_process(worker->task);
1982 	raw_spin_unlock_irq(&pool->lock);
1983 
1984 	return worker;
1985 
1986 fail:
1987 	if (id >= 0)
1988 		ida_simple_remove(&pool->worker_ida, id);
1989 	kfree(worker);
1990 	return NULL;
1991 }
1992 
1993 /**
1994  * destroy_worker - destroy a workqueue worker
1995  * @worker: worker to be destroyed
1996  *
1997  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1998  * be idle.
1999  *
2000  * CONTEXT:
2001  * raw_spin_lock_irq(pool->lock).
2002  */
destroy_worker(struct worker * worker)2003 static void destroy_worker(struct worker *worker)
2004 {
2005 	struct worker_pool *pool = worker->pool;
2006 
2007 	lockdep_assert_held(&pool->lock);
2008 
2009 	/* sanity check frenzy */
2010 	if (WARN_ON(worker->current_work) ||
2011 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2012 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2013 		return;
2014 
2015 	pool->nr_workers--;
2016 	pool->nr_idle--;
2017 
2018 	list_del_init(&worker->entry);
2019 	worker->flags |= WORKER_DIE;
2020 	wake_up_process(worker->task);
2021 }
2022 
idle_worker_timeout(struct timer_list * t)2023 static void idle_worker_timeout(struct timer_list *t)
2024 {
2025 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2026 
2027 	raw_spin_lock_irq(&pool->lock);
2028 
2029 	while (too_many_workers(pool)) {
2030 		struct worker *worker;
2031 		unsigned long expires;
2032 
2033 		/* idle_list is kept in LIFO order, check the last one */
2034 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2035 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2036 
2037 		if (time_before(jiffies, expires)) {
2038 			mod_timer(&pool->idle_timer, expires);
2039 			break;
2040 		}
2041 
2042 		destroy_worker(worker);
2043 	}
2044 
2045 	raw_spin_unlock_irq(&pool->lock);
2046 }
2047 
send_mayday(struct work_struct * work)2048 static void send_mayday(struct work_struct *work)
2049 {
2050 	struct pool_workqueue *pwq = get_work_pwq(work);
2051 	struct workqueue_struct *wq = pwq->wq;
2052 
2053 	lockdep_assert_held(&wq_mayday_lock);
2054 
2055 	if (!wq->rescuer)
2056 		return;
2057 
2058 	/* mayday mayday mayday */
2059 	if (list_empty(&pwq->mayday_node)) {
2060 		/*
2061 		 * If @pwq is for an unbound wq, its base ref may be put at
2062 		 * any time due to an attribute change.  Pin @pwq until the
2063 		 * rescuer is done with it.
2064 		 */
2065 		get_pwq(pwq);
2066 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2067 		wake_up_process(wq->rescuer->task);
2068 	}
2069 }
2070 
pool_mayday_timeout(struct timer_list * t)2071 static void pool_mayday_timeout(struct timer_list *t)
2072 {
2073 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2074 	struct work_struct *work;
2075 
2076 	raw_spin_lock_irq(&pool->lock);
2077 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2078 
2079 	if (need_to_create_worker(pool)) {
2080 		/*
2081 		 * We've been trying to create a new worker but
2082 		 * haven't been successful.  We might be hitting an
2083 		 * allocation deadlock.  Send distress signals to
2084 		 * rescuers.
2085 		 */
2086 		list_for_each_entry(work, &pool->worklist, entry)
2087 			send_mayday(work);
2088 	}
2089 
2090 	raw_spin_unlock(&wq_mayday_lock);
2091 	raw_spin_unlock_irq(&pool->lock);
2092 
2093 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2094 }
2095 
2096 /**
2097  * maybe_create_worker - create a new worker if necessary
2098  * @pool: pool to create a new worker for
2099  *
2100  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2101  * have at least one idle worker on return from this function.  If
2102  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2103  * sent to all rescuers with works scheduled on @pool to resolve
2104  * possible allocation deadlock.
2105  *
2106  * On return, need_to_create_worker() is guaranteed to be %false and
2107  * may_start_working() %true.
2108  *
2109  * LOCKING:
2110  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2111  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2112  * manager.
2113  */
maybe_create_worker(struct worker_pool * pool)2114 static void maybe_create_worker(struct worker_pool *pool)
2115 __releases(&pool->lock)
2116 __acquires(&pool->lock)
2117 {
2118 restart:
2119 	raw_spin_unlock_irq(&pool->lock);
2120 
2121 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2122 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2123 
2124 	while (true) {
2125 		if (create_worker(pool) || !need_to_create_worker(pool))
2126 			break;
2127 
2128 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2129 
2130 		if (!need_to_create_worker(pool))
2131 			break;
2132 	}
2133 
2134 	del_timer_sync(&pool->mayday_timer);
2135 	raw_spin_lock_irq(&pool->lock);
2136 	/*
2137 	 * This is necessary even after a new worker was just successfully
2138 	 * created as @pool->lock was dropped and the new worker might have
2139 	 * already become busy.
2140 	 */
2141 	if (need_to_create_worker(pool))
2142 		goto restart;
2143 }
2144 
2145 /**
2146  * manage_workers - manage worker pool
2147  * @worker: self
2148  *
2149  * Assume the manager role and manage the worker pool @worker belongs
2150  * to.  At any given time, there can be only zero or one manager per
2151  * pool.  The exclusion is handled automatically by this function.
2152  *
2153  * The caller can safely start processing works on false return.  On
2154  * true return, it's guaranteed that need_to_create_worker() is false
2155  * and may_start_working() is true.
2156  *
2157  * CONTEXT:
2158  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2159  * multiple times.  Does GFP_KERNEL allocations.
2160  *
2161  * Return:
2162  * %false if the pool doesn't need management and the caller can safely
2163  * start processing works, %true if management function was performed and
2164  * the conditions that the caller verified before calling the function may
2165  * no longer be true.
2166  */
manage_workers(struct worker * worker)2167 static bool manage_workers(struct worker *worker)
2168 {
2169 	struct worker_pool *pool = worker->pool;
2170 
2171 	if (pool->flags & POOL_MANAGER_ACTIVE)
2172 		return false;
2173 
2174 	pool->flags |= POOL_MANAGER_ACTIVE;
2175 	pool->manager = worker;
2176 
2177 	maybe_create_worker(pool);
2178 
2179 	pool->manager = NULL;
2180 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2181 	rcuwait_wake_up(&manager_wait);
2182 	return true;
2183 }
2184 
2185 /**
2186  * process_one_work - process single work
2187  * @worker: self
2188  * @work: work to process
2189  *
2190  * Process @work.  This function contains all the logics necessary to
2191  * process a single work including synchronization against and
2192  * interaction with other workers on the same cpu, queueing and
2193  * flushing.  As long as context requirement is met, any worker can
2194  * call this function to process a work.
2195  *
2196  * CONTEXT:
2197  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2198  */
process_one_work(struct worker * worker,struct work_struct * work)2199 static void process_one_work(struct worker *worker, struct work_struct *work)
2200 __releases(&pool->lock)
2201 __acquires(&pool->lock)
2202 {
2203 	struct pool_workqueue *pwq = get_work_pwq(work);
2204 	struct worker_pool *pool = worker->pool;
2205 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2206 	int work_color;
2207 	struct worker *collision;
2208 #ifdef CONFIG_LOCKDEP
2209 	/*
2210 	 * It is permissible to free the struct work_struct from
2211 	 * inside the function that is called from it, this we need to
2212 	 * take into account for lockdep too.  To avoid bogus "held
2213 	 * lock freed" warnings as well as problems when looking into
2214 	 * work->lockdep_map, make a copy and use that here.
2215 	 */
2216 	struct lockdep_map lockdep_map;
2217 
2218 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2219 #endif
2220 	/* ensure we're on the correct CPU */
2221 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2222 		     raw_smp_processor_id() != pool->cpu);
2223 
2224 	/*
2225 	 * A single work shouldn't be executed concurrently by
2226 	 * multiple workers on a single cpu.  Check whether anyone is
2227 	 * already processing the work.  If so, defer the work to the
2228 	 * currently executing one.
2229 	 */
2230 	collision = find_worker_executing_work(pool, work);
2231 	if (unlikely(collision)) {
2232 		move_linked_works(work, &collision->scheduled, NULL);
2233 		return;
2234 	}
2235 
2236 	/* claim and dequeue */
2237 	debug_work_deactivate(work);
2238 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2239 	worker->current_work = work;
2240 	worker->current_func = work->func;
2241 	worker->current_pwq = pwq;
2242 	work_color = get_work_color(work);
2243 
2244 	/*
2245 	 * Record wq name for cmdline and debug reporting, may get
2246 	 * overridden through set_worker_desc().
2247 	 */
2248 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2249 
2250 	list_del_init(&work->entry);
2251 
2252 	/*
2253 	 * CPU intensive works don't participate in concurrency management.
2254 	 * They're the scheduler's responsibility.  This takes @worker out
2255 	 * of concurrency management and the next code block will chain
2256 	 * execution of the pending work items.
2257 	 */
2258 	if (unlikely(cpu_intensive))
2259 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2260 
2261 	/*
2262 	 * Wake up another worker if necessary.  The condition is always
2263 	 * false for normal per-cpu workers since nr_running would always
2264 	 * be >= 1 at this point.  This is used to chain execution of the
2265 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2266 	 * UNBOUND and CPU_INTENSIVE ones.
2267 	 */
2268 	if (need_more_worker(pool))
2269 		wake_up_worker(pool);
2270 
2271 	/*
2272 	 * Record the last pool and clear PENDING which should be the last
2273 	 * update to @work.  Also, do this inside @pool->lock so that
2274 	 * PENDING and queued state changes happen together while IRQ is
2275 	 * disabled.
2276 	 */
2277 	set_work_pool_and_clear_pending(work, pool->id);
2278 
2279 	raw_spin_unlock_irq(&pool->lock);
2280 
2281 	lock_map_acquire(&pwq->wq->lockdep_map);
2282 	lock_map_acquire(&lockdep_map);
2283 	/*
2284 	 * Strictly speaking we should mark the invariant state without holding
2285 	 * any locks, that is, before these two lock_map_acquire()'s.
2286 	 *
2287 	 * However, that would result in:
2288 	 *
2289 	 *   A(W1)
2290 	 *   WFC(C)
2291 	 *		A(W1)
2292 	 *		C(C)
2293 	 *
2294 	 * Which would create W1->C->W1 dependencies, even though there is no
2295 	 * actual deadlock possible. There are two solutions, using a
2296 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2297 	 * hit the lockdep limitation on recursive locks, or simply discard
2298 	 * these locks.
2299 	 *
2300 	 * AFAICT there is no possible deadlock scenario between the
2301 	 * flush_work() and complete() primitives (except for single-threaded
2302 	 * workqueues), so hiding them isn't a problem.
2303 	 */
2304 	lockdep_invariant_state(true);
2305 	trace_workqueue_execute_start(work);
2306 	worker->current_func(work);
2307 	/*
2308 	 * While we must be careful to not use "work" after this, the trace
2309 	 * point will only record its address.
2310 	 */
2311 	trace_workqueue_execute_end(work, worker->current_func);
2312 	lock_map_release(&lockdep_map);
2313 	lock_map_release(&pwq->wq->lockdep_map);
2314 
2315 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2316 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2317 		       "     last function: %ps\n",
2318 		       current->comm, preempt_count(), task_pid_nr(current),
2319 		       worker->current_func);
2320 		debug_show_held_locks(current);
2321 		dump_stack();
2322 	}
2323 
2324 	/*
2325 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2326 	 * kernels, where a requeueing work item waiting for something to
2327 	 * happen could deadlock with stop_machine as such work item could
2328 	 * indefinitely requeue itself while all other CPUs are trapped in
2329 	 * stop_machine. At the same time, report a quiescent RCU state so
2330 	 * the same condition doesn't freeze RCU.
2331 	 */
2332 	cond_resched();
2333 
2334 	raw_spin_lock_irq(&pool->lock);
2335 
2336 	/* clear cpu intensive status */
2337 	if (unlikely(cpu_intensive))
2338 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2339 
2340 	/* tag the worker for identification in schedule() */
2341 	worker->last_func = worker->current_func;
2342 
2343 	/* we're done with it, release */
2344 	hash_del(&worker->hentry);
2345 	worker->current_work = NULL;
2346 	worker->current_func = NULL;
2347 	worker->current_pwq = NULL;
2348 	pwq_dec_nr_in_flight(pwq, work_color);
2349 }
2350 
2351 /**
2352  * process_scheduled_works - process scheduled works
2353  * @worker: self
2354  *
2355  * Process all scheduled works.  Please note that the scheduled list
2356  * may change while processing a work, so this function repeatedly
2357  * fetches a work from the top and executes it.
2358  *
2359  * CONTEXT:
2360  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2361  * multiple times.
2362  */
process_scheduled_works(struct worker * worker)2363 static void process_scheduled_works(struct worker *worker)
2364 {
2365 	while (!list_empty(&worker->scheduled)) {
2366 		struct work_struct *work = list_first_entry(&worker->scheduled,
2367 						struct work_struct, entry);
2368 		process_one_work(worker, work);
2369 	}
2370 }
2371 
set_pf_worker(bool val)2372 static void set_pf_worker(bool val)
2373 {
2374 	mutex_lock(&wq_pool_attach_mutex);
2375 	if (val)
2376 		current->flags |= PF_WQ_WORKER;
2377 	else
2378 		current->flags &= ~PF_WQ_WORKER;
2379 	mutex_unlock(&wq_pool_attach_mutex);
2380 }
2381 
2382 /**
2383  * worker_thread - the worker thread function
2384  * @__worker: self
2385  *
2386  * The worker thread function.  All workers belong to a worker_pool -
2387  * either a per-cpu one or dynamic unbound one.  These workers process all
2388  * work items regardless of their specific target workqueue.  The only
2389  * exception is work items which belong to workqueues with a rescuer which
2390  * will be explained in rescuer_thread().
2391  *
2392  * Return: 0
2393  */
worker_thread(void * __worker)2394 static int worker_thread(void *__worker)
2395 {
2396 	struct worker *worker = __worker;
2397 	struct worker_pool *pool = worker->pool;
2398 
2399 	/* tell the scheduler that this is a workqueue worker */
2400 	set_pf_worker(true);
2401 woke_up:
2402 	raw_spin_lock_irq(&pool->lock);
2403 
2404 	/* am I supposed to die? */
2405 	if (unlikely(worker->flags & WORKER_DIE)) {
2406 		raw_spin_unlock_irq(&pool->lock);
2407 		WARN_ON_ONCE(!list_empty(&worker->entry));
2408 		set_pf_worker(false);
2409 
2410 		set_task_comm(worker->task, "kworker/dying");
2411 		ida_simple_remove(&pool->worker_ida, worker->id);
2412 		worker_detach_from_pool(worker);
2413 		kfree(worker);
2414 		return 0;
2415 	}
2416 
2417 	worker_leave_idle(worker);
2418 recheck:
2419 	/* no more worker necessary? */
2420 	if (!need_more_worker(pool))
2421 		goto sleep;
2422 
2423 	/* do we need to manage? */
2424 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2425 		goto recheck;
2426 
2427 	/*
2428 	 * ->scheduled list can only be filled while a worker is
2429 	 * preparing to process a work or actually processing it.
2430 	 * Make sure nobody diddled with it while I was sleeping.
2431 	 */
2432 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2433 
2434 	/*
2435 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2436 	 * worker or that someone else has already assumed the manager
2437 	 * role.  This is where @worker starts participating in concurrency
2438 	 * management if applicable and concurrency management is restored
2439 	 * after being rebound.  See rebind_workers() for details.
2440 	 */
2441 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2442 
2443 	do {
2444 		struct work_struct *work =
2445 			list_first_entry(&pool->worklist,
2446 					 struct work_struct, entry);
2447 
2448 		pool->watchdog_ts = jiffies;
2449 
2450 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2451 			/* optimization path, not strictly necessary */
2452 			process_one_work(worker, work);
2453 			if (unlikely(!list_empty(&worker->scheduled)))
2454 				process_scheduled_works(worker);
2455 		} else {
2456 			move_linked_works(work, &worker->scheduled, NULL);
2457 			process_scheduled_works(worker);
2458 		}
2459 	} while (keep_working(pool));
2460 
2461 	worker_set_flags(worker, WORKER_PREP);
2462 sleep:
2463 	/*
2464 	 * pool->lock is held and there's no work to process and no need to
2465 	 * manage, sleep.  Workers are woken up only while holding
2466 	 * pool->lock or from local cpu, so setting the current state
2467 	 * before releasing pool->lock is enough to prevent losing any
2468 	 * event.
2469 	 */
2470 	worker_enter_idle(worker);
2471 	__set_current_state(TASK_IDLE);
2472 	raw_spin_unlock_irq(&pool->lock);
2473 	schedule();
2474 	goto woke_up;
2475 }
2476 
2477 /**
2478  * rescuer_thread - the rescuer thread function
2479  * @__rescuer: self
2480  *
2481  * Workqueue rescuer thread function.  There's one rescuer for each
2482  * workqueue which has WQ_MEM_RECLAIM set.
2483  *
2484  * Regular work processing on a pool may block trying to create a new
2485  * worker which uses GFP_KERNEL allocation which has slight chance of
2486  * developing into deadlock if some works currently on the same queue
2487  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2488  * the problem rescuer solves.
2489  *
2490  * When such condition is possible, the pool summons rescuers of all
2491  * workqueues which have works queued on the pool and let them process
2492  * those works so that forward progress can be guaranteed.
2493  *
2494  * This should happen rarely.
2495  *
2496  * Return: 0
2497  */
rescuer_thread(void * __rescuer)2498 static int rescuer_thread(void *__rescuer)
2499 {
2500 	struct worker *rescuer = __rescuer;
2501 	struct workqueue_struct *wq = rescuer->rescue_wq;
2502 	struct list_head *scheduled = &rescuer->scheduled;
2503 	bool should_stop;
2504 
2505 	set_user_nice(current, RESCUER_NICE_LEVEL);
2506 
2507 	/*
2508 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2509 	 * doesn't participate in concurrency management.
2510 	 */
2511 	set_pf_worker(true);
2512 repeat:
2513 	set_current_state(TASK_IDLE);
2514 
2515 	/*
2516 	 * By the time the rescuer is requested to stop, the workqueue
2517 	 * shouldn't have any work pending, but @wq->maydays may still have
2518 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2519 	 * all the work items before the rescuer got to them.  Go through
2520 	 * @wq->maydays processing before acting on should_stop so that the
2521 	 * list is always empty on exit.
2522 	 */
2523 	should_stop = kthread_should_stop();
2524 
2525 	/* see whether any pwq is asking for help */
2526 	raw_spin_lock_irq(&wq_mayday_lock);
2527 
2528 	while (!list_empty(&wq->maydays)) {
2529 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2530 					struct pool_workqueue, mayday_node);
2531 		struct worker_pool *pool = pwq->pool;
2532 		struct work_struct *work, *n;
2533 		bool first = true;
2534 
2535 		__set_current_state(TASK_RUNNING);
2536 		list_del_init(&pwq->mayday_node);
2537 
2538 		raw_spin_unlock_irq(&wq_mayday_lock);
2539 
2540 		worker_attach_to_pool(rescuer, pool);
2541 
2542 		raw_spin_lock_irq(&pool->lock);
2543 
2544 		/*
2545 		 * Slurp in all works issued via this workqueue and
2546 		 * process'em.
2547 		 */
2548 		WARN_ON_ONCE(!list_empty(scheduled));
2549 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2550 			if (get_work_pwq(work) == pwq) {
2551 				if (first)
2552 					pool->watchdog_ts = jiffies;
2553 				move_linked_works(work, scheduled, &n);
2554 			}
2555 			first = false;
2556 		}
2557 
2558 		if (!list_empty(scheduled)) {
2559 			process_scheduled_works(rescuer);
2560 
2561 			/*
2562 			 * The above execution of rescued work items could
2563 			 * have created more to rescue through
2564 			 * pwq_activate_first_delayed() or chained
2565 			 * queueing.  Let's put @pwq back on mayday list so
2566 			 * that such back-to-back work items, which may be
2567 			 * being used to relieve memory pressure, don't
2568 			 * incur MAYDAY_INTERVAL delay inbetween.
2569 			 */
2570 			if (pwq->nr_active && need_to_create_worker(pool)) {
2571 				raw_spin_lock(&wq_mayday_lock);
2572 				/*
2573 				 * Queue iff we aren't racing destruction
2574 				 * and somebody else hasn't queued it already.
2575 				 */
2576 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2577 					get_pwq(pwq);
2578 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2579 				}
2580 				raw_spin_unlock(&wq_mayday_lock);
2581 			}
2582 		}
2583 
2584 		/*
2585 		 * Put the reference grabbed by send_mayday().  @pool won't
2586 		 * go away while we're still attached to it.
2587 		 */
2588 		put_pwq(pwq);
2589 
2590 		/*
2591 		 * Leave this pool.  If need_more_worker() is %true, notify a
2592 		 * regular worker; otherwise, we end up with 0 concurrency
2593 		 * and stalling the execution.
2594 		 */
2595 		if (need_more_worker(pool))
2596 			wake_up_worker(pool);
2597 
2598 		raw_spin_unlock_irq(&pool->lock);
2599 
2600 		worker_detach_from_pool(rescuer);
2601 
2602 		raw_spin_lock_irq(&wq_mayday_lock);
2603 	}
2604 
2605 	raw_spin_unlock_irq(&wq_mayday_lock);
2606 
2607 	if (should_stop) {
2608 		__set_current_state(TASK_RUNNING);
2609 		set_pf_worker(false);
2610 		return 0;
2611 	}
2612 
2613 	/* rescuers should never participate in concurrency management */
2614 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2615 	schedule();
2616 	goto repeat;
2617 }
2618 
2619 /**
2620  * check_flush_dependency - check for flush dependency sanity
2621  * @target_wq: workqueue being flushed
2622  * @target_work: work item being flushed (NULL for workqueue flushes)
2623  *
2624  * %current is trying to flush the whole @target_wq or @target_work on it.
2625  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2626  * reclaiming memory or running on a workqueue which doesn't have
2627  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2628  * a deadlock.
2629  */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)2630 static void check_flush_dependency(struct workqueue_struct *target_wq,
2631 				   struct work_struct *target_work)
2632 {
2633 	work_func_t target_func = target_work ? target_work->func : NULL;
2634 	struct worker *worker;
2635 
2636 	if (target_wq->flags & WQ_MEM_RECLAIM)
2637 		return;
2638 
2639 	worker = current_wq_worker();
2640 
2641 	WARN_ONCE(current->flags & PF_MEMALLOC,
2642 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2643 		  current->pid, current->comm, target_wq->name, target_func);
2644 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2645 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2646 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2647 		  worker->current_pwq->wq->name, worker->current_func,
2648 		  target_wq->name, target_func);
2649 }
2650 
2651 struct wq_barrier {
2652 	struct work_struct	work;
2653 	struct completion	done;
2654 	struct task_struct	*task;	/* purely informational */
2655 };
2656 
wq_barrier_func(struct work_struct * work)2657 static void wq_barrier_func(struct work_struct *work)
2658 {
2659 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2660 	complete(&barr->done);
2661 }
2662 
2663 /**
2664  * insert_wq_barrier - insert a barrier work
2665  * @pwq: pwq to insert barrier into
2666  * @barr: wq_barrier to insert
2667  * @target: target work to attach @barr to
2668  * @worker: worker currently executing @target, NULL if @target is not executing
2669  *
2670  * @barr is linked to @target such that @barr is completed only after
2671  * @target finishes execution.  Please note that the ordering
2672  * guarantee is observed only with respect to @target and on the local
2673  * cpu.
2674  *
2675  * Currently, a queued barrier can't be canceled.  This is because
2676  * try_to_grab_pending() can't determine whether the work to be
2677  * grabbed is at the head of the queue and thus can't clear LINKED
2678  * flag of the previous work while there must be a valid next work
2679  * after a work with LINKED flag set.
2680  *
2681  * Note that when @worker is non-NULL, @target may be modified
2682  * underneath us, so we can't reliably determine pwq from @target.
2683  *
2684  * CONTEXT:
2685  * raw_spin_lock_irq(pool->lock).
2686  */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2687 static void insert_wq_barrier(struct pool_workqueue *pwq,
2688 			      struct wq_barrier *barr,
2689 			      struct work_struct *target, struct worker *worker)
2690 {
2691 	struct list_head *head;
2692 	unsigned int linked = 0;
2693 
2694 	/*
2695 	 * debugobject calls are safe here even with pool->lock locked
2696 	 * as we know for sure that this will not trigger any of the
2697 	 * checks and call back into the fixup functions where we
2698 	 * might deadlock.
2699 	 */
2700 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2701 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2702 
2703 	init_completion_map(&barr->done, &target->lockdep_map);
2704 
2705 	barr->task = current;
2706 
2707 	/*
2708 	 * If @target is currently being executed, schedule the
2709 	 * barrier to the worker; otherwise, put it after @target.
2710 	 */
2711 	if (worker)
2712 		head = worker->scheduled.next;
2713 	else {
2714 		unsigned long *bits = work_data_bits(target);
2715 
2716 		head = target->entry.next;
2717 		/* there can already be other linked works, inherit and set */
2718 		linked = *bits & WORK_STRUCT_LINKED;
2719 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2720 	}
2721 
2722 	debug_work_activate(&barr->work);
2723 	insert_work(pwq, &barr->work, head,
2724 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2725 }
2726 
2727 /**
2728  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2729  * @wq: workqueue being flushed
2730  * @flush_color: new flush color, < 0 for no-op
2731  * @work_color: new work color, < 0 for no-op
2732  *
2733  * Prepare pwqs for workqueue flushing.
2734  *
2735  * If @flush_color is non-negative, flush_color on all pwqs should be
2736  * -1.  If no pwq has in-flight commands at the specified color, all
2737  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2738  * has in flight commands, its pwq->flush_color is set to
2739  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2740  * wakeup logic is armed and %true is returned.
2741  *
2742  * The caller should have initialized @wq->first_flusher prior to
2743  * calling this function with non-negative @flush_color.  If
2744  * @flush_color is negative, no flush color update is done and %false
2745  * is returned.
2746  *
2747  * If @work_color is non-negative, all pwqs should have the same
2748  * work_color which is previous to @work_color and all will be
2749  * advanced to @work_color.
2750  *
2751  * CONTEXT:
2752  * mutex_lock(wq->mutex).
2753  *
2754  * Return:
2755  * %true if @flush_color >= 0 and there's something to flush.  %false
2756  * otherwise.
2757  */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)2758 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2759 				      int flush_color, int work_color)
2760 {
2761 	bool wait = false;
2762 	struct pool_workqueue *pwq;
2763 
2764 	if (flush_color >= 0) {
2765 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2766 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2767 	}
2768 
2769 	for_each_pwq(pwq, wq) {
2770 		struct worker_pool *pool = pwq->pool;
2771 
2772 		raw_spin_lock_irq(&pool->lock);
2773 
2774 		if (flush_color >= 0) {
2775 			WARN_ON_ONCE(pwq->flush_color != -1);
2776 
2777 			if (pwq->nr_in_flight[flush_color]) {
2778 				pwq->flush_color = flush_color;
2779 				atomic_inc(&wq->nr_pwqs_to_flush);
2780 				wait = true;
2781 			}
2782 		}
2783 
2784 		if (work_color >= 0) {
2785 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2786 			pwq->work_color = work_color;
2787 		}
2788 
2789 		raw_spin_unlock_irq(&pool->lock);
2790 	}
2791 
2792 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2793 		complete(&wq->first_flusher->done);
2794 
2795 	return wait;
2796 }
2797 
2798 /**
2799  * flush_workqueue - ensure that any scheduled work has run to completion.
2800  * @wq: workqueue to flush
2801  *
2802  * This function sleeps until all work items which were queued on entry
2803  * have finished execution, but it is not livelocked by new incoming ones.
2804  */
flush_workqueue(struct workqueue_struct * wq)2805 void flush_workqueue(struct workqueue_struct *wq)
2806 {
2807 	struct wq_flusher this_flusher = {
2808 		.list = LIST_HEAD_INIT(this_flusher.list),
2809 		.flush_color = -1,
2810 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2811 	};
2812 	int next_color;
2813 
2814 	if (WARN_ON(!wq_online))
2815 		return;
2816 
2817 	lock_map_acquire(&wq->lockdep_map);
2818 	lock_map_release(&wq->lockdep_map);
2819 
2820 	mutex_lock(&wq->mutex);
2821 
2822 	/*
2823 	 * Start-to-wait phase
2824 	 */
2825 	next_color = work_next_color(wq->work_color);
2826 
2827 	if (next_color != wq->flush_color) {
2828 		/*
2829 		 * Color space is not full.  The current work_color
2830 		 * becomes our flush_color and work_color is advanced
2831 		 * by one.
2832 		 */
2833 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2834 		this_flusher.flush_color = wq->work_color;
2835 		wq->work_color = next_color;
2836 
2837 		if (!wq->first_flusher) {
2838 			/* no flush in progress, become the first flusher */
2839 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2840 
2841 			wq->first_flusher = &this_flusher;
2842 
2843 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2844 						       wq->work_color)) {
2845 				/* nothing to flush, done */
2846 				wq->flush_color = next_color;
2847 				wq->first_flusher = NULL;
2848 				goto out_unlock;
2849 			}
2850 		} else {
2851 			/* wait in queue */
2852 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2853 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2854 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2855 		}
2856 	} else {
2857 		/*
2858 		 * Oops, color space is full, wait on overflow queue.
2859 		 * The next flush completion will assign us
2860 		 * flush_color and transfer to flusher_queue.
2861 		 */
2862 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2863 	}
2864 
2865 	check_flush_dependency(wq, NULL);
2866 
2867 	mutex_unlock(&wq->mutex);
2868 
2869 	wait_for_completion(&this_flusher.done);
2870 
2871 	/*
2872 	 * Wake-up-and-cascade phase
2873 	 *
2874 	 * First flushers are responsible for cascading flushes and
2875 	 * handling overflow.  Non-first flushers can simply return.
2876 	 */
2877 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
2878 		return;
2879 
2880 	mutex_lock(&wq->mutex);
2881 
2882 	/* we might have raced, check again with mutex held */
2883 	if (wq->first_flusher != &this_flusher)
2884 		goto out_unlock;
2885 
2886 	WRITE_ONCE(wq->first_flusher, NULL);
2887 
2888 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2889 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2890 
2891 	while (true) {
2892 		struct wq_flusher *next, *tmp;
2893 
2894 		/* complete all the flushers sharing the current flush color */
2895 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2896 			if (next->flush_color != wq->flush_color)
2897 				break;
2898 			list_del_init(&next->list);
2899 			complete(&next->done);
2900 		}
2901 
2902 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2903 			     wq->flush_color != work_next_color(wq->work_color));
2904 
2905 		/* this flush_color is finished, advance by one */
2906 		wq->flush_color = work_next_color(wq->flush_color);
2907 
2908 		/* one color has been freed, handle overflow queue */
2909 		if (!list_empty(&wq->flusher_overflow)) {
2910 			/*
2911 			 * Assign the same color to all overflowed
2912 			 * flushers, advance work_color and append to
2913 			 * flusher_queue.  This is the start-to-wait
2914 			 * phase for these overflowed flushers.
2915 			 */
2916 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2917 				tmp->flush_color = wq->work_color;
2918 
2919 			wq->work_color = work_next_color(wq->work_color);
2920 
2921 			list_splice_tail_init(&wq->flusher_overflow,
2922 					      &wq->flusher_queue);
2923 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2924 		}
2925 
2926 		if (list_empty(&wq->flusher_queue)) {
2927 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2928 			break;
2929 		}
2930 
2931 		/*
2932 		 * Need to flush more colors.  Make the next flusher
2933 		 * the new first flusher and arm pwqs.
2934 		 */
2935 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2936 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2937 
2938 		list_del_init(&next->list);
2939 		wq->first_flusher = next;
2940 
2941 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2942 			break;
2943 
2944 		/*
2945 		 * Meh... this color is already done, clear first
2946 		 * flusher and repeat cascading.
2947 		 */
2948 		wq->first_flusher = NULL;
2949 	}
2950 
2951 out_unlock:
2952 	mutex_unlock(&wq->mutex);
2953 }
2954 EXPORT_SYMBOL(flush_workqueue);
2955 
2956 /**
2957  * drain_workqueue - drain a workqueue
2958  * @wq: workqueue to drain
2959  *
2960  * Wait until the workqueue becomes empty.  While draining is in progress,
2961  * only chain queueing is allowed.  IOW, only currently pending or running
2962  * work items on @wq can queue further work items on it.  @wq is flushed
2963  * repeatedly until it becomes empty.  The number of flushing is determined
2964  * by the depth of chaining and should be relatively short.  Whine if it
2965  * takes too long.
2966  */
drain_workqueue(struct workqueue_struct * wq)2967 void drain_workqueue(struct workqueue_struct *wq)
2968 {
2969 	unsigned int flush_cnt = 0;
2970 	struct pool_workqueue *pwq;
2971 
2972 	/*
2973 	 * __queue_work() needs to test whether there are drainers, is much
2974 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2975 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2976 	 */
2977 	mutex_lock(&wq->mutex);
2978 	if (!wq->nr_drainers++)
2979 		wq->flags |= __WQ_DRAINING;
2980 	mutex_unlock(&wq->mutex);
2981 reflush:
2982 	flush_workqueue(wq);
2983 
2984 	mutex_lock(&wq->mutex);
2985 
2986 	for_each_pwq(pwq, wq) {
2987 		bool drained;
2988 
2989 		raw_spin_lock_irq(&pwq->pool->lock);
2990 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2991 		raw_spin_unlock_irq(&pwq->pool->lock);
2992 
2993 		if (drained)
2994 			continue;
2995 
2996 		if (++flush_cnt == 10 ||
2997 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2998 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2999 				wq->name, flush_cnt);
3000 
3001 		mutex_unlock(&wq->mutex);
3002 		goto reflush;
3003 	}
3004 
3005 	if (!--wq->nr_drainers)
3006 		wq->flags &= ~__WQ_DRAINING;
3007 	mutex_unlock(&wq->mutex);
3008 }
3009 EXPORT_SYMBOL_GPL(drain_workqueue);
3010 
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)3011 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3012 			     bool from_cancel)
3013 {
3014 	struct worker *worker = NULL;
3015 	struct worker_pool *pool;
3016 	struct pool_workqueue *pwq;
3017 
3018 	might_sleep();
3019 
3020 	rcu_read_lock();
3021 	pool = get_work_pool(work);
3022 	if (!pool) {
3023 		rcu_read_unlock();
3024 		return false;
3025 	}
3026 
3027 	raw_spin_lock_irq(&pool->lock);
3028 	/* see the comment in try_to_grab_pending() with the same code */
3029 	pwq = get_work_pwq(work);
3030 	if (pwq) {
3031 		if (unlikely(pwq->pool != pool))
3032 			goto already_gone;
3033 	} else {
3034 		worker = find_worker_executing_work(pool, work);
3035 		if (!worker)
3036 			goto already_gone;
3037 		pwq = worker->current_pwq;
3038 	}
3039 
3040 	check_flush_dependency(pwq->wq, work);
3041 
3042 	insert_wq_barrier(pwq, barr, work, worker);
3043 	raw_spin_unlock_irq(&pool->lock);
3044 
3045 	/*
3046 	 * Force a lock recursion deadlock when using flush_work() inside a
3047 	 * single-threaded or rescuer equipped workqueue.
3048 	 *
3049 	 * For single threaded workqueues the deadlock happens when the work
3050 	 * is after the work issuing the flush_work(). For rescuer equipped
3051 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3052 	 * forward progress.
3053 	 */
3054 	if (!from_cancel &&
3055 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3056 		lock_map_acquire(&pwq->wq->lockdep_map);
3057 		lock_map_release(&pwq->wq->lockdep_map);
3058 	}
3059 	rcu_read_unlock();
3060 	return true;
3061 already_gone:
3062 	raw_spin_unlock_irq(&pool->lock);
3063 	rcu_read_unlock();
3064 	return false;
3065 }
3066 
__flush_work(struct work_struct * work,bool from_cancel)3067 static bool __flush_work(struct work_struct *work, bool from_cancel)
3068 {
3069 	struct wq_barrier barr;
3070 
3071 	if (WARN_ON(!wq_online))
3072 		return false;
3073 
3074 	if (WARN_ON(!work->func))
3075 		return false;
3076 
3077 	lock_map_acquire(&work->lockdep_map);
3078 	lock_map_release(&work->lockdep_map);
3079 
3080 	if (start_flush_work(work, &barr, from_cancel)) {
3081 		wait_for_completion(&barr.done);
3082 		destroy_work_on_stack(&barr.work);
3083 		return true;
3084 	} else {
3085 		return false;
3086 	}
3087 }
3088 
3089 /**
3090  * flush_work - wait for a work to finish executing the last queueing instance
3091  * @work: the work to flush
3092  *
3093  * Wait until @work has finished execution.  @work is guaranteed to be idle
3094  * on return if it hasn't been requeued since flush started.
3095  *
3096  * Return:
3097  * %true if flush_work() waited for the work to finish execution,
3098  * %false if it was already idle.
3099  */
flush_work(struct work_struct * work)3100 bool flush_work(struct work_struct *work)
3101 {
3102 	return __flush_work(work, false);
3103 }
3104 EXPORT_SYMBOL_GPL(flush_work);
3105 
3106 struct cwt_wait {
3107 	wait_queue_entry_t		wait;
3108 	struct work_struct	*work;
3109 };
3110 
cwt_wakefn(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)3111 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3112 {
3113 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3114 
3115 	if (cwait->work != key)
3116 		return 0;
3117 	return autoremove_wake_function(wait, mode, sync, key);
3118 }
3119 
__cancel_work_timer(struct work_struct * work,bool is_dwork)3120 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3121 {
3122 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3123 	unsigned long flags;
3124 	int ret;
3125 
3126 	do {
3127 		ret = try_to_grab_pending(work, is_dwork, &flags);
3128 		/*
3129 		 * If someone else is already canceling, wait for it to
3130 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3131 		 * because we may get scheduled between @work's completion
3132 		 * and the other canceling task resuming and clearing
3133 		 * CANCELING - flush_work() will return false immediately
3134 		 * as @work is no longer busy, try_to_grab_pending() will
3135 		 * return -ENOENT as @work is still being canceled and the
3136 		 * other canceling task won't be able to clear CANCELING as
3137 		 * we're hogging the CPU.
3138 		 *
3139 		 * Let's wait for completion using a waitqueue.  As this
3140 		 * may lead to the thundering herd problem, use a custom
3141 		 * wake function which matches @work along with exclusive
3142 		 * wait and wakeup.
3143 		 */
3144 		if (unlikely(ret == -ENOENT)) {
3145 			struct cwt_wait cwait;
3146 
3147 			init_wait(&cwait.wait);
3148 			cwait.wait.func = cwt_wakefn;
3149 			cwait.work = work;
3150 
3151 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3152 						  TASK_UNINTERRUPTIBLE);
3153 			if (work_is_canceling(work))
3154 				schedule();
3155 			finish_wait(&cancel_waitq, &cwait.wait);
3156 		}
3157 	} while (unlikely(ret < 0));
3158 
3159 	/* tell other tasks trying to grab @work to back off */
3160 	mark_work_canceling(work);
3161 	local_irq_restore(flags);
3162 
3163 	/*
3164 	 * This allows canceling during early boot.  We know that @work
3165 	 * isn't executing.
3166 	 */
3167 	if (wq_online)
3168 		__flush_work(work, true);
3169 
3170 	clear_work_data(work);
3171 
3172 	/*
3173 	 * Paired with prepare_to_wait() above so that either
3174 	 * waitqueue_active() is visible here or !work_is_canceling() is
3175 	 * visible there.
3176 	 */
3177 	smp_mb();
3178 	if (waitqueue_active(&cancel_waitq))
3179 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3180 
3181 	return ret;
3182 }
3183 
3184 /**
3185  * cancel_work_sync - cancel a work and wait for it to finish
3186  * @work: the work to cancel
3187  *
3188  * Cancel @work and wait for its execution to finish.  This function
3189  * can be used even if the work re-queues itself or migrates to
3190  * another workqueue.  On return from this function, @work is
3191  * guaranteed to be not pending or executing on any CPU.
3192  *
3193  * cancel_work_sync(&delayed_work->work) must not be used for
3194  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3195  *
3196  * The caller must ensure that the workqueue on which @work was last
3197  * queued can't be destroyed before this function returns.
3198  *
3199  * Return:
3200  * %true if @work was pending, %false otherwise.
3201  */
cancel_work_sync(struct work_struct * work)3202 bool cancel_work_sync(struct work_struct *work)
3203 {
3204 	return __cancel_work_timer(work, false);
3205 }
3206 EXPORT_SYMBOL_GPL(cancel_work_sync);
3207 
3208 /**
3209  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3210  * @dwork: the delayed work to flush
3211  *
3212  * Delayed timer is cancelled and the pending work is queued for
3213  * immediate execution.  Like flush_work(), this function only
3214  * considers the last queueing instance of @dwork.
3215  *
3216  * Return:
3217  * %true if flush_work() waited for the work to finish execution,
3218  * %false if it was already idle.
3219  */
flush_delayed_work(struct delayed_work * dwork)3220 bool flush_delayed_work(struct delayed_work *dwork)
3221 {
3222 	local_irq_disable();
3223 	if (del_timer_sync(&dwork->timer))
3224 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3225 	local_irq_enable();
3226 	return flush_work(&dwork->work);
3227 }
3228 EXPORT_SYMBOL(flush_delayed_work);
3229 
3230 /**
3231  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3232  * @rwork: the rcu work to flush
3233  *
3234  * Return:
3235  * %true if flush_rcu_work() waited for the work to finish execution,
3236  * %false if it was already idle.
3237  */
flush_rcu_work(struct rcu_work * rwork)3238 bool flush_rcu_work(struct rcu_work *rwork)
3239 {
3240 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3241 		rcu_barrier();
3242 		flush_work(&rwork->work);
3243 		return true;
3244 	} else {
3245 		return flush_work(&rwork->work);
3246 	}
3247 }
3248 EXPORT_SYMBOL(flush_rcu_work);
3249 
__cancel_work(struct work_struct * work,bool is_dwork)3250 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3251 {
3252 	unsigned long flags;
3253 	int ret;
3254 
3255 	do {
3256 		ret = try_to_grab_pending(work, is_dwork, &flags);
3257 	} while (unlikely(ret == -EAGAIN));
3258 
3259 	if (unlikely(ret < 0))
3260 		return false;
3261 
3262 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3263 	local_irq_restore(flags);
3264 	return ret;
3265 }
3266 
3267 /**
3268  * cancel_delayed_work - cancel a delayed work
3269  * @dwork: delayed_work to cancel
3270  *
3271  * Kill off a pending delayed_work.
3272  *
3273  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3274  * pending.
3275  *
3276  * Note:
3277  * The work callback function may still be running on return, unless
3278  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3279  * use cancel_delayed_work_sync() to wait on it.
3280  *
3281  * This function is safe to call from any context including IRQ handler.
3282  */
cancel_delayed_work(struct delayed_work * dwork)3283 bool cancel_delayed_work(struct delayed_work *dwork)
3284 {
3285 	return __cancel_work(&dwork->work, true);
3286 }
3287 EXPORT_SYMBOL(cancel_delayed_work);
3288 
3289 /**
3290  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3291  * @dwork: the delayed work cancel
3292  *
3293  * This is cancel_work_sync() for delayed works.
3294  *
3295  * Return:
3296  * %true if @dwork was pending, %false otherwise.
3297  */
cancel_delayed_work_sync(struct delayed_work * dwork)3298 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3299 {
3300 	return __cancel_work_timer(&dwork->work, true);
3301 }
3302 EXPORT_SYMBOL(cancel_delayed_work_sync);
3303 
3304 /**
3305  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3306  * @func: the function to call
3307  *
3308  * schedule_on_each_cpu() executes @func on each online CPU using the
3309  * system workqueue and blocks until all CPUs have completed.
3310  * schedule_on_each_cpu() is very slow.
3311  *
3312  * Return:
3313  * 0 on success, -errno on failure.
3314  */
schedule_on_each_cpu(work_func_t func)3315 int schedule_on_each_cpu(work_func_t func)
3316 {
3317 	int cpu;
3318 	struct work_struct __percpu *works;
3319 
3320 	works = alloc_percpu(struct work_struct);
3321 	if (!works)
3322 		return -ENOMEM;
3323 
3324 	get_online_cpus();
3325 
3326 	for_each_online_cpu(cpu) {
3327 		struct work_struct *work = per_cpu_ptr(works, cpu);
3328 
3329 		INIT_WORK(work, func);
3330 		schedule_work_on(cpu, work);
3331 	}
3332 
3333 	for_each_online_cpu(cpu)
3334 		flush_work(per_cpu_ptr(works, cpu));
3335 
3336 	put_online_cpus();
3337 	free_percpu(works);
3338 	return 0;
3339 }
3340 
3341 /**
3342  * execute_in_process_context - reliably execute the routine with user context
3343  * @fn:		the function to execute
3344  * @ew:		guaranteed storage for the execute work structure (must
3345  *		be available when the work executes)
3346  *
3347  * Executes the function immediately if process context is available,
3348  * otherwise schedules the function for delayed execution.
3349  *
3350  * Return:	0 - function was executed
3351  *		1 - function was scheduled for execution
3352  */
execute_in_process_context(work_func_t fn,struct execute_work * ew)3353 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3354 {
3355 	if (!in_interrupt()) {
3356 		fn(&ew->work);
3357 		return 0;
3358 	}
3359 
3360 	INIT_WORK(&ew->work, fn);
3361 	schedule_work(&ew->work);
3362 
3363 	return 1;
3364 }
3365 EXPORT_SYMBOL_GPL(execute_in_process_context);
3366 
3367 /**
3368  * free_workqueue_attrs - free a workqueue_attrs
3369  * @attrs: workqueue_attrs to free
3370  *
3371  * Undo alloc_workqueue_attrs().
3372  */
free_workqueue_attrs(struct workqueue_attrs * attrs)3373 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3374 {
3375 	if (attrs) {
3376 		free_cpumask_var(attrs->cpumask);
3377 		kfree(attrs);
3378 	}
3379 }
3380 
3381 /**
3382  * alloc_workqueue_attrs - allocate a workqueue_attrs
3383  *
3384  * Allocate a new workqueue_attrs, initialize with default settings and
3385  * return it.
3386  *
3387  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3388  */
alloc_workqueue_attrs(void)3389 struct workqueue_attrs *alloc_workqueue_attrs(void)
3390 {
3391 	struct workqueue_attrs *attrs;
3392 
3393 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3394 	if (!attrs)
3395 		goto fail;
3396 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3397 		goto fail;
3398 
3399 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3400 	return attrs;
3401 fail:
3402 	free_workqueue_attrs(attrs);
3403 	return NULL;
3404 }
3405 
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3406 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3407 				 const struct workqueue_attrs *from)
3408 {
3409 	to->nice = from->nice;
3410 	cpumask_copy(to->cpumask, from->cpumask);
3411 	/*
3412 	 * Unlike hash and equality test, this function doesn't ignore
3413 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3414 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3415 	 */
3416 	to->no_numa = from->no_numa;
3417 }
3418 
3419 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3420 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3421 {
3422 	u32 hash = 0;
3423 
3424 	hash = jhash_1word(attrs->nice, hash);
3425 	hash = jhash(cpumask_bits(attrs->cpumask),
3426 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3427 	return hash;
3428 }
3429 
3430 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3431 static bool wqattrs_equal(const struct workqueue_attrs *a,
3432 			  const struct workqueue_attrs *b)
3433 {
3434 	if (a->nice != b->nice)
3435 		return false;
3436 	if (!cpumask_equal(a->cpumask, b->cpumask))
3437 		return false;
3438 	return true;
3439 }
3440 
3441 /**
3442  * init_worker_pool - initialize a newly zalloc'd worker_pool
3443  * @pool: worker_pool to initialize
3444  *
3445  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3446  *
3447  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3448  * inside @pool proper are initialized and put_unbound_pool() can be called
3449  * on @pool safely to release it.
3450  */
init_worker_pool(struct worker_pool * pool)3451 static int init_worker_pool(struct worker_pool *pool)
3452 {
3453 	raw_spin_lock_init(&pool->lock);
3454 	pool->id = -1;
3455 	pool->cpu = -1;
3456 	pool->node = NUMA_NO_NODE;
3457 	pool->flags |= POOL_DISASSOCIATED;
3458 	pool->watchdog_ts = jiffies;
3459 	INIT_LIST_HEAD(&pool->worklist);
3460 	INIT_LIST_HEAD(&pool->idle_list);
3461 	hash_init(pool->busy_hash);
3462 
3463 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3464 
3465 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3466 
3467 	INIT_LIST_HEAD(&pool->workers);
3468 
3469 	ida_init(&pool->worker_ida);
3470 	INIT_HLIST_NODE(&pool->hash_node);
3471 	pool->refcnt = 1;
3472 
3473 	/* shouldn't fail above this point */
3474 	pool->attrs = alloc_workqueue_attrs();
3475 	if (!pool->attrs)
3476 		return -ENOMEM;
3477 	return 0;
3478 }
3479 
3480 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)3481 static void wq_init_lockdep(struct workqueue_struct *wq)
3482 {
3483 	char *lock_name;
3484 
3485 	lockdep_register_key(&wq->key);
3486 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3487 	if (!lock_name)
3488 		lock_name = wq->name;
3489 
3490 	wq->lock_name = lock_name;
3491 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3492 }
3493 
wq_unregister_lockdep(struct workqueue_struct * wq)3494 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3495 {
3496 	lockdep_unregister_key(&wq->key);
3497 }
3498 
wq_free_lockdep(struct workqueue_struct * wq)3499 static void wq_free_lockdep(struct workqueue_struct *wq)
3500 {
3501 	if (wq->lock_name != wq->name)
3502 		kfree(wq->lock_name);
3503 }
3504 #else
wq_init_lockdep(struct workqueue_struct * wq)3505 static void wq_init_lockdep(struct workqueue_struct *wq)
3506 {
3507 }
3508 
wq_unregister_lockdep(struct workqueue_struct * wq)3509 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3510 {
3511 }
3512 
wq_free_lockdep(struct workqueue_struct * wq)3513 static void wq_free_lockdep(struct workqueue_struct *wq)
3514 {
3515 }
3516 #endif
3517 
rcu_free_wq(struct rcu_head * rcu)3518 static void rcu_free_wq(struct rcu_head *rcu)
3519 {
3520 	struct workqueue_struct *wq =
3521 		container_of(rcu, struct workqueue_struct, rcu);
3522 
3523 	wq_free_lockdep(wq);
3524 
3525 	if (!(wq->flags & WQ_UNBOUND))
3526 		free_percpu(wq->cpu_pwqs);
3527 	else
3528 		free_workqueue_attrs(wq->unbound_attrs);
3529 
3530 	kfree(wq);
3531 }
3532 
rcu_free_pool(struct rcu_head * rcu)3533 static void rcu_free_pool(struct rcu_head *rcu)
3534 {
3535 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3536 
3537 	ida_destroy(&pool->worker_ida);
3538 	free_workqueue_attrs(pool->attrs);
3539 	kfree(pool);
3540 }
3541 
3542 /* This returns with the lock held on success (pool manager is inactive). */
wq_manager_inactive(struct worker_pool * pool)3543 static bool wq_manager_inactive(struct worker_pool *pool)
3544 {
3545 	raw_spin_lock_irq(&pool->lock);
3546 
3547 	if (pool->flags & POOL_MANAGER_ACTIVE) {
3548 		raw_spin_unlock_irq(&pool->lock);
3549 		return false;
3550 	}
3551 	return true;
3552 }
3553 
3554 /**
3555  * put_unbound_pool - put a worker_pool
3556  * @pool: worker_pool to put
3557  *
3558  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3559  * safe manner.  get_unbound_pool() calls this function on its failure path
3560  * and this function should be able to release pools which went through,
3561  * successfully or not, init_worker_pool().
3562  *
3563  * Should be called with wq_pool_mutex held.
3564  */
put_unbound_pool(struct worker_pool * pool)3565 static void put_unbound_pool(struct worker_pool *pool)
3566 {
3567 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3568 	struct worker *worker;
3569 
3570 	lockdep_assert_held(&wq_pool_mutex);
3571 
3572 	if (--pool->refcnt)
3573 		return;
3574 
3575 	/* sanity checks */
3576 	if (WARN_ON(!(pool->cpu < 0)) ||
3577 	    WARN_ON(!list_empty(&pool->worklist)))
3578 		return;
3579 
3580 	/* release id and unhash */
3581 	if (pool->id >= 0)
3582 		idr_remove(&worker_pool_idr, pool->id);
3583 	hash_del(&pool->hash_node);
3584 
3585 	/*
3586 	 * Become the manager and destroy all workers.  This prevents
3587 	 * @pool's workers from blocking on attach_mutex.  We're the last
3588 	 * manager and @pool gets freed with the flag set.
3589 	 * Because of how wq_manager_inactive() works, we will hold the
3590 	 * spinlock after a successful wait.
3591 	 */
3592 	rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3593 			   TASK_UNINTERRUPTIBLE);
3594 	pool->flags |= POOL_MANAGER_ACTIVE;
3595 
3596 	while ((worker = first_idle_worker(pool)))
3597 		destroy_worker(worker);
3598 	WARN_ON(pool->nr_workers || pool->nr_idle);
3599 	raw_spin_unlock_irq(&pool->lock);
3600 
3601 	mutex_lock(&wq_pool_attach_mutex);
3602 	if (!list_empty(&pool->workers))
3603 		pool->detach_completion = &detach_completion;
3604 	mutex_unlock(&wq_pool_attach_mutex);
3605 
3606 	if (pool->detach_completion)
3607 		wait_for_completion(pool->detach_completion);
3608 
3609 	/* shut down the timers */
3610 	del_timer_sync(&pool->idle_timer);
3611 	del_timer_sync(&pool->mayday_timer);
3612 
3613 	/* RCU protected to allow dereferences from get_work_pool() */
3614 	call_rcu(&pool->rcu, rcu_free_pool);
3615 }
3616 
3617 /**
3618  * get_unbound_pool - get a worker_pool with the specified attributes
3619  * @attrs: the attributes of the worker_pool to get
3620  *
3621  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3622  * reference count and return it.  If there already is a matching
3623  * worker_pool, it will be used; otherwise, this function attempts to
3624  * create a new one.
3625  *
3626  * Should be called with wq_pool_mutex held.
3627  *
3628  * Return: On success, a worker_pool with the same attributes as @attrs.
3629  * On failure, %NULL.
3630  */
get_unbound_pool(const struct workqueue_attrs * attrs)3631 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3632 {
3633 	u32 hash = wqattrs_hash(attrs);
3634 	struct worker_pool *pool;
3635 	int node;
3636 	int target_node = NUMA_NO_NODE;
3637 
3638 	lockdep_assert_held(&wq_pool_mutex);
3639 
3640 	/* do we already have a matching pool? */
3641 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3642 		if (wqattrs_equal(pool->attrs, attrs)) {
3643 			pool->refcnt++;
3644 			return pool;
3645 		}
3646 	}
3647 
3648 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3649 	if (wq_numa_enabled) {
3650 		for_each_node(node) {
3651 			if (cpumask_subset(attrs->cpumask,
3652 					   wq_numa_possible_cpumask[node])) {
3653 				target_node = node;
3654 				break;
3655 			}
3656 		}
3657 	}
3658 
3659 	/* nope, create a new one */
3660 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3661 	if (!pool || init_worker_pool(pool) < 0)
3662 		goto fail;
3663 
3664 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3665 	copy_workqueue_attrs(pool->attrs, attrs);
3666 	pool->node = target_node;
3667 
3668 	/*
3669 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3670 	 * 'struct workqueue_attrs' comments for detail.
3671 	 */
3672 	pool->attrs->no_numa = false;
3673 
3674 	if (worker_pool_assign_id(pool) < 0)
3675 		goto fail;
3676 
3677 	/* create and start the initial worker */
3678 	if (wq_online && !create_worker(pool))
3679 		goto fail;
3680 
3681 	/* install */
3682 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3683 
3684 	return pool;
3685 fail:
3686 	if (pool)
3687 		put_unbound_pool(pool);
3688 	return NULL;
3689 }
3690 
rcu_free_pwq(struct rcu_head * rcu)3691 static void rcu_free_pwq(struct rcu_head *rcu)
3692 {
3693 	kmem_cache_free(pwq_cache,
3694 			container_of(rcu, struct pool_workqueue, rcu));
3695 }
3696 
3697 /*
3698  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3699  * and needs to be destroyed.
3700  */
pwq_unbound_release_workfn(struct work_struct * work)3701 static void pwq_unbound_release_workfn(struct work_struct *work)
3702 {
3703 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3704 						  unbound_release_work);
3705 	struct workqueue_struct *wq = pwq->wq;
3706 	struct worker_pool *pool = pwq->pool;
3707 	bool is_last = false;
3708 
3709 	/*
3710 	 * when @pwq is not linked, it doesn't hold any reference to the
3711 	 * @wq, and @wq is invalid to access.
3712 	 */
3713 	if (!list_empty(&pwq->pwqs_node)) {
3714 		if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3715 			return;
3716 
3717 		mutex_lock(&wq->mutex);
3718 		list_del_rcu(&pwq->pwqs_node);
3719 		is_last = list_empty(&wq->pwqs);
3720 		mutex_unlock(&wq->mutex);
3721 	}
3722 
3723 	mutex_lock(&wq_pool_mutex);
3724 	put_unbound_pool(pool);
3725 	mutex_unlock(&wq_pool_mutex);
3726 
3727 	call_rcu(&pwq->rcu, rcu_free_pwq);
3728 
3729 	/*
3730 	 * If we're the last pwq going away, @wq is already dead and no one
3731 	 * is gonna access it anymore.  Schedule RCU free.
3732 	 */
3733 	if (is_last) {
3734 		wq_unregister_lockdep(wq);
3735 		call_rcu(&wq->rcu, rcu_free_wq);
3736 	}
3737 }
3738 
3739 /**
3740  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3741  * @pwq: target pool_workqueue
3742  *
3743  * If @pwq isn't freezing, set @pwq->max_active to the associated
3744  * workqueue's saved_max_active and activate delayed work items
3745  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3746  */
pwq_adjust_max_active(struct pool_workqueue * pwq)3747 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3748 {
3749 	struct workqueue_struct *wq = pwq->wq;
3750 	bool freezable = wq->flags & WQ_FREEZABLE;
3751 	unsigned long flags;
3752 
3753 	/* for @wq->saved_max_active */
3754 	lockdep_assert_held(&wq->mutex);
3755 
3756 	/* fast exit for non-freezable wqs */
3757 	if (!freezable && pwq->max_active == wq->saved_max_active)
3758 		return;
3759 
3760 	/* this function can be called during early boot w/ irq disabled */
3761 	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3762 
3763 	/*
3764 	 * During [un]freezing, the caller is responsible for ensuring that
3765 	 * this function is called at least once after @workqueue_freezing
3766 	 * is updated and visible.
3767 	 */
3768 	if (!freezable || !workqueue_freezing) {
3769 		bool kick = false;
3770 
3771 		pwq->max_active = wq->saved_max_active;
3772 
3773 		while (!list_empty(&pwq->delayed_works) &&
3774 		       pwq->nr_active < pwq->max_active) {
3775 			pwq_activate_first_delayed(pwq);
3776 			kick = true;
3777 		}
3778 
3779 		/*
3780 		 * Need to kick a worker after thawed or an unbound wq's
3781 		 * max_active is bumped. In realtime scenarios, always kicking a
3782 		 * worker will cause interference on the isolated cpu cores, so
3783 		 * let's kick iff work items were activated.
3784 		 */
3785 		if (kick)
3786 			wake_up_worker(pwq->pool);
3787 	} else {
3788 		pwq->max_active = 0;
3789 	}
3790 
3791 	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3792 }
3793 
3794 /* initialize newly alloced @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)3795 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3796 		     struct worker_pool *pool)
3797 {
3798 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3799 
3800 	memset(pwq, 0, sizeof(*pwq));
3801 
3802 	pwq->pool = pool;
3803 	pwq->wq = wq;
3804 	pwq->flush_color = -1;
3805 	pwq->refcnt = 1;
3806 	INIT_LIST_HEAD(&pwq->delayed_works);
3807 	INIT_LIST_HEAD(&pwq->pwqs_node);
3808 	INIT_LIST_HEAD(&pwq->mayday_node);
3809 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3810 }
3811 
3812 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)3813 static void link_pwq(struct pool_workqueue *pwq)
3814 {
3815 	struct workqueue_struct *wq = pwq->wq;
3816 
3817 	lockdep_assert_held(&wq->mutex);
3818 
3819 	/* may be called multiple times, ignore if already linked */
3820 	if (!list_empty(&pwq->pwqs_node))
3821 		return;
3822 
3823 	/* set the matching work_color */
3824 	pwq->work_color = wq->work_color;
3825 
3826 	/* sync max_active to the current setting */
3827 	pwq_adjust_max_active(pwq);
3828 
3829 	/* link in @pwq */
3830 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3831 }
3832 
3833 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3834 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3835 					const struct workqueue_attrs *attrs)
3836 {
3837 	struct worker_pool *pool;
3838 	struct pool_workqueue *pwq;
3839 
3840 	lockdep_assert_held(&wq_pool_mutex);
3841 
3842 	pool = get_unbound_pool(attrs);
3843 	if (!pool)
3844 		return NULL;
3845 
3846 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3847 	if (!pwq) {
3848 		put_unbound_pool(pool);
3849 		return NULL;
3850 	}
3851 
3852 	init_pwq(pwq, wq, pool);
3853 	return pwq;
3854 }
3855 
3856 /**
3857  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3858  * @attrs: the wq_attrs of the default pwq of the target workqueue
3859  * @node: the target NUMA node
3860  * @cpu_going_down: if >= 0, the CPU to consider as offline
3861  * @cpumask: outarg, the resulting cpumask
3862  *
3863  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3864  * @cpu_going_down is >= 0, that cpu is considered offline during
3865  * calculation.  The result is stored in @cpumask.
3866  *
3867  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3868  * enabled and @node has online CPUs requested by @attrs, the returned
3869  * cpumask is the intersection of the possible CPUs of @node and
3870  * @attrs->cpumask.
3871  *
3872  * The caller is responsible for ensuring that the cpumask of @node stays
3873  * stable.
3874  *
3875  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3876  * %false if equal.
3877  */
wq_calc_node_cpumask(const struct workqueue_attrs * attrs,int node,int cpu_going_down,cpumask_t * cpumask)3878 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3879 				 int cpu_going_down, cpumask_t *cpumask)
3880 {
3881 	if (!wq_numa_enabled || attrs->no_numa)
3882 		goto use_dfl;
3883 
3884 	/* does @node have any online CPUs @attrs wants? */
3885 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3886 	if (cpu_going_down >= 0)
3887 		cpumask_clear_cpu(cpu_going_down, cpumask);
3888 
3889 	if (cpumask_empty(cpumask))
3890 		goto use_dfl;
3891 
3892 	/* yeap, return possible CPUs in @node that @attrs wants */
3893 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3894 
3895 	if (cpumask_empty(cpumask)) {
3896 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3897 				"possible intersect\n");
3898 		return false;
3899 	}
3900 
3901 	return !cpumask_equal(cpumask, attrs->cpumask);
3902 
3903 use_dfl:
3904 	cpumask_copy(cpumask, attrs->cpumask);
3905 	return false;
3906 }
3907 
3908 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
numa_pwq_tbl_install(struct workqueue_struct * wq,int node,struct pool_workqueue * pwq)3909 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3910 						   int node,
3911 						   struct pool_workqueue *pwq)
3912 {
3913 	struct pool_workqueue *old_pwq;
3914 
3915 	lockdep_assert_held(&wq_pool_mutex);
3916 	lockdep_assert_held(&wq->mutex);
3917 
3918 	/* link_pwq() can handle duplicate calls */
3919 	link_pwq(pwq);
3920 
3921 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3922 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3923 	return old_pwq;
3924 }
3925 
3926 /* context to store the prepared attrs & pwqs before applying */
3927 struct apply_wqattrs_ctx {
3928 	struct workqueue_struct	*wq;		/* target workqueue */
3929 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3930 	struct list_head	list;		/* queued for batching commit */
3931 	struct pool_workqueue	*dfl_pwq;
3932 	struct pool_workqueue	*pwq_tbl[];
3933 };
3934 
3935 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)3936 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3937 {
3938 	if (ctx) {
3939 		int node;
3940 
3941 		for_each_node(node)
3942 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3943 		put_pwq_unlocked(ctx->dfl_pwq);
3944 
3945 		free_workqueue_attrs(ctx->attrs);
3946 
3947 		kfree(ctx);
3948 	}
3949 }
3950 
3951 /* allocate the attrs and pwqs for later installation */
3952 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3953 apply_wqattrs_prepare(struct workqueue_struct *wq,
3954 		      const struct workqueue_attrs *attrs)
3955 {
3956 	struct apply_wqattrs_ctx *ctx;
3957 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3958 	int node;
3959 
3960 	lockdep_assert_held(&wq_pool_mutex);
3961 
3962 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3963 
3964 	new_attrs = alloc_workqueue_attrs();
3965 	tmp_attrs = alloc_workqueue_attrs();
3966 	if (!ctx || !new_attrs || !tmp_attrs)
3967 		goto out_free;
3968 
3969 	/*
3970 	 * Calculate the attrs of the default pwq.
3971 	 * If the user configured cpumask doesn't overlap with the
3972 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3973 	 */
3974 	copy_workqueue_attrs(new_attrs, attrs);
3975 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3976 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3977 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3978 
3979 	/*
3980 	 * We may create multiple pwqs with differing cpumasks.  Make a
3981 	 * copy of @new_attrs which will be modified and used to obtain
3982 	 * pools.
3983 	 */
3984 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3985 
3986 	/*
3987 	 * If something goes wrong during CPU up/down, we'll fall back to
3988 	 * the default pwq covering whole @attrs->cpumask.  Always create
3989 	 * it even if we don't use it immediately.
3990 	 */
3991 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3992 	if (!ctx->dfl_pwq)
3993 		goto out_free;
3994 
3995 	for_each_node(node) {
3996 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3997 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3998 			if (!ctx->pwq_tbl[node])
3999 				goto out_free;
4000 		} else {
4001 			ctx->dfl_pwq->refcnt++;
4002 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
4003 		}
4004 	}
4005 
4006 	/* save the user configured attrs and sanitize it. */
4007 	copy_workqueue_attrs(new_attrs, attrs);
4008 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4009 	ctx->attrs = new_attrs;
4010 
4011 	ctx->wq = wq;
4012 	free_workqueue_attrs(tmp_attrs);
4013 	return ctx;
4014 
4015 out_free:
4016 	free_workqueue_attrs(tmp_attrs);
4017 	free_workqueue_attrs(new_attrs);
4018 	apply_wqattrs_cleanup(ctx);
4019 	return NULL;
4020 }
4021 
4022 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)4023 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4024 {
4025 	int node;
4026 
4027 	/* all pwqs have been created successfully, let's install'em */
4028 	mutex_lock(&ctx->wq->mutex);
4029 
4030 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4031 
4032 	/* save the previous pwq and install the new one */
4033 	for_each_node(node)
4034 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4035 							  ctx->pwq_tbl[node]);
4036 
4037 	/* @dfl_pwq might not have been used, ensure it's linked */
4038 	link_pwq(ctx->dfl_pwq);
4039 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4040 
4041 	mutex_unlock(&ctx->wq->mutex);
4042 }
4043 
apply_wqattrs_lock(void)4044 static void apply_wqattrs_lock(void)
4045 {
4046 	/* CPUs should stay stable across pwq creations and installations */
4047 	get_online_cpus();
4048 	mutex_lock(&wq_pool_mutex);
4049 }
4050 
apply_wqattrs_unlock(void)4051 static void apply_wqattrs_unlock(void)
4052 {
4053 	mutex_unlock(&wq_pool_mutex);
4054 	put_online_cpus();
4055 }
4056 
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4057 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4058 					const struct workqueue_attrs *attrs)
4059 {
4060 	struct apply_wqattrs_ctx *ctx;
4061 
4062 	/* only unbound workqueues can change attributes */
4063 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4064 		return -EINVAL;
4065 
4066 	/* creating multiple pwqs breaks ordering guarantee */
4067 	if (!list_empty(&wq->pwqs)) {
4068 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4069 			return -EINVAL;
4070 
4071 		wq->flags &= ~__WQ_ORDERED;
4072 	}
4073 
4074 	ctx = apply_wqattrs_prepare(wq, attrs);
4075 	if (!ctx)
4076 		return -ENOMEM;
4077 
4078 	/* the ctx has been prepared successfully, let's commit it */
4079 	apply_wqattrs_commit(ctx);
4080 	apply_wqattrs_cleanup(ctx);
4081 
4082 	return 0;
4083 }
4084 
4085 /**
4086  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4087  * @wq: the target workqueue
4088  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4089  *
4090  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4091  * machines, this function maps a separate pwq to each NUMA node with
4092  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4093  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4094  * items finish.  Note that a work item which repeatedly requeues itself
4095  * back-to-back will stay on its current pwq.
4096  *
4097  * Performs GFP_KERNEL allocations.
4098  *
4099  * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4100  *
4101  * Return: 0 on success and -errno on failure.
4102  */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4103 int apply_workqueue_attrs(struct workqueue_struct *wq,
4104 			  const struct workqueue_attrs *attrs)
4105 {
4106 	int ret;
4107 
4108 	lockdep_assert_cpus_held();
4109 
4110 	mutex_lock(&wq_pool_mutex);
4111 	ret = apply_workqueue_attrs_locked(wq, attrs);
4112 	mutex_unlock(&wq_pool_mutex);
4113 
4114 	return ret;
4115 }
4116 
4117 /**
4118  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4119  * @wq: the target workqueue
4120  * @cpu: the CPU coming up or going down
4121  * @online: whether @cpu is coming up or going down
4122  *
4123  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4124  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4125  * @wq accordingly.
4126  *
4127  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4128  * falls back to @wq->dfl_pwq which may not be optimal but is always
4129  * correct.
4130  *
4131  * Note that when the last allowed CPU of a NUMA node goes offline for a
4132  * workqueue with a cpumask spanning multiple nodes, the workers which were
4133  * already executing the work items for the workqueue will lose their CPU
4134  * affinity and may execute on any CPU.  This is similar to how per-cpu
4135  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4136  * affinity, it's the user's responsibility to flush the work item from
4137  * CPU_DOWN_PREPARE.
4138  */
wq_update_unbound_numa(struct workqueue_struct * wq,int cpu,bool online)4139 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4140 				   bool online)
4141 {
4142 	int node = cpu_to_node(cpu);
4143 	int cpu_off = online ? -1 : cpu;
4144 	struct pool_workqueue *old_pwq = NULL, *pwq;
4145 	struct workqueue_attrs *target_attrs;
4146 	cpumask_t *cpumask;
4147 
4148 	lockdep_assert_held(&wq_pool_mutex);
4149 
4150 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4151 	    wq->unbound_attrs->no_numa)
4152 		return;
4153 
4154 	/*
4155 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4156 	 * Let's use a preallocated one.  The following buf is protected by
4157 	 * CPU hotplug exclusion.
4158 	 */
4159 	target_attrs = wq_update_unbound_numa_attrs_buf;
4160 	cpumask = target_attrs->cpumask;
4161 
4162 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4163 	pwq = unbound_pwq_by_node(wq, node);
4164 
4165 	/*
4166 	 * Let's determine what needs to be done.  If the target cpumask is
4167 	 * different from the default pwq's, we need to compare it to @pwq's
4168 	 * and create a new one if they don't match.  If the target cpumask
4169 	 * equals the default pwq's, the default pwq should be used.
4170 	 */
4171 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4172 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4173 			return;
4174 	} else {
4175 		goto use_dfl_pwq;
4176 	}
4177 
4178 	/* create a new pwq */
4179 	pwq = alloc_unbound_pwq(wq, target_attrs);
4180 	if (!pwq) {
4181 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4182 			wq->name);
4183 		goto use_dfl_pwq;
4184 	}
4185 
4186 	/* Install the new pwq. */
4187 	mutex_lock(&wq->mutex);
4188 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4189 	goto out_unlock;
4190 
4191 use_dfl_pwq:
4192 	mutex_lock(&wq->mutex);
4193 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4194 	get_pwq(wq->dfl_pwq);
4195 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4196 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4197 out_unlock:
4198 	mutex_unlock(&wq->mutex);
4199 	put_pwq_unlocked(old_pwq);
4200 }
4201 
alloc_and_link_pwqs(struct workqueue_struct * wq)4202 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4203 {
4204 	bool highpri = wq->flags & WQ_HIGHPRI;
4205 	int cpu, ret;
4206 
4207 	if (!(wq->flags & WQ_UNBOUND)) {
4208 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4209 		if (!wq->cpu_pwqs)
4210 			return -ENOMEM;
4211 
4212 		for_each_possible_cpu(cpu) {
4213 			struct pool_workqueue *pwq =
4214 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4215 			struct worker_pool *cpu_pools =
4216 				per_cpu(cpu_worker_pools, cpu);
4217 
4218 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4219 
4220 			mutex_lock(&wq->mutex);
4221 			link_pwq(pwq);
4222 			mutex_unlock(&wq->mutex);
4223 		}
4224 		return 0;
4225 	}
4226 
4227 	get_online_cpus();
4228 	if (wq->flags & __WQ_ORDERED) {
4229 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4230 		/* there should only be single pwq for ordering guarantee */
4231 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4232 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4233 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4234 	} else {
4235 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4236 	}
4237 	put_online_cpus();
4238 
4239 	return ret;
4240 }
4241 
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)4242 static int wq_clamp_max_active(int max_active, unsigned int flags,
4243 			       const char *name)
4244 {
4245 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4246 
4247 	if (max_active < 1 || max_active > lim)
4248 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4249 			max_active, name, 1, lim);
4250 
4251 	return clamp_val(max_active, 1, lim);
4252 }
4253 
4254 /*
4255  * Workqueues which may be used during memory reclaim should have a rescuer
4256  * to guarantee forward progress.
4257  */
init_rescuer(struct workqueue_struct * wq)4258 static int init_rescuer(struct workqueue_struct *wq)
4259 {
4260 	struct worker *rescuer;
4261 	int ret;
4262 
4263 	if (!(wq->flags & WQ_MEM_RECLAIM))
4264 		return 0;
4265 
4266 	rescuer = alloc_worker(NUMA_NO_NODE);
4267 	if (!rescuer)
4268 		return -ENOMEM;
4269 
4270 	rescuer->rescue_wq = wq;
4271 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4272 	if (IS_ERR(rescuer->task)) {
4273 		ret = PTR_ERR(rescuer->task);
4274 		kfree(rescuer);
4275 		return ret;
4276 	}
4277 
4278 	wq->rescuer = rescuer;
4279 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4280 	wake_up_process(rescuer->task);
4281 
4282 	return 0;
4283 }
4284 
4285 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)4286 struct workqueue_struct *alloc_workqueue(const char *fmt,
4287 					 unsigned int flags,
4288 					 int max_active, ...)
4289 {
4290 	size_t tbl_size = 0;
4291 	va_list args;
4292 	struct workqueue_struct *wq;
4293 	struct pool_workqueue *pwq;
4294 
4295 	/*
4296 	 * Unbound && max_active == 1 used to imply ordered, which is no
4297 	 * longer the case on NUMA machines due to per-node pools.  While
4298 	 * alloc_ordered_workqueue() is the right way to create an ordered
4299 	 * workqueue, keep the previous behavior to avoid subtle breakages
4300 	 * on NUMA.
4301 	 */
4302 	if ((flags & WQ_UNBOUND) && max_active == 1)
4303 		flags |= __WQ_ORDERED;
4304 
4305 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4306 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4307 		flags |= WQ_UNBOUND;
4308 
4309 	/* allocate wq and format name */
4310 	if (flags & WQ_UNBOUND)
4311 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4312 
4313 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4314 	if (!wq)
4315 		return NULL;
4316 
4317 	if (flags & WQ_UNBOUND) {
4318 		wq->unbound_attrs = alloc_workqueue_attrs();
4319 		if (!wq->unbound_attrs)
4320 			goto err_free_wq;
4321 	}
4322 
4323 	va_start(args, max_active);
4324 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4325 	va_end(args);
4326 
4327 	max_active = max_active ?: WQ_DFL_ACTIVE;
4328 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4329 
4330 	/* init wq */
4331 	wq->flags = flags;
4332 	wq->saved_max_active = max_active;
4333 	mutex_init(&wq->mutex);
4334 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4335 	INIT_LIST_HEAD(&wq->pwqs);
4336 	INIT_LIST_HEAD(&wq->flusher_queue);
4337 	INIT_LIST_HEAD(&wq->flusher_overflow);
4338 	INIT_LIST_HEAD(&wq->maydays);
4339 
4340 	wq_init_lockdep(wq);
4341 	INIT_LIST_HEAD(&wq->list);
4342 
4343 	if (alloc_and_link_pwqs(wq) < 0)
4344 		goto err_unreg_lockdep;
4345 
4346 	if (wq_online && init_rescuer(wq) < 0)
4347 		goto err_destroy;
4348 
4349 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4350 		goto err_destroy;
4351 
4352 	/*
4353 	 * wq_pool_mutex protects global freeze state and workqueues list.
4354 	 * Grab it, adjust max_active and add the new @wq to workqueues
4355 	 * list.
4356 	 */
4357 	mutex_lock(&wq_pool_mutex);
4358 
4359 	mutex_lock(&wq->mutex);
4360 	for_each_pwq(pwq, wq)
4361 		pwq_adjust_max_active(pwq);
4362 	mutex_unlock(&wq->mutex);
4363 
4364 	list_add_tail_rcu(&wq->list, &workqueues);
4365 
4366 	mutex_unlock(&wq_pool_mutex);
4367 
4368 	return wq;
4369 
4370 err_unreg_lockdep:
4371 	wq_unregister_lockdep(wq);
4372 	wq_free_lockdep(wq);
4373 err_free_wq:
4374 	free_workqueue_attrs(wq->unbound_attrs);
4375 	kfree(wq);
4376 	return NULL;
4377 err_destroy:
4378 	destroy_workqueue(wq);
4379 	return NULL;
4380 }
4381 EXPORT_SYMBOL_GPL(alloc_workqueue);
4382 
pwq_busy(struct pool_workqueue * pwq)4383 static bool pwq_busy(struct pool_workqueue *pwq)
4384 {
4385 	int i;
4386 
4387 	for (i = 0; i < WORK_NR_COLORS; i++)
4388 		if (pwq->nr_in_flight[i])
4389 			return true;
4390 
4391 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4392 		return true;
4393 	if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4394 		return true;
4395 
4396 	return false;
4397 }
4398 
4399 /**
4400  * destroy_workqueue - safely terminate a workqueue
4401  * @wq: target workqueue
4402  *
4403  * Safely destroy a workqueue. All work currently pending will be done first.
4404  */
destroy_workqueue(struct workqueue_struct * wq)4405 void destroy_workqueue(struct workqueue_struct *wq)
4406 {
4407 	struct pool_workqueue *pwq;
4408 	int node;
4409 
4410 	/*
4411 	 * Remove it from sysfs first so that sanity check failure doesn't
4412 	 * lead to sysfs name conflicts.
4413 	 */
4414 	workqueue_sysfs_unregister(wq);
4415 
4416 	/* drain it before proceeding with destruction */
4417 	drain_workqueue(wq);
4418 
4419 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4420 	if (wq->rescuer) {
4421 		struct worker *rescuer = wq->rescuer;
4422 
4423 		/* this prevents new queueing */
4424 		raw_spin_lock_irq(&wq_mayday_lock);
4425 		wq->rescuer = NULL;
4426 		raw_spin_unlock_irq(&wq_mayday_lock);
4427 
4428 		/* rescuer will empty maydays list before exiting */
4429 		kthread_stop(rescuer->task);
4430 		kfree(rescuer);
4431 	}
4432 
4433 	/*
4434 	 * Sanity checks - grab all the locks so that we wait for all
4435 	 * in-flight operations which may do put_pwq().
4436 	 */
4437 	mutex_lock(&wq_pool_mutex);
4438 	mutex_lock(&wq->mutex);
4439 	for_each_pwq(pwq, wq) {
4440 		raw_spin_lock_irq(&pwq->pool->lock);
4441 		if (WARN_ON(pwq_busy(pwq))) {
4442 			pr_warn("%s: %s has the following busy pwq\n",
4443 				__func__, wq->name);
4444 			show_pwq(pwq);
4445 			raw_spin_unlock_irq(&pwq->pool->lock);
4446 			mutex_unlock(&wq->mutex);
4447 			mutex_unlock(&wq_pool_mutex);
4448 			show_workqueue_state();
4449 			return;
4450 		}
4451 		raw_spin_unlock_irq(&pwq->pool->lock);
4452 	}
4453 	mutex_unlock(&wq->mutex);
4454 
4455 	/*
4456 	 * wq list is used to freeze wq, remove from list after
4457 	 * flushing is complete in case freeze races us.
4458 	 */
4459 	list_del_rcu(&wq->list);
4460 	mutex_unlock(&wq_pool_mutex);
4461 
4462 	if (!(wq->flags & WQ_UNBOUND)) {
4463 		wq_unregister_lockdep(wq);
4464 		/*
4465 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4466 		 * schedule RCU free.
4467 		 */
4468 		call_rcu(&wq->rcu, rcu_free_wq);
4469 	} else {
4470 		/*
4471 		 * We're the sole accessor of @wq at this point.  Directly
4472 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4473 		 * @wq will be freed when the last pwq is released.
4474 		 */
4475 		for_each_node(node) {
4476 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4477 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4478 			put_pwq_unlocked(pwq);
4479 		}
4480 
4481 		/*
4482 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4483 		 * put.  Don't access it afterwards.
4484 		 */
4485 		pwq = wq->dfl_pwq;
4486 		wq->dfl_pwq = NULL;
4487 		put_pwq_unlocked(pwq);
4488 	}
4489 }
4490 EXPORT_SYMBOL_GPL(destroy_workqueue);
4491 
4492 /**
4493  * workqueue_set_max_active - adjust max_active of a workqueue
4494  * @wq: target workqueue
4495  * @max_active: new max_active value.
4496  *
4497  * Set max_active of @wq to @max_active.
4498  *
4499  * CONTEXT:
4500  * Don't call from IRQ context.
4501  */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4502 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4503 {
4504 	struct pool_workqueue *pwq;
4505 
4506 	/* disallow meddling with max_active for ordered workqueues */
4507 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4508 		return;
4509 
4510 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4511 
4512 	mutex_lock(&wq->mutex);
4513 
4514 	wq->flags &= ~__WQ_ORDERED;
4515 	wq->saved_max_active = max_active;
4516 
4517 	for_each_pwq(pwq, wq)
4518 		pwq_adjust_max_active(pwq);
4519 
4520 	mutex_unlock(&wq->mutex);
4521 }
4522 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4523 
4524 /**
4525  * current_work - retrieve %current task's work struct
4526  *
4527  * Determine if %current task is a workqueue worker and what it's working on.
4528  * Useful to find out the context that the %current task is running in.
4529  *
4530  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4531  */
current_work(void)4532 struct work_struct *current_work(void)
4533 {
4534 	struct worker *worker = current_wq_worker();
4535 
4536 	return worker ? worker->current_work : NULL;
4537 }
4538 EXPORT_SYMBOL(current_work);
4539 
4540 /**
4541  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4542  *
4543  * Determine whether %current is a workqueue rescuer.  Can be used from
4544  * work functions to determine whether it's being run off the rescuer task.
4545  *
4546  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4547  */
current_is_workqueue_rescuer(void)4548 bool current_is_workqueue_rescuer(void)
4549 {
4550 	struct worker *worker = current_wq_worker();
4551 
4552 	return worker && worker->rescue_wq;
4553 }
4554 
4555 /**
4556  * workqueue_congested - test whether a workqueue is congested
4557  * @cpu: CPU in question
4558  * @wq: target workqueue
4559  *
4560  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4561  * no synchronization around this function and the test result is
4562  * unreliable and only useful as advisory hints or for debugging.
4563  *
4564  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4565  * Note that both per-cpu and unbound workqueues may be associated with
4566  * multiple pool_workqueues which have separate congested states.  A
4567  * workqueue being congested on one CPU doesn't mean the workqueue is also
4568  * contested on other CPUs / NUMA nodes.
4569  *
4570  * Return:
4571  * %true if congested, %false otherwise.
4572  */
workqueue_congested(int cpu,struct workqueue_struct * wq)4573 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4574 {
4575 	struct pool_workqueue *pwq;
4576 	bool ret;
4577 
4578 	rcu_read_lock();
4579 	preempt_disable();
4580 
4581 	if (cpu == WORK_CPU_UNBOUND)
4582 		cpu = smp_processor_id();
4583 
4584 	if (!(wq->flags & WQ_UNBOUND))
4585 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4586 	else
4587 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4588 
4589 	ret = !list_empty(&pwq->delayed_works);
4590 	preempt_enable();
4591 	rcu_read_unlock();
4592 
4593 	return ret;
4594 }
4595 EXPORT_SYMBOL_GPL(workqueue_congested);
4596 
4597 /**
4598  * work_busy - test whether a work is currently pending or running
4599  * @work: the work to be tested
4600  *
4601  * Test whether @work is currently pending or running.  There is no
4602  * synchronization around this function and the test result is
4603  * unreliable and only useful as advisory hints or for debugging.
4604  *
4605  * Return:
4606  * OR'd bitmask of WORK_BUSY_* bits.
4607  */
work_busy(struct work_struct * work)4608 unsigned int work_busy(struct work_struct *work)
4609 {
4610 	struct worker_pool *pool;
4611 	unsigned long flags;
4612 	unsigned int ret = 0;
4613 
4614 	if (work_pending(work))
4615 		ret |= WORK_BUSY_PENDING;
4616 
4617 	rcu_read_lock();
4618 	pool = get_work_pool(work);
4619 	if (pool) {
4620 		raw_spin_lock_irqsave(&pool->lock, flags);
4621 		if (find_worker_executing_work(pool, work))
4622 			ret |= WORK_BUSY_RUNNING;
4623 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4624 	}
4625 	rcu_read_unlock();
4626 
4627 	return ret;
4628 }
4629 EXPORT_SYMBOL_GPL(work_busy);
4630 
4631 /**
4632  * set_worker_desc - set description for the current work item
4633  * @fmt: printf-style format string
4634  * @...: arguments for the format string
4635  *
4636  * This function can be called by a running work function to describe what
4637  * the work item is about.  If the worker task gets dumped, this
4638  * information will be printed out together to help debugging.  The
4639  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4640  */
set_worker_desc(const char * fmt,...)4641 void set_worker_desc(const char *fmt, ...)
4642 {
4643 	struct worker *worker = current_wq_worker();
4644 	va_list args;
4645 
4646 	if (worker) {
4647 		va_start(args, fmt);
4648 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4649 		va_end(args);
4650 	}
4651 }
4652 EXPORT_SYMBOL_GPL(set_worker_desc);
4653 
4654 /**
4655  * print_worker_info - print out worker information and description
4656  * @log_lvl: the log level to use when printing
4657  * @task: target task
4658  *
4659  * If @task is a worker and currently executing a work item, print out the
4660  * name of the workqueue being serviced and worker description set with
4661  * set_worker_desc() by the currently executing work item.
4662  *
4663  * This function can be safely called on any task as long as the
4664  * task_struct itself is accessible.  While safe, this function isn't
4665  * synchronized and may print out mixups or garbages of limited length.
4666  */
print_worker_info(const char * log_lvl,struct task_struct * task)4667 void print_worker_info(const char *log_lvl, struct task_struct *task)
4668 {
4669 	work_func_t *fn = NULL;
4670 	char name[WQ_NAME_LEN] = { };
4671 	char desc[WORKER_DESC_LEN] = { };
4672 	struct pool_workqueue *pwq = NULL;
4673 	struct workqueue_struct *wq = NULL;
4674 	struct worker *worker;
4675 
4676 	if (!(task->flags & PF_WQ_WORKER))
4677 		return;
4678 
4679 	/*
4680 	 * This function is called without any synchronization and @task
4681 	 * could be in any state.  Be careful with dereferences.
4682 	 */
4683 	worker = kthread_probe_data(task);
4684 
4685 	/*
4686 	 * Carefully copy the associated workqueue's workfn, name and desc.
4687 	 * Keep the original last '\0' in case the original is garbage.
4688 	 */
4689 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4690 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4691 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4692 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4693 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4694 
4695 	if (fn || name[0] || desc[0]) {
4696 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4697 		if (strcmp(name, desc))
4698 			pr_cont(" (%s)", desc);
4699 		pr_cont("\n");
4700 	}
4701 }
4702 
pr_cont_pool_info(struct worker_pool * pool)4703 static void pr_cont_pool_info(struct worker_pool *pool)
4704 {
4705 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4706 	if (pool->node != NUMA_NO_NODE)
4707 		pr_cont(" node=%d", pool->node);
4708 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4709 }
4710 
pr_cont_work(bool comma,struct work_struct * work)4711 static void pr_cont_work(bool comma, struct work_struct *work)
4712 {
4713 	if (work->func == wq_barrier_func) {
4714 		struct wq_barrier *barr;
4715 
4716 		barr = container_of(work, struct wq_barrier, work);
4717 
4718 		pr_cont("%s BAR(%d)", comma ? "," : "",
4719 			task_pid_nr(barr->task));
4720 	} else {
4721 		pr_cont("%s %ps", comma ? "," : "", work->func);
4722 	}
4723 }
4724 
show_pwq(struct pool_workqueue * pwq)4725 static void show_pwq(struct pool_workqueue *pwq)
4726 {
4727 	struct worker_pool *pool = pwq->pool;
4728 	struct work_struct *work;
4729 	struct worker *worker;
4730 	bool has_in_flight = false, has_pending = false;
4731 	int bkt;
4732 
4733 	pr_info("  pwq %d:", pool->id);
4734 	pr_cont_pool_info(pool);
4735 
4736 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4737 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4738 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4739 
4740 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4741 		if (worker->current_pwq == pwq) {
4742 			has_in_flight = true;
4743 			break;
4744 		}
4745 	}
4746 	if (has_in_flight) {
4747 		bool comma = false;
4748 
4749 		pr_info("    in-flight:");
4750 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4751 			if (worker->current_pwq != pwq)
4752 				continue;
4753 
4754 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4755 				task_pid_nr(worker->task),
4756 				worker->rescue_wq ? "(RESCUER)" : "",
4757 				worker->current_func);
4758 			list_for_each_entry(work, &worker->scheduled, entry)
4759 				pr_cont_work(false, work);
4760 			comma = true;
4761 		}
4762 		pr_cont("\n");
4763 	}
4764 
4765 	list_for_each_entry(work, &pool->worklist, entry) {
4766 		if (get_work_pwq(work) == pwq) {
4767 			has_pending = true;
4768 			break;
4769 		}
4770 	}
4771 	if (has_pending) {
4772 		bool comma = false;
4773 
4774 		pr_info("    pending:");
4775 		list_for_each_entry(work, &pool->worklist, entry) {
4776 			if (get_work_pwq(work) != pwq)
4777 				continue;
4778 
4779 			pr_cont_work(comma, work);
4780 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4781 		}
4782 		pr_cont("\n");
4783 	}
4784 
4785 	if (!list_empty(&pwq->delayed_works)) {
4786 		bool comma = false;
4787 
4788 		pr_info("    delayed:");
4789 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4790 			pr_cont_work(comma, work);
4791 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4792 		}
4793 		pr_cont("\n");
4794 	}
4795 }
4796 
4797 /**
4798  * show_workqueue_state - dump workqueue state
4799  *
4800  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4801  * all busy workqueues and pools.
4802  */
show_workqueue_state(void)4803 void show_workqueue_state(void)
4804 {
4805 	struct workqueue_struct *wq;
4806 	struct worker_pool *pool;
4807 	unsigned long flags;
4808 	int pi;
4809 
4810 	rcu_read_lock();
4811 
4812 	pr_info("Showing busy workqueues and worker pools:\n");
4813 
4814 	list_for_each_entry_rcu(wq, &workqueues, list) {
4815 		struct pool_workqueue *pwq;
4816 		bool idle = true;
4817 
4818 		for_each_pwq(pwq, wq) {
4819 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4820 				idle = false;
4821 				break;
4822 			}
4823 		}
4824 		if (idle)
4825 			continue;
4826 
4827 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4828 
4829 		for_each_pwq(pwq, wq) {
4830 			raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4831 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4832 				show_pwq(pwq);
4833 			raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4834 			/*
4835 			 * We could be printing a lot from atomic context, e.g.
4836 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4837 			 * hard lockup.
4838 			 */
4839 			touch_nmi_watchdog();
4840 		}
4841 	}
4842 
4843 	for_each_pool(pool, pi) {
4844 		struct worker *worker;
4845 		bool first = true;
4846 
4847 		raw_spin_lock_irqsave(&pool->lock, flags);
4848 		if (pool->nr_workers == pool->nr_idle)
4849 			goto next_pool;
4850 
4851 		pr_info("pool %d:", pool->id);
4852 		pr_cont_pool_info(pool);
4853 		pr_cont(" hung=%us workers=%d",
4854 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4855 			pool->nr_workers);
4856 		if (pool->manager)
4857 			pr_cont(" manager: %d",
4858 				task_pid_nr(pool->manager->task));
4859 		list_for_each_entry(worker, &pool->idle_list, entry) {
4860 			pr_cont(" %s%d", first ? "idle: " : "",
4861 				task_pid_nr(worker->task));
4862 			first = false;
4863 		}
4864 		pr_cont("\n");
4865 	next_pool:
4866 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4867 		/*
4868 		 * We could be printing a lot from atomic context, e.g.
4869 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4870 		 * hard lockup.
4871 		 */
4872 		touch_nmi_watchdog();
4873 	}
4874 
4875 	rcu_read_unlock();
4876 }
4877 
4878 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)4879 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4880 {
4881 	int off;
4882 
4883 	/* always show the actual comm */
4884 	off = strscpy(buf, task->comm, size);
4885 	if (off < 0)
4886 		return;
4887 
4888 	/* stabilize PF_WQ_WORKER and worker pool association */
4889 	mutex_lock(&wq_pool_attach_mutex);
4890 
4891 	if (task->flags & PF_WQ_WORKER) {
4892 		struct worker *worker = kthread_data(task);
4893 		struct worker_pool *pool = worker->pool;
4894 
4895 		if (pool) {
4896 			raw_spin_lock_irq(&pool->lock);
4897 			/*
4898 			 * ->desc tracks information (wq name or
4899 			 * set_worker_desc()) for the latest execution.  If
4900 			 * current, prepend '+', otherwise '-'.
4901 			 */
4902 			if (worker->desc[0] != '\0') {
4903 				if (worker->current_work)
4904 					scnprintf(buf + off, size - off, "+%s",
4905 						  worker->desc);
4906 				else
4907 					scnprintf(buf + off, size - off, "-%s",
4908 						  worker->desc);
4909 			}
4910 			raw_spin_unlock_irq(&pool->lock);
4911 		}
4912 	}
4913 
4914 	mutex_unlock(&wq_pool_attach_mutex);
4915 }
4916 EXPORT_SYMBOL_GPL(wq_worker_comm);
4917 
4918 #ifdef CONFIG_SMP
4919 
4920 /*
4921  * CPU hotplug.
4922  *
4923  * There are two challenges in supporting CPU hotplug.  Firstly, there
4924  * are a lot of assumptions on strong associations among work, pwq and
4925  * pool which make migrating pending and scheduled works very
4926  * difficult to implement without impacting hot paths.  Secondly,
4927  * worker pools serve mix of short, long and very long running works making
4928  * blocked draining impractical.
4929  *
4930  * This is solved by allowing the pools to be disassociated from the CPU
4931  * running as an unbound one and allowing it to be reattached later if the
4932  * cpu comes back online.
4933  */
4934 
unbind_workers(int cpu)4935 static void unbind_workers(int cpu)
4936 {
4937 	struct worker_pool *pool;
4938 	struct worker *worker;
4939 
4940 	for_each_cpu_worker_pool(pool, cpu) {
4941 		mutex_lock(&wq_pool_attach_mutex);
4942 		raw_spin_lock_irq(&pool->lock);
4943 
4944 		/*
4945 		 * We've blocked all attach/detach operations. Make all workers
4946 		 * unbound and set DISASSOCIATED.  Before this, all workers
4947 		 * except for the ones which are still executing works from
4948 		 * before the last CPU down must be on the cpu.  After
4949 		 * this, they may become diasporas.
4950 		 */
4951 		for_each_pool_worker(worker, pool)
4952 			worker->flags |= WORKER_UNBOUND;
4953 
4954 		pool->flags |= POOL_DISASSOCIATED;
4955 
4956 		raw_spin_unlock_irq(&pool->lock);
4957 		mutex_unlock(&wq_pool_attach_mutex);
4958 
4959 		/*
4960 		 * Call schedule() so that we cross rq->lock and thus can
4961 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4962 		 * This is necessary as scheduler callbacks may be invoked
4963 		 * from other cpus.
4964 		 */
4965 		schedule();
4966 
4967 		/*
4968 		 * Sched callbacks are disabled now.  Zap nr_running.
4969 		 * After this, nr_running stays zero and need_more_worker()
4970 		 * and keep_working() are always true as long as the
4971 		 * worklist is not empty.  This pool now behaves as an
4972 		 * unbound (in terms of concurrency management) pool which
4973 		 * are served by workers tied to the pool.
4974 		 */
4975 		atomic_set(&pool->nr_running, 0);
4976 
4977 		/*
4978 		 * With concurrency management just turned off, a busy
4979 		 * worker blocking could lead to lengthy stalls.  Kick off
4980 		 * unbound chain execution of currently pending work items.
4981 		 */
4982 		raw_spin_lock_irq(&pool->lock);
4983 		wake_up_worker(pool);
4984 		raw_spin_unlock_irq(&pool->lock);
4985 	}
4986 }
4987 
4988 /**
4989  * rebind_workers - rebind all workers of a pool to the associated CPU
4990  * @pool: pool of interest
4991  *
4992  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4993  */
rebind_workers(struct worker_pool * pool)4994 static void rebind_workers(struct worker_pool *pool)
4995 {
4996 	struct worker *worker;
4997 
4998 	lockdep_assert_held(&wq_pool_attach_mutex);
4999 
5000 	/*
5001 	 * Restore CPU affinity of all workers.  As all idle workers should
5002 	 * be on the run-queue of the associated CPU before any local
5003 	 * wake-ups for concurrency management happen, restore CPU affinity
5004 	 * of all workers first and then clear UNBOUND.  As we're called
5005 	 * from CPU_ONLINE, the following shouldn't fail.
5006 	 */
5007 	for_each_pool_worker(worker, pool)
5008 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5009 						  pool->attrs->cpumask) < 0);
5010 
5011 	raw_spin_lock_irq(&pool->lock);
5012 
5013 	pool->flags &= ~POOL_DISASSOCIATED;
5014 
5015 	for_each_pool_worker(worker, pool) {
5016 		unsigned int worker_flags = worker->flags;
5017 
5018 		/*
5019 		 * A bound idle worker should actually be on the runqueue
5020 		 * of the associated CPU for local wake-ups targeting it to
5021 		 * work.  Kick all idle workers so that they migrate to the
5022 		 * associated CPU.  Doing this in the same loop as
5023 		 * replacing UNBOUND with REBOUND is safe as no worker will
5024 		 * be bound before @pool->lock is released.
5025 		 */
5026 		if (worker_flags & WORKER_IDLE)
5027 			wake_up_process(worker->task);
5028 
5029 		/*
5030 		 * We want to clear UNBOUND but can't directly call
5031 		 * worker_clr_flags() or adjust nr_running.  Atomically
5032 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5033 		 * @worker will clear REBOUND using worker_clr_flags() when
5034 		 * it initiates the next execution cycle thus restoring
5035 		 * concurrency management.  Note that when or whether
5036 		 * @worker clears REBOUND doesn't affect correctness.
5037 		 *
5038 		 * WRITE_ONCE() is necessary because @worker->flags may be
5039 		 * tested without holding any lock in
5040 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5041 		 * fail incorrectly leading to premature concurrency
5042 		 * management operations.
5043 		 */
5044 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5045 		worker_flags |= WORKER_REBOUND;
5046 		worker_flags &= ~WORKER_UNBOUND;
5047 		WRITE_ONCE(worker->flags, worker_flags);
5048 	}
5049 
5050 	raw_spin_unlock_irq(&pool->lock);
5051 }
5052 
5053 /**
5054  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5055  * @pool: unbound pool of interest
5056  * @cpu: the CPU which is coming up
5057  *
5058  * An unbound pool may end up with a cpumask which doesn't have any online
5059  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5060  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5061  * online CPU before, cpus_allowed of all its workers should be restored.
5062  */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)5063 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5064 {
5065 	static cpumask_t cpumask;
5066 	struct worker *worker;
5067 
5068 	lockdep_assert_held(&wq_pool_attach_mutex);
5069 
5070 	/* is @cpu allowed for @pool? */
5071 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5072 		return;
5073 
5074 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5075 
5076 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5077 	for_each_pool_worker(worker, pool)
5078 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5079 }
5080 
workqueue_prepare_cpu(unsigned int cpu)5081 int workqueue_prepare_cpu(unsigned int cpu)
5082 {
5083 	struct worker_pool *pool;
5084 
5085 	for_each_cpu_worker_pool(pool, cpu) {
5086 		if (pool->nr_workers)
5087 			continue;
5088 		if (!create_worker(pool))
5089 			return -ENOMEM;
5090 	}
5091 	return 0;
5092 }
5093 
workqueue_online_cpu(unsigned int cpu)5094 int workqueue_online_cpu(unsigned int cpu)
5095 {
5096 	struct worker_pool *pool;
5097 	struct workqueue_struct *wq;
5098 	int pi;
5099 
5100 	mutex_lock(&wq_pool_mutex);
5101 
5102 	for_each_pool(pool, pi) {
5103 		mutex_lock(&wq_pool_attach_mutex);
5104 
5105 		if (pool->cpu == cpu)
5106 			rebind_workers(pool);
5107 		else if (pool->cpu < 0)
5108 			restore_unbound_workers_cpumask(pool, cpu);
5109 
5110 		mutex_unlock(&wq_pool_attach_mutex);
5111 	}
5112 
5113 	/* update NUMA affinity of unbound workqueues */
5114 	list_for_each_entry(wq, &workqueues, list)
5115 		wq_update_unbound_numa(wq, cpu, true);
5116 
5117 	mutex_unlock(&wq_pool_mutex);
5118 	return 0;
5119 }
5120 
workqueue_offline_cpu(unsigned int cpu)5121 int workqueue_offline_cpu(unsigned int cpu)
5122 {
5123 	struct workqueue_struct *wq;
5124 
5125 	/* unbinding per-cpu workers should happen on the local CPU */
5126 	if (WARN_ON(cpu != smp_processor_id()))
5127 		return -1;
5128 
5129 	unbind_workers(cpu);
5130 
5131 	/* update NUMA affinity of unbound workqueues */
5132 	mutex_lock(&wq_pool_mutex);
5133 	list_for_each_entry(wq, &workqueues, list)
5134 		wq_update_unbound_numa(wq, cpu, false);
5135 	mutex_unlock(&wq_pool_mutex);
5136 
5137 	return 0;
5138 }
5139 
5140 struct work_for_cpu {
5141 	struct work_struct work;
5142 	long (*fn)(void *);
5143 	void *arg;
5144 	long ret;
5145 };
5146 
work_for_cpu_fn(struct work_struct * work)5147 static void work_for_cpu_fn(struct work_struct *work)
5148 {
5149 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5150 
5151 	wfc->ret = wfc->fn(wfc->arg);
5152 }
5153 
5154 /**
5155  * work_on_cpu - run a function in thread context on a particular cpu
5156  * @cpu: the cpu to run on
5157  * @fn: the function to run
5158  * @arg: the function arg
5159  *
5160  * It is up to the caller to ensure that the cpu doesn't go offline.
5161  * The caller must not hold any locks which would prevent @fn from completing.
5162  *
5163  * Return: The value @fn returns.
5164  */
work_on_cpu(int cpu,long (* fn)(void *),void * arg)5165 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5166 {
5167 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5168 
5169 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5170 	schedule_work_on(cpu, &wfc.work);
5171 	flush_work(&wfc.work);
5172 	destroy_work_on_stack(&wfc.work);
5173 	return wfc.ret;
5174 }
5175 EXPORT_SYMBOL_GPL(work_on_cpu);
5176 
5177 /**
5178  * work_on_cpu_safe - run a function in thread context on a particular cpu
5179  * @cpu: the cpu to run on
5180  * @fn:  the function to run
5181  * @arg: the function argument
5182  *
5183  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5184  * any locks which would prevent @fn from completing.
5185  *
5186  * Return: The value @fn returns.
5187  */
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)5188 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5189 {
5190 	long ret = -ENODEV;
5191 
5192 	get_online_cpus();
5193 	if (cpu_online(cpu))
5194 		ret = work_on_cpu(cpu, fn, arg);
5195 	put_online_cpus();
5196 	return ret;
5197 }
5198 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5199 #endif /* CONFIG_SMP */
5200 
5201 #ifdef CONFIG_FREEZER
5202 
5203 /**
5204  * freeze_workqueues_begin - begin freezing workqueues
5205  *
5206  * Start freezing workqueues.  After this function returns, all freezable
5207  * workqueues will queue new works to their delayed_works list instead of
5208  * pool->worklist.
5209  *
5210  * CONTEXT:
5211  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5212  */
freeze_workqueues_begin(void)5213 void freeze_workqueues_begin(void)
5214 {
5215 	struct workqueue_struct *wq;
5216 	struct pool_workqueue *pwq;
5217 
5218 	mutex_lock(&wq_pool_mutex);
5219 
5220 	WARN_ON_ONCE(workqueue_freezing);
5221 	workqueue_freezing = true;
5222 
5223 	list_for_each_entry(wq, &workqueues, list) {
5224 		mutex_lock(&wq->mutex);
5225 		for_each_pwq(pwq, wq)
5226 			pwq_adjust_max_active(pwq);
5227 		mutex_unlock(&wq->mutex);
5228 	}
5229 
5230 	mutex_unlock(&wq_pool_mutex);
5231 }
5232 
5233 /**
5234  * freeze_workqueues_busy - are freezable workqueues still busy?
5235  *
5236  * Check whether freezing is complete.  This function must be called
5237  * between freeze_workqueues_begin() and thaw_workqueues().
5238  *
5239  * CONTEXT:
5240  * Grabs and releases wq_pool_mutex.
5241  *
5242  * Return:
5243  * %true if some freezable workqueues are still busy.  %false if freezing
5244  * is complete.
5245  */
freeze_workqueues_busy(void)5246 bool freeze_workqueues_busy(void)
5247 {
5248 	bool busy = false;
5249 	struct workqueue_struct *wq;
5250 	struct pool_workqueue *pwq;
5251 
5252 	mutex_lock(&wq_pool_mutex);
5253 
5254 	WARN_ON_ONCE(!workqueue_freezing);
5255 
5256 	list_for_each_entry(wq, &workqueues, list) {
5257 		if (!(wq->flags & WQ_FREEZABLE))
5258 			continue;
5259 		/*
5260 		 * nr_active is monotonically decreasing.  It's safe
5261 		 * to peek without lock.
5262 		 */
5263 		rcu_read_lock();
5264 		for_each_pwq(pwq, wq) {
5265 			WARN_ON_ONCE(pwq->nr_active < 0);
5266 			if (pwq->nr_active) {
5267 				busy = true;
5268 				rcu_read_unlock();
5269 				goto out_unlock;
5270 			}
5271 		}
5272 		rcu_read_unlock();
5273 	}
5274 out_unlock:
5275 	mutex_unlock(&wq_pool_mutex);
5276 	return busy;
5277 }
5278 
5279 /**
5280  * thaw_workqueues - thaw workqueues
5281  *
5282  * Thaw workqueues.  Normal queueing is restored and all collected
5283  * frozen works are transferred to their respective pool worklists.
5284  *
5285  * CONTEXT:
5286  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5287  */
thaw_workqueues(void)5288 void thaw_workqueues(void)
5289 {
5290 	struct workqueue_struct *wq;
5291 	struct pool_workqueue *pwq;
5292 
5293 	mutex_lock(&wq_pool_mutex);
5294 
5295 	if (!workqueue_freezing)
5296 		goto out_unlock;
5297 
5298 	workqueue_freezing = false;
5299 
5300 	/* restore max_active and repopulate worklist */
5301 	list_for_each_entry(wq, &workqueues, list) {
5302 		mutex_lock(&wq->mutex);
5303 		for_each_pwq(pwq, wq)
5304 			pwq_adjust_max_active(pwq);
5305 		mutex_unlock(&wq->mutex);
5306 	}
5307 
5308 out_unlock:
5309 	mutex_unlock(&wq_pool_mutex);
5310 }
5311 #endif /* CONFIG_FREEZER */
5312 
workqueue_apply_unbound_cpumask(void)5313 static int workqueue_apply_unbound_cpumask(void)
5314 {
5315 	LIST_HEAD(ctxs);
5316 	int ret = 0;
5317 	struct workqueue_struct *wq;
5318 	struct apply_wqattrs_ctx *ctx, *n;
5319 
5320 	lockdep_assert_held(&wq_pool_mutex);
5321 
5322 	list_for_each_entry(wq, &workqueues, list) {
5323 		if (!(wq->flags & WQ_UNBOUND))
5324 			continue;
5325 		/* creating multiple pwqs breaks ordering guarantee */
5326 		if (wq->flags & __WQ_ORDERED)
5327 			continue;
5328 
5329 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5330 		if (!ctx) {
5331 			ret = -ENOMEM;
5332 			break;
5333 		}
5334 
5335 		list_add_tail(&ctx->list, &ctxs);
5336 	}
5337 
5338 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5339 		if (!ret)
5340 			apply_wqattrs_commit(ctx);
5341 		apply_wqattrs_cleanup(ctx);
5342 	}
5343 
5344 	return ret;
5345 }
5346 
5347 /**
5348  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5349  *  @cpumask: the cpumask to set
5350  *
5351  *  The low-level workqueues cpumask is a global cpumask that limits
5352  *  the affinity of all unbound workqueues.  This function check the @cpumask
5353  *  and apply it to all unbound workqueues and updates all pwqs of them.
5354  *
5355  *  Retun:	0	- Success
5356  *  		-EINVAL	- Invalid @cpumask
5357  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5358  */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)5359 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5360 {
5361 	int ret = -EINVAL;
5362 	cpumask_var_t saved_cpumask;
5363 
5364 	/*
5365 	 * Not excluding isolated cpus on purpose.
5366 	 * If the user wishes to include them, we allow that.
5367 	 */
5368 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5369 	if (!cpumask_empty(cpumask)) {
5370 		apply_wqattrs_lock();
5371 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5372 			ret = 0;
5373 			goto out_unlock;
5374 		}
5375 
5376 		if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5377 			ret = -ENOMEM;
5378 			goto out_unlock;
5379 		}
5380 
5381 		/* save the old wq_unbound_cpumask. */
5382 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5383 
5384 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5385 		cpumask_copy(wq_unbound_cpumask, cpumask);
5386 		ret = workqueue_apply_unbound_cpumask();
5387 
5388 		/* restore the wq_unbound_cpumask when failed. */
5389 		if (ret < 0)
5390 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5391 
5392 		free_cpumask_var(saved_cpumask);
5393 out_unlock:
5394 		apply_wqattrs_unlock();
5395 	}
5396 
5397 	return ret;
5398 }
5399 
5400 #ifdef CONFIG_SYSFS
5401 /*
5402  * Workqueues with WQ_SYSFS flag set is visible to userland via
5403  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5404  * following attributes.
5405  *
5406  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5407  *  max_active	RW int	: maximum number of in-flight work items
5408  *
5409  * Unbound workqueues have the following extra attributes.
5410  *
5411  *  pool_ids	RO int	: the associated pool IDs for each node
5412  *  nice	RW int	: nice value of the workers
5413  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5414  *  numa	RW bool	: whether enable NUMA affinity
5415  */
5416 struct wq_device {
5417 	struct workqueue_struct		*wq;
5418 	struct device			dev;
5419 };
5420 
dev_to_wq(struct device * dev)5421 static struct workqueue_struct *dev_to_wq(struct device *dev)
5422 {
5423 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5424 
5425 	return wq_dev->wq;
5426 }
5427 
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)5428 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5429 			    char *buf)
5430 {
5431 	struct workqueue_struct *wq = dev_to_wq(dev);
5432 
5433 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5434 }
5435 static DEVICE_ATTR_RO(per_cpu);
5436 
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)5437 static ssize_t max_active_show(struct device *dev,
5438 			       struct device_attribute *attr, char *buf)
5439 {
5440 	struct workqueue_struct *wq = dev_to_wq(dev);
5441 
5442 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5443 }
5444 
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5445 static ssize_t max_active_store(struct device *dev,
5446 				struct device_attribute *attr, const char *buf,
5447 				size_t count)
5448 {
5449 	struct workqueue_struct *wq = dev_to_wq(dev);
5450 	int val;
5451 
5452 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5453 		return -EINVAL;
5454 
5455 	workqueue_set_max_active(wq, val);
5456 	return count;
5457 }
5458 static DEVICE_ATTR_RW(max_active);
5459 
5460 static struct attribute *wq_sysfs_attrs[] = {
5461 	&dev_attr_per_cpu.attr,
5462 	&dev_attr_max_active.attr,
5463 	NULL,
5464 };
5465 ATTRIBUTE_GROUPS(wq_sysfs);
5466 
wq_pool_ids_show(struct device * dev,struct device_attribute * attr,char * buf)5467 static ssize_t wq_pool_ids_show(struct device *dev,
5468 				struct device_attribute *attr, char *buf)
5469 {
5470 	struct workqueue_struct *wq = dev_to_wq(dev);
5471 	const char *delim = "";
5472 	int node, written = 0;
5473 
5474 	get_online_cpus();
5475 	rcu_read_lock();
5476 	for_each_node(node) {
5477 		written += scnprintf(buf + written, PAGE_SIZE - written,
5478 				     "%s%d:%d", delim, node,
5479 				     unbound_pwq_by_node(wq, node)->pool->id);
5480 		delim = " ";
5481 	}
5482 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5483 	rcu_read_unlock();
5484 	put_online_cpus();
5485 
5486 	return written;
5487 }
5488 
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)5489 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5490 			    char *buf)
5491 {
5492 	struct workqueue_struct *wq = dev_to_wq(dev);
5493 	int written;
5494 
5495 	mutex_lock(&wq->mutex);
5496 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5497 	mutex_unlock(&wq->mutex);
5498 
5499 	return written;
5500 }
5501 
5502 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)5503 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5504 {
5505 	struct workqueue_attrs *attrs;
5506 
5507 	lockdep_assert_held(&wq_pool_mutex);
5508 
5509 	attrs = alloc_workqueue_attrs();
5510 	if (!attrs)
5511 		return NULL;
5512 
5513 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5514 	return attrs;
5515 }
5516 
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5517 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5518 			     const char *buf, size_t count)
5519 {
5520 	struct workqueue_struct *wq = dev_to_wq(dev);
5521 	struct workqueue_attrs *attrs;
5522 	int ret = -ENOMEM;
5523 
5524 	apply_wqattrs_lock();
5525 
5526 	attrs = wq_sysfs_prep_attrs(wq);
5527 	if (!attrs)
5528 		goto out_unlock;
5529 
5530 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5531 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5532 		ret = apply_workqueue_attrs_locked(wq, attrs);
5533 	else
5534 		ret = -EINVAL;
5535 
5536 out_unlock:
5537 	apply_wqattrs_unlock();
5538 	free_workqueue_attrs(attrs);
5539 	return ret ?: count;
5540 }
5541 
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5542 static ssize_t wq_cpumask_show(struct device *dev,
5543 			       struct device_attribute *attr, char *buf)
5544 {
5545 	struct workqueue_struct *wq = dev_to_wq(dev);
5546 	int written;
5547 
5548 	mutex_lock(&wq->mutex);
5549 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5550 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5551 	mutex_unlock(&wq->mutex);
5552 	return written;
5553 }
5554 
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5555 static ssize_t wq_cpumask_store(struct device *dev,
5556 				struct device_attribute *attr,
5557 				const char *buf, size_t count)
5558 {
5559 	struct workqueue_struct *wq = dev_to_wq(dev);
5560 	struct workqueue_attrs *attrs;
5561 	int ret = -ENOMEM;
5562 
5563 	apply_wqattrs_lock();
5564 
5565 	attrs = wq_sysfs_prep_attrs(wq);
5566 	if (!attrs)
5567 		goto out_unlock;
5568 
5569 	ret = cpumask_parse(buf, attrs->cpumask);
5570 	if (!ret)
5571 		ret = apply_workqueue_attrs_locked(wq, attrs);
5572 
5573 out_unlock:
5574 	apply_wqattrs_unlock();
5575 	free_workqueue_attrs(attrs);
5576 	return ret ?: count;
5577 }
5578 
wq_numa_show(struct device * dev,struct device_attribute * attr,char * buf)5579 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5580 			    char *buf)
5581 {
5582 	struct workqueue_struct *wq = dev_to_wq(dev);
5583 	int written;
5584 
5585 	mutex_lock(&wq->mutex);
5586 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5587 			    !wq->unbound_attrs->no_numa);
5588 	mutex_unlock(&wq->mutex);
5589 
5590 	return written;
5591 }
5592 
wq_numa_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5593 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5594 			     const char *buf, size_t count)
5595 {
5596 	struct workqueue_struct *wq = dev_to_wq(dev);
5597 	struct workqueue_attrs *attrs;
5598 	int v, ret = -ENOMEM;
5599 
5600 	apply_wqattrs_lock();
5601 
5602 	attrs = wq_sysfs_prep_attrs(wq);
5603 	if (!attrs)
5604 		goto out_unlock;
5605 
5606 	ret = -EINVAL;
5607 	if (sscanf(buf, "%d", &v) == 1) {
5608 		attrs->no_numa = !v;
5609 		ret = apply_workqueue_attrs_locked(wq, attrs);
5610 	}
5611 
5612 out_unlock:
5613 	apply_wqattrs_unlock();
5614 	free_workqueue_attrs(attrs);
5615 	return ret ?: count;
5616 }
5617 
5618 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5619 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5620 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5621 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5622 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5623 	__ATTR_NULL,
5624 };
5625 
5626 static struct bus_type wq_subsys = {
5627 	.name				= "workqueue",
5628 	.dev_groups			= wq_sysfs_groups,
5629 };
5630 
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5631 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5632 		struct device_attribute *attr, char *buf)
5633 {
5634 	int written;
5635 
5636 	mutex_lock(&wq_pool_mutex);
5637 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5638 			    cpumask_pr_args(wq_unbound_cpumask));
5639 	mutex_unlock(&wq_pool_mutex);
5640 
5641 	return written;
5642 }
5643 
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5644 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5645 		struct device_attribute *attr, const char *buf, size_t count)
5646 {
5647 	cpumask_var_t cpumask;
5648 	int ret;
5649 
5650 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5651 		return -ENOMEM;
5652 
5653 	ret = cpumask_parse(buf, cpumask);
5654 	if (!ret)
5655 		ret = workqueue_set_unbound_cpumask(cpumask);
5656 
5657 	free_cpumask_var(cpumask);
5658 	return ret ? ret : count;
5659 }
5660 
5661 static struct device_attribute wq_sysfs_cpumask_attr =
5662 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5663 	       wq_unbound_cpumask_store);
5664 
wq_sysfs_init(void)5665 static int __init wq_sysfs_init(void)
5666 {
5667 	int err;
5668 
5669 	err = subsys_virtual_register(&wq_subsys, NULL);
5670 	if (err)
5671 		return err;
5672 
5673 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5674 }
5675 core_initcall(wq_sysfs_init);
5676 
wq_device_release(struct device * dev)5677 static void wq_device_release(struct device *dev)
5678 {
5679 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5680 
5681 	kfree(wq_dev);
5682 }
5683 
5684 /**
5685  * workqueue_sysfs_register - make a workqueue visible in sysfs
5686  * @wq: the workqueue to register
5687  *
5688  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5689  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5690  * which is the preferred method.
5691  *
5692  * Workqueue user should use this function directly iff it wants to apply
5693  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5694  * apply_workqueue_attrs() may race against userland updating the
5695  * attributes.
5696  *
5697  * Return: 0 on success, -errno on failure.
5698  */
workqueue_sysfs_register(struct workqueue_struct * wq)5699 int workqueue_sysfs_register(struct workqueue_struct *wq)
5700 {
5701 	struct wq_device *wq_dev;
5702 	int ret;
5703 
5704 	/*
5705 	 * Adjusting max_active or creating new pwqs by applying
5706 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5707 	 * workqueues.
5708 	 */
5709 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5710 		return -EINVAL;
5711 
5712 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5713 	if (!wq_dev)
5714 		return -ENOMEM;
5715 
5716 	wq_dev->wq = wq;
5717 	wq_dev->dev.bus = &wq_subsys;
5718 	wq_dev->dev.release = wq_device_release;
5719 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5720 
5721 	/*
5722 	 * unbound_attrs are created separately.  Suppress uevent until
5723 	 * everything is ready.
5724 	 */
5725 	dev_set_uevent_suppress(&wq_dev->dev, true);
5726 
5727 	ret = device_register(&wq_dev->dev);
5728 	if (ret) {
5729 		put_device(&wq_dev->dev);
5730 		wq->wq_dev = NULL;
5731 		return ret;
5732 	}
5733 
5734 	if (wq->flags & WQ_UNBOUND) {
5735 		struct device_attribute *attr;
5736 
5737 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5738 			ret = device_create_file(&wq_dev->dev, attr);
5739 			if (ret) {
5740 				device_unregister(&wq_dev->dev);
5741 				wq->wq_dev = NULL;
5742 				return ret;
5743 			}
5744 		}
5745 	}
5746 
5747 	dev_set_uevent_suppress(&wq_dev->dev, false);
5748 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5749 	return 0;
5750 }
5751 
5752 /**
5753  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5754  * @wq: the workqueue to unregister
5755  *
5756  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5757  */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5758 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5759 {
5760 	struct wq_device *wq_dev = wq->wq_dev;
5761 
5762 	if (!wq->wq_dev)
5763 		return;
5764 
5765 	wq->wq_dev = NULL;
5766 	device_unregister(&wq_dev->dev);
5767 }
5768 #else	/* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5769 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5770 #endif	/* CONFIG_SYSFS */
5771 
5772 /*
5773  * Workqueue watchdog.
5774  *
5775  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5776  * flush dependency, a concurrency managed work item which stays RUNNING
5777  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5778  * usual warning mechanisms don't trigger and internal workqueue state is
5779  * largely opaque.
5780  *
5781  * Workqueue watchdog monitors all worker pools periodically and dumps
5782  * state if some pools failed to make forward progress for a while where
5783  * forward progress is defined as the first item on ->worklist changing.
5784  *
5785  * This mechanism is controlled through the kernel parameter
5786  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5787  * corresponding sysfs parameter file.
5788  */
5789 #ifdef CONFIG_WQ_WATCHDOG
5790 
5791 static unsigned long wq_watchdog_thresh = 30;
5792 static struct timer_list wq_watchdog_timer;
5793 
5794 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5795 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5796 
wq_watchdog_reset_touched(void)5797 static void wq_watchdog_reset_touched(void)
5798 {
5799 	int cpu;
5800 
5801 	wq_watchdog_touched = jiffies;
5802 	for_each_possible_cpu(cpu)
5803 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5804 }
5805 
wq_watchdog_timer_fn(struct timer_list * unused)5806 static void wq_watchdog_timer_fn(struct timer_list *unused)
5807 {
5808 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5809 	bool lockup_detected = false;
5810 	unsigned long now = jiffies;
5811 	struct worker_pool *pool;
5812 	int pi;
5813 
5814 	if (!thresh)
5815 		return;
5816 
5817 	rcu_read_lock();
5818 
5819 	for_each_pool(pool, pi) {
5820 		unsigned long pool_ts, touched, ts;
5821 
5822 		if (list_empty(&pool->worklist))
5823 			continue;
5824 
5825 		/*
5826 		 * If a virtual machine is stopped by the host it can look to
5827 		 * the watchdog like a stall.
5828 		 */
5829 		kvm_check_and_clear_guest_paused();
5830 
5831 		/* get the latest of pool and touched timestamps */
5832 		pool_ts = READ_ONCE(pool->watchdog_ts);
5833 		touched = READ_ONCE(wq_watchdog_touched);
5834 
5835 		if (time_after(pool_ts, touched))
5836 			ts = pool_ts;
5837 		else
5838 			ts = touched;
5839 
5840 		if (pool->cpu >= 0) {
5841 			unsigned long cpu_touched =
5842 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5843 						  pool->cpu));
5844 			if (time_after(cpu_touched, ts))
5845 				ts = cpu_touched;
5846 		}
5847 
5848 		/* did we stall? */
5849 		if (time_after(now, ts + thresh)) {
5850 			lockup_detected = true;
5851 			pr_emerg("BUG: workqueue lockup - pool");
5852 			pr_cont_pool_info(pool);
5853 			pr_cont(" stuck for %us!\n",
5854 				jiffies_to_msecs(now - pool_ts) / 1000);
5855 			trace_android_vh_wq_lockup_pool(pool->cpu, pool_ts);
5856 		}
5857 	}
5858 
5859 	rcu_read_unlock();
5860 
5861 	if (lockup_detected)
5862 		show_workqueue_state();
5863 
5864 	wq_watchdog_reset_touched();
5865 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5866 }
5867 
wq_watchdog_touch(int cpu)5868 notrace void wq_watchdog_touch(int cpu)
5869 {
5870 	if (cpu >= 0)
5871 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5872 	else
5873 		wq_watchdog_touched = jiffies;
5874 }
5875 
wq_watchdog_set_thresh(unsigned long thresh)5876 static void wq_watchdog_set_thresh(unsigned long thresh)
5877 {
5878 	wq_watchdog_thresh = 0;
5879 	del_timer_sync(&wq_watchdog_timer);
5880 
5881 	if (thresh) {
5882 		wq_watchdog_thresh = thresh;
5883 		wq_watchdog_reset_touched();
5884 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5885 	}
5886 }
5887 
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)5888 static int wq_watchdog_param_set_thresh(const char *val,
5889 					const struct kernel_param *kp)
5890 {
5891 	unsigned long thresh;
5892 	int ret;
5893 
5894 	ret = kstrtoul(val, 0, &thresh);
5895 	if (ret)
5896 		return ret;
5897 
5898 	if (system_wq)
5899 		wq_watchdog_set_thresh(thresh);
5900 	else
5901 		wq_watchdog_thresh = thresh;
5902 
5903 	return 0;
5904 }
5905 
5906 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5907 	.set	= wq_watchdog_param_set_thresh,
5908 	.get	= param_get_ulong,
5909 };
5910 
5911 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5912 		0644);
5913 
wq_watchdog_init(void)5914 static void wq_watchdog_init(void)
5915 {
5916 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5917 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5918 }
5919 
5920 #else	/* CONFIG_WQ_WATCHDOG */
5921 
wq_watchdog_init(void)5922 static inline void wq_watchdog_init(void) { }
5923 
5924 #endif	/* CONFIG_WQ_WATCHDOG */
5925 
wq_numa_init(void)5926 static void __init wq_numa_init(void)
5927 {
5928 	cpumask_var_t *tbl;
5929 	int node, cpu;
5930 
5931 	if (num_possible_nodes() <= 1)
5932 		return;
5933 
5934 	if (wq_disable_numa) {
5935 		pr_info("workqueue: NUMA affinity support disabled\n");
5936 		return;
5937 	}
5938 
5939 	for_each_possible_cpu(cpu) {
5940 		if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5941 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5942 			return;
5943 		}
5944 	}
5945 
5946 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5947 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5948 
5949 	/*
5950 	 * We want masks of possible CPUs of each node which isn't readily
5951 	 * available.  Build one from cpu_to_node() which should have been
5952 	 * fully initialized by now.
5953 	 */
5954 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5955 	BUG_ON(!tbl);
5956 
5957 	for_each_node(node)
5958 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5959 				node_online(node) ? node : NUMA_NO_NODE));
5960 
5961 	for_each_possible_cpu(cpu) {
5962 		node = cpu_to_node(cpu);
5963 		cpumask_set_cpu(cpu, tbl[node]);
5964 	}
5965 
5966 	wq_numa_possible_cpumask = tbl;
5967 	wq_numa_enabled = true;
5968 }
5969 
5970 /**
5971  * workqueue_init_early - early init for workqueue subsystem
5972  *
5973  * This is the first half of two-staged workqueue subsystem initialization
5974  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5975  * idr are up.  It sets up all the data structures and system workqueues
5976  * and allows early boot code to create workqueues and queue/cancel work
5977  * items.  Actual work item execution starts only after kthreads can be
5978  * created and scheduled right before early initcalls.
5979  */
workqueue_init_early(void)5980 void __init workqueue_init_early(void)
5981 {
5982 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5983 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5984 	int i, cpu;
5985 
5986 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5987 
5988 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5989 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5990 
5991 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5992 
5993 	/* initialize CPU pools */
5994 	for_each_possible_cpu(cpu) {
5995 		struct worker_pool *pool;
5996 
5997 		i = 0;
5998 		for_each_cpu_worker_pool(pool, cpu) {
5999 			BUG_ON(init_worker_pool(pool));
6000 			pool->cpu = cpu;
6001 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6002 			pool->attrs->nice = std_nice[i++];
6003 			pool->node = cpu_to_node(cpu);
6004 
6005 			/* alloc pool ID */
6006 			mutex_lock(&wq_pool_mutex);
6007 			BUG_ON(worker_pool_assign_id(pool));
6008 			mutex_unlock(&wq_pool_mutex);
6009 		}
6010 	}
6011 
6012 	/* create default unbound and ordered wq attrs */
6013 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6014 		struct workqueue_attrs *attrs;
6015 
6016 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6017 		attrs->nice = std_nice[i];
6018 		unbound_std_wq_attrs[i] = attrs;
6019 
6020 		/*
6021 		 * An ordered wq should have only one pwq as ordering is
6022 		 * guaranteed by max_active which is enforced by pwqs.
6023 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
6024 		 */
6025 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6026 		attrs->nice = std_nice[i];
6027 		attrs->no_numa = true;
6028 		ordered_wq_attrs[i] = attrs;
6029 	}
6030 
6031 	system_wq = alloc_workqueue("events", 0, 0);
6032 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6033 	system_long_wq = alloc_workqueue("events_long", 0, 0);
6034 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6035 					    WQ_UNBOUND_MAX_ACTIVE);
6036 	system_freezable_wq = alloc_workqueue("events_freezable",
6037 					      WQ_FREEZABLE, 0);
6038 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6039 					      WQ_POWER_EFFICIENT, 0);
6040 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6041 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6042 					      0);
6043 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6044 	       !system_unbound_wq || !system_freezable_wq ||
6045 	       !system_power_efficient_wq ||
6046 	       !system_freezable_power_efficient_wq);
6047 }
6048 
6049 /**
6050  * workqueue_init - bring workqueue subsystem fully online
6051  *
6052  * This is the latter half of two-staged workqueue subsystem initialization
6053  * and invoked as soon as kthreads can be created and scheduled.
6054  * Workqueues have been created and work items queued on them, but there
6055  * are no kworkers executing the work items yet.  Populate the worker pools
6056  * with the initial workers and enable future kworker creations.
6057  */
workqueue_init(void)6058 void __init workqueue_init(void)
6059 {
6060 	struct workqueue_struct *wq;
6061 	struct worker_pool *pool;
6062 	int cpu, bkt;
6063 
6064 	/*
6065 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6066 	 * CPU to node mapping may not be available that early on some
6067 	 * archs such as power and arm64.  As per-cpu pools created
6068 	 * previously could be missing node hint and unbound pools NUMA
6069 	 * affinity, fix them up.
6070 	 *
6071 	 * Also, while iterating workqueues, create rescuers if requested.
6072 	 */
6073 	wq_numa_init();
6074 
6075 	mutex_lock(&wq_pool_mutex);
6076 
6077 	for_each_possible_cpu(cpu) {
6078 		for_each_cpu_worker_pool(pool, cpu) {
6079 			pool->node = cpu_to_node(cpu);
6080 		}
6081 	}
6082 
6083 	list_for_each_entry(wq, &workqueues, list) {
6084 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6085 		WARN(init_rescuer(wq),
6086 		     "workqueue: failed to create early rescuer for %s",
6087 		     wq->name);
6088 	}
6089 
6090 	mutex_unlock(&wq_pool_mutex);
6091 
6092 	/* create the initial workers */
6093 	for_each_online_cpu(cpu) {
6094 		for_each_cpu_worker_pool(pool, cpu) {
6095 			pool->flags &= ~POOL_DISASSOCIATED;
6096 			BUG_ON(!create_worker(pool));
6097 		}
6098 	}
6099 
6100 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6101 		BUG_ON(!create_worker(pool));
6102 
6103 	wq_online = true;
6104 	wq_watchdog_init();
6105 }
6106