1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54 #include <uapi/linux/sched/types.h>
55
56 #include "workqueue_internal.h"
57
58 #include <trace/hooks/wqlockup.h>
59 /* events/workqueue.h uses default TRACE_INCLUDE_PATH */
60 #undef TRACE_INCLUDE_PATH
61
62 enum {
63 /*
64 * worker_pool flags
65 *
66 * A bound pool is either associated or disassociated with its CPU.
67 * While associated (!DISASSOCIATED), all workers are bound to the
68 * CPU and none has %WORKER_UNBOUND set and concurrency management
69 * is in effect.
70 *
71 * While DISASSOCIATED, the cpu may be offline and all workers have
72 * %WORKER_UNBOUND set and concurrency management disabled, and may
73 * be executing on any CPU. The pool behaves as an unbound one.
74 *
75 * Note that DISASSOCIATED should be flipped only while holding
76 * wq_pool_attach_mutex to avoid changing binding state while
77 * worker_attach_to_pool() is in progress.
78 */
79 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
80 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
81
82 /* worker flags */
83 WORKER_DIE = 1 << 1, /* die die die */
84 WORKER_IDLE = 1 << 2, /* is idle */
85 WORKER_PREP = 1 << 3, /* preparing to run works */
86 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
87 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
88 WORKER_REBOUND = 1 << 8, /* worker was rebound */
89
90 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
91 WORKER_UNBOUND | WORKER_REBOUND,
92
93 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
94
95 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
96 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
97
98 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
99 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
100
101 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
102 /* call for help after 10ms
103 (min two ticks) */
104 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
105 CREATE_COOLDOWN = HZ, /* time to breath after fail */
106
107 /*
108 * Rescue workers are used only on emergencies and shared by
109 * all cpus. Give MIN_NICE.
110 */
111 RESCUER_NICE_LEVEL = MIN_NICE,
112 HIGHPRI_NICE_LEVEL = MIN_NICE,
113
114 WQ_NAME_LEN = 24,
115 };
116
117 /*
118 * Structure fields follow one of the following exclusion rules.
119 *
120 * I: Modifiable by initialization/destruction paths and read-only for
121 * everyone else.
122 *
123 * P: Preemption protected. Disabling preemption is enough and should
124 * only be modified and accessed from the local cpu.
125 *
126 * L: pool->lock protected. Access with pool->lock held.
127 *
128 * X: During normal operation, modification requires pool->lock and should
129 * be done only from local cpu. Either disabling preemption on local
130 * cpu or grabbing pool->lock is enough for read access. If
131 * POOL_DISASSOCIATED is set, it's identical to L.
132 *
133 * A: wq_pool_attach_mutex protected.
134 *
135 * PL: wq_pool_mutex protected.
136 *
137 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
138 *
139 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
140 *
141 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
142 * RCU for reads.
143 *
144 * WQ: wq->mutex protected.
145 *
146 * WR: wq->mutex protected for writes. RCU protected for reads.
147 *
148 * MD: wq_mayday_lock protected.
149 */
150
151 /* struct worker is defined in workqueue_internal.h */
152
153 struct worker_pool {
154 raw_spinlock_t lock; /* the pool lock */
155 int cpu; /* I: the associated cpu */
156 int node; /* I: the associated node ID */
157 int id; /* I: pool ID */
158 unsigned int flags; /* X: flags */
159
160 unsigned long watchdog_ts; /* L: watchdog timestamp */
161
162 struct list_head worklist; /* L: list of pending works */
163
164 int nr_workers; /* L: total number of workers */
165 int nr_idle; /* L: currently idle workers */
166
167 struct list_head idle_list; /* X: list of idle workers */
168 struct timer_list idle_timer; /* L: worker idle timeout */
169 struct timer_list mayday_timer; /* L: SOS timer for workers */
170
171 /* a workers is either on busy_hash or idle_list, or the manager */
172 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
173 /* L: hash of busy workers */
174
175 struct worker *manager; /* L: purely informational */
176 struct list_head workers; /* A: attached workers */
177 struct completion *detach_completion; /* all workers detached */
178
179 struct ida worker_ida; /* worker IDs for task name */
180
181 struct workqueue_attrs *attrs; /* I: worker attributes */
182 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
183 int refcnt; /* PL: refcnt for unbound pools */
184
185 /*
186 * The current concurrency level. As it's likely to be accessed
187 * from other CPUs during try_to_wake_up(), put it in a separate
188 * cacheline.
189 */
190 atomic_t nr_running ____cacheline_aligned_in_smp;
191
192 /*
193 * Destruction of pool is RCU protected to allow dereferences
194 * from get_work_pool().
195 */
196 struct rcu_head rcu;
197 } ____cacheline_aligned_in_smp;
198
199 /*
200 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
201 * of work_struct->data are used for flags and the remaining high bits
202 * point to the pwq; thus, pwqs need to be aligned at two's power of the
203 * number of flag bits.
204 */
205 struct pool_workqueue {
206 struct worker_pool *pool; /* I: the associated pool */
207 struct workqueue_struct *wq; /* I: the owning workqueue */
208 int work_color; /* L: current color */
209 int flush_color; /* L: flushing color */
210 int refcnt; /* L: reference count */
211 int nr_in_flight[WORK_NR_COLORS];
212 /* L: nr of in_flight works */
213 int nr_active; /* L: nr of active works */
214 int max_active; /* L: max active works */
215 struct list_head delayed_works; /* L: delayed works */
216 struct list_head pwqs_node; /* WR: node on wq->pwqs */
217 struct list_head mayday_node; /* MD: node on wq->maydays */
218
219 /*
220 * Release of unbound pwq is punted to system_wq. See put_pwq()
221 * and pwq_unbound_release_workfn() for details. pool_workqueue
222 * itself is also RCU protected so that the first pwq can be
223 * determined without grabbing wq->mutex.
224 */
225 struct work_struct unbound_release_work;
226 struct rcu_head rcu;
227 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
228
229 /*
230 * Structure used to wait for workqueue flush.
231 */
232 struct wq_flusher {
233 struct list_head list; /* WQ: list of flushers */
234 int flush_color; /* WQ: flush color waiting for */
235 struct completion done; /* flush completion */
236 };
237
238 struct wq_device;
239
240 /*
241 * The externally visible workqueue. It relays the issued work items to
242 * the appropriate worker_pool through its pool_workqueues.
243 */
244 struct workqueue_struct {
245 struct list_head pwqs; /* WR: all pwqs of this wq */
246 struct list_head list; /* PR: list of all workqueues */
247
248 struct mutex mutex; /* protects this wq */
249 int work_color; /* WQ: current work color */
250 int flush_color; /* WQ: current flush color */
251 atomic_t nr_pwqs_to_flush; /* flush in progress */
252 struct wq_flusher *first_flusher; /* WQ: first flusher */
253 struct list_head flusher_queue; /* WQ: flush waiters */
254 struct list_head flusher_overflow; /* WQ: flush overflow list */
255
256 struct list_head maydays; /* MD: pwqs requesting rescue */
257 struct worker *rescuer; /* MD: rescue worker */
258
259 int nr_drainers; /* WQ: drain in progress */
260 int saved_max_active; /* WQ: saved pwq max_active */
261
262 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
263 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
264
265 #ifdef CONFIG_SYSFS
266 struct wq_device *wq_dev; /* I: for sysfs interface */
267 #endif
268 #ifdef CONFIG_LOCKDEP
269 char *lock_name;
270 struct lock_class_key key;
271 struct lockdep_map lockdep_map;
272 #endif
273 char name[WQ_NAME_LEN]; /* I: workqueue name */
274
275 /*
276 * Destruction of workqueue_struct is RCU protected to allow walking
277 * the workqueues list without grabbing wq_pool_mutex.
278 * This is used to dump all workqueues from sysrq.
279 */
280 struct rcu_head rcu;
281
282 /* hot fields used during command issue, aligned to cacheline */
283 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
284 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
285 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
286 };
287
288 static struct kmem_cache *pwq_cache;
289
290 static cpumask_var_t *wq_numa_possible_cpumask;
291 /* possible CPUs of each node */
292
293 static bool wq_disable_numa;
294 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
295
296 /* see the comment above the definition of WQ_POWER_EFFICIENT */
297 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
298 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
299
300 static bool wq_online; /* can kworkers be created yet? */
301
302 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
303
304 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
305 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
306
307 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
308 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
309 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
310 /* wait for manager to go away */
311 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
312
313 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
314 static bool workqueue_freezing; /* PL: have wqs started freezing? */
315
316 /* PL: allowable cpus for unbound wqs and work items */
317 static cpumask_var_t wq_unbound_cpumask;
318
319 /* CPU where unbound work was last round robin scheduled from this CPU */
320 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
321
322 /*
323 * Local execution of unbound work items is no longer guaranteed. The
324 * following always forces round-robin CPU selection on unbound work items
325 * to uncover usages which depend on it.
326 */
327 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
328 static bool wq_debug_force_rr_cpu = true;
329 #else
330 static bool wq_debug_force_rr_cpu = false;
331 #endif
332 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
333
334 /* the per-cpu worker pools */
335 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
336
337 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
338
339 /* PL: hash of all unbound pools keyed by pool->attrs */
340 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
341
342 /* I: attributes used when instantiating standard unbound pools on demand */
343 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
344
345 /* I: attributes used when instantiating ordered pools on demand */
346 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
347
348 struct workqueue_struct *system_wq __read_mostly;
349 EXPORT_SYMBOL(system_wq);
350 struct workqueue_struct *system_highpri_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_highpri_wq);
352 struct workqueue_struct *system_long_wq __read_mostly;
353 EXPORT_SYMBOL_GPL(system_long_wq);
354 struct workqueue_struct *system_unbound_wq __read_mostly;
355 EXPORT_SYMBOL_GPL(system_unbound_wq);
356 struct workqueue_struct *system_freezable_wq __read_mostly;
357 EXPORT_SYMBOL_GPL(system_freezable_wq);
358 struct workqueue_struct *system_power_efficient_wq __read_mostly;
359 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
360 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
361 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
362
363 static int worker_thread(void *__worker);
364 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
365 static void show_pwq(struct pool_workqueue *pwq);
366
367 #define CREATE_TRACE_POINTS
368 #include <trace/events/workqueue.h>
369
370 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_start);
371 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_end);
372
373 #define assert_rcu_or_pool_mutex() \
374 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
375 !lockdep_is_held(&wq_pool_mutex), \
376 "RCU or wq_pool_mutex should be held")
377
378 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
379 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
380 !lockdep_is_held(&wq->mutex) && \
381 !lockdep_is_held(&wq_pool_mutex), \
382 "RCU, wq->mutex or wq_pool_mutex should be held")
383
384 #define for_each_cpu_worker_pool(pool, cpu) \
385 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
386 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
387 (pool)++)
388
389 /**
390 * for_each_pool - iterate through all worker_pools in the system
391 * @pool: iteration cursor
392 * @pi: integer used for iteration
393 *
394 * This must be called either with wq_pool_mutex held or RCU read
395 * locked. If the pool needs to be used beyond the locking in effect, the
396 * caller is responsible for guaranteeing that the pool stays online.
397 *
398 * The if/else clause exists only for the lockdep assertion and can be
399 * ignored.
400 */
401 #define for_each_pool(pool, pi) \
402 idr_for_each_entry(&worker_pool_idr, pool, pi) \
403 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
404 else
405
406 /**
407 * for_each_pool_worker - iterate through all workers of a worker_pool
408 * @worker: iteration cursor
409 * @pool: worker_pool to iterate workers of
410 *
411 * This must be called with wq_pool_attach_mutex.
412 *
413 * The if/else clause exists only for the lockdep assertion and can be
414 * ignored.
415 */
416 #define for_each_pool_worker(worker, pool) \
417 list_for_each_entry((worker), &(pool)->workers, node) \
418 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
419 else
420
421 /**
422 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
423 * @pwq: iteration cursor
424 * @wq: the target workqueue
425 *
426 * This must be called either with wq->mutex held or RCU read locked.
427 * If the pwq needs to be used beyond the locking in effect, the caller is
428 * responsible for guaranteeing that the pwq stays online.
429 *
430 * The if/else clause exists only for the lockdep assertion and can be
431 * ignored.
432 */
433 #define for_each_pwq(pwq, wq) \
434 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
435 lockdep_is_held(&(wq->mutex)))
436
437 #ifdef CONFIG_DEBUG_OBJECTS_WORK
438
439 static const struct debug_obj_descr work_debug_descr;
440
work_debug_hint(void * addr)441 static void *work_debug_hint(void *addr)
442 {
443 return ((struct work_struct *) addr)->func;
444 }
445
work_is_static_object(void * addr)446 static bool work_is_static_object(void *addr)
447 {
448 struct work_struct *work = addr;
449
450 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
451 }
452
453 /*
454 * fixup_init is called when:
455 * - an active object is initialized
456 */
work_fixup_init(void * addr,enum debug_obj_state state)457 static bool work_fixup_init(void *addr, enum debug_obj_state state)
458 {
459 struct work_struct *work = addr;
460
461 switch (state) {
462 case ODEBUG_STATE_ACTIVE:
463 cancel_work_sync(work);
464 debug_object_init(work, &work_debug_descr);
465 return true;
466 default:
467 return false;
468 }
469 }
470
471 /*
472 * fixup_free is called when:
473 * - an active object is freed
474 */
work_fixup_free(void * addr,enum debug_obj_state state)475 static bool work_fixup_free(void *addr, enum debug_obj_state state)
476 {
477 struct work_struct *work = addr;
478
479 switch (state) {
480 case ODEBUG_STATE_ACTIVE:
481 cancel_work_sync(work);
482 debug_object_free(work, &work_debug_descr);
483 return true;
484 default:
485 return false;
486 }
487 }
488
489 static const struct debug_obj_descr work_debug_descr = {
490 .name = "work_struct",
491 .debug_hint = work_debug_hint,
492 .is_static_object = work_is_static_object,
493 .fixup_init = work_fixup_init,
494 .fixup_free = work_fixup_free,
495 };
496
debug_work_activate(struct work_struct * work)497 static inline void debug_work_activate(struct work_struct *work)
498 {
499 debug_object_activate(work, &work_debug_descr);
500 }
501
debug_work_deactivate(struct work_struct * work)502 static inline void debug_work_deactivate(struct work_struct *work)
503 {
504 debug_object_deactivate(work, &work_debug_descr);
505 }
506
__init_work(struct work_struct * work,int onstack)507 void __init_work(struct work_struct *work, int onstack)
508 {
509 if (onstack)
510 debug_object_init_on_stack(work, &work_debug_descr);
511 else
512 debug_object_init(work, &work_debug_descr);
513 }
514 EXPORT_SYMBOL_GPL(__init_work);
515
destroy_work_on_stack(struct work_struct * work)516 void destroy_work_on_stack(struct work_struct *work)
517 {
518 debug_object_free(work, &work_debug_descr);
519 }
520 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
521
destroy_delayed_work_on_stack(struct delayed_work * work)522 void destroy_delayed_work_on_stack(struct delayed_work *work)
523 {
524 destroy_timer_on_stack(&work->timer);
525 debug_object_free(&work->work, &work_debug_descr);
526 }
527 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
528
529 #else
debug_work_activate(struct work_struct * work)530 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)531 static inline void debug_work_deactivate(struct work_struct *work) { }
532 #endif
533
534 /**
535 * worker_pool_assign_id - allocate ID and assing it to @pool
536 * @pool: the pool pointer of interest
537 *
538 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
539 * successfully, -errno on failure.
540 */
worker_pool_assign_id(struct worker_pool * pool)541 static int worker_pool_assign_id(struct worker_pool *pool)
542 {
543 int ret;
544
545 lockdep_assert_held(&wq_pool_mutex);
546
547 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
548 GFP_KERNEL);
549 if (ret >= 0) {
550 pool->id = ret;
551 return 0;
552 }
553 return ret;
554 }
555
556 /**
557 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
558 * @wq: the target workqueue
559 * @node: the node ID
560 *
561 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
562 * read locked.
563 * If the pwq needs to be used beyond the locking in effect, the caller is
564 * responsible for guaranteeing that the pwq stays online.
565 *
566 * Return: The unbound pool_workqueue for @node.
567 */
unbound_pwq_by_node(struct workqueue_struct * wq,int node)568 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
569 int node)
570 {
571 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
572
573 /*
574 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
575 * delayed item is pending. The plan is to keep CPU -> NODE
576 * mapping valid and stable across CPU on/offlines. Once that
577 * happens, this workaround can be removed.
578 */
579 if (unlikely(node == NUMA_NO_NODE))
580 return wq->dfl_pwq;
581
582 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
583 }
584
work_color_to_flags(int color)585 static unsigned int work_color_to_flags(int color)
586 {
587 return color << WORK_STRUCT_COLOR_SHIFT;
588 }
589
get_work_color(struct work_struct * work)590 static int get_work_color(struct work_struct *work)
591 {
592 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
593 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
594 }
595
work_next_color(int color)596 static int work_next_color(int color)
597 {
598 return (color + 1) % WORK_NR_COLORS;
599 }
600
601 /*
602 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
603 * contain the pointer to the queued pwq. Once execution starts, the flag
604 * is cleared and the high bits contain OFFQ flags and pool ID.
605 *
606 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
607 * and clear_work_data() can be used to set the pwq, pool or clear
608 * work->data. These functions should only be called while the work is
609 * owned - ie. while the PENDING bit is set.
610 *
611 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
612 * corresponding to a work. Pool is available once the work has been
613 * queued anywhere after initialization until it is sync canceled. pwq is
614 * available only while the work item is queued.
615 *
616 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
617 * canceled. While being canceled, a work item may have its PENDING set
618 * but stay off timer and worklist for arbitrarily long and nobody should
619 * try to steal the PENDING bit.
620 */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)621 static inline void set_work_data(struct work_struct *work, unsigned long data,
622 unsigned long flags)
623 {
624 WARN_ON_ONCE(!work_pending(work));
625 atomic_long_set(&work->data, data | flags | work_static(work));
626 }
627
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)628 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
629 unsigned long extra_flags)
630 {
631 set_work_data(work, (unsigned long)pwq,
632 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
633 }
634
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)635 static void set_work_pool_and_keep_pending(struct work_struct *work,
636 int pool_id)
637 {
638 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
639 WORK_STRUCT_PENDING);
640 }
641
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)642 static void set_work_pool_and_clear_pending(struct work_struct *work,
643 int pool_id)
644 {
645 /*
646 * The following wmb is paired with the implied mb in
647 * test_and_set_bit(PENDING) and ensures all updates to @work made
648 * here are visible to and precede any updates by the next PENDING
649 * owner.
650 */
651 smp_wmb();
652 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
653 /*
654 * The following mb guarantees that previous clear of a PENDING bit
655 * will not be reordered with any speculative LOADS or STORES from
656 * work->current_func, which is executed afterwards. This possible
657 * reordering can lead to a missed execution on attempt to queue
658 * the same @work. E.g. consider this case:
659 *
660 * CPU#0 CPU#1
661 * ---------------------------- --------------------------------
662 *
663 * 1 STORE event_indicated
664 * 2 queue_work_on() {
665 * 3 test_and_set_bit(PENDING)
666 * 4 } set_..._and_clear_pending() {
667 * 5 set_work_data() # clear bit
668 * 6 smp_mb()
669 * 7 work->current_func() {
670 * 8 LOAD event_indicated
671 * }
672 *
673 * Without an explicit full barrier speculative LOAD on line 8 can
674 * be executed before CPU#0 does STORE on line 1. If that happens,
675 * CPU#0 observes the PENDING bit is still set and new execution of
676 * a @work is not queued in a hope, that CPU#1 will eventually
677 * finish the queued @work. Meanwhile CPU#1 does not see
678 * event_indicated is set, because speculative LOAD was executed
679 * before actual STORE.
680 */
681 smp_mb();
682 }
683
clear_work_data(struct work_struct * work)684 static void clear_work_data(struct work_struct *work)
685 {
686 smp_wmb(); /* see set_work_pool_and_clear_pending() */
687 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
688 }
689
get_work_pwq(struct work_struct * work)690 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
691 {
692 unsigned long data = atomic_long_read(&work->data);
693
694 if (data & WORK_STRUCT_PWQ)
695 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
696 else
697 return NULL;
698 }
699
700 /**
701 * get_work_pool - return the worker_pool a given work was associated with
702 * @work: the work item of interest
703 *
704 * Pools are created and destroyed under wq_pool_mutex, and allows read
705 * access under RCU read lock. As such, this function should be
706 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
707 *
708 * All fields of the returned pool are accessible as long as the above
709 * mentioned locking is in effect. If the returned pool needs to be used
710 * beyond the critical section, the caller is responsible for ensuring the
711 * returned pool is and stays online.
712 *
713 * Return: The worker_pool @work was last associated with. %NULL if none.
714 */
get_work_pool(struct work_struct * work)715 static struct worker_pool *get_work_pool(struct work_struct *work)
716 {
717 unsigned long data = atomic_long_read(&work->data);
718 int pool_id;
719
720 assert_rcu_or_pool_mutex();
721
722 if (data & WORK_STRUCT_PWQ)
723 return ((struct pool_workqueue *)
724 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
725
726 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
727 if (pool_id == WORK_OFFQ_POOL_NONE)
728 return NULL;
729
730 return idr_find(&worker_pool_idr, pool_id);
731 }
732
733 /**
734 * get_work_pool_id - return the worker pool ID a given work is associated with
735 * @work: the work item of interest
736 *
737 * Return: The worker_pool ID @work was last associated with.
738 * %WORK_OFFQ_POOL_NONE if none.
739 */
get_work_pool_id(struct work_struct * work)740 static int get_work_pool_id(struct work_struct *work)
741 {
742 unsigned long data = atomic_long_read(&work->data);
743
744 if (data & WORK_STRUCT_PWQ)
745 return ((struct pool_workqueue *)
746 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
747
748 return data >> WORK_OFFQ_POOL_SHIFT;
749 }
750
mark_work_canceling(struct work_struct * work)751 static void mark_work_canceling(struct work_struct *work)
752 {
753 unsigned long pool_id = get_work_pool_id(work);
754
755 pool_id <<= WORK_OFFQ_POOL_SHIFT;
756 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
757 }
758
work_is_canceling(struct work_struct * work)759 static bool work_is_canceling(struct work_struct *work)
760 {
761 unsigned long data = atomic_long_read(&work->data);
762
763 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
764 }
765
766 /*
767 * Policy functions. These define the policies on how the global worker
768 * pools are managed. Unless noted otherwise, these functions assume that
769 * they're being called with pool->lock held.
770 */
771
__need_more_worker(struct worker_pool * pool)772 static bool __need_more_worker(struct worker_pool *pool)
773 {
774 return !atomic_read(&pool->nr_running);
775 }
776
777 /*
778 * Need to wake up a worker? Called from anything but currently
779 * running workers.
780 *
781 * Note that, because unbound workers never contribute to nr_running, this
782 * function will always return %true for unbound pools as long as the
783 * worklist isn't empty.
784 */
need_more_worker(struct worker_pool * pool)785 static bool need_more_worker(struct worker_pool *pool)
786 {
787 return !list_empty(&pool->worklist) && __need_more_worker(pool);
788 }
789
790 /* Can I start working? Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)791 static bool may_start_working(struct worker_pool *pool)
792 {
793 return pool->nr_idle;
794 }
795
796 /* Do I need to keep working? Called from currently running workers. */
keep_working(struct worker_pool * pool)797 static bool keep_working(struct worker_pool *pool)
798 {
799 return !list_empty(&pool->worklist) &&
800 atomic_read(&pool->nr_running) <= 1;
801 }
802
803 /* Do we need a new worker? Called from manager. */
need_to_create_worker(struct worker_pool * pool)804 static bool need_to_create_worker(struct worker_pool *pool)
805 {
806 return need_more_worker(pool) && !may_start_working(pool);
807 }
808
809 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)810 static bool too_many_workers(struct worker_pool *pool)
811 {
812 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
813 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
814 int nr_busy = pool->nr_workers - nr_idle;
815
816 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
817 }
818
819 /*
820 * Wake up functions.
821 */
822
823 /* Return the first idle worker. Safe with preemption disabled */
first_idle_worker(struct worker_pool * pool)824 static struct worker *first_idle_worker(struct worker_pool *pool)
825 {
826 if (unlikely(list_empty(&pool->idle_list)))
827 return NULL;
828
829 return list_first_entry(&pool->idle_list, struct worker, entry);
830 }
831
832 /**
833 * wake_up_worker - wake up an idle worker
834 * @pool: worker pool to wake worker from
835 *
836 * Wake up the first idle worker of @pool.
837 *
838 * CONTEXT:
839 * raw_spin_lock_irq(pool->lock).
840 */
wake_up_worker(struct worker_pool * pool)841 static void wake_up_worker(struct worker_pool *pool)
842 {
843 struct worker *worker = first_idle_worker(pool);
844
845 if (likely(worker))
846 wake_up_process(worker->task);
847 }
848
849 /**
850 * wq_worker_running - a worker is running again
851 * @task: task waking up
852 *
853 * This function is called when a worker returns from schedule()
854 */
wq_worker_running(struct task_struct * task)855 void wq_worker_running(struct task_struct *task)
856 {
857 struct worker *worker = kthread_data(task);
858
859 if (!worker->sleeping)
860 return;
861
862 /*
863 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
864 * and the nr_running increment below, we may ruin the nr_running reset
865 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
866 * pool. Protect against such race.
867 */
868 preempt_disable();
869 if (!(worker->flags & WORKER_NOT_RUNNING))
870 atomic_inc(&worker->pool->nr_running);
871 preempt_enable();
872 worker->sleeping = 0;
873 }
874
875 /**
876 * wq_worker_sleeping - a worker is going to sleep
877 * @task: task going to sleep
878 *
879 * This function is called from schedule() when a busy worker is
880 * going to sleep. Preemption needs to be disabled to protect ->sleeping
881 * assignment.
882 */
wq_worker_sleeping(struct task_struct * task)883 void wq_worker_sleeping(struct task_struct *task)
884 {
885 struct worker *next, *worker = kthread_data(task);
886 struct worker_pool *pool;
887
888 /*
889 * Rescuers, which may not have all the fields set up like normal
890 * workers, also reach here, let's not access anything before
891 * checking NOT_RUNNING.
892 */
893 if (worker->flags & WORKER_NOT_RUNNING)
894 return;
895
896 pool = worker->pool;
897
898 /* Return if preempted before wq_worker_running() was reached */
899 if (worker->sleeping)
900 return;
901
902 worker->sleeping = 1;
903 raw_spin_lock_irq(&pool->lock);
904
905 /*
906 * The counterpart of the following dec_and_test, implied mb,
907 * worklist not empty test sequence is in insert_work().
908 * Please read comment there.
909 *
910 * NOT_RUNNING is clear. This means that we're bound to and
911 * running on the local cpu w/ rq lock held and preemption
912 * disabled, which in turn means that none else could be
913 * manipulating idle_list, so dereferencing idle_list without pool
914 * lock is safe.
915 */
916 if (atomic_dec_and_test(&pool->nr_running) &&
917 !list_empty(&pool->worklist)) {
918 next = first_idle_worker(pool);
919 if (next)
920 wake_up_process(next->task);
921 }
922 raw_spin_unlock_irq(&pool->lock);
923 }
924
925 /**
926 * wq_worker_last_func - retrieve worker's last work function
927 * @task: Task to retrieve last work function of.
928 *
929 * Determine the last function a worker executed. This is called from
930 * the scheduler to get a worker's last known identity.
931 *
932 * CONTEXT:
933 * raw_spin_lock_irq(rq->lock)
934 *
935 * This function is called during schedule() when a kworker is going
936 * to sleep. It's used by psi to identify aggregation workers during
937 * dequeuing, to allow periodic aggregation to shut-off when that
938 * worker is the last task in the system or cgroup to go to sleep.
939 *
940 * As this function doesn't involve any workqueue-related locking, it
941 * only returns stable values when called from inside the scheduler's
942 * queuing and dequeuing paths, when @task, which must be a kworker,
943 * is guaranteed to not be processing any works.
944 *
945 * Return:
946 * The last work function %current executed as a worker, NULL if it
947 * hasn't executed any work yet.
948 */
wq_worker_last_func(struct task_struct * task)949 work_func_t wq_worker_last_func(struct task_struct *task)
950 {
951 struct worker *worker = kthread_data(task);
952
953 return worker->last_func;
954 }
955
956 /**
957 * worker_set_flags - set worker flags and adjust nr_running accordingly
958 * @worker: self
959 * @flags: flags to set
960 *
961 * Set @flags in @worker->flags and adjust nr_running accordingly.
962 *
963 * CONTEXT:
964 * raw_spin_lock_irq(pool->lock)
965 */
worker_set_flags(struct worker * worker,unsigned int flags)966 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
967 {
968 struct worker_pool *pool = worker->pool;
969
970 WARN_ON_ONCE(worker->task != current);
971
972 /* If transitioning into NOT_RUNNING, adjust nr_running. */
973 if ((flags & WORKER_NOT_RUNNING) &&
974 !(worker->flags & WORKER_NOT_RUNNING)) {
975 atomic_dec(&pool->nr_running);
976 }
977
978 worker->flags |= flags;
979 }
980
981 /**
982 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
983 * @worker: self
984 * @flags: flags to clear
985 *
986 * Clear @flags in @worker->flags and adjust nr_running accordingly.
987 *
988 * CONTEXT:
989 * raw_spin_lock_irq(pool->lock)
990 */
worker_clr_flags(struct worker * worker,unsigned int flags)991 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
992 {
993 struct worker_pool *pool = worker->pool;
994 unsigned int oflags = worker->flags;
995
996 WARN_ON_ONCE(worker->task != current);
997
998 worker->flags &= ~flags;
999
1000 /*
1001 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1002 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1003 * of multiple flags, not a single flag.
1004 */
1005 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1006 if (!(worker->flags & WORKER_NOT_RUNNING))
1007 atomic_inc(&pool->nr_running);
1008 }
1009
1010 /**
1011 * find_worker_executing_work - find worker which is executing a work
1012 * @pool: pool of interest
1013 * @work: work to find worker for
1014 *
1015 * Find a worker which is executing @work on @pool by searching
1016 * @pool->busy_hash which is keyed by the address of @work. For a worker
1017 * to match, its current execution should match the address of @work and
1018 * its work function. This is to avoid unwanted dependency between
1019 * unrelated work executions through a work item being recycled while still
1020 * being executed.
1021 *
1022 * This is a bit tricky. A work item may be freed once its execution
1023 * starts and nothing prevents the freed area from being recycled for
1024 * another work item. If the same work item address ends up being reused
1025 * before the original execution finishes, workqueue will identify the
1026 * recycled work item as currently executing and make it wait until the
1027 * current execution finishes, introducing an unwanted dependency.
1028 *
1029 * This function checks the work item address and work function to avoid
1030 * false positives. Note that this isn't complete as one may construct a
1031 * work function which can introduce dependency onto itself through a
1032 * recycled work item. Well, if somebody wants to shoot oneself in the
1033 * foot that badly, there's only so much we can do, and if such deadlock
1034 * actually occurs, it should be easy to locate the culprit work function.
1035 *
1036 * CONTEXT:
1037 * raw_spin_lock_irq(pool->lock).
1038 *
1039 * Return:
1040 * Pointer to worker which is executing @work if found, %NULL
1041 * otherwise.
1042 */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1043 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1044 struct work_struct *work)
1045 {
1046 struct worker *worker;
1047
1048 hash_for_each_possible(pool->busy_hash, worker, hentry,
1049 (unsigned long)work)
1050 if (worker->current_work == work &&
1051 worker->current_func == work->func)
1052 return worker;
1053
1054 return NULL;
1055 }
1056
1057 /**
1058 * move_linked_works - move linked works to a list
1059 * @work: start of series of works to be scheduled
1060 * @head: target list to append @work to
1061 * @nextp: out parameter for nested worklist walking
1062 *
1063 * Schedule linked works starting from @work to @head. Work series to
1064 * be scheduled starts at @work and includes any consecutive work with
1065 * WORK_STRUCT_LINKED set in its predecessor.
1066 *
1067 * If @nextp is not NULL, it's updated to point to the next work of
1068 * the last scheduled work. This allows move_linked_works() to be
1069 * nested inside outer list_for_each_entry_safe().
1070 *
1071 * CONTEXT:
1072 * raw_spin_lock_irq(pool->lock).
1073 */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1074 static void move_linked_works(struct work_struct *work, struct list_head *head,
1075 struct work_struct **nextp)
1076 {
1077 struct work_struct *n;
1078
1079 /*
1080 * Linked worklist will always end before the end of the list,
1081 * use NULL for list head.
1082 */
1083 list_for_each_entry_safe_from(work, n, NULL, entry) {
1084 list_move_tail(&work->entry, head);
1085 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1086 break;
1087 }
1088
1089 /*
1090 * If we're already inside safe list traversal and have moved
1091 * multiple works to the scheduled queue, the next position
1092 * needs to be updated.
1093 */
1094 if (nextp)
1095 *nextp = n;
1096 }
1097
1098 /**
1099 * get_pwq - get an extra reference on the specified pool_workqueue
1100 * @pwq: pool_workqueue to get
1101 *
1102 * Obtain an extra reference on @pwq. The caller should guarantee that
1103 * @pwq has positive refcnt and be holding the matching pool->lock.
1104 */
get_pwq(struct pool_workqueue * pwq)1105 static void get_pwq(struct pool_workqueue *pwq)
1106 {
1107 lockdep_assert_held(&pwq->pool->lock);
1108 WARN_ON_ONCE(pwq->refcnt <= 0);
1109 pwq->refcnt++;
1110 }
1111
1112 /**
1113 * put_pwq - put a pool_workqueue reference
1114 * @pwq: pool_workqueue to put
1115 *
1116 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1117 * destruction. The caller should be holding the matching pool->lock.
1118 */
put_pwq(struct pool_workqueue * pwq)1119 static void put_pwq(struct pool_workqueue *pwq)
1120 {
1121 lockdep_assert_held(&pwq->pool->lock);
1122 if (likely(--pwq->refcnt))
1123 return;
1124 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1125 return;
1126 /*
1127 * @pwq can't be released under pool->lock, bounce to
1128 * pwq_unbound_release_workfn(). This never recurses on the same
1129 * pool->lock as this path is taken only for unbound workqueues and
1130 * the release work item is scheduled on a per-cpu workqueue. To
1131 * avoid lockdep warning, unbound pool->locks are given lockdep
1132 * subclass of 1 in get_unbound_pool().
1133 */
1134 schedule_work(&pwq->unbound_release_work);
1135 }
1136
1137 /**
1138 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1139 * @pwq: pool_workqueue to put (can be %NULL)
1140 *
1141 * put_pwq() with locking. This function also allows %NULL @pwq.
1142 */
put_pwq_unlocked(struct pool_workqueue * pwq)1143 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1144 {
1145 if (pwq) {
1146 /*
1147 * As both pwqs and pools are RCU protected, the
1148 * following lock operations are safe.
1149 */
1150 raw_spin_lock_irq(&pwq->pool->lock);
1151 put_pwq(pwq);
1152 raw_spin_unlock_irq(&pwq->pool->lock);
1153 }
1154 }
1155
pwq_activate_delayed_work(struct work_struct * work)1156 static void pwq_activate_delayed_work(struct work_struct *work)
1157 {
1158 struct pool_workqueue *pwq = get_work_pwq(work);
1159
1160 trace_workqueue_activate_work(work);
1161 if (list_empty(&pwq->pool->worklist))
1162 pwq->pool->watchdog_ts = jiffies;
1163 move_linked_works(work, &pwq->pool->worklist, NULL);
1164 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1165 pwq->nr_active++;
1166 }
1167
pwq_activate_first_delayed(struct pool_workqueue * pwq)1168 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1169 {
1170 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1171 struct work_struct, entry);
1172
1173 pwq_activate_delayed_work(work);
1174 }
1175
1176 /**
1177 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1178 * @pwq: pwq of interest
1179 * @color: color of work which left the queue
1180 *
1181 * A work either has completed or is removed from pending queue,
1182 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1183 *
1184 * CONTEXT:
1185 * raw_spin_lock_irq(pool->lock).
1186 */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,int color)1187 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1188 {
1189 /* uncolored work items don't participate in flushing or nr_active */
1190 if (color == WORK_NO_COLOR)
1191 goto out_put;
1192
1193 pwq->nr_in_flight[color]--;
1194
1195 pwq->nr_active--;
1196 if (!list_empty(&pwq->delayed_works)) {
1197 /* one down, submit a delayed one */
1198 if (pwq->nr_active < pwq->max_active)
1199 pwq_activate_first_delayed(pwq);
1200 }
1201
1202 /* is flush in progress and are we at the flushing tip? */
1203 if (likely(pwq->flush_color != color))
1204 goto out_put;
1205
1206 /* are there still in-flight works? */
1207 if (pwq->nr_in_flight[color])
1208 goto out_put;
1209
1210 /* this pwq is done, clear flush_color */
1211 pwq->flush_color = -1;
1212
1213 /*
1214 * If this was the last pwq, wake up the first flusher. It
1215 * will handle the rest.
1216 */
1217 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1218 complete(&pwq->wq->first_flusher->done);
1219 out_put:
1220 put_pwq(pwq);
1221 }
1222
1223 /**
1224 * try_to_grab_pending - steal work item from worklist and disable irq
1225 * @work: work item to steal
1226 * @is_dwork: @work is a delayed_work
1227 * @flags: place to store irq state
1228 *
1229 * Try to grab PENDING bit of @work. This function can handle @work in any
1230 * stable state - idle, on timer or on worklist.
1231 *
1232 * Return:
1233 *
1234 * ======== ================================================================
1235 * 1 if @work was pending and we successfully stole PENDING
1236 * 0 if @work was idle and we claimed PENDING
1237 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1238 * -ENOENT if someone else is canceling @work, this state may persist
1239 * for arbitrarily long
1240 * ======== ================================================================
1241 *
1242 * Note:
1243 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1244 * interrupted while holding PENDING and @work off queue, irq must be
1245 * disabled on entry. This, combined with delayed_work->timer being
1246 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1247 *
1248 * On successful return, >= 0, irq is disabled and the caller is
1249 * responsible for releasing it using local_irq_restore(*@flags).
1250 *
1251 * This function is safe to call from any context including IRQ handler.
1252 */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1253 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1254 unsigned long *flags)
1255 {
1256 struct worker_pool *pool;
1257 struct pool_workqueue *pwq;
1258
1259 local_irq_save(*flags);
1260
1261 /* try to steal the timer if it exists */
1262 if (is_dwork) {
1263 struct delayed_work *dwork = to_delayed_work(work);
1264
1265 /*
1266 * dwork->timer is irqsafe. If del_timer() fails, it's
1267 * guaranteed that the timer is not queued anywhere and not
1268 * running on the local CPU.
1269 */
1270 if (likely(del_timer(&dwork->timer)))
1271 return 1;
1272 }
1273
1274 /* try to claim PENDING the normal way */
1275 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1276 return 0;
1277
1278 rcu_read_lock();
1279 /*
1280 * The queueing is in progress, or it is already queued. Try to
1281 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1282 */
1283 pool = get_work_pool(work);
1284 if (!pool)
1285 goto fail;
1286
1287 raw_spin_lock(&pool->lock);
1288 /*
1289 * work->data is guaranteed to point to pwq only while the work
1290 * item is queued on pwq->wq, and both updating work->data to point
1291 * to pwq on queueing and to pool on dequeueing are done under
1292 * pwq->pool->lock. This in turn guarantees that, if work->data
1293 * points to pwq which is associated with a locked pool, the work
1294 * item is currently queued on that pool.
1295 */
1296 pwq = get_work_pwq(work);
1297 if (pwq && pwq->pool == pool) {
1298 debug_work_deactivate(work);
1299
1300 /*
1301 * A delayed work item cannot be grabbed directly because
1302 * it might have linked NO_COLOR work items which, if left
1303 * on the delayed_list, will confuse pwq->nr_active
1304 * management later on and cause stall. Make sure the work
1305 * item is activated before grabbing.
1306 */
1307 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1308 pwq_activate_delayed_work(work);
1309
1310 list_del_init(&work->entry);
1311 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1312
1313 /* work->data points to pwq iff queued, point to pool */
1314 set_work_pool_and_keep_pending(work, pool->id);
1315
1316 raw_spin_unlock(&pool->lock);
1317 rcu_read_unlock();
1318 return 1;
1319 }
1320 raw_spin_unlock(&pool->lock);
1321 fail:
1322 rcu_read_unlock();
1323 local_irq_restore(*flags);
1324 if (work_is_canceling(work))
1325 return -ENOENT;
1326 cpu_relax();
1327 return -EAGAIN;
1328 }
1329
1330 /**
1331 * insert_work - insert a work into a pool
1332 * @pwq: pwq @work belongs to
1333 * @work: work to insert
1334 * @head: insertion point
1335 * @extra_flags: extra WORK_STRUCT_* flags to set
1336 *
1337 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1338 * work_struct flags.
1339 *
1340 * CONTEXT:
1341 * raw_spin_lock_irq(pool->lock).
1342 */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1343 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1344 struct list_head *head, unsigned int extra_flags)
1345 {
1346 struct worker_pool *pool = pwq->pool;
1347
1348 /* record the work call stack in order to print it in KASAN reports */
1349 kasan_record_aux_stack(work);
1350
1351 /* we own @work, set data and link */
1352 set_work_pwq(work, pwq, extra_flags);
1353 list_add_tail(&work->entry, head);
1354 get_pwq(pwq);
1355
1356 /*
1357 * Ensure either wq_worker_sleeping() sees the above
1358 * list_add_tail() or we see zero nr_running to avoid workers lying
1359 * around lazily while there are works to be processed.
1360 */
1361 smp_mb();
1362
1363 if (__need_more_worker(pool))
1364 wake_up_worker(pool);
1365 }
1366
1367 /*
1368 * Test whether @work is being queued from another work executing on the
1369 * same workqueue.
1370 */
is_chained_work(struct workqueue_struct * wq)1371 static bool is_chained_work(struct workqueue_struct *wq)
1372 {
1373 struct worker *worker;
1374
1375 worker = current_wq_worker();
1376 /*
1377 * Return %true iff I'm a worker executing a work item on @wq. If
1378 * I'm @worker, it's safe to dereference it without locking.
1379 */
1380 return worker && worker->current_pwq->wq == wq;
1381 }
1382
1383 /*
1384 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1385 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1386 * avoid perturbing sensitive tasks.
1387 */
wq_select_unbound_cpu(int cpu)1388 static int wq_select_unbound_cpu(int cpu)
1389 {
1390 static bool printed_dbg_warning;
1391 int new_cpu;
1392
1393 if (likely(!wq_debug_force_rr_cpu)) {
1394 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1395 return cpu;
1396 } else if (!printed_dbg_warning) {
1397 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1398 printed_dbg_warning = true;
1399 }
1400
1401 if (cpumask_empty(wq_unbound_cpumask))
1402 return cpu;
1403
1404 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1405 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1406 if (unlikely(new_cpu >= nr_cpu_ids)) {
1407 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1408 if (unlikely(new_cpu >= nr_cpu_ids))
1409 return cpu;
1410 }
1411 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1412
1413 return new_cpu;
1414 }
1415
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1416 static void __queue_work(int cpu, struct workqueue_struct *wq,
1417 struct work_struct *work)
1418 {
1419 struct pool_workqueue *pwq;
1420 struct worker_pool *last_pool;
1421 struct list_head *worklist;
1422 unsigned int work_flags;
1423 unsigned int req_cpu = cpu;
1424
1425 /*
1426 * While a work item is PENDING && off queue, a task trying to
1427 * steal the PENDING will busy-loop waiting for it to either get
1428 * queued or lose PENDING. Grabbing PENDING and queueing should
1429 * happen with IRQ disabled.
1430 */
1431 lockdep_assert_irqs_disabled();
1432
1433
1434 /* if draining, only works from the same workqueue are allowed */
1435 if (unlikely(wq->flags & __WQ_DRAINING) &&
1436 WARN_ON_ONCE(!is_chained_work(wq)))
1437 return;
1438 rcu_read_lock();
1439 retry:
1440 /* pwq which will be used unless @work is executing elsewhere */
1441 if (wq->flags & WQ_UNBOUND) {
1442 if (req_cpu == WORK_CPU_UNBOUND)
1443 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1444 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1445 } else {
1446 if (req_cpu == WORK_CPU_UNBOUND)
1447 cpu = raw_smp_processor_id();
1448 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1449 }
1450
1451 /*
1452 * If @work was previously on a different pool, it might still be
1453 * running there, in which case the work needs to be queued on that
1454 * pool to guarantee non-reentrancy.
1455 */
1456 last_pool = get_work_pool(work);
1457 if (last_pool && last_pool != pwq->pool) {
1458 struct worker *worker;
1459
1460 raw_spin_lock(&last_pool->lock);
1461
1462 worker = find_worker_executing_work(last_pool, work);
1463
1464 if (worker && worker->current_pwq->wq == wq) {
1465 pwq = worker->current_pwq;
1466 } else {
1467 /* meh... not running there, queue here */
1468 raw_spin_unlock(&last_pool->lock);
1469 raw_spin_lock(&pwq->pool->lock);
1470 }
1471 } else {
1472 raw_spin_lock(&pwq->pool->lock);
1473 }
1474
1475 /*
1476 * pwq is determined and locked. For unbound pools, we could have
1477 * raced with pwq release and it could already be dead. If its
1478 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1479 * without another pwq replacing it in the numa_pwq_tbl or while
1480 * work items are executing on it, so the retrying is guaranteed to
1481 * make forward-progress.
1482 */
1483 if (unlikely(!pwq->refcnt)) {
1484 if (wq->flags & WQ_UNBOUND) {
1485 raw_spin_unlock(&pwq->pool->lock);
1486 cpu_relax();
1487 goto retry;
1488 }
1489 /* oops */
1490 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1491 wq->name, cpu);
1492 }
1493
1494 /* pwq determined, queue */
1495 trace_workqueue_queue_work(req_cpu, pwq, work);
1496
1497 if (WARN_ON(!list_empty(&work->entry)))
1498 goto out;
1499
1500 pwq->nr_in_flight[pwq->work_color]++;
1501 work_flags = work_color_to_flags(pwq->work_color);
1502
1503 if (likely(pwq->nr_active < pwq->max_active)) {
1504 trace_workqueue_activate_work(work);
1505 pwq->nr_active++;
1506 worklist = &pwq->pool->worklist;
1507 if (list_empty(worklist))
1508 pwq->pool->watchdog_ts = jiffies;
1509 } else {
1510 work_flags |= WORK_STRUCT_DELAYED;
1511 worklist = &pwq->delayed_works;
1512 }
1513
1514 debug_work_activate(work);
1515 insert_work(pwq, work, worklist, work_flags);
1516
1517 out:
1518 raw_spin_unlock(&pwq->pool->lock);
1519 rcu_read_unlock();
1520 }
1521
1522 /**
1523 * queue_work_on - queue work on specific cpu
1524 * @cpu: CPU number to execute work on
1525 * @wq: workqueue to use
1526 * @work: work to queue
1527 *
1528 * We queue the work to a specific CPU, the caller must ensure it
1529 * can't go away.
1530 *
1531 * Return: %false if @work was already on a queue, %true otherwise.
1532 */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1533 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1534 struct work_struct *work)
1535 {
1536 bool ret = false;
1537 unsigned long flags;
1538
1539 local_irq_save(flags);
1540
1541 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1542 __queue_work(cpu, wq, work);
1543 ret = true;
1544 }
1545
1546 local_irq_restore(flags);
1547 return ret;
1548 }
1549 EXPORT_SYMBOL(queue_work_on);
1550
1551 /**
1552 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1553 * @node: NUMA node ID that we want to select a CPU from
1554 *
1555 * This function will attempt to find a "random" cpu available on a given
1556 * node. If there are no CPUs available on the given node it will return
1557 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1558 * available CPU if we need to schedule this work.
1559 */
workqueue_select_cpu_near(int node)1560 static int workqueue_select_cpu_near(int node)
1561 {
1562 int cpu;
1563
1564 /* No point in doing this if NUMA isn't enabled for workqueues */
1565 if (!wq_numa_enabled)
1566 return WORK_CPU_UNBOUND;
1567
1568 /* Delay binding to CPU if node is not valid or online */
1569 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1570 return WORK_CPU_UNBOUND;
1571
1572 /* Use local node/cpu if we are already there */
1573 cpu = raw_smp_processor_id();
1574 if (node == cpu_to_node(cpu))
1575 return cpu;
1576
1577 /* Use "random" otherwise know as "first" online CPU of node */
1578 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1579
1580 /* If CPU is valid return that, otherwise just defer */
1581 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1582 }
1583
1584 /**
1585 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1586 * @node: NUMA node that we are targeting the work for
1587 * @wq: workqueue to use
1588 * @work: work to queue
1589 *
1590 * We queue the work to a "random" CPU within a given NUMA node. The basic
1591 * idea here is to provide a way to somehow associate work with a given
1592 * NUMA node.
1593 *
1594 * This function will only make a best effort attempt at getting this onto
1595 * the right NUMA node. If no node is requested or the requested node is
1596 * offline then we just fall back to standard queue_work behavior.
1597 *
1598 * Currently the "random" CPU ends up being the first available CPU in the
1599 * intersection of cpu_online_mask and the cpumask of the node, unless we
1600 * are running on the node. In that case we just use the current CPU.
1601 *
1602 * Return: %false if @work was already on a queue, %true otherwise.
1603 */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)1604 bool queue_work_node(int node, struct workqueue_struct *wq,
1605 struct work_struct *work)
1606 {
1607 unsigned long flags;
1608 bool ret = false;
1609
1610 /*
1611 * This current implementation is specific to unbound workqueues.
1612 * Specifically we only return the first available CPU for a given
1613 * node instead of cycling through individual CPUs within the node.
1614 *
1615 * If this is used with a per-cpu workqueue then the logic in
1616 * workqueue_select_cpu_near would need to be updated to allow for
1617 * some round robin type logic.
1618 */
1619 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1620
1621 local_irq_save(flags);
1622
1623 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1624 int cpu = workqueue_select_cpu_near(node);
1625
1626 __queue_work(cpu, wq, work);
1627 ret = true;
1628 }
1629
1630 local_irq_restore(flags);
1631 return ret;
1632 }
1633 EXPORT_SYMBOL_GPL(queue_work_node);
1634
delayed_work_timer_fn(struct timer_list * t)1635 void delayed_work_timer_fn(struct timer_list *t)
1636 {
1637 struct delayed_work *dwork = from_timer(dwork, t, timer);
1638
1639 /* should have been called from irqsafe timer with irq already off */
1640 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1641 }
1642 EXPORT_SYMBOL(delayed_work_timer_fn);
1643
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1644 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1645 struct delayed_work *dwork, unsigned long delay)
1646 {
1647 struct timer_list *timer = &dwork->timer;
1648 struct work_struct *work = &dwork->work;
1649
1650 WARN_ON_ONCE(!wq);
1651 /*
1652 * With CFI, timer->function can point to a jump table entry in a module,
1653 * which fails the comparison. Disable the warning if CFI and modules are
1654 * both enabled.
1655 */
1656 if (!IS_ENABLED(CONFIG_CFI_CLANG) || !IS_ENABLED(CONFIG_MODULES))
1657 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1658
1659 WARN_ON_ONCE(timer_pending(timer));
1660 WARN_ON_ONCE(!list_empty(&work->entry));
1661
1662 /*
1663 * If @delay is 0, queue @dwork->work immediately. This is for
1664 * both optimization and correctness. The earliest @timer can
1665 * expire is on the closest next tick and delayed_work users depend
1666 * on that there's no such delay when @delay is 0.
1667 */
1668 if (!delay) {
1669 __queue_work(cpu, wq, &dwork->work);
1670 return;
1671 }
1672
1673 dwork->wq = wq;
1674 dwork->cpu = cpu;
1675 timer->expires = jiffies + delay;
1676
1677 if (unlikely(cpu != WORK_CPU_UNBOUND))
1678 add_timer_on(timer, cpu);
1679 else
1680 add_timer(timer);
1681 }
1682
1683 /**
1684 * queue_delayed_work_on - queue work on specific CPU after delay
1685 * @cpu: CPU number to execute work on
1686 * @wq: workqueue to use
1687 * @dwork: work to queue
1688 * @delay: number of jiffies to wait before queueing
1689 *
1690 * Return: %false if @work was already on a queue, %true otherwise. If
1691 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1692 * execution.
1693 */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1694 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1695 struct delayed_work *dwork, unsigned long delay)
1696 {
1697 struct work_struct *work = &dwork->work;
1698 bool ret = false;
1699 unsigned long flags;
1700
1701 /* read the comment in __queue_work() */
1702 local_irq_save(flags);
1703
1704 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1705 __queue_delayed_work(cpu, wq, dwork, delay);
1706 ret = true;
1707 }
1708
1709 local_irq_restore(flags);
1710 return ret;
1711 }
1712 EXPORT_SYMBOL(queue_delayed_work_on);
1713
1714 /**
1715 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1716 * @cpu: CPU number to execute work on
1717 * @wq: workqueue to use
1718 * @dwork: work to queue
1719 * @delay: number of jiffies to wait before queueing
1720 *
1721 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1722 * modify @dwork's timer so that it expires after @delay. If @delay is
1723 * zero, @work is guaranteed to be scheduled immediately regardless of its
1724 * current state.
1725 *
1726 * Return: %false if @dwork was idle and queued, %true if @dwork was
1727 * pending and its timer was modified.
1728 *
1729 * This function is safe to call from any context including IRQ handler.
1730 * See try_to_grab_pending() for details.
1731 */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1732 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1733 struct delayed_work *dwork, unsigned long delay)
1734 {
1735 unsigned long flags;
1736 int ret;
1737
1738 do {
1739 ret = try_to_grab_pending(&dwork->work, true, &flags);
1740 } while (unlikely(ret == -EAGAIN));
1741
1742 if (likely(ret >= 0)) {
1743 __queue_delayed_work(cpu, wq, dwork, delay);
1744 local_irq_restore(flags);
1745 }
1746
1747 /* -ENOENT from try_to_grab_pending() becomes %true */
1748 return ret;
1749 }
1750 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1751
rcu_work_rcufn(struct rcu_head * rcu)1752 static void rcu_work_rcufn(struct rcu_head *rcu)
1753 {
1754 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1755
1756 /* read the comment in __queue_work() */
1757 local_irq_disable();
1758 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1759 local_irq_enable();
1760 }
1761
1762 /**
1763 * queue_rcu_work - queue work after a RCU grace period
1764 * @wq: workqueue to use
1765 * @rwork: work to queue
1766 *
1767 * Return: %false if @rwork was already pending, %true otherwise. Note
1768 * that a full RCU grace period is guaranteed only after a %true return.
1769 * While @rwork is guaranteed to be executed after a %false return, the
1770 * execution may happen before a full RCU grace period has passed.
1771 */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)1772 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1773 {
1774 struct work_struct *work = &rwork->work;
1775
1776 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1777 rwork->wq = wq;
1778 call_rcu(&rwork->rcu, rcu_work_rcufn);
1779 return true;
1780 }
1781
1782 return false;
1783 }
1784 EXPORT_SYMBOL(queue_rcu_work);
1785
1786 /**
1787 * worker_enter_idle - enter idle state
1788 * @worker: worker which is entering idle state
1789 *
1790 * @worker is entering idle state. Update stats and idle timer if
1791 * necessary.
1792 *
1793 * LOCKING:
1794 * raw_spin_lock_irq(pool->lock).
1795 */
worker_enter_idle(struct worker * worker)1796 static void worker_enter_idle(struct worker *worker)
1797 {
1798 struct worker_pool *pool = worker->pool;
1799
1800 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1801 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1802 (worker->hentry.next || worker->hentry.pprev)))
1803 return;
1804
1805 /* can't use worker_set_flags(), also called from create_worker() */
1806 worker->flags |= WORKER_IDLE;
1807 pool->nr_idle++;
1808 worker->last_active = jiffies;
1809
1810 /* idle_list is LIFO */
1811 list_add(&worker->entry, &pool->idle_list);
1812
1813 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1814 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1815
1816 /*
1817 * Sanity check nr_running. Because unbind_workers() releases
1818 * pool->lock between setting %WORKER_UNBOUND and zapping
1819 * nr_running, the warning may trigger spuriously. Check iff
1820 * unbind is not in progress.
1821 */
1822 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1823 pool->nr_workers == pool->nr_idle &&
1824 atomic_read(&pool->nr_running));
1825 }
1826
1827 /**
1828 * worker_leave_idle - leave idle state
1829 * @worker: worker which is leaving idle state
1830 *
1831 * @worker is leaving idle state. Update stats.
1832 *
1833 * LOCKING:
1834 * raw_spin_lock_irq(pool->lock).
1835 */
worker_leave_idle(struct worker * worker)1836 static void worker_leave_idle(struct worker *worker)
1837 {
1838 struct worker_pool *pool = worker->pool;
1839
1840 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1841 return;
1842 worker_clr_flags(worker, WORKER_IDLE);
1843 pool->nr_idle--;
1844 list_del_init(&worker->entry);
1845 }
1846
alloc_worker(int node)1847 static struct worker *alloc_worker(int node)
1848 {
1849 struct worker *worker;
1850
1851 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1852 if (worker) {
1853 INIT_LIST_HEAD(&worker->entry);
1854 INIT_LIST_HEAD(&worker->scheduled);
1855 INIT_LIST_HEAD(&worker->node);
1856 /* on creation a worker is in !idle && prep state */
1857 worker->flags = WORKER_PREP;
1858 }
1859 return worker;
1860 }
1861
1862 /**
1863 * worker_attach_to_pool() - attach a worker to a pool
1864 * @worker: worker to be attached
1865 * @pool: the target pool
1866 *
1867 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1868 * cpu-binding of @worker are kept coordinated with the pool across
1869 * cpu-[un]hotplugs.
1870 */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)1871 static void worker_attach_to_pool(struct worker *worker,
1872 struct worker_pool *pool)
1873 {
1874 mutex_lock(&wq_pool_attach_mutex);
1875
1876 /*
1877 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1878 * stable across this function. See the comments above the flag
1879 * definition for details.
1880 */
1881 if (pool->flags & POOL_DISASSOCIATED)
1882 worker->flags |= WORKER_UNBOUND;
1883
1884 if (worker->rescue_wq)
1885 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1886
1887 list_add_tail(&worker->node, &pool->workers);
1888 worker->pool = pool;
1889
1890 mutex_unlock(&wq_pool_attach_mutex);
1891 }
1892
1893 /**
1894 * worker_detach_from_pool() - detach a worker from its pool
1895 * @worker: worker which is attached to its pool
1896 *
1897 * Undo the attaching which had been done in worker_attach_to_pool(). The
1898 * caller worker shouldn't access to the pool after detached except it has
1899 * other reference to the pool.
1900 */
worker_detach_from_pool(struct worker * worker)1901 static void worker_detach_from_pool(struct worker *worker)
1902 {
1903 struct worker_pool *pool = worker->pool;
1904 struct completion *detach_completion = NULL;
1905
1906 mutex_lock(&wq_pool_attach_mutex);
1907
1908 list_del(&worker->node);
1909 worker->pool = NULL;
1910
1911 if (list_empty(&pool->workers))
1912 detach_completion = pool->detach_completion;
1913 mutex_unlock(&wq_pool_attach_mutex);
1914
1915 /* clear leftover flags without pool->lock after it is detached */
1916 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1917
1918 if (detach_completion)
1919 complete(detach_completion);
1920 }
1921
1922 /**
1923 * create_worker - create a new workqueue worker
1924 * @pool: pool the new worker will belong to
1925 *
1926 * Create and start a new worker which is attached to @pool.
1927 *
1928 * CONTEXT:
1929 * Might sleep. Does GFP_KERNEL allocations.
1930 *
1931 * Return:
1932 * Pointer to the newly created worker.
1933 */
create_worker(struct worker_pool * pool)1934 static struct worker *create_worker(struct worker_pool *pool)
1935 {
1936 struct worker *worker = NULL;
1937 int id = -1;
1938 char id_buf[16];
1939
1940 /* ID is needed to determine kthread name */
1941 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1942 if (id < 0)
1943 goto fail;
1944
1945 worker = alloc_worker(pool->node);
1946 if (!worker)
1947 goto fail;
1948
1949 worker->id = id;
1950
1951 if (pool->cpu >= 0)
1952 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1953 pool->attrs->nice < 0 ? "H" : "");
1954 else
1955 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1956
1957 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1958 "kworker/%s", id_buf);
1959 if (IS_ERR(worker->task))
1960 goto fail;
1961
1962 set_user_nice(worker->task, pool->attrs->nice);
1963 if (IS_ENABLED(CONFIG_ROCKCHIP_OPTIMIZE_RT_PRIO)) {
1964 struct sched_param param;
1965
1966 if (pool->attrs->nice == 0)
1967 param.sched_priority = MAX_RT_PRIO / 2 - 4;
1968 else
1969 param.sched_priority = MAX_RT_PRIO / 2 - 2;
1970 sched_setscheduler_nocheck(worker->task, SCHED_RR, ¶m);
1971 }
1972 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1973
1974 /* successful, attach the worker to the pool */
1975 worker_attach_to_pool(worker, pool);
1976
1977 /* start the newly created worker */
1978 raw_spin_lock_irq(&pool->lock);
1979 worker->pool->nr_workers++;
1980 worker_enter_idle(worker);
1981 wake_up_process(worker->task);
1982 raw_spin_unlock_irq(&pool->lock);
1983
1984 return worker;
1985
1986 fail:
1987 if (id >= 0)
1988 ida_simple_remove(&pool->worker_ida, id);
1989 kfree(worker);
1990 return NULL;
1991 }
1992
1993 /**
1994 * destroy_worker - destroy a workqueue worker
1995 * @worker: worker to be destroyed
1996 *
1997 * Destroy @worker and adjust @pool stats accordingly. The worker should
1998 * be idle.
1999 *
2000 * CONTEXT:
2001 * raw_spin_lock_irq(pool->lock).
2002 */
destroy_worker(struct worker * worker)2003 static void destroy_worker(struct worker *worker)
2004 {
2005 struct worker_pool *pool = worker->pool;
2006
2007 lockdep_assert_held(&pool->lock);
2008
2009 /* sanity check frenzy */
2010 if (WARN_ON(worker->current_work) ||
2011 WARN_ON(!list_empty(&worker->scheduled)) ||
2012 WARN_ON(!(worker->flags & WORKER_IDLE)))
2013 return;
2014
2015 pool->nr_workers--;
2016 pool->nr_idle--;
2017
2018 list_del_init(&worker->entry);
2019 worker->flags |= WORKER_DIE;
2020 wake_up_process(worker->task);
2021 }
2022
idle_worker_timeout(struct timer_list * t)2023 static void idle_worker_timeout(struct timer_list *t)
2024 {
2025 struct worker_pool *pool = from_timer(pool, t, idle_timer);
2026
2027 raw_spin_lock_irq(&pool->lock);
2028
2029 while (too_many_workers(pool)) {
2030 struct worker *worker;
2031 unsigned long expires;
2032
2033 /* idle_list is kept in LIFO order, check the last one */
2034 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2035 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2036
2037 if (time_before(jiffies, expires)) {
2038 mod_timer(&pool->idle_timer, expires);
2039 break;
2040 }
2041
2042 destroy_worker(worker);
2043 }
2044
2045 raw_spin_unlock_irq(&pool->lock);
2046 }
2047
send_mayday(struct work_struct * work)2048 static void send_mayday(struct work_struct *work)
2049 {
2050 struct pool_workqueue *pwq = get_work_pwq(work);
2051 struct workqueue_struct *wq = pwq->wq;
2052
2053 lockdep_assert_held(&wq_mayday_lock);
2054
2055 if (!wq->rescuer)
2056 return;
2057
2058 /* mayday mayday mayday */
2059 if (list_empty(&pwq->mayday_node)) {
2060 /*
2061 * If @pwq is for an unbound wq, its base ref may be put at
2062 * any time due to an attribute change. Pin @pwq until the
2063 * rescuer is done with it.
2064 */
2065 get_pwq(pwq);
2066 list_add_tail(&pwq->mayday_node, &wq->maydays);
2067 wake_up_process(wq->rescuer->task);
2068 }
2069 }
2070
pool_mayday_timeout(struct timer_list * t)2071 static void pool_mayday_timeout(struct timer_list *t)
2072 {
2073 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2074 struct work_struct *work;
2075
2076 raw_spin_lock_irq(&pool->lock);
2077 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
2078
2079 if (need_to_create_worker(pool)) {
2080 /*
2081 * We've been trying to create a new worker but
2082 * haven't been successful. We might be hitting an
2083 * allocation deadlock. Send distress signals to
2084 * rescuers.
2085 */
2086 list_for_each_entry(work, &pool->worklist, entry)
2087 send_mayday(work);
2088 }
2089
2090 raw_spin_unlock(&wq_mayday_lock);
2091 raw_spin_unlock_irq(&pool->lock);
2092
2093 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2094 }
2095
2096 /**
2097 * maybe_create_worker - create a new worker if necessary
2098 * @pool: pool to create a new worker for
2099 *
2100 * Create a new worker for @pool if necessary. @pool is guaranteed to
2101 * have at least one idle worker on return from this function. If
2102 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2103 * sent to all rescuers with works scheduled on @pool to resolve
2104 * possible allocation deadlock.
2105 *
2106 * On return, need_to_create_worker() is guaranteed to be %false and
2107 * may_start_working() %true.
2108 *
2109 * LOCKING:
2110 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2111 * multiple times. Does GFP_KERNEL allocations. Called only from
2112 * manager.
2113 */
maybe_create_worker(struct worker_pool * pool)2114 static void maybe_create_worker(struct worker_pool *pool)
2115 __releases(&pool->lock)
2116 __acquires(&pool->lock)
2117 {
2118 restart:
2119 raw_spin_unlock_irq(&pool->lock);
2120
2121 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2122 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2123
2124 while (true) {
2125 if (create_worker(pool) || !need_to_create_worker(pool))
2126 break;
2127
2128 schedule_timeout_interruptible(CREATE_COOLDOWN);
2129
2130 if (!need_to_create_worker(pool))
2131 break;
2132 }
2133
2134 del_timer_sync(&pool->mayday_timer);
2135 raw_spin_lock_irq(&pool->lock);
2136 /*
2137 * This is necessary even after a new worker was just successfully
2138 * created as @pool->lock was dropped and the new worker might have
2139 * already become busy.
2140 */
2141 if (need_to_create_worker(pool))
2142 goto restart;
2143 }
2144
2145 /**
2146 * manage_workers - manage worker pool
2147 * @worker: self
2148 *
2149 * Assume the manager role and manage the worker pool @worker belongs
2150 * to. At any given time, there can be only zero or one manager per
2151 * pool. The exclusion is handled automatically by this function.
2152 *
2153 * The caller can safely start processing works on false return. On
2154 * true return, it's guaranteed that need_to_create_worker() is false
2155 * and may_start_working() is true.
2156 *
2157 * CONTEXT:
2158 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2159 * multiple times. Does GFP_KERNEL allocations.
2160 *
2161 * Return:
2162 * %false if the pool doesn't need management and the caller can safely
2163 * start processing works, %true if management function was performed and
2164 * the conditions that the caller verified before calling the function may
2165 * no longer be true.
2166 */
manage_workers(struct worker * worker)2167 static bool manage_workers(struct worker *worker)
2168 {
2169 struct worker_pool *pool = worker->pool;
2170
2171 if (pool->flags & POOL_MANAGER_ACTIVE)
2172 return false;
2173
2174 pool->flags |= POOL_MANAGER_ACTIVE;
2175 pool->manager = worker;
2176
2177 maybe_create_worker(pool);
2178
2179 pool->manager = NULL;
2180 pool->flags &= ~POOL_MANAGER_ACTIVE;
2181 rcuwait_wake_up(&manager_wait);
2182 return true;
2183 }
2184
2185 /**
2186 * process_one_work - process single work
2187 * @worker: self
2188 * @work: work to process
2189 *
2190 * Process @work. This function contains all the logics necessary to
2191 * process a single work including synchronization against and
2192 * interaction with other workers on the same cpu, queueing and
2193 * flushing. As long as context requirement is met, any worker can
2194 * call this function to process a work.
2195 *
2196 * CONTEXT:
2197 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2198 */
process_one_work(struct worker * worker,struct work_struct * work)2199 static void process_one_work(struct worker *worker, struct work_struct *work)
2200 __releases(&pool->lock)
2201 __acquires(&pool->lock)
2202 {
2203 struct pool_workqueue *pwq = get_work_pwq(work);
2204 struct worker_pool *pool = worker->pool;
2205 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2206 int work_color;
2207 struct worker *collision;
2208 #ifdef CONFIG_LOCKDEP
2209 /*
2210 * It is permissible to free the struct work_struct from
2211 * inside the function that is called from it, this we need to
2212 * take into account for lockdep too. To avoid bogus "held
2213 * lock freed" warnings as well as problems when looking into
2214 * work->lockdep_map, make a copy and use that here.
2215 */
2216 struct lockdep_map lockdep_map;
2217
2218 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2219 #endif
2220 /* ensure we're on the correct CPU */
2221 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2222 raw_smp_processor_id() != pool->cpu);
2223
2224 /*
2225 * A single work shouldn't be executed concurrently by
2226 * multiple workers on a single cpu. Check whether anyone is
2227 * already processing the work. If so, defer the work to the
2228 * currently executing one.
2229 */
2230 collision = find_worker_executing_work(pool, work);
2231 if (unlikely(collision)) {
2232 move_linked_works(work, &collision->scheduled, NULL);
2233 return;
2234 }
2235
2236 /* claim and dequeue */
2237 debug_work_deactivate(work);
2238 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2239 worker->current_work = work;
2240 worker->current_func = work->func;
2241 worker->current_pwq = pwq;
2242 work_color = get_work_color(work);
2243
2244 /*
2245 * Record wq name for cmdline and debug reporting, may get
2246 * overridden through set_worker_desc().
2247 */
2248 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2249
2250 list_del_init(&work->entry);
2251
2252 /*
2253 * CPU intensive works don't participate in concurrency management.
2254 * They're the scheduler's responsibility. This takes @worker out
2255 * of concurrency management and the next code block will chain
2256 * execution of the pending work items.
2257 */
2258 if (unlikely(cpu_intensive))
2259 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2260
2261 /*
2262 * Wake up another worker if necessary. The condition is always
2263 * false for normal per-cpu workers since nr_running would always
2264 * be >= 1 at this point. This is used to chain execution of the
2265 * pending work items for WORKER_NOT_RUNNING workers such as the
2266 * UNBOUND and CPU_INTENSIVE ones.
2267 */
2268 if (need_more_worker(pool))
2269 wake_up_worker(pool);
2270
2271 /*
2272 * Record the last pool and clear PENDING which should be the last
2273 * update to @work. Also, do this inside @pool->lock so that
2274 * PENDING and queued state changes happen together while IRQ is
2275 * disabled.
2276 */
2277 set_work_pool_and_clear_pending(work, pool->id);
2278
2279 raw_spin_unlock_irq(&pool->lock);
2280
2281 lock_map_acquire(&pwq->wq->lockdep_map);
2282 lock_map_acquire(&lockdep_map);
2283 /*
2284 * Strictly speaking we should mark the invariant state without holding
2285 * any locks, that is, before these two lock_map_acquire()'s.
2286 *
2287 * However, that would result in:
2288 *
2289 * A(W1)
2290 * WFC(C)
2291 * A(W1)
2292 * C(C)
2293 *
2294 * Which would create W1->C->W1 dependencies, even though there is no
2295 * actual deadlock possible. There are two solutions, using a
2296 * read-recursive acquire on the work(queue) 'locks', but this will then
2297 * hit the lockdep limitation on recursive locks, or simply discard
2298 * these locks.
2299 *
2300 * AFAICT there is no possible deadlock scenario between the
2301 * flush_work() and complete() primitives (except for single-threaded
2302 * workqueues), so hiding them isn't a problem.
2303 */
2304 lockdep_invariant_state(true);
2305 trace_workqueue_execute_start(work);
2306 worker->current_func(work);
2307 /*
2308 * While we must be careful to not use "work" after this, the trace
2309 * point will only record its address.
2310 */
2311 trace_workqueue_execute_end(work, worker->current_func);
2312 lock_map_release(&lockdep_map);
2313 lock_map_release(&pwq->wq->lockdep_map);
2314
2315 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2316 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2317 " last function: %ps\n",
2318 current->comm, preempt_count(), task_pid_nr(current),
2319 worker->current_func);
2320 debug_show_held_locks(current);
2321 dump_stack();
2322 }
2323
2324 /*
2325 * The following prevents a kworker from hogging CPU on !PREEMPTION
2326 * kernels, where a requeueing work item waiting for something to
2327 * happen could deadlock with stop_machine as such work item could
2328 * indefinitely requeue itself while all other CPUs are trapped in
2329 * stop_machine. At the same time, report a quiescent RCU state so
2330 * the same condition doesn't freeze RCU.
2331 */
2332 cond_resched();
2333
2334 raw_spin_lock_irq(&pool->lock);
2335
2336 /* clear cpu intensive status */
2337 if (unlikely(cpu_intensive))
2338 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2339
2340 /* tag the worker for identification in schedule() */
2341 worker->last_func = worker->current_func;
2342
2343 /* we're done with it, release */
2344 hash_del(&worker->hentry);
2345 worker->current_work = NULL;
2346 worker->current_func = NULL;
2347 worker->current_pwq = NULL;
2348 pwq_dec_nr_in_flight(pwq, work_color);
2349 }
2350
2351 /**
2352 * process_scheduled_works - process scheduled works
2353 * @worker: self
2354 *
2355 * Process all scheduled works. Please note that the scheduled list
2356 * may change while processing a work, so this function repeatedly
2357 * fetches a work from the top and executes it.
2358 *
2359 * CONTEXT:
2360 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2361 * multiple times.
2362 */
process_scheduled_works(struct worker * worker)2363 static void process_scheduled_works(struct worker *worker)
2364 {
2365 while (!list_empty(&worker->scheduled)) {
2366 struct work_struct *work = list_first_entry(&worker->scheduled,
2367 struct work_struct, entry);
2368 process_one_work(worker, work);
2369 }
2370 }
2371
set_pf_worker(bool val)2372 static void set_pf_worker(bool val)
2373 {
2374 mutex_lock(&wq_pool_attach_mutex);
2375 if (val)
2376 current->flags |= PF_WQ_WORKER;
2377 else
2378 current->flags &= ~PF_WQ_WORKER;
2379 mutex_unlock(&wq_pool_attach_mutex);
2380 }
2381
2382 /**
2383 * worker_thread - the worker thread function
2384 * @__worker: self
2385 *
2386 * The worker thread function. All workers belong to a worker_pool -
2387 * either a per-cpu one or dynamic unbound one. These workers process all
2388 * work items regardless of their specific target workqueue. The only
2389 * exception is work items which belong to workqueues with a rescuer which
2390 * will be explained in rescuer_thread().
2391 *
2392 * Return: 0
2393 */
worker_thread(void * __worker)2394 static int worker_thread(void *__worker)
2395 {
2396 struct worker *worker = __worker;
2397 struct worker_pool *pool = worker->pool;
2398
2399 /* tell the scheduler that this is a workqueue worker */
2400 set_pf_worker(true);
2401 woke_up:
2402 raw_spin_lock_irq(&pool->lock);
2403
2404 /* am I supposed to die? */
2405 if (unlikely(worker->flags & WORKER_DIE)) {
2406 raw_spin_unlock_irq(&pool->lock);
2407 WARN_ON_ONCE(!list_empty(&worker->entry));
2408 set_pf_worker(false);
2409
2410 set_task_comm(worker->task, "kworker/dying");
2411 ida_simple_remove(&pool->worker_ida, worker->id);
2412 worker_detach_from_pool(worker);
2413 kfree(worker);
2414 return 0;
2415 }
2416
2417 worker_leave_idle(worker);
2418 recheck:
2419 /* no more worker necessary? */
2420 if (!need_more_worker(pool))
2421 goto sleep;
2422
2423 /* do we need to manage? */
2424 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2425 goto recheck;
2426
2427 /*
2428 * ->scheduled list can only be filled while a worker is
2429 * preparing to process a work or actually processing it.
2430 * Make sure nobody diddled with it while I was sleeping.
2431 */
2432 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2433
2434 /*
2435 * Finish PREP stage. We're guaranteed to have at least one idle
2436 * worker or that someone else has already assumed the manager
2437 * role. This is where @worker starts participating in concurrency
2438 * management if applicable and concurrency management is restored
2439 * after being rebound. See rebind_workers() for details.
2440 */
2441 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2442
2443 do {
2444 struct work_struct *work =
2445 list_first_entry(&pool->worklist,
2446 struct work_struct, entry);
2447
2448 pool->watchdog_ts = jiffies;
2449
2450 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2451 /* optimization path, not strictly necessary */
2452 process_one_work(worker, work);
2453 if (unlikely(!list_empty(&worker->scheduled)))
2454 process_scheduled_works(worker);
2455 } else {
2456 move_linked_works(work, &worker->scheduled, NULL);
2457 process_scheduled_works(worker);
2458 }
2459 } while (keep_working(pool));
2460
2461 worker_set_flags(worker, WORKER_PREP);
2462 sleep:
2463 /*
2464 * pool->lock is held and there's no work to process and no need to
2465 * manage, sleep. Workers are woken up only while holding
2466 * pool->lock or from local cpu, so setting the current state
2467 * before releasing pool->lock is enough to prevent losing any
2468 * event.
2469 */
2470 worker_enter_idle(worker);
2471 __set_current_state(TASK_IDLE);
2472 raw_spin_unlock_irq(&pool->lock);
2473 schedule();
2474 goto woke_up;
2475 }
2476
2477 /**
2478 * rescuer_thread - the rescuer thread function
2479 * @__rescuer: self
2480 *
2481 * Workqueue rescuer thread function. There's one rescuer for each
2482 * workqueue which has WQ_MEM_RECLAIM set.
2483 *
2484 * Regular work processing on a pool may block trying to create a new
2485 * worker which uses GFP_KERNEL allocation which has slight chance of
2486 * developing into deadlock if some works currently on the same queue
2487 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2488 * the problem rescuer solves.
2489 *
2490 * When such condition is possible, the pool summons rescuers of all
2491 * workqueues which have works queued on the pool and let them process
2492 * those works so that forward progress can be guaranteed.
2493 *
2494 * This should happen rarely.
2495 *
2496 * Return: 0
2497 */
rescuer_thread(void * __rescuer)2498 static int rescuer_thread(void *__rescuer)
2499 {
2500 struct worker *rescuer = __rescuer;
2501 struct workqueue_struct *wq = rescuer->rescue_wq;
2502 struct list_head *scheduled = &rescuer->scheduled;
2503 bool should_stop;
2504
2505 set_user_nice(current, RESCUER_NICE_LEVEL);
2506
2507 /*
2508 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2509 * doesn't participate in concurrency management.
2510 */
2511 set_pf_worker(true);
2512 repeat:
2513 set_current_state(TASK_IDLE);
2514
2515 /*
2516 * By the time the rescuer is requested to stop, the workqueue
2517 * shouldn't have any work pending, but @wq->maydays may still have
2518 * pwq(s) queued. This can happen by non-rescuer workers consuming
2519 * all the work items before the rescuer got to them. Go through
2520 * @wq->maydays processing before acting on should_stop so that the
2521 * list is always empty on exit.
2522 */
2523 should_stop = kthread_should_stop();
2524
2525 /* see whether any pwq is asking for help */
2526 raw_spin_lock_irq(&wq_mayday_lock);
2527
2528 while (!list_empty(&wq->maydays)) {
2529 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2530 struct pool_workqueue, mayday_node);
2531 struct worker_pool *pool = pwq->pool;
2532 struct work_struct *work, *n;
2533 bool first = true;
2534
2535 __set_current_state(TASK_RUNNING);
2536 list_del_init(&pwq->mayday_node);
2537
2538 raw_spin_unlock_irq(&wq_mayday_lock);
2539
2540 worker_attach_to_pool(rescuer, pool);
2541
2542 raw_spin_lock_irq(&pool->lock);
2543
2544 /*
2545 * Slurp in all works issued via this workqueue and
2546 * process'em.
2547 */
2548 WARN_ON_ONCE(!list_empty(scheduled));
2549 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2550 if (get_work_pwq(work) == pwq) {
2551 if (first)
2552 pool->watchdog_ts = jiffies;
2553 move_linked_works(work, scheduled, &n);
2554 }
2555 first = false;
2556 }
2557
2558 if (!list_empty(scheduled)) {
2559 process_scheduled_works(rescuer);
2560
2561 /*
2562 * The above execution of rescued work items could
2563 * have created more to rescue through
2564 * pwq_activate_first_delayed() or chained
2565 * queueing. Let's put @pwq back on mayday list so
2566 * that such back-to-back work items, which may be
2567 * being used to relieve memory pressure, don't
2568 * incur MAYDAY_INTERVAL delay inbetween.
2569 */
2570 if (pwq->nr_active && need_to_create_worker(pool)) {
2571 raw_spin_lock(&wq_mayday_lock);
2572 /*
2573 * Queue iff we aren't racing destruction
2574 * and somebody else hasn't queued it already.
2575 */
2576 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2577 get_pwq(pwq);
2578 list_add_tail(&pwq->mayday_node, &wq->maydays);
2579 }
2580 raw_spin_unlock(&wq_mayday_lock);
2581 }
2582 }
2583
2584 /*
2585 * Put the reference grabbed by send_mayday(). @pool won't
2586 * go away while we're still attached to it.
2587 */
2588 put_pwq(pwq);
2589
2590 /*
2591 * Leave this pool. If need_more_worker() is %true, notify a
2592 * regular worker; otherwise, we end up with 0 concurrency
2593 * and stalling the execution.
2594 */
2595 if (need_more_worker(pool))
2596 wake_up_worker(pool);
2597
2598 raw_spin_unlock_irq(&pool->lock);
2599
2600 worker_detach_from_pool(rescuer);
2601
2602 raw_spin_lock_irq(&wq_mayday_lock);
2603 }
2604
2605 raw_spin_unlock_irq(&wq_mayday_lock);
2606
2607 if (should_stop) {
2608 __set_current_state(TASK_RUNNING);
2609 set_pf_worker(false);
2610 return 0;
2611 }
2612
2613 /* rescuers should never participate in concurrency management */
2614 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2615 schedule();
2616 goto repeat;
2617 }
2618
2619 /**
2620 * check_flush_dependency - check for flush dependency sanity
2621 * @target_wq: workqueue being flushed
2622 * @target_work: work item being flushed (NULL for workqueue flushes)
2623 *
2624 * %current is trying to flush the whole @target_wq or @target_work on it.
2625 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2626 * reclaiming memory or running on a workqueue which doesn't have
2627 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2628 * a deadlock.
2629 */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)2630 static void check_flush_dependency(struct workqueue_struct *target_wq,
2631 struct work_struct *target_work)
2632 {
2633 work_func_t target_func = target_work ? target_work->func : NULL;
2634 struct worker *worker;
2635
2636 if (target_wq->flags & WQ_MEM_RECLAIM)
2637 return;
2638
2639 worker = current_wq_worker();
2640
2641 WARN_ONCE(current->flags & PF_MEMALLOC,
2642 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2643 current->pid, current->comm, target_wq->name, target_func);
2644 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2645 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2646 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2647 worker->current_pwq->wq->name, worker->current_func,
2648 target_wq->name, target_func);
2649 }
2650
2651 struct wq_barrier {
2652 struct work_struct work;
2653 struct completion done;
2654 struct task_struct *task; /* purely informational */
2655 };
2656
wq_barrier_func(struct work_struct * work)2657 static void wq_barrier_func(struct work_struct *work)
2658 {
2659 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2660 complete(&barr->done);
2661 }
2662
2663 /**
2664 * insert_wq_barrier - insert a barrier work
2665 * @pwq: pwq to insert barrier into
2666 * @barr: wq_barrier to insert
2667 * @target: target work to attach @barr to
2668 * @worker: worker currently executing @target, NULL if @target is not executing
2669 *
2670 * @barr is linked to @target such that @barr is completed only after
2671 * @target finishes execution. Please note that the ordering
2672 * guarantee is observed only with respect to @target and on the local
2673 * cpu.
2674 *
2675 * Currently, a queued barrier can't be canceled. This is because
2676 * try_to_grab_pending() can't determine whether the work to be
2677 * grabbed is at the head of the queue and thus can't clear LINKED
2678 * flag of the previous work while there must be a valid next work
2679 * after a work with LINKED flag set.
2680 *
2681 * Note that when @worker is non-NULL, @target may be modified
2682 * underneath us, so we can't reliably determine pwq from @target.
2683 *
2684 * CONTEXT:
2685 * raw_spin_lock_irq(pool->lock).
2686 */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2687 static void insert_wq_barrier(struct pool_workqueue *pwq,
2688 struct wq_barrier *barr,
2689 struct work_struct *target, struct worker *worker)
2690 {
2691 struct list_head *head;
2692 unsigned int linked = 0;
2693
2694 /*
2695 * debugobject calls are safe here even with pool->lock locked
2696 * as we know for sure that this will not trigger any of the
2697 * checks and call back into the fixup functions where we
2698 * might deadlock.
2699 */
2700 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2701 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2702
2703 init_completion_map(&barr->done, &target->lockdep_map);
2704
2705 barr->task = current;
2706
2707 /*
2708 * If @target is currently being executed, schedule the
2709 * barrier to the worker; otherwise, put it after @target.
2710 */
2711 if (worker)
2712 head = worker->scheduled.next;
2713 else {
2714 unsigned long *bits = work_data_bits(target);
2715
2716 head = target->entry.next;
2717 /* there can already be other linked works, inherit and set */
2718 linked = *bits & WORK_STRUCT_LINKED;
2719 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2720 }
2721
2722 debug_work_activate(&barr->work);
2723 insert_work(pwq, &barr->work, head,
2724 work_color_to_flags(WORK_NO_COLOR) | linked);
2725 }
2726
2727 /**
2728 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2729 * @wq: workqueue being flushed
2730 * @flush_color: new flush color, < 0 for no-op
2731 * @work_color: new work color, < 0 for no-op
2732 *
2733 * Prepare pwqs for workqueue flushing.
2734 *
2735 * If @flush_color is non-negative, flush_color on all pwqs should be
2736 * -1. If no pwq has in-flight commands at the specified color, all
2737 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2738 * has in flight commands, its pwq->flush_color is set to
2739 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2740 * wakeup logic is armed and %true is returned.
2741 *
2742 * The caller should have initialized @wq->first_flusher prior to
2743 * calling this function with non-negative @flush_color. If
2744 * @flush_color is negative, no flush color update is done and %false
2745 * is returned.
2746 *
2747 * If @work_color is non-negative, all pwqs should have the same
2748 * work_color which is previous to @work_color and all will be
2749 * advanced to @work_color.
2750 *
2751 * CONTEXT:
2752 * mutex_lock(wq->mutex).
2753 *
2754 * Return:
2755 * %true if @flush_color >= 0 and there's something to flush. %false
2756 * otherwise.
2757 */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)2758 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2759 int flush_color, int work_color)
2760 {
2761 bool wait = false;
2762 struct pool_workqueue *pwq;
2763
2764 if (flush_color >= 0) {
2765 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2766 atomic_set(&wq->nr_pwqs_to_flush, 1);
2767 }
2768
2769 for_each_pwq(pwq, wq) {
2770 struct worker_pool *pool = pwq->pool;
2771
2772 raw_spin_lock_irq(&pool->lock);
2773
2774 if (flush_color >= 0) {
2775 WARN_ON_ONCE(pwq->flush_color != -1);
2776
2777 if (pwq->nr_in_flight[flush_color]) {
2778 pwq->flush_color = flush_color;
2779 atomic_inc(&wq->nr_pwqs_to_flush);
2780 wait = true;
2781 }
2782 }
2783
2784 if (work_color >= 0) {
2785 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2786 pwq->work_color = work_color;
2787 }
2788
2789 raw_spin_unlock_irq(&pool->lock);
2790 }
2791
2792 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2793 complete(&wq->first_flusher->done);
2794
2795 return wait;
2796 }
2797
2798 /**
2799 * flush_workqueue - ensure that any scheduled work has run to completion.
2800 * @wq: workqueue to flush
2801 *
2802 * This function sleeps until all work items which were queued on entry
2803 * have finished execution, but it is not livelocked by new incoming ones.
2804 */
flush_workqueue(struct workqueue_struct * wq)2805 void flush_workqueue(struct workqueue_struct *wq)
2806 {
2807 struct wq_flusher this_flusher = {
2808 .list = LIST_HEAD_INIT(this_flusher.list),
2809 .flush_color = -1,
2810 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2811 };
2812 int next_color;
2813
2814 if (WARN_ON(!wq_online))
2815 return;
2816
2817 lock_map_acquire(&wq->lockdep_map);
2818 lock_map_release(&wq->lockdep_map);
2819
2820 mutex_lock(&wq->mutex);
2821
2822 /*
2823 * Start-to-wait phase
2824 */
2825 next_color = work_next_color(wq->work_color);
2826
2827 if (next_color != wq->flush_color) {
2828 /*
2829 * Color space is not full. The current work_color
2830 * becomes our flush_color and work_color is advanced
2831 * by one.
2832 */
2833 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2834 this_flusher.flush_color = wq->work_color;
2835 wq->work_color = next_color;
2836
2837 if (!wq->first_flusher) {
2838 /* no flush in progress, become the first flusher */
2839 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2840
2841 wq->first_flusher = &this_flusher;
2842
2843 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2844 wq->work_color)) {
2845 /* nothing to flush, done */
2846 wq->flush_color = next_color;
2847 wq->first_flusher = NULL;
2848 goto out_unlock;
2849 }
2850 } else {
2851 /* wait in queue */
2852 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2853 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2854 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2855 }
2856 } else {
2857 /*
2858 * Oops, color space is full, wait on overflow queue.
2859 * The next flush completion will assign us
2860 * flush_color and transfer to flusher_queue.
2861 */
2862 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2863 }
2864
2865 check_flush_dependency(wq, NULL);
2866
2867 mutex_unlock(&wq->mutex);
2868
2869 wait_for_completion(&this_flusher.done);
2870
2871 /*
2872 * Wake-up-and-cascade phase
2873 *
2874 * First flushers are responsible for cascading flushes and
2875 * handling overflow. Non-first flushers can simply return.
2876 */
2877 if (READ_ONCE(wq->first_flusher) != &this_flusher)
2878 return;
2879
2880 mutex_lock(&wq->mutex);
2881
2882 /* we might have raced, check again with mutex held */
2883 if (wq->first_flusher != &this_flusher)
2884 goto out_unlock;
2885
2886 WRITE_ONCE(wq->first_flusher, NULL);
2887
2888 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2889 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2890
2891 while (true) {
2892 struct wq_flusher *next, *tmp;
2893
2894 /* complete all the flushers sharing the current flush color */
2895 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2896 if (next->flush_color != wq->flush_color)
2897 break;
2898 list_del_init(&next->list);
2899 complete(&next->done);
2900 }
2901
2902 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2903 wq->flush_color != work_next_color(wq->work_color));
2904
2905 /* this flush_color is finished, advance by one */
2906 wq->flush_color = work_next_color(wq->flush_color);
2907
2908 /* one color has been freed, handle overflow queue */
2909 if (!list_empty(&wq->flusher_overflow)) {
2910 /*
2911 * Assign the same color to all overflowed
2912 * flushers, advance work_color and append to
2913 * flusher_queue. This is the start-to-wait
2914 * phase for these overflowed flushers.
2915 */
2916 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2917 tmp->flush_color = wq->work_color;
2918
2919 wq->work_color = work_next_color(wq->work_color);
2920
2921 list_splice_tail_init(&wq->flusher_overflow,
2922 &wq->flusher_queue);
2923 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2924 }
2925
2926 if (list_empty(&wq->flusher_queue)) {
2927 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2928 break;
2929 }
2930
2931 /*
2932 * Need to flush more colors. Make the next flusher
2933 * the new first flusher and arm pwqs.
2934 */
2935 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2936 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2937
2938 list_del_init(&next->list);
2939 wq->first_flusher = next;
2940
2941 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2942 break;
2943
2944 /*
2945 * Meh... this color is already done, clear first
2946 * flusher and repeat cascading.
2947 */
2948 wq->first_flusher = NULL;
2949 }
2950
2951 out_unlock:
2952 mutex_unlock(&wq->mutex);
2953 }
2954 EXPORT_SYMBOL(flush_workqueue);
2955
2956 /**
2957 * drain_workqueue - drain a workqueue
2958 * @wq: workqueue to drain
2959 *
2960 * Wait until the workqueue becomes empty. While draining is in progress,
2961 * only chain queueing is allowed. IOW, only currently pending or running
2962 * work items on @wq can queue further work items on it. @wq is flushed
2963 * repeatedly until it becomes empty. The number of flushing is determined
2964 * by the depth of chaining and should be relatively short. Whine if it
2965 * takes too long.
2966 */
drain_workqueue(struct workqueue_struct * wq)2967 void drain_workqueue(struct workqueue_struct *wq)
2968 {
2969 unsigned int flush_cnt = 0;
2970 struct pool_workqueue *pwq;
2971
2972 /*
2973 * __queue_work() needs to test whether there are drainers, is much
2974 * hotter than drain_workqueue() and already looks at @wq->flags.
2975 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2976 */
2977 mutex_lock(&wq->mutex);
2978 if (!wq->nr_drainers++)
2979 wq->flags |= __WQ_DRAINING;
2980 mutex_unlock(&wq->mutex);
2981 reflush:
2982 flush_workqueue(wq);
2983
2984 mutex_lock(&wq->mutex);
2985
2986 for_each_pwq(pwq, wq) {
2987 bool drained;
2988
2989 raw_spin_lock_irq(&pwq->pool->lock);
2990 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2991 raw_spin_unlock_irq(&pwq->pool->lock);
2992
2993 if (drained)
2994 continue;
2995
2996 if (++flush_cnt == 10 ||
2997 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2998 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2999 wq->name, flush_cnt);
3000
3001 mutex_unlock(&wq->mutex);
3002 goto reflush;
3003 }
3004
3005 if (!--wq->nr_drainers)
3006 wq->flags &= ~__WQ_DRAINING;
3007 mutex_unlock(&wq->mutex);
3008 }
3009 EXPORT_SYMBOL_GPL(drain_workqueue);
3010
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)3011 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3012 bool from_cancel)
3013 {
3014 struct worker *worker = NULL;
3015 struct worker_pool *pool;
3016 struct pool_workqueue *pwq;
3017
3018 might_sleep();
3019
3020 rcu_read_lock();
3021 pool = get_work_pool(work);
3022 if (!pool) {
3023 rcu_read_unlock();
3024 return false;
3025 }
3026
3027 raw_spin_lock_irq(&pool->lock);
3028 /* see the comment in try_to_grab_pending() with the same code */
3029 pwq = get_work_pwq(work);
3030 if (pwq) {
3031 if (unlikely(pwq->pool != pool))
3032 goto already_gone;
3033 } else {
3034 worker = find_worker_executing_work(pool, work);
3035 if (!worker)
3036 goto already_gone;
3037 pwq = worker->current_pwq;
3038 }
3039
3040 check_flush_dependency(pwq->wq, work);
3041
3042 insert_wq_barrier(pwq, barr, work, worker);
3043 raw_spin_unlock_irq(&pool->lock);
3044
3045 /*
3046 * Force a lock recursion deadlock when using flush_work() inside a
3047 * single-threaded or rescuer equipped workqueue.
3048 *
3049 * For single threaded workqueues the deadlock happens when the work
3050 * is after the work issuing the flush_work(). For rescuer equipped
3051 * workqueues the deadlock happens when the rescuer stalls, blocking
3052 * forward progress.
3053 */
3054 if (!from_cancel &&
3055 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3056 lock_map_acquire(&pwq->wq->lockdep_map);
3057 lock_map_release(&pwq->wq->lockdep_map);
3058 }
3059 rcu_read_unlock();
3060 return true;
3061 already_gone:
3062 raw_spin_unlock_irq(&pool->lock);
3063 rcu_read_unlock();
3064 return false;
3065 }
3066
__flush_work(struct work_struct * work,bool from_cancel)3067 static bool __flush_work(struct work_struct *work, bool from_cancel)
3068 {
3069 struct wq_barrier barr;
3070
3071 if (WARN_ON(!wq_online))
3072 return false;
3073
3074 if (WARN_ON(!work->func))
3075 return false;
3076
3077 lock_map_acquire(&work->lockdep_map);
3078 lock_map_release(&work->lockdep_map);
3079
3080 if (start_flush_work(work, &barr, from_cancel)) {
3081 wait_for_completion(&barr.done);
3082 destroy_work_on_stack(&barr.work);
3083 return true;
3084 } else {
3085 return false;
3086 }
3087 }
3088
3089 /**
3090 * flush_work - wait for a work to finish executing the last queueing instance
3091 * @work: the work to flush
3092 *
3093 * Wait until @work has finished execution. @work is guaranteed to be idle
3094 * on return if it hasn't been requeued since flush started.
3095 *
3096 * Return:
3097 * %true if flush_work() waited for the work to finish execution,
3098 * %false if it was already idle.
3099 */
flush_work(struct work_struct * work)3100 bool flush_work(struct work_struct *work)
3101 {
3102 return __flush_work(work, false);
3103 }
3104 EXPORT_SYMBOL_GPL(flush_work);
3105
3106 struct cwt_wait {
3107 wait_queue_entry_t wait;
3108 struct work_struct *work;
3109 };
3110
cwt_wakefn(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)3111 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3112 {
3113 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3114
3115 if (cwait->work != key)
3116 return 0;
3117 return autoremove_wake_function(wait, mode, sync, key);
3118 }
3119
__cancel_work_timer(struct work_struct * work,bool is_dwork)3120 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3121 {
3122 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3123 unsigned long flags;
3124 int ret;
3125
3126 do {
3127 ret = try_to_grab_pending(work, is_dwork, &flags);
3128 /*
3129 * If someone else is already canceling, wait for it to
3130 * finish. flush_work() doesn't work for PREEMPT_NONE
3131 * because we may get scheduled between @work's completion
3132 * and the other canceling task resuming and clearing
3133 * CANCELING - flush_work() will return false immediately
3134 * as @work is no longer busy, try_to_grab_pending() will
3135 * return -ENOENT as @work is still being canceled and the
3136 * other canceling task won't be able to clear CANCELING as
3137 * we're hogging the CPU.
3138 *
3139 * Let's wait for completion using a waitqueue. As this
3140 * may lead to the thundering herd problem, use a custom
3141 * wake function which matches @work along with exclusive
3142 * wait and wakeup.
3143 */
3144 if (unlikely(ret == -ENOENT)) {
3145 struct cwt_wait cwait;
3146
3147 init_wait(&cwait.wait);
3148 cwait.wait.func = cwt_wakefn;
3149 cwait.work = work;
3150
3151 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3152 TASK_UNINTERRUPTIBLE);
3153 if (work_is_canceling(work))
3154 schedule();
3155 finish_wait(&cancel_waitq, &cwait.wait);
3156 }
3157 } while (unlikely(ret < 0));
3158
3159 /* tell other tasks trying to grab @work to back off */
3160 mark_work_canceling(work);
3161 local_irq_restore(flags);
3162
3163 /*
3164 * This allows canceling during early boot. We know that @work
3165 * isn't executing.
3166 */
3167 if (wq_online)
3168 __flush_work(work, true);
3169
3170 clear_work_data(work);
3171
3172 /*
3173 * Paired with prepare_to_wait() above so that either
3174 * waitqueue_active() is visible here or !work_is_canceling() is
3175 * visible there.
3176 */
3177 smp_mb();
3178 if (waitqueue_active(&cancel_waitq))
3179 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3180
3181 return ret;
3182 }
3183
3184 /**
3185 * cancel_work_sync - cancel a work and wait for it to finish
3186 * @work: the work to cancel
3187 *
3188 * Cancel @work and wait for its execution to finish. This function
3189 * can be used even if the work re-queues itself or migrates to
3190 * another workqueue. On return from this function, @work is
3191 * guaranteed to be not pending or executing on any CPU.
3192 *
3193 * cancel_work_sync(&delayed_work->work) must not be used for
3194 * delayed_work's. Use cancel_delayed_work_sync() instead.
3195 *
3196 * The caller must ensure that the workqueue on which @work was last
3197 * queued can't be destroyed before this function returns.
3198 *
3199 * Return:
3200 * %true if @work was pending, %false otherwise.
3201 */
cancel_work_sync(struct work_struct * work)3202 bool cancel_work_sync(struct work_struct *work)
3203 {
3204 return __cancel_work_timer(work, false);
3205 }
3206 EXPORT_SYMBOL_GPL(cancel_work_sync);
3207
3208 /**
3209 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3210 * @dwork: the delayed work to flush
3211 *
3212 * Delayed timer is cancelled and the pending work is queued for
3213 * immediate execution. Like flush_work(), this function only
3214 * considers the last queueing instance of @dwork.
3215 *
3216 * Return:
3217 * %true if flush_work() waited for the work to finish execution,
3218 * %false if it was already idle.
3219 */
flush_delayed_work(struct delayed_work * dwork)3220 bool flush_delayed_work(struct delayed_work *dwork)
3221 {
3222 local_irq_disable();
3223 if (del_timer_sync(&dwork->timer))
3224 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3225 local_irq_enable();
3226 return flush_work(&dwork->work);
3227 }
3228 EXPORT_SYMBOL(flush_delayed_work);
3229
3230 /**
3231 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3232 * @rwork: the rcu work to flush
3233 *
3234 * Return:
3235 * %true if flush_rcu_work() waited for the work to finish execution,
3236 * %false if it was already idle.
3237 */
flush_rcu_work(struct rcu_work * rwork)3238 bool flush_rcu_work(struct rcu_work *rwork)
3239 {
3240 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3241 rcu_barrier();
3242 flush_work(&rwork->work);
3243 return true;
3244 } else {
3245 return flush_work(&rwork->work);
3246 }
3247 }
3248 EXPORT_SYMBOL(flush_rcu_work);
3249
__cancel_work(struct work_struct * work,bool is_dwork)3250 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3251 {
3252 unsigned long flags;
3253 int ret;
3254
3255 do {
3256 ret = try_to_grab_pending(work, is_dwork, &flags);
3257 } while (unlikely(ret == -EAGAIN));
3258
3259 if (unlikely(ret < 0))
3260 return false;
3261
3262 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3263 local_irq_restore(flags);
3264 return ret;
3265 }
3266
3267 /**
3268 * cancel_delayed_work - cancel a delayed work
3269 * @dwork: delayed_work to cancel
3270 *
3271 * Kill off a pending delayed_work.
3272 *
3273 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3274 * pending.
3275 *
3276 * Note:
3277 * The work callback function may still be running on return, unless
3278 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3279 * use cancel_delayed_work_sync() to wait on it.
3280 *
3281 * This function is safe to call from any context including IRQ handler.
3282 */
cancel_delayed_work(struct delayed_work * dwork)3283 bool cancel_delayed_work(struct delayed_work *dwork)
3284 {
3285 return __cancel_work(&dwork->work, true);
3286 }
3287 EXPORT_SYMBOL(cancel_delayed_work);
3288
3289 /**
3290 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3291 * @dwork: the delayed work cancel
3292 *
3293 * This is cancel_work_sync() for delayed works.
3294 *
3295 * Return:
3296 * %true if @dwork was pending, %false otherwise.
3297 */
cancel_delayed_work_sync(struct delayed_work * dwork)3298 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3299 {
3300 return __cancel_work_timer(&dwork->work, true);
3301 }
3302 EXPORT_SYMBOL(cancel_delayed_work_sync);
3303
3304 /**
3305 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3306 * @func: the function to call
3307 *
3308 * schedule_on_each_cpu() executes @func on each online CPU using the
3309 * system workqueue and blocks until all CPUs have completed.
3310 * schedule_on_each_cpu() is very slow.
3311 *
3312 * Return:
3313 * 0 on success, -errno on failure.
3314 */
schedule_on_each_cpu(work_func_t func)3315 int schedule_on_each_cpu(work_func_t func)
3316 {
3317 int cpu;
3318 struct work_struct __percpu *works;
3319
3320 works = alloc_percpu(struct work_struct);
3321 if (!works)
3322 return -ENOMEM;
3323
3324 get_online_cpus();
3325
3326 for_each_online_cpu(cpu) {
3327 struct work_struct *work = per_cpu_ptr(works, cpu);
3328
3329 INIT_WORK(work, func);
3330 schedule_work_on(cpu, work);
3331 }
3332
3333 for_each_online_cpu(cpu)
3334 flush_work(per_cpu_ptr(works, cpu));
3335
3336 put_online_cpus();
3337 free_percpu(works);
3338 return 0;
3339 }
3340
3341 /**
3342 * execute_in_process_context - reliably execute the routine with user context
3343 * @fn: the function to execute
3344 * @ew: guaranteed storage for the execute work structure (must
3345 * be available when the work executes)
3346 *
3347 * Executes the function immediately if process context is available,
3348 * otherwise schedules the function for delayed execution.
3349 *
3350 * Return: 0 - function was executed
3351 * 1 - function was scheduled for execution
3352 */
execute_in_process_context(work_func_t fn,struct execute_work * ew)3353 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3354 {
3355 if (!in_interrupt()) {
3356 fn(&ew->work);
3357 return 0;
3358 }
3359
3360 INIT_WORK(&ew->work, fn);
3361 schedule_work(&ew->work);
3362
3363 return 1;
3364 }
3365 EXPORT_SYMBOL_GPL(execute_in_process_context);
3366
3367 /**
3368 * free_workqueue_attrs - free a workqueue_attrs
3369 * @attrs: workqueue_attrs to free
3370 *
3371 * Undo alloc_workqueue_attrs().
3372 */
free_workqueue_attrs(struct workqueue_attrs * attrs)3373 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3374 {
3375 if (attrs) {
3376 free_cpumask_var(attrs->cpumask);
3377 kfree(attrs);
3378 }
3379 }
3380
3381 /**
3382 * alloc_workqueue_attrs - allocate a workqueue_attrs
3383 *
3384 * Allocate a new workqueue_attrs, initialize with default settings and
3385 * return it.
3386 *
3387 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3388 */
alloc_workqueue_attrs(void)3389 struct workqueue_attrs *alloc_workqueue_attrs(void)
3390 {
3391 struct workqueue_attrs *attrs;
3392
3393 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3394 if (!attrs)
3395 goto fail;
3396 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3397 goto fail;
3398
3399 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3400 return attrs;
3401 fail:
3402 free_workqueue_attrs(attrs);
3403 return NULL;
3404 }
3405
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3406 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3407 const struct workqueue_attrs *from)
3408 {
3409 to->nice = from->nice;
3410 cpumask_copy(to->cpumask, from->cpumask);
3411 /*
3412 * Unlike hash and equality test, this function doesn't ignore
3413 * ->no_numa as it is used for both pool and wq attrs. Instead,
3414 * get_unbound_pool() explicitly clears ->no_numa after copying.
3415 */
3416 to->no_numa = from->no_numa;
3417 }
3418
3419 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3420 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3421 {
3422 u32 hash = 0;
3423
3424 hash = jhash_1word(attrs->nice, hash);
3425 hash = jhash(cpumask_bits(attrs->cpumask),
3426 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3427 return hash;
3428 }
3429
3430 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3431 static bool wqattrs_equal(const struct workqueue_attrs *a,
3432 const struct workqueue_attrs *b)
3433 {
3434 if (a->nice != b->nice)
3435 return false;
3436 if (!cpumask_equal(a->cpumask, b->cpumask))
3437 return false;
3438 return true;
3439 }
3440
3441 /**
3442 * init_worker_pool - initialize a newly zalloc'd worker_pool
3443 * @pool: worker_pool to initialize
3444 *
3445 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3446 *
3447 * Return: 0 on success, -errno on failure. Even on failure, all fields
3448 * inside @pool proper are initialized and put_unbound_pool() can be called
3449 * on @pool safely to release it.
3450 */
init_worker_pool(struct worker_pool * pool)3451 static int init_worker_pool(struct worker_pool *pool)
3452 {
3453 raw_spin_lock_init(&pool->lock);
3454 pool->id = -1;
3455 pool->cpu = -1;
3456 pool->node = NUMA_NO_NODE;
3457 pool->flags |= POOL_DISASSOCIATED;
3458 pool->watchdog_ts = jiffies;
3459 INIT_LIST_HEAD(&pool->worklist);
3460 INIT_LIST_HEAD(&pool->idle_list);
3461 hash_init(pool->busy_hash);
3462
3463 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3464
3465 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3466
3467 INIT_LIST_HEAD(&pool->workers);
3468
3469 ida_init(&pool->worker_ida);
3470 INIT_HLIST_NODE(&pool->hash_node);
3471 pool->refcnt = 1;
3472
3473 /* shouldn't fail above this point */
3474 pool->attrs = alloc_workqueue_attrs();
3475 if (!pool->attrs)
3476 return -ENOMEM;
3477 return 0;
3478 }
3479
3480 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)3481 static void wq_init_lockdep(struct workqueue_struct *wq)
3482 {
3483 char *lock_name;
3484
3485 lockdep_register_key(&wq->key);
3486 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3487 if (!lock_name)
3488 lock_name = wq->name;
3489
3490 wq->lock_name = lock_name;
3491 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3492 }
3493
wq_unregister_lockdep(struct workqueue_struct * wq)3494 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3495 {
3496 lockdep_unregister_key(&wq->key);
3497 }
3498
wq_free_lockdep(struct workqueue_struct * wq)3499 static void wq_free_lockdep(struct workqueue_struct *wq)
3500 {
3501 if (wq->lock_name != wq->name)
3502 kfree(wq->lock_name);
3503 }
3504 #else
wq_init_lockdep(struct workqueue_struct * wq)3505 static void wq_init_lockdep(struct workqueue_struct *wq)
3506 {
3507 }
3508
wq_unregister_lockdep(struct workqueue_struct * wq)3509 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3510 {
3511 }
3512
wq_free_lockdep(struct workqueue_struct * wq)3513 static void wq_free_lockdep(struct workqueue_struct *wq)
3514 {
3515 }
3516 #endif
3517
rcu_free_wq(struct rcu_head * rcu)3518 static void rcu_free_wq(struct rcu_head *rcu)
3519 {
3520 struct workqueue_struct *wq =
3521 container_of(rcu, struct workqueue_struct, rcu);
3522
3523 wq_free_lockdep(wq);
3524
3525 if (!(wq->flags & WQ_UNBOUND))
3526 free_percpu(wq->cpu_pwqs);
3527 else
3528 free_workqueue_attrs(wq->unbound_attrs);
3529
3530 kfree(wq);
3531 }
3532
rcu_free_pool(struct rcu_head * rcu)3533 static void rcu_free_pool(struct rcu_head *rcu)
3534 {
3535 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3536
3537 ida_destroy(&pool->worker_ida);
3538 free_workqueue_attrs(pool->attrs);
3539 kfree(pool);
3540 }
3541
3542 /* This returns with the lock held on success (pool manager is inactive). */
wq_manager_inactive(struct worker_pool * pool)3543 static bool wq_manager_inactive(struct worker_pool *pool)
3544 {
3545 raw_spin_lock_irq(&pool->lock);
3546
3547 if (pool->flags & POOL_MANAGER_ACTIVE) {
3548 raw_spin_unlock_irq(&pool->lock);
3549 return false;
3550 }
3551 return true;
3552 }
3553
3554 /**
3555 * put_unbound_pool - put a worker_pool
3556 * @pool: worker_pool to put
3557 *
3558 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3559 * safe manner. get_unbound_pool() calls this function on its failure path
3560 * and this function should be able to release pools which went through,
3561 * successfully or not, init_worker_pool().
3562 *
3563 * Should be called with wq_pool_mutex held.
3564 */
put_unbound_pool(struct worker_pool * pool)3565 static void put_unbound_pool(struct worker_pool *pool)
3566 {
3567 DECLARE_COMPLETION_ONSTACK(detach_completion);
3568 struct worker *worker;
3569
3570 lockdep_assert_held(&wq_pool_mutex);
3571
3572 if (--pool->refcnt)
3573 return;
3574
3575 /* sanity checks */
3576 if (WARN_ON(!(pool->cpu < 0)) ||
3577 WARN_ON(!list_empty(&pool->worklist)))
3578 return;
3579
3580 /* release id and unhash */
3581 if (pool->id >= 0)
3582 idr_remove(&worker_pool_idr, pool->id);
3583 hash_del(&pool->hash_node);
3584
3585 /*
3586 * Become the manager and destroy all workers. This prevents
3587 * @pool's workers from blocking on attach_mutex. We're the last
3588 * manager and @pool gets freed with the flag set.
3589 * Because of how wq_manager_inactive() works, we will hold the
3590 * spinlock after a successful wait.
3591 */
3592 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3593 TASK_UNINTERRUPTIBLE);
3594 pool->flags |= POOL_MANAGER_ACTIVE;
3595
3596 while ((worker = first_idle_worker(pool)))
3597 destroy_worker(worker);
3598 WARN_ON(pool->nr_workers || pool->nr_idle);
3599 raw_spin_unlock_irq(&pool->lock);
3600
3601 mutex_lock(&wq_pool_attach_mutex);
3602 if (!list_empty(&pool->workers))
3603 pool->detach_completion = &detach_completion;
3604 mutex_unlock(&wq_pool_attach_mutex);
3605
3606 if (pool->detach_completion)
3607 wait_for_completion(pool->detach_completion);
3608
3609 /* shut down the timers */
3610 del_timer_sync(&pool->idle_timer);
3611 del_timer_sync(&pool->mayday_timer);
3612
3613 /* RCU protected to allow dereferences from get_work_pool() */
3614 call_rcu(&pool->rcu, rcu_free_pool);
3615 }
3616
3617 /**
3618 * get_unbound_pool - get a worker_pool with the specified attributes
3619 * @attrs: the attributes of the worker_pool to get
3620 *
3621 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3622 * reference count and return it. If there already is a matching
3623 * worker_pool, it will be used; otherwise, this function attempts to
3624 * create a new one.
3625 *
3626 * Should be called with wq_pool_mutex held.
3627 *
3628 * Return: On success, a worker_pool with the same attributes as @attrs.
3629 * On failure, %NULL.
3630 */
get_unbound_pool(const struct workqueue_attrs * attrs)3631 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3632 {
3633 u32 hash = wqattrs_hash(attrs);
3634 struct worker_pool *pool;
3635 int node;
3636 int target_node = NUMA_NO_NODE;
3637
3638 lockdep_assert_held(&wq_pool_mutex);
3639
3640 /* do we already have a matching pool? */
3641 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3642 if (wqattrs_equal(pool->attrs, attrs)) {
3643 pool->refcnt++;
3644 return pool;
3645 }
3646 }
3647
3648 /* if cpumask is contained inside a NUMA node, we belong to that node */
3649 if (wq_numa_enabled) {
3650 for_each_node(node) {
3651 if (cpumask_subset(attrs->cpumask,
3652 wq_numa_possible_cpumask[node])) {
3653 target_node = node;
3654 break;
3655 }
3656 }
3657 }
3658
3659 /* nope, create a new one */
3660 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3661 if (!pool || init_worker_pool(pool) < 0)
3662 goto fail;
3663
3664 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3665 copy_workqueue_attrs(pool->attrs, attrs);
3666 pool->node = target_node;
3667
3668 /*
3669 * no_numa isn't a worker_pool attribute, always clear it. See
3670 * 'struct workqueue_attrs' comments for detail.
3671 */
3672 pool->attrs->no_numa = false;
3673
3674 if (worker_pool_assign_id(pool) < 0)
3675 goto fail;
3676
3677 /* create and start the initial worker */
3678 if (wq_online && !create_worker(pool))
3679 goto fail;
3680
3681 /* install */
3682 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3683
3684 return pool;
3685 fail:
3686 if (pool)
3687 put_unbound_pool(pool);
3688 return NULL;
3689 }
3690
rcu_free_pwq(struct rcu_head * rcu)3691 static void rcu_free_pwq(struct rcu_head *rcu)
3692 {
3693 kmem_cache_free(pwq_cache,
3694 container_of(rcu, struct pool_workqueue, rcu));
3695 }
3696
3697 /*
3698 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3699 * and needs to be destroyed.
3700 */
pwq_unbound_release_workfn(struct work_struct * work)3701 static void pwq_unbound_release_workfn(struct work_struct *work)
3702 {
3703 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3704 unbound_release_work);
3705 struct workqueue_struct *wq = pwq->wq;
3706 struct worker_pool *pool = pwq->pool;
3707 bool is_last = false;
3708
3709 /*
3710 * when @pwq is not linked, it doesn't hold any reference to the
3711 * @wq, and @wq is invalid to access.
3712 */
3713 if (!list_empty(&pwq->pwqs_node)) {
3714 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3715 return;
3716
3717 mutex_lock(&wq->mutex);
3718 list_del_rcu(&pwq->pwqs_node);
3719 is_last = list_empty(&wq->pwqs);
3720 mutex_unlock(&wq->mutex);
3721 }
3722
3723 mutex_lock(&wq_pool_mutex);
3724 put_unbound_pool(pool);
3725 mutex_unlock(&wq_pool_mutex);
3726
3727 call_rcu(&pwq->rcu, rcu_free_pwq);
3728
3729 /*
3730 * If we're the last pwq going away, @wq is already dead and no one
3731 * is gonna access it anymore. Schedule RCU free.
3732 */
3733 if (is_last) {
3734 wq_unregister_lockdep(wq);
3735 call_rcu(&wq->rcu, rcu_free_wq);
3736 }
3737 }
3738
3739 /**
3740 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3741 * @pwq: target pool_workqueue
3742 *
3743 * If @pwq isn't freezing, set @pwq->max_active to the associated
3744 * workqueue's saved_max_active and activate delayed work items
3745 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3746 */
pwq_adjust_max_active(struct pool_workqueue * pwq)3747 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3748 {
3749 struct workqueue_struct *wq = pwq->wq;
3750 bool freezable = wq->flags & WQ_FREEZABLE;
3751 unsigned long flags;
3752
3753 /* for @wq->saved_max_active */
3754 lockdep_assert_held(&wq->mutex);
3755
3756 /* fast exit for non-freezable wqs */
3757 if (!freezable && pwq->max_active == wq->saved_max_active)
3758 return;
3759
3760 /* this function can be called during early boot w/ irq disabled */
3761 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3762
3763 /*
3764 * During [un]freezing, the caller is responsible for ensuring that
3765 * this function is called at least once after @workqueue_freezing
3766 * is updated and visible.
3767 */
3768 if (!freezable || !workqueue_freezing) {
3769 bool kick = false;
3770
3771 pwq->max_active = wq->saved_max_active;
3772
3773 while (!list_empty(&pwq->delayed_works) &&
3774 pwq->nr_active < pwq->max_active) {
3775 pwq_activate_first_delayed(pwq);
3776 kick = true;
3777 }
3778
3779 /*
3780 * Need to kick a worker after thawed or an unbound wq's
3781 * max_active is bumped. In realtime scenarios, always kicking a
3782 * worker will cause interference on the isolated cpu cores, so
3783 * let's kick iff work items were activated.
3784 */
3785 if (kick)
3786 wake_up_worker(pwq->pool);
3787 } else {
3788 pwq->max_active = 0;
3789 }
3790
3791 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3792 }
3793
3794 /* initialize newly alloced @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)3795 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3796 struct worker_pool *pool)
3797 {
3798 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3799
3800 memset(pwq, 0, sizeof(*pwq));
3801
3802 pwq->pool = pool;
3803 pwq->wq = wq;
3804 pwq->flush_color = -1;
3805 pwq->refcnt = 1;
3806 INIT_LIST_HEAD(&pwq->delayed_works);
3807 INIT_LIST_HEAD(&pwq->pwqs_node);
3808 INIT_LIST_HEAD(&pwq->mayday_node);
3809 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3810 }
3811
3812 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)3813 static void link_pwq(struct pool_workqueue *pwq)
3814 {
3815 struct workqueue_struct *wq = pwq->wq;
3816
3817 lockdep_assert_held(&wq->mutex);
3818
3819 /* may be called multiple times, ignore if already linked */
3820 if (!list_empty(&pwq->pwqs_node))
3821 return;
3822
3823 /* set the matching work_color */
3824 pwq->work_color = wq->work_color;
3825
3826 /* sync max_active to the current setting */
3827 pwq_adjust_max_active(pwq);
3828
3829 /* link in @pwq */
3830 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3831 }
3832
3833 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3834 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3835 const struct workqueue_attrs *attrs)
3836 {
3837 struct worker_pool *pool;
3838 struct pool_workqueue *pwq;
3839
3840 lockdep_assert_held(&wq_pool_mutex);
3841
3842 pool = get_unbound_pool(attrs);
3843 if (!pool)
3844 return NULL;
3845
3846 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3847 if (!pwq) {
3848 put_unbound_pool(pool);
3849 return NULL;
3850 }
3851
3852 init_pwq(pwq, wq, pool);
3853 return pwq;
3854 }
3855
3856 /**
3857 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3858 * @attrs: the wq_attrs of the default pwq of the target workqueue
3859 * @node: the target NUMA node
3860 * @cpu_going_down: if >= 0, the CPU to consider as offline
3861 * @cpumask: outarg, the resulting cpumask
3862 *
3863 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3864 * @cpu_going_down is >= 0, that cpu is considered offline during
3865 * calculation. The result is stored in @cpumask.
3866 *
3867 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3868 * enabled and @node has online CPUs requested by @attrs, the returned
3869 * cpumask is the intersection of the possible CPUs of @node and
3870 * @attrs->cpumask.
3871 *
3872 * The caller is responsible for ensuring that the cpumask of @node stays
3873 * stable.
3874 *
3875 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3876 * %false if equal.
3877 */
wq_calc_node_cpumask(const struct workqueue_attrs * attrs,int node,int cpu_going_down,cpumask_t * cpumask)3878 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3879 int cpu_going_down, cpumask_t *cpumask)
3880 {
3881 if (!wq_numa_enabled || attrs->no_numa)
3882 goto use_dfl;
3883
3884 /* does @node have any online CPUs @attrs wants? */
3885 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3886 if (cpu_going_down >= 0)
3887 cpumask_clear_cpu(cpu_going_down, cpumask);
3888
3889 if (cpumask_empty(cpumask))
3890 goto use_dfl;
3891
3892 /* yeap, return possible CPUs in @node that @attrs wants */
3893 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3894
3895 if (cpumask_empty(cpumask)) {
3896 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3897 "possible intersect\n");
3898 return false;
3899 }
3900
3901 return !cpumask_equal(cpumask, attrs->cpumask);
3902
3903 use_dfl:
3904 cpumask_copy(cpumask, attrs->cpumask);
3905 return false;
3906 }
3907
3908 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
numa_pwq_tbl_install(struct workqueue_struct * wq,int node,struct pool_workqueue * pwq)3909 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3910 int node,
3911 struct pool_workqueue *pwq)
3912 {
3913 struct pool_workqueue *old_pwq;
3914
3915 lockdep_assert_held(&wq_pool_mutex);
3916 lockdep_assert_held(&wq->mutex);
3917
3918 /* link_pwq() can handle duplicate calls */
3919 link_pwq(pwq);
3920
3921 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3922 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3923 return old_pwq;
3924 }
3925
3926 /* context to store the prepared attrs & pwqs before applying */
3927 struct apply_wqattrs_ctx {
3928 struct workqueue_struct *wq; /* target workqueue */
3929 struct workqueue_attrs *attrs; /* attrs to apply */
3930 struct list_head list; /* queued for batching commit */
3931 struct pool_workqueue *dfl_pwq;
3932 struct pool_workqueue *pwq_tbl[];
3933 };
3934
3935 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)3936 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3937 {
3938 if (ctx) {
3939 int node;
3940
3941 for_each_node(node)
3942 put_pwq_unlocked(ctx->pwq_tbl[node]);
3943 put_pwq_unlocked(ctx->dfl_pwq);
3944
3945 free_workqueue_attrs(ctx->attrs);
3946
3947 kfree(ctx);
3948 }
3949 }
3950
3951 /* allocate the attrs and pwqs for later installation */
3952 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3953 apply_wqattrs_prepare(struct workqueue_struct *wq,
3954 const struct workqueue_attrs *attrs)
3955 {
3956 struct apply_wqattrs_ctx *ctx;
3957 struct workqueue_attrs *new_attrs, *tmp_attrs;
3958 int node;
3959
3960 lockdep_assert_held(&wq_pool_mutex);
3961
3962 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3963
3964 new_attrs = alloc_workqueue_attrs();
3965 tmp_attrs = alloc_workqueue_attrs();
3966 if (!ctx || !new_attrs || !tmp_attrs)
3967 goto out_free;
3968
3969 /*
3970 * Calculate the attrs of the default pwq.
3971 * If the user configured cpumask doesn't overlap with the
3972 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3973 */
3974 copy_workqueue_attrs(new_attrs, attrs);
3975 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3976 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3977 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3978
3979 /*
3980 * We may create multiple pwqs with differing cpumasks. Make a
3981 * copy of @new_attrs which will be modified and used to obtain
3982 * pools.
3983 */
3984 copy_workqueue_attrs(tmp_attrs, new_attrs);
3985
3986 /*
3987 * If something goes wrong during CPU up/down, we'll fall back to
3988 * the default pwq covering whole @attrs->cpumask. Always create
3989 * it even if we don't use it immediately.
3990 */
3991 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3992 if (!ctx->dfl_pwq)
3993 goto out_free;
3994
3995 for_each_node(node) {
3996 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3997 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3998 if (!ctx->pwq_tbl[node])
3999 goto out_free;
4000 } else {
4001 ctx->dfl_pwq->refcnt++;
4002 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4003 }
4004 }
4005
4006 /* save the user configured attrs and sanitize it. */
4007 copy_workqueue_attrs(new_attrs, attrs);
4008 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4009 ctx->attrs = new_attrs;
4010
4011 ctx->wq = wq;
4012 free_workqueue_attrs(tmp_attrs);
4013 return ctx;
4014
4015 out_free:
4016 free_workqueue_attrs(tmp_attrs);
4017 free_workqueue_attrs(new_attrs);
4018 apply_wqattrs_cleanup(ctx);
4019 return NULL;
4020 }
4021
4022 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)4023 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4024 {
4025 int node;
4026
4027 /* all pwqs have been created successfully, let's install'em */
4028 mutex_lock(&ctx->wq->mutex);
4029
4030 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4031
4032 /* save the previous pwq and install the new one */
4033 for_each_node(node)
4034 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4035 ctx->pwq_tbl[node]);
4036
4037 /* @dfl_pwq might not have been used, ensure it's linked */
4038 link_pwq(ctx->dfl_pwq);
4039 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4040
4041 mutex_unlock(&ctx->wq->mutex);
4042 }
4043
apply_wqattrs_lock(void)4044 static void apply_wqattrs_lock(void)
4045 {
4046 /* CPUs should stay stable across pwq creations and installations */
4047 get_online_cpus();
4048 mutex_lock(&wq_pool_mutex);
4049 }
4050
apply_wqattrs_unlock(void)4051 static void apply_wqattrs_unlock(void)
4052 {
4053 mutex_unlock(&wq_pool_mutex);
4054 put_online_cpus();
4055 }
4056
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4057 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4058 const struct workqueue_attrs *attrs)
4059 {
4060 struct apply_wqattrs_ctx *ctx;
4061
4062 /* only unbound workqueues can change attributes */
4063 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4064 return -EINVAL;
4065
4066 /* creating multiple pwqs breaks ordering guarantee */
4067 if (!list_empty(&wq->pwqs)) {
4068 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4069 return -EINVAL;
4070
4071 wq->flags &= ~__WQ_ORDERED;
4072 }
4073
4074 ctx = apply_wqattrs_prepare(wq, attrs);
4075 if (!ctx)
4076 return -ENOMEM;
4077
4078 /* the ctx has been prepared successfully, let's commit it */
4079 apply_wqattrs_commit(ctx);
4080 apply_wqattrs_cleanup(ctx);
4081
4082 return 0;
4083 }
4084
4085 /**
4086 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4087 * @wq: the target workqueue
4088 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4089 *
4090 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4091 * machines, this function maps a separate pwq to each NUMA node with
4092 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4093 * NUMA node it was issued on. Older pwqs are released as in-flight work
4094 * items finish. Note that a work item which repeatedly requeues itself
4095 * back-to-back will stay on its current pwq.
4096 *
4097 * Performs GFP_KERNEL allocations.
4098 *
4099 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4100 *
4101 * Return: 0 on success and -errno on failure.
4102 */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4103 int apply_workqueue_attrs(struct workqueue_struct *wq,
4104 const struct workqueue_attrs *attrs)
4105 {
4106 int ret;
4107
4108 lockdep_assert_cpus_held();
4109
4110 mutex_lock(&wq_pool_mutex);
4111 ret = apply_workqueue_attrs_locked(wq, attrs);
4112 mutex_unlock(&wq_pool_mutex);
4113
4114 return ret;
4115 }
4116
4117 /**
4118 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4119 * @wq: the target workqueue
4120 * @cpu: the CPU coming up or going down
4121 * @online: whether @cpu is coming up or going down
4122 *
4123 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4124 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4125 * @wq accordingly.
4126 *
4127 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4128 * falls back to @wq->dfl_pwq which may not be optimal but is always
4129 * correct.
4130 *
4131 * Note that when the last allowed CPU of a NUMA node goes offline for a
4132 * workqueue with a cpumask spanning multiple nodes, the workers which were
4133 * already executing the work items for the workqueue will lose their CPU
4134 * affinity and may execute on any CPU. This is similar to how per-cpu
4135 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4136 * affinity, it's the user's responsibility to flush the work item from
4137 * CPU_DOWN_PREPARE.
4138 */
wq_update_unbound_numa(struct workqueue_struct * wq,int cpu,bool online)4139 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4140 bool online)
4141 {
4142 int node = cpu_to_node(cpu);
4143 int cpu_off = online ? -1 : cpu;
4144 struct pool_workqueue *old_pwq = NULL, *pwq;
4145 struct workqueue_attrs *target_attrs;
4146 cpumask_t *cpumask;
4147
4148 lockdep_assert_held(&wq_pool_mutex);
4149
4150 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4151 wq->unbound_attrs->no_numa)
4152 return;
4153
4154 /*
4155 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4156 * Let's use a preallocated one. The following buf is protected by
4157 * CPU hotplug exclusion.
4158 */
4159 target_attrs = wq_update_unbound_numa_attrs_buf;
4160 cpumask = target_attrs->cpumask;
4161
4162 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4163 pwq = unbound_pwq_by_node(wq, node);
4164
4165 /*
4166 * Let's determine what needs to be done. If the target cpumask is
4167 * different from the default pwq's, we need to compare it to @pwq's
4168 * and create a new one if they don't match. If the target cpumask
4169 * equals the default pwq's, the default pwq should be used.
4170 */
4171 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4172 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4173 return;
4174 } else {
4175 goto use_dfl_pwq;
4176 }
4177
4178 /* create a new pwq */
4179 pwq = alloc_unbound_pwq(wq, target_attrs);
4180 if (!pwq) {
4181 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4182 wq->name);
4183 goto use_dfl_pwq;
4184 }
4185
4186 /* Install the new pwq. */
4187 mutex_lock(&wq->mutex);
4188 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4189 goto out_unlock;
4190
4191 use_dfl_pwq:
4192 mutex_lock(&wq->mutex);
4193 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4194 get_pwq(wq->dfl_pwq);
4195 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4196 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4197 out_unlock:
4198 mutex_unlock(&wq->mutex);
4199 put_pwq_unlocked(old_pwq);
4200 }
4201
alloc_and_link_pwqs(struct workqueue_struct * wq)4202 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4203 {
4204 bool highpri = wq->flags & WQ_HIGHPRI;
4205 int cpu, ret;
4206
4207 if (!(wq->flags & WQ_UNBOUND)) {
4208 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4209 if (!wq->cpu_pwqs)
4210 return -ENOMEM;
4211
4212 for_each_possible_cpu(cpu) {
4213 struct pool_workqueue *pwq =
4214 per_cpu_ptr(wq->cpu_pwqs, cpu);
4215 struct worker_pool *cpu_pools =
4216 per_cpu(cpu_worker_pools, cpu);
4217
4218 init_pwq(pwq, wq, &cpu_pools[highpri]);
4219
4220 mutex_lock(&wq->mutex);
4221 link_pwq(pwq);
4222 mutex_unlock(&wq->mutex);
4223 }
4224 return 0;
4225 }
4226
4227 get_online_cpus();
4228 if (wq->flags & __WQ_ORDERED) {
4229 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4230 /* there should only be single pwq for ordering guarantee */
4231 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4232 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4233 "ordering guarantee broken for workqueue %s\n", wq->name);
4234 } else {
4235 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4236 }
4237 put_online_cpus();
4238
4239 return ret;
4240 }
4241
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)4242 static int wq_clamp_max_active(int max_active, unsigned int flags,
4243 const char *name)
4244 {
4245 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4246
4247 if (max_active < 1 || max_active > lim)
4248 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4249 max_active, name, 1, lim);
4250
4251 return clamp_val(max_active, 1, lim);
4252 }
4253
4254 /*
4255 * Workqueues which may be used during memory reclaim should have a rescuer
4256 * to guarantee forward progress.
4257 */
init_rescuer(struct workqueue_struct * wq)4258 static int init_rescuer(struct workqueue_struct *wq)
4259 {
4260 struct worker *rescuer;
4261 int ret;
4262
4263 if (!(wq->flags & WQ_MEM_RECLAIM))
4264 return 0;
4265
4266 rescuer = alloc_worker(NUMA_NO_NODE);
4267 if (!rescuer)
4268 return -ENOMEM;
4269
4270 rescuer->rescue_wq = wq;
4271 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4272 if (IS_ERR(rescuer->task)) {
4273 ret = PTR_ERR(rescuer->task);
4274 kfree(rescuer);
4275 return ret;
4276 }
4277
4278 wq->rescuer = rescuer;
4279 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4280 wake_up_process(rescuer->task);
4281
4282 return 0;
4283 }
4284
4285 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)4286 struct workqueue_struct *alloc_workqueue(const char *fmt,
4287 unsigned int flags,
4288 int max_active, ...)
4289 {
4290 size_t tbl_size = 0;
4291 va_list args;
4292 struct workqueue_struct *wq;
4293 struct pool_workqueue *pwq;
4294
4295 /*
4296 * Unbound && max_active == 1 used to imply ordered, which is no
4297 * longer the case on NUMA machines due to per-node pools. While
4298 * alloc_ordered_workqueue() is the right way to create an ordered
4299 * workqueue, keep the previous behavior to avoid subtle breakages
4300 * on NUMA.
4301 */
4302 if ((flags & WQ_UNBOUND) && max_active == 1)
4303 flags |= __WQ_ORDERED;
4304
4305 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4306 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4307 flags |= WQ_UNBOUND;
4308
4309 /* allocate wq and format name */
4310 if (flags & WQ_UNBOUND)
4311 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4312
4313 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4314 if (!wq)
4315 return NULL;
4316
4317 if (flags & WQ_UNBOUND) {
4318 wq->unbound_attrs = alloc_workqueue_attrs();
4319 if (!wq->unbound_attrs)
4320 goto err_free_wq;
4321 }
4322
4323 va_start(args, max_active);
4324 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4325 va_end(args);
4326
4327 max_active = max_active ?: WQ_DFL_ACTIVE;
4328 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4329
4330 /* init wq */
4331 wq->flags = flags;
4332 wq->saved_max_active = max_active;
4333 mutex_init(&wq->mutex);
4334 atomic_set(&wq->nr_pwqs_to_flush, 0);
4335 INIT_LIST_HEAD(&wq->pwqs);
4336 INIT_LIST_HEAD(&wq->flusher_queue);
4337 INIT_LIST_HEAD(&wq->flusher_overflow);
4338 INIT_LIST_HEAD(&wq->maydays);
4339
4340 wq_init_lockdep(wq);
4341 INIT_LIST_HEAD(&wq->list);
4342
4343 if (alloc_and_link_pwqs(wq) < 0)
4344 goto err_unreg_lockdep;
4345
4346 if (wq_online && init_rescuer(wq) < 0)
4347 goto err_destroy;
4348
4349 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4350 goto err_destroy;
4351
4352 /*
4353 * wq_pool_mutex protects global freeze state and workqueues list.
4354 * Grab it, adjust max_active and add the new @wq to workqueues
4355 * list.
4356 */
4357 mutex_lock(&wq_pool_mutex);
4358
4359 mutex_lock(&wq->mutex);
4360 for_each_pwq(pwq, wq)
4361 pwq_adjust_max_active(pwq);
4362 mutex_unlock(&wq->mutex);
4363
4364 list_add_tail_rcu(&wq->list, &workqueues);
4365
4366 mutex_unlock(&wq_pool_mutex);
4367
4368 return wq;
4369
4370 err_unreg_lockdep:
4371 wq_unregister_lockdep(wq);
4372 wq_free_lockdep(wq);
4373 err_free_wq:
4374 free_workqueue_attrs(wq->unbound_attrs);
4375 kfree(wq);
4376 return NULL;
4377 err_destroy:
4378 destroy_workqueue(wq);
4379 return NULL;
4380 }
4381 EXPORT_SYMBOL_GPL(alloc_workqueue);
4382
pwq_busy(struct pool_workqueue * pwq)4383 static bool pwq_busy(struct pool_workqueue *pwq)
4384 {
4385 int i;
4386
4387 for (i = 0; i < WORK_NR_COLORS; i++)
4388 if (pwq->nr_in_flight[i])
4389 return true;
4390
4391 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4392 return true;
4393 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4394 return true;
4395
4396 return false;
4397 }
4398
4399 /**
4400 * destroy_workqueue - safely terminate a workqueue
4401 * @wq: target workqueue
4402 *
4403 * Safely destroy a workqueue. All work currently pending will be done first.
4404 */
destroy_workqueue(struct workqueue_struct * wq)4405 void destroy_workqueue(struct workqueue_struct *wq)
4406 {
4407 struct pool_workqueue *pwq;
4408 int node;
4409
4410 /*
4411 * Remove it from sysfs first so that sanity check failure doesn't
4412 * lead to sysfs name conflicts.
4413 */
4414 workqueue_sysfs_unregister(wq);
4415
4416 /* drain it before proceeding with destruction */
4417 drain_workqueue(wq);
4418
4419 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4420 if (wq->rescuer) {
4421 struct worker *rescuer = wq->rescuer;
4422
4423 /* this prevents new queueing */
4424 raw_spin_lock_irq(&wq_mayday_lock);
4425 wq->rescuer = NULL;
4426 raw_spin_unlock_irq(&wq_mayday_lock);
4427
4428 /* rescuer will empty maydays list before exiting */
4429 kthread_stop(rescuer->task);
4430 kfree(rescuer);
4431 }
4432
4433 /*
4434 * Sanity checks - grab all the locks so that we wait for all
4435 * in-flight operations which may do put_pwq().
4436 */
4437 mutex_lock(&wq_pool_mutex);
4438 mutex_lock(&wq->mutex);
4439 for_each_pwq(pwq, wq) {
4440 raw_spin_lock_irq(&pwq->pool->lock);
4441 if (WARN_ON(pwq_busy(pwq))) {
4442 pr_warn("%s: %s has the following busy pwq\n",
4443 __func__, wq->name);
4444 show_pwq(pwq);
4445 raw_spin_unlock_irq(&pwq->pool->lock);
4446 mutex_unlock(&wq->mutex);
4447 mutex_unlock(&wq_pool_mutex);
4448 show_workqueue_state();
4449 return;
4450 }
4451 raw_spin_unlock_irq(&pwq->pool->lock);
4452 }
4453 mutex_unlock(&wq->mutex);
4454
4455 /*
4456 * wq list is used to freeze wq, remove from list after
4457 * flushing is complete in case freeze races us.
4458 */
4459 list_del_rcu(&wq->list);
4460 mutex_unlock(&wq_pool_mutex);
4461
4462 if (!(wq->flags & WQ_UNBOUND)) {
4463 wq_unregister_lockdep(wq);
4464 /*
4465 * The base ref is never dropped on per-cpu pwqs. Directly
4466 * schedule RCU free.
4467 */
4468 call_rcu(&wq->rcu, rcu_free_wq);
4469 } else {
4470 /*
4471 * We're the sole accessor of @wq at this point. Directly
4472 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4473 * @wq will be freed when the last pwq is released.
4474 */
4475 for_each_node(node) {
4476 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4477 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4478 put_pwq_unlocked(pwq);
4479 }
4480
4481 /*
4482 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4483 * put. Don't access it afterwards.
4484 */
4485 pwq = wq->dfl_pwq;
4486 wq->dfl_pwq = NULL;
4487 put_pwq_unlocked(pwq);
4488 }
4489 }
4490 EXPORT_SYMBOL_GPL(destroy_workqueue);
4491
4492 /**
4493 * workqueue_set_max_active - adjust max_active of a workqueue
4494 * @wq: target workqueue
4495 * @max_active: new max_active value.
4496 *
4497 * Set max_active of @wq to @max_active.
4498 *
4499 * CONTEXT:
4500 * Don't call from IRQ context.
4501 */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4502 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4503 {
4504 struct pool_workqueue *pwq;
4505
4506 /* disallow meddling with max_active for ordered workqueues */
4507 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4508 return;
4509
4510 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4511
4512 mutex_lock(&wq->mutex);
4513
4514 wq->flags &= ~__WQ_ORDERED;
4515 wq->saved_max_active = max_active;
4516
4517 for_each_pwq(pwq, wq)
4518 pwq_adjust_max_active(pwq);
4519
4520 mutex_unlock(&wq->mutex);
4521 }
4522 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4523
4524 /**
4525 * current_work - retrieve %current task's work struct
4526 *
4527 * Determine if %current task is a workqueue worker and what it's working on.
4528 * Useful to find out the context that the %current task is running in.
4529 *
4530 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4531 */
current_work(void)4532 struct work_struct *current_work(void)
4533 {
4534 struct worker *worker = current_wq_worker();
4535
4536 return worker ? worker->current_work : NULL;
4537 }
4538 EXPORT_SYMBOL(current_work);
4539
4540 /**
4541 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4542 *
4543 * Determine whether %current is a workqueue rescuer. Can be used from
4544 * work functions to determine whether it's being run off the rescuer task.
4545 *
4546 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4547 */
current_is_workqueue_rescuer(void)4548 bool current_is_workqueue_rescuer(void)
4549 {
4550 struct worker *worker = current_wq_worker();
4551
4552 return worker && worker->rescue_wq;
4553 }
4554
4555 /**
4556 * workqueue_congested - test whether a workqueue is congested
4557 * @cpu: CPU in question
4558 * @wq: target workqueue
4559 *
4560 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4561 * no synchronization around this function and the test result is
4562 * unreliable and only useful as advisory hints or for debugging.
4563 *
4564 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4565 * Note that both per-cpu and unbound workqueues may be associated with
4566 * multiple pool_workqueues which have separate congested states. A
4567 * workqueue being congested on one CPU doesn't mean the workqueue is also
4568 * contested on other CPUs / NUMA nodes.
4569 *
4570 * Return:
4571 * %true if congested, %false otherwise.
4572 */
workqueue_congested(int cpu,struct workqueue_struct * wq)4573 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4574 {
4575 struct pool_workqueue *pwq;
4576 bool ret;
4577
4578 rcu_read_lock();
4579 preempt_disable();
4580
4581 if (cpu == WORK_CPU_UNBOUND)
4582 cpu = smp_processor_id();
4583
4584 if (!(wq->flags & WQ_UNBOUND))
4585 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4586 else
4587 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4588
4589 ret = !list_empty(&pwq->delayed_works);
4590 preempt_enable();
4591 rcu_read_unlock();
4592
4593 return ret;
4594 }
4595 EXPORT_SYMBOL_GPL(workqueue_congested);
4596
4597 /**
4598 * work_busy - test whether a work is currently pending or running
4599 * @work: the work to be tested
4600 *
4601 * Test whether @work is currently pending or running. There is no
4602 * synchronization around this function and the test result is
4603 * unreliable and only useful as advisory hints or for debugging.
4604 *
4605 * Return:
4606 * OR'd bitmask of WORK_BUSY_* bits.
4607 */
work_busy(struct work_struct * work)4608 unsigned int work_busy(struct work_struct *work)
4609 {
4610 struct worker_pool *pool;
4611 unsigned long flags;
4612 unsigned int ret = 0;
4613
4614 if (work_pending(work))
4615 ret |= WORK_BUSY_PENDING;
4616
4617 rcu_read_lock();
4618 pool = get_work_pool(work);
4619 if (pool) {
4620 raw_spin_lock_irqsave(&pool->lock, flags);
4621 if (find_worker_executing_work(pool, work))
4622 ret |= WORK_BUSY_RUNNING;
4623 raw_spin_unlock_irqrestore(&pool->lock, flags);
4624 }
4625 rcu_read_unlock();
4626
4627 return ret;
4628 }
4629 EXPORT_SYMBOL_GPL(work_busy);
4630
4631 /**
4632 * set_worker_desc - set description for the current work item
4633 * @fmt: printf-style format string
4634 * @...: arguments for the format string
4635 *
4636 * This function can be called by a running work function to describe what
4637 * the work item is about. If the worker task gets dumped, this
4638 * information will be printed out together to help debugging. The
4639 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4640 */
set_worker_desc(const char * fmt,...)4641 void set_worker_desc(const char *fmt, ...)
4642 {
4643 struct worker *worker = current_wq_worker();
4644 va_list args;
4645
4646 if (worker) {
4647 va_start(args, fmt);
4648 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4649 va_end(args);
4650 }
4651 }
4652 EXPORT_SYMBOL_GPL(set_worker_desc);
4653
4654 /**
4655 * print_worker_info - print out worker information and description
4656 * @log_lvl: the log level to use when printing
4657 * @task: target task
4658 *
4659 * If @task is a worker and currently executing a work item, print out the
4660 * name of the workqueue being serviced and worker description set with
4661 * set_worker_desc() by the currently executing work item.
4662 *
4663 * This function can be safely called on any task as long as the
4664 * task_struct itself is accessible. While safe, this function isn't
4665 * synchronized and may print out mixups or garbages of limited length.
4666 */
print_worker_info(const char * log_lvl,struct task_struct * task)4667 void print_worker_info(const char *log_lvl, struct task_struct *task)
4668 {
4669 work_func_t *fn = NULL;
4670 char name[WQ_NAME_LEN] = { };
4671 char desc[WORKER_DESC_LEN] = { };
4672 struct pool_workqueue *pwq = NULL;
4673 struct workqueue_struct *wq = NULL;
4674 struct worker *worker;
4675
4676 if (!(task->flags & PF_WQ_WORKER))
4677 return;
4678
4679 /*
4680 * This function is called without any synchronization and @task
4681 * could be in any state. Be careful with dereferences.
4682 */
4683 worker = kthread_probe_data(task);
4684
4685 /*
4686 * Carefully copy the associated workqueue's workfn, name and desc.
4687 * Keep the original last '\0' in case the original is garbage.
4688 */
4689 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4690 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4691 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4692 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4693 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4694
4695 if (fn || name[0] || desc[0]) {
4696 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4697 if (strcmp(name, desc))
4698 pr_cont(" (%s)", desc);
4699 pr_cont("\n");
4700 }
4701 }
4702
pr_cont_pool_info(struct worker_pool * pool)4703 static void pr_cont_pool_info(struct worker_pool *pool)
4704 {
4705 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4706 if (pool->node != NUMA_NO_NODE)
4707 pr_cont(" node=%d", pool->node);
4708 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4709 }
4710
pr_cont_work(bool comma,struct work_struct * work)4711 static void pr_cont_work(bool comma, struct work_struct *work)
4712 {
4713 if (work->func == wq_barrier_func) {
4714 struct wq_barrier *barr;
4715
4716 barr = container_of(work, struct wq_barrier, work);
4717
4718 pr_cont("%s BAR(%d)", comma ? "," : "",
4719 task_pid_nr(barr->task));
4720 } else {
4721 pr_cont("%s %ps", comma ? "," : "", work->func);
4722 }
4723 }
4724
show_pwq(struct pool_workqueue * pwq)4725 static void show_pwq(struct pool_workqueue *pwq)
4726 {
4727 struct worker_pool *pool = pwq->pool;
4728 struct work_struct *work;
4729 struct worker *worker;
4730 bool has_in_flight = false, has_pending = false;
4731 int bkt;
4732
4733 pr_info(" pwq %d:", pool->id);
4734 pr_cont_pool_info(pool);
4735
4736 pr_cont(" active=%d/%d refcnt=%d%s\n",
4737 pwq->nr_active, pwq->max_active, pwq->refcnt,
4738 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4739
4740 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4741 if (worker->current_pwq == pwq) {
4742 has_in_flight = true;
4743 break;
4744 }
4745 }
4746 if (has_in_flight) {
4747 bool comma = false;
4748
4749 pr_info(" in-flight:");
4750 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4751 if (worker->current_pwq != pwq)
4752 continue;
4753
4754 pr_cont("%s %d%s:%ps", comma ? "," : "",
4755 task_pid_nr(worker->task),
4756 worker->rescue_wq ? "(RESCUER)" : "",
4757 worker->current_func);
4758 list_for_each_entry(work, &worker->scheduled, entry)
4759 pr_cont_work(false, work);
4760 comma = true;
4761 }
4762 pr_cont("\n");
4763 }
4764
4765 list_for_each_entry(work, &pool->worklist, entry) {
4766 if (get_work_pwq(work) == pwq) {
4767 has_pending = true;
4768 break;
4769 }
4770 }
4771 if (has_pending) {
4772 bool comma = false;
4773
4774 pr_info(" pending:");
4775 list_for_each_entry(work, &pool->worklist, entry) {
4776 if (get_work_pwq(work) != pwq)
4777 continue;
4778
4779 pr_cont_work(comma, work);
4780 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4781 }
4782 pr_cont("\n");
4783 }
4784
4785 if (!list_empty(&pwq->delayed_works)) {
4786 bool comma = false;
4787
4788 pr_info(" delayed:");
4789 list_for_each_entry(work, &pwq->delayed_works, entry) {
4790 pr_cont_work(comma, work);
4791 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4792 }
4793 pr_cont("\n");
4794 }
4795 }
4796
4797 /**
4798 * show_workqueue_state - dump workqueue state
4799 *
4800 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4801 * all busy workqueues and pools.
4802 */
show_workqueue_state(void)4803 void show_workqueue_state(void)
4804 {
4805 struct workqueue_struct *wq;
4806 struct worker_pool *pool;
4807 unsigned long flags;
4808 int pi;
4809
4810 rcu_read_lock();
4811
4812 pr_info("Showing busy workqueues and worker pools:\n");
4813
4814 list_for_each_entry_rcu(wq, &workqueues, list) {
4815 struct pool_workqueue *pwq;
4816 bool idle = true;
4817
4818 for_each_pwq(pwq, wq) {
4819 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4820 idle = false;
4821 break;
4822 }
4823 }
4824 if (idle)
4825 continue;
4826
4827 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4828
4829 for_each_pwq(pwq, wq) {
4830 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4831 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4832 show_pwq(pwq);
4833 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4834 /*
4835 * We could be printing a lot from atomic context, e.g.
4836 * sysrq-t -> show_workqueue_state(). Avoid triggering
4837 * hard lockup.
4838 */
4839 touch_nmi_watchdog();
4840 }
4841 }
4842
4843 for_each_pool(pool, pi) {
4844 struct worker *worker;
4845 bool first = true;
4846
4847 raw_spin_lock_irqsave(&pool->lock, flags);
4848 if (pool->nr_workers == pool->nr_idle)
4849 goto next_pool;
4850
4851 pr_info("pool %d:", pool->id);
4852 pr_cont_pool_info(pool);
4853 pr_cont(" hung=%us workers=%d",
4854 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4855 pool->nr_workers);
4856 if (pool->manager)
4857 pr_cont(" manager: %d",
4858 task_pid_nr(pool->manager->task));
4859 list_for_each_entry(worker, &pool->idle_list, entry) {
4860 pr_cont(" %s%d", first ? "idle: " : "",
4861 task_pid_nr(worker->task));
4862 first = false;
4863 }
4864 pr_cont("\n");
4865 next_pool:
4866 raw_spin_unlock_irqrestore(&pool->lock, flags);
4867 /*
4868 * We could be printing a lot from atomic context, e.g.
4869 * sysrq-t -> show_workqueue_state(). Avoid triggering
4870 * hard lockup.
4871 */
4872 touch_nmi_watchdog();
4873 }
4874
4875 rcu_read_unlock();
4876 }
4877
4878 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)4879 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4880 {
4881 int off;
4882
4883 /* always show the actual comm */
4884 off = strscpy(buf, task->comm, size);
4885 if (off < 0)
4886 return;
4887
4888 /* stabilize PF_WQ_WORKER and worker pool association */
4889 mutex_lock(&wq_pool_attach_mutex);
4890
4891 if (task->flags & PF_WQ_WORKER) {
4892 struct worker *worker = kthread_data(task);
4893 struct worker_pool *pool = worker->pool;
4894
4895 if (pool) {
4896 raw_spin_lock_irq(&pool->lock);
4897 /*
4898 * ->desc tracks information (wq name or
4899 * set_worker_desc()) for the latest execution. If
4900 * current, prepend '+', otherwise '-'.
4901 */
4902 if (worker->desc[0] != '\0') {
4903 if (worker->current_work)
4904 scnprintf(buf + off, size - off, "+%s",
4905 worker->desc);
4906 else
4907 scnprintf(buf + off, size - off, "-%s",
4908 worker->desc);
4909 }
4910 raw_spin_unlock_irq(&pool->lock);
4911 }
4912 }
4913
4914 mutex_unlock(&wq_pool_attach_mutex);
4915 }
4916 EXPORT_SYMBOL_GPL(wq_worker_comm);
4917
4918 #ifdef CONFIG_SMP
4919
4920 /*
4921 * CPU hotplug.
4922 *
4923 * There are two challenges in supporting CPU hotplug. Firstly, there
4924 * are a lot of assumptions on strong associations among work, pwq and
4925 * pool which make migrating pending and scheduled works very
4926 * difficult to implement without impacting hot paths. Secondly,
4927 * worker pools serve mix of short, long and very long running works making
4928 * blocked draining impractical.
4929 *
4930 * This is solved by allowing the pools to be disassociated from the CPU
4931 * running as an unbound one and allowing it to be reattached later if the
4932 * cpu comes back online.
4933 */
4934
unbind_workers(int cpu)4935 static void unbind_workers(int cpu)
4936 {
4937 struct worker_pool *pool;
4938 struct worker *worker;
4939
4940 for_each_cpu_worker_pool(pool, cpu) {
4941 mutex_lock(&wq_pool_attach_mutex);
4942 raw_spin_lock_irq(&pool->lock);
4943
4944 /*
4945 * We've blocked all attach/detach operations. Make all workers
4946 * unbound and set DISASSOCIATED. Before this, all workers
4947 * except for the ones which are still executing works from
4948 * before the last CPU down must be on the cpu. After
4949 * this, they may become diasporas.
4950 */
4951 for_each_pool_worker(worker, pool)
4952 worker->flags |= WORKER_UNBOUND;
4953
4954 pool->flags |= POOL_DISASSOCIATED;
4955
4956 raw_spin_unlock_irq(&pool->lock);
4957 mutex_unlock(&wq_pool_attach_mutex);
4958
4959 /*
4960 * Call schedule() so that we cross rq->lock and thus can
4961 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4962 * This is necessary as scheduler callbacks may be invoked
4963 * from other cpus.
4964 */
4965 schedule();
4966
4967 /*
4968 * Sched callbacks are disabled now. Zap nr_running.
4969 * After this, nr_running stays zero and need_more_worker()
4970 * and keep_working() are always true as long as the
4971 * worklist is not empty. This pool now behaves as an
4972 * unbound (in terms of concurrency management) pool which
4973 * are served by workers tied to the pool.
4974 */
4975 atomic_set(&pool->nr_running, 0);
4976
4977 /*
4978 * With concurrency management just turned off, a busy
4979 * worker blocking could lead to lengthy stalls. Kick off
4980 * unbound chain execution of currently pending work items.
4981 */
4982 raw_spin_lock_irq(&pool->lock);
4983 wake_up_worker(pool);
4984 raw_spin_unlock_irq(&pool->lock);
4985 }
4986 }
4987
4988 /**
4989 * rebind_workers - rebind all workers of a pool to the associated CPU
4990 * @pool: pool of interest
4991 *
4992 * @pool->cpu is coming online. Rebind all workers to the CPU.
4993 */
rebind_workers(struct worker_pool * pool)4994 static void rebind_workers(struct worker_pool *pool)
4995 {
4996 struct worker *worker;
4997
4998 lockdep_assert_held(&wq_pool_attach_mutex);
4999
5000 /*
5001 * Restore CPU affinity of all workers. As all idle workers should
5002 * be on the run-queue of the associated CPU before any local
5003 * wake-ups for concurrency management happen, restore CPU affinity
5004 * of all workers first and then clear UNBOUND. As we're called
5005 * from CPU_ONLINE, the following shouldn't fail.
5006 */
5007 for_each_pool_worker(worker, pool)
5008 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5009 pool->attrs->cpumask) < 0);
5010
5011 raw_spin_lock_irq(&pool->lock);
5012
5013 pool->flags &= ~POOL_DISASSOCIATED;
5014
5015 for_each_pool_worker(worker, pool) {
5016 unsigned int worker_flags = worker->flags;
5017
5018 /*
5019 * A bound idle worker should actually be on the runqueue
5020 * of the associated CPU for local wake-ups targeting it to
5021 * work. Kick all idle workers so that they migrate to the
5022 * associated CPU. Doing this in the same loop as
5023 * replacing UNBOUND with REBOUND is safe as no worker will
5024 * be bound before @pool->lock is released.
5025 */
5026 if (worker_flags & WORKER_IDLE)
5027 wake_up_process(worker->task);
5028
5029 /*
5030 * We want to clear UNBOUND but can't directly call
5031 * worker_clr_flags() or adjust nr_running. Atomically
5032 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5033 * @worker will clear REBOUND using worker_clr_flags() when
5034 * it initiates the next execution cycle thus restoring
5035 * concurrency management. Note that when or whether
5036 * @worker clears REBOUND doesn't affect correctness.
5037 *
5038 * WRITE_ONCE() is necessary because @worker->flags may be
5039 * tested without holding any lock in
5040 * wq_worker_running(). Without it, NOT_RUNNING test may
5041 * fail incorrectly leading to premature concurrency
5042 * management operations.
5043 */
5044 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5045 worker_flags |= WORKER_REBOUND;
5046 worker_flags &= ~WORKER_UNBOUND;
5047 WRITE_ONCE(worker->flags, worker_flags);
5048 }
5049
5050 raw_spin_unlock_irq(&pool->lock);
5051 }
5052
5053 /**
5054 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5055 * @pool: unbound pool of interest
5056 * @cpu: the CPU which is coming up
5057 *
5058 * An unbound pool may end up with a cpumask which doesn't have any online
5059 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5060 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5061 * online CPU before, cpus_allowed of all its workers should be restored.
5062 */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)5063 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5064 {
5065 static cpumask_t cpumask;
5066 struct worker *worker;
5067
5068 lockdep_assert_held(&wq_pool_attach_mutex);
5069
5070 /* is @cpu allowed for @pool? */
5071 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5072 return;
5073
5074 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5075
5076 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5077 for_each_pool_worker(worker, pool)
5078 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5079 }
5080
workqueue_prepare_cpu(unsigned int cpu)5081 int workqueue_prepare_cpu(unsigned int cpu)
5082 {
5083 struct worker_pool *pool;
5084
5085 for_each_cpu_worker_pool(pool, cpu) {
5086 if (pool->nr_workers)
5087 continue;
5088 if (!create_worker(pool))
5089 return -ENOMEM;
5090 }
5091 return 0;
5092 }
5093
workqueue_online_cpu(unsigned int cpu)5094 int workqueue_online_cpu(unsigned int cpu)
5095 {
5096 struct worker_pool *pool;
5097 struct workqueue_struct *wq;
5098 int pi;
5099
5100 mutex_lock(&wq_pool_mutex);
5101
5102 for_each_pool(pool, pi) {
5103 mutex_lock(&wq_pool_attach_mutex);
5104
5105 if (pool->cpu == cpu)
5106 rebind_workers(pool);
5107 else if (pool->cpu < 0)
5108 restore_unbound_workers_cpumask(pool, cpu);
5109
5110 mutex_unlock(&wq_pool_attach_mutex);
5111 }
5112
5113 /* update NUMA affinity of unbound workqueues */
5114 list_for_each_entry(wq, &workqueues, list)
5115 wq_update_unbound_numa(wq, cpu, true);
5116
5117 mutex_unlock(&wq_pool_mutex);
5118 return 0;
5119 }
5120
workqueue_offline_cpu(unsigned int cpu)5121 int workqueue_offline_cpu(unsigned int cpu)
5122 {
5123 struct workqueue_struct *wq;
5124
5125 /* unbinding per-cpu workers should happen on the local CPU */
5126 if (WARN_ON(cpu != smp_processor_id()))
5127 return -1;
5128
5129 unbind_workers(cpu);
5130
5131 /* update NUMA affinity of unbound workqueues */
5132 mutex_lock(&wq_pool_mutex);
5133 list_for_each_entry(wq, &workqueues, list)
5134 wq_update_unbound_numa(wq, cpu, false);
5135 mutex_unlock(&wq_pool_mutex);
5136
5137 return 0;
5138 }
5139
5140 struct work_for_cpu {
5141 struct work_struct work;
5142 long (*fn)(void *);
5143 void *arg;
5144 long ret;
5145 };
5146
work_for_cpu_fn(struct work_struct * work)5147 static void work_for_cpu_fn(struct work_struct *work)
5148 {
5149 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5150
5151 wfc->ret = wfc->fn(wfc->arg);
5152 }
5153
5154 /**
5155 * work_on_cpu - run a function in thread context on a particular cpu
5156 * @cpu: the cpu to run on
5157 * @fn: the function to run
5158 * @arg: the function arg
5159 *
5160 * It is up to the caller to ensure that the cpu doesn't go offline.
5161 * The caller must not hold any locks which would prevent @fn from completing.
5162 *
5163 * Return: The value @fn returns.
5164 */
work_on_cpu(int cpu,long (* fn)(void *),void * arg)5165 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5166 {
5167 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5168
5169 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5170 schedule_work_on(cpu, &wfc.work);
5171 flush_work(&wfc.work);
5172 destroy_work_on_stack(&wfc.work);
5173 return wfc.ret;
5174 }
5175 EXPORT_SYMBOL_GPL(work_on_cpu);
5176
5177 /**
5178 * work_on_cpu_safe - run a function in thread context on a particular cpu
5179 * @cpu: the cpu to run on
5180 * @fn: the function to run
5181 * @arg: the function argument
5182 *
5183 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5184 * any locks which would prevent @fn from completing.
5185 *
5186 * Return: The value @fn returns.
5187 */
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)5188 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5189 {
5190 long ret = -ENODEV;
5191
5192 get_online_cpus();
5193 if (cpu_online(cpu))
5194 ret = work_on_cpu(cpu, fn, arg);
5195 put_online_cpus();
5196 return ret;
5197 }
5198 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5199 #endif /* CONFIG_SMP */
5200
5201 #ifdef CONFIG_FREEZER
5202
5203 /**
5204 * freeze_workqueues_begin - begin freezing workqueues
5205 *
5206 * Start freezing workqueues. After this function returns, all freezable
5207 * workqueues will queue new works to their delayed_works list instead of
5208 * pool->worklist.
5209 *
5210 * CONTEXT:
5211 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5212 */
freeze_workqueues_begin(void)5213 void freeze_workqueues_begin(void)
5214 {
5215 struct workqueue_struct *wq;
5216 struct pool_workqueue *pwq;
5217
5218 mutex_lock(&wq_pool_mutex);
5219
5220 WARN_ON_ONCE(workqueue_freezing);
5221 workqueue_freezing = true;
5222
5223 list_for_each_entry(wq, &workqueues, list) {
5224 mutex_lock(&wq->mutex);
5225 for_each_pwq(pwq, wq)
5226 pwq_adjust_max_active(pwq);
5227 mutex_unlock(&wq->mutex);
5228 }
5229
5230 mutex_unlock(&wq_pool_mutex);
5231 }
5232
5233 /**
5234 * freeze_workqueues_busy - are freezable workqueues still busy?
5235 *
5236 * Check whether freezing is complete. This function must be called
5237 * between freeze_workqueues_begin() and thaw_workqueues().
5238 *
5239 * CONTEXT:
5240 * Grabs and releases wq_pool_mutex.
5241 *
5242 * Return:
5243 * %true if some freezable workqueues are still busy. %false if freezing
5244 * is complete.
5245 */
freeze_workqueues_busy(void)5246 bool freeze_workqueues_busy(void)
5247 {
5248 bool busy = false;
5249 struct workqueue_struct *wq;
5250 struct pool_workqueue *pwq;
5251
5252 mutex_lock(&wq_pool_mutex);
5253
5254 WARN_ON_ONCE(!workqueue_freezing);
5255
5256 list_for_each_entry(wq, &workqueues, list) {
5257 if (!(wq->flags & WQ_FREEZABLE))
5258 continue;
5259 /*
5260 * nr_active is monotonically decreasing. It's safe
5261 * to peek without lock.
5262 */
5263 rcu_read_lock();
5264 for_each_pwq(pwq, wq) {
5265 WARN_ON_ONCE(pwq->nr_active < 0);
5266 if (pwq->nr_active) {
5267 busy = true;
5268 rcu_read_unlock();
5269 goto out_unlock;
5270 }
5271 }
5272 rcu_read_unlock();
5273 }
5274 out_unlock:
5275 mutex_unlock(&wq_pool_mutex);
5276 return busy;
5277 }
5278
5279 /**
5280 * thaw_workqueues - thaw workqueues
5281 *
5282 * Thaw workqueues. Normal queueing is restored and all collected
5283 * frozen works are transferred to their respective pool worklists.
5284 *
5285 * CONTEXT:
5286 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5287 */
thaw_workqueues(void)5288 void thaw_workqueues(void)
5289 {
5290 struct workqueue_struct *wq;
5291 struct pool_workqueue *pwq;
5292
5293 mutex_lock(&wq_pool_mutex);
5294
5295 if (!workqueue_freezing)
5296 goto out_unlock;
5297
5298 workqueue_freezing = false;
5299
5300 /* restore max_active and repopulate worklist */
5301 list_for_each_entry(wq, &workqueues, list) {
5302 mutex_lock(&wq->mutex);
5303 for_each_pwq(pwq, wq)
5304 pwq_adjust_max_active(pwq);
5305 mutex_unlock(&wq->mutex);
5306 }
5307
5308 out_unlock:
5309 mutex_unlock(&wq_pool_mutex);
5310 }
5311 #endif /* CONFIG_FREEZER */
5312
workqueue_apply_unbound_cpumask(void)5313 static int workqueue_apply_unbound_cpumask(void)
5314 {
5315 LIST_HEAD(ctxs);
5316 int ret = 0;
5317 struct workqueue_struct *wq;
5318 struct apply_wqattrs_ctx *ctx, *n;
5319
5320 lockdep_assert_held(&wq_pool_mutex);
5321
5322 list_for_each_entry(wq, &workqueues, list) {
5323 if (!(wq->flags & WQ_UNBOUND))
5324 continue;
5325 /* creating multiple pwqs breaks ordering guarantee */
5326 if (wq->flags & __WQ_ORDERED)
5327 continue;
5328
5329 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5330 if (!ctx) {
5331 ret = -ENOMEM;
5332 break;
5333 }
5334
5335 list_add_tail(&ctx->list, &ctxs);
5336 }
5337
5338 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5339 if (!ret)
5340 apply_wqattrs_commit(ctx);
5341 apply_wqattrs_cleanup(ctx);
5342 }
5343
5344 return ret;
5345 }
5346
5347 /**
5348 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5349 * @cpumask: the cpumask to set
5350 *
5351 * The low-level workqueues cpumask is a global cpumask that limits
5352 * the affinity of all unbound workqueues. This function check the @cpumask
5353 * and apply it to all unbound workqueues and updates all pwqs of them.
5354 *
5355 * Retun: 0 - Success
5356 * -EINVAL - Invalid @cpumask
5357 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5358 */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)5359 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5360 {
5361 int ret = -EINVAL;
5362 cpumask_var_t saved_cpumask;
5363
5364 /*
5365 * Not excluding isolated cpus on purpose.
5366 * If the user wishes to include them, we allow that.
5367 */
5368 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5369 if (!cpumask_empty(cpumask)) {
5370 apply_wqattrs_lock();
5371 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5372 ret = 0;
5373 goto out_unlock;
5374 }
5375
5376 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5377 ret = -ENOMEM;
5378 goto out_unlock;
5379 }
5380
5381 /* save the old wq_unbound_cpumask. */
5382 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5383
5384 /* update wq_unbound_cpumask at first and apply it to wqs. */
5385 cpumask_copy(wq_unbound_cpumask, cpumask);
5386 ret = workqueue_apply_unbound_cpumask();
5387
5388 /* restore the wq_unbound_cpumask when failed. */
5389 if (ret < 0)
5390 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5391
5392 free_cpumask_var(saved_cpumask);
5393 out_unlock:
5394 apply_wqattrs_unlock();
5395 }
5396
5397 return ret;
5398 }
5399
5400 #ifdef CONFIG_SYSFS
5401 /*
5402 * Workqueues with WQ_SYSFS flag set is visible to userland via
5403 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5404 * following attributes.
5405 *
5406 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5407 * max_active RW int : maximum number of in-flight work items
5408 *
5409 * Unbound workqueues have the following extra attributes.
5410 *
5411 * pool_ids RO int : the associated pool IDs for each node
5412 * nice RW int : nice value of the workers
5413 * cpumask RW mask : bitmask of allowed CPUs for the workers
5414 * numa RW bool : whether enable NUMA affinity
5415 */
5416 struct wq_device {
5417 struct workqueue_struct *wq;
5418 struct device dev;
5419 };
5420
dev_to_wq(struct device * dev)5421 static struct workqueue_struct *dev_to_wq(struct device *dev)
5422 {
5423 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5424
5425 return wq_dev->wq;
5426 }
5427
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)5428 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5429 char *buf)
5430 {
5431 struct workqueue_struct *wq = dev_to_wq(dev);
5432
5433 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5434 }
5435 static DEVICE_ATTR_RO(per_cpu);
5436
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)5437 static ssize_t max_active_show(struct device *dev,
5438 struct device_attribute *attr, char *buf)
5439 {
5440 struct workqueue_struct *wq = dev_to_wq(dev);
5441
5442 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5443 }
5444
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5445 static ssize_t max_active_store(struct device *dev,
5446 struct device_attribute *attr, const char *buf,
5447 size_t count)
5448 {
5449 struct workqueue_struct *wq = dev_to_wq(dev);
5450 int val;
5451
5452 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5453 return -EINVAL;
5454
5455 workqueue_set_max_active(wq, val);
5456 return count;
5457 }
5458 static DEVICE_ATTR_RW(max_active);
5459
5460 static struct attribute *wq_sysfs_attrs[] = {
5461 &dev_attr_per_cpu.attr,
5462 &dev_attr_max_active.attr,
5463 NULL,
5464 };
5465 ATTRIBUTE_GROUPS(wq_sysfs);
5466
wq_pool_ids_show(struct device * dev,struct device_attribute * attr,char * buf)5467 static ssize_t wq_pool_ids_show(struct device *dev,
5468 struct device_attribute *attr, char *buf)
5469 {
5470 struct workqueue_struct *wq = dev_to_wq(dev);
5471 const char *delim = "";
5472 int node, written = 0;
5473
5474 get_online_cpus();
5475 rcu_read_lock();
5476 for_each_node(node) {
5477 written += scnprintf(buf + written, PAGE_SIZE - written,
5478 "%s%d:%d", delim, node,
5479 unbound_pwq_by_node(wq, node)->pool->id);
5480 delim = " ";
5481 }
5482 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5483 rcu_read_unlock();
5484 put_online_cpus();
5485
5486 return written;
5487 }
5488
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)5489 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5490 char *buf)
5491 {
5492 struct workqueue_struct *wq = dev_to_wq(dev);
5493 int written;
5494
5495 mutex_lock(&wq->mutex);
5496 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5497 mutex_unlock(&wq->mutex);
5498
5499 return written;
5500 }
5501
5502 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)5503 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5504 {
5505 struct workqueue_attrs *attrs;
5506
5507 lockdep_assert_held(&wq_pool_mutex);
5508
5509 attrs = alloc_workqueue_attrs();
5510 if (!attrs)
5511 return NULL;
5512
5513 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5514 return attrs;
5515 }
5516
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5517 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5518 const char *buf, size_t count)
5519 {
5520 struct workqueue_struct *wq = dev_to_wq(dev);
5521 struct workqueue_attrs *attrs;
5522 int ret = -ENOMEM;
5523
5524 apply_wqattrs_lock();
5525
5526 attrs = wq_sysfs_prep_attrs(wq);
5527 if (!attrs)
5528 goto out_unlock;
5529
5530 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5531 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5532 ret = apply_workqueue_attrs_locked(wq, attrs);
5533 else
5534 ret = -EINVAL;
5535
5536 out_unlock:
5537 apply_wqattrs_unlock();
5538 free_workqueue_attrs(attrs);
5539 return ret ?: count;
5540 }
5541
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5542 static ssize_t wq_cpumask_show(struct device *dev,
5543 struct device_attribute *attr, char *buf)
5544 {
5545 struct workqueue_struct *wq = dev_to_wq(dev);
5546 int written;
5547
5548 mutex_lock(&wq->mutex);
5549 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5550 cpumask_pr_args(wq->unbound_attrs->cpumask));
5551 mutex_unlock(&wq->mutex);
5552 return written;
5553 }
5554
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5555 static ssize_t wq_cpumask_store(struct device *dev,
5556 struct device_attribute *attr,
5557 const char *buf, size_t count)
5558 {
5559 struct workqueue_struct *wq = dev_to_wq(dev);
5560 struct workqueue_attrs *attrs;
5561 int ret = -ENOMEM;
5562
5563 apply_wqattrs_lock();
5564
5565 attrs = wq_sysfs_prep_attrs(wq);
5566 if (!attrs)
5567 goto out_unlock;
5568
5569 ret = cpumask_parse(buf, attrs->cpumask);
5570 if (!ret)
5571 ret = apply_workqueue_attrs_locked(wq, attrs);
5572
5573 out_unlock:
5574 apply_wqattrs_unlock();
5575 free_workqueue_attrs(attrs);
5576 return ret ?: count;
5577 }
5578
wq_numa_show(struct device * dev,struct device_attribute * attr,char * buf)5579 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5580 char *buf)
5581 {
5582 struct workqueue_struct *wq = dev_to_wq(dev);
5583 int written;
5584
5585 mutex_lock(&wq->mutex);
5586 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5587 !wq->unbound_attrs->no_numa);
5588 mutex_unlock(&wq->mutex);
5589
5590 return written;
5591 }
5592
wq_numa_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5593 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5594 const char *buf, size_t count)
5595 {
5596 struct workqueue_struct *wq = dev_to_wq(dev);
5597 struct workqueue_attrs *attrs;
5598 int v, ret = -ENOMEM;
5599
5600 apply_wqattrs_lock();
5601
5602 attrs = wq_sysfs_prep_attrs(wq);
5603 if (!attrs)
5604 goto out_unlock;
5605
5606 ret = -EINVAL;
5607 if (sscanf(buf, "%d", &v) == 1) {
5608 attrs->no_numa = !v;
5609 ret = apply_workqueue_attrs_locked(wq, attrs);
5610 }
5611
5612 out_unlock:
5613 apply_wqattrs_unlock();
5614 free_workqueue_attrs(attrs);
5615 return ret ?: count;
5616 }
5617
5618 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5619 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5620 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5621 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5622 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5623 __ATTR_NULL,
5624 };
5625
5626 static struct bus_type wq_subsys = {
5627 .name = "workqueue",
5628 .dev_groups = wq_sysfs_groups,
5629 };
5630
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5631 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5632 struct device_attribute *attr, char *buf)
5633 {
5634 int written;
5635
5636 mutex_lock(&wq_pool_mutex);
5637 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5638 cpumask_pr_args(wq_unbound_cpumask));
5639 mutex_unlock(&wq_pool_mutex);
5640
5641 return written;
5642 }
5643
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5644 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5645 struct device_attribute *attr, const char *buf, size_t count)
5646 {
5647 cpumask_var_t cpumask;
5648 int ret;
5649
5650 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5651 return -ENOMEM;
5652
5653 ret = cpumask_parse(buf, cpumask);
5654 if (!ret)
5655 ret = workqueue_set_unbound_cpumask(cpumask);
5656
5657 free_cpumask_var(cpumask);
5658 return ret ? ret : count;
5659 }
5660
5661 static struct device_attribute wq_sysfs_cpumask_attr =
5662 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5663 wq_unbound_cpumask_store);
5664
wq_sysfs_init(void)5665 static int __init wq_sysfs_init(void)
5666 {
5667 int err;
5668
5669 err = subsys_virtual_register(&wq_subsys, NULL);
5670 if (err)
5671 return err;
5672
5673 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5674 }
5675 core_initcall(wq_sysfs_init);
5676
wq_device_release(struct device * dev)5677 static void wq_device_release(struct device *dev)
5678 {
5679 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5680
5681 kfree(wq_dev);
5682 }
5683
5684 /**
5685 * workqueue_sysfs_register - make a workqueue visible in sysfs
5686 * @wq: the workqueue to register
5687 *
5688 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5689 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5690 * which is the preferred method.
5691 *
5692 * Workqueue user should use this function directly iff it wants to apply
5693 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5694 * apply_workqueue_attrs() may race against userland updating the
5695 * attributes.
5696 *
5697 * Return: 0 on success, -errno on failure.
5698 */
workqueue_sysfs_register(struct workqueue_struct * wq)5699 int workqueue_sysfs_register(struct workqueue_struct *wq)
5700 {
5701 struct wq_device *wq_dev;
5702 int ret;
5703
5704 /*
5705 * Adjusting max_active or creating new pwqs by applying
5706 * attributes breaks ordering guarantee. Disallow exposing ordered
5707 * workqueues.
5708 */
5709 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5710 return -EINVAL;
5711
5712 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5713 if (!wq_dev)
5714 return -ENOMEM;
5715
5716 wq_dev->wq = wq;
5717 wq_dev->dev.bus = &wq_subsys;
5718 wq_dev->dev.release = wq_device_release;
5719 dev_set_name(&wq_dev->dev, "%s", wq->name);
5720
5721 /*
5722 * unbound_attrs are created separately. Suppress uevent until
5723 * everything is ready.
5724 */
5725 dev_set_uevent_suppress(&wq_dev->dev, true);
5726
5727 ret = device_register(&wq_dev->dev);
5728 if (ret) {
5729 put_device(&wq_dev->dev);
5730 wq->wq_dev = NULL;
5731 return ret;
5732 }
5733
5734 if (wq->flags & WQ_UNBOUND) {
5735 struct device_attribute *attr;
5736
5737 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5738 ret = device_create_file(&wq_dev->dev, attr);
5739 if (ret) {
5740 device_unregister(&wq_dev->dev);
5741 wq->wq_dev = NULL;
5742 return ret;
5743 }
5744 }
5745 }
5746
5747 dev_set_uevent_suppress(&wq_dev->dev, false);
5748 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5749 return 0;
5750 }
5751
5752 /**
5753 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5754 * @wq: the workqueue to unregister
5755 *
5756 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5757 */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5758 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5759 {
5760 struct wq_device *wq_dev = wq->wq_dev;
5761
5762 if (!wq->wq_dev)
5763 return;
5764
5765 wq->wq_dev = NULL;
5766 device_unregister(&wq_dev->dev);
5767 }
5768 #else /* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5769 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5770 #endif /* CONFIG_SYSFS */
5771
5772 /*
5773 * Workqueue watchdog.
5774 *
5775 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5776 * flush dependency, a concurrency managed work item which stays RUNNING
5777 * indefinitely. Workqueue stalls can be very difficult to debug as the
5778 * usual warning mechanisms don't trigger and internal workqueue state is
5779 * largely opaque.
5780 *
5781 * Workqueue watchdog monitors all worker pools periodically and dumps
5782 * state if some pools failed to make forward progress for a while where
5783 * forward progress is defined as the first item on ->worklist changing.
5784 *
5785 * This mechanism is controlled through the kernel parameter
5786 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5787 * corresponding sysfs parameter file.
5788 */
5789 #ifdef CONFIG_WQ_WATCHDOG
5790
5791 static unsigned long wq_watchdog_thresh = 30;
5792 static struct timer_list wq_watchdog_timer;
5793
5794 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5795 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5796
wq_watchdog_reset_touched(void)5797 static void wq_watchdog_reset_touched(void)
5798 {
5799 int cpu;
5800
5801 wq_watchdog_touched = jiffies;
5802 for_each_possible_cpu(cpu)
5803 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5804 }
5805
wq_watchdog_timer_fn(struct timer_list * unused)5806 static void wq_watchdog_timer_fn(struct timer_list *unused)
5807 {
5808 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5809 bool lockup_detected = false;
5810 unsigned long now = jiffies;
5811 struct worker_pool *pool;
5812 int pi;
5813
5814 if (!thresh)
5815 return;
5816
5817 rcu_read_lock();
5818
5819 for_each_pool(pool, pi) {
5820 unsigned long pool_ts, touched, ts;
5821
5822 if (list_empty(&pool->worklist))
5823 continue;
5824
5825 /*
5826 * If a virtual machine is stopped by the host it can look to
5827 * the watchdog like a stall.
5828 */
5829 kvm_check_and_clear_guest_paused();
5830
5831 /* get the latest of pool and touched timestamps */
5832 pool_ts = READ_ONCE(pool->watchdog_ts);
5833 touched = READ_ONCE(wq_watchdog_touched);
5834
5835 if (time_after(pool_ts, touched))
5836 ts = pool_ts;
5837 else
5838 ts = touched;
5839
5840 if (pool->cpu >= 0) {
5841 unsigned long cpu_touched =
5842 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5843 pool->cpu));
5844 if (time_after(cpu_touched, ts))
5845 ts = cpu_touched;
5846 }
5847
5848 /* did we stall? */
5849 if (time_after(now, ts + thresh)) {
5850 lockup_detected = true;
5851 pr_emerg("BUG: workqueue lockup - pool");
5852 pr_cont_pool_info(pool);
5853 pr_cont(" stuck for %us!\n",
5854 jiffies_to_msecs(now - pool_ts) / 1000);
5855 trace_android_vh_wq_lockup_pool(pool->cpu, pool_ts);
5856 }
5857 }
5858
5859 rcu_read_unlock();
5860
5861 if (lockup_detected)
5862 show_workqueue_state();
5863
5864 wq_watchdog_reset_touched();
5865 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5866 }
5867
wq_watchdog_touch(int cpu)5868 notrace void wq_watchdog_touch(int cpu)
5869 {
5870 if (cpu >= 0)
5871 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5872 else
5873 wq_watchdog_touched = jiffies;
5874 }
5875
wq_watchdog_set_thresh(unsigned long thresh)5876 static void wq_watchdog_set_thresh(unsigned long thresh)
5877 {
5878 wq_watchdog_thresh = 0;
5879 del_timer_sync(&wq_watchdog_timer);
5880
5881 if (thresh) {
5882 wq_watchdog_thresh = thresh;
5883 wq_watchdog_reset_touched();
5884 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5885 }
5886 }
5887
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)5888 static int wq_watchdog_param_set_thresh(const char *val,
5889 const struct kernel_param *kp)
5890 {
5891 unsigned long thresh;
5892 int ret;
5893
5894 ret = kstrtoul(val, 0, &thresh);
5895 if (ret)
5896 return ret;
5897
5898 if (system_wq)
5899 wq_watchdog_set_thresh(thresh);
5900 else
5901 wq_watchdog_thresh = thresh;
5902
5903 return 0;
5904 }
5905
5906 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5907 .set = wq_watchdog_param_set_thresh,
5908 .get = param_get_ulong,
5909 };
5910
5911 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5912 0644);
5913
wq_watchdog_init(void)5914 static void wq_watchdog_init(void)
5915 {
5916 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5917 wq_watchdog_set_thresh(wq_watchdog_thresh);
5918 }
5919
5920 #else /* CONFIG_WQ_WATCHDOG */
5921
wq_watchdog_init(void)5922 static inline void wq_watchdog_init(void) { }
5923
5924 #endif /* CONFIG_WQ_WATCHDOG */
5925
wq_numa_init(void)5926 static void __init wq_numa_init(void)
5927 {
5928 cpumask_var_t *tbl;
5929 int node, cpu;
5930
5931 if (num_possible_nodes() <= 1)
5932 return;
5933
5934 if (wq_disable_numa) {
5935 pr_info("workqueue: NUMA affinity support disabled\n");
5936 return;
5937 }
5938
5939 for_each_possible_cpu(cpu) {
5940 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5941 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5942 return;
5943 }
5944 }
5945
5946 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5947 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5948
5949 /*
5950 * We want masks of possible CPUs of each node which isn't readily
5951 * available. Build one from cpu_to_node() which should have been
5952 * fully initialized by now.
5953 */
5954 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5955 BUG_ON(!tbl);
5956
5957 for_each_node(node)
5958 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5959 node_online(node) ? node : NUMA_NO_NODE));
5960
5961 for_each_possible_cpu(cpu) {
5962 node = cpu_to_node(cpu);
5963 cpumask_set_cpu(cpu, tbl[node]);
5964 }
5965
5966 wq_numa_possible_cpumask = tbl;
5967 wq_numa_enabled = true;
5968 }
5969
5970 /**
5971 * workqueue_init_early - early init for workqueue subsystem
5972 *
5973 * This is the first half of two-staged workqueue subsystem initialization
5974 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5975 * idr are up. It sets up all the data structures and system workqueues
5976 * and allows early boot code to create workqueues and queue/cancel work
5977 * items. Actual work item execution starts only after kthreads can be
5978 * created and scheduled right before early initcalls.
5979 */
workqueue_init_early(void)5980 void __init workqueue_init_early(void)
5981 {
5982 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5983 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5984 int i, cpu;
5985
5986 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5987
5988 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5989 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5990
5991 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5992
5993 /* initialize CPU pools */
5994 for_each_possible_cpu(cpu) {
5995 struct worker_pool *pool;
5996
5997 i = 0;
5998 for_each_cpu_worker_pool(pool, cpu) {
5999 BUG_ON(init_worker_pool(pool));
6000 pool->cpu = cpu;
6001 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6002 pool->attrs->nice = std_nice[i++];
6003 pool->node = cpu_to_node(cpu);
6004
6005 /* alloc pool ID */
6006 mutex_lock(&wq_pool_mutex);
6007 BUG_ON(worker_pool_assign_id(pool));
6008 mutex_unlock(&wq_pool_mutex);
6009 }
6010 }
6011
6012 /* create default unbound and ordered wq attrs */
6013 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6014 struct workqueue_attrs *attrs;
6015
6016 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6017 attrs->nice = std_nice[i];
6018 unbound_std_wq_attrs[i] = attrs;
6019
6020 /*
6021 * An ordered wq should have only one pwq as ordering is
6022 * guaranteed by max_active which is enforced by pwqs.
6023 * Turn off NUMA so that dfl_pwq is used for all nodes.
6024 */
6025 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6026 attrs->nice = std_nice[i];
6027 attrs->no_numa = true;
6028 ordered_wq_attrs[i] = attrs;
6029 }
6030
6031 system_wq = alloc_workqueue("events", 0, 0);
6032 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6033 system_long_wq = alloc_workqueue("events_long", 0, 0);
6034 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6035 WQ_UNBOUND_MAX_ACTIVE);
6036 system_freezable_wq = alloc_workqueue("events_freezable",
6037 WQ_FREEZABLE, 0);
6038 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6039 WQ_POWER_EFFICIENT, 0);
6040 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6041 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6042 0);
6043 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6044 !system_unbound_wq || !system_freezable_wq ||
6045 !system_power_efficient_wq ||
6046 !system_freezable_power_efficient_wq);
6047 }
6048
6049 /**
6050 * workqueue_init - bring workqueue subsystem fully online
6051 *
6052 * This is the latter half of two-staged workqueue subsystem initialization
6053 * and invoked as soon as kthreads can be created and scheduled.
6054 * Workqueues have been created and work items queued on them, but there
6055 * are no kworkers executing the work items yet. Populate the worker pools
6056 * with the initial workers and enable future kworker creations.
6057 */
workqueue_init(void)6058 void __init workqueue_init(void)
6059 {
6060 struct workqueue_struct *wq;
6061 struct worker_pool *pool;
6062 int cpu, bkt;
6063
6064 /*
6065 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6066 * CPU to node mapping may not be available that early on some
6067 * archs such as power and arm64. As per-cpu pools created
6068 * previously could be missing node hint and unbound pools NUMA
6069 * affinity, fix them up.
6070 *
6071 * Also, while iterating workqueues, create rescuers if requested.
6072 */
6073 wq_numa_init();
6074
6075 mutex_lock(&wq_pool_mutex);
6076
6077 for_each_possible_cpu(cpu) {
6078 for_each_cpu_worker_pool(pool, cpu) {
6079 pool->node = cpu_to_node(cpu);
6080 }
6081 }
6082
6083 list_for_each_entry(wq, &workqueues, list) {
6084 wq_update_unbound_numa(wq, smp_processor_id(), true);
6085 WARN(init_rescuer(wq),
6086 "workqueue: failed to create early rescuer for %s",
6087 wq->name);
6088 }
6089
6090 mutex_unlock(&wq_pool_mutex);
6091
6092 /* create the initial workers */
6093 for_each_online_cpu(cpu) {
6094 for_each_cpu_worker_pool(pool, cpu) {
6095 pool->flags &= ~POOL_DISASSOCIATED;
6096 BUG_ON(!create_worker(pool));
6097 }
6098 }
6099
6100 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6101 BUG_ON(!create_worker(pool));
6102
6103 wq_online = true;
6104 wq_watchdog_init();
6105 }
6106