1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/idtentry.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mce.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/mwait.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/virtext.h>
50 #include <asm/vmx.h>
51
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "evmcs.h"
55 #include "irq.h"
56 #include "kvm_cache_regs.h"
57 #include "lapic.h"
58 #include "mmu.h"
59 #include "nested.h"
60 #include "pmu.h"
61 #include "trace.h"
62 #include "vmcs.h"
63 #include "vmcs12.h"
64 #include "vmx.h"
65 #include "x86.h"
66
67 MODULE_AUTHOR("Qumranet");
68 MODULE_LICENSE("GPL");
69
70 #ifdef MODULE
71 static const struct x86_cpu_id vmx_cpu_id[] = {
72 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
73 {}
74 };
75 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
76 #endif
77
78 bool __read_mostly enable_vpid = 1;
79 module_param_named(vpid, enable_vpid, bool, 0444);
80
81 static bool __read_mostly enable_vnmi = 1;
82 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
83
84 bool __read_mostly flexpriority_enabled = 1;
85 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
86
87 bool __read_mostly enable_ept = 1;
88 module_param_named(ept, enable_ept, bool, S_IRUGO);
89
90 bool __read_mostly enable_unrestricted_guest = 1;
91 module_param_named(unrestricted_guest,
92 enable_unrestricted_guest, bool, S_IRUGO);
93
94 bool __read_mostly enable_ept_ad_bits = 1;
95 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
96
97 static bool __read_mostly emulate_invalid_guest_state = true;
98 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
99
100 static bool __read_mostly fasteoi = 1;
101 module_param(fasteoi, bool, S_IRUGO);
102
103 bool __read_mostly enable_apicv = 1;
104 module_param(enable_apicv, bool, S_IRUGO);
105
106 /*
107 * If nested=1, nested virtualization is supported, i.e., guests may use
108 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
109 * use VMX instructions.
110 */
111 static bool __read_mostly nested = 1;
112 module_param(nested, bool, S_IRUGO);
113
114 bool __read_mostly enable_pml = 1;
115 module_param_named(pml, enable_pml, bool, S_IRUGO);
116
117 static bool __read_mostly dump_invalid_vmcs = 0;
118 module_param(dump_invalid_vmcs, bool, 0644);
119
120 #define MSR_BITMAP_MODE_X2APIC 1
121 #define MSR_BITMAP_MODE_X2APIC_APICV 2
122
123 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
124
125 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
126 static int __read_mostly cpu_preemption_timer_multi;
127 static bool __read_mostly enable_preemption_timer = 1;
128 #ifdef CONFIG_X86_64
129 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
130 #endif
131
132 extern bool __read_mostly allow_smaller_maxphyaddr;
133 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
134
135 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
136 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
137 #define KVM_VM_CR0_ALWAYS_ON \
138 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \
139 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
140
141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
144
145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
146
147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
148 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
149 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
150 RTIT_STATUS_BYTECNT))
151
152 /*
153 * List of MSRs that can be directly passed to the guest.
154 * In addition to these x2apic and PT MSRs are handled specially.
155 */
156 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
157 MSR_IA32_SPEC_CTRL,
158 MSR_IA32_PRED_CMD,
159 MSR_IA32_TSC,
160 #ifdef CONFIG_X86_64
161 MSR_FS_BASE,
162 MSR_GS_BASE,
163 MSR_KERNEL_GS_BASE,
164 #endif
165 MSR_IA32_SYSENTER_CS,
166 MSR_IA32_SYSENTER_ESP,
167 MSR_IA32_SYSENTER_EIP,
168 MSR_CORE_C1_RES,
169 MSR_CORE_C3_RESIDENCY,
170 MSR_CORE_C6_RESIDENCY,
171 MSR_CORE_C7_RESIDENCY,
172 };
173
174 /*
175 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
176 * ple_gap: upper bound on the amount of time between two successive
177 * executions of PAUSE in a loop. Also indicate if ple enabled.
178 * According to test, this time is usually smaller than 128 cycles.
179 * ple_window: upper bound on the amount of time a guest is allowed to execute
180 * in a PAUSE loop. Tests indicate that most spinlocks are held for
181 * less than 2^12 cycles
182 * Time is measured based on a counter that runs at the same rate as the TSC,
183 * refer SDM volume 3b section 21.6.13 & 22.1.3.
184 */
185 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
186 module_param(ple_gap, uint, 0444);
187
188 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
189 module_param(ple_window, uint, 0444);
190
191 /* Default doubles per-vcpu window every exit. */
192 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
193 module_param(ple_window_grow, uint, 0444);
194
195 /* Default resets per-vcpu window every exit to ple_window. */
196 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
197 module_param(ple_window_shrink, uint, 0444);
198
199 /* Default is to compute the maximum so we can never overflow. */
200 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
201 module_param(ple_window_max, uint, 0444);
202
203 /* Default is SYSTEM mode, 1 for host-guest mode */
204 int __read_mostly pt_mode = PT_MODE_SYSTEM;
205 module_param(pt_mode, int, S_IRUGO);
206
207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
209 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
210
211 /* Storage for pre module init parameter parsing */
212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
213
214 static const struct {
215 const char *option;
216 bool for_parse;
217 } vmentry_l1d_param[] = {
218 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
219 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
220 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
221 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
222 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
223 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
224 };
225
226 #define L1D_CACHE_ORDER 4
227 static void *vmx_l1d_flush_pages;
228
229 /* Control for disabling CPU Fill buffer clear */
230 static bool __read_mostly vmx_fb_clear_ctrl_available;
231
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)232 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
233 {
234 struct page *page;
235 unsigned int i;
236
237 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
238 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
239 return 0;
240 }
241
242 if (!enable_ept) {
243 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
244 return 0;
245 }
246
247 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
248 u64 msr;
249
250 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
251 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
252 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
253 return 0;
254 }
255 }
256
257 /* If set to auto use the default l1tf mitigation method */
258 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
259 switch (l1tf_mitigation) {
260 case L1TF_MITIGATION_OFF:
261 l1tf = VMENTER_L1D_FLUSH_NEVER;
262 break;
263 case L1TF_MITIGATION_FLUSH_NOWARN:
264 case L1TF_MITIGATION_FLUSH:
265 case L1TF_MITIGATION_FLUSH_NOSMT:
266 l1tf = VMENTER_L1D_FLUSH_COND;
267 break;
268 case L1TF_MITIGATION_FULL:
269 case L1TF_MITIGATION_FULL_FORCE:
270 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
271 break;
272 }
273 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
274 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
275 }
276
277 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
278 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
279 /*
280 * This allocation for vmx_l1d_flush_pages is not tied to a VM
281 * lifetime and so should not be charged to a memcg.
282 */
283 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
284 if (!page)
285 return -ENOMEM;
286 vmx_l1d_flush_pages = page_address(page);
287
288 /*
289 * Initialize each page with a different pattern in
290 * order to protect against KSM in the nested
291 * virtualization case.
292 */
293 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
294 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
295 PAGE_SIZE);
296 }
297 }
298
299 l1tf_vmx_mitigation = l1tf;
300
301 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
302 static_branch_enable(&vmx_l1d_should_flush);
303 else
304 static_branch_disable(&vmx_l1d_should_flush);
305
306 if (l1tf == VMENTER_L1D_FLUSH_COND)
307 static_branch_enable(&vmx_l1d_flush_cond);
308 else
309 static_branch_disable(&vmx_l1d_flush_cond);
310 return 0;
311 }
312
vmentry_l1d_flush_parse(const char * s)313 static int vmentry_l1d_flush_parse(const char *s)
314 {
315 unsigned int i;
316
317 if (s) {
318 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
319 if (vmentry_l1d_param[i].for_parse &&
320 sysfs_streq(s, vmentry_l1d_param[i].option))
321 return i;
322 }
323 }
324 return -EINVAL;
325 }
326
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)327 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
328 {
329 int l1tf, ret;
330
331 l1tf = vmentry_l1d_flush_parse(s);
332 if (l1tf < 0)
333 return l1tf;
334
335 if (!boot_cpu_has(X86_BUG_L1TF))
336 return 0;
337
338 /*
339 * Has vmx_init() run already? If not then this is the pre init
340 * parameter parsing. In that case just store the value and let
341 * vmx_init() do the proper setup after enable_ept has been
342 * established.
343 */
344 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
345 vmentry_l1d_flush_param = l1tf;
346 return 0;
347 }
348
349 mutex_lock(&vmx_l1d_flush_mutex);
350 ret = vmx_setup_l1d_flush(l1tf);
351 mutex_unlock(&vmx_l1d_flush_mutex);
352 return ret;
353 }
354
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)355 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
356 {
357 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
358 return sprintf(s, "???\n");
359
360 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
361 }
362
vmx_setup_fb_clear_ctrl(void)363 static void vmx_setup_fb_clear_ctrl(void)
364 {
365 u64 msr;
366
367 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
368 !boot_cpu_has_bug(X86_BUG_MDS) &&
369 !boot_cpu_has_bug(X86_BUG_TAA)) {
370 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
371 if (msr & ARCH_CAP_FB_CLEAR_CTRL)
372 vmx_fb_clear_ctrl_available = true;
373 }
374 }
375
vmx_disable_fb_clear(struct vcpu_vmx * vmx)376 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
377 {
378 u64 msr;
379
380 if (!vmx->disable_fb_clear)
381 return;
382
383 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
384 msr |= FB_CLEAR_DIS;
385 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
386 /* Cache the MSR value to avoid reading it later */
387 vmx->msr_ia32_mcu_opt_ctrl = msr;
388 }
389
vmx_enable_fb_clear(struct vcpu_vmx * vmx)390 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
391 {
392 if (!vmx->disable_fb_clear)
393 return;
394
395 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
396 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
397 }
398
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)399 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
400 {
401 vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
402
403 /*
404 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
405 * at VMEntry. Skip the MSR read/write when a guest has no use case to
406 * execute VERW.
407 */
408 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
409 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
410 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
411 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
412 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
413 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
414 vmx->disable_fb_clear = false;
415 }
416
417 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
418 .set = vmentry_l1d_flush_set,
419 .get = vmentry_l1d_flush_get,
420 };
421 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
422
423 static u32 vmx_segment_access_rights(struct kvm_segment *var);
424 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
425 u32 msr, int type);
426
427 void vmx_vmexit(void);
428
429 #define vmx_insn_failed(fmt...) \
430 do { \
431 WARN_ONCE(1, fmt); \
432 pr_warn_ratelimited(fmt); \
433 } while (0)
434
vmread_error(unsigned long field,bool fault)435 asmlinkage void vmread_error(unsigned long field, bool fault)
436 {
437 if (fault)
438 kvm_spurious_fault();
439 else
440 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
441 }
442
vmwrite_error(unsigned long field,unsigned long value)443 noinline void vmwrite_error(unsigned long field, unsigned long value)
444 {
445 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
446 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
447 }
448
vmclear_error(struct vmcs * vmcs,u64 phys_addr)449 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
450 {
451 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
452 }
453
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)454 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
455 {
456 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
457 }
458
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)459 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
460 {
461 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
462 ext, vpid, gva);
463 }
464
invept_error(unsigned long ext,u64 eptp,gpa_t gpa)465 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
466 {
467 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
468 ext, eptp, gpa);
469 }
470
471 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
472 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
473 /*
474 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
475 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
476 */
477 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
478
479 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
480 static DEFINE_SPINLOCK(vmx_vpid_lock);
481
482 struct vmcs_config vmcs_config;
483 struct vmx_capability vmx_capability;
484
485 #define VMX_SEGMENT_FIELD(seg) \
486 [VCPU_SREG_##seg] = { \
487 .selector = GUEST_##seg##_SELECTOR, \
488 .base = GUEST_##seg##_BASE, \
489 .limit = GUEST_##seg##_LIMIT, \
490 .ar_bytes = GUEST_##seg##_AR_BYTES, \
491 }
492
493 static const struct kvm_vmx_segment_field {
494 unsigned selector;
495 unsigned base;
496 unsigned limit;
497 unsigned ar_bytes;
498 } kvm_vmx_segment_fields[] = {
499 VMX_SEGMENT_FIELD(CS),
500 VMX_SEGMENT_FIELD(DS),
501 VMX_SEGMENT_FIELD(ES),
502 VMX_SEGMENT_FIELD(FS),
503 VMX_SEGMENT_FIELD(GS),
504 VMX_SEGMENT_FIELD(SS),
505 VMX_SEGMENT_FIELD(TR),
506 VMX_SEGMENT_FIELD(LDTR),
507 };
508
vmx_segment_cache_clear(struct vcpu_vmx * vmx)509 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
510 {
511 vmx->segment_cache.bitmask = 0;
512 }
513
514 static unsigned long host_idt_base;
515
516 /*
517 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
518 * will emulate SYSCALL in legacy mode if the vendor string in guest
519 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
520 * support this emulation, IA32_STAR must always be included in
521 * vmx_uret_msrs_list[], even in i386 builds.
522 */
523 static const u32 vmx_uret_msrs_list[] = {
524 #ifdef CONFIG_X86_64
525 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
526 #endif
527 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
528 MSR_IA32_TSX_CTRL,
529 };
530
531 #if IS_ENABLED(CONFIG_HYPERV)
532 static bool __read_mostly enlightened_vmcs = true;
533 module_param(enlightened_vmcs, bool, 0444);
534
535 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
check_ept_pointer_match(struct kvm * kvm)536 static void check_ept_pointer_match(struct kvm *kvm)
537 {
538 struct kvm_vcpu *vcpu;
539 u64 tmp_eptp = INVALID_PAGE;
540 int i;
541
542 kvm_for_each_vcpu(i, vcpu, kvm) {
543 if (!VALID_PAGE(tmp_eptp)) {
544 tmp_eptp = to_vmx(vcpu)->ept_pointer;
545 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
546 to_kvm_vmx(kvm)->ept_pointers_match
547 = EPT_POINTERS_MISMATCH;
548 return;
549 }
550 }
551
552 to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
553 }
554
kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list * flush,void * data)555 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
556 void *data)
557 {
558 struct kvm_tlb_range *range = data;
559
560 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
561 range->pages);
562 }
563
__hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_vcpu * vcpu,struct kvm_tlb_range * range)564 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
565 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
566 {
567 u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
568
569 /*
570 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
571 * of the base of EPT PML4 table, strip off EPT configuration
572 * information.
573 */
574 if (range)
575 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
576 kvm_fill_hv_flush_list_func, (void *)range);
577 else
578 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
579 }
580
hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_tlb_range * range)581 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
582 struct kvm_tlb_range *range)
583 {
584 struct kvm_vcpu *vcpu;
585 int ret = 0, i;
586
587 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
588
589 if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
590 check_ept_pointer_match(kvm);
591
592 if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
593 kvm_for_each_vcpu(i, vcpu, kvm) {
594 /* If ept_pointer is invalid pointer, bypass flush request. */
595 if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
596 ret |= __hv_remote_flush_tlb_with_range(
597 kvm, vcpu, range);
598 }
599 } else {
600 ret = __hv_remote_flush_tlb_with_range(kvm,
601 kvm_get_vcpu(kvm, 0), range);
602 }
603
604 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
605 return ret;
606 }
hv_remote_flush_tlb(struct kvm * kvm)607 static int hv_remote_flush_tlb(struct kvm *kvm)
608 {
609 return hv_remote_flush_tlb_with_range(kvm, NULL);
610 }
611
hv_enable_direct_tlbflush(struct kvm_vcpu * vcpu)612 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
613 {
614 struct hv_enlightened_vmcs *evmcs;
615 struct hv_partition_assist_pg **p_hv_pa_pg =
616 &vcpu->kvm->arch.hyperv.hv_pa_pg;
617 /*
618 * Synthetic VM-Exit is not enabled in current code and so All
619 * evmcs in singe VM shares same assist page.
620 */
621 if (!*p_hv_pa_pg)
622 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
623
624 if (!*p_hv_pa_pg)
625 return -ENOMEM;
626
627 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
628
629 evmcs->partition_assist_page =
630 __pa(*p_hv_pa_pg);
631 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
632 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
633
634 return 0;
635 }
636
637 #endif /* IS_ENABLED(CONFIG_HYPERV) */
638
639 /*
640 * Comment's format: document - errata name - stepping - processor name.
641 * Refer from
642 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
643 */
644 static u32 vmx_preemption_cpu_tfms[] = {
645 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
646 0x000206E6,
647 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
648 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
649 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
650 0x00020652,
651 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
652 0x00020655,
653 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
654 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
655 /*
656 * 320767.pdf - AAP86 - B1 -
657 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
658 */
659 0x000106E5,
660 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
661 0x000106A0,
662 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
663 0x000106A1,
664 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
665 0x000106A4,
666 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
667 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
668 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
669 0x000106A5,
670 /* Xeon E3-1220 V2 */
671 0x000306A8,
672 };
673
cpu_has_broken_vmx_preemption_timer(void)674 static inline bool cpu_has_broken_vmx_preemption_timer(void)
675 {
676 u32 eax = cpuid_eax(0x00000001), i;
677
678 /* Clear the reserved bits */
679 eax &= ~(0x3U << 14 | 0xfU << 28);
680 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
681 if (eax == vmx_preemption_cpu_tfms[i])
682 return true;
683
684 return false;
685 }
686
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)687 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
688 {
689 return flexpriority_enabled && lapic_in_kernel(vcpu);
690 }
691
report_flexpriority(void)692 static inline bool report_flexpriority(void)
693 {
694 return flexpriority_enabled;
695 }
696
possible_passthrough_msr_slot(u32 msr)697 static int possible_passthrough_msr_slot(u32 msr)
698 {
699 u32 i;
700
701 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
702 if (vmx_possible_passthrough_msrs[i] == msr)
703 return i;
704
705 return -ENOENT;
706 }
707
is_valid_passthrough_msr(u32 msr)708 static bool is_valid_passthrough_msr(u32 msr)
709 {
710 bool r;
711
712 switch (msr) {
713 case 0x800 ... 0x8ff:
714 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
715 return true;
716 case MSR_IA32_RTIT_STATUS:
717 case MSR_IA32_RTIT_OUTPUT_BASE:
718 case MSR_IA32_RTIT_OUTPUT_MASK:
719 case MSR_IA32_RTIT_CR3_MATCH:
720 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
721 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
722 return true;
723 }
724
725 r = possible_passthrough_msr_slot(msr) != -ENOENT;
726
727 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
728
729 return r;
730 }
731
__vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)732 static inline int __vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
733 {
734 int i;
735
736 for (i = 0; i < vmx->nr_uret_msrs; ++i)
737 if (vmx_uret_msrs_list[vmx->guest_uret_msrs[i].slot] == msr)
738 return i;
739 return -1;
740 }
741
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)742 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
743 {
744 int i;
745
746 i = __vmx_find_uret_msr(vmx, msr);
747 if (i >= 0)
748 return &vmx->guest_uret_msrs[i];
749 return NULL;
750 }
751
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)752 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
753 struct vmx_uret_msr *msr, u64 data)
754 {
755 int ret = 0;
756
757 u64 old_msr_data = msr->data;
758 msr->data = data;
759 if (msr - vmx->guest_uret_msrs < vmx->nr_active_uret_msrs) {
760 preempt_disable();
761 ret = kvm_set_user_return_msr(msr->slot, msr->data, msr->mask);
762 preempt_enable();
763 if (ret)
764 msr->data = old_msr_data;
765 }
766 return ret;
767 }
768
769 #ifdef CONFIG_KEXEC_CORE
crash_vmclear_local_loaded_vmcss(void)770 static void crash_vmclear_local_loaded_vmcss(void)
771 {
772 int cpu = raw_smp_processor_id();
773 struct loaded_vmcs *v;
774
775 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
776 loaded_vmcss_on_cpu_link)
777 vmcs_clear(v->vmcs);
778 }
779 #endif /* CONFIG_KEXEC_CORE */
780
__loaded_vmcs_clear(void * arg)781 static void __loaded_vmcs_clear(void *arg)
782 {
783 struct loaded_vmcs *loaded_vmcs = arg;
784 int cpu = raw_smp_processor_id();
785
786 if (loaded_vmcs->cpu != cpu)
787 return; /* vcpu migration can race with cpu offline */
788 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
789 per_cpu(current_vmcs, cpu) = NULL;
790
791 vmcs_clear(loaded_vmcs->vmcs);
792 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
793 vmcs_clear(loaded_vmcs->shadow_vmcs);
794
795 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
796
797 /*
798 * Ensure all writes to loaded_vmcs, including deleting it from its
799 * current percpu list, complete before setting loaded_vmcs->vcpu to
800 * -1, otherwise a different cpu can see vcpu == -1 first and add
801 * loaded_vmcs to its percpu list before it's deleted from this cpu's
802 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
803 */
804 smp_wmb();
805
806 loaded_vmcs->cpu = -1;
807 loaded_vmcs->launched = 0;
808 }
809
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)810 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
811 {
812 int cpu = loaded_vmcs->cpu;
813
814 if (cpu != -1)
815 smp_call_function_single(cpu,
816 __loaded_vmcs_clear, loaded_vmcs, 1);
817 }
818
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)819 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
820 unsigned field)
821 {
822 bool ret;
823 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
824
825 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
826 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
827 vmx->segment_cache.bitmask = 0;
828 }
829 ret = vmx->segment_cache.bitmask & mask;
830 vmx->segment_cache.bitmask |= mask;
831 return ret;
832 }
833
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)834 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
835 {
836 u16 *p = &vmx->segment_cache.seg[seg].selector;
837
838 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
839 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
840 return *p;
841 }
842
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)843 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
844 {
845 ulong *p = &vmx->segment_cache.seg[seg].base;
846
847 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
848 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
849 return *p;
850 }
851
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)852 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
853 {
854 u32 *p = &vmx->segment_cache.seg[seg].limit;
855
856 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
857 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
858 return *p;
859 }
860
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)861 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
862 {
863 u32 *p = &vmx->segment_cache.seg[seg].ar;
864
865 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
866 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
867 return *p;
868 }
869
update_exception_bitmap(struct kvm_vcpu * vcpu)870 void update_exception_bitmap(struct kvm_vcpu *vcpu)
871 {
872 u32 eb;
873
874 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
875 (1u << DB_VECTOR) | (1u << AC_VECTOR);
876 /*
877 * Guest access to VMware backdoor ports could legitimately
878 * trigger #GP because of TSS I/O permission bitmap.
879 * We intercept those #GP and allow access to them anyway
880 * as VMware does.
881 */
882 if (enable_vmware_backdoor)
883 eb |= (1u << GP_VECTOR);
884 if ((vcpu->guest_debug &
885 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
886 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
887 eb |= 1u << BP_VECTOR;
888 if (to_vmx(vcpu)->rmode.vm86_active)
889 eb = ~0;
890 if (!vmx_need_pf_intercept(vcpu))
891 eb &= ~(1u << PF_VECTOR);
892
893 /* When we are running a nested L2 guest and L1 specified for it a
894 * certain exception bitmap, we must trap the same exceptions and pass
895 * them to L1. When running L2, we will only handle the exceptions
896 * specified above if L1 did not want them.
897 */
898 if (is_guest_mode(vcpu))
899 eb |= get_vmcs12(vcpu)->exception_bitmap;
900 else {
901 /*
902 * If EPT is enabled, #PF is only trapped if MAXPHYADDR is mismatched
903 * between guest and host. In that case we only care about present
904 * faults. For vmcs02, however, PFEC_MASK and PFEC_MATCH are set in
905 * prepare_vmcs02_rare.
906 */
907 bool selective_pf_trap = enable_ept && (eb & (1u << PF_VECTOR));
908 int mask = selective_pf_trap ? PFERR_PRESENT_MASK : 0;
909 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
910 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, mask);
911 }
912
913 vmcs_write32(EXCEPTION_BITMAP, eb);
914 }
915
916 /*
917 * Check if MSR is intercepted for currently loaded MSR bitmap.
918 */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)919 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
920 {
921 unsigned long *msr_bitmap;
922 int f = sizeof(unsigned long);
923
924 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
925 return true;
926
927 msr_bitmap = vmx->loaded_vmcs->msr_bitmap;
928
929 if (msr <= 0x1fff) {
930 return !!test_bit(msr, msr_bitmap + 0x800 / f);
931 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
932 msr &= 0x1fff;
933 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
934 }
935
936 return true;
937 }
938
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)939 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
940 {
941 unsigned int flags = 0;
942
943 if (vmx->loaded_vmcs->launched)
944 flags |= VMX_RUN_VMRESUME;
945
946 /*
947 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
948 * to change it directly without causing a vmexit. In that case read
949 * it after vmexit and store it in vmx->spec_ctrl.
950 */
951 if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)))
952 flags |= VMX_RUN_SAVE_SPEC_CTRL;
953
954 return flags;
955 }
956
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)957 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
958 unsigned long entry, unsigned long exit)
959 {
960 vm_entry_controls_clearbit(vmx, entry);
961 vm_exit_controls_clearbit(vmx, exit);
962 }
963
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)964 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
965 {
966 unsigned int i;
967
968 for (i = 0; i < m->nr; ++i) {
969 if (m->val[i].index == msr)
970 return i;
971 }
972 return -ENOENT;
973 }
974
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)975 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
976 {
977 int i;
978 struct msr_autoload *m = &vmx->msr_autoload;
979
980 switch (msr) {
981 case MSR_EFER:
982 if (cpu_has_load_ia32_efer()) {
983 clear_atomic_switch_msr_special(vmx,
984 VM_ENTRY_LOAD_IA32_EFER,
985 VM_EXIT_LOAD_IA32_EFER);
986 return;
987 }
988 break;
989 case MSR_CORE_PERF_GLOBAL_CTRL:
990 if (cpu_has_load_perf_global_ctrl()) {
991 clear_atomic_switch_msr_special(vmx,
992 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
993 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
994 return;
995 }
996 break;
997 }
998 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
999 if (i < 0)
1000 goto skip_guest;
1001 --m->guest.nr;
1002 m->guest.val[i] = m->guest.val[m->guest.nr];
1003 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1004
1005 skip_guest:
1006 i = vmx_find_loadstore_msr_slot(&m->host, msr);
1007 if (i < 0)
1008 return;
1009
1010 --m->host.nr;
1011 m->host.val[i] = m->host.val[m->host.nr];
1012 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1013 }
1014
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1015 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1016 unsigned long entry, unsigned long exit,
1017 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1018 u64 guest_val, u64 host_val)
1019 {
1020 vmcs_write64(guest_val_vmcs, guest_val);
1021 if (host_val_vmcs != HOST_IA32_EFER)
1022 vmcs_write64(host_val_vmcs, host_val);
1023 vm_entry_controls_setbit(vmx, entry);
1024 vm_exit_controls_setbit(vmx, exit);
1025 }
1026
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)1027 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1028 u64 guest_val, u64 host_val, bool entry_only)
1029 {
1030 int i, j = 0;
1031 struct msr_autoload *m = &vmx->msr_autoload;
1032
1033 switch (msr) {
1034 case MSR_EFER:
1035 if (cpu_has_load_ia32_efer()) {
1036 add_atomic_switch_msr_special(vmx,
1037 VM_ENTRY_LOAD_IA32_EFER,
1038 VM_EXIT_LOAD_IA32_EFER,
1039 GUEST_IA32_EFER,
1040 HOST_IA32_EFER,
1041 guest_val, host_val);
1042 return;
1043 }
1044 break;
1045 case MSR_CORE_PERF_GLOBAL_CTRL:
1046 if (cpu_has_load_perf_global_ctrl()) {
1047 add_atomic_switch_msr_special(vmx,
1048 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1049 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1050 GUEST_IA32_PERF_GLOBAL_CTRL,
1051 HOST_IA32_PERF_GLOBAL_CTRL,
1052 guest_val, host_val);
1053 return;
1054 }
1055 break;
1056 case MSR_IA32_PEBS_ENABLE:
1057 /* PEBS needs a quiescent period after being disabled (to write
1058 * a record). Disabling PEBS through VMX MSR swapping doesn't
1059 * provide that period, so a CPU could write host's record into
1060 * guest's memory.
1061 */
1062 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1063 }
1064
1065 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1066 if (!entry_only)
1067 j = vmx_find_loadstore_msr_slot(&m->host, msr);
1068
1069 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1070 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1071 printk_once(KERN_WARNING "Not enough msr switch entries. "
1072 "Can't add msr %x\n", msr);
1073 return;
1074 }
1075 if (i < 0) {
1076 i = m->guest.nr++;
1077 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1078 }
1079 m->guest.val[i].index = msr;
1080 m->guest.val[i].value = guest_val;
1081
1082 if (entry_only)
1083 return;
1084
1085 if (j < 0) {
1086 j = m->host.nr++;
1087 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1088 }
1089 m->host.val[j].index = msr;
1090 m->host.val[j].value = host_val;
1091 }
1092
update_transition_efer(struct vcpu_vmx * vmx)1093 static bool update_transition_efer(struct vcpu_vmx *vmx)
1094 {
1095 u64 guest_efer = vmx->vcpu.arch.efer;
1096 u64 ignore_bits = 0;
1097 int i;
1098
1099 /* Shadow paging assumes NX to be available. */
1100 if (!enable_ept)
1101 guest_efer |= EFER_NX;
1102
1103 /*
1104 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1105 */
1106 ignore_bits |= EFER_SCE;
1107 #ifdef CONFIG_X86_64
1108 ignore_bits |= EFER_LMA | EFER_LME;
1109 /* SCE is meaningful only in long mode on Intel */
1110 if (guest_efer & EFER_LMA)
1111 ignore_bits &= ~(u64)EFER_SCE;
1112 #endif
1113
1114 /*
1115 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1116 * On CPUs that support "load IA32_EFER", always switch EFER
1117 * atomically, since it's faster than switching it manually.
1118 */
1119 if (cpu_has_load_ia32_efer() ||
1120 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1121 if (!(guest_efer & EFER_LMA))
1122 guest_efer &= ~EFER_LME;
1123 if (guest_efer != host_efer)
1124 add_atomic_switch_msr(vmx, MSR_EFER,
1125 guest_efer, host_efer, false);
1126 else
1127 clear_atomic_switch_msr(vmx, MSR_EFER);
1128 return false;
1129 }
1130
1131 i = __vmx_find_uret_msr(vmx, MSR_EFER);
1132 if (i < 0)
1133 return false;
1134
1135 clear_atomic_switch_msr(vmx, MSR_EFER);
1136
1137 guest_efer &= ~ignore_bits;
1138 guest_efer |= host_efer & ignore_bits;
1139
1140 vmx->guest_uret_msrs[i].data = guest_efer;
1141 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1142
1143 return true;
1144 }
1145
1146 #ifdef CONFIG_X86_32
1147 /*
1148 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1149 * VMCS rather than the segment table. KVM uses this helper to figure
1150 * out the current bases to poke them into the VMCS before entry.
1151 */
segment_base(u16 selector)1152 static unsigned long segment_base(u16 selector)
1153 {
1154 struct desc_struct *table;
1155 unsigned long v;
1156
1157 if (!(selector & ~SEGMENT_RPL_MASK))
1158 return 0;
1159
1160 table = get_current_gdt_ro();
1161
1162 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1163 u16 ldt_selector = kvm_read_ldt();
1164
1165 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1166 return 0;
1167
1168 table = (struct desc_struct *)segment_base(ldt_selector);
1169 }
1170 v = get_desc_base(&table[selector >> 3]);
1171 return v;
1172 }
1173 #endif
1174
pt_can_write_msr(struct vcpu_vmx * vmx)1175 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1176 {
1177 return vmx_pt_mode_is_host_guest() &&
1178 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1179 }
1180
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1181 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1182 {
1183 /* The base must be 128-byte aligned and a legal physical address. */
1184 return !kvm_vcpu_is_illegal_gpa(vcpu, base) && !(base & 0x7f);
1185 }
1186
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1187 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1188 {
1189 u32 i;
1190
1191 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1192 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1193 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1194 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1195 for (i = 0; i < addr_range; i++) {
1196 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1197 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1198 }
1199 }
1200
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1201 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1202 {
1203 u32 i;
1204
1205 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1206 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1207 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1208 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1209 for (i = 0; i < addr_range; i++) {
1210 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1211 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1212 }
1213 }
1214
pt_guest_enter(struct vcpu_vmx * vmx)1215 static void pt_guest_enter(struct vcpu_vmx *vmx)
1216 {
1217 if (vmx_pt_mode_is_system())
1218 return;
1219
1220 /*
1221 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1222 * Save host state before VM entry.
1223 */
1224 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1225 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1226 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1227 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1228 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1229 }
1230 }
1231
pt_guest_exit(struct vcpu_vmx * vmx)1232 static void pt_guest_exit(struct vcpu_vmx *vmx)
1233 {
1234 if (vmx_pt_mode_is_system())
1235 return;
1236
1237 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1238 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1239 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1240 }
1241
1242 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1243 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1244 }
1245
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1246 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1247 unsigned long fs_base, unsigned long gs_base)
1248 {
1249 if (unlikely(fs_sel != host->fs_sel)) {
1250 if (!(fs_sel & 7))
1251 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1252 else
1253 vmcs_write16(HOST_FS_SELECTOR, 0);
1254 host->fs_sel = fs_sel;
1255 }
1256 if (unlikely(gs_sel != host->gs_sel)) {
1257 if (!(gs_sel & 7))
1258 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1259 else
1260 vmcs_write16(HOST_GS_SELECTOR, 0);
1261 host->gs_sel = gs_sel;
1262 }
1263 if (unlikely(fs_base != host->fs_base)) {
1264 vmcs_writel(HOST_FS_BASE, fs_base);
1265 host->fs_base = fs_base;
1266 }
1267 if (unlikely(gs_base != host->gs_base)) {
1268 vmcs_writel(HOST_GS_BASE, gs_base);
1269 host->gs_base = gs_base;
1270 }
1271 }
1272
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1273 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1274 {
1275 struct vcpu_vmx *vmx = to_vmx(vcpu);
1276 struct vmcs_host_state *host_state;
1277 #ifdef CONFIG_X86_64
1278 int cpu = raw_smp_processor_id();
1279 #endif
1280 unsigned long fs_base, gs_base;
1281 u16 fs_sel, gs_sel;
1282 int i;
1283
1284 vmx->req_immediate_exit = false;
1285
1286 /*
1287 * Note that guest MSRs to be saved/restored can also be changed
1288 * when guest state is loaded. This happens when guest transitions
1289 * to/from long-mode by setting MSR_EFER.LMA.
1290 */
1291 if (!vmx->guest_uret_msrs_loaded) {
1292 vmx->guest_uret_msrs_loaded = true;
1293 for (i = 0; i < vmx->nr_active_uret_msrs; ++i)
1294 kvm_set_user_return_msr(vmx->guest_uret_msrs[i].slot,
1295 vmx->guest_uret_msrs[i].data,
1296 vmx->guest_uret_msrs[i].mask);
1297
1298 }
1299
1300 if (vmx->nested.need_vmcs12_to_shadow_sync)
1301 nested_sync_vmcs12_to_shadow(vcpu);
1302
1303 if (vmx->guest_state_loaded)
1304 return;
1305
1306 host_state = &vmx->loaded_vmcs->host_state;
1307
1308 /*
1309 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1310 * allow segment selectors with cpl > 0 or ti == 1.
1311 */
1312 host_state->ldt_sel = kvm_read_ldt();
1313
1314 #ifdef CONFIG_X86_64
1315 savesegment(ds, host_state->ds_sel);
1316 savesegment(es, host_state->es_sel);
1317
1318 gs_base = cpu_kernelmode_gs_base(cpu);
1319 if (likely(is_64bit_mm(current->mm))) {
1320 current_save_fsgs();
1321 fs_sel = current->thread.fsindex;
1322 gs_sel = current->thread.gsindex;
1323 fs_base = current->thread.fsbase;
1324 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1325 } else {
1326 savesegment(fs, fs_sel);
1327 savesegment(gs, gs_sel);
1328 fs_base = read_msr(MSR_FS_BASE);
1329 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1330 }
1331
1332 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1333 #else
1334 savesegment(fs, fs_sel);
1335 savesegment(gs, gs_sel);
1336 fs_base = segment_base(fs_sel);
1337 gs_base = segment_base(gs_sel);
1338 #endif
1339
1340 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1341 vmx->guest_state_loaded = true;
1342 }
1343
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1344 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1345 {
1346 struct vmcs_host_state *host_state;
1347
1348 if (!vmx->guest_state_loaded)
1349 return;
1350
1351 host_state = &vmx->loaded_vmcs->host_state;
1352
1353 ++vmx->vcpu.stat.host_state_reload;
1354
1355 #ifdef CONFIG_X86_64
1356 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1357 #endif
1358 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1359 kvm_load_ldt(host_state->ldt_sel);
1360 #ifdef CONFIG_X86_64
1361 load_gs_index(host_state->gs_sel);
1362 #else
1363 loadsegment(gs, host_state->gs_sel);
1364 #endif
1365 }
1366 if (host_state->fs_sel & 7)
1367 loadsegment(fs, host_state->fs_sel);
1368 #ifdef CONFIG_X86_64
1369 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1370 loadsegment(ds, host_state->ds_sel);
1371 loadsegment(es, host_state->es_sel);
1372 }
1373 #endif
1374 invalidate_tss_limit();
1375 #ifdef CONFIG_X86_64
1376 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1377 #endif
1378 load_fixmap_gdt(raw_smp_processor_id());
1379 vmx->guest_state_loaded = false;
1380 vmx->guest_uret_msrs_loaded = false;
1381 }
1382
1383 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1384 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1385 {
1386 preempt_disable();
1387 if (vmx->guest_state_loaded)
1388 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1389 preempt_enable();
1390 return vmx->msr_guest_kernel_gs_base;
1391 }
1392
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1393 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1394 {
1395 preempt_disable();
1396 if (vmx->guest_state_loaded)
1397 wrmsrl(MSR_KERNEL_GS_BASE, data);
1398 preempt_enable();
1399 vmx->msr_guest_kernel_gs_base = data;
1400 }
1401 #endif
1402
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu,struct loaded_vmcs * buddy)1403 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1404 struct loaded_vmcs *buddy)
1405 {
1406 struct vcpu_vmx *vmx = to_vmx(vcpu);
1407 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1408 struct vmcs *prev;
1409
1410 if (!already_loaded) {
1411 loaded_vmcs_clear(vmx->loaded_vmcs);
1412 local_irq_disable();
1413
1414 /*
1415 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1416 * this cpu's percpu list, otherwise it may not yet be deleted
1417 * from its previous cpu's percpu list. Pairs with the
1418 * smb_wmb() in __loaded_vmcs_clear().
1419 */
1420 smp_rmb();
1421
1422 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1423 &per_cpu(loaded_vmcss_on_cpu, cpu));
1424 local_irq_enable();
1425 }
1426
1427 prev = per_cpu(current_vmcs, cpu);
1428 if (prev != vmx->loaded_vmcs->vmcs) {
1429 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1430 vmcs_load(vmx->loaded_vmcs->vmcs);
1431
1432 /*
1433 * No indirect branch prediction barrier needed when switching
1434 * the active VMCS within a guest, e.g. on nested VM-Enter.
1435 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1436 */
1437 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1438 indirect_branch_prediction_barrier();
1439 }
1440
1441 if (!already_loaded) {
1442 void *gdt = get_current_gdt_ro();
1443 unsigned long sysenter_esp;
1444
1445 /*
1446 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1447 * TLB entries from its previous association with the vCPU.
1448 */
1449 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1450
1451 /*
1452 * Linux uses per-cpu TSS and GDT, so set these when switching
1453 * processors. See 22.2.4.
1454 */
1455 vmcs_writel(HOST_TR_BASE,
1456 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1457 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1458
1459 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1460 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1461
1462 vmx->loaded_vmcs->cpu = cpu;
1463 }
1464
1465 /* Setup TSC multiplier */
1466 if (kvm_has_tsc_control &&
1467 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1468 decache_tsc_multiplier(vmx);
1469 }
1470
1471 /*
1472 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1473 * vcpu mutex is already taken.
1474 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1475 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1476 {
1477 struct vcpu_vmx *vmx = to_vmx(vcpu);
1478
1479 vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1480
1481 vmx_vcpu_pi_load(vcpu, cpu);
1482
1483 vmx->host_debugctlmsr = get_debugctlmsr();
1484 }
1485
vmx_vcpu_put(struct kvm_vcpu * vcpu)1486 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1487 {
1488 vmx_vcpu_pi_put(vcpu);
1489
1490 vmx_prepare_switch_to_host(to_vmx(vcpu));
1491 }
1492
emulation_required(struct kvm_vcpu * vcpu)1493 static bool emulation_required(struct kvm_vcpu *vcpu)
1494 {
1495 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1496 }
1497
vmx_get_rflags(struct kvm_vcpu * vcpu)1498 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1499 {
1500 struct vcpu_vmx *vmx = to_vmx(vcpu);
1501 unsigned long rflags, save_rflags;
1502
1503 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1504 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1505 rflags = vmcs_readl(GUEST_RFLAGS);
1506 if (vmx->rmode.vm86_active) {
1507 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1508 save_rflags = vmx->rmode.save_rflags;
1509 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1510 }
1511 vmx->rflags = rflags;
1512 }
1513 return vmx->rflags;
1514 }
1515
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1516 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1517 {
1518 struct vcpu_vmx *vmx = to_vmx(vcpu);
1519 unsigned long old_rflags;
1520
1521 if (is_unrestricted_guest(vcpu)) {
1522 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1523 vmx->rflags = rflags;
1524 vmcs_writel(GUEST_RFLAGS, rflags);
1525 return;
1526 }
1527
1528 old_rflags = vmx_get_rflags(vcpu);
1529 vmx->rflags = rflags;
1530 if (vmx->rmode.vm86_active) {
1531 vmx->rmode.save_rflags = rflags;
1532 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1533 }
1534 vmcs_writel(GUEST_RFLAGS, rflags);
1535
1536 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1537 vmx->emulation_required = emulation_required(vcpu);
1538 }
1539
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1540 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1541 {
1542 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1543 int ret = 0;
1544
1545 if (interruptibility & GUEST_INTR_STATE_STI)
1546 ret |= KVM_X86_SHADOW_INT_STI;
1547 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1548 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1549
1550 return ret;
1551 }
1552
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1553 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1554 {
1555 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1556 u32 interruptibility = interruptibility_old;
1557
1558 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1559
1560 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1561 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1562 else if (mask & KVM_X86_SHADOW_INT_STI)
1563 interruptibility |= GUEST_INTR_STATE_STI;
1564
1565 if ((interruptibility != interruptibility_old))
1566 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1567 }
1568
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1569 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1570 {
1571 struct vcpu_vmx *vmx = to_vmx(vcpu);
1572 unsigned long value;
1573
1574 /*
1575 * Any MSR write that attempts to change bits marked reserved will
1576 * case a #GP fault.
1577 */
1578 if (data & vmx->pt_desc.ctl_bitmask)
1579 return 1;
1580
1581 /*
1582 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1583 * result in a #GP unless the same write also clears TraceEn.
1584 */
1585 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1586 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1587 return 1;
1588
1589 /*
1590 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1591 * and FabricEn would cause #GP, if
1592 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1593 */
1594 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1595 !(data & RTIT_CTL_FABRIC_EN) &&
1596 !intel_pt_validate_cap(vmx->pt_desc.caps,
1597 PT_CAP_single_range_output))
1598 return 1;
1599
1600 /*
1601 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1602 * utilize encodings marked reserved will casue a #GP fault.
1603 */
1604 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1605 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1606 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1607 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1608 return 1;
1609 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1610 PT_CAP_cycle_thresholds);
1611 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1612 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1613 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1614 return 1;
1615 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1616 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1617 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1618 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1619 return 1;
1620
1621 /*
1622 * If ADDRx_CFG is reserved or the encodings is >2 will
1623 * cause a #GP fault.
1624 */
1625 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1626 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1627 return 1;
1628 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1629 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1630 return 1;
1631 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1632 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1633 return 1;
1634 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1635 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1636 return 1;
1637
1638 return 0;
1639 }
1640
vmx_can_emulate_instruction(struct kvm_vcpu * vcpu,void * insn,int insn_len)1641 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1642 {
1643 return true;
1644 }
1645
skip_emulated_instruction(struct kvm_vcpu * vcpu)1646 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1647 {
1648 unsigned long rip, orig_rip;
1649
1650 /*
1651 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1652 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1653 * set when EPT misconfig occurs. In practice, real hardware updates
1654 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1655 * (namely Hyper-V) don't set it due to it being undefined behavior,
1656 * i.e. we end up advancing IP with some random value.
1657 */
1658 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1659 to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1660 orig_rip = kvm_rip_read(vcpu);
1661 rip = orig_rip + vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1662 #ifdef CONFIG_X86_64
1663 /*
1664 * We need to mask out the high 32 bits of RIP if not in 64-bit
1665 * mode, but just finding out that we are in 64-bit mode is
1666 * quite expensive. Only do it if there was a carry.
1667 */
1668 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1669 rip = (u32)rip;
1670 #endif
1671 kvm_rip_write(vcpu, rip);
1672 } else {
1673 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1674 return 0;
1675 }
1676
1677 /* skipping an emulated instruction also counts */
1678 vmx_set_interrupt_shadow(vcpu, 0);
1679
1680 return 1;
1681 }
1682
1683 /*
1684 * Recognizes a pending MTF VM-exit and records the nested state for later
1685 * delivery.
1686 */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1687 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1688 {
1689 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1690 struct vcpu_vmx *vmx = to_vmx(vcpu);
1691
1692 if (!is_guest_mode(vcpu))
1693 return;
1694
1695 /*
1696 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1697 * T-bit traps. As instruction emulation is completed (i.e. at the
1698 * instruction boundary), any #DB exception pending delivery must be a
1699 * debug-trap. Record the pending MTF state to be delivered in
1700 * vmx_check_nested_events().
1701 */
1702 if (nested_cpu_has_mtf(vmcs12) &&
1703 (!vcpu->arch.exception.pending ||
1704 vcpu->arch.exception.nr == DB_VECTOR))
1705 vmx->nested.mtf_pending = true;
1706 else
1707 vmx->nested.mtf_pending = false;
1708 }
1709
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1710 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1711 {
1712 vmx_update_emulated_instruction(vcpu);
1713 return skip_emulated_instruction(vcpu);
1714 }
1715
vmx_clear_hlt(struct kvm_vcpu * vcpu)1716 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1717 {
1718 /*
1719 * Ensure that we clear the HLT state in the VMCS. We don't need to
1720 * explicitly skip the instruction because if the HLT state is set,
1721 * then the instruction is already executing and RIP has already been
1722 * advanced.
1723 */
1724 if (kvm_hlt_in_guest(vcpu->kvm) &&
1725 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1726 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1727 }
1728
vmx_queue_exception(struct kvm_vcpu * vcpu)1729 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1730 {
1731 struct vcpu_vmx *vmx = to_vmx(vcpu);
1732 unsigned nr = vcpu->arch.exception.nr;
1733 bool has_error_code = vcpu->arch.exception.has_error_code;
1734 u32 error_code = vcpu->arch.exception.error_code;
1735 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1736
1737 kvm_deliver_exception_payload(vcpu);
1738
1739 if (has_error_code) {
1740 /*
1741 * Despite the error code being architecturally defined as 32
1742 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1743 * VMX don't actually supporting setting bits 31:16. Hardware
1744 * will (should) never provide a bogus error code, but AMD CPUs
1745 * do generate error codes with bits 31:16 set, and so KVM's
1746 * ABI lets userspace shove in arbitrary 32-bit values. Drop
1747 * the upper bits to avoid VM-Fail, losing information that
1748 * does't really exist is preferable to killing the VM.
1749 */
1750 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)error_code);
1751 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1752 }
1753
1754 if (vmx->rmode.vm86_active) {
1755 int inc_eip = 0;
1756 if (kvm_exception_is_soft(nr))
1757 inc_eip = vcpu->arch.event_exit_inst_len;
1758 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1759 return;
1760 }
1761
1762 WARN_ON_ONCE(vmx->emulation_required);
1763
1764 if (kvm_exception_is_soft(nr)) {
1765 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1766 vmx->vcpu.arch.event_exit_inst_len);
1767 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1768 } else
1769 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1770
1771 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1772
1773 vmx_clear_hlt(vcpu);
1774 }
1775
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr)1776 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr)
1777 {
1778 struct vmx_uret_msr tmp;
1779 int from, to;
1780
1781 from = __vmx_find_uret_msr(vmx, msr);
1782 if (from < 0)
1783 return;
1784 to = vmx->nr_active_uret_msrs++;
1785
1786 tmp = vmx->guest_uret_msrs[to];
1787 vmx->guest_uret_msrs[to] = vmx->guest_uret_msrs[from];
1788 vmx->guest_uret_msrs[from] = tmp;
1789 }
1790
1791 /*
1792 * Set up the vmcs to automatically save and restore system
1793 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1794 * mode, as fiddling with msrs is very expensive.
1795 */
setup_msrs(struct vcpu_vmx * vmx)1796 static void setup_msrs(struct vcpu_vmx *vmx)
1797 {
1798 vmx->guest_uret_msrs_loaded = false;
1799 vmx->nr_active_uret_msrs = 0;
1800 #ifdef CONFIG_X86_64
1801 /*
1802 * The SYSCALL MSRs are only needed on long mode guests, and only
1803 * when EFER.SCE is set.
1804 */
1805 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1806 vmx_setup_uret_msr(vmx, MSR_STAR);
1807 vmx_setup_uret_msr(vmx, MSR_LSTAR);
1808 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK);
1809 }
1810 #endif
1811 if (update_transition_efer(vmx))
1812 vmx_setup_uret_msr(vmx, MSR_EFER);
1813
1814 if (guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1815 vmx_setup_uret_msr(vmx, MSR_TSC_AUX);
1816
1817 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL);
1818
1819 if (cpu_has_vmx_msr_bitmap())
1820 vmx_update_msr_bitmap(&vmx->vcpu);
1821 }
1822
vmx_write_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1823 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1824 {
1825 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1826 u64 g_tsc_offset = 0;
1827
1828 /*
1829 * We're here if L1 chose not to trap WRMSR to TSC. According
1830 * to the spec, this should set L1's TSC; The offset that L1
1831 * set for L2 remains unchanged, and still needs to be added
1832 * to the newly set TSC to get L2's TSC.
1833 */
1834 if (is_guest_mode(vcpu) &&
1835 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1836 g_tsc_offset = vmcs12->tsc_offset;
1837
1838 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1839 vcpu->arch.tsc_offset - g_tsc_offset,
1840 offset);
1841 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1842 return offset + g_tsc_offset;
1843 }
1844
1845 /*
1846 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1847 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1848 * all guests if the "nested" module option is off, and can also be disabled
1849 * for a single guest by disabling its VMX cpuid bit.
1850 */
nested_vmx_allowed(struct kvm_vcpu * vcpu)1851 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1852 {
1853 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1854 }
1855
vmx_feature_control_msr_valid(struct kvm_vcpu * vcpu,uint64_t val)1856 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1857 uint64_t val)
1858 {
1859 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1860
1861 return !(val & ~valid_bits);
1862 }
1863
vmx_get_msr_feature(struct kvm_msr_entry * msr)1864 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1865 {
1866 switch (msr->index) {
1867 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1868 if (!nested)
1869 return 1;
1870 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1871 case MSR_IA32_PERF_CAPABILITIES:
1872 msr->data = vmx_get_perf_capabilities();
1873 return 0;
1874 default:
1875 return KVM_MSR_RET_INVALID;
1876 }
1877 }
1878
1879 /*
1880 * Reads an msr value (of 'msr_index') into 'pdata'.
1881 * Returns 0 on success, non-0 otherwise.
1882 * Assumes vcpu_load() was already called.
1883 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1884 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1885 {
1886 struct vcpu_vmx *vmx = to_vmx(vcpu);
1887 struct vmx_uret_msr *msr;
1888 u32 index;
1889
1890 switch (msr_info->index) {
1891 #ifdef CONFIG_X86_64
1892 case MSR_FS_BASE:
1893 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1894 break;
1895 case MSR_GS_BASE:
1896 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1897 break;
1898 case MSR_KERNEL_GS_BASE:
1899 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1900 break;
1901 #endif
1902 case MSR_EFER:
1903 return kvm_get_msr_common(vcpu, msr_info);
1904 case MSR_IA32_TSX_CTRL:
1905 if (!msr_info->host_initiated &&
1906 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1907 return 1;
1908 goto find_uret_msr;
1909 case MSR_IA32_UMWAIT_CONTROL:
1910 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1911 return 1;
1912
1913 msr_info->data = vmx->msr_ia32_umwait_control;
1914 break;
1915 case MSR_IA32_SPEC_CTRL:
1916 if (!msr_info->host_initiated &&
1917 !guest_has_spec_ctrl_msr(vcpu))
1918 return 1;
1919
1920 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1921 break;
1922 case MSR_IA32_SYSENTER_CS:
1923 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1924 break;
1925 case MSR_IA32_SYSENTER_EIP:
1926 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1927 break;
1928 case MSR_IA32_SYSENTER_ESP:
1929 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1930 break;
1931 case MSR_IA32_BNDCFGS:
1932 if (!kvm_mpx_supported() ||
1933 (!msr_info->host_initiated &&
1934 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1935 return 1;
1936 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1937 break;
1938 case MSR_IA32_MCG_EXT_CTL:
1939 if (!msr_info->host_initiated &&
1940 !(vmx->msr_ia32_feature_control &
1941 FEAT_CTL_LMCE_ENABLED))
1942 return 1;
1943 msr_info->data = vcpu->arch.mcg_ext_ctl;
1944 break;
1945 case MSR_IA32_FEAT_CTL:
1946 msr_info->data = vmx->msr_ia32_feature_control;
1947 break;
1948 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1949 if (!nested_vmx_allowed(vcpu))
1950 return 1;
1951 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1952 &msr_info->data))
1953 return 1;
1954 /*
1955 * Enlightened VMCS v1 doesn't have certain VMCS fields but
1956 * instead of just ignoring the features, different Hyper-V
1957 * versions are either trying to use them and fail or do some
1958 * sanity checking and refuse to boot. Filter all unsupported
1959 * features out.
1960 */
1961 if (!msr_info->host_initiated &&
1962 vmx->nested.enlightened_vmcs_enabled)
1963 nested_evmcs_filter_control_msr(msr_info->index,
1964 &msr_info->data);
1965 break;
1966 case MSR_IA32_RTIT_CTL:
1967 if (!vmx_pt_mode_is_host_guest())
1968 return 1;
1969 msr_info->data = vmx->pt_desc.guest.ctl;
1970 break;
1971 case MSR_IA32_RTIT_STATUS:
1972 if (!vmx_pt_mode_is_host_guest())
1973 return 1;
1974 msr_info->data = vmx->pt_desc.guest.status;
1975 break;
1976 case MSR_IA32_RTIT_CR3_MATCH:
1977 if (!vmx_pt_mode_is_host_guest() ||
1978 !intel_pt_validate_cap(vmx->pt_desc.caps,
1979 PT_CAP_cr3_filtering))
1980 return 1;
1981 msr_info->data = vmx->pt_desc.guest.cr3_match;
1982 break;
1983 case MSR_IA32_RTIT_OUTPUT_BASE:
1984 if (!vmx_pt_mode_is_host_guest() ||
1985 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1986 PT_CAP_topa_output) &&
1987 !intel_pt_validate_cap(vmx->pt_desc.caps,
1988 PT_CAP_single_range_output)))
1989 return 1;
1990 msr_info->data = vmx->pt_desc.guest.output_base;
1991 break;
1992 case MSR_IA32_RTIT_OUTPUT_MASK:
1993 if (!vmx_pt_mode_is_host_guest() ||
1994 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1995 PT_CAP_topa_output) &&
1996 !intel_pt_validate_cap(vmx->pt_desc.caps,
1997 PT_CAP_single_range_output)))
1998 return 1;
1999 msr_info->data = vmx->pt_desc.guest.output_mask;
2000 break;
2001 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2002 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2003 if (!vmx_pt_mode_is_host_guest() ||
2004 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2005 PT_CAP_num_address_ranges)))
2006 return 1;
2007 if (index % 2)
2008 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2009 else
2010 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2011 break;
2012 case MSR_TSC_AUX:
2013 if (!msr_info->host_initiated &&
2014 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2015 return 1;
2016 goto find_uret_msr;
2017 default:
2018 find_uret_msr:
2019 msr = vmx_find_uret_msr(vmx, msr_info->index);
2020 if (msr) {
2021 msr_info->data = msr->data;
2022 break;
2023 }
2024 return kvm_get_msr_common(vcpu, msr_info);
2025 }
2026
2027 return 0;
2028 }
2029
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2030 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2031 u64 data)
2032 {
2033 #ifdef CONFIG_X86_64
2034 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2035 return (u32)data;
2036 #endif
2037 return (unsigned long)data;
2038 }
2039
2040 /*
2041 * Writes msr value into the appropriate "register".
2042 * Returns 0 on success, non-0 otherwise.
2043 * Assumes vcpu_load() was already called.
2044 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2045 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2046 {
2047 struct vcpu_vmx *vmx = to_vmx(vcpu);
2048 struct vmx_uret_msr *msr;
2049 int ret = 0;
2050 u32 msr_index = msr_info->index;
2051 u64 data = msr_info->data;
2052 u32 index;
2053
2054 switch (msr_index) {
2055 case MSR_EFER:
2056 ret = kvm_set_msr_common(vcpu, msr_info);
2057 break;
2058 #ifdef CONFIG_X86_64
2059 case MSR_FS_BASE:
2060 vmx_segment_cache_clear(vmx);
2061 vmcs_writel(GUEST_FS_BASE, data);
2062 break;
2063 case MSR_GS_BASE:
2064 vmx_segment_cache_clear(vmx);
2065 vmcs_writel(GUEST_GS_BASE, data);
2066 break;
2067 case MSR_KERNEL_GS_BASE:
2068 vmx_write_guest_kernel_gs_base(vmx, data);
2069 break;
2070 #endif
2071 case MSR_IA32_SYSENTER_CS:
2072 if (is_guest_mode(vcpu))
2073 get_vmcs12(vcpu)->guest_sysenter_cs = data;
2074 vmcs_write32(GUEST_SYSENTER_CS, data);
2075 break;
2076 case MSR_IA32_SYSENTER_EIP:
2077 if (is_guest_mode(vcpu)) {
2078 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2079 get_vmcs12(vcpu)->guest_sysenter_eip = data;
2080 }
2081 vmcs_writel(GUEST_SYSENTER_EIP, data);
2082 break;
2083 case MSR_IA32_SYSENTER_ESP:
2084 if (is_guest_mode(vcpu)) {
2085 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2086 get_vmcs12(vcpu)->guest_sysenter_esp = data;
2087 }
2088 vmcs_writel(GUEST_SYSENTER_ESP, data);
2089 break;
2090 case MSR_IA32_DEBUGCTLMSR:
2091 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2092 VM_EXIT_SAVE_DEBUG_CONTROLS)
2093 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2094
2095 ret = kvm_set_msr_common(vcpu, msr_info);
2096 break;
2097
2098 case MSR_IA32_BNDCFGS:
2099 if (!kvm_mpx_supported() ||
2100 (!msr_info->host_initiated &&
2101 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2102 return 1;
2103 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2104 (data & MSR_IA32_BNDCFGS_RSVD))
2105 return 1;
2106 vmcs_write64(GUEST_BNDCFGS, data);
2107 break;
2108 case MSR_IA32_UMWAIT_CONTROL:
2109 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2110 return 1;
2111
2112 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2113 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2114 return 1;
2115
2116 vmx->msr_ia32_umwait_control = data;
2117 break;
2118 case MSR_IA32_SPEC_CTRL:
2119 if (!msr_info->host_initiated &&
2120 !guest_has_spec_ctrl_msr(vcpu))
2121 return 1;
2122
2123 if (kvm_spec_ctrl_test_value(data))
2124 return 1;
2125
2126 vmx->spec_ctrl = data;
2127 if (!data)
2128 break;
2129
2130 /*
2131 * For non-nested:
2132 * When it's written (to non-zero) for the first time, pass
2133 * it through.
2134 *
2135 * For nested:
2136 * The handling of the MSR bitmap for L2 guests is done in
2137 * nested_vmx_prepare_msr_bitmap. We should not touch the
2138 * vmcs02.msr_bitmap here since it gets completely overwritten
2139 * in the merging. We update the vmcs01 here for L1 as well
2140 * since it will end up touching the MSR anyway now.
2141 */
2142 vmx_disable_intercept_for_msr(vcpu,
2143 MSR_IA32_SPEC_CTRL,
2144 MSR_TYPE_RW);
2145 break;
2146 case MSR_IA32_TSX_CTRL:
2147 if (!msr_info->host_initiated &&
2148 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2149 return 1;
2150 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2151 return 1;
2152 goto find_uret_msr;
2153 case MSR_IA32_PRED_CMD:
2154 if (!msr_info->host_initiated &&
2155 !guest_has_pred_cmd_msr(vcpu))
2156 return 1;
2157
2158 if (data & ~PRED_CMD_IBPB)
2159 return 1;
2160 if (!boot_cpu_has(X86_FEATURE_IBPB))
2161 return 1;
2162 if (!data)
2163 break;
2164
2165 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2166
2167 /*
2168 * For non-nested:
2169 * When it's written (to non-zero) for the first time, pass
2170 * it through.
2171 *
2172 * For nested:
2173 * The handling of the MSR bitmap for L2 guests is done in
2174 * nested_vmx_prepare_msr_bitmap. We should not touch the
2175 * vmcs02.msr_bitmap here since it gets completely overwritten
2176 * in the merging.
2177 */
2178 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2179 break;
2180 case MSR_IA32_CR_PAT:
2181 if (!kvm_pat_valid(data))
2182 return 1;
2183
2184 if (is_guest_mode(vcpu) &&
2185 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2186 get_vmcs12(vcpu)->guest_ia32_pat = data;
2187
2188 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2189 vmcs_write64(GUEST_IA32_PAT, data);
2190 vcpu->arch.pat = data;
2191 break;
2192 }
2193 ret = kvm_set_msr_common(vcpu, msr_info);
2194 break;
2195 case MSR_IA32_TSC_ADJUST:
2196 ret = kvm_set_msr_common(vcpu, msr_info);
2197 break;
2198 case MSR_IA32_MCG_EXT_CTL:
2199 if ((!msr_info->host_initiated &&
2200 !(to_vmx(vcpu)->msr_ia32_feature_control &
2201 FEAT_CTL_LMCE_ENABLED)) ||
2202 (data & ~MCG_EXT_CTL_LMCE_EN))
2203 return 1;
2204 vcpu->arch.mcg_ext_ctl = data;
2205 break;
2206 case MSR_IA32_FEAT_CTL:
2207 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2208 (to_vmx(vcpu)->msr_ia32_feature_control &
2209 FEAT_CTL_LOCKED && !msr_info->host_initiated))
2210 return 1;
2211 vmx->msr_ia32_feature_control = data;
2212 if (msr_info->host_initiated && data == 0)
2213 vmx_leave_nested(vcpu);
2214 break;
2215 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2216 if (!msr_info->host_initiated)
2217 return 1; /* they are read-only */
2218 if (!nested_vmx_allowed(vcpu))
2219 return 1;
2220 return vmx_set_vmx_msr(vcpu, msr_index, data);
2221 case MSR_IA32_RTIT_CTL:
2222 if (!vmx_pt_mode_is_host_guest() ||
2223 vmx_rtit_ctl_check(vcpu, data) ||
2224 vmx->nested.vmxon)
2225 return 1;
2226 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2227 vmx->pt_desc.guest.ctl = data;
2228 pt_update_intercept_for_msr(vcpu);
2229 break;
2230 case MSR_IA32_RTIT_STATUS:
2231 if (!pt_can_write_msr(vmx))
2232 return 1;
2233 if (data & MSR_IA32_RTIT_STATUS_MASK)
2234 return 1;
2235 vmx->pt_desc.guest.status = data;
2236 break;
2237 case MSR_IA32_RTIT_CR3_MATCH:
2238 if (!pt_can_write_msr(vmx))
2239 return 1;
2240 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2241 PT_CAP_cr3_filtering))
2242 return 1;
2243 vmx->pt_desc.guest.cr3_match = data;
2244 break;
2245 case MSR_IA32_RTIT_OUTPUT_BASE:
2246 if (!pt_can_write_msr(vmx))
2247 return 1;
2248 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2249 PT_CAP_topa_output) &&
2250 !intel_pt_validate_cap(vmx->pt_desc.caps,
2251 PT_CAP_single_range_output))
2252 return 1;
2253 if (!pt_output_base_valid(vcpu, data))
2254 return 1;
2255 vmx->pt_desc.guest.output_base = data;
2256 break;
2257 case MSR_IA32_RTIT_OUTPUT_MASK:
2258 if (!pt_can_write_msr(vmx))
2259 return 1;
2260 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2261 PT_CAP_topa_output) &&
2262 !intel_pt_validate_cap(vmx->pt_desc.caps,
2263 PT_CAP_single_range_output))
2264 return 1;
2265 vmx->pt_desc.guest.output_mask = data;
2266 break;
2267 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2268 if (!pt_can_write_msr(vmx))
2269 return 1;
2270 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2271 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2272 PT_CAP_num_address_ranges))
2273 return 1;
2274 if (is_noncanonical_address(data, vcpu))
2275 return 1;
2276 if (index % 2)
2277 vmx->pt_desc.guest.addr_b[index / 2] = data;
2278 else
2279 vmx->pt_desc.guest.addr_a[index / 2] = data;
2280 break;
2281 case MSR_TSC_AUX:
2282 if (!msr_info->host_initiated &&
2283 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2284 return 1;
2285 /* Check reserved bit, higher 32 bits should be zero */
2286 if ((data >> 32) != 0)
2287 return 1;
2288 goto find_uret_msr;
2289
2290 default:
2291 find_uret_msr:
2292 msr = vmx_find_uret_msr(vmx, msr_index);
2293 if (msr)
2294 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2295 else
2296 ret = kvm_set_msr_common(vcpu, msr_info);
2297 }
2298
2299 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2300 if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2301 vmx_update_fb_clear_dis(vcpu, vmx);
2302
2303 return ret;
2304 }
2305
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2306 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2307 {
2308 unsigned long guest_owned_bits;
2309
2310 kvm_register_mark_available(vcpu, reg);
2311
2312 switch (reg) {
2313 case VCPU_REGS_RSP:
2314 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2315 break;
2316 case VCPU_REGS_RIP:
2317 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2318 break;
2319 case VCPU_EXREG_PDPTR:
2320 if (enable_ept)
2321 ept_save_pdptrs(vcpu);
2322 break;
2323 case VCPU_EXREG_CR0:
2324 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2325
2326 vcpu->arch.cr0 &= ~guest_owned_bits;
2327 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2328 break;
2329 case VCPU_EXREG_CR3:
2330 if (is_unrestricted_guest(vcpu) ||
2331 (enable_ept && is_paging(vcpu)))
2332 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2333 break;
2334 case VCPU_EXREG_CR4:
2335 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2336
2337 vcpu->arch.cr4 &= ~guest_owned_bits;
2338 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2339 break;
2340 default:
2341 WARN_ON_ONCE(1);
2342 break;
2343 }
2344 }
2345
cpu_has_kvm_support(void)2346 static __init int cpu_has_kvm_support(void)
2347 {
2348 return cpu_has_vmx();
2349 }
2350
vmx_disabled_by_bios(void)2351 static __init int vmx_disabled_by_bios(void)
2352 {
2353 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2354 !boot_cpu_has(X86_FEATURE_VMX);
2355 }
2356
kvm_cpu_vmxon(u64 vmxon_pointer)2357 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2358 {
2359 u64 msr;
2360
2361 cr4_set_bits(X86_CR4_VMXE);
2362 intel_pt_handle_vmx(1);
2363
2364 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2365 _ASM_EXTABLE(1b, %l[fault])
2366 : : [vmxon_pointer] "m"(vmxon_pointer)
2367 : : fault);
2368 return 0;
2369
2370 fault:
2371 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2372 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2373 intel_pt_handle_vmx(0);
2374 cr4_clear_bits(X86_CR4_VMXE);
2375
2376 return -EFAULT;
2377 }
2378
hardware_enable(void)2379 static int hardware_enable(void)
2380 {
2381 int cpu = raw_smp_processor_id();
2382 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2383 int r;
2384
2385 if (cr4_read_shadow() & X86_CR4_VMXE)
2386 return -EBUSY;
2387
2388 /*
2389 * This can happen if we hot-added a CPU but failed to allocate
2390 * VP assist page for it.
2391 */
2392 if (static_branch_unlikely(&enable_evmcs) &&
2393 !hv_get_vp_assist_page(cpu))
2394 return -EFAULT;
2395
2396 r = kvm_cpu_vmxon(phys_addr);
2397 if (r)
2398 return r;
2399
2400 if (enable_ept)
2401 ept_sync_global();
2402
2403 return 0;
2404 }
2405
vmclear_local_loaded_vmcss(void)2406 static void vmclear_local_loaded_vmcss(void)
2407 {
2408 int cpu = raw_smp_processor_id();
2409 struct loaded_vmcs *v, *n;
2410
2411 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2412 loaded_vmcss_on_cpu_link)
2413 __loaded_vmcs_clear(v);
2414 }
2415
2416
2417 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2418 * tricks.
2419 */
kvm_cpu_vmxoff(void)2420 static void kvm_cpu_vmxoff(void)
2421 {
2422 asm volatile (__ex("vmxoff"));
2423
2424 intel_pt_handle_vmx(0);
2425 cr4_clear_bits(X86_CR4_VMXE);
2426 }
2427
hardware_disable(void)2428 static void hardware_disable(void)
2429 {
2430 vmclear_local_loaded_vmcss();
2431 kvm_cpu_vmxoff();
2432 }
2433
2434 /*
2435 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2436 * directly instead of going through cpu_has(), to ensure KVM is trapping
2437 * ENCLS whenever it's supported in hardware. It does not matter whether
2438 * the host OS supports or has enabled SGX.
2439 */
cpu_has_sgx(void)2440 static bool cpu_has_sgx(void)
2441 {
2442 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2443 }
2444
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2445 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2446 u32 msr, u32 *result)
2447 {
2448 u32 vmx_msr_low, vmx_msr_high;
2449 u32 ctl = ctl_min | ctl_opt;
2450
2451 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2452
2453 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2454 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2455
2456 /* Ensure minimum (required) set of control bits are supported. */
2457 if (ctl_min & ~ctl)
2458 return -EIO;
2459
2460 *result = ctl;
2461 return 0;
2462 }
2463
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2464 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2465 struct vmx_capability *vmx_cap)
2466 {
2467 u32 vmx_msr_low, vmx_msr_high;
2468 u32 min, opt, min2, opt2;
2469 u32 _pin_based_exec_control = 0;
2470 u32 _cpu_based_exec_control = 0;
2471 u32 _cpu_based_2nd_exec_control = 0;
2472 u32 _vmexit_control = 0;
2473 u32 _vmentry_control = 0;
2474
2475 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2476 min = CPU_BASED_HLT_EXITING |
2477 #ifdef CONFIG_X86_64
2478 CPU_BASED_CR8_LOAD_EXITING |
2479 CPU_BASED_CR8_STORE_EXITING |
2480 #endif
2481 CPU_BASED_CR3_LOAD_EXITING |
2482 CPU_BASED_CR3_STORE_EXITING |
2483 CPU_BASED_UNCOND_IO_EXITING |
2484 CPU_BASED_MOV_DR_EXITING |
2485 CPU_BASED_USE_TSC_OFFSETTING |
2486 CPU_BASED_MWAIT_EXITING |
2487 CPU_BASED_MONITOR_EXITING |
2488 CPU_BASED_INVLPG_EXITING |
2489 CPU_BASED_RDPMC_EXITING;
2490
2491 opt = CPU_BASED_TPR_SHADOW |
2492 CPU_BASED_USE_MSR_BITMAPS |
2493 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2494 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2495 &_cpu_based_exec_control) < 0)
2496 return -EIO;
2497 #ifdef CONFIG_X86_64
2498 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2499 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2500 ~CPU_BASED_CR8_STORE_EXITING;
2501 #endif
2502 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2503 min2 = 0;
2504 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2505 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2506 SECONDARY_EXEC_WBINVD_EXITING |
2507 SECONDARY_EXEC_ENABLE_VPID |
2508 SECONDARY_EXEC_ENABLE_EPT |
2509 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2510 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2511 SECONDARY_EXEC_DESC |
2512 SECONDARY_EXEC_ENABLE_RDTSCP |
2513 SECONDARY_EXEC_ENABLE_INVPCID |
2514 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2515 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2516 SECONDARY_EXEC_SHADOW_VMCS |
2517 SECONDARY_EXEC_XSAVES |
2518 SECONDARY_EXEC_RDSEED_EXITING |
2519 SECONDARY_EXEC_RDRAND_EXITING |
2520 SECONDARY_EXEC_ENABLE_PML |
2521 SECONDARY_EXEC_TSC_SCALING |
2522 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2523 SECONDARY_EXEC_PT_USE_GPA |
2524 SECONDARY_EXEC_PT_CONCEAL_VMX |
2525 SECONDARY_EXEC_ENABLE_VMFUNC;
2526 if (cpu_has_sgx())
2527 opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2528 if (adjust_vmx_controls(min2, opt2,
2529 MSR_IA32_VMX_PROCBASED_CTLS2,
2530 &_cpu_based_2nd_exec_control) < 0)
2531 return -EIO;
2532 }
2533 #ifndef CONFIG_X86_64
2534 if (!(_cpu_based_2nd_exec_control &
2535 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2536 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2537 #endif
2538
2539 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2540 _cpu_based_2nd_exec_control &= ~(
2541 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2542 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2543 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2544
2545 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2546 &vmx_cap->ept, &vmx_cap->vpid);
2547
2548 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2549 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2550 enabled */
2551 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2552 CPU_BASED_CR3_STORE_EXITING |
2553 CPU_BASED_INVLPG_EXITING);
2554 } else if (vmx_cap->ept) {
2555 vmx_cap->ept = 0;
2556 pr_warn_once("EPT CAP should not exist if not support "
2557 "1-setting enable EPT VM-execution control\n");
2558 }
2559 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2560 vmx_cap->vpid) {
2561 vmx_cap->vpid = 0;
2562 pr_warn_once("VPID CAP should not exist if not support "
2563 "1-setting enable VPID VM-execution control\n");
2564 }
2565
2566 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2567 #ifdef CONFIG_X86_64
2568 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2569 #endif
2570 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2571 VM_EXIT_LOAD_IA32_PAT |
2572 VM_EXIT_LOAD_IA32_EFER |
2573 VM_EXIT_CLEAR_BNDCFGS |
2574 VM_EXIT_PT_CONCEAL_PIP |
2575 VM_EXIT_CLEAR_IA32_RTIT_CTL;
2576 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2577 &_vmexit_control) < 0)
2578 return -EIO;
2579
2580 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2581 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2582 PIN_BASED_VMX_PREEMPTION_TIMER;
2583 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2584 &_pin_based_exec_control) < 0)
2585 return -EIO;
2586
2587 if (cpu_has_broken_vmx_preemption_timer())
2588 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2589 if (!(_cpu_based_2nd_exec_control &
2590 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2591 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2592
2593 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2594 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2595 VM_ENTRY_LOAD_IA32_PAT |
2596 VM_ENTRY_LOAD_IA32_EFER |
2597 VM_ENTRY_LOAD_BNDCFGS |
2598 VM_ENTRY_PT_CONCEAL_PIP |
2599 VM_ENTRY_LOAD_IA32_RTIT_CTL;
2600 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2601 &_vmentry_control) < 0)
2602 return -EIO;
2603
2604 /*
2605 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2606 * can't be used due to an errata where VM Exit may incorrectly clear
2607 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2608 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2609 */
2610 if (boot_cpu_data.x86 == 0x6) {
2611 switch (boot_cpu_data.x86_model) {
2612 case 26: /* AAK155 */
2613 case 30: /* AAP115 */
2614 case 37: /* AAT100 */
2615 case 44: /* BC86,AAY89,BD102 */
2616 case 46: /* BA97 */
2617 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2618 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2619 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2620 "does not work properly. Using workaround\n");
2621 break;
2622 default:
2623 break;
2624 }
2625 }
2626
2627
2628 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2629
2630 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2631 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2632 return -EIO;
2633
2634 #ifdef CONFIG_X86_64
2635 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2636 if (vmx_msr_high & (1u<<16))
2637 return -EIO;
2638 #endif
2639
2640 /* Require Write-Back (WB) memory type for VMCS accesses. */
2641 if (((vmx_msr_high >> 18) & 15) != 6)
2642 return -EIO;
2643
2644 vmcs_conf->size = vmx_msr_high & 0x1fff;
2645 vmcs_conf->order = get_order(vmcs_conf->size);
2646 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2647
2648 vmcs_conf->revision_id = vmx_msr_low;
2649
2650 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2651 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2652 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2653 vmcs_conf->vmexit_ctrl = _vmexit_control;
2654 vmcs_conf->vmentry_ctrl = _vmentry_control;
2655
2656 #if IS_ENABLED(CONFIG_HYPERV)
2657 if (enlightened_vmcs)
2658 evmcs_sanitize_exec_ctrls(vmcs_conf);
2659 #endif
2660
2661 return 0;
2662 }
2663
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2664 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2665 {
2666 int node = cpu_to_node(cpu);
2667 struct page *pages;
2668 struct vmcs *vmcs;
2669
2670 pages = __alloc_pages_node(node, flags, vmcs_config.order);
2671 if (!pages)
2672 return NULL;
2673 vmcs = page_address(pages);
2674 memset(vmcs, 0, vmcs_config.size);
2675
2676 /* KVM supports Enlightened VMCS v1 only */
2677 if (static_branch_unlikely(&enable_evmcs))
2678 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2679 else
2680 vmcs->hdr.revision_id = vmcs_config.revision_id;
2681
2682 if (shadow)
2683 vmcs->hdr.shadow_vmcs = 1;
2684 return vmcs;
2685 }
2686
free_vmcs(struct vmcs * vmcs)2687 void free_vmcs(struct vmcs *vmcs)
2688 {
2689 free_pages((unsigned long)vmcs, vmcs_config.order);
2690 }
2691
2692 /*
2693 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2694 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2695 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2696 {
2697 if (!loaded_vmcs->vmcs)
2698 return;
2699 loaded_vmcs_clear(loaded_vmcs);
2700 free_vmcs(loaded_vmcs->vmcs);
2701 loaded_vmcs->vmcs = NULL;
2702 if (loaded_vmcs->msr_bitmap)
2703 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2704 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2705 }
2706
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2707 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2708 {
2709 loaded_vmcs->vmcs = alloc_vmcs(false);
2710 if (!loaded_vmcs->vmcs)
2711 return -ENOMEM;
2712
2713 vmcs_clear(loaded_vmcs->vmcs);
2714
2715 loaded_vmcs->shadow_vmcs = NULL;
2716 loaded_vmcs->hv_timer_soft_disabled = false;
2717 loaded_vmcs->cpu = -1;
2718 loaded_vmcs->launched = 0;
2719
2720 if (cpu_has_vmx_msr_bitmap()) {
2721 loaded_vmcs->msr_bitmap = (unsigned long *)
2722 __get_free_page(GFP_KERNEL_ACCOUNT);
2723 if (!loaded_vmcs->msr_bitmap)
2724 goto out_vmcs;
2725 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2726
2727 if (IS_ENABLED(CONFIG_HYPERV) &&
2728 static_branch_unlikely(&enable_evmcs) &&
2729 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2730 struct hv_enlightened_vmcs *evmcs =
2731 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2732
2733 evmcs->hv_enlightenments_control.msr_bitmap = 1;
2734 }
2735 }
2736
2737 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2738 memset(&loaded_vmcs->controls_shadow, 0,
2739 sizeof(struct vmcs_controls_shadow));
2740
2741 return 0;
2742
2743 out_vmcs:
2744 free_loaded_vmcs(loaded_vmcs);
2745 return -ENOMEM;
2746 }
2747
free_kvm_area(void)2748 static void free_kvm_area(void)
2749 {
2750 int cpu;
2751
2752 for_each_possible_cpu(cpu) {
2753 free_vmcs(per_cpu(vmxarea, cpu));
2754 per_cpu(vmxarea, cpu) = NULL;
2755 }
2756 }
2757
alloc_kvm_area(void)2758 static __init int alloc_kvm_area(void)
2759 {
2760 int cpu;
2761
2762 for_each_possible_cpu(cpu) {
2763 struct vmcs *vmcs;
2764
2765 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2766 if (!vmcs) {
2767 free_kvm_area();
2768 return -ENOMEM;
2769 }
2770
2771 /*
2772 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2773 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2774 * revision_id reported by MSR_IA32_VMX_BASIC.
2775 *
2776 * However, even though not explicitly documented by
2777 * TLFS, VMXArea passed as VMXON argument should
2778 * still be marked with revision_id reported by
2779 * physical CPU.
2780 */
2781 if (static_branch_unlikely(&enable_evmcs))
2782 vmcs->hdr.revision_id = vmcs_config.revision_id;
2783
2784 per_cpu(vmxarea, cpu) = vmcs;
2785 }
2786 return 0;
2787 }
2788
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)2789 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2790 struct kvm_segment *save)
2791 {
2792 if (!emulate_invalid_guest_state) {
2793 /*
2794 * CS and SS RPL should be equal during guest entry according
2795 * to VMX spec, but in reality it is not always so. Since vcpu
2796 * is in the middle of the transition from real mode to
2797 * protected mode it is safe to assume that RPL 0 is a good
2798 * default value.
2799 */
2800 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2801 save->selector &= ~SEGMENT_RPL_MASK;
2802 save->dpl = save->selector & SEGMENT_RPL_MASK;
2803 save->s = 1;
2804 }
2805 vmx_set_segment(vcpu, save, seg);
2806 }
2807
enter_pmode(struct kvm_vcpu * vcpu)2808 static void enter_pmode(struct kvm_vcpu *vcpu)
2809 {
2810 unsigned long flags;
2811 struct vcpu_vmx *vmx = to_vmx(vcpu);
2812
2813 /*
2814 * Update real mode segment cache. It may be not up-to-date if sement
2815 * register was written while vcpu was in a guest mode.
2816 */
2817 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2818 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2819 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2820 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2821 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2822 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2823
2824 vmx->rmode.vm86_active = 0;
2825
2826 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2827
2828 flags = vmcs_readl(GUEST_RFLAGS);
2829 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2830 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2831 vmcs_writel(GUEST_RFLAGS, flags);
2832
2833 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2834 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2835
2836 update_exception_bitmap(vcpu);
2837
2838 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2839 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2840 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2841 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2842 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2843 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2844 }
2845
fix_rmode_seg(int seg,struct kvm_segment * save)2846 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2847 {
2848 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2849 struct kvm_segment var = *save;
2850
2851 var.dpl = 0x3;
2852 if (seg == VCPU_SREG_CS)
2853 var.type = 0x3;
2854
2855 if (!emulate_invalid_guest_state) {
2856 var.selector = var.base >> 4;
2857 var.base = var.base & 0xffff0;
2858 var.limit = 0xffff;
2859 var.g = 0;
2860 var.db = 0;
2861 var.present = 1;
2862 var.s = 1;
2863 var.l = 0;
2864 var.unusable = 0;
2865 var.type = 0x3;
2866 var.avl = 0;
2867 if (save->base & 0xf)
2868 printk_once(KERN_WARNING "kvm: segment base is not "
2869 "paragraph aligned when entering "
2870 "protected mode (seg=%d)", seg);
2871 }
2872
2873 vmcs_write16(sf->selector, var.selector);
2874 vmcs_writel(sf->base, var.base);
2875 vmcs_write32(sf->limit, var.limit);
2876 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2877 }
2878
enter_rmode(struct kvm_vcpu * vcpu)2879 static void enter_rmode(struct kvm_vcpu *vcpu)
2880 {
2881 unsigned long flags;
2882 struct vcpu_vmx *vmx = to_vmx(vcpu);
2883 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2884
2885 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2886 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2887 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2888 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2889 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2890 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2891 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2892
2893 vmx->rmode.vm86_active = 1;
2894
2895 /*
2896 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2897 * vcpu. Warn the user that an update is overdue.
2898 */
2899 if (!kvm_vmx->tss_addr)
2900 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2901 "called before entering vcpu\n");
2902
2903 vmx_segment_cache_clear(vmx);
2904
2905 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2906 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2907 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2908
2909 flags = vmcs_readl(GUEST_RFLAGS);
2910 vmx->rmode.save_rflags = flags;
2911
2912 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2913
2914 vmcs_writel(GUEST_RFLAGS, flags);
2915 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2916 update_exception_bitmap(vcpu);
2917
2918 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2919 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2920 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2921 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2922 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2923 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2924
2925 kvm_mmu_reset_context(vcpu);
2926 }
2927
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)2928 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2929 {
2930 struct vcpu_vmx *vmx = to_vmx(vcpu);
2931 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2932
2933 /* Nothing to do if hardware doesn't support EFER. */
2934 if (!msr)
2935 return 0;
2936
2937 vcpu->arch.efer = efer;
2938 if (efer & EFER_LMA) {
2939 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2940 msr->data = efer;
2941 } else {
2942 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2943
2944 msr->data = efer & ~EFER_LME;
2945 }
2946 setup_msrs(vmx);
2947 return 0;
2948 }
2949
2950 #ifdef CONFIG_X86_64
2951
enter_lmode(struct kvm_vcpu * vcpu)2952 static void enter_lmode(struct kvm_vcpu *vcpu)
2953 {
2954 u32 guest_tr_ar;
2955
2956 vmx_segment_cache_clear(to_vmx(vcpu));
2957
2958 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2959 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2960 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2961 __func__);
2962 vmcs_write32(GUEST_TR_AR_BYTES,
2963 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2964 | VMX_AR_TYPE_BUSY_64_TSS);
2965 }
2966 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2967 }
2968
exit_lmode(struct kvm_vcpu * vcpu)2969 static void exit_lmode(struct kvm_vcpu *vcpu)
2970 {
2971 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2972 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2973 }
2974
2975 #endif
2976
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)2977 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2978 {
2979 struct vcpu_vmx *vmx = to_vmx(vcpu);
2980
2981 /*
2982 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2983 * the CPU is not required to invalidate guest-physical mappings on
2984 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
2985 * associated with the root EPT structure and not any particular VPID
2986 * (INVVPID also isn't required to invalidate guest-physical mappings).
2987 */
2988 if (enable_ept) {
2989 ept_sync_global();
2990 } else if (enable_vpid) {
2991 if (cpu_has_vmx_invvpid_global()) {
2992 vpid_sync_vcpu_global();
2993 } else {
2994 vpid_sync_vcpu_single(vmx->vpid);
2995 vpid_sync_vcpu_single(vmx->nested.vpid02);
2996 }
2997 }
2998 }
2999
vmx_get_current_vpid(struct kvm_vcpu * vcpu)3000 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3001 {
3002 if (is_guest_mode(vcpu))
3003 return nested_get_vpid02(vcpu);
3004 return to_vmx(vcpu)->vpid;
3005 }
3006
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3007 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3008 {
3009 struct kvm_mmu *mmu = vcpu->arch.mmu;
3010 u64 root_hpa = mmu->root_hpa;
3011
3012 /* No flush required if the current context is invalid. */
3013 if (!VALID_PAGE(root_hpa))
3014 return;
3015
3016 if (enable_ept)
3017 ept_sync_context(construct_eptp(vcpu, root_hpa,
3018 mmu->shadow_root_level));
3019 else
3020 vpid_sync_context(vmx_get_current_vpid(vcpu));
3021 }
3022
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3023 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3024 {
3025 /*
3026 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3027 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3028 */
3029 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3030 }
3031
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3032 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3033 {
3034 /*
3035 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3036 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
3037 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3038 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3039 * i.e. no explicit INVVPID is necessary.
3040 */
3041 vpid_sync_context(vmx_get_current_vpid(vcpu));
3042 }
3043
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3044 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3045 {
3046 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3047
3048 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3049 return;
3050
3051 if (is_pae_paging(vcpu)) {
3052 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3053 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3054 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3055 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3056 }
3057 }
3058
ept_save_pdptrs(struct kvm_vcpu * vcpu)3059 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3060 {
3061 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3062
3063 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3064 return;
3065
3066 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3067 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3068 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3069 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3070
3071 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
3072 }
3073
ept_update_paging_mode_cr0(unsigned long * hw_cr0,unsigned long cr0,struct kvm_vcpu * vcpu)3074 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3075 unsigned long cr0,
3076 struct kvm_vcpu *vcpu)
3077 {
3078 struct vcpu_vmx *vmx = to_vmx(vcpu);
3079
3080 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3081 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3082 if (!(cr0 & X86_CR0_PG)) {
3083 /* From paging/starting to nonpaging */
3084 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3085 CPU_BASED_CR3_STORE_EXITING);
3086 vcpu->arch.cr0 = cr0;
3087 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3088 } else if (!is_paging(vcpu)) {
3089 /* From nonpaging to paging */
3090 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3091 CPU_BASED_CR3_STORE_EXITING);
3092 vcpu->arch.cr0 = cr0;
3093 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3094 }
3095
3096 if (!(cr0 & X86_CR0_WP))
3097 *hw_cr0 &= ~X86_CR0_WP;
3098 }
3099
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3100 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3101 {
3102 struct vcpu_vmx *vmx = to_vmx(vcpu);
3103 unsigned long hw_cr0;
3104
3105 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3106 if (is_unrestricted_guest(vcpu))
3107 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3108 else {
3109 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3110
3111 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3112 enter_pmode(vcpu);
3113
3114 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3115 enter_rmode(vcpu);
3116 }
3117
3118 #ifdef CONFIG_X86_64
3119 if (vcpu->arch.efer & EFER_LME) {
3120 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3121 enter_lmode(vcpu);
3122 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3123 exit_lmode(vcpu);
3124 }
3125 #endif
3126
3127 if (enable_ept && !is_unrestricted_guest(vcpu))
3128 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3129
3130 vmcs_writel(CR0_READ_SHADOW, cr0);
3131 vmcs_writel(GUEST_CR0, hw_cr0);
3132 vcpu->arch.cr0 = cr0;
3133 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3134
3135 /* depends on vcpu->arch.cr0 to be set to a new value */
3136 vmx->emulation_required = emulation_required(vcpu);
3137 }
3138
vmx_get_max_tdp_level(void)3139 static int vmx_get_max_tdp_level(void)
3140 {
3141 if (cpu_has_vmx_ept_5levels())
3142 return 5;
3143 return 4;
3144 }
3145
construct_eptp(struct kvm_vcpu * vcpu,unsigned long root_hpa,int root_level)3146 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa,
3147 int root_level)
3148 {
3149 u64 eptp = VMX_EPTP_MT_WB;
3150
3151 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3152
3153 if (enable_ept_ad_bits &&
3154 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3155 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3156 eptp |= (root_hpa & PAGE_MASK);
3157
3158 return eptp;
3159 }
3160
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,unsigned long pgd,int pgd_level)3161 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd,
3162 int pgd_level)
3163 {
3164 struct kvm *kvm = vcpu->kvm;
3165 bool update_guest_cr3 = true;
3166 unsigned long guest_cr3;
3167 u64 eptp;
3168
3169 if (enable_ept) {
3170 eptp = construct_eptp(vcpu, pgd, pgd_level);
3171 vmcs_write64(EPT_POINTER, eptp);
3172
3173 if (kvm_x86_ops.tlb_remote_flush) {
3174 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3175 to_vmx(vcpu)->ept_pointer = eptp;
3176 to_kvm_vmx(kvm)->ept_pointers_match
3177 = EPT_POINTERS_CHECK;
3178 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3179 }
3180
3181 if (!enable_unrestricted_guest && !is_paging(vcpu))
3182 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3183 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3184 guest_cr3 = vcpu->arch.cr3;
3185 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3186 update_guest_cr3 = false;
3187 vmx_ept_load_pdptrs(vcpu);
3188 } else {
3189 guest_cr3 = pgd;
3190 }
3191
3192 if (update_guest_cr3)
3193 vmcs_writel(GUEST_CR3, guest_cr3);
3194 }
3195
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3196 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3197 {
3198 /*
3199 * We operate under the default treatment of SMM, so VMX cannot be
3200 * enabled under SMM. Note, whether or not VMXE is allowed at all is
3201 * handled by kvm_valid_cr4().
3202 */
3203 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3204 return false;
3205
3206 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3207 return false;
3208
3209 return true;
3210 }
3211
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3212 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3213 {
3214 struct vcpu_vmx *vmx = to_vmx(vcpu);
3215 /*
3216 * Pass through host's Machine Check Enable value to hw_cr4, which
3217 * is in force while we are in guest mode. Do not let guests control
3218 * this bit, even if host CR4.MCE == 0.
3219 */
3220 unsigned long hw_cr4;
3221
3222 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3223 if (is_unrestricted_guest(vcpu))
3224 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3225 else if (vmx->rmode.vm86_active)
3226 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3227 else
3228 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3229
3230 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3231 if (cr4 & X86_CR4_UMIP) {
3232 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3233 hw_cr4 &= ~X86_CR4_UMIP;
3234 } else if (!is_guest_mode(vcpu) ||
3235 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3236 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3237 }
3238 }
3239
3240 vcpu->arch.cr4 = cr4;
3241 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3242
3243 if (!is_unrestricted_guest(vcpu)) {
3244 if (enable_ept) {
3245 if (!is_paging(vcpu)) {
3246 hw_cr4 &= ~X86_CR4_PAE;
3247 hw_cr4 |= X86_CR4_PSE;
3248 } else if (!(cr4 & X86_CR4_PAE)) {
3249 hw_cr4 &= ~X86_CR4_PAE;
3250 }
3251 }
3252
3253 /*
3254 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3255 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3256 * to be manually disabled when guest switches to non-paging
3257 * mode.
3258 *
3259 * If !enable_unrestricted_guest, the CPU is always running
3260 * with CR0.PG=1 and CR4 needs to be modified.
3261 * If enable_unrestricted_guest, the CPU automatically
3262 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3263 */
3264 if (!is_paging(vcpu))
3265 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3266 }
3267
3268 vmcs_writel(CR4_READ_SHADOW, cr4);
3269 vmcs_writel(GUEST_CR4, hw_cr4);
3270 }
3271
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3272 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3273 {
3274 struct vcpu_vmx *vmx = to_vmx(vcpu);
3275 u32 ar;
3276
3277 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3278 *var = vmx->rmode.segs[seg];
3279 if (seg == VCPU_SREG_TR
3280 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3281 return;
3282 var->base = vmx_read_guest_seg_base(vmx, seg);
3283 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3284 return;
3285 }
3286 var->base = vmx_read_guest_seg_base(vmx, seg);
3287 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3288 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3289 ar = vmx_read_guest_seg_ar(vmx, seg);
3290 var->unusable = (ar >> 16) & 1;
3291 var->type = ar & 15;
3292 var->s = (ar >> 4) & 1;
3293 var->dpl = (ar >> 5) & 3;
3294 /*
3295 * Some userspaces do not preserve unusable property. Since usable
3296 * segment has to be present according to VMX spec we can use present
3297 * property to amend userspace bug by making unusable segment always
3298 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3299 * segment as unusable.
3300 */
3301 var->present = !var->unusable;
3302 var->avl = (ar >> 12) & 1;
3303 var->l = (ar >> 13) & 1;
3304 var->db = (ar >> 14) & 1;
3305 var->g = (ar >> 15) & 1;
3306 }
3307
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3308 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3309 {
3310 struct kvm_segment s;
3311
3312 if (to_vmx(vcpu)->rmode.vm86_active) {
3313 vmx_get_segment(vcpu, &s, seg);
3314 return s.base;
3315 }
3316 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3317 }
3318
vmx_get_cpl(struct kvm_vcpu * vcpu)3319 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3320 {
3321 struct vcpu_vmx *vmx = to_vmx(vcpu);
3322
3323 if (unlikely(vmx->rmode.vm86_active))
3324 return 0;
3325 else {
3326 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3327 return VMX_AR_DPL(ar);
3328 }
3329 }
3330
vmx_segment_access_rights(struct kvm_segment * var)3331 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3332 {
3333 u32 ar;
3334
3335 if (var->unusable || !var->present)
3336 ar = 1 << 16;
3337 else {
3338 ar = var->type & 15;
3339 ar |= (var->s & 1) << 4;
3340 ar |= (var->dpl & 3) << 5;
3341 ar |= (var->present & 1) << 7;
3342 ar |= (var->avl & 1) << 12;
3343 ar |= (var->l & 1) << 13;
3344 ar |= (var->db & 1) << 14;
3345 ar |= (var->g & 1) << 15;
3346 }
3347
3348 return ar;
3349 }
3350
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3351 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3352 {
3353 struct vcpu_vmx *vmx = to_vmx(vcpu);
3354 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3355
3356 vmx_segment_cache_clear(vmx);
3357
3358 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3359 vmx->rmode.segs[seg] = *var;
3360 if (seg == VCPU_SREG_TR)
3361 vmcs_write16(sf->selector, var->selector);
3362 else if (var->s)
3363 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3364 goto out;
3365 }
3366
3367 vmcs_writel(sf->base, var->base);
3368 vmcs_write32(sf->limit, var->limit);
3369 vmcs_write16(sf->selector, var->selector);
3370
3371 /*
3372 * Fix the "Accessed" bit in AR field of segment registers for older
3373 * qemu binaries.
3374 * IA32 arch specifies that at the time of processor reset the
3375 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3376 * is setting it to 0 in the userland code. This causes invalid guest
3377 * state vmexit when "unrestricted guest" mode is turned on.
3378 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3379 * tree. Newer qemu binaries with that qemu fix would not need this
3380 * kvm hack.
3381 */
3382 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3383 var->type |= 0x1; /* Accessed */
3384
3385 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3386
3387 out:
3388 vmx->emulation_required = emulation_required(vcpu);
3389 }
3390
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3391 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3392 {
3393 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3394
3395 *db = (ar >> 14) & 1;
3396 *l = (ar >> 13) & 1;
3397 }
3398
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3399 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3400 {
3401 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3402 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3403 }
3404
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3405 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3406 {
3407 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3408 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3409 }
3410
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3411 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3412 {
3413 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3414 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3415 }
3416
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3417 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3418 {
3419 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3420 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3421 }
3422
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3423 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3424 {
3425 struct kvm_segment var;
3426 u32 ar;
3427
3428 vmx_get_segment(vcpu, &var, seg);
3429 var.dpl = 0x3;
3430 if (seg == VCPU_SREG_CS)
3431 var.type = 0x3;
3432 ar = vmx_segment_access_rights(&var);
3433
3434 if (var.base != (var.selector << 4))
3435 return false;
3436 if (var.limit != 0xffff)
3437 return false;
3438 if (ar != 0xf3)
3439 return false;
3440
3441 return true;
3442 }
3443
code_segment_valid(struct kvm_vcpu * vcpu)3444 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3445 {
3446 struct kvm_segment cs;
3447 unsigned int cs_rpl;
3448
3449 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3450 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3451
3452 if (cs.unusable)
3453 return false;
3454 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3455 return false;
3456 if (!cs.s)
3457 return false;
3458 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3459 if (cs.dpl > cs_rpl)
3460 return false;
3461 } else {
3462 if (cs.dpl != cs_rpl)
3463 return false;
3464 }
3465 if (!cs.present)
3466 return false;
3467
3468 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3469 return true;
3470 }
3471
stack_segment_valid(struct kvm_vcpu * vcpu)3472 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3473 {
3474 struct kvm_segment ss;
3475 unsigned int ss_rpl;
3476
3477 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3478 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3479
3480 if (ss.unusable)
3481 return true;
3482 if (ss.type != 3 && ss.type != 7)
3483 return false;
3484 if (!ss.s)
3485 return false;
3486 if (ss.dpl != ss_rpl) /* DPL != RPL */
3487 return false;
3488 if (!ss.present)
3489 return false;
3490
3491 return true;
3492 }
3493
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3494 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3495 {
3496 struct kvm_segment var;
3497 unsigned int rpl;
3498
3499 vmx_get_segment(vcpu, &var, seg);
3500 rpl = var.selector & SEGMENT_RPL_MASK;
3501
3502 if (var.unusable)
3503 return true;
3504 if (!var.s)
3505 return false;
3506 if (!var.present)
3507 return false;
3508 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3509 if (var.dpl < rpl) /* DPL < RPL */
3510 return false;
3511 }
3512
3513 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3514 * rights flags
3515 */
3516 return true;
3517 }
3518
tr_valid(struct kvm_vcpu * vcpu)3519 static bool tr_valid(struct kvm_vcpu *vcpu)
3520 {
3521 struct kvm_segment tr;
3522
3523 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3524
3525 if (tr.unusable)
3526 return false;
3527 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3528 return false;
3529 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3530 return false;
3531 if (!tr.present)
3532 return false;
3533
3534 return true;
3535 }
3536
ldtr_valid(struct kvm_vcpu * vcpu)3537 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3538 {
3539 struct kvm_segment ldtr;
3540
3541 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3542
3543 if (ldtr.unusable)
3544 return true;
3545 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3546 return false;
3547 if (ldtr.type != 2)
3548 return false;
3549 if (!ldtr.present)
3550 return false;
3551
3552 return true;
3553 }
3554
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3555 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3556 {
3557 struct kvm_segment cs, ss;
3558
3559 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3560 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3561
3562 return ((cs.selector & SEGMENT_RPL_MASK) ==
3563 (ss.selector & SEGMENT_RPL_MASK));
3564 }
3565
3566 /*
3567 * Check if guest state is valid. Returns true if valid, false if
3568 * not.
3569 * We assume that registers are always usable
3570 */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3571 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3572 {
3573 /* real mode guest state checks */
3574 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3575 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3576 return false;
3577 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3578 return false;
3579 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3580 return false;
3581 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3582 return false;
3583 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3584 return false;
3585 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3586 return false;
3587 } else {
3588 /* protected mode guest state checks */
3589 if (!cs_ss_rpl_check(vcpu))
3590 return false;
3591 if (!code_segment_valid(vcpu))
3592 return false;
3593 if (!stack_segment_valid(vcpu))
3594 return false;
3595 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3596 return false;
3597 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3598 return false;
3599 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3600 return false;
3601 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3602 return false;
3603 if (!tr_valid(vcpu))
3604 return false;
3605 if (!ldtr_valid(vcpu))
3606 return false;
3607 }
3608 /* TODO:
3609 * - Add checks on RIP
3610 * - Add checks on RFLAGS
3611 */
3612
3613 return true;
3614 }
3615
init_rmode_tss(struct kvm * kvm)3616 static int init_rmode_tss(struct kvm *kvm)
3617 {
3618 gfn_t fn;
3619 u16 data = 0;
3620 int idx, r;
3621
3622 idx = srcu_read_lock(&kvm->srcu);
3623 fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3624 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3625 if (r < 0)
3626 goto out;
3627 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3628 r = kvm_write_guest_page(kvm, fn++, &data,
3629 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3630 if (r < 0)
3631 goto out;
3632 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3633 if (r < 0)
3634 goto out;
3635 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3636 if (r < 0)
3637 goto out;
3638 data = ~0;
3639 r = kvm_write_guest_page(kvm, fn, &data,
3640 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3641 sizeof(u8));
3642 out:
3643 srcu_read_unlock(&kvm->srcu, idx);
3644 return r;
3645 }
3646
init_rmode_identity_map(struct kvm * kvm)3647 static int init_rmode_identity_map(struct kvm *kvm)
3648 {
3649 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3650 int i, r = 0;
3651 kvm_pfn_t identity_map_pfn;
3652 u32 tmp;
3653
3654 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3655 mutex_lock(&kvm->slots_lock);
3656
3657 if (likely(kvm_vmx->ept_identity_pagetable_done))
3658 goto out;
3659
3660 if (!kvm_vmx->ept_identity_map_addr)
3661 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3662 identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3663
3664 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3665 kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3666 if (r < 0)
3667 goto out;
3668
3669 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3670 if (r < 0)
3671 goto out;
3672 /* Set up identity-mapping pagetable for EPT in real mode */
3673 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3674 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3675 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3676 r = kvm_write_guest_page(kvm, identity_map_pfn,
3677 &tmp, i * sizeof(tmp), sizeof(tmp));
3678 if (r < 0)
3679 goto out;
3680 }
3681 kvm_vmx->ept_identity_pagetable_done = true;
3682
3683 out:
3684 mutex_unlock(&kvm->slots_lock);
3685 return r;
3686 }
3687
seg_setup(int seg)3688 static void seg_setup(int seg)
3689 {
3690 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3691 unsigned int ar;
3692
3693 vmcs_write16(sf->selector, 0);
3694 vmcs_writel(sf->base, 0);
3695 vmcs_write32(sf->limit, 0xffff);
3696 ar = 0x93;
3697 if (seg == VCPU_SREG_CS)
3698 ar |= 0x08; /* code segment */
3699
3700 vmcs_write32(sf->ar_bytes, ar);
3701 }
3702
alloc_apic_access_page(struct kvm * kvm)3703 static int alloc_apic_access_page(struct kvm *kvm)
3704 {
3705 struct page *page;
3706 int r = 0;
3707
3708 mutex_lock(&kvm->slots_lock);
3709 if (kvm->arch.apic_access_page_done)
3710 goto out;
3711 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3712 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3713 if (r)
3714 goto out;
3715
3716 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3717 if (is_error_page(page)) {
3718 r = -EFAULT;
3719 goto out;
3720 }
3721
3722 /*
3723 * Do not pin the page in memory, so that memory hot-unplug
3724 * is able to migrate it.
3725 */
3726 put_page(page);
3727 kvm->arch.apic_access_page_done = true;
3728 out:
3729 mutex_unlock(&kvm->slots_lock);
3730 return r;
3731 }
3732
allocate_vpid(void)3733 int allocate_vpid(void)
3734 {
3735 int vpid;
3736
3737 if (!enable_vpid)
3738 return 0;
3739 spin_lock(&vmx_vpid_lock);
3740 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3741 if (vpid < VMX_NR_VPIDS)
3742 __set_bit(vpid, vmx_vpid_bitmap);
3743 else
3744 vpid = 0;
3745 spin_unlock(&vmx_vpid_lock);
3746 return vpid;
3747 }
3748
free_vpid(int vpid)3749 void free_vpid(int vpid)
3750 {
3751 if (!enable_vpid || vpid == 0)
3752 return;
3753 spin_lock(&vmx_vpid_lock);
3754 __clear_bit(vpid, vmx_vpid_bitmap);
3755 spin_unlock(&vmx_vpid_lock);
3756 }
3757
vmx_clear_msr_bitmap_read(ulong * msr_bitmap,u32 msr)3758 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3759 {
3760 int f = sizeof(unsigned long);
3761
3762 if (msr <= 0x1fff)
3763 __clear_bit(msr, msr_bitmap + 0x000 / f);
3764 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3765 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3766 }
3767
vmx_clear_msr_bitmap_write(ulong * msr_bitmap,u32 msr)3768 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3769 {
3770 int f = sizeof(unsigned long);
3771
3772 if (msr <= 0x1fff)
3773 __clear_bit(msr, msr_bitmap + 0x800 / f);
3774 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3775 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3776 }
3777
vmx_set_msr_bitmap_read(ulong * msr_bitmap,u32 msr)3778 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3779 {
3780 int f = sizeof(unsigned long);
3781
3782 if (msr <= 0x1fff)
3783 __set_bit(msr, msr_bitmap + 0x000 / f);
3784 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3785 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3786 }
3787
vmx_set_msr_bitmap_write(ulong * msr_bitmap,u32 msr)3788 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3789 {
3790 int f = sizeof(unsigned long);
3791
3792 if (msr <= 0x1fff)
3793 __set_bit(msr, msr_bitmap + 0x800 / f);
3794 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3795 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3796 }
3797
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3798 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
3799 u32 msr, int type)
3800 {
3801 struct vcpu_vmx *vmx = to_vmx(vcpu);
3802 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3803
3804 if (!cpu_has_vmx_msr_bitmap())
3805 return;
3806
3807 if (static_branch_unlikely(&enable_evmcs))
3808 evmcs_touch_msr_bitmap();
3809
3810 /*
3811 * Mark the desired intercept state in shadow bitmap, this is needed
3812 * for resync when the MSR filters change.
3813 */
3814 if (is_valid_passthrough_msr(msr)) {
3815 int idx = possible_passthrough_msr_slot(msr);
3816
3817 if (idx != -ENOENT) {
3818 if (type & MSR_TYPE_R)
3819 clear_bit(idx, vmx->shadow_msr_intercept.read);
3820 if (type & MSR_TYPE_W)
3821 clear_bit(idx, vmx->shadow_msr_intercept.write);
3822 }
3823 }
3824
3825 if ((type & MSR_TYPE_R) &&
3826 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3827 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3828 type &= ~MSR_TYPE_R;
3829 }
3830
3831 if ((type & MSR_TYPE_W) &&
3832 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3833 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3834 type &= ~MSR_TYPE_W;
3835 }
3836
3837 if (type & MSR_TYPE_R)
3838 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3839
3840 if (type & MSR_TYPE_W)
3841 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3842 }
3843
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3844 static __always_inline void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu,
3845 u32 msr, int type)
3846 {
3847 struct vcpu_vmx *vmx = to_vmx(vcpu);
3848 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3849
3850 if (!cpu_has_vmx_msr_bitmap())
3851 return;
3852
3853 if (static_branch_unlikely(&enable_evmcs))
3854 evmcs_touch_msr_bitmap();
3855
3856 /*
3857 * Mark the desired intercept state in shadow bitmap, this is needed
3858 * for resync when the MSR filter changes.
3859 */
3860 if (is_valid_passthrough_msr(msr)) {
3861 int idx = possible_passthrough_msr_slot(msr);
3862
3863 if (idx != -ENOENT) {
3864 if (type & MSR_TYPE_R)
3865 set_bit(idx, vmx->shadow_msr_intercept.read);
3866 if (type & MSR_TYPE_W)
3867 set_bit(idx, vmx->shadow_msr_intercept.write);
3868 }
3869 }
3870
3871 if (type & MSR_TYPE_R)
3872 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3873
3874 if (type & MSR_TYPE_W)
3875 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3876 }
3877
vmx_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool value)3878 static __always_inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu,
3879 u32 msr, int type, bool value)
3880 {
3881 if (value)
3882 vmx_enable_intercept_for_msr(vcpu, msr, type);
3883 else
3884 vmx_disable_intercept_for_msr(vcpu, msr, type);
3885 }
3886
vmx_msr_bitmap_mode(struct kvm_vcpu * vcpu)3887 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3888 {
3889 u8 mode = 0;
3890
3891 if (cpu_has_secondary_exec_ctrls() &&
3892 (secondary_exec_controls_get(to_vmx(vcpu)) &
3893 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3894 mode |= MSR_BITMAP_MODE_X2APIC;
3895 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3896 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3897 }
3898
3899 return mode;
3900 }
3901
vmx_reset_x2apic_msrs(struct kvm_vcpu * vcpu,u8 mode)3902 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3903 {
3904 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3905 unsigned long read_intercept;
3906 int msr;
3907
3908 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3909
3910 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3911 unsigned int read_idx = msr / BITS_PER_LONG;
3912 unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3913
3914 msr_bitmap[read_idx] = read_intercept;
3915 msr_bitmap[write_idx] = ~0ul;
3916 }
3917 }
3918
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu,u8 mode)3919 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode)
3920 {
3921 if (!cpu_has_vmx_msr_bitmap())
3922 return;
3923
3924 vmx_reset_x2apic_msrs(vcpu, mode);
3925
3926 /*
3927 * TPR reads and writes can be virtualized even if virtual interrupt
3928 * delivery is not in use.
3929 */
3930 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3931 !(mode & MSR_BITMAP_MODE_X2APIC));
3932
3933 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3934 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3935 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3936 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3937 }
3938 }
3939
vmx_update_msr_bitmap(struct kvm_vcpu * vcpu)3940 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3941 {
3942 struct vcpu_vmx *vmx = to_vmx(vcpu);
3943 u8 mode = vmx_msr_bitmap_mode(vcpu);
3944 u8 changed = mode ^ vmx->msr_bitmap_mode;
3945
3946 if (!changed)
3947 return;
3948
3949 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3950 vmx_update_msr_bitmap_x2apic(vcpu, mode);
3951
3952 vmx->msr_bitmap_mode = mode;
3953 }
3954
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)3955 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3956 {
3957 struct vcpu_vmx *vmx = to_vmx(vcpu);
3958 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3959 u32 i;
3960
3961 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3962 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3963 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3964 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3965 for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3966 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3967 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3968 }
3969 }
3970
vmx_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)3971 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3972 {
3973 struct vcpu_vmx *vmx = to_vmx(vcpu);
3974 void *vapic_page;
3975 u32 vppr;
3976 int rvi;
3977
3978 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3979 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3980 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3981 return false;
3982
3983 rvi = vmx_get_rvi();
3984
3985 vapic_page = vmx->nested.virtual_apic_map.hva;
3986 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3987
3988 return ((rvi & 0xf0) > (vppr & 0xf0));
3989 }
3990
vmx_msr_filter_changed(struct kvm_vcpu * vcpu)3991 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3992 {
3993 struct vcpu_vmx *vmx = to_vmx(vcpu);
3994 u32 i;
3995
3996 /*
3997 * Set intercept permissions for all potentially passed through MSRs
3998 * again. They will automatically get filtered through the MSR filter,
3999 * so we are back in sync after this.
4000 */
4001 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4002 u32 msr = vmx_possible_passthrough_msrs[i];
4003 bool read = test_bit(i, vmx->shadow_msr_intercept.read);
4004 bool write = test_bit(i, vmx->shadow_msr_intercept.write);
4005
4006 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
4007 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
4008 }
4009
4010 pt_update_intercept_for_msr(vcpu);
4011 vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu));
4012 }
4013
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,bool nested)4014 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4015 bool nested)
4016 {
4017 #ifdef CONFIG_SMP
4018 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
4019
4020 if (vcpu->mode == IN_GUEST_MODE) {
4021 /*
4022 * The vector of interrupt to be delivered to vcpu had
4023 * been set in PIR before this function.
4024 *
4025 * Following cases will be reached in this block, and
4026 * we always send a notification event in all cases as
4027 * explained below.
4028 *
4029 * Case 1: vcpu keeps in non-root mode. Sending a
4030 * notification event posts the interrupt to vcpu.
4031 *
4032 * Case 2: vcpu exits to root mode and is still
4033 * runnable. PIR will be synced to vIRR before the
4034 * next vcpu entry. Sending a notification event in
4035 * this case has no effect, as vcpu is not in root
4036 * mode.
4037 *
4038 * Case 3: vcpu exits to root mode and is blocked.
4039 * vcpu_block() has already synced PIR to vIRR and
4040 * never blocks vcpu if vIRR is not cleared. Therefore,
4041 * a blocked vcpu here does not wait for any requested
4042 * interrupts in PIR, and sending a notification event
4043 * which has no effect is safe here.
4044 */
4045
4046 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4047 return true;
4048 }
4049 #endif
4050 return false;
4051 }
4052
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4053 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4054 int vector)
4055 {
4056 struct vcpu_vmx *vmx = to_vmx(vcpu);
4057
4058 if (is_guest_mode(vcpu) &&
4059 vector == vmx->nested.posted_intr_nv) {
4060 /*
4061 * If a posted intr is not recognized by hardware,
4062 * we will accomplish it in the next vmentry.
4063 */
4064 vmx->nested.pi_pending = true;
4065 kvm_make_request(KVM_REQ_EVENT, vcpu);
4066 /* the PIR and ON have been set by L1. */
4067 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
4068 kvm_vcpu_kick(vcpu);
4069 return 0;
4070 }
4071 return -1;
4072 }
4073 /*
4074 * Send interrupt to vcpu via posted interrupt way.
4075 * 1. If target vcpu is running(non-root mode), send posted interrupt
4076 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4077 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4078 * interrupt from PIR in next vmentry.
4079 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4080 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4081 {
4082 struct vcpu_vmx *vmx = to_vmx(vcpu);
4083 int r;
4084
4085 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4086 if (!r)
4087 return 0;
4088
4089 if (!vcpu->arch.apicv_active)
4090 return -1;
4091
4092 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4093 return 0;
4094
4095 /* If a previous notification has sent the IPI, nothing to do. */
4096 if (pi_test_and_set_on(&vmx->pi_desc))
4097 return 0;
4098
4099 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4100 kvm_vcpu_kick(vcpu);
4101
4102 return 0;
4103 }
4104
4105 /*
4106 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4107 * will not change in the lifetime of the guest.
4108 * Note that host-state that does change is set elsewhere. E.g., host-state
4109 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4110 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4111 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4112 {
4113 u32 low32, high32;
4114 unsigned long tmpl;
4115 unsigned long cr0, cr3, cr4;
4116
4117 cr0 = read_cr0();
4118 WARN_ON(cr0 & X86_CR0_TS);
4119 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4120
4121 /*
4122 * Save the most likely value for this task's CR3 in the VMCS.
4123 * We can't use __get_current_cr3_fast() because we're not atomic.
4124 */
4125 cr3 = __read_cr3();
4126 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4127 vmx->loaded_vmcs->host_state.cr3 = cr3;
4128
4129 /* Save the most likely value for this task's CR4 in the VMCS. */
4130 cr4 = cr4_read_shadow();
4131 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4132 vmx->loaded_vmcs->host_state.cr4 = cr4;
4133
4134 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4135 #ifdef CONFIG_X86_64
4136 /*
4137 * Load null selectors, so we can avoid reloading them in
4138 * vmx_prepare_switch_to_host(), in case userspace uses
4139 * the null selectors too (the expected case).
4140 */
4141 vmcs_write16(HOST_DS_SELECTOR, 0);
4142 vmcs_write16(HOST_ES_SELECTOR, 0);
4143 #else
4144 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4145 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4146 #endif
4147 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4148 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4149
4150 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4151
4152 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4153
4154 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4155 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4156 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4157 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4158
4159 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4160 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4161 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4162 }
4163
4164 if (cpu_has_load_ia32_efer())
4165 vmcs_write64(HOST_IA32_EFER, host_efer);
4166 }
4167
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4168 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4169 {
4170 struct kvm_vcpu *vcpu = &vmx->vcpu;
4171
4172 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4173 ~vcpu->arch.cr4_guest_rsvd_bits;
4174 if (!enable_ept)
4175 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4176 if (is_guest_mode(&vmx->vcpu))
4177 vcpu->arch.cr4_guest_owned_bits &=
4178 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4179 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4180 }
4181
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4182 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4183 {
4184 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4185
4186 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4187 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4188
4189 if (!enable_vnmi)
4190 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4191
4192 if (!enable_preemption_timer)
4193 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4194
4195 return pin_based_exec_ctrl;
4196 }
4197
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4198 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4199 {
4200 struct vcpu_vmx *vmx = to_vmx(vcpu);
4201
4202 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4203 if (cpu_has_secondary_exec_ctrls()) {
4204 if (kvm_vcpu_apicv_active(vcpu))
4205 secondary_exec_controls_setbit(vmx,
4206 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4207 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4208 else
4209 secondary_exec_controls_clearbit(vmx,
4210 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4211 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4212 }
4213
4214 if (cpu_has_vmx_msr_bitmap())
4215 vmx_update_msr_bitmap(vcpu);
4216 }
4217
vmx_exec_control(struct vcpu_vmx * vmx)4218 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4219 {
4220 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4221
4222 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4223 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4224
4225 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4226 exec_control &= ~CPU_BASED_TPR_SHADOW;
4227 #ifdef CONFIG_X86_64
4228 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4229 CPU_BASED_CR8_LOAD_EXITING;
4230 #endif
4231 }
4232 if (!enable_ept)
4233 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4234 CPU_BASED_CR3_LOAD_EXITING |
4235 CPU_BASED_INVLPG_EXITING;
4236 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4237 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4238 CPU_BASED_MONITOR_EXITING);
4239 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4240 exec_control &= ~CPU_BASED_HLT_EXITING;
4241 return exec_control;
4242 }
4243
4244 /*
4245 * Adjust a single secondary execution control bit to intercept/allow an
4246 * instruction in the guest. This is usually done based on whether or not a
4247 * feature has been exposed to the guest in order to correctly emulate faults.
4248 */
4249 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4250 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4251 u32 control, bool enabled, bool exiting)
4252 {
4253 /*
4254 * If the control is for an opt-in feature, clear the control if the
4255 * feature is not exposed to the guest, i.e. not enabled. If the
4256 * control is opt-out, i.e. an exiting control, clear the control if
4257 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4258 * disabled for the associated instruction. Note, the caller is
4259 * responsible presetting exec_control to set all supported bits.
4260 */
4261 if (enabled == exiting)
4262 *exec_control &= ~control;
4263
4264 /*
4265 * Update the nested MSR settings so that a nested VMM can/can't set
4266 * controls for features that are/aren't exposed to the guest.
4267 */
4268 if (nested) {
4269 if (enabled)
4270 vmx->nested.msrs.secondary_ctls_high |= control;
4271 else
4272 vmx->nested.msrs.secondary_ctls_high &= ~control;
4273 }
4274 }
4275
4276 /*
4277 * Wrapper macro for the common case of adjusting a secondary execution control
4278 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4279 * verifies that the control is actually supported by KVM and hardware.
4280 */
4281 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4282 ({ \
4283 bool __enabled; \
4284 \
4285 if (cpu_has_vmx_##name()) { \
4286 __enabled = guest_cpuid_has(&(vmx)->vcpu, \
4287 X86_FEATURE_##feat_name); \
4288 vmx_adjust_secondary_exec_control(vmx, exec_control, \
4289 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4290 } \
4291 })
4292
4293 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4294 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4295 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4296
4297 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4298 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4299
vmx_compute_secondary_exec_control(struct vcpu_vmx * vmx)4300 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4301 {
4302 struct kvm_vcpu *vcpu = &vmx->vcpu;
4303
4304 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4305
4306 if (vmx_pt_mode_is_system())
4307 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4308 if (!cpu_need_virtualize_apic_accesses(vcpu))
4309 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4310 if (vmx->vpid == 0)
4311 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4312 if (!enable_ept) {
4313 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4314 enable_unrestricted_guest = 0;
4315 }
4316 if (!enable_unrestricted_guest)
4317 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4318 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4319 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4320 if (!kvm_vcpu_apicv_active(vcpu))
4321 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4322 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4323 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4324
4325 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4326 * in vmx_set_cr4. */
4327 exec_control &= ~SECONDARY_EXEC_DESC;
4328
4329 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4330 (handle_vmptrld).
4331 We can NOT enable shadow_vmcs here because we don't have yet
4332 a current VMCS12
4333 */
4334 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4335
4336 if (!enable_pml)
4337 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4338
4339 if (cpu_has_vmx_xsaves()) {
4340 /* Exposing XSAVES only when XSAVE is exposed */
4341 bool xsaves_enabled =
4342 boot_cpu_has(X86_FEATURE_XSAVE) &&
4343 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4344 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4345
4346 vcpu->arch.xsaves_enabled = xsaves_enabled;
4347
4348 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4349 SECONDARY_EXEC_XSAVES,
4350 xsaves_enabled, false);
4351 }
4352
4353 vmx_adjust_sec_exec_feature(vmx, &exec_control, rdtscp, RDTSCP);
4354
4355 /*
4356 * Expose INVPCID if and only if PCID is also exposed to the guest.
4357 * INVPCID takes a #UD when it's disabled in the VMCS, but a #GP or #PF
4358 * if CR4.PCIDE=0. Enumerating CPUID.INVPCID=1 would lead to incorrect
4359 * behavior from the guest perspective (it would expect #GP or #PF).
4360 */
4361 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
4362 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4363 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4364
4365
4366 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4367 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4368
4369 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4370 ENABLE_USR_WAIT_PAUSE, false);
4371
4372 vmx->secondary_exec_control = exec_control;
4373 }
4374
ept_set_mmio_spte_mask(void)4375 static void ept_set_mmio_spte_mask(void)
4376 {
4377 /*
4378 * EPT Misconfigurations can be generated if the value of bits 2:0
4379 * of an EPT paging-structure entry is 110b (write/execute).
4380 */
4381 kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 0);
4382 }
4383
4384 #define VMX_XSS_EXIT_BITMAP 0
4385
4386 /*
4387 * Noting that the initialization of Guest-state Area of VMCS is in
4388 * vmx_vcpu_reset().
4389 */
init_vmcs(struct vcpu_vmx * vmx)4390 static void init_vmcs(struct vcpu_vmx *vmx)
4391 {
4392 if (nested)
4393 nested_vmx_set_vmcs_shadowing_bitmap();
4394
4395 if (cpu_has_vmx_msr_bitmap())
4396 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4397
4398 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4399
4400 /* Control */
4401 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4402
4403 exec_controls_set(vmx, vmx_exec_control(vmx));
4404
4405 if (cpu_has_secondary_exec_ctrls()) {
4406 vmx_compute_secondary_exec_control(vmx);
4407 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4408 }
4409
4410 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4411 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4412 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4413 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4414 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4415
4416 vmcs_write16(GUEST_INTR_STATUS, 0);
4417
4418 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4419 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4420 }
4421
4422 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4423 vmcs_write32(PLE_GAP, ple_gap);
4424 vmx->ple_window = ple_window;
4425 vmx->ple_window_dirty = true;
4426 }
4427
4428 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4429 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4430 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4431
4432 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4433 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4434 vmx_set_constant_host_state(vmx);
4435 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4436 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4437
4438 if (cpu_has_vmx_vmfunc())
4439 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4440
4441 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4442 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4443 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4444 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4445 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4446
4447 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4448 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4449
4450 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4451
4452 /* 22.2.1, 20.8.1 */
4453 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4454
4455 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4456 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4457
4458 set_cr4_guest_host_mask(vmx);
4459
4460 if (vmx->vpid != 0)
4461 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4462
4463 if (cpu_has_vmx_xsaves())
4464 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4465
4466 if (enable_pml) {
4467 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4468 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4469 }
4470
4471 if (cpu_has_vmx_encls_vmexit())
4472 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4473
4474 if (vmx_pt_mode_is_host_guest()) {
4475 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4476 /* Bit[6~0] are forced to 1, writes are ignored. */
4477 vmx->pt_desc.guest.output_mask = 0x7F;
4478 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4479 }
4480 }
4481
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4482 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4483 {
4484 struct vcpu_vmx *vmx = to_vmx(vcpu);
4485 struct msr_data apic_base_msr;
4486 u64 cr0;
4487
4488 vmx->rmode.vm86_active = 0;
4489 vmx->spec_ctrl = 0;
4490
4491 vmx->msr_ia32_umwait_control = 0;
4492
4493 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4494 vmx->hv_deadline_tsc = -1;
4495 kvm_set_cr8(vcpu, 0);
4496
4497 if (!init_event) {
4498 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4499 MSR_IA32_APICBASE_ENABLE;
4500 if (kvm_vcpu_is_reset_bsp(vcpu))
4501 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4502 apic_base_msr.host_initiated = true;
4503 kvm_set_apic_base(vcpu, &apic_base_msr);
4504 }
4505
4506 vmx_segment_cache_clear(vmx);
4507
4508 seg_setup(VCPU_SREG_CS);
4509 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4510 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4511
4512 seg_setup(VCPU_SREG_DS);
4513 seg_setup(VCPU_SREG_ES);
4514 seg_setup(VCPU_SREG_FS);
4515 seg_setup(VCPU_SREG_GS);
4516 seg_setup(VCPU_SREG_SS);
4517
4518 vmcs_write16(GUEST_TR_SELECTOR, 0);
4519 vmcs_writel(GUEST_TR_BASE, 0);
4520 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4521 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4522
4523 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4524 vmcs_writel(GUEST_LDTR_BASE, 0);
4525 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4526 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4527
4528 if (!init_event) {
4529 vmcs_write32(GUEST_SYSENTER_CS, 0);
4530 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4531 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4532 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4533 }
4534
4535 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4536 kvm_rip_write(vcpu, 0xfff0);
4537
4538 vmcs_writel(GUEST_GDTR_BASE, 0);
4539 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4540
4541 vmcs_writel(GUEST_IDTR_BASE, 0);
4542 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4543
4544 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4545 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4546 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4547 if (kvm_mpx_supported())
4548 vmcs_write64(GUEST_BNDCFGS, 0);
4549
4550 setup_msrs(vmx);
4551
4552 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4553
4554 if (cpu_has_vmx_tpr_shadow() && !init_event) {
4555 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4556 if (cpu_need_tpr_shadow(vcpu))
4557 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4558 __pa(vcpu->arch.apic->regs));
4559 vmcs_write32(TPR_THRESHOLD, 0);
4560 }
4561
4562 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4563
4564 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4565 vmx->vcpu.arch.cr0 = cr0;
4566 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4567 vmx_set_cr4(vcpu, 0);
4568 vmx_set_efer(vcpu, 0);
4569
4570 update_exception_bitmap(vcpu);
4571
4572 vpid_sync_context(vmx->vpid);
4573 if (init_event)
4574 vmx_clear_hlt(vcpu);
4575
4576 vmx_update_fb_clear_dis(vcpu, vmx);
4577 }
4578
enable_irq_window(struct kvm_vcpu * vcpu)4579 static void enable_irq_window(struct kvm_vcpu *vcpu)
4580 {
4581 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4582 }
4583
enable_nmi_window(struct kvm_vcpu * vcpu)4584 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4585 {
4586 if (!enable_vnmi ||
4587 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4588 enable_irq_window(vcpu);
4589 return;
4590 }
4591
4592 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4593 }
4594
vmx_inject_irq(struct kvm_vcpu * vcpu)4595 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4596 {
4597 struct vcpu_vmx *vmx = to_vmx(vcpu);
4598 uint32_t intr;
4599 int irq = vcpu->arch.interrupt.nr;
4600
4601 trace_kvm_inj_virq(irq);
4602
4603 ++vcpu->stat.irq_injections;
4604 if (vmx->rmode.vm86_active) {
4605 int inc_eip = 0;
4606 if (vcpu->arch.interrupt.soft)
4607 inc_eip = vcpu->arch.event_exit_inst_len;
4608 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4609 return;
4610 }
4611 intr = irq | INTR_INFO_VALID_MASK;
4612 if (vcpu->arch.interrupt.soft) {
4613 intr |= INTR_TYPE_SOFT_INTR;
4614 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4615 vmx->vcpu.arch.event_exit_inst_len);
4616 } else
4617 intr |= INTR_TYPE_EXT_INTR;
4618 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4619
4620 vmx_clear_hlt(vcpu);
4621 }
4622
vmx_inject_nmi(struct kvm_vcpu * vcpu)4623 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4624 {
4625 struct vcpu_vmx *vmx = to_vmx(vcpu);
4626
4627 if (!enable_vnmi) {
4628 /*
4629 * Tracking the NMI-blocked state in software is built upon
4630 * finding the next open IRQ window. This, in turn, depends on
4631 * well-behaving guests: They have to keep IRQs disabled at
4632 * least as long as the NMI handler runs. Otherwise we may
4633 * cause NMI nesting, maybe breaking the guest. But as this is
4634 * highly unlikely, we can live with the residual risk.
4635 */
4636 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4637 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4638 }
4639
4640 ++vcpu->stat.nmi_injections;
4641 vmx->loaded_vmcs->nmi_known_unmasked = false;
4642
4643 if (vmx->rmode.vm86_active) {
4644 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4645 return;
4646 }
4647
4648 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4649 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4650
4651 vmx_clear_hlt(vcpu);
4652 }
4653
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4654 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4655 {
4656 struct vcpu_vmx *vmx = to_vmx(vcpu);
4657 bool masked;
4658
4659 if (!enable_vnmi)
4660 return vmx->loaded_vmcs->soft_vnmi_blocked;
4661 if (vmx->loaded_vmcs->nmi_known_unmasked)
4662 return false;
4663 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4664 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4665 return masked;
4666 }
4667
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4668 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4669 {
4670 struct vcpu_vmx *vmx = to_vmx(vcpu);
4671
4672 if (!enable_vnmi) {
4673 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4674 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4675 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4676 }
4677 } else {
4678 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4679 if (masked)
4680 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4681 GUEST_INTR_STATE_NMI);
4682 else
4683 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4684 GUEST_INTR_STATE_NMI);
4685 }
4686 }
4687
vmx_nmi_blocked(struct kvm_vcpu * vcpu)4688 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4689 {
4690 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4691 return false;
4692
4693 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4694 return true;
4695
4696 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4697 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4698 GUEST_INTR_STATE_NMI));
4699 }
4700
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4701 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4702 {
4703 if (to_vmx(vcpu)->nested.nested_run_pending)
4704 return -EBUSY;
4705
4706 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
4707 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4708 return -EBUSY;
4709
4710 return !vmx_nmi_blocked(vcpu);
4711 }
4712
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)4713 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4714 {
4715 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4716 return false;
4717
4718 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4719 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4720 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4721 }
4722
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)4723 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4724 {
4725 if (to_vmx(vcpu)->nested.nested_run_pending)
4726 return -EBUSY;
4727
4728 /*
4729 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4730 * e.g. if the IRQ arrived asynchronously after checking nested events.
4731 */
4732 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4733 return -EBUSY;
4734
4735 return !vmx_interrupt_blocked(vcpu);
4736 }
4737
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)4738 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4739 {
4740 int ret;
4741
4742 if (enable_unrestricted_guest)
4743 return 0;
4744
4745 mutex_lock(&kvm->slots_lock);
4746 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4747 PAGE_SIZE * 3);
4748 mutex_unlock(&kvm->slots_lock);
4749
4750 if (ret)
4751 return ret;
4752 to_kvm_vmx(kvm)->tss_addr = addr;
4753 return init_rmode_tss(kvm);
4754 }
4755
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)4756 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4757 {
4758 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4759 return 0;
4760 }
4761
rmode_exception(struct kvm_vcpu * vcpu,int vec)4762 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4763 {
4764 switch (vec) {
4765 case BP_VECTOR:
4766 /*
4767 * Update instruction length as we may reinject the exception
4768 * from user space while in guest debugging mode.
4769 */
4770 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4771 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4772 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4773 return false;
4774 fallthrough;
4775 case DB_VECTOR:
4776 return !(vcpu->guest_debug &
4777 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4778 case DE_VECTOR:
4779 case OF_VECTOR:
4780 case BR_VECTOR:
4781 case UD_VECTOR:
4782 case DF_VECTOR:
4783 case SS_VECTOR:
4784 case GP_VECTOR:
4785 case MF_VECTOR:
4786 return true;
4787 }
4788 return false;
4789 }
4790
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)4791 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4792 int vec, u32 err_code)
4793 {
4794 /*
4795 * Instruction with address size override prefix opcode 0x67
4796 * Cause the #SS fault with 0 error code in VM86 mode.
4797 */
4798 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4799 if (kvm_emulate_instruction(vcpu, 0)) {
4800 if (vcpu->arch.halt_request) {
4801 vcpu->arch.halt_request = 0;
4802 return kvm_vcpu_halt(vcpu);
4803 }
4804 return 1;
4805 }
4806 return 0;
4807 }
4808
4809 /*
4810 * Forward all other exceptions that are valid in real mode.
4811 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4812 * the required debugging infrastructure rework.
4813 */
4814 kvm_queue_exception(vcpu, vec);
4815 return 1;
4816 }
4817
4818 /*
4819 * Trigger machine check on the host. We assume all the MSRs are already set up
4820 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4821 * We pass a fake environment to the machine check handler because we want
4822 * the guest to be always treated like user space, no matter what context
4823 * it used internally.
4824 */
kvm_machine_check(void)4825 static void kvm_machine_check(void)
4826 {
4827 #if defined(CONFIG_X86_MCE)
4828 struct pt_regs regs = {
4829 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4830 .flags = X86_EFLAGS_IF,
4831 };
4832
4833 do_machine_check(®s);
4834 #endif
4835 }
4836
handle_machine_check(struct kvm_vcpu * vcpu)4837 static int handle_machine_check(struct kvm_vcpu *vcpu)
4838 {
4839 /* handled by vmx_vcpu_run() */
4840 return 1;
4841 }
4842
4843 /*
4844 * If the host has split lock detection disabled, then #AC is
4845 * unconditionally injected into the guest, which is the pre split lock
4846 * detection behaviour.
4847 *
4848 * If the host has split lock detection enabled then #AC is
4849 * only injected into the guest when:
4850 * - Guest CPL == 3 (user mode)
4851 * - Guest has #AC detection enabled in CR0
4852 * - Guest EFLAGS has AC bit set
4853 */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)4854 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4855 {
4856 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4857 return true;
4858
4859 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4860 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4861 }
4862
handle_exception_nmi(struct kvm_vcpu * vcpu)4863 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4864 {
4865 struct vcpu_vmx *vmx = to_vmx(vcpu);
4866 struct kvm_run *kvm_run = vcpu->run;
4867 u32 intr_info, ex_no, error_code;
4868 unsigned long cr2, rip, dr6;
4869 u32 vect_info;
4870
4871 vect_info = vmx->idt_vectoring_info;
4872 intr_info = vmx_get_intr_info(vcpu);
4873
4874 if (is_machine_check(intr_info) || is_nmi(intr_info))
4875 return 1; /* handled by handle_exception_nmi_irqoff() */
4876
4877 if (is_invalid_opcode(intr_info))
4878 return handle_ud(vcpu);
4879
4880 error_code = 0;
4881 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4882 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4883
4884 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4885 WARN_ON_ONCE(!enable_vmware_backdoor);
4886
4887 /*
4888 * VMware backdoor emulation on #GP interception only handles
4889 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4890 * error code on #GP.
4891 */
4892 if (error_code) {
4893 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4894 return 1;
4895 }
4896 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4897 }
4898
4899 /*
4900 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4901 * MMIO, it is better to report an internal error.
4902 * See the comments in vmx_handle_exit.
4903 */
4904 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4905 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4906 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4907 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4908 vcpu->run->internal.ndata = 4;
4909 vcpu->run->internal.data[0] = vect_info;
4910 vcpu->run->internal.data[1] = intr_info;
4911 vcpu->run->internal.data[2] = error_code;
4912 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4913 return 0;
4914 }
4915
4916 if (is_page_fault(intr_info)) {
4917 cr2 = vmx_get_exit_qual(vcpu);
4918 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4919 /*
4920 * EPT will cause page fault only if we need to
4921 * detect illegal GPAs.
4922 */
4923 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4924 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4925 return 1;
4926 } else
4927 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4928 }
4929
4930 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4931
4932 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4933 return handle_rmode_exception(vcpu, ex_no, error_code);
4934
4935 switch (ex_no) {
4936 case DB_VECTOR:
4937 dr6 = vmx_get_exit_qual(vcpu);
4938 if (!(vcpu->guest_debug &
4939 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4940 /*
4941 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
4942 * instruction. ICEBP generates a trap-like #DB, but
4943 * despite its interception control being tied to #DB,
4944 * is an instruction intercept, i.e. the VM-Exit occurs
4945 * on the ICEBP itself. Note, skipping ICEBP also
4946 * clears STI and MOVSS blocking.
4947 *
4948 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
4949 * if single-step is enabled in RFLAGS and STI or MOVSS
4950 * blocking is active, as the CPU doesn't set the bit
4951 * on VM-Exit due to #DB interception. VM-Entry has a
4952 * consistency check that a single-step #DB is pending
4953 * in this scenario as the previous instruction cannot
4954 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
4955 * don't modify RFLAGS), therefore the one instruction
4956 * delay when activating single-step breakpoints must
4957 * have already expired. Note, the CPU sets/clears BS
4958 * as appropriate for all other VM-Exits types.
4959 */
4960 if (is_icebp(intr_info))
4961 WARN_ON(!skip_emulated_instruction(vcpu));
4962 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
4963 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4964 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
4965 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
4966 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
4967
4968 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4969 return 1;
4970 }
4971 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
4972 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4973 fallthrough;
4974 case BP_VECTOR:
4975 /*
4976 * Update instruction length as we may reinject #BP from
4977 * user space while in guest debugging mode. Reading it for
4978 * #DB as well causes no harm, it is not used in that case.
4979 */
4980 vmx->vcpu.arch.event_exit_inst_len =
4981 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4982 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4983 rip = kvm_rip_read(vcpu);
4984 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4985 kvm_run->debug.arch.exception = ex_no;
4986 break;
4987 case AC_VECTOR:
4988 if (vmx_guest_inject_ac(vcpu)) {
4989 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4990 return 1;
4991 }
4992
4993 /*
4994 * Handle split lock. Depending on detection mode this will
4995 * either warn and disable split lock detection for this
4996 * task or force SIGBUS on it.
4997 */
4998 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4999 return 1;
5000 fallthrough;
5001 default:
5002 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5003 kvm_run->ex.exception = ex_no;
5004 kvm_run->ex.error_code = error_code;
5005 break;
5006 }
5007 return 0;
5008 }
5009
handle_external_interrupt(struct kvm_vcpu * vcpu)5010 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5011 {
5012 ++vcpu->stat.irq_exits;
5013 return 1;
5014 }
5015
handle_triple_fault(struct kvm_vcpu * vcpu)5016 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5017 {
5018 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5019 vcpu->mmio_needed = 0;
5020 return 0;
5021 }
5022
handle_io(struct kvm_vcpu * vcpu)5023 static int handle_io(struct kvm_vcpu *vcpu)
5024 {
5025 unsigned long exit_qualification;
5026 int size, in, string;
5027 unsigned port;
5028
5029 exit_qualification = vmx_get_exit_qual(vcpu);
5030 string = (exit_qualification & 16) != 0;
5031
5032 ++vcpu->stat.io_exits;
5033
5034 if (string)
5035 return kvm_emulate_instruction(vcpu, 0);
5036
5037 port = exit_qualification >> 16;
5038 size = (exit_qualification & 7) + 1;
5039 in = (exit_qualification & 8) != 0;
5040
5041 return kvm_fast_pio(vcpu, size, port, in);
5042 }
5043
5044 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5045 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5046 {
5047 /*
5048 * Patch in the VMCALL instruction:
5049 */
5050 hypercall[0] = 0x0f;
5051 hypercall[1] = 0x01;
5052 hypercall[2] = 0xc1;
5053 }
5054
5055 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5056 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5057 {
5058 if (is_guest_mode(vcpu)) {
5059 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5060 unsigned long orig_val = val;
5061
5062 /*
5063 * We get here when L2 changed cr0 in a way that did not change
5064 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5065 * but did change L0 shadowed bits. So we first calculate the
5066 * effective cr0 value that L1 would like to write into the
5067 * hardware. It consists of the L2-owned bits from the new
5068 * value combined with the L1-owned bits from L1's guest_cr0.
5069 */
5070 val = (val & ~vmcs12->cr0_guest_host_mask) |
5071 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5072
5073 if (!nested_guest_cr0_valid(vcpu, val))
5074 return 1;
5075
5076 if (kvm_set_cr0(vcpu, val))
5077 return 1;
5078 vmcs_writel(CR0_READ_SHADOW, orig_val);
5079 return 0;
5080 } else {
5081 if (to_vmx(vcpu)->nested.vmxon &&
5082 !nested_host_cr0_valid(vcpu, val))
5083 return 1;
5084
5085 return kvm_set_cr0(vcpu, val);
5086 }
5087 }
5088
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5089 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5090 {
5091 if (is_guest_mode(vcpu)) {
5092 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5093 unsigned long orig_val = val;
5094
5095 /* analogously to handle_set_cr0 */
5096 val = (val & ~vmcs12->cr4_guest_host_mask) |
5097 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5098 if (kvm_set_cr4(vcpu, val))
5099 return 1;
5100 vmcs_writel(CR4_READ_SHADOW, orig_val);
5101 return 0;
5102 } else
5103 return kvm_set_cr4(vcpu, val);
5104 }
5105
handle_desc(struct kvm_vcpu * vcpu)5106 static int handle_desc(struct kvm_vcpu *vcpu)
5107 {
5108 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5109 return kvm_emulate_instruction(vcpu, 0);
5110 }
5111
handle_cr(struct kvm_vcpu * vcpu)5112 static int handle_cr(struct kvm_vcpu *vcpu)
5113 {
5114 unsigned long exit_qualification, val;
5115 int cr;
5116 int reg;
5117 int err;
5118 int ret;
5119
5120 exit_qualification = vmx_get_exit_qual(vcpu);
5121 cr = exit_qualification & 15;
5122 reg = (exit_qualification >> 8) & 15;
5123 switch ((exit_qualification >> 4) & 3) {
5124 case 0: /* mov to cr */
5125 val = kvm_register_readl(vcpu, reg);
5126 trace_kvm_cr_write(cr, val);
5127 switch (cr) {
5128 case 0:
5129 err = handle_set_cr0(vcpu, val);
5130 return kvm_complete_insn_gp(vcpu, err);
5131 case 3:
5132 WARN_ON_ONCE(enable_unrestricted_guest);
5133 err = kvm_set_cr3(vcpu, val);
5134 return kvm_complete_insn_gp(vcpu, err);
5135 case 4:
5136 err = handle_set_cr4(vcpu, val);
5137 return kvm_complete_insn_gp(vcpu, err);
5138 case 8: {
5139 u8 cr8_prev = kvm_get_cr8(vcpu);
5140 u8 cr8 = (u8)val;
5141 err = kvm_set_cr8(vcpu, cr8);
5142 ret = kvm_complete_insn_gp(vcpu, err);
5143 if (lapic_in_kernel(vcpu))
5144 return ret;
5145 if (cr8_prev <= cr8)
5146 return ret;
5147 /*
5148 * TODO: we might be squashing a
5149 * KVM_GUESTDBG_SINGLESTEP-triggered
5150 * KVM_EXIT_DEBUG here.
5151 */
5152 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5153 return 0;
5154 }
5155 }
5156 break;
5157 case 2: /* clts */
5158 WARN_ONCE(1, "Guest should always own CR0.TS");
5159 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5160 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5161 return kvm_skip_emulated_instruction(vcpu);
5162 case 1: /*mov from cr*/
5163 switch (cr) {
5164 case 3:
5165 WARN_ON_ONCE(enable_unrestricted_guest);
5166 val = kvm_read_cr3(vcpu);
5167 kvm_register_write(vcpu, reg, val);
5168 trace_kvm_cr_read(cr, val);
5169 return kvm_skip_emulated_instruction(vcpu);
5170 case 8:
5171 val = kvm_get_cr8(vcpu);
5172 kvm_register_write(vcpu, reg, val);
5173 trace_kvm_cr_read(cr, val);
5174 return kvm_skip_emulated_instruction(vcpu);
5175 }
5176 break;
5177 case 3: /* lmsw */
5178 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5179 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5180 kvm_lmsw(vcpu, val);
5181
5182 return kvm_skip_emulated_instruction(vcpu);
5183 default:
5184 break;
5185 }
5186 vcpu->run->exit_reason = 0;
5187 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5188 (int)(exit_qualification >> 4) & 3, cr);
5189 return 0;
5190 }
5191
handle_dr(struct kvm_vcpu * vcpu)5192 static int handle_dr(struct kvm_vcpu *vcpu)
5193 {
5194 unsigned long exit_qualification;
5195 int dr, dr7, reg;
5196
5197 exit_qualification = vmx_get_exit_qual(vcpu);
5198 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5199
5200 /* First, if DR does not exist, trigger UD */
5201 if (!kvm_require_dr(vcpu, dr))
5202 return 1;
5203
5204 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5205 if (!kvm_require_cpl(vcpu, 0))
5206 return 1;
5207 dr7 = vmcs_readl(GUEST_DR7);
5208 if (dr7 & DR7_GD) {
5209 /*
5210 * As the vm-exit takes precedence over the debug trap, we
5211 * need to emulate the latter, either for the host or the
5212 * guest debugging itself.
5213 */
5214 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5215 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_RTM | DR6_FIXED_1;
5216 vcpu->run->debug.arch.dr7 = dr7;
5217 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5218 vcpu->run->debug.arch.exception = DB_VECTOR;
5219 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5220 return 0;
5221 } else {
5222 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5223 return 1;
5224 }
5225 }
5226
5227 if (vcpu->guest_debug == 0) {
5228 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5229
5230 /*
5231 * No more DR vmexits; force a reload of the debug registers
5232 * and reenter on this instruction. The next vmexit will
5233 * retrieve the full state of the debug registers.
5234 */
5235 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5236 return 1;
5237 }
5238
5239 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5240 if (exit_qualification & TYPE_MOV_FROM_DR) {
5241 unsigned long val;
5242
5243 if (kvm_get_dr(vcpu, dr, &val))
5244 return 1;
5245 kvm_register_write(vcpu, reg, val);
5246 } else
5247 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5248 return 1;
5249
5250 return kvm_skip_emulated_instruction(vcpu);
5251 }
5252
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5253 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5254 {
5255 get_debugreg(vcpu->arch.db[0], 0);
5256 get_debugreg(vcpu->arch.db[1], 1);
5257 get_debugreg(vcpu->arch.db[2], 2);
5258 get_debugreg(vcpu->arch.db[3], 3);
5259 get_debugreg(vcpu->arch.dr6, 6);
5260 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5261
5262 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5263 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5264 }
5265
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5266 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5267 {
5268 vmcs_writel(GUEST_DR7, val);
5269 }
5270
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5271 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5272 {
5273 kvm_apic_update_ppr(vcpu);
5274 return 1;
5275 }
5276
handle_interrupt_window(struct kvm_vcpu * vcpu)5277 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5278 {
5279 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5280
5281 kvm_make_request(KVM_REQ_EVENT, vcpu);
5282
5283 ++vcpu->stat.irq_window_exits;
5284 return 1;
5285 }
5286
handle_vmcall(struct kvm_vcpu * vcpu)5287 static int handle_vmcall(struct kvm_vcpu *vcpu)
5288 {
5289 return kvm_emulate_hypercall(vcpu);
5290 }
5291
handle_invd(struct kvm_vcpu * vcpu)5292 static int handle_invd(struct kvm_vcpu *vcpu)
5293 {
5294 /* Treat an INVD instruction as a NOP and just skip it. */
5295 return kvm_skip_emulated_instruction(vcpu);
5296 }
5297
handle_invlpg(struct kvm_vcpu * vcpu)5298 static int handle_invlpg(struct kvm_vcpu *vcpu)
5299 {
5300 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5301
5302 kvm_mmu_invlpg(vcpu, exit_qualification);
5303 return kvm_skip_emulated_instruction(vcpu);
5304 }
5305
handle_rdpmc(struct kvm_vcpu * vcpu)5306 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5307 {
5308 int err;
5309
5310 err = kvm_rdpmc(vcpu);
5311 return kvm_complete_insn_gp(vcpu, err);
5312 }
5313
handle_wbinvd(struct kvm_vcpu * vcpu)5314 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5315 {
5316 return kvm_emulate_wbinvd(vcpu);
5317 }
5318
handle_xsetbv(struct kvm_vcpu * vcpu)5319 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5320 {
5321 u64 new_bv = kvm_read_edx_eax(vcpu);
5322 u32 index = kvm_rcx_read(vcpu);
5323
5324 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5325 return kvm_skip_emulated_instruction(vcpu);
5326 return 1;
5327 }
5328
handle_apic_access(struct kvm_vcpu * vcpu)5329 static int handle_apic_access(struct kvm_vcpu *vcpu)
5330 {
5331 if (likely(fasteoi)) {
5332 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5333 int access_type, offset;
5334
5335 access_type = exit_qualification & APIC_ACCESS_TYPE;
5336 offset = exit_qualification & APIC_ACCESS_OFFSET;
5337 /*
5338 * Sane guest uses MOV to write EOI, with written value
5339 * not cared. So make a short-circuit here by avoiding
5340 * heavy instruction emulation.
5341 */
5342 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5343 (offset == APIC_EOI)) {
5344 kvm_lapic_set_eoi(vcpu);
5345 return kvm_skip_emulated_instruction(vcpu);
5346 }
5347 }
5348 return kvm_emulate_instruction(vcpu, 0);
5349 }
5350
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5351 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5352 {
5353 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5354 int vector = exit_qualification & 0xff;
5355
5356 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5357 kvm_apic_set_eoi_accelerated(vcpu, vector);
5358 return 1;
5359 }
5360
handle_apic_write(struct kvm_vcpu * vcpu)5361 static int handle_apic_write(struct kvm_vcpu *vcpu)
5362 {
5363 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5364 u32 offset = exit_qualification & 0xfff;
5365
5366 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5367 kvm_apic_write_nodecode(vcpu, offset);
5368 return 1;
5369 }
5370
handle_task_switch(struct kvm_vcpu * vcpu)5371 static int handle_task_switch(struct kvm_vcpu *vcpu)
5372 {
5373 struct vcpu_vmx *vmx = to_vmx(vcpu);
5374 unsigned long exit_qualification;
5375 bool has_error_code = false;
5376 u32 error_code = 0;
5377 u16 tss_selector;
5378 int reason, type, idt_v, idt_index;
5379
5380 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5381 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5382 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5383
5384 exit_qualification = vmx_get_exit_qual(vcpu);
5385
5386 reason = (u32)exit_qualification >> 30;
5387 if (reason == TASK_SWITCH_GATE && idt_v) {
5388 switch (type) {
5389 case INTR_TYPE_NMI_INTR:
5390 vcpu->arch.nmi_injected = false;
5391 vmx_set_nmi_mask(vcpu, true);
5392 break;
5393 case INTR_TYPE_EXT_INTR:
5394 case INTR_TYPE_SOFT_INTR:
5395 kvm_clear_interrupt_queue(vcpu);
5396 break;
5397 case INTR_TYPE_HARD_EXCEPTION:
5398 if (vmx->idt_vectoring_info &
5399 VECTORING_INFO_DELIVER_CODE_MASK) {
5400 has_error_code = true;
5401 error_code =
5402 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5403 }
5404 fallthrough;
5405 case INTR_TYPE_SOFT_EXCEPTION:
5406 kvm_clear_exception_queue(vcpu);
5407 break;
5408 default:
5409 break;
5410 }
5411 }
5412 tss_selector = exit_qualification;
5413
5414 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5415 type != INTR_TYPE_EXT_INTR &&
5416 type != INTR_TYPE_NMI_INTR))
5417 WARN_ON(!skip_emulated_instruction(vcpu));
5418
5419 /*
5420 * TODO: What about debug traps on tss switch?
5421 * Are we supposed to inject them and update dr6?
5422 */
5423 return kvm_task_switch(vcpu, tss_selector,
5424 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5425 reason, has_error_code, error_code);
5426 }
5427
handle_ept_violation(struct kvm_vcpu * vcpu)5428 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5429 {
5430 unsigned long exit_qualification;
5431 gpa_t gpa;
5432 u64 error_code;
5433
5434 exit_qualification = vmx_get_exit_qual(vcpu);
5435
5436 /*
5437 * EPT violation happened while executing iret from NMI,
5438 * "blocked by NMI" bit has to be set before next VM entry.
5439 * There are errata that may cause this bit to not be set:
5440 * AAK134, BY25.
5441 */
5442 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5443 enable_vnmi &&
5444 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5445 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5446
5447 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5448 trace_kvm_page_fault(gpa, exit_qualification);
5449
5450 /* Is it a read fault? */
5451 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5452 ? PFERR_USER_MASK : 0;
5453 /* Is it a write fault? */
5454 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5455 ? PFERR_WRITE_MASK : 0;
5456 /* Is it a fetch fault? */
5457 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5458 ? PFERR_FETCH_MASK : 0;
5459 /* ept page table entry is present? */
5460 error_code |= (exit_qualification &
5461 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5462 EPT_VIOLATION_EXECUTABLE))
5463 ? PFERR_PRESENT_MASK : 0;
5464
5465 error_code |= (exit_qualification & 0x100) != 0 ?
5466 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5467
5468 vcpu->arch.exit_qualification = exit_qualification;
5469
5470 /*
5471 * Check that the GPA doesn't exceed physical memory limits, as that is
5472 * a guest page fault. We have to emulate the instruction here, because
5473 * if the illegal address is that of a paging structure, then
5474 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5475 * would also use advanced VM-exit information for EPT violations to
5476 * reconstruct the page fault error code.
5477 */
5478 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5479 return kvm_emulate_instruction(vcpu, 0);
5480
5481 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5482 }
5483
handle_ept_misconfig(struct kvm_vcpu * vcpu)5484 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5485 {
5486 gpa_t gpa;
5487
5488 /*
5489 * A nested guest cannot optimize MMIO vmexits, because we have an
5490 * nGPA here instead of the required GPA.
5491 */
5492 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5493 if (!is_guest_mode(vcpu) &&
5494 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5495 trace_kvm_fast_mmio(gpa);
5496 return kvm_skip_emulated_instruction(vcpu);
5497 }
5498
5499 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5500 }
5501
handle_nmi_window(struct kvm_vcpu * vcpu)5502 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5503 {
5504 WARN_ON_ONCE(!enable_vnmi);
5505 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5506 ++vcpu->stat.nmi_window_exits;
5507 kvm_make_request(KVM_REQ_EVENT, vcpu);
5508
5509 return 1;
5510 }
5511
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5512 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5513 {
5514 struct vcpu_vmx *vmx = to_vmx(vcpu);
5515 bool intr_window_requested;
5516 unsigned count = 130;
5517
5518 intr_window_requested = exec_controls_get(vmx) &
5519 CPU_BASED_INTR_WINDOW_EXITING;
5520
5521 while (vmx->emulation_required && count-- != 0) {
5522 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5523 return handle_interrupt_window(&vmx->vcpu);
5524
5525 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5526 return 1;
5527
5528 if (!kvm_emulate_instruction(vcpu, 0))
5529 return 0;
5530
5531 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5532 vcpu->arch.exception.pending) {
5533 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5534 vcpu->run->internal.suberror =
5535 KVM_INTERNAL_ERROR_EMULATION;
5536 vcpu->run->internal.ndata = 0;
5537 return 0;
5538 }
5539
5540 if (vcpu->arch.halt_request) {
5541 vcpu->arch.halt_request = 0;
5542 return kvm_vcpu_halt(vcpu);
5543 }
5544
5545 /*
5546 * Note, return 1 and not 0, vcpu_run() will invoke
5547 * xfer_to_guest_mode() which will create a proper return
5548 * code.
5549 */
5550 if (__xfer_to_guest_mode_work_pending())
5551 return 1;
5552 }
5553
5554 return 1;
5555 }
5556
grow_ple_window(struct kvm_vcpu * vcpu)5557 static void grow_ple_window(struct kvm_vcpu *vcpu)
5558 {
5559 struct vcpu_vmx *vmx = to_vmx(vcpu);
5560 unsigned int old = vmx->ple_window;
5561
5562 vmx->ple_window = __grow_ple_window(old, ple_window,
5563 ple_window_grow,
5564 ple_window_max);
5565
5566 if (vmx->ple_window != old) {
5567 vmx->ple_window_dirty = true;
5568 trace_kvm_ple_window_update(vcpu->vcpu_id,
5569 vmx->ple_window, old);
5570 }
5571 }
5572
shrink_ple_window(struct kvm_vcpu * vcpu)5573 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5574 {
5575 struct vcpu_vmx *vmx = to_vmx(vcpu);
5576 unsigned int old = vmx->ple_window;
5577
5578 vmx->ple_window = __shrink_ple_window(old, ple_window,
5579 ple_window_shrink,
5580 ple_window);
5581
5582 if (vmx->ple_window != old) {
5583 vmx->ple_window_dirty = true;
5584 trace_kvm_ple_window_update(vcpu->vcpu_id,
5585 vmx->ple_window, old);
5586 }
5587 }
5588
vmx_enable_tdp(void)5589 static void vmx_enable_tdp(void)
5590 {
5591 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5592 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5593 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5594 0ull, VMX_EPT_EXECUTABLE_MASK,
5595 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5596 VMX_EPT_RWX_MASK, 0ull);
5597
5598 ept_set_mmio_spte_mask();
5599 }
5600
5601 /*
5602 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5603 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5604 */
handle_pause(struct kvm_vcpu * vcpu)5605 static int handle_pause(struct kvm_vcpu *vcpu)
5606 {
5607 if (!kvm_pause_in_guest(vcpu->kvm))
5608 grow_ple_window(vcpu);
5609
5610 /*
5611 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5612 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5613 * never set PAUSE_EXITING and just set PLE if supported,
5614 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5615 */
5616 kvm_vcpu_on_spin(vcpu, true);
5617 return kvm_skip_emulated_instruction(vcpu);
5618 }
5619
handle_nop(struct kvm_vcpu * vcpu)5620 static int handle_nop(struct kvm_vcpu *vcpu)
5621 {
5622 return kvm_skip_emulated_instruction(vcpu);
5623 }
5624
handle_mwait(struct kvm_vcpu * vcpu)5625 static int handle_mwait(struct kvm_vcpu *vcpu)
5626 {
5627 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5628 return handle_nop(vcpu);
5629 }
5630
handle_invalid_op(struct kvm_vcpu * vcpu)5631 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5632 {
5633 kvm_queue_exception(vcpu, UD_VECTOR);
5634 return 1;
5635 }
5636
handle_monitor_trap(struct kvm_vcpu * vcpu)5637 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5638 {
5639 return 1;
5640 }
5641
handle_monitor(struct kvm_vcpu * vcpu)5642 static int handle_monitor(struct kvm_vcpu *vcpu)
5643 {
5644 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5645 return handle_nop(vcpu);
5646 }
5647
handle_invpcid(struct kvm_vcpu * vcpu)5648 static int handle_invpcid(struct kvm_vcpu *vcpu)
5649 {
5650 u32 vmx_instruction_info;
5651 unsigned long type;
5652 gva_t gva;
5653 struct {
5654 u64 pcid;
5655 u64 gla;
5656 } operand;
5657
5658 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5659 kvm_queue_exception(vcpu, UD_VECTOR);
5660 return 1;
5661 }
5662
5663 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5664 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5665
5666 if (type > 3) {
5667 kvm_inject_gp(vcpu, 0);
5668 return 1;
5669 }
5670
5671 /* According to the Intel instruction reference, the memory operand
5672 * is read even if it isn't needed (e.g., for type==all)
5673 */
5674 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5675 vmx_instruction_info, false,
5676 sizeof(operand), &gva))
5677 return 1;
5678
5679 return kvm_handle_invpcid(vcpu, type, gva);
5680 }
5681
handle_pml_full(struct kvm_vcpu * vcpu)5682 static int handle_pml_full(struct kvm_vcpu *vcpu)
5683 {
5684 unsigned long exit_qualification;
5685
5686 trace_kvm_pml_full(vcpu->vcpu_id);
5687
5688 exit_qualification = vmx_get_exit_qual(vcpu);
5689
5690 /*
5691 * PML buffer FULL happened while executing iret from NMI,
5692 * "blocked by NMI" bit has to be set before next VM entry.
5693 */
5694 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5695 enable_vnmi &&
5696 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5697 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5698 GUEST_INTR_STATE_NMI);
5699
5700 /*
5701 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5702 * here.., and there's no userspace involvement needed for PML.
5703 */
5704 return 1;
5705 }
5706
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu)5707 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5708 {
5709 struct vcpu_vmx *vmx = to_vmx(vcpu);
5710
5711 if (!vmx->req_immediate_exit &&
5712 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5713 kvm_lapic_expired_hv_timer(vcpu);
5714 return EXIT_FASTPATH_REENTER_GUEST;
5715 }
5716
5717 return EXIT_FASTPATH_NONE;
5718 }
5719
handle_preemption_timer(struct kvm_vcpu * vcpu)5720 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5721 {
5722 handle_fastpath_preemption_timer(vcpu);
5723 return 1;
5724 }
5725
5726 /*
5727 * When nested=0, all VMX instruction VM Exits filter here. The handlers
5728 * are overwritten by nested_vmx_setup() when nested=1.
5729 */
handle_vmx_instruction(struct kvm_vcpu * vcpu)5730 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5731 {
5732 kvm_queue_exception(vcpu, UD_VECTOR);
5733 return 1;
5734 }
5735
handle_encls(struct kvm_vcpu * vcpu)5736 static int handle_encls(struct kvm_vcpu *vcpu)
5737 {
5738 /*
5739 * SGX virtualization is not yet supported. There is no software
5740 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5741 * to prevent the guest from executing ENCLS.
5742 */
5743 kvm_queue_exception(vcpu, UD_VECTOR);
5744 return 1;
5745 }
5746
5747 /*
5748 * The exit handlers return 1 if the exit was handled fully and guest execution
5749 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5750 * to be done to userspace and return 0.
5751 */
5752 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5753 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
5754 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5755 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5756 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5757 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5758 [EXIT_REASON_CR_ACCESS] = handle_cr,
5759 [EXIT_REASON_DR_ACCESS] = handle_dr,
5760 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
5761 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
5762 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
5763 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
5764 [EXIT_REASON_HLT] = kvm_emulate_halt,
5765 [EXIT_REASON_INVD] = handle_invd,
5766 [EXIT_REASON_INVLPG] = handle_invlpg,
5767 [EXIT_REASON_RDPMC] = handle_rdpmc,
5768 [EXIT_REASON_VMCALL] = handle_vmcall,
5769 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
5770 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
5771 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
5772 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
5773 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
5774 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
5775 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
5776 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
5777 [EXIT_REASON_VMON] = handle_vmx_instruction,
5778 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5779 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5780 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
5781 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
5782 [EXIT_REASON_WBINVD] = handle_wbinvd,
5783 [EXIT_REASON_XSETBV] = handle_xsetbv,
5784 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5785 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5786 [EXIT_REASON_GDTR_IDTR] = handle_desc,
5787 [EXIT_REASON_LDTR_TR] = handle_desc,
5788 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5789 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5790 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5791 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5792 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
5793 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
5794 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
5795 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
5796 [EXIT_REASON_RDRAND] = handle_invalid_op,
5797 [EXIT_REASON_RDSEED] = handle_invalid_op,
5798 [EXIT_REASON_PML_FULL] = handle_pml_full,
5799 [EXIT_REASON_INVPCID] = handle_invpcid,
5800 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
5801 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
5802 [EXIT_REASON_ENCLS] = handle_encls,
5803 };
5804
5805 static const int kvm_vmx_max_exit_handlers =
5806 ARRAY_SIZE(kvm_vmx_exit_handlers);
5807
vmx_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)5808 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5809 u32 *intr_info, u32 *error_code)
5810 {
5811 struct vcpu_vmx *vmx = to_vmx(vcpu);
5812
5813 *info1 = vmx_get_exit_qual(vcpu);
5814 if (!(vmx->exit_reason.failed_vmentry)) {
5815 *info2 = vmx->idt_vectoring_info;
5816 *intr_info = vmx_get_intr_info(vcpu);
5817 if (is_exception_with_error_code(*intr_info))
5818 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5819 else
5820 *error_code = 0;
5821 } else {
5822 *info2 = 0;
5823 *intr_info = 0;
5824 *error_code = 0;
5825 }
5826 }
5827
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)5828 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5829 {
5830 if (vmx->pml_pg) {
5831 __free_page(vmx->pml_pg);
5832 vmx->pml_pg = NULL;
5833 }
5834 }
5835
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)5836 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5837 {
5838 struct vcpu_vmx *vmx = to_vmx(vcpu);
5839 u64 *pml_buf;
5840 u16 pml_idx;
5841
5842 pml_idx = vmcs_read16(GUEST_PML_INDEX);
5843
5844 /* Do nothing if PML buffer is empty */
5845 if (pml_idx == (PML_ENTITY_NUM - 1))
5846 return;
5847
5848 /* PML index always points to next available PML buffer entity */
5849 if (pml_idx >= PML_ENTITY_NUM)
5850 pml_idx = 0;
5851 else
5852 pml_idx++;
5853
5854 pml_buf = page_address(vmx->pml_pg);
5855 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5856 u64 gpa;
5857
5858 gpa = pml_buf[pml_idx];
5859 WARN_ON(gpa & (PAGE_SIZE - 1));
5860 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5861 }
5862
5863 /* reset PML index */
5864 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5865 }
5866
5867 /*
5868 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5869 * Called before reporting dirty_bitmap to userspace.
5870 */
kvm_flush_pml_buffers(struct kvm * kvm)5871 static void kvm_flush_pml_buffers(struct kvm *kvm)
5872 {
5873 int i;
5874 struct kvm_vcpu *vcpu;
5875 /*
5876 * We only need to kick vcpu out of guest mode here, as PML buffer
5877 * is flushed at beginning of all VMEXITs, and it's obvious that only
5878 * vcpus running in guest are possible to have unflushed GPAs in PML
5879 * buffer.
5880 */
5881 kvm_for_each_vcpu(i, vcpu, kvm)
5882 kvm_vcpu_kick(vcpu);
5883 }
5884
vmx_dump_sel(char * name,uint32_t sel)5885 static void vmx_dump_sel(char *name, uint32_t sel)
5886 {
5887 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5888 name, vmcs_read16(sel),
5889 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5890 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5891 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5892 }
5893
vmx_dump_dtsel(char * name,uint32_t limit)5894 static void vmx_dump_dtsel(char *name, uint32_t limit)
5895 {
5896 pr_err("%s limit=0x%08x, base=0x%016lx\n",
5897 name, vmcs_read32(limit),
5898 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5899 }
5900
dump_vmcs(void)5901 void dump_vmcs(void)
5902 {
5903 u32 vmentry_ctl, vmexit_ctl;
5904 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5905 unsigned long cr4;
5906
5907 if (!dump_invalid_vmcs) {
5908 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5909 return;
5910 }
5911
5912 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5913 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5914 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5915 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5916 cr4 = vmcs_readl(GUEST_CR4);
5917 secondary_exec_control = 0;
5918 if (cpu_has_secondary_exec_ctrls())
5919 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5920
5921 pr_err("*** Guest State ***\n");
5922 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5923 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5924 vmcs_readl(CR0_GUEST_HOST_MASK));
5925 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5926 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5927 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5928 if (cpu_has_vmx_ept()) {
5929 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
5930 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5931 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
5932 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5933 }
5934 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
5935 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5936 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
5937 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5938 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5939 vmcs_readl(GUEST_SYSENTER_ESP),
5940 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5941 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
5942 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
5943 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
5944 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
5945 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
5946 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
5947 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5948 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5949 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5950 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
5951 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5952 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5953 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5954 vmcs_read64(GUEST_IA32_EFER),
5955 vmcs_read64(GUEST_IA32_PAT));
5956 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
5957 vmcs_read64(GUEST_IA32_DEBUGCTL),
5958 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5959 if (cpu_has_load_perf_global_ctrl() &&
5960 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5961 pr_err("PerfGlobCtl = 0x%016llx\n",
5962 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5963 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5964 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5965 pr_err("Interruptibility = %08x ActivityState = %08x\n",
5966 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5967 vmcs_read32(GUEST_ACTIVITY_STATE));
5968 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5969 pr_err("InterruptStatus = %04x\n",
5970 vmcs_read16(GUEST_INTR_STATUS));
5971
5972 pr_err("*** Host State ***\n");
5973 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
5974 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5975 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5976 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5977 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5978 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5979 vmcs_read16(HOST_TR_SELECTOR));
5980 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5981 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5982 vmcs_readl(HOST_TR_BASE));
5983 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5984 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5985 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5986 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5987 vmcs_readl(HOST_CR4));
5988 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5989 vmcs_readl(HOST_IA32_SYSENTER_ESP),
5990 vmcs_read32(HOST_IA32_SYSENTER_CS),
5991 vmcs_readl(HOST_IA32_SYSENTER_EIP));
5992 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5993 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5994 vmcs_read64(HOST_IA32_EFER),
5995 vmcs_read64(HOST_IA32_PAT));
5996 if (cpu_has_load_perf_global_ctrl() &&
5997 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5998 pr_err("PerfGlobCtl = 0x%016llx\n",
5999 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6000
6001 pr_err("*** Control State ***\n");
6002 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
6003 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
6004 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
6005 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6006 vmcs_read32(EXCEPTION_BITMAP),
6007 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6008 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6009 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6010 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6011 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6012 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6013 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6014 vmcs_read32(VM_EXIT_INTR_INFO),
6015 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6016 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6017 pr_err(" reason=%08x qualification=%016lx\n",
6018 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6019 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6020 vmcs_read32(IDT_VECTORING_INFO_FIELD),
6021 vmcs_read32(IDT_VECTORING_ERROR_CODE));
6022 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6023 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6024 pr_err("TSC Multiplier = 0x%016llx\n",
6025 vmcs_read64(TSC_MULTIPLIER));
6026 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6027 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6028 u16 status = vmcs_read16(GUEST_INTR_STATUS);
6029 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6030 }
6031 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6032 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6033 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6034 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6035 }
6036 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6037 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6038 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6039 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6040 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6041 pr_err("PLE Gap=%08x Window=%08x\n",
6042 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6043 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6044 pr_err("Virtual processor ID = 0x%04x\n",
6045 vmcs_read16(VIRTUAL_PROCESSOR_ID));
6046 }
6047
6048 /*
6049 * The guest has exited. See if we can fix it or if we need userspace
6050 * assistance.
6051 */
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6052 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6053 {
6054 struct vcpu_vmx *vmx = to_vmx(vcpu);
6055 union vmx_exit_reason exit_reason = vmx->exit_reason;
6056 u32 vectoring_info = vmx->idt_vectoring_info;
6057 u16 exit_handler_index;
6058
6059 /*
6060 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6061 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6062 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6063 * mode as if vcpus is in root mode, the PML buffer must has been
6064 * flushed already.
6065 */
6066 if (enable_pml)
6067 vmx_flush_pml_buffer(vcpu);
6068
6069 /*
6070 * We should never reach this point with a pending nested VM-Enter, and
6071 * more specifically emulation of L2 due to invalid guest state (see
6072 * below) should never happen as that means we incorrectly allowed a
6073 * nested VM-Enter with an invalid vmcs12.
6074 */
6075 WARN_ON_ONCE(vmx->nested.nested_run_pending);
6076
6077 /* If guest state is invalid, start emulating */
6078 if (vmx->emulation_required)
6079 return handle_invalid_guest_state(vcpu);
6080
6081 if (is_guest_mode(vcpu)) {
6082 /*
6083 * The host physical addresses of some pages of guest memory
6084 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6085 * Page). The CPU may write to these pages via their host
6086 * physical address while L2 is running, bypassing any
6087 * address-translation-based dirty tracking (e.g. EPT write
6088 * protection).
6089 *
6090 * Mark them dirty on every exit from L2 to prevent them from
6091 * getting out of sync with dirty tracking.
6092 */
6093 nested_mark_vmcs12_pages_dirty(vcpu);
6094
6095 if (nested_vmx_reflect_vmexit(vcpu))
6096 return 1;
6097 }
6098
6099 if (exit_reason.failed_vmentry) {
6100 dump_vmcs();
6101 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6102 vcpu->run->fail_entry.hardware_entry_failure_reason
6103 = exit_reason.full;
6104 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6105 return 0;
6106 }
6107
6108 if (unlikely(vmx->fail)) {
6109 dump_vmcs();
6110 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6111 vcpu->run->fail_entry.hardware_entry_failure_reason
6112 = vmcs_read32(VM_INSTRUCTION_ERROR);
6113 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6114 return 0;
6115 }
6116
6117 /*
6118 * Note:
6119 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6120 * delivery event since it indicates guest is accessing MMIO.
6121 * The vm-exit can be triggered again after return to guest that
6122 * will cause infinite loop.
6123 */
6124 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6125 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6126 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6127 exit_reason.basic != EXIT_REASON_PML_FULL &&
6128 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6129 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
6130 int ndata = 3;
6131
6132 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6133 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6134 vcpu->run->internal.data[0] = vectoring_info;
6135 vcpu->run->internal.data[1] = exit_reason.full;
6136 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6137 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6138 vcpu->run->internal.data[ndata++] =
6139 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6140 }
6141 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6142 vcpu->run->internal.ndata = ndata;
6143 return 0;
6144 }
6145
6146 if (unlikely(!enable_vnmi &&
6147 vmx->loaded_vmcs->soft_vnmi_blocked)) {
6148 if (!vmx_interrupt_blocked(vcpu)) {
6149 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6150 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6151 vcpu->arch.nmi_pending) {
6152 /*
6153 * This CPU don't support us in finding the end of an
6154 * NMI-blocked window if the guest runs with IRQs
6155 * disabled. So we pull the trigger after 1 s of
6156 * futile waiting, but inform the user about this.
6157 */
6158 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6159 "state on VCPU %d after 1 s timeout\n",
6160 __func__, vcpu->vcpu_id);
6161 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6162 }
6163 }
6164
6165 if (exit_fastpath != EXIT_FASTPATH_NONE)
6166 return 1;
6167
6168 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6169 goto unexpected_vmexit;
6170 #ifdef CONFIG_RETPOLINE
6171 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6172 return kvm_emulate_wrmsr(vcpu);
6173 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6174 return handle_preemption_timer(vcpu);
6175 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6176 return handle_interrupt_window(vcpu);
6177 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6178 return handle_external_interrupt(vcpu);
6179 else if (exit_reason.basic == EXIT_REASON_HLT)
6180 return kvm_emulate_halt(vcpu);
6181 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6182 return handle_ept_misconfig(vcpu);
6183 #endif
6184
6185 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6186 kvm_vmx_max_exit_handlers);
6187 if (!kvm_vmx_exit_handlers[exit_handler_index])
6188 goto unexpected_vmexit;
6189
6190 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6191
6192 unexpected_vmexit:
6193 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6194 exit_reason.full);
6195 dump_vmcs();
6196 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6197 vcpu->run->internal.suberror =
6198 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6199 vcpu->run->internal.ndata = 2;
6200 vcpu->run->internal.data[0] = exit_reason.full;
6201 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6202 return 0;
6203 }
6204
6205 /*
6206 * Software based L1D cache flush which is used when microcode providing
6207 * the cache control MSR is not loaded.
6208 *
6209 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6210 * flush it is required to read in 64 KiB because the replacement algorithm
6211 * is not exactly LRU. This could be sized at runtime via topology
6212 * information but as all relevant affected CPUs have 32KiB L1D cache size
6213 * there is no point in doing so.
6214 */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6215 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6216 {
6217 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6218
6219 /*
6220 * This code is only executed when the the flush mode is 'cond' or
6221 * 'always'
6222 */
6223 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6224 bool flush_l1d;
6225
6226 /*
6227 * Clear the per-vcpu flush bit, it gets set again
6228 * either from vcpu_run() or from one of the unsafe
6229 * VMEXIT handlers.
6230 */
6231 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6232 vcpu->arch.l1tf_flush_l1d = false;
6233
6234 /*
6235 * Clear the per-cpu flush bit, it gets set again from
6236 * the interrupt handlers.
6237 */
6238 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6239 kvm_clear_cpu_l1tf_flush_l1d();
6240
6241 if (!flush_l1d)
6242 return;
6243 }
6244
6245 vcpu->stat.l1d_flush++;
6246
6247 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6248 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6249 return;
6250 }
6251
6252 asm volatile(
6253 /* First ensure the pages are in the TLB */
6254 "xorl %%eax, %%eax\n"
6255 ".Lpopulate_tlb:\n\t"
6256 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6257 "addl $4096, %%eax\n\t"
6258 "cmpl %%eax, %[size]\n\t"
6259 "jne .Lpopulate_tlb\n\t"
6260 "xorl %%eax, %%eax\n\t"
6261 "cpuid\n\t"
6262 /* Now fill the cache */
6263 "xorl %%eax, %%eax\n"
6264 ".Lfill_cache:\n"
6265 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6266 "addl $64, %%eax\n\t"
6267 "cmpl %%eax, %[size]\n\t"
6268 "jne .Lfill_cache\n\t"
6269 "lfence\n"
6270 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6271 [size] "r" (size)
6272 : "eax", "ebx", "ecx", "edx");
6273 }
6274
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6275 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6276 {
6277 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6278 int tpr_threshold;
6279
6280 if (is_guest_mode(vcpu) &&
6281 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6282 return;
6283
6284 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6285 if (is_guest_mode(vcpu))
6286 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6287 else
6288 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6289 }
6290
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6291 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6292 {
6293 struct vcpu_vmx *vmx = to_vmx(vcpu);
6294 u32 sec_exec_control;
6295
6296 if (!lapic_in_kernel(vcpu))
6297 return;
6298
6299 if (!flexpriority_enabled &&
6300 !cpu_has_vmx_virtualize_x2apic_mode())
6301 return;
6302
6303 /* Postpone execution until vmcs01 is the current VMCS. */
6304 if (is_guest_mode(vcpu)) {
6305 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6306 return;
6307 }
6308
6309 sec_exec_control = secondary_exec_controls_get(vmx);
6310 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6311 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6312
6313 switch (kvm_get_apic_mode(vcpu)) {
6314 case LAPIC_MODE_INVALID:
6315 WARN_ONCE(true, "Invalid local APIC state");
6316 case LAPIC_MODE_DISABLED:
6317 break;
6318 case LAPIC_MODE_XAPIC:
6319 if (flexpriority_enabled) {
6320 sec_exec_control |=
6321 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6322 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6323
6324 /*
6325 * Flush the TLB, reloading the APIC access page will
6326 * only do so if its physical address has changed, but
6327 * the guest may have inserted a non-APIC mapping into
6328 * the TLB while the APIC access page was disabled.
6329 */
6330 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6331 }
6332 break;
6333 case LAPIC_MODE_X2APIC:
6334 if (cpu_has_vmx_virtualize_x2apic_mode())
6335 sec_exec_control |=
6336 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6337 break;
6338 }
6339 secondary_exec_controls_set(vmx, sec_exec_control);
6340
6341 vmx_update_msr_bitmap(vcpu);
6342 }
6343
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6344 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6345 {
6346 struct page *page;
6347
6348 /* Defer reload until vmcs01 is the current VMCS. */
6349 if (is_guest_mode(vcpu)) {
6350 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6351 return;
6352 }
6353
6354 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6355 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6356 return;
6357
6358 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6359 if (is_error_page(page))
6360 return;
6361
6362 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6363 vmx_flush_tlb_current(vcpu);
6364
6365 /*
6366 * Do not pin apic access page in memory, the MMU notifier
6367 * will call us again if it is migrated or swapped out.
6368 */
6369 put_page(page);
6370 }
6371
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)6372 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6373 {
6374 u16 status;
6375 u8 old;
6376
6377 if (max_isr == -1)
6378 max_isr = 0;
6379
6380 status = vmcs_read16(GUEST_INTR_STATUS);
6381 old = status >> 8;
6382 if (max_isr != old) {
6383 status &= 0xff;
6384 status |= max_isr << 8;
6385 vmcs_write16(GUEST_INTR_STATUS, status);
6386 }
6387 }
6388
vmx_set_rvi(int vector)6389 static void vmx_set_rvi(int vector)
6390 {
6391 u16 status;
6392 u8 old;
6393
6394 if (vector == -1)
6395 vector = 0;
6396
6397 status = vmcs_read16(GUEST_INTR_STATUS);
6398 old = (u8)status & 0xff;
6399 if ((u8)vector != old) {
6400 status &= ~0xff;
6401 status |= (u8)vector;
6402 vmcs_write16(GUEST_INTR_STATUS, status);
6403 }
6404 }
6405
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)6406 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6407 {
6408 /*
6409 * When running L2, updating RVI is only relevant when
6410 * vmcs12 virtual-interrupt-delivery enabled.
6411 * However, it can be enabled only when L1 also
6412 * intercepts external-interrupts and in that case
6413 * we should not update vmcs02 RVI but instead intercept
6414 * interrupt. Therefore, do nothing when running L2.
6415 */
6416 if (!is_guest_mode(vcpu))
6417 vmx_set_rvi(max_irr);
6418 }
6419
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6420 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6421 {
6422 struct vcpu_vmx *vmx = to_vmx(vcpu);
6423 int max_irr;
6424 bool max_irr_updated;
6425
6426 WARN_ON(!vcpu->arch.apicv_active);
6427 if (pi_test_on(&vmx->pi_desc)) {
6428 pi_clear_on(&vmx->pi_desc);
6429 /*
6430 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6431 * But on x86 this is just a compiler barrier anyway.
6432 */
6433 smp_mb__after_atomic();
6434 max_irr_updated =
6435 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6436
6437 /*
6438 * If we are running L2 and L1 has a new pending interrupt
6439 * which can be injected, this may cause a vmexit or it may
6440 * be injected into L2. Either way, this interrupt will be
6441 * processed via KVM_REQ_EVENT, not RVI, because we do not use
6442 * virtual interrupt delivery to inject L1 interrupts into L2.
6443 */
6444 if (is_guest_mode(vcpu) && max_irr_updated)
6445 kvm_make_request(KVM_REQ_EVENT, vcpu);
6446 } else {
6447 max_irr = kvm_lapic_find_highest_irr(vcpu);
6448 }
6449 vmx_hwapic_irr_update(vcpu, max_irr);
6450 return max_irr;
6451 }
6452
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6453 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6454 {
6455 if (!kvm_vcpu_apicv_active(vcpu))
6456 return;
6457
6458 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6459 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6460 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6461 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6462 }
6463
vmx_apicv_post_state_restore(struct kvm_vcpu * vcpu)6464 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6465 {
6466 struct vcpu_vmx *vmx = to_vmx(vcpu);
6467
6468 pi_clear_on(&vmx->pi_desc);
6469 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6470 }
6471
6472 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6473
handle_interrupt_nmi_irqoff(struct kvm_vcpu * vcpu,unsigned long entry)6474 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6475 unsigned long entry)
6476 {
6477 kvm_before_interrupt(vcpu);
6478 vmx_do_interrupt_nmi_irqoff(entry);
6479 kvm_after_interrupt(vcpu);
6480 }
6481
handle_exception_nmi_irqoff(struct vcpu_vmx * vmx)6482 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6483 {
6484 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6485 u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6486
6487 /* if exit due to PF check for async PF */
6488 if (is_page_fault(intr_info))
6489 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6490 /* Handle machine checks before interrupts are enabled */
6491 else if (is_machine_check(intr_info))
6492 kvm_machine_check();
6493 /* We need to handle NMIs before interrupts are enabled */
6494 else if (is_nmi(intr_info))
6495 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6496 }
6497
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu)6498 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6499 {
6500 u32 intr_info = vmx_get_intr_info(vcpu);
6501 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6502 gate_desc *desc = (gate_desc *)host_idt_base + vector;
6503
6504 if (WARN_ONCE(!is_external_intr(intr_info),
6505 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6506 return;
6507
6508 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6509 }
6510
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)6511 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6512 {
6513 struct vcpu_vmx *vmx = to_vmx(vcpu);
6514
6515 if (vmx->emulation_required)
6516 return;
6517
6518 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6519 handle_external_interrupt_irqoff(vcpu);
6520 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6521 handle_exception_nmi_irqoff(vmx);
6522 }
6523
vmx_has_emulated_msr(u32 index)6524 static bool vmx_has_emulated_msr(u32 index)
6525 {
6526 switch (index) {
6527 case MSR_IA32_SMBASE:
6528 /*
6529 * We cannot do SMM unless we can run the guest in big
6530 * real mode.
6531 */
6532 return enable_unrestricted_guest || emulate_invalid_guest_state;
6533 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6534 return nested;
6535 case MSR_AMD64_VIRT_SPEC_CTRL:
6536 /* This is AMD only. */
6537 return false;
6538 default:
6539 return true;
6540 }
6541 }
6542
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)6543 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6544 {
6545 u32 exit_intr_info;
6546 bool unblock_nmi;
6547 u8 vector;
6548 bool idtv_info_valid;
6549
6550 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6551
6552 if (enable_vnmi) {
6553 if (vmx->loaded_vmcs->nmi_known_unmasked)
6554 return;
6555
6556 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6557 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6558 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6559 /*
6560 * SDM 3: 27.7.1.2 (September 2008)
6561 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6562 * a guest IRET fault.
6563 * SDM 3: 23.2.2 (September 2008)
6564 * Bit 12 is undefined in any of the following cases:
6565 * If the VM exit sets the valid bit in the IDT-vectoring
6566 * information field.
6567 * If the VM exit is due to a double fault.
6568 */
6569 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6570 vector != DF_VECTOR && !idtv_info_valid)
6571 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6572 GUEST_INTR_STATE_NMI);
6573 else
6574 vmx->loaded_vmcs->nmi_known_unmasked =
6575 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6576 & GUEST_INTR_STATE_NMI);
6577 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6578 vmx->loaded_vmcs->vnmi_blocked_time +=
6579 ktime_to_ns(ktime_sub(ktime_get(),
6580 vmx->loaded_vmcs->entry_time));
6581 }
6582
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)6583 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6584 u32 idt_vectoring_info,
6585 int instr_len_field,
6586 int error_code_field)
6587 {
6588 u8 vector;
6589 int type;
6590 bool idtv_info_valid;
6591
6592 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6593
6594 vcpu->arch.nmi_injected = false;
6595 kvm_clear_exception_queue(vcpu);
6596 kvm_clear_interrupt_queue(vcpu);
6597
6598 if (!idtv_info_valid)
6599 return;
6600
6601 kvm_make_request(KVM_REQ_EVENT, vcpu);
6602
6603 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6604 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6605
6606 switch (type) {
6607 case INTR_TYPE_NMI_INTR:
6608 vcpu->arch.nmi_injected = true;
6609 /*
6610 * SDM 3: 27.7.1.2 (September 2008)
6611 * Clear bit "block by NMI" before VM entry if a NMI
6612 * delivery faulted.
6613 */
6614 vmx_set_nmi_mask(vcpu, false);
6615 break;
6616 case INTR_TYPE_SOFT_EXCEPTION:
6617 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6618 fallthrough;
6619 case INTR_TYPE_HARD_EXCEPTION:
6620 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6621 u32 err = vmcs_read32(error_code_field);
6622 kvm_requeue_exception_e(vcpu, vector, err);
6623 } else
6624 kvm_requeue_exception(vcpu, vector);
6625 break;
6626 case INTR_TYPE_SOFT_INTR:
6627 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6628 fallthrough;
6629 case INTR_TYPE_EXT_INTR:
6630 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6631 break;
6632 default:
6633 break;
6634 }
6635 }
6636
vmx_complete_interrupts(struct vcpu_vmx * vmx)6637 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6638 {
6639 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6640 VM_EXIT_INSTRUCTION_LEN,
6641 IDT_VECTORING_ERROR_CODE);
6642 }
6643
vmx_cancel_injection(struct kvm_vcpu * vcpu)6644 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6645 {
6646 __vmx_complete_interrupts(vcpu,
6647 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6648 VM_ENTRY_INSTRUCTION_LEN,
6649 VM_ENTRY_EXCEPTION_ERROR_CODE);
6650
6651 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6652 }
6653
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)6654 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6655 {
6656 int i, nr_msrs;
6657 struct perf_guest_switch_msr *msrs;
6658
6659 msrs = perf_guest_get_msrs(&nr_msrs);
6660
6661 if (!msrs)
6662 return;
6663
6664 for (i = 0; i < nr_msrs; i++)
6665 if (msrs[i].host == msrs[i].guest)
6666 clear_atomic_switch_msr(vmx, msrs[i].msr);
6667 else
6668 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6669 msrs[i].host, false);
6670 }
6671
vmx_update_hv_timer(struct kvm_vcpu * vcpu)6672 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6673 {
6674 struct vcpu_vmx *vmx = to_vmx(vcpu);
6675 u64 tscl;
6676 u32 delta_tsc;
6677
6678 if (vmx->req_immediate_exit) {
6679 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6680 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6681 } else if (vmx->hv_deadline_tsc != -1) {
6682 tscl = rdtsc();
6683 if (vmx->hv_deadline_tsc > tscl)
6684 /* set_hv_timer ensures the delta fits in 32-bits */
6685 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6686 cpu_preemption_timer_multi);
6687 else
6688 delta_tsc = 0;
6689
6690 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6691 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6692 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6693 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6694 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6695 }
6696 }
6697
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)6698 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6699 {
6700 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6701 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6702 vmcs_writel(HOST_RSP, host_rsp);
6703 }
6704 }
6705
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)6706 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
6707 unsigned int flags)
6708 {
6709 u64 hostval = this_cpu_read(x86_spec_ctrl_current);
6710
6711 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
6712 return;
6713
6714 if (flags & VMX_RUN_SAVE_SPEC_CTRL)
6715 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
6716
6717 /*
6718 * If the guest/host SPEC_CTRL values differ, restore the host value.
6719 *
6720 * For legacy IBRS, the IBRS bit always needs to be written after
6721 * transitioning from a less privileged predictor mode, regardless of
6722 * whether the guest/host values differ.
6723 */
6724 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
6725 vmx->spec_ctrl != hostval)
6726 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
6727
6728 barrier_nospec();
6729 }
6730
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu)6731 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6732 {
6733 switch (to_vmx(vcpu)->exit_reason.basic) {
6734 case EXIT_REASON_MSR_WRITE:
6735 return handle_fastpath_set_msr_irqoff(vcpu);
6736 case EXIT_REASON_PREEMPTION_TIMER:
6737 return handle_fastpath_preemption_timer(vcpu);
6738 default:
6739 return EXIT_FASTPATH_NONE;
6740 }
6741 }
6742
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx,unsigned long flags)6743 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6744 struct vcpu_vmx *vmx,
6745 unsigned long flags)
6746 {
6747 /*
6748 * VMENTER enables interrupts (host state), but the kernel state is
6749 * interrupts disabled when this is invoked. Also tell RCU about
6750 * it. This is the same logic as for exit_to_user_mode().
6751 *
6752 * This ensures that e.g. latency analysis on the host observes
6753 * guest mode as interrupt enabled.
6754 *
6755 * guest_enter_irqoff() informs context tracking about the
6756 * transition to guest mode and if enabled adjusts RCU state
6757 * accordingly.
6758 */
6759 instrumentation_begin();
6760 trace_hardirqs_on_prepare();
6761 lockdep_hardirqs_on_prepare(CALLER_ADDR0);
6762 instrumentation_end();
6763
6764 guest_enter_irqoff();
6765 lockdep_hardirqs_on(CALLER_ADDR0);
6766
6767 /* L1D Flush includes CPU buffer clear to mitigate MDS */
6768 if (static_branch_unlikely(&vmx_l1d_should_flush))
6769 vmx_l1d_flush(vcpu);
6770 else if (static_branch_unlikely(&mds_user_clear))
6771 mds_clear_cpu_buffers();
6772 else if (static_branch_unlikely(&mmio_stale_data_clear) &&
6773 kvm_arch_has_assigned_device(vcpu->kvm))
6774 mds_clear_cpu_buffers();
6775
6776 vmx_disable_fb_clear(vmx);
6777
6778 if (vcpu->arch.cr2 != native_read_cr2())
6779 native_write_cr2(vcpu->arch.cr2);
6780
6781 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6782 flags);
6783
6784 vcpu->arch.cr2 = native_read_cr2();
6785
6786 vmx_enable_fb_clear(vmx);
6787
6788 /*
6789 * VMEXIT disables interrupts (host state), but tracing and lockdep
6790 * have them in state 'on' as recorded before entering guest mode.
6791 * Same as enter_from_user_mode().
6792 *
6793 * context_tracking_guest_exit() restores host context and reinstates
6794 * RCU if enabled and required.
6795 *
6796 * This needs to be done before the below as native_read_msr()
6797 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
6798 * into world and some more.
6799 */
6800 lockdep_hardirqs_off(CALLER_ADDR0);
6801 context_tracking_guest_exit();
6802
6803 instrumentation_begin();
6804 trace_hardirqs_off_finish();
6805 instrumentation_end();
6806 }
6807
vmx_vcpu_run(struct kvm_vcpu * vcpu)6808 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6809 {
6810 fastpath_t exit_fastpath;
6811 struct vcpu_vmx *vmx = to_vmx(vcpu);
6812 unsigned long cr3, cr4;
6813
6814 reenter_guest:
6815 /* Record the guest's net vcpu time for enforced NMI injections. */
6816 if (unlikely(!enable_vnmi &&
6817 vmx->loaded_vmcs->soft_vnmi_blocked))
6818 vmx->loaded_vmcs->entry_time = ktime_get();
6819
6820 /* Don't enter VMX if guest state is invalid, let the exit handler
6821 start emulation until we arrive back to a valid state */
6822 if (vmx->emulation_required)
6823 return EXIT_FASTPATH_NONE;
6824
6825 if (vmx->ple_window_dirty) {
6826 vmx->ple_window_dirty = false;
6827 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6828 }
6829
6830 /*
6831 * We did this in prepare_switch_to_guest, because it needs to
6832 * be within srcu_read_lock.
6833 */
6834 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6835
6836 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6837 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6838 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6839 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6840
6841 cr3 = __get_current_cr3_fast();
6842 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6843 vmcs_writel(HOST_CR3, cr3);
6844 vmx->loaded_vmcs->host_state.cr3 = cr3;
6845 }
6846
6847 cr4 = cr4_read_shadow();
6848 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6849 vmcs_writel(HOST_CR4, cr4);
6850 vmx->loaded_vmcs->host_state.cr4 = cr4;
6851 }
6852
6853 /* When single-stepping over STI and MOV SS, we must clear the
6854 * corresponding interruptibility bits in the guest state. Otherwise
6855 * vmentry fails as it then expects bit 14 (BS) in pending debug
6856 * exceptions being set, but that's not correct for the guest debugging
6857 * case. */
6858 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6859 vmx_set_interrupt_shadow(vcpu, 0);
6860
6861 kvm_load_guest_xsave_state(vcpu);
6862
6863 pt_guest_enter(vmx);
6864
6865 atomic_switch_perf_msrs(vmx);
6866
6867 if (enable_preemption_timer)
6868 vmx_update_hv_timer(vcpu);
6869
6870 kvm_wait_lapic_expire(vcpu);
6871
6872 /*
6873 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6874 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6875 * is no need to worry about the conditional branch over the wrmsr
6876 * being speculatively taken.
6877 */
6878 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6879
6880 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
6881 vmx_vcpu_enter_exit(vcpu, vmx, __vmx_vcpu_run_flags(vmx));
6882
6883 /* All fields are clean at this point */
6884 if (static_branch_unlikely(&enable_evmcs))
6885 current_evmcs->hv_clean_fields |=
6886 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6887
6888 if (static_branch_unlikely(&enable_evmcs))
6889 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6890
6891 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6892 if (vmx->host_debugctlmsr)
6893 update_debugctlmsr(vmx->host_debugctlmsr);
6894
6895 #ifndef CONFIG_X86_64
6896 /*
6897 * The sysexit path does not restore ds/es, so we must set them to
6898 * a reasonable value ourselves.
6899 *
6900 * We can't defer this to vmx_prepare_switch_to_host() since that
6901 * function may be executed in interrupt context, which saves and
6902 * restore segments around it, nullifying its effect.
6903 */
6904 loadsegment(ds, __USER_DS);
6905 loadsegment(es, __USER_DS);
6906 #endif
6907
6908 vmx_register_cache_reset(vcpu);
6909
6910 pt_guest_exit(vmx);
6911
6912 kvm_load_host_xsave_state(vcpu);
6913
6914 vmx->nested.nested_run_pending = 0;
6915 vmx->idt_vectoring_info = 0;
6916
6917 if (unlikely(vmx->fail)) {
6918 vmx->exit_reason.full = 0xdead;
6919 return EXIT_FASTPATH_NONE;
6920 }
6921
6922 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6923 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6924 kvm_machine_check();
6925
6926 trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX);
6927
6928 if (unlikely(vmx->exit_reason.failed_vmentry))
6929 return EXIT_FASTPATH_NONE;
6930
6931 vmx->loaded_vmcs->launched = 1;
6932 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6933
6934 vmx_recover_nmi_blocking(vmx);
6935 vmx_complete_interrupts(vmx);
6936
6937 if (is_guest_mode(vcpu))
6938 return EXIT_FASTPATH_NONE;
6939
6940 exit_fastpath = vmx_exit_handlers_fastpath(vcpu);
6941 if (exit_fastpath == EXIT_FASTPATH_REENTER_GUEST) {
6942 if (!kvm_vcpu_exit_request(vcpu)) {
6943 /*
6944 * FIXME: this goto should be a loop in vcpu_enter_guest,
6945 * but it would incur the cost of a retpoline for now.
6946 * Revisit once static calls are available.
6947 */
6948 if (vcpu->arch.apicv_active)
6949 vmx_sync_pir_to_irr(vcpu);
6950 goto reenter_guest;
6951 }
6952 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
6953 }
6954
6955 return exit_fastpath;
6956 }
6957
vmx_free_vcpu(struct kvm_vcpu * vcpu)6958 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6959 {
6960 struct vcpu_vmx *vmx = to_vmx(vcpu);
6961
6962 if (enable_pml)
6963 vmx_destroy_pml_buffer(vmx);
6964 free_vpid(vmx->vpid);
6965 nested_vmx_free_vcpu(vcpu);
6966 free_loaded_vmcs(vmx->loaded_vmcs);
6967 }
6968
vmx_create_vcpu(struct kvm_vcpu * vcpu)6969 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6970 {
6971 struct vcpu_vmx *vmx;
6972 int i, cpu, err;
6973
6974 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6975 vmx = to_vmx(vcpu);
6976
6977 err = -ENOMEM;
6978
6979 vmx->vpid = allocate_vpid();
6980
6981 /*
6982 * If PML is turned on, failure on enabling PML just results in failure
6983 * of creating the vcpu, therefore we can simplify PML logic (by
6984 * avoiding dealing with cases, such as enabling PML partially on vcpus
6985 * for the guest), etc.
6986 */
6987 if (enable_pml) {
6988 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6989 if (!vmx->pml_pg)
6990 goto free_vpid;
6991 }
6992
6993 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
6994
6995 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) {
6996 u32 index = vmx_uret_msrs_list[i];
6997 int j = vmx->nr_uret_msrs;
6998
6999 if (kvm_probe_user_return_msr(index))
7000 continue;
7001
7002 vmx->guest_uret_msrs[j].slot = i;
7003 vmx->guest_uret_msrs[j].data = 0;
7004 switch (index) {
7005 case MSR_IA32_TSX_CTRL:
7006 /*
7007 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID
7008 * interception. Keep the host value unchanged to avoid
7009 * changing CPUID bits under the host kernel's feet.
7010 *
7011 * hle=0, rtm=0, tsx_ctrl=1 can be found with some
7012 * combinations of new kernel and old userspace. If
7013 * those guests run on a tsx=off host, do allow guests
7014 * to use TSX_CTRL, but do not change the value on the
7015 * host so that TSX remains always disabled.
7016 */
7017 if (boot_cpu_has(X86_FEATURE_RTM))
7018 vmx->guest_uret_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7019 else
7020 vmx->guest_uret_msrs[j].mask = 0;
7021 break;
7022 default:
7023 vmx->guest_uret_msrs[j].mask = -1ull;
7024 break;
7025 }
7026 ++vmx->nr_uret_msrs;
7027 }
7028
7029 err = alloc_loaded_vmcs(&vmx->vmcs01);
7030 if (err < 0)
7031 goto free_pml;
7032
7033 /* The MSR bitmap starts with all ones */
7034 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7035 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7036
7037 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7038 #ifdef CONFIG_X86_64
7039 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7040 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7041 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7042 #endif
7043 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7044 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7045 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7046 if (kvm_cstate_in_guest(vcpu->kvm)) {
7047 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7048 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7049 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7050 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7051 }
7052 vmx->msr_bitmap_mode = 0;
7053
7054 vmx->loaded_vmcs = &vmx->vmcs01;
7055 cpu = get_cpu();
7056 vmx_vcpu_load(vcpu, cpu);
7057 vcpu->cpu = cpu;
7058 init_vmcs(vmx);
7059 vmx_vcpu_put(vcpu);
7060 put_cpu();
7061 if (cpu_need_virtualize_apic_accesses(vcpu)) {
7062 err = alloc_apic_access_page(vcpu->kvm);
7063 if (err)
7064 goto free_vmcs;
7065 }
7066
7067 if (enable_ept && !enable_unrestricted_guest) {
7068 err = init_rmode_identity_map(vcpu->kvm);
7069 if (err)
7070 goto free_vmcs;
7071 }
7072
7073 if (nested)
7074 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
7075 else
7076 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
7077
7078 vmx->nested.posted_intr_nv = -1;
7079 vmx->nested.current_vmptr = -1ull;
7080
7081 vcpu->arch.microcode_version = 0x100000000ULL;
7082 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
7083
7084 /*
7085 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
7086 * or POSTED_INTR_WAKEUP_VECTOR.
7087 */
7088 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
7089 vmx->pi_desc.sn = 1;
7090
7091 vmx->ept_pointer = INVALID_PAGE;
7092
7093 return 0;
7094
7095 free_vmcs:
7096 free_loaded_vmcs(vmx->loaded_vmcs);
7097 free_pml:
7098 vmx_destroy_pml_buffer(vmx);
7099 free_vpid:
7100 free_vpid(vmx->vpid);
7101 return err;
7102 }
7103
7104 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7105 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7106
vmx_vm_init(struct kvm * kvm)7107 static int vmx_vm_init(struct kvm *kvm)
7108 {
7109 spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
7110
7111 if (!ple_gap)
7112 kvm->arch.pause_in_guest = true;
7113
7114 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7115 switch (l1tf_mitigation) {
7116 case L1TF_MITIGATION_OFF:
7117 case L1TF_MITIGATION_FLUSH_NOWARN:
7118 /* 'I explicitly don't care' is set */
7119 break;
7120 case L1TF_MITIGATION_FLUSH:
7121 case L1TF_MITIGATION_FLUSH_NOSMT:
7122 case L1TF_MITIGATION_FULL:
7123 /*
7124 * Warn upon starting the first VM in a potentially
7125 * insecure environment.
7126 */
7127 if (sched_smt_active())
7128 pr_warn_once(L1TF_MSG_SMT);
7129 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7130 pr_warn_once(L1TF_MSG_L1D);
7131 break;
7132 case L1TF_MITIGATION_FULL_FORCE:
7133 /* Flush is enforced */
7134 break;
7135 }
7136 }
7137 kvm_apicv_init(kvm, enable_apicv);
7138 return 0;
7139 }
7140
vmx_check_processor_compat(void)7141 static int __init vmx_check_processor_compat(void)
7142 {
7143 struct vmcs_config vmcs_conf;
7144 struct vmx_capability vmx_cap;
7145
7146 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7147 !this_cpu_has(X86_FEATURE_VMX)) {
7148 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7149 return -EIO;
7150 }
7151
7152 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7153 return -EIO;
7154 if (nested)
7155 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7156 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7157 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7158 smp_processor_id());
7159 return -EIO;
7160 }
7161 return 0;
7162 }
7163
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7164 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7165 {
7166 u8 cache;
7167 u64 ipat = 0;
7168
7169 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7170 * memory aliases with conflicting memory types and sometimes MCEs.
7171 * We have to be careful as to what are honored and when.
7172 *
7173 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
7174 * UC. The effective memory type is UC or WC depending on guest PAT.
7175 * This was historically the source of MCEs and we want to be
7176 * conservative.
7177 *
7178 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7179 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
7180 * EPT memory type is set to WB. The effective memory type is forced
7181 * WB.
7182 *
7183 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
7184 * EPT memory type is used to emulate guest CD/MTRR.
7185 */
7186
7187 if (is_mmio) {
7188 cache = MTRR_TYPE_UNCACHABLE;
7189 goto exit;
7190 }
7191
7192 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7193 ipat = VMX_EPT_IPAT_BIT;
7194 cache = MTRR_TYPE_WRBACK;
7195 goto exit;
7196 }
7197
7198 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7199 ipat = VMX_EPT_IPAT_BIT;
7200 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7201 cache = MTRR_TYPE_WRBACK;
7202 else
7203 cache = MTRR_TYPE_UNCACHABLE;
7204 goto exit;
7205 }
7206
7207 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7208
7209 exit:
7210 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7211 }
7212
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx)7213 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7214 {
7215 /*
7216 * These bits in the secondary execution controls field
7217 * are dynamic, the others are mostly based on the hypervisor
7218 * architecture and the guest's CPUID. Do not touch the
7219 * dynamic bits.
7220 */
7221 u32 mask =
7222 SECONDARY_EXEC_SHADOW_VMCS |
7223 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7224 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7225 SECONDARY_EXEC_DESC;
7226
7227 u32 new_ctl = vmx->secondary_exec_control;
7228 u32 cur_ctl = secondary_exec_controls_get(vmx);
7229
7230 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7231 }
7232
7233 /*
7234 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7235 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7236 */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7237 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7238 {
7239 struct vcpu_vmx *vmx = to_vmx(vcpu);
7240 struct kvm_cpuid_entry2 *entry;
7241
7242 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7243 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7244
7245 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7246 if (entry && (entry->_reg & (_cpuid_mask))) \
7247 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7248 } while (0)
7249
7250 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7251 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7252 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7253 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7254 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7255 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7256 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7257 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7258 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7259 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7260 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7261 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7262 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7263 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7264 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7265
7266 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7267 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7268 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7269 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7270 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7271 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7272 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7273
7274 #undef cr4_fixed1_update
7275 }
7276
nested_vmx_entry_exit_ctls_update(struct kvm_vcpu * vcpu)7277 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7278 {
7279 struct vcpu_vmx *vmx = to_vmx(vcpu);
7280
7281 if (kvm_mpx_supported()) {
7282 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7283
7284 if (mpx_enabled) {
7285 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7286 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7287 } else {
7288 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7289 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7290 }
7291 }
7292 }
7293
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7294 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7295 {
7296 struct vcpu_vmx *vmx = to_vmx(vcpu);
7297 struct kvm_cpuid_entry2 *best = NULL;
7298 int i;
7299
7300 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7301 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7302 if (!best)
7303 return;
7304 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7305 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7306 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7307 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7308 }
7309
7310 /* Get the number of configurable Address Ranges for filtering */
7311 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7312 PT_CAP_num_address_ranges);
7313
7314 /* Initialize and clear the no dependency bits */
7315 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7316 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7317
7318 /*
7319 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7320 * will inject an #GP
7321 */
7322 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7323 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7324
7325 /*
7326 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7327 * PSBFreq can be set
7328 */
7329 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7330 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7331 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7332
7333 /*
7334 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7335 * MTCFreq can be set
7336 */
7337 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7338 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7339 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7340
7341 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7342 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7343 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7344 RTIT_CTL_PTW_EN);
7345
7346 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7347 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7348 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7349
7350 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7351 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7352 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7353
7354 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7355 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7356 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7357
7358 /* unmask address range configure area */
7359 for (i = 0; i < vmx->pt_desc.addr_range; i++)
7360 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7361 }
7362
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7363 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7364 {
7365 struct vcpu_vmx *vmx = to_vmx(vcpu);
7366
7367 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7368 vcpu->arch.xsaves_enabled = false;
7369
7370 if (cpu_has_secondary_exec_ctrls()) {
7371 vmx_compute_secondary_exec_control(vmx);
7372 vmcs_set_secondary_exec_control(vmx);
7373 }
7374
7375 if (nested_vmx_allowed(vcpu))
7376 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7377 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7378 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7379 else
7380 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7381 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7382 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7383
7384 if (nested_vmx_allowed(vcpu)) {
7385 nested_vmx_cr_fixed1_bits_update(vcpu);
7386 nested_vmx_entry_exit_ctls_update(vcpu);
7387 }
7388
7389 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7390 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7391 update_intel_pt_cfg(vcpu);
7392
7393 if (boot_cpu_has(X86_FEATURE_RTM)) {
7394 struct vmx_uret_msr *msr;
7395 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7396 if (msr) {
7397 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7398 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7399 }
7400 }
7401
7402 set_cr4_guest_host_mask(vmx);
7403
7404 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7405 update_exception_bitmap(vcpu);
7406 }
7407
vmx_set_cpu_caps(void)7408 static __init void vmx_set_cpu_caps(void)
7409 {
7410 kvm_set_cpu_caps();
7411
7412 /* CPUID 0x1 */
7413 if (nested)
7414 kvm_cpu_cap_set(X86_FEATURE_VMX);
7415
7416 /* CPUID 0x7 */
7417 if (kvm_mpx_supported())
7418 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7419 if (cpu_has_vmx_invpcid())
7420 kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
7421 if (vmx_pt_mode_is_host_guest())
7422 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7423
7424 if (vmx_umip_emulated())
7425 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7426
7427 /* CPUID 0xD.1 */
7428 supported_xss = 0;
7429 if (!cpu_has_vmx_xsaves())
7430 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7431
7432 /* CPUID 0x80000001 and 0x7 (RDPID) */
7433 if (!cpu_has_vmx_rdtscp()) {
7434 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7435 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7436 }
7437
7438 if (cpu_has_vmx_waitpkg())
7439 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7440 }
7441
vmx_request_immediate_exit(struct kvm_vcpu * vcpu)7442 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7443 {
7444 to_vmx(vcpu)->req_immediate_exit = true;
7445 }
7446
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)7447 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7448 struct x86_instruction_info *info)
7449 {
7450 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7451 unsigned short port;
7452 bool intercept;
7453 int size;
7454
7455 if (info->intercept == x86_intercept_in ||
7456 info->intercept == x86_intercept_ins) {
7457 port = info->src_val;
7458 size = info->dst_bytes;
7459 } else {
7460 port = info->dst_val;
7461 size = info->src_bytes;
7462 }
7463
7464 /*
7465 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7466 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7467 * control.
7468 *
7469 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7470 */
7471 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7472 intercept = nested_cpu_has(vmcs12,
7473 CPU_BASED_UNCOND_IO_EXITING);
7474 else
7475 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7476
7477 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7478 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7479 }
7480
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)7481 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7482 struct x86_instruction_info *info,
7483 enum x86_intercept_stage stage,
7484 struct x86_exception *exception)
7485 {
7486 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7487
7488 switch (info->intercept) {
7489 /*
7490 * RDPID causes #UD if disabled through secondary execution controls.
7491 * Because it is marked as EmulateOnUD, we need to intercept it here.
7492 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7493 */
7494 case x86_intercept_rdpid:
7495 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7496 exception->vector = UD_VECTOR;
7497 exception->error_code_valid = false;
7498 return X86EMUL_PROPAGATE_FAULT;
7499 }
7500 break;
7501
7502 case x86_intercept_in:
7503 case x86_intercept_ins:
7504 case x86_intercept_out:
7505 case x86_intercept_outs:
7506 return vmx_check_intercept_io(vcpu, info);
7507
7508 case x86_intercept_lgdt:
7509 case x86_intercept_lidt:
7510 case x86_intercept_lldt:
7511 case x86_intercept_ltr:
7512 case x86_intercept_sgdt:
7513 case x86_intercept_sidt:
7514 case x86_intercept_sldt:
7515 case x86_intercept_str:
7516 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7517 return X86EMUL_CONTINUE;
7518
7519 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7520 break;
7521
7522 /* TODO: check more intercepts... */
7523 default:
7524 break;
7525 }
7526
7527 return X86EMUL_UNHANDLEABLE;
7528 }
7529
7530 #ifdef CONFIG_X86_64
7531 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)7532 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7533 u64 divisor, u64 *result)
7534 {
7535 u64 low = a << shift, high = a >> (64 - shift);
7536
7537 /* To avoid the overflow on divq */
7538 if (high >= divisor)
7539 return 1;
7540
7541 /* Low hold the result, high hold rem which is discarded */
7542 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7543 "rm" (divisor), "0" (low), "1" (high));
7544 *result = low;
7545
7546 return 0;
7547 }
7548
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)7549 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7550 bool *expired)
7551 {
7552 struct vcpu_vmx *vmx;
7553 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7554 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7555
7556 vmx = to_vmx(vcpu);
7557 tscl = rdtsc();
7558 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7559 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7560 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7561 ktimer->timer_advance_ns);
7562
7563 if (delta_tsc > lapic_timer_advance_cycles)
7564 delta_tsc -= lapic_timer_advance_cycles;
7565 else
7566 delta_tsc = 0;
7567
7568 /* Convert to host delta tsc if tsc scaling is enabled */
7569 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7570 delta_tsc && u64_shl_div_u64(delta_tsc,
7571 kvm_tsc_scaling_ratio_frac_bits,
7572 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7573 return -ERANGE;
7574
7575 /*
7576 * If the delta tsc can't fit in the 32 bit after the multi shift,
7577 * we can't use the preemption timer.
7578 * It's possible that it fits on later vmentries, but checking
7579 * on every vmentry is costly so we just use an hrtimer.
7580 */
7581 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7582 return -ERANGE;
7583
7584 vmx->hv_deadline_tsc = tscl + delta_tsc;
7585 *expired = !delta_tsc;
7586 return 0;
7587 }
7588
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)7589 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7590 {
7591 to_vmx(vcpu)->hv_deadline_tsc = -1;
7592 }
7593 #endif
7594
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)7595 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7596 {
7597 if (!kvm_pause_in_guest(vcpu->kvm))
7598 shrink_ple_window(vcpu);
7599 }
7600
vmx_slot_enable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7601 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7602 struct kvm_memory_slot *slot)
7603 {
7604 if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
7605 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7606 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7607 }
7608
vmx_slot_disable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7609 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7610 struct kvm_memory_slot *slot)
7611 {
7612 kvm_mmu_slot_set_dirty(kvm, slot);
7613 }
7614
vmx_flush_log_dirty(struct kvm * kvm)7615 static void vmx_flush_log_dirty(struct kvm *kvm)
7616 {
7617 kvm_flush_pml_buffers(kvm);
7618 }
7619
vmx_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t offset,unsigned long mask)7620 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7621 struct kvm_memory_slot *memslot,
7622 gfn_t offset, unsigned long mask)
7623 {
7624 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7625 }
7626
vmx_pre_block(struct kvm_vcpu * vcpu)7627 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7628 {
7629 if (pi_pre_block(vcpu))
7630 return 1;
7631
7632 if (kvm_lapic_hv_timer_in_use(vcpu))
7633 kvm_lapic_switch_to_sw_timer(vcpu);
7634
7635 return 0;
7636 }
7637
vmx_post_block(struct kvm_vcpu * vcpu)7638 static void vmx_post_block(struct kvm_vcpu *vcpu)
7639 {
7640 if (kvm_x86_ops.set_hv_timer)
7641 kvm_lapic_switch_to_hv_timer(vcpu);
7642
7643 pi_post_block(vcpu);
7644 }
7645
vmx_setup_mce(struct kvm_vcpu * vcpu)7646 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7647 {
7648 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7649 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7650 FEAT_CTL_LMCE_ENABLED;
7651 else
7652 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7653 ~FEAT_CTL_LMCE_ENABLED;
7654 }
7655
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)7656 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7657 {
7658 /* we need a nested vmexit to enter SMM, postpone if run is pending */
7659 if (to_vmx(vcpu)->nested.nested_run_pending)
7660 return -EBUSY;
7661 return !is_smm(vcpu);
7662 }
7663
vmx_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)7664 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7665 {
7666 struct vcpu_vmx *vmx = to_vmx(vcpu);
7667
7668 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7669 if (vmx->nested.smm.guest_mode)
7670 nested_vmx_vmexit(vcpu, -1, 0, 0);
7671
7672 vmx->nested.smm.vmxon = vmx->nested.vmxon;
7673 vmx->nested.vmxon = false;
7674 vmx_clear_hlt(vcpu);
7675 return 0;
7676 }
7677
vmx_pre_leave_smm(struct kvm_vcpu * vcpu,const char * smstate)7678 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7679 {
7680 struct vcpu_vmx *vmx = to_vmx(vcpu);
7681 int ret;
7682
7683 if (vmx->nested.smm.vmxon) {
7684 vmx->nested.vmxon = true;
7685 vmx->nested.smm.vmxon = false;
7686 }
7687
7688 if (vmx->nested.smm.guest_mode) {
7689 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7690 if (ret)
7691 return ret;
7692
7693 vmx->nested.smm.guest_mode = false;
7694 }
7695 return 0;
7696 }
7697
enable_smi_window(struct kvm_vcpu * vcpu)7698 static void enable_smi_window(struct kvm_vcpu *vcpu)
7699 {
7700 /* RSM will cause a vmexit anyway. */
7701 }
7702
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)7703 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7704 {
7705 return to_vmx(vcpu)->nested.vmxon;
7706 }
7707
vmx_migrate_timers(struct kvm_vcpu * vcpu)7708 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7709 {
7710 if (is_guest_mode(vcpu)) {
7711 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7712
7713 if (hrtimer_try_to_cancel(timer) == 1)
7714 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7715 }
7716 }
7717
hardware_unsetup(void)7718 static void hardware_unsetup(void)
7719 {
7720 kvm_set_posted_intr_wakeup_handler(NULL);
7721
7722 if (nested)
7723 nested_vmx_hardware_unsetup();
7724
7725 free_kvm_area();
7726 }
7727
vmx_check_apicv_inhibit_reasons(ulong bit)7728 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7729 {
7730 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7731 BIT(APICV_INHIBIT_REASON_HYPERV);
7732
7733 return supported & BIT(bit);
7734 }
7735
7736 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7737 .hardware_unsetup = hardware_unsetup,
7738
7739 .hardware_enable = hardware_enable,
7740 .hardware_disable = hardware_disable,
7741 .cpu_has_accelerated_tpr = report_flexpriority,
7742 .has_emulated_msr = vmx_has_emulated_msr,
7743
7744 .vm_size = sizeof(struct kvm_vmx),
7745 .vm_init = vmx_vm_init,
7746
7747 .vcpu_create = vmx_create_vcpu,
7748 .vcpu_free = vmx_free_vcpu,
7749 .vcpu_reset = vmx_vcpu_reset,
7750
7751 .prepare_guest_switch = vmx_prepare_switch_to_guest,
7752 .vcpu_load = vmx_vcpu_load,
7753 .vcpu_put = vmx_vcpu_put,
7754
7755 .update_exception_bitmap = update_exception_bitmap,
7756 .get_msr_feature = vmx_get_msr_feature,
7757 .get_msr = vmx_get_msr,
7758 .set_msr = vmx_set_msr,
7759 .get_segment_base = vmx_get_segment_base,
7760 .get_segment = vmx_get_segment,
7761 .set_segment = vmx_set_segment,
7762 .get_cpl = vmx_get_cpl,
7763 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7764 .set_cr0 = vmx_set_cr0,
7765 .is_valid_cr4 = vmx_is_valid_cr4,
7766 .set_cr4 = vmx_set_cr4,
7767 .set_efer = vmx_set_efer,
7768 .get_idt = vmx_get_idt,
7769 .set_idt = vmx_set_idt,
7770 .get_gdt = vmx_get_gdt,
7771 .set_gdt = vmx_set_gdt,
7772 .set_dr7 = vmx_set_dr7,
7773 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7774 .cache_reg = vmx_cache_reg,
7775 .get_rflags = vmx_get_rflags,
7776 .set_rflags = vmx_set_rflags,
7777
7778 .tlb_flush_all = vmx_flush_tlb_all,
7779 .tlb_flush_current = vmx_flush_tlb_current,
7780 .tlb_flush_gva = vmx_flush_tlb_gva,
7781 .tlb_flush_guest = vmx_flush_tlb_guest,
7782
7783 .run = vmx_vcpu_run,
7784 .handle_exit = vmx_handle_exit,
7785 .skip_emulated_instruction = vmx_skip_emulated_instruction,
7786 .update_emulated_instruction = vmx_update_emulated_instruction,
7787 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7788 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7789 .patch_hypercall = vmx_patch_hypercall,
7790 .set_irq = vmx_inject_irq,
7791 .set_nmi = vmx_inject_nmi,
7792 .queue_exception = vmx_queue_exception,
7793 .cancel_injection = vmx_cancel_injection,
7794 .interrupt_allowed = vmx_interrupt_allowed,
7795 .nmi_allowed = vmx_nmi_allowed,
7796 .get_nmi_mask = vmx_get_nmi_mask,
7797 .set_nmi_mask = vmx_set_nmi_mask,
7798 .enable_nmi_window = enable_nmi_window,
7799 .enable_irq_window = enable_irq_window,
7800 .update_cr8_intercept = update_cr8_intercept,
7801 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7802 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7803 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7804 .load_eoi_exitmap = vmx_load_eoi_exitmap,
7805 .apicv_post_state_restore = vmx_apicv_post_state_restore,
7806 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7807 .hwapic_irr_update = vmx_hwapic_irr_update,
7808 .hwapic_isr_update = vmx_hwapic_isr_update,
7809 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7810 .sync_pir_to_irr = vmx_sync_pir_to_irr,
7811 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7812 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7813
7814 .set_tss_addr = vmx_set_tss_addr,
7815 .set_identity_map_addr = vmx_set_identity_map_addr,
7816 .get_mt_mask = vmx_get_mt_mask,
7817
7818 .get_exit_info = vmx_get_exit_info,
7819
7820 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7821
7822 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7823
7824 .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7825
7826 .load_mmu_pgd = vmx_load_mmu_pgd,
7827
7828 .check_intercept = vmx_check_intercept,
7829 .handle_exit_irqoff = vmx_handle_exit_irqoff,
7830
7831 .request_immediate_exit = vmx_request_immediate_exit,
7832
7833 .sched_in = vmx_sched_in,
7834
7835 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7836 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7837 .flush_log_dirty = vmx_flush_log_dirty,
7838 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7839
7840 .pre_block = vmx_pre_block,
7841 .post_block = vmx_post_block,
7842
7843 .pmu_ops = &intel_pmu_ops,
7844 .nested_ops = &vmx_nested_ops,
7845
7846 .update_pi_irte = pi_update_irte,
7847
7848 #ifdef CONFIG_X86_64
7849 .set_hv_timer = vmx_set_hv_timer,
7850 .cancel_hv_timer = vmx_cancel_hv_timer,
7851 #endif
7852
7853 .setup_mce = vmx_setup_mce,
7854
7855 .smi_allowed = vmx_smi_allowed,
7856 .pre_enter_smm = vmx_pre_enter_smm,
7857 .pre_leave_smm = vmx_pre_leave_smm,
7858 .enable_smi_window = enable_smi_window,
7859
7860 .can_emulate_instruction = vmx_can_emulate_instruction,
7861 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7862 .migrate_timers = vmx_migrate_timers,
7863
7864 .msr_filter_changed = vmx_msr_filter_changed,
7865 };
7866
hardware_setup(void)7867 static __init int hardware_setup(void)
7868 {
7869 unsigned long host_bndcfgs;
7870 struct desc_ptr dt;
7871 int r, i, ept_lpage_level;
7872
7873 store_idt(&dt);
7874 host_idt_base = dt.address;
7875
7876 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7877 kvm_define_user_return_msr(i, vmx_uret_msrs_list[i]);
7878
7879 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7880 return -EIO;
7881
7882 if (boot_cpu_has(X86_FEATURE_NX))
7883 kvm_enable_efer_bits(EFER_NX);
7884
7885 if (boot_cpu_has(X86_FEATURE_MPX)) {
7886 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7887 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7888 }
7889
7890 if (!cpu_has_vmx_mpx())
7891 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7892 XFEATURE_MASK_BNDCSR);
7893
7894 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7895 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7896 enable_vpid = 0;
7897
7898 if (!cpu_has_vmx_ept() ||
7899 !cpu_has_vmx_ept_4levels() ||
7900 !cpu_has_vmx_ept_mt_wb() ||
7901 !cpu_has_vmx_invept_global())
7902 enable_ept = 0;
7903
7904 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7905 enable_ept_ad_bits = 0;
7906
7907 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7908 enable_unrestricted_guest = 0;
7909
7910 if (!cpu_has_vmx_flexpriority())
7911 flexpriority_enabled = 0;
7912
7913 if (!cpu_has_virtual_nmis())
7914 enable_vnmi = 0;
7915
7916 /*
7917 * set_apic_access_page_addr() is used to reload apic access
7918 * page upon invalidation. No need to do anything if not
7919 * using the APIC_ACCESS_ADDR VMCS field.
7920 */
7921 if (!flexpriority_enabled)
7922 vmx_x86_ops.set_apic_access_page_addr = NULL;
7923
7924 if (!cpu_has_vmx_tpr_shadow())
7925 vmx_x86_ops.update_cr8_intercept = NULL;
7926
7927 #if IS_ENABLED(CONFIG_HYPERV)
7928 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7929 && enable_ept) {
7930 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7931 vmx_x86_ops.tlb_remote_flush_with_range =
7932 hv_remote_flush_tlb_with_range;
7933 }
7934 #endif
7935
7936 if (!cpu_has_vmx_ple()) {
7937 ple_gap = 0;
7938 ple_window = 0;
7939 ple_window_grow = 0;
7940 ple_window_max = 0;
7941 ple_window_shrink = 0;
7942 }
7943
7944 if (!cpu_has_vmx_apicv()) {
7945 enable_apicv = 0;
7946 vmx_x86_ops.sync_pir_to_irr = NULL;
7947 }
7948
7949 if (cpu_has_vmx_tsc_scaling()) {
7950 kvm_has_tsc_control = true;
7951 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7952 kvm_tsc_scaling_ratio_frac_bits = 48;
7953 }
7954
7955 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7956
7957 if (enable_ept)
7958 vmx_enable_tdp();
7959
7960 if (!enable_ept)
7961 ept_lpage_level = 0;
7962 else if (cpu_has_vmx_ept_1g_page())
7963 ept_lpage_level = PG_LEVEL_1G;
7964 else if (cpu_has_vmx_ept_2m_page())
7965 ept_lpage_level = PG_LEVEL_2M;
7966 else
7967 ept_lpage_level = PG_LEVEL_4K;
7968 kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level);
7969
7970 /*
7971 * Only enable PML when hardware supports PML feature, and both EPT
7972 * and EPT A/D bit features are enabled -- PML depends on them to work.
7973 */
7974 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7975 enable_pml = 0;
7976
7977 if (!enable_pml) {
7978 vmx_x86_ops.slot_enable_log_dirty = NULL;
7979 vmx_x86_ops.slot_disable_log_dirty = NULL;
7980 vmx_x86_ops.flush_log_dirty = NULL;
7981 vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
7982 }
7983
7984 if (!cpu_has_vmx_preemption_timer())
7985 enable_preemption_timer = false;
7986
7987 if (enable_preemption_timer) {
7988 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7989 u64 vmx_msr;
7990
7991 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7992 cpu_preemption_timer_multi =
7993 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7994
7995 if (tsc_khz)
7996 use_timer_freq = (u64)tsc_khz * 1000;
7997 use_timer_freq >>= cpu_preemption_timer_multi;
7998
7999 /*
8000 * KVM "disables" the preemption timer by setting it to its max
8001 * value. Don't use the timer if it might cause spurious exits
8002 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8003 */
8004 if (use_timer_freq > 0xffffffffu / 10)
8005 enable_preemption_timer = false;
8006 }
8007
8008 if (!enable_preemption_timer) {
8009 vmx_x86_ops.set_hv_timer = NULL;
8010 vmx_x86_ops.cancel_hv_timer = NULL;
8011 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8012 }
8013
8014 kvm_mce_cap_supported |= MCG_LMCE_P;
8015
8016 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8017 return -EINVAL;
8018 if (!enable_ept || !cpu_has_vmx_intel_pt())
8019 pt_mode = PT_MODE_SYSTEM;
8020
8021 if (nested) {
8022 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
8023 vmx_capability.ept);
8024
8025 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8026 if (r)
8027 return r;
8028 }
8029
8030 vmx_set_cpu_caps();
8031
8032 r = alloc_kvm_area();
8033 if (r)
8034 nested_vmx_hardware_unsetup();
8035
8036 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8037
8038 return r;
8039 }
8040
8041 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8042 .cpu_has_kvm_support = cpu_has_kvm_support,
8043 .disabled_by_bios = vmx_disabled_by_bios,
8044 .check_processor_compatibility = vmx_check_processor_compat,
8045 .hardware_setup = hardware_setup,
8046 .intel_pt_intr_in_guest = vmx_pt_mode_is_host_guest,
8047
8048 .runtime_ops = &vmx_x86_ops,
8049 };
8050
vmx_cleanup_l1d_flush(void)8051 static void vmx_cleanup_l1d_flush(void)
8052 {
8053 if (vmx_l1d_flush_pages) {
8054 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8055 vmx_l1d_flush_pages = NULL;
8056 }
8057 /* Restore state so sysfs ignores VMX */
8058 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8059 }
8060
vmx_exit(void)8061 static void vmx_exit(void)
8062 {
8063 #ifdef CONFIG_KEXEC_CORE
8064 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8065 synchronize_rcu();
8066 #endif
8067
8068 kvm_exit();
8069
8070 #if IS_ENABLED(CONFIG_HYPERV)
8071 if (static_branch_unlikely(&enable_evmcs)) {
8072 int cpu;
8073 struct hv_vp_assist_page *vp_ap;
8074 /*
8075 * Reset everything to support using non-enlightened VMCS
8076 * access later (e.g. when we reload the module with
8077 * enlightened_vmcs=0)
8078 */
8079 for_each_online_cpu(cpu) {
8080 vp_ap = hv_get_vp_assist_page(cpu);
8081
8082 if (!vp_ap)
8083 continue;
8084
8085 vp_ap->nested_control.features.directhypercall = 0;
8086 vp_ap->current_nested_vmcs = 0;
8087 vp_ap->enlighten_vmentry = 0;
8088 }
8089
8090 static_branch_disable(&enable_evmcs);
8091 }
8092 #endif
8093 vmx_cleanup_l1d_flush();
8094 }
8095 module_exit(vmx_exit);
8096
vmx_init(void)8097 static int __init vmx_init(void)
8098 {
8099 int r, cpu;
8100
8101 #if IS_ENABLED(CONFIG_HYPERV)
8102 /*
8103 * Enlightened VMCS usage should be recommended and the host needs
8104 * to support eVMCS v1 or above. We can also disable eVMCS support
8105 * with module parameter.
8106 */
8107 if (enlightened_vmcs &&
8108 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8109 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8110 KVM_EVMCS_VERSION) {
8111 int cpu;
8112
8113 /* Check that we have assist pages on all online CPUs */
8114 for_each_online_cpu(cpu) {
8115 if (!hv_get_vp_assist_page(cpu)) {
8116 enlightened_vmcs = false;
8117 break;
8118 }
8119 }
8120
8121 if (enlightened_vmcs) {
8122 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8123 static_branch_enable(&enable_evmcs);
8124 }
8125
8126 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8127 vmx_x86_ops.enable_direct_tlbflush
8128 = hv_enable_direct_tlbflush;
8129
8130 } else {
8131 enlightened_vmcs = false;
8132 }
8133 #endif
8134
8135 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8136 __alignof__(struct vcpu_vmx), THIS_MODULE);
8137 if (r)
8138 return r;
8139
8140 /*
8141 * Must be called after kvm_init() so enable_ept is properly set
8142 * up. Hand the parameter mitigation value in which was stored in
8143 * the pre module init parser. If no parameter was given, it will
8144 * contain 'auto' which will be turned into the default 'cond'
8145 * mitigation mode.
8146 */
8147 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8148 if (r) {
8149 vmx_exit();
8150 return r;
8151 }
8152
8153 vmx_setup_fb_clear_ctrl();
8154
8155 for_each_possible_cpu(cpu) {
8156 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8157
8158 pi_init_cpu(cpu);
8159 }
8160
8161 #ifdef CONFIG_KEXEC_CORE
8162 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8163 crash_vmclear_local_loaded_vmcss);
8164 #endif
8165 vmx_check_vmcs12_offsets();
8166
8167 /*
8168 * Shadow paging doesn't have a (further) performance penalty
8169 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8170 * by default
8171 */
8172 if (!enable_ept)
8173 allow_smaller_maxphyaddr = true;
8174
8175 return 0;
8176 }
8177 module_init(vmx_init);
8178