1 /* Definitions of target machine for GNU compiler, for ARM.
2    Copyright (C) 1991-2020 Free Software Foundation, Inc.
3    Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
4    and Martin Simmons (@harleqn.co.uk).
5    More major hacks by Richard Earnshaw (rearnsha@arm.com)
6    Minor hacks by Nick Clifton (nickc@cygnus.com)
7 
8    This file is part of GCC.
9 
10    GCC is free software; you can redistribute it and/or modify it
11    under the terms of the GNU General Public License as published
12    by the Free Software Foundation; either version 3, or (at your
13    option) any later version.
14 
15    GCC is distributed in the hope that it will be useful, but WITHOUT
16    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
18    License for more details.
19 
20    Under Section 7 of GPL version 3, you are granted additional
21    permissions described in the GCC Runtime Library Exception, version
22    3.1, as published by the Free Software Foundation.
23 
24    You should have received a copy of the GNU General Public License and
25    a copy of the GCC Runtime Library Exception along with this program;
26    see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
27    <http://www.gnu.org/licenses/>.  */
28 
29 #ifndef GCC_ARM_H
30 #define GCC_ARM_H
31 
32 /* We can't use machine_mode inside a generator file because it
33    hasn't been created yet; we shouldn't be using any code that
34    needs the real definition though, so this ought to be safe.  */
35 #ifdef GENERATOR_FILE
36 #define MACHMODE int
37 #else
38 #include "insn-modes.h"
39 #define MACHMODE machine_mode
40 #endif
41 
42 #include "config/vxworks-dummy.h"
43 
44 /* The architecture define.  */
45 extern char arm_arch_name[];
46 
47 /* Target CPU builtins.  */
48 #define TARGET_CPU_CPP_BUILTINS() arm_cpu_cpp_builtins (pfile)
49 
50 /* Target CPU versions for D.  */
51 #define TARGET_D_CPU_VERSIONS arm_d_target_versions
52 
53 #include "config/arm/arm-opts.h"
54 
55 /* The processor for which instructions should be scheduled.  */
56 extern enum processor_type arm_tune;
57 
58 typedef enum arm_cond_code
59 {
60   ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
61   ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
62 }
63 arm_cc;
64 
65 extern arm_cc arm_current_cc;
66 
67 #define ARM_INVERSE_CONDITION_CODE(X)  ((arm_cc) (((int)X) ^ 1))
68 
69 /* The maximum number of instructions that is beneficial to
70    conditionally execute. */
71 #undef MAX_CONDITIONAL_EXECUTE
72 #define MAX_CONDITIONAL_EXECUTE arm_max_conditional_execute ()
73 
74 extern int arm_target_label;
75 extern int arm_ccfsm_state;
76 extern GTY(()) rtx arm_target_insn;
77 /* Callback to output language specific object attributes.  */
78 extern void (*arm_lang_output_object_attributes_hook)(void);
79 
80 /* This type is the user-visible __fp16.  We need it in a few places in
81    the backend.  Defined in arm-builtins.c.  */
82 extern tree arm_fp16_type_node;
83 
84 /* This type is the user-visible __bf16.  We need it in a few places in
85    the backend.  Defined in arm-builtins.c.  */
86 extern tree arm_bf16_type_node;
87 extern tree arm_bf16_ptr_type_node;
88 
89 
90 #undef  CPP_SPEC
91 #define CPP_SPEC "%(subtarget_cpp_spec)					\
92 %{mfloat-abi=soft:%{mfloat-abi=hard:					\
93 	%e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
94 %{mbig-endian:%{mlittle-endian:						\
95 	%e-mbig-endian and -mlittle-endian may not be used together}}"
96 
97 #ifndef CC1_SPEC
98 #define CC1_SPEC ""
99 #endif
100 
101 /* This macro defines names of additional specifications to put in the specs
102    that can be used in various specifications like CC1_SPEC.  Its definition
103    is an initializer with a subgrouping for each command option.
104 
105    Each subgrouping contains a string constant, that defines the
106    specification name, and a string constant that used by the GCC driver
107    program.
108 
109    Do not define this macro if it does not need to do anything.  */
110 #define EXTRA_SPECS						\
111   { "subtarget_cpp_spec",	SUBTARGET_CPP_SPEC },           \
112   { "asm_cpu_spec",		ASM_CPU_SPEC },			\
113   SUBTARGET_EXTRA_SPECS
114 
115 #ifndef SUBTARGET_EXTRA_SPECS
116 #define SUBTARGET_EXTRA_SPECS
117 #endif
118 
119 #ifndef SUBTARGET_CPP_SPEC
120 #define SUBTARGET_CPP_SPEC      ""
121 #endif
122 
123 /* Tree Target Specification.  */
124 #define TARGET_ARM_P(flags)    (!TARGET_THUMB_P (flags))
125 #define TARGET_THUMB1_P(flags) (TARGET_THUMB_P (flags) && !arm_arch_thumb2)
126 #define TARGET_THUMB2_P(flags) (TARGET_THUMB_P (flags) && arm_arch_thumb2)
127 #define TARGET_32BIT_P(flags)  (TARGET_ARM_P (flags) || TARGET_THUMB2_P (flags))
128 
129 /* Run-time Target Specification.  */
130 /* Use hardware floating point instructions. -mgeneral-regs-only prevents
131 the use of floating point instructions and registers but does not prevent
132 emission of floating point pcs attributes.  */
133 #define TARGET_HARD_FLOAT_SUB	(arm_float_abi != ARM_FLOAT_ABI_SOFT	\
134 				 && bitmap_bit_p (arm_active_target.isa, \
135 						  isa_bit_vfpv2) \
136 				 && TARGET_32BIT)
137 
138 #define TARGET_HARD_FLOAT	(TARGET_HARD_FLOAT_SUB		\
139 				 && !TARGET_GENERAL_REGS_ONLY)
140 
141 #define TARGET_SOFT_FLOAT	(!TARGET_HARD_FLOAT_SUB)
142 /* User has permitted use of FP instructions, if they exist for this
143    target.  */
144 #define TARGET_MAYBE_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
145 /* Use hardware floating point calling convention.  */
146 #define TARGET_HARD_FLOAT_ABI		(arm_float_abi == ARM_FLOAT_ABI_HARD)
147 #define TARGET_IWMMXT			(arm_arch_iwmmxt)
148 #define TARGET_IWMMXT2			(arm_arch_iwmmxt2)
149 #define TARGET_REALLY_IWMMXT		(TARGET_IWMMXT && TARGET_32BIT \
150 					 && !TARGET_GENERAL_REGS_ONLY)
151 #define TARGET_REALLY_IWMMXT2		(TARGET_IWMMXT2 && TARGET_32BIT \
152 					 && !TARGET_GENERAL_REGS_ONLY)
153 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
154 #define TARGET_ARM                      (! TARGET_THUMB)
155 #define TARGET_EITHER			1 /* (TARGET_ARM | TARGET_THUMB) */
156 #define TARGET_BACKTRACE	        (crtl->is_leaf \
157 				         ? TARGET_TPCS_LEAF_FRAME \
158 				         : TARGET_TPCS_FRAME)
159 #define TARGET_AAPCS_BASED \
160     (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
161 
162 #define TARGET_HARD_TP			(target_thread_pointer == TP_CP15)
163 #define TARGET_SOFT_TP			(target_thread_pointer == TP_SOFT)
164 #define TARGET_GNU2_TLS			(target_tls_dialect == TLS_GNU2)
165 
166 /* Only 16-bit thumb code.  */
167 #define TARGET_THUMB1			(TARGET_THUMB && !arm_arch_thumb2)
168 /* Arm or Thumb-2 32-bit code.  */
169 #define TARGET_32BIT			(TARGET_ARM || arm_arch_thumb2)
170 /* 32-bit Thumb-2 code.  */
171 #define TARGET_THUMB2			(TARGET_THUMB && arm_arch_thumb2)
172 /* Thumb-1 only.  */
173 #define TARGET_THUMB1_ONLY		(TARGET_THUMB1 && !arm_arch_notm)
174 
175 #define TARGET_LDRD			(arm_arch5te && ARM_DOUBLEWORD_ALIGN \
176                                          && !TARGET_THUMB1)
177 
178 #define TARGET_CRC32			(arm_arch_crc)
179 
180 /* The following two macros concern the ability to execute coprocessor
181    instructions for VFPv3 or NEON.  TARGET_VFP3/TARGET_VFPD32 are currently
182    only ever tested when we know we are generating for VFP hardware; we need
183    to be more careful with TARGET_NEON as noted below.  */
184 
185 /* FPU is has the full VFPv3/NEON register file of 32 D registers.  */
186 #define TARGET_VFPD32 (bitmap_bit_p (arm_active_target.isa, isa_bit_fp_d32))
187 
188 /* FPU supports VFPv3 instructions.  */
189 #define TARGET_VFP3 (bitmap_bit_p (arm_active_target.isa, isa_bit_vfpv3))
190 
191 /* FPU supports FPv5 instructions.  */
192 #define TARGET_VFP5 (bitmap_bit_p (arm_active_target.isa, isa_bit_fpv5))
193 
194 /* FPU only supports VFP single-precision instructions.  */
195 #define TARGET_VFP_SINGLE (!TARGET_VFP_DOUBLE)
196 
197 /* FPU supports VFP double-precision instructions.  */
198 #define TARGET_VFP_DOUBLE (bitmap_bit_p (arm_active_target.isa, isa_bit_fp_dbl))
199 
200 /* FPU supports half-precision floating-point with NEON element load/store.  */
201 #define TARGET_NEON_FP16					\
202   (bitmap_bit_p (arm_active_target.isa, isa_bit_neon)		\
203    && bitmap_bit_p (arm_active_target.isa, isa_bit_fp16conv))
204 
205 /* FPU supports VFP half-precision floating-point conversions.  */
206 #define TARGET_FP16 (bitmap_bit_p (arm_active_target.isa, isa_bit_fp16conv))
207 
208 /* FPU supports converting between HFmode and DFmode in a single hardware
209    step.  */
210 #define TARGET_FP16_TO_DOUBLE						\
211   (TARGET_HARD_FLOAT && TARGET_FP16 && TARGET_VFP5 && TARGET_VFP_DOUBLE)
212 
213 /* FPU supports fused-multiply-add operations.  */
214 #define TARGET_FMA (bitmap_bit_p (arm_active_target.isa, isa_bit_vfpv4))
215 
216 /* FPU supports Crypto extensions.  */
217 #define TARGET_CRYPTO (bitmap_bit_p (arm_active_target.isa, isa_bit_crypto))
218 
219 /* FPU supports Neon instructions.  The setting of this macro gets
220    revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
221    and TARGET_HARD_FLOAT to ensure that NEON instructions are
222    available.  */
223 #define TARGET_NEON							\
224   (TARGET_32BIT && TARGET_HARD_FLOAT					\
225    && bitmap_bit_p (arm_active_target.isa, isa_bit_neon))
226 
227 /* FPU supports ARMv8.1 Adv.SIMD extensions.  */
228 #define TARGET_NEON_RDMA (TARGET_NEON && arm_arch8_1)
229 
230 /* Supports the Dot Product AdvSIMD extensions.  */
231 #define TARGET_DOTPROD (TARGET_NEON && TARGET_VFP5			\
232 			&& bitmap_bit_p (arm_active_target.isa,		\
233 					isa_bit_dotprod)		\
234 			&& arm_arch8_2)
235 
236 /* Supports the Armv8.3-a Complex number AdvSIMD extensions.  */
237 #define TARGET_COMPLEX (TARGET_NEON && arm_arch8_3)
238 
239 /* FPU supports the floating point FP16 instructions for ARMv8.2-A
240    and later.  */
241 #define TARGET_VFP_FP16INST \
242   (TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP5 && arm_fp16_inst)
243 
244 /* Target supports the floating point FP16 instructions from ARMv8.2-A
245    and later.  */
246 #define TARGET_FP16FML (TARGET_NEON					\
247 			&& bitmap_bit_p (arm_active_target.isa,	\
248 					isa_bit_fp16fml)		\
249 			&& arm_arch8_2)
250 
251 /* FPU supports the AdvSIMD FP16 instructions for ARMv8.2 and later.  */
252 #define TARGET_NEON_FP16INST (TARGET_VFP_FP16INST && TARGET_NEON_RDMA)
253 
254 /* FPU supports 8-bit Integer Matrix Multiply (I8MM) AdvSIMD extensions.  */
255 #define TARGET_I8MM (TARGET_NEON && arm_arch8_2 && arm_arch_i8mm)
256 
257 /* FPU supports Brain half-precision floating-point (BFloat16) extension.  */
258 #define TARGET_BF16_FP (TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP5 \
259 			&& arm_arch8_2 && arm_arch_bf16)
260 #define TARGET_BF16_SIMD (TARGET_NEON && TARGET_VFP5 \
261 			  && arm_arch8_2 && arm_arch_bf16)
262 
263 /* Q-bit is present.  */
264 #define TARGET_ARM_QBIT \
265   (TARGET_32BIT && arm_arch5te && (arm_arch_notm || arm_arch7))
266 /* Saturation operation, e.g. SSAT.  */
267 #define TARGET_ARM_SAT \
268   (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7))
269 /* "DSP" multiply instructions, eg. SMULxy.  */
270 #define TARGET_DSP_MULTIPLY \
271   (TARGET_32BIT && arm_arch5te && (arm_arch_notm || arm_arch7em))
272 /* Integer SIMD instructions, and extend-accumulate instructions.  */
273 #define TARGET_INT_SIMD \
274   (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
275 
276 /* Should MOVW/MOVT be used in preference to a constant pool.  */
277 #define TARGET_USE_MOVT \
278   (TARGET_HAVE_MOVT \
279    && (arm_disable_literal_pool \
280        || (!optimize_size && !current_tune->prefer_constant_pool)))
281 
282 /* Nonzero if this chip provides the DMB instruction.  */
283 #define TARGET_HAVE_DMB		(arm_arch6m || arm_arch7)
284 
285 /* Nonzero if this chip implements a memory barrier via CP15.  */
286 #define TARGET_HAVE_DMB_MCR	(arm_arch6 && ! TARGET_HAVE_DMB \
287 				 && ! TARGET_THUMB1)
288 
289 /* Nonzero if this chip implements a memory barrier instruction.  */
290 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
291 
292 /* Nonzero if this chip supports ldrex and strex */
293 #define TARGET_HAVE_LDREX        ((arm_arch6 && TARGET_ARM)	\
294 				  || arm_arch7			\
295 				  || (arm_arch8 && !arm_arch_notm))
296 
297 /* Nonzero if this chip supports LPAE.  */
298 #define TARGET_HAVE_LPAE (arm_arch_lpae)
299 
300 /* Nonzero if this chip supports ldrex{bh} and strex{bh}.  */
301 #define TARGET_HAVE_LDREXBH ((arm_arch6k && TARGET_ARM)		\
302 			     || arm_arch7			\
303 			     || (arm_arch8 && !arm_arch_notm))
304 
305 /* Nonzero if this chip supports ldrexd and strexd.  */
306 #define TARGET_HAVE_LDREXD (((arm_arch6k && TARGET_ARM) \
307 			     || arm_arch7) && arm_arch_notm)
308 
309 /* Nonzero if this chip supports load-acquire and store-release.  */
310 #define TARGET_HAVE_LDACQ	(TARGET_ARM_ARCH >= 8)
311 
312 /* Nonzero if this chip supports LDAEXD and STLEXD.  */
313 #define TARGET_HAVE_LDACQEXD	(TARGET_ARM_ARCH >= 8	\
314 				 && TARGET_32BIT	\
315 				 && arm_arch_notm)
316 
317 /* Nonzero if this chip provides the MOVW and MOVT instructions.  */
318 #define TARGET_HAVE_MOVT	(arm_arch_thumb2 || arm_arch8)
319 
320 /* Nonzero if this chip provides the CBZ and CBNZ instructions.  */
321 #define TARGET_HAVE_CBZ		(arm_arch_thumb2 || arm_arch8)
322 
323 /* Nonzero if this chip provides Armv8.1-M Mainline Security extensions
324    instructions (most are floating-point related).  */
325 #define TARGET_HAVE_FPCXT_CMSE	(arm_arch8_1m_main)
326 
327 #define TARGET_HAVE_MVE (arm_float_abi != ARM_FLOAT_ABI_SOFT \
328 			 && bitmap_bit_p (arm_active_target.isa, \
329 					  isa_bit_mve) \
330 			 && !TARGET_GENERAL_REGS_ONLY)
331 
332 #define TARGET_HAVE_MVE_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT \
333 			       && bitmap_bit_p (arm_active_target.isa, \
334 						isa_bit_mve_float) \
335 			       && !TARGET_GENERAL_REGS_ONLY)
336 
337 /* MVE have few common instructions as VFP, like VLDM alias VPOP, VLDR, VSTM
338    alia VPUSH, VSTR and VMOV, VMSR and VMRS.  In the same manner it updates few
339    registers such as FPCAR, FPCCR, FPDSCR, FPSCR, MVFR0, MVFR1 and MVFR2.  All
340    the VFP instructions, RTL patterns and register are guarded by
341    TARGET_HARD_FLOAT.  But the common instructions, RTL pattern and registers
342    between MVE and VFP will be guarded by the following macro TARGET_VFP_BASE
343    hereafter.  */
344 
345 #define TARGET_VFP_BASE (arm_float_abi != ARM_FLOAT_ABI_SOFT \
346 			 && bitmap_bit_p (arm_active_target.isa, \
347 					  isa_bit_vfp_base) \
348 			 && !TARGET_GENERAL_REGS_ONLY)
349 
350 /* Nonzero if integer division instructions supported.  */
351 #define TARGET_IDIV	((TARGET_ARM && arm_arch_arm_hwdiv)	\
352 			 || (TARGET_THUMB && arm_arch_thumb_hwdiv))
353 
354 /* Nonzero if disallow volatile memory access in IT block.  */
355 #define TARGET_NO_VOLATILE_CE		(arm_arch_no_volatile_ce)
356 
357 /* Nonzero if chip supports the Custom Datapath Extension.  */
358 #define TARGET_CDE	(arm_arch_cde && arm_arch8 && !arm_arch_notm)
359 
360 /* Should constant I be slplit for OP.  */
361 #define DONT_EARLY_SPLIT_CONSTANT(i, op) \
362 				((optimize >= 2) \
363 				 && can_create_pseudo_p () \
364 				 && !const_ok_for_op (i, op))
365 
366 /* True iff the full BPABI is being used.  If TARGET_BPABI is true,
367    then TARGET_AAPCS_BASED must be true -- but the converse does not
368    hold.  TARGET_BPABI implies the use of the BPABI runtime library,
369    etc., in addition to just the AAPCS calling conventions.  */
370 #ifndef TARGET_BPABI
371 #define TARGET_BPABI false
372 #endif
373 
374 /* Transform lane numbers on big endian targets. This is used to allow for the
375    endianness difference between NEON architectural lane numbers and those
376    used in RTL */
377 #define NEON_ENDIAN_LANE_N(mode, n)  \
378   (BYTES_BIG_ENDIAN ? GET_MODE_NUNITS (mode) - 1 - n : n)
379 
380 /* Support for a compile-time default CPU, et cetera.  The rules are:
381    --with-arch is ignored if -march or -mcpu are specified.
382    --with-cpu is ignored if -march or -mcpu are specified, and is overridden
383     by --with-arch.
384    --with-tune is ignored if -mtune or -mcpu are specified (but not affected
385      by -march).
386    --with-float is ignored if -mfloat-abi is specified.
387    --with-fpu is ignored if -mfpu is specified.
388    --with-abi is ignored if -mabi is specified.
389    --with-tls is ignored if -mtls-dialect is specified. */
390 #define OPTION_DEFAULT_SPECS \
391   {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
392   {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
393   {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
394   {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
395   {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
396   {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
397   {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"}, \
398   {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
399 
400 extern const struct arm_fpu_desc
401 {
402   const char *name;
403   enum isa_feature isa_bits[isa_num_bits];
404 } all_fpus[];
405 
406 /* Which floating point hardware to schedule for.  */
407 extern int arm_fpu_attr;
408 
409 #ifndef TARGET_DEFAULT_FLOAT_ABI
410 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
411 #endif
412 
413 #ifndef ARM_DEFAULT_ABI
414 #define ARM_DEFAULT_ABI ARM_ABI_APCS
415 #endif
416 
417 /* AAPCS based ABIs use short enums by default.  */
418 #ifndef ARM_DEFAULT_SHORT_ENUMS
419 #define ARM_DEFAULT_SHORT_ENUMS \
420   (TARGET_AAPCS_BASED && arm_abi != ARM_ABI_AAPCS_LINUX)
421 #endif
422 
423 /* Map each of the micro-architecture variants to their corresponding
424    major architecture revision.  */
425 
426 enum base_architecture
427 {
428   BASE_ARCH_0 = 0,
429   BASE_ARCH_2 = 2,
430   BASE_ARCH_3 = 3,
431   BASE_ARCH_3M = 3,
432   BASE_ARCH_4 = 4,
433   BASE_ARCH_4T = 4,
434   BASE_ARCH_5T = 5,
435   BASE_ARCH_5TE = 5,
436   BASE_ARCH_5TEJ = 5,
437   BASE_ARCH_6 = 6,
438   BASE_ARCH_6J = 6,
439   BASE_ARCH_6KZ = 6,
440   BASE_ARCH_6K = 6,
441   BASE_ARCH_6T2 = 6,
442   BASE_ARCH_6M = 6,
443   BASE_ARCH_6Z = 6,
444   BASE_ARCH_7 = 7,
445   BASE_ARCH_7A = 7,
446   BASE_ARCH_7R = 7,
447   BASE_ARCH_7M = 7,
448   BASE_ARCH_7EM = 7,
449   BASE_ARCH_8A = 8,
450   BASE_ARCH_8M_BASE = 8,
451   BASE_ARCH_8M_MAIN = 8,
452   BASE_ARCH_8R = 8
453 };
454 
455 /* The major revision number of the ARM Architecture implemented by the target.  */
456 extern enum base_architecture arm_base_arch;
457 
458 /* Nonzero if this chip supports the ARM Architecture 4 extensions.  */
459 extern int arm_arch4;
460 
461 /* Nonzero if this chip supports the ARM Architecture 4T extensions.  */
462 extern int arm_arch4t;
463 
464 /* Nonzero if this chip supports the ARM Architecture 5T extensions.  */
465 extern int arm_arch5t;
466 
467 /* Nonzero if this chip supports the ARM Architecture 5TE extensions.  */
468 extern int arm_arch5te;
469 
470 /* Nonzero if this chip supports the ARM Architecture 6 extensions.  */
471 extern int arm_arch6;
472 
473 /* Nonzero if this chip supports the ARM Architecture 6k extensions.  */
474 extern int arm_arch6k;
475 
476 /* Nonzero if instructions present in ARMv6-M can be used.  */
477 extern int arm_arch6m;
478 
479 /* Nonzero if this chip supports the ARM Architecture 7 extensions.  */
480 extern int arm_arch7;
481 
482 /* Nonzero if instructions not present in the 'M' profile can be used.  */
483 extern int arm_arch_notm;
484 
485 /* Nonzero if instructions present in ARMv7E-M can be used.  */
486 extern int arm_arch7em;
487 
488 /* Nonzero if this chip supports the ARM Architecture 8 extensions.  */
489 extern int arm_arch8;
490 
491 /* Nonzero if this chip supports the ARM Architecture 8.1 extensions.  */
492 extern int arm_arch8_1;
493 
494 /* Nonzero if this chip supports the ARM Architecture 8.2 extensions.  */
495 extern int arm_arch8_2;
496 
497 /* Nonzero if this chip supports the ARM Architecture 8.3 extensions.  */
498 extern int arm_arch8_3;
499 
500 /* Nonzero if this chip supports the ARM Architecture 8.4 extensions.  */
501 extern int arm_arch8_4;
502 
503 /* Nonzero if this chip supports the ARM Architecture 8.1-M Mainline
504    extensions.  */
505 extern int arm_arch8_1m_main;
506 
507 /* Nonzero if this chip supports the FP16 instructions extension of ARM
508    Architecture 8.2.  */
509 extern int arm_fp16_inst;
510 
511 /* Nonzero if this chip can benefit from load scheduling.  */
512 extern int arm_ld_sched;
513 
514 /* Nonzero if this chip is a StrongARM.  */
515 extern int arm_tune_strongarm;
516 
517 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology.  */
518 extern int arm_arch_iwmmxt;
519 
520 /* Nonzero if this chip supports Intel Wireless MMX2 technology.  */
521 extern int arm_arch_iwmmxt2;
522 
523 /* Nonzero if this chip is an XScale.  */
524 extern int arm_arch_xscale;
525 
526 /* Nonzero if tuning for XScale.  */
527 extern int arm_tune_xscale;
528 
529 /* Nonzero if tuning for stores via the write buffer.  */
530 extern int arm_tune_wbuf;
531 
532 /* Nonzero if tuning for Cortex-A9.  */
533 extern int arm_tune_cortex_a9;
534 
535 /* Nonzero if we should define __THUMB_INTERWORK__ in the
536    preprocessor.
537    XXX This is a bit of a hack, it's intended to help work around
538    problems in GLD which doesn't understand that armv5t code is
539    interworking clean.  */
540 extern int arm_cpp_interwork;
541 
542 /* Nonzero if chip supports Thumb 1.  */
543 extern int arm_arch_thumb1;
544 
545 /* Nonzero if chip supports Thumb 2.  */
546 extern int arm_arch_thumb2;
547 
548 /* Nonzero if chip supports integer division instruction in ARM mode.  */
549 extern int arm_arch_arm_hwdiv;
550 
551 /* Nonzero if chip supports integer division instruction in Thumb mode.  */
552 extern int arm_arch_thumb_hwdiv;
553 
554 /* Nonzero if chip disallows volatile memory access in IT block.  */
555 extern int arm_arch_no_volatile_ce;
556 
557 /* Nonzero if we shouldn't use literal pools.  */
558 #ifndef USED_FOR_TARGET
559 extern bool arm_disable_literal_pool;
560 #endif
561 
562 /* Nonzero if chip supports the ARMv8 CRC instructions.  */
563 extern int arm_arch_crc;
564 
565 /* Nonzero if chip supports the ARMv8-M Security Extensions.  */
566 extern int arm_arch_cmse;
567 
568 /* Nonzero if chip supports the I8MM instructions.  */
569 extern int arm_arch_i8mm;
570 
571 /* Nonzero if chip supports the BFloat16 instructions.  */
572 extern int arm_arch_bf16;
573 
574 /* Nonzero if chip supports the Custom Datapath Extension.  */
575 extern int arm_arch_cde;
576 extern int arm_arch_cde_coproc;
577 extern const int arm_arch_cde_coproc_bits[];
578 #define ARM_CDE_CONST_COPROC	7
579 #define ARM_CCDE_CONST_1	((1 << 13) - 1)
580 #define ARM_CCDE_CONST_2	((1 << 9 ) - 1)
581 #define ARM_CCDE_CONST_3	((1 << 6 ) - 1)
582 #define ARM_VCDE_CONST_1	((1 << 11) - 1)
583 #define ARM_VCDE_CONST_2	((1 << 6 ) - 1)
584 #define ARM_VCDE_CONST_3	((1 << 3 ) - 1)
585 #define ARM_MVE_CDE_CONST_1	((1 << 12) - 1)
586 #define ARM_MVE_CDE_CONST_2	((1 << 7 ) - 1)
587 #define ARM_MVE_CDE_CONST_3	((1 << 4 ) - 1)
588 
589 #ifndef TARGET_DEFAULT
590 #define TARGET_DEFAULT  (MASK_APCS_FRAME)
591 #endif
592 
593 /* Nonzero if PIC code requires explicit qualifiers to generate
594    PLT and GOT relocs rather than the assembler doing so implicitly.
595    Subtargets can override these if required.  */
596 #ifndef NEED_GOT_RELOC
597 #define NEED_GOT_RELOC	0
598 #endif
599 #ifndef NEED_PLT_RELOC
600 #define NEED_PLT_RELOC	0
601 #endif
602 
603 #ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
604 #define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
605 #endif
606 
607 /* Nonzero if we need to refer to the GOT with a PC-relative
608    offset.  In other words, generate
609 
610    .word	_GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
611 
612    rather than
613 
614    .word	_GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
615 
616    The default is true, which matches NetBSD.  Subtargets can
617    override this if required.  */
618 #ifndef GOT_PCREL
619 #define GOT_PCREL   1
620 #endif
621 
622 /* Target machine storage Layout.  */
623 
624 
625 /* Define this macro if it is advisable to hold scalars in registers
626    in a wider mode than that declared by the program.  In such cases,
627    the value is constrained to be within the bounds of the declared
628    type, but kept valid in the wider mode.  The signedness of the
629    extension may differ from that of the type.  */
630 
631 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
632   if (GET_MODE_CLASS (MODE) == MODE_INT		\
633       && GET_MODE_SIZE (MODE) < 4)      	\
634     {						\
635       (MODE) = SImode;				\
636     }
637 
638 /* Define this if most significant bit is lowest numbered
639    in instructions that operate on numbered bit-fields.  */
640 #define BITS_BIG_ENDIAN  0
641 
642 /* Define this if most significant byte of a word is the lowest numbered.
643    Most ARM processors are run in little endian mode, so that is the default.
644    If you want to have it run-time selectable, change the definition in a
645    cover file to be TARGET_BIG_ENDIAN.  */
646 #define BYTES_BIG_ENDIAN  (TARGET_BIG_END != 0)
647 
648 /* Define this if most significant word of a multiword number is the lowest
649    numbered.  */
650 #define WORDS_BIG_ENDIAN  (BYTES_BIG_ENDIAN)
651 
652 #define UNITS_PER_WORD	4
653 
654 /* True if natural alignment is used for doubleword types.  */
655 #define ARM_DOUBLEWORD_ALIGN	TARGET_AAPCS_BASED
656 
657 #define DOUBLEWORD_ALIGNMENT 64
658 
659 #define PARM_BOUNDARY  	32
660 
661 #define STACK_BOUNDARY  (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
662 
663 #define PREFERRED_STACK_BOUNDARY \
664     (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
665 
666 #define FUNCTION_BOUNDARY_P(flags)  (TARGET_THUMB_P (flags) ? 16 : 32)
667 #define FUNCTION_BOUNDARY           (FUNCTION_BOUNDARY_P (target_flags))
668 
669 /* The lowest bit is used to indicate Thumb-mode functions, so the
670    vbit must go into the delta field of pointers to member
671    functions.  */
672 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
673 
674 #define EMPTY_FIELD_BOUNDARY  32
675 
676 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
677 
678 #define MALLOC_ABI_ALIGNMENT  BIGGEST_ALIGNMENT
679 
680 /* XXX Blah -- this macro is used directly by libobjc.  Since it
681    supports no vector modes, cut out the complexity and fall back
682    on BIGGEST_FIELD_ALIGNMENT.  */
683 #ifdef IN_TARGET_LIBS
684 #define BIGGEST_FIELD_ALIGNMENT 64
685 #endif
686 
687 /* Align definitions of arrays, unions and structures so that
688    initializations and copies can be made more efficient.  This is not
689    ABI-changing, so it only affects places where we can see the
690    definition. Increasing the alignment tends to introduce padding,
691    so don't do this when optimizing for size/conserving stack space. */
692 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN)				\
693   (((COND) && ((ALIGN) < BITS_PER_WORD)					\
694     && (TREE_CODE (EXP) == ARRAY_TYPE					\
695 	|| TREE_CODE (EXP) == UNION_TYPE				\
696 	|| TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
697 
698 /* Align global data. */
699 #define DATA_ALIGNMENT(EXP, ALIGN)			\
700   ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
701 
702 /* Similarly, make sure that objects on the stack are sensibly aligned.  */
703 #define LOCAL_ALIGNMENT(EXP, ALIGN)				\
704   ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
705 
706 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
707    value set in previous versions of this toolchain was 8, which produces more
708    compact structures.  The command line option -mstructure_size_boundary=<n>
709    can be used to change this value.  For compatibility with the ARM SDK
710    however the value should be left at 32.  ARM SDT Reference Manual (ARM DUI
711    0020D) page 2-20 says "Structures are aligned on word boundaries".
712    The AAPCS specifies a value of 8.  */
713 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
714 
715 /* This is the value used to initialize arm_structure_size_boundary.  If a
716    particular arm target wants to change the default value it should change
717    the definition of this macro, not STRUCTURE_SIZE_BOUNDARY.  See netbsd.h
718    for an example of this.  */
719 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
720 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
721 #endif
722 
723 /* Nonzero if move instructions will actually fail to work
724    when given unaligned data.  */
725 #define STRICT_ALIGNMENT 1
726 
727 /* wchar_t is unsigned under the AAPCS.  */
728 #ifndef WCHAR_TYPE
729 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
730 
731 #define WCHAR_TYPE_SIZE BITS_PER_WORD
732 #endif
733 
734 /* Sized for fixed-point types.  */
735 
736 #define SHORT_FRACT_TYPE_SIZE 8
737 #define FRACT_TYPE_SIZE 16
738 #define LONG_FRACT_TYPE_SIZE 32
739 #define LONG_LONG_FRACT_TYPE_SIZE 64
740 
741 #define SHORT_ACCUM_TYPE_SIZE 16
742 #define ACCUM_TYPE_SIZE 32
743 #define LONG_ACCUM_TYPE_SIZE 64
744 #define LONG_LONG_ACCUM_TYPE_SIZE 64
745 
746 #define MAX_FIXED_MODE_SIZE 64
747 
748 #ifndef SIZE_TYPE
749 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
750 #endif
751 
752 #ifndef PTRDIFF_TYPE
753 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
754 #endif
755 
756 /* AAPCS requires that structure alignment is affected by bitfields.  */
757 #ifndef PCC_BITFIELD_TYPE_MATTERS
758 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
759 #endif
760 
761 /* The maximum size of the sync library functions supported.  */
762 #ifndef MAX_SYNC_LIBFUNC_SIZE
763 #define MAX_SYNC_LIBFUNC_SIZE (2 * UNITS_PER_WORD)
764 #endif
765 
766 
767 /* Standard register usage.  */
768 
769 /* Register allocation in ARM Procedure Call Standard
770    (S - saved over call, F - Frame-related).
771 
772 	r0	   *	argument word/integer result
773 	r1-r3		argument word
774 
775 	r4-r8	     S	register variable
776 	r9	     S	(rfp) register variable (real frame pointer)
777 
778 	r10  	   F S	(sl) stack limit (used by -mapcs-stack-check)
779 	r11 	   F S	(fp) argument pointer
780 	r12		(ip) temp workspace
781 	r13  	   F S	(sp) lower end of current stack frame
782 	r14		(lr) link address/workspace
783 	r15	   F	(pc) program counter
784 
785 	cc		This is NOT a real register, but is used internally
786 	                to represent things that use or set the condition
787 			codes.
788 	sfp             This isn't either.  It is used during rtl generation
789 	                since the offset between the frame pointer and the
790 			auto's isn't known until after register allocation.
791 	afp		Nor this, we only need this because of non-local
792 	                goto.  Without it fp appears to be used and the
793 			elimination code won't get rid of sfp.  It tracks
794 			fp exactly at all times.
795 	apsrq		Nor this, it is used to track operations on the Q bit
796 			of APSR by ACLE saturating intrinsics.
797 	apsrge		Nor this, it is used to track operations on the GE bits
798 			of APSR by ACLE SIMD32 intrinsics
799 
800    *: See TARGET_CONDITIONAL_REGISTER_USAGE  */
801 
802 /*	s0-s15		VFP scratch (aka d0-d7).
803 	s16-s31	      S	VFP variable (aka d8-d15).
804 	vfpcc		Not a real register.  Represents the VFP condition
805 			code flags.
806 	vpr		Used to represent MVE VPR predication.  */
807 
808 /* The stack backtrace structure is as follows:
809   fp points to here:  |  save code pointer  |      [fp]
810                       |  return link value  |      [fp, #-4]
811                       |  return sp value    |      [fp, #-8]
812                       |  return fp value    |      [fp, #-12]
813                      [|  saved r10 value    |]
814                      [|  saved r9 value     |]
815                      [|  saved r8 value     |]
816                      [|  saved r7 value     |]
817                      [|  saved r6 value     |]
818                      [|  saved r5 value     |]
819                      [|  saved r4 value     |]
820                      [|  saved r3 value     |]
821                      [|  saved r2 value     |]
822                      [|  saved r1 value     |]
823                      [|  saved r0 value     |]
824   r0-r3 are not normally saved in a C function.  */
825 
826 /* 1 for registers that have pervasive standard uses
827    and are not available for the register allocator.  */
828 #define FIXED_REGISTERS 	\
829 {				\
830   /* Core regs.  */		\
831   0,0,0,0,0,0,0,0,		\
832   0,0,0,0,0,1,0,1,		\
833   /* VFP regs.  */		\
834   1,1,1,1,1,1,1,1,		\
835   1,1,1,1,1,1,1,1,		\
836   1,1,1,1,1,1,1,1,		\
837   1,1,1,1,1,1,1,1,		\
838   1,1,1,1,1,1,1,1,		\
839   1,1,1,1,1,1,1,1,		\
840   1,1,1,1,1,1,1,1,		\
841   1,1,1,1,1,1,1,1,		\
842   /* IWMMXT regs.  */		\
843   1,1,1,1,1,1,1,1,		\
844   1,1,1,1,1,1,1,1,		\
845   1,1,1,1,			\
846   /* Specials.  */		\
847   1,1,1,1,1,1,1			\
848 }
849 
850 /* 1 for registers not available across function calls.
851    These must include the FIXED_REGISTERS and also any
852    registers that can be used without being saved.
853    The latter must include the registers where values are returned
854    and the register where structure-value addresses are passed.
855    Aside from that, you can include as many other registers as you like.
856    The CC is not preserved over function calls on the ARM 6, so it is
857    easier to assume this for all.  SFP is preserved, since FP is.  */
858 #define CALL_USED_REGISTERS	\
859 {				\
860   /* Core regs.  */		\
861   1,1,1,1,0,0,0,0,		\
862   0,0,0,0,1,1,1,1,		\
863   /* VFP Regs.  */		\
864   1,1,1,1,1,1,1,1,		\
865   1,1,1,1,1,1,1,1,		\
866   1,1,1,1,1,1,1,1,		\
867   1,1,1,1,1,1,1,1,		\
868   1,1,1,1,1,1,1,1,		\
869   1,1,1,1,1,1,1,1,		\
870   1,1,1,1,1,1,1,1,		\
871   1,1,1,1,1,1,1,1,		\
872   /* IWMMXT regs.  */		\
873   1,1,1,1,1,1,1,1,		\
874   1,1,1,1,1,1,1,1,		\
875   1,1,1,1,			\
876   /* Specials.  */		\
877   1,1,1,1,1,1,1			\
878 }
879 
880 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
881 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
882 #endif
883 
884 /* These are a couple of extensions to the formats accepted
885    by asm_fprintf:
886      %@ prints out ASM_COMMENT_START
887      %r prints out REGISTER_PREFIX reg_names[arg]  */
888 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P)		\
889   case '@':						\
890     fputs (ASM_COMMENT_START, FILE);			\
891     break;						\
892 							\
893   case 'r':						\
894     fputs (REGISTER_PREFIX, FILE);			\
895     fputs (reg_names [va_arg (ARGS, int)], FILE);	\
896     break;
897 
898 /* Round X up to the nearest word.  */
899 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
900 
901 /* Convert fron bytes to ints.  */
902 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
903 
904 /* The number of (integer) registers required to hold a quantity of type MODE.
905    Also used for VFP registers.  */
906 #define ARM_NUM_REGS(MODE)				\
907   ARM_NUM_INTS (GET_MODE_SIZE (MODE))
908 
909 /* The number of (integer) registers required to hold a quantity of TYPE MODE.  */
910 #define ARM_NUM_REGS2(MODE, TYPE)                   \
911   ARM_NUM_INTS ((MODE) == BLKmode ? 		\
912   int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
913 
914 /* The number of (integer) argument register available.  */
915 #define NUM_ARG_REGS		4
916 
917 /* And similarly for the VFP.  */
918 #define NUM_VFP_ARG_REGS	16
919 
920 /* Return the register number of the N'th (integer) argument.  */
921 #define ARG_REGISTER(N) 	(N - 1)
922 
923 /* Specify the registers used for certain standard purposes.
924    The values of these macros are register numbers.  */
925 
926 /* The number of the last argument register.  */
927 #define LAST_ARG_REGNUM 	ARG_REGISTER (NUM_ARG_REGS)
928 
929 /* The numbers of the Thumb register ranges.  */
930 #define FIRST_LO_REGNUM  	0
931 #define LAST_LO_REGNUM  	7
932 #define FIRST_HI_REGNUM		8
933 #define LAST_HI_REGNUM		11
934 
935 /* Overridden by config/arm/bpabi.h.  */
936 #ifndef ARM_UNWIND_INFO
937 #define ARM_UNWIND_INFO  0
938 #endif
939 
940 /* Use r0 and r1 to pass exception handling information.  */
941 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
942 
943 /* The register that holds the return address in exception handlers.  */
944 #define ARM_EH_STACKADJ_REGNUM	2
945 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
946 
947 #ifndef ARM_TARGET2_DWARF_FORMAT
948 #define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel
949 #endif
950 
951 /* ttype entries (the only interesting data references used)
952    use TARGET2 relocations.  */
953 #define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
954   (((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \
955 			       : DW_EH_PE_absptr)
956 
957 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
958    as an invisible last argument (possible since varargs don't exist in
959    Pascal), so the following is not true.  */
960 #define STATIC_CHAIN_REGNUM	12
961 
962 /* r9 is the FDPIC register (base register for GOT and FUNCDESC accesses).  */
963 #define FDPIC_REGNUM		9
964 
965 /* Define this to be where the real frame pointer is if it is not possible to
966    work out the offset between the frame pointer and the automatic variables
967    until after register allocation has taken place.  FRAME_POINTER_REGNUM
968    should point to a special register that we will make sure is eliminated.
969 
970    For the Thumb we have another problem.  The TPCS defines the frame pointer
971    as r11, and GCC believes that it is always possible to use the frame pointer
972    as base register for addressing purposes.  (See comments in
973    find_reloads_address()).  But - the Thumb does not allow high registers,
974    including r11, to be used as base address registers.  Hence our problem.
975 
976    The solution used here, and in the old thumb port is to use r7 instead of
977    r11 as the hard frame pointer and to have special code to generate
978    backtrace structures on the stack (if required to do so via a command line
979    option) using r11.  This is the only 'user visible' use of r11 as a frame
980    pointer.  */
981 #define ARM_HARD_FRAME_POINTER_REGNUM	11
982 #define THUMB_HARD_FRAME_POINTER_REGNUM	 7
983 
984 #define HARD_FRAME_POINTER_REGNUM		\
985   (TARGET_ARM					\
986    ? ARM_HARD_FRAME_POINTER_REGNUM		\
987    : THUMB_HARD_FRAME_POINTER_REGNUM)
988 
989 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
990 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
991 
992 #define FP_REGNUM	                HARD_FRAME_POINTER_REGNUM
993 
994 /* Register to use for pushing function arguments.  */
995 #define STACK_POINTER_REGNUM	SP_REGNUM
996 
997 #define FIRST_IWMMXT_REGNUM	(LAST_HI_VFP_REGNUM + 1)
998 #define LAST_IWMMXT_REGNUM	(FIRST_IWMMXT_REGNUM + 15)
999 
1000 /* Need to sync with WCGR in iwmmxt.md.  */
1001 #define FIRST_IWMMXT_GR_REGNUM	(LAST_IWMMXT_REGNUM + 1)
1002 #define LAST_IWMMXT_GR_REGNUM	(FIRST_IWMMXT_GR_REGNUM + 3)
1003 
1004 #define IS_IWMMXT_REGNUM(REGNUM) \
1005   (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
1006 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
1007   (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
1008 
1009 /* Base register for access to local variables of the function.  */
1010 #define FRAME_POINTER_REGNUM	102
1011 
1012 /* Base register for access to arguments of the function.  */
1013 #define ARG_POINTER_REGNUM	103
1014 
1015 #define FIRST_VFP_REGNUM	16
1016 #define D7_VFP_REGNUM		(FIRST_VFP_REGNUM + 15)
1017 #define LAST_VFP_REGNUM	\
1018   (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
1019 
1020 #define IS_VFP_REGNUM(REGNUM) \
1021   (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
1022 
1023 /* VFP registers are split into two types: those defined by VFP versions < 3
1024    have D registers overlaid on consecutive pairs of S registers. VFP version 3
1025    defines 16 new D registers (d16-d31) which, for simplicity and correctness
1026    in various parts of the backend, we implement as "fake" single-precision
1027    registers (which would be S32-S63, but cannot be used in that way).  The
1028    following macros define these ranges of registers.  */
1029 #define LAST_LO_VFP_REGNUM	(FIRST_VFP_REGNUM + 31)
1030 #define FIRST_HI_VFP_REGNUM	(LAST_LO_VFP_REGNUM + 1)
1031 #define LAST_HI_VFP_REGNUM	(FIRST_HI_VFP_REGNUM + 31)
1032 
1033 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
1034   ((REGNUM) <= LAST_LO_VFP_REGNUM)
1035 
1036 /* DFmode values are only valid in even register pairs.  */
1037 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
1038   ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
1039 
1040 /* Neon Quad values must start at a multiple of four registers.  */
1041 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
1042   ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
1043 
1044 /* Neon structures of vectors must be in even register pairs and there
1045    must be enough registers available.  Because of various patterns
1046    requiring quad registers, we require them to start at a multiple of
1047    four.  */
1048 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
1049   ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
1050    && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
1051 
1052 /* The number of hard registers is 16 ARM + 1 CC + 1 SFP + 1 AFP
1053    + 1 APSRQ + 1 APSRGE + 1 VPR.  */
1054 /* Intel Wireless MMX Technology registers add 16 + 4 more.  */
1055 /* VFP (VFP3) adds 32 (64) + 1 VFPCC.  */
1056 #define FIRST_PSEUDO_REGISTER   107
1057 
1058 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
1059 
1060 /* Value should be nonzero if functions must have frame pointers.
1061    Zero means the frame pointer need not be set up (and parms may be accessed
1062    via the stack pointer) in functions that seem suitable.
1063    If we have to have a frame pointer we might as well make use of it.
1064    APCS says that the frame pointer does not need to be pushed in leaf
1065    functions, or simple tail call functions.  */
1066 
1067 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1068 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1069 #endif
1070 
1071 #define VALID_IWMMXT_REG_MODE(MODE) \
1072  (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
1073 
1074 /* Modes valid for Neon D registers.  */
1075 #define VALID_NEON_DREG_MODE(MODE) \
1076   ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1077    || (MODE) == V4HFmode || (MODE) == V2SFmode || (MODE) == DImode \
1078    || (MODE) == V4BFmode)
1079 
1080 /* Modes valid for Neon Q registers.  */
1081 #define VALID_NEON_QREG_MODE(MODE) \
1082   ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1083    || (MODE) == V8HFmode || (MODE) == V4SFmode || (MODE) == V2DImode \
1084    || (MODE) == V8BFmode)
1085 
1086 #define VALID_MVE_MODE(MODE) \
1087   ((MODE) == V2DImode ||(MODE) == V4SImode || (MODE) == V8HImode \
1088    || (MODE) == V16QImode || (MODE) == V8HFmode || (MODE) == V4SFmode \
1089    || (MODE) == V2DFmode)
1090 
1091 #define VALID_MVE_SI_MODE(MODE) \
1092   ((MODE) == V2DImode ||(MODE) == V4SImode || (MODE) == V8HImode \
1093    || (MODE) == V16QImode)
1094 
1095 #define VALID_MVE_SF_MODE(MODE) \
1096   ((MODE) == V8HFmode || (MODE) == V4SFmode || (MODE) == V2DFmode)
1097 
1098 /* Structure modes valid for Neon registers.  */
1099 #define VALID_NEON_STRUCT_MODE(MODE) \
1100   ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1101    || (MODE) == CImode || (MODE) == XImode)
1102 
1103 #define VALID_MVE_STRUCT_MODE(MODE) \
1104   ((MODE) == TImode || (MODE) == OImode || (MODE) == XImode)
1105 
1106 /* The register numbers in sequence, for passing to arm_gen_load_multiple.  */
1107 extern int arm_regs_in_sequence[];
1108 
1109 /* The order in which register should be allocated.  It is good to use ip
1110    since no saving is required (though calls clobber it) and it never contains
1111    function parameters.  It is quite good to use lr since other calls may
1112    clobber it anyway.  Allocate r0 through r3 in reverse order since r3 is
1113    least likely to contain a function parameter; in addition results are
1114    returned in r0.
1115    For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1116    then D8-D15.  The reason for doing this is to attempt to reduce register
1117    pressure when both single- and double-precision registers are used in a
1118    function.  */
1119 
1120 #define VREG(X)  (FIRST_VFP_REGNUM + (X))
1121 #define WREG(X)  (FIRST_IWMMXT_REGNUM + (X))
1122 #define WGREG(X) (FIRST_IWMMXT_GR_REGNUM + (X))
1123 
1124 #define REG_ALLOC_ORDER				\
1125 {						\
1126   /* General registers.  */			\
1127   3,  2,  1,  0,  12, 14,  4,  5,		\
1128   6,  7,  8,  9,  10, 11,			\
1129   /* High VFP registers.  */			\
1130   VREG(32), VREG(33), VREG(34), VREG(35),	\
1131   VREG(36), VREG(37), VREG(38), VREG(39),	\
1132   VREG(40), VREG(41), VREG(42), VREG(43),	\
1133   VREG(44), VREG(45), VREG(46), VREG(47),	\
1134   VREG(48), VREG(49), VREG(50), VREG(51),	\
1135   VREG(52), VREG(53), VREG(54), VREG(55),	\
1136   VREG(56), VREG(57), VREG(58), VREG(59),	\
1137   VREG(60), VREG(61), VREG(62), VREG(63),	\
1138   /* VFP argument registers.  */		\
1139   VREG(15), VREG(14), VREG(13), VREG(12),	\
1140   VREG(11), VREG(10), VREG(9),  VREG(8),	\
1141   VREG(7),  VREG(6),  VREG(5),  VREG(4),	\
1142   VREG(3),  VREG(2),  VREG(1),  VREG(0),	\
1143   /* VFP call-saved registers.  */		\
1144   VREG(16), VREG(17), VREG(18), VREG(19),	\
1145   VREG(20), VREG(21), VREG(22), VREG(23),	\
1146   VREG(24), VREG(25), VREG(26), VREG(27),	\
1147   VREG(28), VREG(29), VREG(30), VREG(31),	\
1148   /* IWMMX registers.  */			\
1149   WREG(0),  WREG(1),  WREG(2),  WREG(3),	\
1150   WREG(4),  WREG(5),  WREG(6),  WREG(7),	\
1151   WREG(8),  WREG(9),  WREG(10), WREG(11),	\
1152   WREG(12), WREG(13), WREG(14), WREG(15),	\
1153   WGREG(0), WGREG(1), WGREG(2), WGREG(3),	\
1154   /* Registers not for general use.  */		\
1155   CC_REGNUM, VFPCC_REGNUM,			\
1156   FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM,	\
1157   SP_REGNUM, PC_REGNUM, APSRQ_REGNUM,		\
1158   APSRGE_REGNUM, VPR_REGNUM			\
1159 }
1160 
1161 #define IS_VPR_REGNUM(REGNUM) \
1162   ((REGNUM) == VPR_REGNUM)
1163 
1164 /* Use different register alloc ordering for Thumb.  */
1165 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1166 
1167 /* Tell IRA to use the order we define when optimizing for size.  */
1168 #define HONOR_REG_ALLOC_ORDER optimize_function_for_size_p (cfun)
1169 
1170 /* Interrupt functions can only use registers that have already been
1171    saved by the prologue, even if they would normally be
1172    call-clobbered.  */
1173 #define HARD_REGNO_RENAME_OK(SRC, DST)					\
1174 	(! IS_INTERRUPT (cfun->machine->func_type) ||			\
1175 	 df_regs_ever_live_p (DST))
1176 
1177 /* Register and constant classes.  */
1178 
1179 /* Register classes.  */
1180 enum reg_class
1181 {
1182   NO_REGS,
1183   LO_REGS,
1184   STACK_REG,
1185   BASE_REGS,
1186   HI_REGS,
1187   CALLER_SAVE_REGS,
1188   EVEN_REG,
1189   GENERAL_REGS,
1190   CORE_REGS,
1191   VFP_D0_D7_REGS,
1192   VFP_LO_REGS,
1193   VFP_HI_REGS,
1194   VFP_REGS,
1195   IWMMXT_REGS,
1196   IWMMXT_GR_REGS,
1197   CC_REG,
1198   VFPCC_REG,
1199   SFP_REG,
1200   AFP_REG,
1201   VPR_REG,
1202   ALL_REGS,
1203   LIM_REG_CLASSES
1204 };
1205 
1206 #define N_REG_CLASSES  (int) LIM_REG_CLASSES
1207 
1208 /* Give names of register classes as strings for dump file.  */
1209 #define REG_CLASS_NAMES \
1210 {			\
1211   "NO_REGS",		\
1212   "LO_REGS",		\
1213   "STACK_REG",		\
1214   "BASE_REGS",		\
1215   "HI_REGS",		\
1216   "CALLER_SAVE_REGS",	\
1217   "EVEN_REG",		\
1218   "GENERAL_REGS",	\
1219   "CORE_REGS",		\
1220   "VFP_D0_D7_REGS",	\
1221   "VFP_LO_REGS",	\
1222   "VFP_HI_REGS",	\
1223   "VFP_REGS",		\
1224   "IWMMXT_REGS",	\
1225   "IWMMXT_GR_REGS",	\
1226   "CC_REG",		\
1227   "VFPCC_REG",		\
1228   "SFP_REG",		\
1229   "AFP_REG",		\
1230   "VPR_REG",		\
1231   "ALL_REGS"		\
1232 }
1233 
1234 /* Define which registers fit in which classes.
1235    This is an initializer for a vector of HARD_REG_SET
1236    of length N_REG_CLASSES.  */
1237 #define REG_CLASS_CONTENTS						\
1238 {									\
1239   { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS  */	\
1240   { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */	\
1241   { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */	\
1242   { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */	\
1243   { 0x00005F00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */	\
1244   { 0x0000100F, 0x00000000, 0x00000000, 0x00000000 }, /* CALLER_SAVE_REGS */ \
1245   { 0x00005555, 0x00000000, 0x00000000, 0x00000000 }, /* EVEN_REGS.  */ \
1246   { 0x00005FFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1247   { 0x00007FFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */	\
1248   { 0xFFFF0000, 0x00000000, 0x00000000, 0x00000000 }, /* VFP_D0_D7_REGS  */ \
1249   { 0xFFFF0000, 0x0000FFFF, 0x00000000, 0x00000000 }, /* VFP_LO_REGS  */ \
1250   { 0x00000000, 0xFFFF0000, 0x0000FFFF, 0x00000000 }, /* VFP_HI_REGS  */ \
1251   { 0xFFFF0000, 0xFFFFFFFF, 0x0000FFFF, 0x00000000 }, /* VFP_REGS  */	\
1252   { 0x00000000, 0x00000000, 0xFFFF0000, 0x00000000 }, /* IWMMXT_REGS */	\
1253   { 0x00000000, 0x00000000, 0x00000000, 0x0000000F }, /* IWMMXT_GR_REGS */ \
1254   { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, /* CC_REG */	\
1255   { 0x00000000, 0x00000000, 0x00000000, 0x00000020 }, /* VFPCC_REG */	\
1256   { 0x00000000, 0x00000000, 0x00000000, 0x00000040 }, /* SFP_REG */	\
1257   { 0x00000000, 0x00000000, 0x00000000, 0x00000080 }, /* AFP_REG */	\
1258   { 0x00000000, 0x00000000, 0x00000000, 0x00000400 }, /* VPR_REG.  */	\
1259   { 0xFFFF7FFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0000000F }  /* ALL_REGS.  */	\
1260 }
1261 
1262 #define FP_SYSREGS \
1263   DEF_FP_SYSREG (FPSCR) \
1264   DEF_FP_SYSREG (FPSCR_nzcvqc) \
1265   DEF_FP_SYSREG (VPR) \
1266   DEF_FP_SYSREG (P0) \
1267   DEF_FP_SYSREG (FPCXTNS) \
1268   DEF_FP_SYSREG (FPCXTS)
1269 
1270 #define DEF_FP_SYSREG(reg) reg ## _ENUM,
1271 enum vfp_sysregs_encoding {
1272   FP_SYSREGS
1273   NB_FP_SYSREGS
1274 };
1275 #undef DEF_FP_SYSREG
1276 extern const char *fp_sysreg_names[NB_FP_SYSREGS];
1277 
1278 /* Any of the VFP register classes.  */
1279 #define IS_VFP_CLASS(X) \
1280   ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1281    || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1282 
1283 /* The same information, inverted:
1284    Return the class number of the smallest class containing
1285    reg number REGNO.  This could be a conditional expression
1286    or could index an array.  */
1287 #define REGNO_REG_CLASS(REGNO)  arm_regno_class (REGNO)
1288 
1289 /* The class value for index registers, and the one for base regs.  */
1290 #define INDEX_REG_CLASS  (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1291 #define BASE_REG_CLASS   (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1292 
1293 /* For the Thumb the high registers cannot be used as base registers
1294    when addressing quantities in QI or HI mode; if we don't know the
1295    mode, then we must be conservative. For MVE we need to load from
1296    memory to low regs based on given modes i.e [Rn], Rn <= LO_REGS.  */
1297 #define MODE_BASE_REG_CLASS(MODE)				\
1298    (TARGET_HAVE_MVE ? arm_mode_base_reg_class (MODE)		\
1299    :(TARGET_32BIT ? CORE_REGS					\
1300    : GET_MODE_SIZE (MODE) >= 4 ? BASE_REGS			\
1301    : LO_REGS))
1302 
1303 /* For Thumb we cannot support SP+reg addressing, so we return LO_REGS
1304    instead of BASE_REGS.  */
1305 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1306 
1307 /* When this hook returns true for MODE, the compiler allows
1308    registers explicitly used in the rtl to be used as spill registers
1309    but prevents the compiler from extending the lifetime of these
1310    registers.  */
1311 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1312   arm_small_register_classes_for_mode_p
1313 
1314 /* Must leave BASE_REGS reloads alone */
1315 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1316   (lra_in_progress ? NO_REGS						\
1317    : ((CLASS) != LO_REGS && (CLASS) != BASE_REGS			\
1318       ? ((true_regnum (X) == -1 ? LO_REGS				\
1319          : (true_regnum (X) + hard_regno_nregs (0, MODE) > 8) ? LO_REGS	\
1320          : NO_REGS)) 							\
1321       : NO_REGS))
1322 
1323 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1324   (lra_in_progress ? NO_REGS						\
1325    : (CLASS) != LO_REGS && (CLASS) != BASE_REGS				\
1326       ? ((true_regnum (X) == -1 ? LO_REGS				\
1327          : (true_regnum (X) + hard_regno_nregs (0, MODE) > 8) ? LO_REGS	\
1328          : NO_REGS)) 							\
1329       : NO_REGS)
1330 
1331 /* Return the register class of a scratch register needed to copy IN into
1332    or out of a register in CLASS in MODE.  If it can be done directly,
1333    NO_REGS is returned.  */
1334 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1335   /* Restrict which direct reloads are allowed for VFP/iWMMXt regs.  */ \
1336   ((TARGET_HARD_FLOAT && IS_VFP_CLASS (CLASS))			\
1337    ? coproc_secondary_reload_class (MODE, X, FALSE)		\
1338    : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS)			\
1339    ? coproc_secondary_reload_class (MODE, X, TRUE)		\
1340    : TARGET_32BIT						\
1341    ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1342     ? GENERAL_REGS : NO_REGS)					\
1343    : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1344 
1345 /* If we need to load shorts byte-at-a-time, then we need a scratch.  */
1346 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)		\
1347   /* Restrict which direct reloads are allowed for VFP/iWMMXt regs.  */ \
1348   ((TARGET_HARD_FLOAT && IS_VFP_CLASS (CLASS))			\
1349     ? coproc_secondary_reload_class (MODE, X, FALSE) :		\
1350     (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ?			\
1351     coproc_secondary_reload_class (MODE, X, TRUE) :		\
1352    (TARGET_32BIT ?						\
1353     (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS)	\
1354      && CONSTANT_P (X))						\
1355     ? GENERAL_REGS :						\
1356     (((MODE) == HImode && ! arm_arch4				\
1357       && (MEM_P (X)					\
1358 	  || ((REG_P (X) || GET_CODE (X) == SUBREG)	\
1359 	      && true_regnum (X) == -1)))			\
1360      ? GENERAL_REGS : NO_REGS)					\
1361     : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1362 
1363 /* Return the maximum number of consecutive registers
1364    needed to represent mode MODE in a register of class CLASS.
1365    ARM regs are UNITS_PER_WORD bits.
1366    FIXME: Is this true for iWMMX?  */
1367 #define CLASS_MAX_NREGS(CLASS, MODE)  \
1368   (ARM_NUM_REGS (MODE))
1369 
1370 /* If defined, gives a class of registers that cannot be used as the
1371    operand of a SUBREG that changes the mode of the object illegally.  */
1372 
1373 /* Stack layout; function entry, exit and calling.  */
1374 
1375 /* Define this if pushing a word on the stack
1376    makes the stack pointer a smaller address.  */
1377 #define STACK_GROWS_DOWNWARD  1
1378 
1379 /* Define this to nonzero if the nominal address of the stack frame
1380    is at the high-address end of the local variables;
1381    that is, each additional local variable allocated
1382    goes at a more negative offset in the frame.  */
1383 #define FRAME_GROWS_DOWNWARD 1
1384 
1385 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1386    When present, it is one word in size, and sits at the top of the frame,
1387    between the soft frame pointer and either r7 or r11.
1388 
1389    We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1390    and only then if some outgoing arguments are passed on the stack.  It would
1391    be tempting to also check whether the stack arguments are passed by indirect
1392    calls, but there seems to be no reason in principle why a post-reload pass
1393    couldn't convert a direct call into an indirect one.  */
1394 #define CALLER_INTERWORKING_SLOT_SIZE			\
1395   (TARGET_CALLER_INTERWORKING				\
1396    && maybe_ne (crtl->outgoing_args_size, 0)		\
1397    ? UNITS_PER_WORD : 0)
1398 
1399 /* If we generate an insn to push BYTES bytes,
1400    this says how many the stack pointer really advances by.  */
1401 /* The push insns do not do this rounding implicitly.
1402    So don't define this.  */
1403 /* #define PUSH_ROUNDING(NPUSHED)  ROUND_UP_WORD (NPUSHED) */
1404 
1405 /* Define this if the maximum size of all the outgoing args is to be
1406    accumulated and pushed during the prologue.  The amount can be
1407    found in the variable crtl->outgoing_args_size.  */
1408 #define ACCUMULATE_OUTGOING_ARGS 1
1409 
1410 /* Offset of first parameter from the argument pointer register value.  */
1411 #define FIRST_PARM_OFFSET(FNDECL)  (TARGET_ARM ? 4 : 0)
1412 
1413 /* Amount of memory needed for an untyped call to save all possible return
1414    registers.  */
1415 #define APPLY_RESULT_SIZE arm_apply_result_size()
1416 
1417 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1418    values must be in memory.  On the ARM, they need only do so if larger
1419    than a word, or if they contain elements offset from zero in the struct.  */
1420 #define DEFAULT_PCC_STRUCT_RETURN 0
1421 
1422 /* These bits describe the different types of function supported
1423    by the ARM backend.  They are exclusive.  i.e. a function cannot be both a
1424    normal function and an interworked function, for example.  Knowing the
1425    type of a function is important for determining its prologue and
1426    epilogue sequences.
1427    Note value 7 is currently unassigned.  Also note that the interrupt
1428    function types all have bit 2 set, so that they can be tested for easily.
1429    Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1430    machine_function structure is initialized (to zero) func_type will
1431    default to unknown.  This will force the first use of arm_current_func_type
1432    to call arm_compute_func_type.  */
1433 #define ARM_FT_UNKNOWN		 0 /* Type has not yet been determined.  */
1434 #define ARM_FT_NORMAL		 1 /* Your normal, straightforward function.  */
1435 #define ARM_FT_INTERWORKED	 2 /* A function that supports interworking.  */
1436 #define ARM_FT_ISR		 4 /* An interrupt service routine.  */
1437 #define ARM_FT_FIQ		 5 /* A fast interrupt service routine.  */
1438 #define ARM_FT_EXCEPTION	 6 /* An ARM exception handler (subcase of ISR).  */
1439 
1440 #define ARM_FT_TYPE_MASK	((1 << 3) - 1)
1441 
1442 /* In addition functions can have several type modifiers,
1443    outlined by these bit masks:  */
1444 #define ARM_FT_INTERRUPT	(1 << 2) /* Note overlap with FT_ISR and above.  */
1445 #define ARM_FT_NAKED		(1 << 3) /* No prologue or epilogue.  */
1446 #define ARM_FT_VOLATILE		(1 << 4) /* Does not return.  */
1447 #define ARM_FT_NESTED		(1 << 5) /* Embedded inside another func.  */
1448 #define ARM_FT_STACKALIGN	(1 << 6) /* Called with misaligned stack.  */
1449 #define ARM_FT_CMSE_ENTRY	(1 << 7) /* ARMv8-M non-secure entry function.  */
1450 
1451 /* Some macros to test these flags.  */
1452 #define ARM_FUNC_TYPE(t)	(t & ARM_FT_TYPE_MASK)
1453 #define IS_INTERRUPT(t)		(t & ARM_FT_INTERRUPT)
1454 #define IS_VOLATILE(t)     	(t & ARM_FT_VOLATILE)
1455 #define IS_NAKED(t)        	(t & ARM_FT_NAKED)
1456 #define IS_NESTED(t)       	(t & ARM_FT_NESTED)
1457 #define IS_STACKALIGN(t)       	(t & ARM_FT_STACKALIGN)
1458 #define IS_CMSE_ENTRY(t)	(t & ARM_FT_CMSE_ENTRY)
1459 
1460 
1461 /* Structure used to hold the function stack frame layout.  Offsets are
1462    relative to the stack pointer on function entry.  Positive offsets are
1463    in the direction of stack growth.
1464    Only soft_frame is used in thumb mode.  */
1465 
1466 typedef struct GTY(()) arm_stack_offsets
1467 {
1468   int saved_args;	/* ARG_POINTER_REGNUM.  */
1469   int frame;		/* ARM_HARD_FRAME_POINTER_REGNUM.  */
1470   int saved_regs;
1471   int soft_frame;	/* FRAME_POINTER_REGNUM.  */
1472   int locals_base;	/* THUMB_HARD_FRAME_POINTER_REGNUM.  */
1473   int outgoing_args;	/* STACK_POINTER_REGNUM.  */
1474   unsigned int saved_regs_mask;
1475 }
1476 arm_stack_offsets;
1477 
1478 #if !defined(GENERATOR_FILE) && !defined (USED_FOR_TARGET)
1479 /* A C structure for machine-specific, per-function data.
1480    This is added to the cfun structure.  */
1481 typedef struct GTY(()) machine_function
1482 {
1483   /* Additional stack adjustment in __builtin_eh_throw.  */
1484   rtx eh_epilogue_sp_ofs;
1485   /* Records if LR has to be saved for far jumps.  */
1486   int far_jump_used;
1487   /* Records if ARG_POINTER was ever live.  */
1488   int arg_pointer_live;
1489   /* Records if the save of LR has been eliminated.  */
1490   int lr_save_eliminated;
1491   /* The size of the stack frame.  Only valid after reload.  */
1492   arm_stack_offsets stack_offsets;
1493   /* Records the type of the current function.  */
1494   unsigned long func_type;
1495   /* Record if the function has a variable argument list.  */
1496   int uses_anonymous_args;
1497   /* Records if sibcalls are blocked because an argument
1498      register is needed to preserve stack alignment.  */
1499   int sibcall_blocked;
1500   /* The PIC register for this function.  This might be a pseudo.  */
1501   rtx pic_reg;
1502   /* Labels for per-function Thumb call-via stubs.  One per potential calling
1503      register.  We can never call via LR or PC.  We can call via SP if a
1504      trampoline happens to be on the top of the stack.  */
1505   rtx call_via[14];
1506   /* Set to 1 when a return insn is output, this means that the epilogue
1507      is not needed.  */
1508   int return_used_this_function;
1509   /* When outputting Thumb-1 code, record the last insn that provides
1510      information about condition codes, and the comparison operands.  */
1511   rtx thumb1_cc_insn;
1512   rtx thumb1_cc_op0;
1513   rtx thumb1_cc_op1;
1514   /* Also record the CC mode that is supported.  */
1515   machine_mode thumb1_cc_mode;
1516   /* Set to 1 after arm_reorg has started.  */
1517   int after_arm_reorg;
1518   /* The number of bytes used to store the static chain register on the
1519      stack, above the stack frame.  */
1520   int static_chain_stack_bytes;
1521 }
1522 machine_function;
1523 #endif
1524 
1525 #define ARM_Q_BIT_READ (arm_q_bit_access ())
1526 #define ARM_GE_BITS_READ (arm_ge_bits_access ())
1527 
1528 /* As in the machine_function, a global set of call-via labels, for code
1529    that is in text_section.  */
1530 extern GTY(()) rtx thumb_call_via_label[14];
1531 
1532 /* The number of potential ways of assigning to a co-processor.  */
1533 #define ARM_NUM_COPROC_SLOTS 1
1534 
1535 /* Enumeration of procedure calling standard variants.  We don't really
1536    support all of these yet.  */
1537 enum arm_pcs
1538 {
1539   ARM_PCS_AAPCS,	/* Base standard AAPCS.  */
1540   ARM_PCS_AAPCS_VFP,	/* Use VFP registers for floating point values.  */
1541   ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors.  */
1542   /* This must be the last AAPCS variant.  */
1543   ARM_PCS_AAPCS_LOCAL,	/* Private call within this compilation unit.  */
1544   ARM_PCS_ATPCS,	/* ATPCS.  */
1545   ARM_PCS_APCS,		/* APCS (legacy Linux etc).  */
1546   ARM_PCS_UNKNOWN
1547 };
1548 
1549 /* Default procedure calling standard of current compilation unit. */
1550 extern enum arm_pcs arm_pcs_default;
1551 
1552 #if !defined (USED_FOR_TARGET)
1553 /* A C type for declaring a variable that is used as the first argument of
1554    `FUNCTION_ARG' and other related values.  */
1555 typedef struct
1556 {
1557   /* This is the number of registers of arguments scanned so far.  */
1558   int nregs;
1559   /* This is the number of iWMMXt register arguments scanned so far.  */
1560   int iwmmxt_nregs;
1561   int named_count;
1562   int nargs;
1563   /* Which procedure call variant to use for this call.  */
1564   enum arm_pcs pcs_variant;
1565 
1566   /* AAPCS related state tracking.  */
1567   int aapcs_arg_processed;  /* No need to lay out this argument again.  */
1568   int aapcs_cprc_slot;      /* Index of co-processor rules to handle
1569 			       this argument, or -1 if using core
1570 			       registers.  */
1571   int aapcs_ncrn;
1572   int aapcs_next_ncrn;
1573   rtx aapcs_reg;	    /* Register assigned to this argument.  */
1574   int aapcs_partial;	    /* How many bytes are passed in regs (if
1575 			       split between core regs and stack.
1576 			       Zero otherwise.  */
1577   int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1578   int can_split;	    /* Argument can be split between core regs
1579 			       and the stack.  */
1580   /* Private data for tracking VFP register allocation */
1581   unsigned aapcs_vfp_regs_free;
1582   unsigned aapcs_vfp_reg_alloc;
1583   int aapcs_vfp_rcount;
1584   MACHMODE aapcs_vfp_rmode;
1585 } CUMULATIVE_ARGS;
1586 #endif
1587 
1588 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1589   (arm_pad_reg_upward (MODE, TYPE, FIRST) ? PAD_UPWARD : PAD_DOWNWARD)
1590 
1591 /* For AAPCS, padding should never be below the argument. For other ABIs,
1592  * mimic the default.  */
1593 #define PAD_VARARGS_DOWN \
1594   ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1595 
1596 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1597    for a call to a function whose data type is FNTYPE.
1598    For a library call, FNTYPE is 0.
1599    On the ARM, the offset starts at 0.  */
1600 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1601   arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1602 
1603 /* 1 if N is a possible register number for function argument passing.
1604    On the ARM, r0-r3 are used to pass args.  */
1605 #define FUNCTION_ARG_REGNO_P(REGNO)					\
1606    (IN_RANGE ((REGNO), 0, 3)						\
1607     || (TARGET_AAPCS_BASED && TARGET_HARD_FLOAT				\
1608 	&& IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15))	\
1609     || (TARGET_IWMMXT_ABI						\
1610 	&& IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1611 
1612 
1613 /* If your target environment doesn't prefix user functions with an
1614    underscore, you may wish to re-define this to prevent any conflicts.  */
1615 #ifndef ARM_MCOUNT_NAME
1616 #define ARM_MCOUNT_NAME "*mcount"
1617 #endif
1618 
1619 /* Call the function profiler with a given profile label.  The Acorn
1620    compiler puts this BEFORE the prolog but gcc puts it afterwards.
1621    On the ARM the full profile code will look like:
1622 	.data
1623 	LP1
1624 		.word	0
1625 	.text
1626 		mov	ip, lr
1627 		bl	mcount
1628 		.word	LP1
1629 
1630    profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1631    will output the .text section.
1632 
1633    The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1634    ``prof'' doesn't seem to mind about this!
1635 
1636    Note - this version of the code is designed to work in both ARM and
1637    Thumb modes.  */
1638 #ifndef ARM_FUNCTION_PROFILER
1639 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO)  	\
1640 {							\
1641   char temp[20];					\
1642   rtx sym;						\
1643 							\
1644   asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t",		\
1645 	   IP_REGNUM, LR_REGNUM);			\
1646   assemble_name (STREAM, ARM_MCOUNT_NAME);		\
1647   fputc ('\n', STREAM);					\
1648   ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO);	\
1649   sym = gen_rtx_SYMBOL_REF (Pmode, temp);		\
1650   assemble_aligned_integer (UNITS_PER_WORD, sym);	\
1651 }
1652 #endif
1653 
1654 #ifdef THUMB_FUNCTION_PROFILER
1655 #define FUNCTION_PROFILER(STREAM, LABELNO)		\
1656   if (TARGET_ARM)					\
1657     ARM_FUNCTION_PROFILER (STREAM, LABELNO)		\
1658   else							\
1659     THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1660 #else
1661 #define FUNCTION_PROFILER(STREAM, LABELNO)		\
1662     ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1663 #endif
1664 
1665 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1666    the stack pointer does not matter.  The value is tested only in
1667    functions that have frame pointers.
1668    No definition is equivalent to always zero.
1669 
1670    On the ARM, the function epilogue recovers the stack pointer from the
1671    frame.  */
1672 #define EXIT_IGNORE_STACK 1
1673 
1674 #define EPILOGUE_USES(REGNO) (epilogue_completed && (REGNO) == LR_REGNUM)
1675 
1676 /* Determine if the epilogue should be output as RTL.
1677    You should override this if you define FUNCTION_EXTRA_EPILOGUE.  */
1678 #define USE_RETURN_INSN(ISCOND)				\
1679   (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1680 
1681 /* Definitions for register eliminations.
1682 
1683    This is an array of structures.  Each structure initializes one pair
1684    of eliminable registers.  The "from" register number is given first,
1685    followed by "to".  Eliminations of the same "from" register are listed
1686    in order of preference.
1687 
1688    We have two registers that can be eliminated on the ARM.  First, the
1689    arg pointer register can often be eliminated in favor of the stack
1690    pointer register.  Secondly, the pseudo frame pointer register can always
1691    be eliminated; it is replaced with either the stack or the real frame
1692    pointer.  Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1693    because the definition of HARD_FRAME_POINTER_REGNUM is not a constant.  */
1694 
1695 #define ELIMINABLE_REGS						\
1696 {{ ARG_POINTER_REGNUM,        STACK_POINTER_REGNUM            },\
1697  { ARG_POINTER_REGNUM,        FRAME_POINTER_REGNUM            },\
1698  { ARG_POINTER_REGNUM,        ARM_HARD_FRAME_POINTER_REGNUM   },\
1699  { ARG_POINTER_REGNUM,        THUMB_HARD_FRAME_POINTER_REGNUM },\
1700  { FRAME_POINTER_REGNUM,      STACK_POINTER_REGNUM            },\
1701  { FRAME_POINTER_REGNUM,      ARM_HARD_FRAME_POINTER_REGNUM   },\
1702  { FRAME_POINTER_REGNUM,      THUMB_HARD_FRAME_POINTER_REGNUM }}
1703 
1704 /* Define the offset between two registers, one to be eliminated, and the
1705    other its replacement, at the start of a routine.  */
1706 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1707   if (TARGET_ARM)							\
1708     (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO);	\
1709   else									\
1710     (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1711 
1712 /* Special case handling of the location of arguments passed on the stack.  */
1713 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1714 
1715 /* Initialize data used by insn expanders.  This is called from insn_emit,
1716    once for every function before code is generated.  */
1717 #define INIT_EXPANDERS  arm_init_expanders ()
1718 
1719 /* Length in units of the trampoline for entering a nested function.  */
1720 #define TRAMPOLINE_SIZE  (TARGET_FDPIC ? 32 : (TARGET_32BIT ? 16 : 20))
1721 
1722 /* Alignment required for a trampoline in bits.  */
1723 #define TRAMPOLINE_ALIGNMENT  32
1724 
1725 /* Addressing modes, and classification of registers for them.  */
1726 #define HAVE_POST_INCREMENT   1
1727 #define HAVE_PRE_INCREMENT    TARGET_32BIT
1728 #define HAVE_POST_DECREMENT   TARGET_32BIT
1729 #define HAVE_PRE_DECREMENT    TARGET_32BIT
1730 #define HAVE_PRE_MODIFY_DISP  TARGET_32BIT
1731 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1732 #define HAVE_PRE_MODIFY_REG   TARGET_32BIT
1733 #define HAVE_POST_MODIFY_REG  TARGET_32BIT
1734 
1735 enum arm_auto_incmodes
1736   {
1737     ARM_POST_INC,
1738     ARM_PRE_INC,
1739     ARM_POST_DEC,
1740     ARM_PRE_DEC
1741   };
1742 
1743 #define ARM_AUTOINC_VALID_FOR_MODE_P(mode, code) \
1744   (TARGET_32BIT && arm_autoinc_modes_ok_p (mode, code))
1745 #define USE_LOAD_POST_INCREMENT(mode) \
1746   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_INC)
1747 #define USE_LOAD_PRE_INCREMENT(mode)  \
1748   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_INC)
1749 #define USE_LOAD_POST_DECREMENT(mode) \
1750   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_DEC)
1751 #define USE_LOAD_PRE_DECREMENT(mode)  \
1752   ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_DEC)
1753 
1754 #define USE_STORE_PRE_DECREMENT(mode) USE_LOAD_PRE_DECREMENT(mode)
1755 #define USE_STORE_PRE_INCREMENT(mode) USE_LOAD_PRE_INCREMENT(mode)
1756 #define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
1757 #define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
1758 
1759 /* Macros to check register numbers against specific register classes.  */
1760 
1761 /* These assume that REGNO is a hard or pseudo reg number.
1762    They give nonzero only if REGNO is a hard reg of the suitable class
1763    or a pseudo reg currently allocated to a suitable hard reg.  */
1764 #define TEST_REGNO(R, TEST, VALUE) \
1765   ((R TEST VALUE)	\
1766     || (reg_renumber && ((unsigned) reg_renumber[R] TEST VALUE)))
1767 
1768 /* Don't allow the pc to be used.  */
1769 #define ARM_REGNO_OK_FOR_BASE_P(REGNO)			\
1770   (TEST_REGNO (REGNO, <, PC_REGNUM)			\
1771    || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM)	\
1772    || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1773 
1774 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE)		\
1775   (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM)			\
1776    || (GET_MODE_SIZE (MODE) >= 4				\
1777        && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1778 
1779 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE)		\
1780   (TARGET_THUMB1					\
1781    ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE)	\
1782    : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1783 
1784 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1785    For Thumb, we cannot use SP + reg, so reject SP.  */
1786 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE)	\
1787   REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1788 
1789 /* For ARM code, we don't care about the mode, but for Thumb, the index
1790    must be suitable for use in a QImode load.  */
1791 #define REGNO_OK_FOR_INDEX_P(REGNO)	\
1792   (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1793    && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1794 
1795 /* Maximum number of registers that can appear in a valid memory address.
1796    Shifts in addresses can't be by a register.  */
1797 #define MAX_REGS_PER_ADDRESS 2
1798 
1799 /* Recognize any constant value that is a valid address.  */
1800 /* XXX We can address any constant, eventually...  */
1801 /* ??? Should the TARGET_ARM here also apply to thumb2?  */
1802 #define CONSTANT_ADDRESS_P(X)  			\
1803   (GET_CODE (X) == SYMBOL_REF 			\
1804    && (CONSTANT_POOL_ADDRESS_P (X)		\
1805        || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1806 
1807 /* True if SYMBOL + OFFSET constants must refer to something within
1808    SYMBOL's section.  */
1809 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1810 
1811 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32.  */
1812 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1813 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1814 #endif
1815 
1816 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1817 #define SUBTARGET_NAME_ENCODING_LENGTHS
1818 #endif
1819 
1820 /* This is a C fragment for the inside of a switch statement.
1821    Each case label should return the number of characters to
1822    be stripped from the start of a function's name, if that
1823    name starts with the indicated character.  */
1824 #define ARM_NAME_ENCODING_LENGTHS		\
1825   case '*':  return 1;				\
1826   SUBTARGET_NAME_ENCODING_LENGTHS
1827 
1828 /* This is how to output a reference to a user-level label named NAME.
1829    `assemble_name' uses this.  */
1830 #undef  ASM_OUTPUT_LABELREF
1831 #define ASM_OUTPUT_LABELREF(FILE, NAME)		\
1832    arm_asm_output_labelref (FILE, NAME)
1833 
1834 /* Output IT instructions for conditionally executed Thumb-2 instructions.  */
1835 #define ASM_OUTPUT_OPCODE(STREAM, PTR)	\
1836   if (TARGET_THUMB2)			\
1837     thumb2_asm_output_opcode (STREAM);
1838 
1839 /* The EABI specifies that constructors should go in .init_array.
1840    Other targets use .ctors for compatibility.  */
1841 #ifndef ARM_EABI_CTORS_SECTION_OP
1842 #define ARM_EABI_CTORS_SECTION_OP \
1843   "\t.section\t.init_array,\"aw\",%init_array"
1844 #endif
1845 #ifndef ARM_EABI_DTORS_SECTION_OP
1846 #define ARM_EABI_DTORS_SECTION_OP \
1847   "\t.section\t.fini_array,\"aw\",%fini_array"
1848 #endif
1849 #define ARM_CTORS_SECTION_OP \
1850   "\t.section\t.ctors,\"aw\",%progbits"
1851 #define ARM_DTORS_SECTION_OP \
1852   "\t.section\t.dtors,\"aw\",%progbits"
1853 
1854 /* Define CTORS_SECTION_ASM_OP.  */
1855 #undef CTORS_SECTION_ASM_OP
1856 #undef DTORS_SECTION_ASM_OP
1857 #ifndef IN_LIBGCC2
1858 # define CTORS_SECTION_ASM_OP \
1859    (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1860 # define DTORS_SECTION_ASM_OP \
1861    (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1862 #else /* !defined (IN_LIBGCC2) */
1863 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1864    so we cannot use the definition above.  */
1865 # ifdef __ARM_EABI__
1866 /* The .ctors section is not part of the EABI, so we do not define
1867    CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1868    from trying to use it.  We do define it when doing normal
1869    compilation, as .init_array can be used instead of .ctors.  */
1870 /* There is no need to emit begin or end markers when using
1871    init_array; the dynamic linker will compute the size of the
1872    array itself based on special symbols created by the static
1873    linker.  However, we do need to arrange to set up
1874    exception-handling here.  */
1875 #   define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1876 #   define CTOR_LIST_END /* empty */
1877 #   define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1878 #   define DTOR_LIST_END /* empty */
1879 # else /* !defined (__ARM_EABI__) */
1880 #   define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1881 #   define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1882 # endif /* !defined (__ARM_EABI__) */
1883 #endif /* !defined (IN_LIBCC2) */
1884 
1885 /* True if the operating system can merge entities with vague linkage
1886    (e.g., symbols in COMDAT group) during dynamic linking.  */
1887 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1888 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1889 #endif
1890 
1891 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1892 
1893 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1894    and check its validity for a certain class.
1895    We have two alternate definitions for each of them.
1896    The usual definition accepts all pseudo regs; the other rejects
1897    them unless they have been allocated suitable hard regs.
1898    The symbol REG_OK_STRICT causes the latter definition to be used.
1899    Thumb-2 has the same restrictions as arm.  */
1900 #ifndef REG_OK_STRICT
1901 
1902 #define ARM_REG_OK_FOR_BASE_P(X)		\
1903   (REGNO (X) <= LAST_ARM_REGNUM			\
1904    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1905    || REGNO (X) == FRAME_POINTER_REGNUM		\
1906    || REGNO (X) == ARG_POINTER_REGNUM)
1907 
1908 #define ARM_REG_OK_FOR_INDEX_P(X)		\
1909   ((REGNO (X) <= LAST_ARM_REGNUM		\
1910     && REGNO (X) != STACK_POINTER_REGNUM)	\
1911    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1912    || REGNO (X) == FRAME_POINTER_REGNUM		\
1913    || REGNO (X) == ARG_POINTER_REGNUM)
1914 
1915 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE)	\
1916   (REGNO (X) <= LAST_LO_REGNUM			\
1917    || REGNO (X) >= FIRST_PSEUDO_REGISTER	\
1918    || (GET_MODE_SIZE (MODE) >= 4		\
1919        && (REGNO (X) == STACK_POINTER_REGNUM	\
1920 	   || (X) == hard_frame_pointer_rtx	\
1921 	   || (X) == arg_pointer_rtx)))
1922 
1923 #define REG_STRICT_P 0
1924 
1925 #else /* REG_OK_STRICT */
1926 
1927 #define ARM_REG_OK_FOR_BASE_P(X) 		\
1928   ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1929 
1930 #define ARM_REG_OK_FOR_INDEX_P(X) 		\
1931   ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1932 
1933 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE)	\
1934   THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1935 
1936 #define REG_STRICT_P 1
1937 
1938 #endif /* REG_OK_STRICT */
1939 
1940 /* Now define some helpers in terms of the above.  */
1941 
1942 #define REG_MODE_OK_FOR_BASE_P(X, MODE)		\
1943   (TARGET_THUMB1				\
1944    ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE)	\
1945    : ARM_REG_OK_FOR_BASE_P (X))
1946 
1947 /* For 16-bit Thumb, a valid index register is anything that can be used in
1948    a byte load instruction.  */
1949 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
1950   THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1951 
1952 /* Nonzero if X is a hard reg that can be used as an index
1953    or if it is a pseudo reg.  On the Thumb, the stack pointer
1954    is not suitable.  */
1955 #define REG_OK_FOR_INDEX_P(X)			\
1956   (TARGET_THUMB1				\
1957    ? THUMB1_REG_OK_FOR_INDEX_P (X)		\
1958    : ARM_REG_OK_FOR_INDEX_P (X))
1959 
1960 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1961    For Thumb, we cannot use SP + reg, so reject SP.  */
1962 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE)	\
1963   REG_OK_FOR_INDEX_P (X)
1964 
1965 #define ARM_BASE_REGISTER_RTX_P(X)  \
1966   (REG_P (X) && ARM_REG_OK_FOR_BASE_P (X))
1967 
1968 #define ARM_INDEX_REGISTER_RTX_P(X)  \
1969   (REG_P (X) && ARM_REG_OK_FOR_INDEX_P (X))
1970 
1971 /* Specify the machine mode that this machine uses
1972    for the index in the tablejump instruction.  */
1973 #define CASE_VECTOR_MODE Pmode
1974 
1975 #define CASE_VECTOR_PC_RELATIVE ((TARGET_THUMB2				\
1976 				  || (TARGET_THUMB1			\
1977 				      && (optimize_size || flag_pic)))	\
1978 				 && (!target_pure_code))
1979 
1980 
1981 #define CASE_VECTOR_SHORTEN_MODE(min, max, body)			\
1982   (TARGET_THUMB1							\
1983    ? (min >= 0 && max < 512						\
1984       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode)	\
1985       : min >= -256 && max < 256					\
1986       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode)	\
1987       : min >= 0 && max < 8192						\
1988       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode)	\
1989       : min >= -4096 && max < 4096					\
1990       ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode)	\
1991       : SImode)								\
1992    : ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode		\
1993       : (max >= 0x200) ? HImode						\
1994       : QImode))
1995 
1996 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
1997    unsigned is probably best, but may break some code.  */
1998 #ifndef DEFAULT_SIGNED_CHAR
1999 #define DEFAULT_SIGNED_CHAR  0
2000 #endif
2001 
2002 /* Max number of bytes we can move from memory to memory
2003    in one reasonably fast instruction.  */
2004 #define MOVE_MAX 4
2005 
2006 #undef  MOVE_RATIO
2007 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
2008 
2009 /* Define if operations between registers always perform the operation
2010    on the full register even if a narrower mode is specified.  */
2011 #define WORD_REGISTER_OPERATIONS 1
2012 
2013 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2014    will either zero-extend or sign-extend.  The value of this macro should
2015    be the code that says which one of the two operations is implicitly
2016    done, UNKNOWN if none.  */
2017 #define LOAD_EXTEND_OP(MODE)						\
2018   (TARGET_THUMB ? ZERO_EXTEND :						\
2019    ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND			\
2020     : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
2021 
2022 /* Nonzero if access to memory by bytes is slow and undesirable.  */
2023 #define SLOW_BYTE_ACCESS 0
2024 
2025 /* Immediate shift counts are truncated by the output routines (or was it
2026    the assembler?).  Shift counts in a register are truncated by ARM.  Note
2027    that the native compiler puts too large (> 32) immediate shift counts
2028    into a register and shifts by the register, letting the ARM decide what
2029    to do instead of doing that itself.  */
2030 /* This is all wrong.  Defining SHIFT_COUNT_TRUNCATED tells combine that
2031    code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
2032    On the arm, Y in a register is used modulo 256 for the shift. Only for
2033    rotates is modulo 32 used.  */
2034 /* #define SHIFT_COUNT_TRUNCATED 1 */
2035 
2036 /* Calling from registers is a massive pain.  */
2037 #define NO_FUNCTION_CSE 1
2038 
2039 /* The machine modes of pointers and functions */
2040 #define Pmode  SImode
2041 #define FUNCTION_MODE  Pmode
2042 
2043 #define ARM_FRAME_RTX(X)					\
2044   (   (X) == frame_pointer_rtx || (X) == stack_pointer_rtx	\
2045    || (X) == arg_pointer_rtx)
2046 
2047 /* Try to generate sequences that don't involve branches, we can then use
2048    conditional instructions.  */
2049 #define BRANCH_COST(speed_p, predictable_p)			\
2050   ((arm_branch_cost != -1) ? arm_branch_cost :			\
2051    (current_tune->branch_cost (speed_p, predictable_p)))
2052 
2053 /* False if short circuit operation is preferred.  */
2054 #define LOGICAL_OP_NON_SHORT_CIRCUIT					\
2055   ((optimize_size)							\
2056    ? (TARGET_THUMB ? false : true)					\
2057    : TARGET_THUMB ? static_cast<bool> (current_tune->logical_op_non_short_circuit_thumb) \
2058    : static_cast<bool> (current_tune->logical_op_non_short_circuit_arm))
2059 
2060 
2061 /* Position Independent Code.  */
2062 /* We decide which register to use based on the compilation options and
2063    the assembler in use; this is more general than the APCS restriction of
2064    using sb (r9) all the time.  */
2065 extern unsigned arm_pic_register;
2066 
2067 /* The register number of the register used to address a table of static
2068    data addresses in memory.  */
2069 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
2070 
2071 /* For FDPIC, the FDPIC register is call-clobbered (otherwise PLT
2072    entries would need to handle saving and restoring it).  */
2073 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED TARGET_FDPIC
2074 
2075 /* We can't directly access anything that contains a symbol,
2076    nor can we indirect via the constant pool.  One exception is
2077    UNSPEC_TLS, which is always PIC.  */
2078 #define LEGITIMATE_PIC_OPERAND_P(X)					\
2079 	(!(symbol_mentioned_p (X)					\
2080 	   || label_mentioned_p (X)					\
2081 	   || (GET_CODE (X) == SYMBOL_REF				\
2082 	       && CONSTANT_POOL_ADDRESS_P (X)				\
2083 	       && (symbol_mentioned_p (get_pool_constant (X))		\
2084 		   || label_mentioned_p (get_pool_constant (X)))))	\
2085 	 || tls_mentioned_p (X))
2086 
2087 /* We may want to save the PIC register if it is a dedicated one.  */
2088 #define PIC_REGISTER_MAY_NEED_SAVING			\
2089   (flag_pic						\
2090    && !TARGET_SINGLE_PIC_BASE				\
2091    && !TARGET_FDPIC					\
2092    && arm_pic_register != INVALID_REGNUM)
2093 
2094 /* We need to know when we are making a constant pool; this determines
2095    whether data needs to be in the GOT or can be referenced via a GOT
2096    offset.  */
2097 extern int making_const_table;
2098 
2099 /* Handle pragmas for compatibility with Intel's compilers.  */
2100 /* Also abuse this to register additional C specific EABI attributes.  */
2101 #define REGISTER_TARGET_PRAGMAS() do {					\
2102   c_register_pragma (0, "long_calls", arm_pr_long_calls);		\
2103   c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls);		\
2104   c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off);	\
2105   arm_lang_object_attributes_init();					\
2106   arm_register_target_pragmas();                                       \
2107 } while (0)
2108 
2109 /* Condition code information.  */
2110 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2111    return the mode to be used for the comparison.  */
2112 
2113 #define SELECT_CC_MODE(OP, X, Y)  arm_select_cc_mode (OP, X, Y)
2114 
2115 #define REVERSIBLE_CC_MODE(MODE) 1
2116 
2117 #define REVERSE_CONDITION(CODE,MODE) \
2118   (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2119    ? reverse_condition_maybe_unordered (code) \
2120    : reverse_condition (code))
2121 
2122 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2123   ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2124 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2125   ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2126 
2127 #define CC_STATUS_INIT \
2128   do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2129 
2130 #undef ASM_APP_ON
2131 #define ASM_APP_ON (inline_asm_unified ? "\t.syntax unified\n" : \
2132 		    "\t.syntax divided\n")
2133 
2134 #undef  ASM_APP_OFF
2135 #define ASM_APP_OFF (TARGET_ARM ? "\t.arm\n\t.syntax unified\n" : \
2136 		     "\t.thumb\n\t.syntax unified\n")
2137 
2138 /* Output a push or a pop instruction (only used when profiling).
2139    We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1.  We know
2140    that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2141    that r7 isn't used by the function profiler, so we can use it as a
2142    scratch reg.  WARNING: This isn't safe in the general case!  It may be
2143    sensitive to future changes in final.c:profile_function.  */
2144 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO)		\
2145   do							\
2146     {							\
2147       if (TARGET_THUMB1					\
2148 	       && (REGNO) == STATIC_CHAIN_REGNUM)	\
2149 	{						\
2150 	  asm_fprintf (STREAM, "\tpush\t{r7}\n");	\
2151 	  asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2152 	  asm_fprintf (STREAM, "\tpush\t{r7}\n");	\
2153 	}						\
2154       else						\
2155 	asm_fprintf (STREAM, "\tpush {%r}\n", REGNO);	\
2156     } while (0)
2157 
2158 
2159 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue.  */
2160 #define ASM_OUTPUT_REG_POP(STREAM, REGNO)		\
2161   do							\
2162     {							\
2163       if (TARGET_THUMB1					\
2164 	  && (REGNO) == STATIC_CHAIN_REGNUM)		\
2165 	{						\
2166 	  asm_fprintf (STREAM, "\tpop\t{r7}\n");	\
2167 	  asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2168 	  asm_fprintf (STREAM, "\tpop\t{r7}\n");	\
2169 	}						\
2170       else						\
2171 	asm_fprintf (STREAM, "\tpop {%r}\n", REGNO);	\
2172     } while (0)
2173 
2174 #define ADDR_VEC_ALIGN(JUMPTABLE)	\
2175   ((TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) ? 2 : 0)
2176 
2177 /* Alignment for case labels comes from ADDR_VEC_ALIGN; avoid the
2178    default alignment from elfos.h.  */
2179 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
2180 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) /* Empty.  */
2181 
2182 #define LABEL_ALIGN_AFTER_BARRIER(LABEL)                \
2183    (GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
2184    ? 1 : 0)
2185 
2186 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) 	\
2187   arm_declare_function_name ((STREAM), (NAME), (DECL));
2188 
2189 /* For aliases of functions we use .thumb_set instead.  */
2190 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2)		\
2191   do						   		\
2192     {								\
2193       const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2194       const char *const LABEL2 = IDENTIFIER_POINTER (DECL2);	\
2195 								\
2196       if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL)	\
2197 	{							\
2198 	  fprintf (FILE, "\t.thumb_set ");			\
2199 	  assemble_name (FILE, LABEL1);			   	\
2200 	  fprintf (FILE, ",");			   		\
2201 	  assemble_name (FILE, LABEL2);		   		\
2202 	  fprintf (FILE, "\n");					\
2203 	}							\
2204       else							\
2205 	ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2);			\
2206     }								\
2207   while (0)
2208 
2209 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2210 /* To support -falign-* switches we need to use .p2align so
2211    that alignment directives in code sections will be padded
2212    with no-op instructions, rather than zeroes.  */
2213 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP)		\
2214   if ((LOG) != 0)						\
2215     {								\
2216       if ((MAX_SKIP) == 0)					\
2217         fprintf ((FILE), "\t.p2align %d\n", (int) (LOG));	\
2218       else							\
2219         fprintf ((FILE), "\t.p2align %d,,%d\n",			\
2220                  (int) (LOG), (int) (MAX_SKIP));		\
2221     }
2222 #endif
2223 
2224 /* Add two bytes to the length of conditionally executed Thumb-2
2225    instructions for the IT instruction.  */
2226 #define ADJUST_INSN_LENGTH(insn, length) \
2227   if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2228     length += 2;
2229 
2230 /* Only perform branch elimination (by making instructions conditional) if
2231    we're optimizing.  For Thumb-2 check if any IT instructions need
2232    outputting.  */
2233 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)	\
2234   if (TARGET_ARM && optimize)				\
2235     arm_final_prescan_insn (INSN);			\
2236   else if (TARGET_THUMB2)				\
2237     thumb2_final_prescan_insn (INSN);			\
2238   else if (TARGET_THUMB1)				\
2239     thumb1_final_prescan_insn (INSN)
2240 
2241 #define ARM_SIGN_EXTEND(x)  ((HOST_WIDE_INT)			\
2242   (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x)	\
2243    : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2244       ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2245        ? ((~ (unsigned HOST_WIDE_INT) 0)			\
2246 	  & ~ (unsigned HOST_WIDE_INT) 0xffffffff)		\
2247        : 0))))
2248 
2249 /* A C expression whose value is RTL representing the value of the return
2250    address for the frame COUNT steps up from the current frame.  */
2251 
2252 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2253   arm_return_addr (COUNT, FRAME)
2254 
2255 /* Mask of the bits in the PC that contain the real return address
2256    when running in 26-bit mode.  */
2257 #define RETURN_ADDR_MASK26 (0x03fffffc)
2258 
2259 /* Pick up the return address upon entry to a procedure. Used for
2260    dwarf2 unwind information.  This also enables the table driven
2261    mechanism.  */
2262 #define INCOMING_RETURN_ADDR_RTX	gen_rtx_REG (Pmode, LR_REGNUM)
2263 #define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGNUM (LR_REGNUM)
2264 
2265 /* Used to mask out junk bits from the return address, such as
2266    processor state, interrupt status, condition codes and the like.  */
2267 #define MASK_RETURN_ADDR \
2268   /* If we are generating code for an ARM2/ARM3 machine or for an ARM6	\
2269      in 26 bit mode, the condition codes must be masked out of the	\
2270      return address.  This does not apply to ARM6 and later processors	\
2271      when running in 32 bit mode.  */					\
2272   ((arm_arch4 || TARGET_THUMB)						\
2273    ? (gen_int_mode ((unsigned long)0xffffffff, Pmode))			\
2274    : arm_gen_return_addr_mask ())
2275 
2276 
2277 /* Do not emit .note.GNU-stack by default.  */
2278 #ifndef NEED_INDICATE_EXEC_STACK
2279 #define NEED_INDICATE_EXEC_STACK	0
2280 #endif
2281 
2282 #define TARGET_ARM_ARCH	\
2283   (arm_base_arch)	\
2284 
2285 /* The highest Thumb instruction set version supported by the chip.  */
2286 #define TARGET_ARM_ARCH_ISA_THUMB		\
2287   (arm_arch_thumb2 ? 2 : (arm_arch_thumb1 ? 1 : 0))
2288 
2289 /* Expands to an upper-case char of the target's architectural
2290    profile.  */
2291 #define TARGET_ARM_ARCH_PROFILE				\
2292   (arm_active_target.profile)
2293 
2294 /* Bit-field indicating what size LDREX/STREX loads/stores are available.
2295    Bit 0 for bytes, up to bit 3 for double-words.  */
2296 #define TARGET_ARM_FEATURE_LDREX				\
2297   ((TARGET_HAVE_LDREX ? 4 : 0)					\
2298    | (TARGET_HAVE_LDREXBH ? 3 : 0)				\
2299    | (TARGET_HAVE_LDREXD ? 8 : 0))
2300 
2301 /* Set as a bit mask indicating the available widths of hardware floating
2302    point types.  Where bit 1 indicates 16-bit support, bit 2 indicates
2303    32-bit support, bit 3 indicates 64-bit support.  */
2304 #define TARGET_ARM_FP			\
2305   (!TARGET_SOFT_FLOAT ? (TARGET_VFP_SINGLE ? 4		\
2306 			: (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0)) \
2307 		      : 0)
2308 
2309 
2310 /* Set as a bit mask indicating the available widths of floating point
2311    types for hardware NEON floating point.  This is the same as
2312    TARGET_ARM_FP without the 64-bit bit set.  */
2313 #define TARGET_NEON_FP				 \
2314   (TARGET_NEON ? (TARGET_ARM_FP & (0xff ^ 0x08)) \
2315 	       : 0)
2316 
2317 /* Name of the automatic fpu-selection option.  */
2318 #define FPUTYPE_AUTO "auto"
2319 
2320 /* The maximum number of parallel loads or stores we support in an ldm/stm
2321    instruction.  */
2322 #define MAX_LDM_STM_OPS 4
2323 
2324 extern const char *arm_rewrite_mcpu (int argc, const char **argv);
2325 extern const char *arm_rewrite_march (int argc, const char **argv);
2326 extern const char *arm_asm_auto_mfpu (int argc, const char **argv);
2327 #define ASM_CPU_SPEC_FUNCTIONS			\
2328   { "rewrite_mcpu", arm_rewrite_mcpu },	\
2329   { "rewrite_march", arm_rewrite_march },	\
2330   { "asm_auto_mfpu", arm_asm_auto_mfpu },
2331 
2332 #define ASM_CPU_SPEC							\
2333   " %{mfpu=auto:%<mfpu=auto %:asm_auto_mfpu(%{march=*: arch %*})}"	\
2334   " %{mcpu=generic-*:-march=%:rewrite_march(%{mcpu=generic-*:%*});"	\
2335   "   march=*:-march=%:rewrite_march(%{march=*:%*});"			\
2336   "   mcpu=*:-mcpu=%:rewrite_mcpu(%{mcpu=*:%*})"			\
2337   " }"
2338 
2339 extern const char *arm_target_thumb_only (int argc, const char **argv);
2340 #define TARGET_MODE_SPEC_FUNCTIONS			\
2341   { "target_mode_check", arm_target_thumb_only },
2342 
2343 /* -mcpu=native handling only makes sense with compiler running on
2344    an ARM chip.  */
2345 #if defined(__arm__)
2346 extern const char *host_detect_local_cpu (int argc, const char **argv);
2347 #define HAVE_LOCAL_CPU_DETECT
2348 # define MCPU_MTUNE_NATIVE_FUNCTIONS			\
2349   { "local_cpu_detect", host_detect_local_cpu },
2350 # define MCPU_MTUNE_NATIVE_SPECS				\
2351    " %{march=native:%<march=native %:local_cpu_detect(arch)}"	\
2352    " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}"	\
2353    " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
2354 #else
2355 # define MCPU_MTUNE_NATIVE_FUNCTIONS
2356 # define MCPU_MTUNE_NATIVE_SPECS ""
2357 #endif
2358 
2359 const char *arm_canon_arch_option (int argc, const char **argv);
2360 const char *arm_canon_arch_multilib_option (int argc, const char **argv);
2361 
2362 #define CANON_ARCH_SPEC_FUNCTION		\
2363   { "canon_arch", arm_canon_arch_option },
2364 
2365 #define CANON_ARCH_MULTILIB_SPEC_FUNCTION		\
2366   { "canon_arch_multilib", arm_canon_arch_multilib_option },
2367 
2368 const char *arm_be8_option (int argc, const char **argv);
2369 #define BE8_SPEC_FUNCTION			\
2370   { "be8_linkopt", arm_be8_option },
2371 
2372 # define EXTRA_SPEC_FUNCTIONS			\
2373   MCPU_MTUNE_NATIVE_FUNCTIONS			\
2374   ASM_CPU_SPEC_FUNCTIONS			\
2375   CANON_ARCH_SPEC_FUNCTION			\
2376   CANON_ARCH_MULTILIB_SPEC_FUNCTION		\
2377   TARGET_MODE_SPEC_FUNCTIONS			\
2378   BE8_SPEC_FUNCTION
2379 
2380 /* Automatically add -mthumb for Thumb-only targets if mode isn't specified
2381    via the configuration option --with-mode or via the command line. The
2382    function target_mode_check is called to do the check with either:
2383    - an array of -march values if any is given;
2384    - an array of -mcpu values if any is given;
2385    - an empty array.  */
2386 #define TARGET_MODE_SPECS						\
2387   " %{!marm:%{!mthumb:%:target_mode_check(%{march=*:arch %*;mcpu=*:cpu %*;:})}}"
2388 
2389 /* Generate a canonical string to represent the architecture selected.  */
2390 #define ARCH_CANONICAL_SPECS				\
2391   " -march=%:canon_arch(%{mcpu=*: cpu %*} "		\
2392   "                     %{march=*: arch %*} "		\
2393   "                     %{mfpu=*: fpu %*} "		\
2394   "                     %{mfloat-abi=*: abi %*}"	\
2395   "                     %<march=*) "
2396 
2397 /* Generate a canonical string to represent the architecture selected ignoring
2398    the options not required for multilib linking.  */
2399 #define MULTILIB_ARCH_CANONICAL_SPECS				\
2400   "-mlibarch=%:canon_arch_multilib(%{mcpu=*: cpu %*} "		\
2401   "				   %{march=*: arch %*} "	\
2402   "				   %{mfpu=*: fpu %*} "		\
2403   "				   %{mfloat-abi=*: abi %*}"	\
2404   "				   %<mlibarch=*) "
2405 
2406 /* Complete set of specs for the driver.  Commas separate the
2407    individual rules so that any option suppression (%<opt...)is
2408    completed before starting subsequent rules.  */
2409 #define DRIVER_SELF_SPECS			\
2410   MCPU_MTUNE_NATIVE_SPECS,			\
2411   TARGET_MODE_SPECS,				\
2412   MULTILIB_ARCH_CANONICAL_SPECS,		\
2413   ARCH_CANONICAL_SPECS
2414 
2415 #define TARGET_SUPPORTS_WIDE_INT 1
2416 
2417 /* For switching between functions with different target attributes.  */
2418 #define SWITCHABLE_TARGET 1
2419 
2420 /* Define SECTION_ARM_PURECODE as the ARM specific section attribute
2421    representation for SHF_ARM_PURECODE in GCC.  */
2422 #define SECTION_ARM_PURECODE SECTION_MACH_DEP
2423 
2424 #endif /* ! GCC_ARM_H */
2425