xref: /OK3568_Linux_fs/kernel/include/linux/usb.h (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4 
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7 
8 #define USB_MAJOR			180
9 #define USB_DEVICE_MAJOR		189
10 
11 
12 #ifdef __KERNEL__
13 
14 #include <linux/errno.h>        /* for -ENODEV */
15 #include <linux/delay.h>	/* for mdelay() */
16 #include <linux/interrupt.h>	/* for in_interrupt() */
17 #include <linux/list.h>		/* for struct list_head */
18 #include <linux/kref.h>		/* for struct kref */
19 #include <linux/device.h>	/* for struct device */
20 #include <linux/fs.h>		/* for struct file_operations */
21 #include <linux/completion.h>	/* for struct completion */
22 #include <linux/sched.h>	/* for current && schedule_timeout */
23 #include <linux/mutex.h>	/* for struct mutex */
24 #include <linux/pm_runtime.h>	/* for runtime PM */
25 #include <linux/android_kabi.h>
26 
27 struct usb_device;
28 struct usb_driver;
29 struct wusb_dev;
30 
31 /*-------------------------------------------------------------------------*/
32 
33 /*
34  * Host-side wrappers for standard USB descriptors ... these are parsed
35  * from the data provided by devices.  Parsing turns them from a flat
36  * sequence of descriptors into a hierarchy:
37  *
38  *  - devices have one (usually) or more configs;
39  *  - configs have one (often) or more interfaces;
40  *  - interfaces have one (usually) or more settings;
41  *  - each interface setting has zero or (usually) more endpoints.
42  *  - a SuperSpeed endpoint has a companion descriptor
43  *
44  * And there might be other descriptors mixed in with those.
45  *
46  * Devices may also have class-specific or vendor-specific descriptors.
47  */
48 
49 struct ep_device;
50 
51 /**
52  * struct usb_host_endpoint - host-side endpoint descriptor and queue
53  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
54  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
55  * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
56  * @urb_list: urbs queued to this endpoint; maintained by usbcore
57  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
58  *	with one or more transfer descriptors (TDs) per urb
59  * @ep_dev: ep_device for sysfs info
60  * @extra: descriptors following this endpoint in the configuration
61  * @extralen: how many bytes of "extra" are valid
62  * @enabled: URBs may be submitted to this endpoint
63  * @streams: number of USB-3 streams allocated on the endpoint
64  *
65  * USB requests are always queued to a given endpoint, identified by a
66  * descriptor within an active interface in a given USB configuration.
67  */
68 struct usb_host_endpoint {
69 	struct usb_endpoint_descriptor		desc;
70 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
71 	struct usb_ssp_isoc_ep_comp_descriptor	ssp_isoc_ep_comp;
72 	struct list_head		urb_list;
73 	void				*hcpriv;
74 	struct ep_device		*ep_dev;	/* For sysfs info */
75 
76 	unsigned char *extra;   /* Extra descriptors */
77 	int extralen;
78 	int enabled;
79 	int streams;
80 };
81 
82 /* host-side wrapper for one interface setting's parsed descriptors */
83 struct usb_host_interface {
84 	struct usb_interface_descriptor	desc;
85 
86 	int extralen;
87 	unsigned char *extra;   /* Extra descriptors */
88 
89 	/* array of desc.bNumEndpoints endpoints associated with this
90 	 * interface setting.  these will be in no particular order.
91 	 */
92 	struct usb_host_endpoint *endpoint;
93 
94 	char *string;		/* iInterface string, if present */
95 };
96 
97 enum usb_interface_condition {
98 	USB_INTERFACE_UNBOUND = 0,
99 	USB_INTERFACE_BINDING,
100 	USB_INTERFACE_BOUND,
101 	USB_INTERFACE_UNBINDING,
102 };
103 
104 int __must_check
105 usb_find_common_endpoints(struct usb_host_interface *alt,
106 		struct usb_endpoint_descriptor **bulk_in,
107 		struct usb_endpoint_descriptor **bulk_out,
108 		struct usb_endpoint_descriptor **int_in,
109 		struct usb_endpoint_descriptor **int_out);
110 
111 int __must_check
112 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
113 		struct usb_endpoint_descriptor **bulk_in,
114 		struct usb_endpoint_descriptor **bulk_out,
115 		struct usb_endpoint_descriptor **int_in,
116 		struct usb_endpoint_descriptor **int_out);
117 
118 static inline int __must_check
usb_find_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)119 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
120 		struct usb_endpoint_descriptor **bulk_in)
121 {
122 	return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
123 }
124 
125 static inline int __must_check
usb_find_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)126 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
127 		struct usb_endpoint_descriptor **bulk_out)
128 {
129 	return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
130 }
131 
132 static inline int __must_check
usb_find_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)133 usb_find_int_in_endpoint(struct usb_host_interface *alt,
134 		struct usb_endpoint_descriptor **int_in)
135 {
136 	return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
137 }
138 
139 static inline int __must_check
usb_find_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)140 usb_find_int_out_endpoint(struct usb_host_interface *alt,
141 		struct usb_endpoint_descriptor **int_out)
142 {
143 	return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
144 }
145 
146 static inline int __must_check
usb_find_last_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)147 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
148 		struct usb_endpoint_descriptor **bulk_in)
149 {
150 	return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
151 }
152 
153 static inline int __must_check
usb_find_last_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)154 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
155 		struct usb_endpoint_descriptor **bulk_out)
156 {
157 	return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
158 }
159 
160 static inline int __must_check
usb_find_last_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)161 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
162 		struct usb_endpoint_descriptor **int_in)
163 {
164 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
165 }
166 
167 static inline int __must_check
usb_find_last_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)168 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
169 		struct usb_endpoint_descriptor **int_out)
170 {
171 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
172 }
173 
174 /**
175  * struct usb_interface - what usb device drivers talk to
176  * @altsetting: array of interface structures, one for each alternate
177  *	setting that may be selected.  Each one includes a set of
178  *	endpoint configurations.  They will be in no particular order.
179  * @cur_altsetting: the current altsetting.
180  * @num_altsetting: number of altsettings defined.
181  * @intf_assoc: interface association descriptor
182  * @minor: the minor number assigned to this interface, if this
183  *	interface is bound to a driver that uses the USB major number.
184  *	If this interface does not use the USB major, this field should
185  *	be unused.  The driver should set this value in the probe()
186  *	function of the driver, after it has been assigned a minor
187  *	number from the USB core by calling usb_register_dev().
188  * @condition: binding state of the interface: not bound, binding
189  *	(in probe()), bound to a driver, or unbinding (in disconnect())
190  * @sysfs_files_created: sysfs attributes exist
191  * @ep_devs_created: endpoint child pseudo-devices exist
192  * @unregistering: flag set when the interface is being unregistered
193  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
194  *	capability during autosuspend.
195  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
196  *	has been deferred.
197  * @needs_binding: flag set when the driver should be re-probed or unbound
198  *	following a reset or suspend operation it doesn't support.
199  * @authorized: This allows to (de)authorize individual interfaces instead
200  *	a whole device in contrast to the device authorization.
201  * @dev: driver model's view of this device
202  * @usb_dev: if an interface is bound to the USB major, this will point
203  *	to the sysfs representation for that device.
204  * @reset_ws: Used for scheduling resets from atomic context.
205  * @resetting_device: USB core reset the device, so use alt setting 0 as
206  *	current; needs bandwidth alloc after reset.
207  *
208  * USB device drivers attach to interfaces on a physical device.  Each
209  * interface encapsulates a single high level function, such as feeding
210  * an audio stream to a speaker or reporting a change in a volume control.
211  * Many USB devices only have one interface.  The protocol used to talk to
212  * an interface's endpoints can be defined in a usb "class" specification,
213  * or by a product's vendor.  The (default) control endpoint is part of
214  * every interface, but is never listed among the interface's descriptors.
215  *
216  * The driver that is bound to the interface can use standard driver model
217  * calls such as dev_get_drvdata() on the dev member of this structure.
218  *
219  * Each interface may have alternate settings.  The initial configuration
220  * of a device sets altsetting 0, but the device driver can change
221  * that setting using usb_set_interface().  Alternate settings are often
222  * used to control the use of periodic endpoints, such as by having
223  * different endpoints use different amounts of reserved USB bandwidth.
224  * All standards-conformant USB devices that use isochronous endpoints
225  * will use them in non-default settings.
226  *
227  * The USB specification says that alternate setting numbers must run from
228  * 0 to one less than the total number of alternate settings.  But some
229  * devices manage to mess this up, and the structures aren't necessarily
230  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
231  * look up an alternate setting in the altsetting array based on its number.
232  */
233 struct usb_interface {
234 	/* array of alternate settings for this interface,
235 	 * stored in no particular order */
236 	struct usb_host_interface *altsetting;
237 
238 	struct usb_host_interface *cur_altsetting;	/* the currently
239 					 * active alternate setting */
240 	unsigned num_altsetting;	/* number of alternate settings */
241 
242 	/* If there is an interface association descriptor then it will list
243 	 * the associated interfaces */
244 	struct usb_interface_assoc_descriptor *intf_assoc;
245 
246 	int minor;			/* minor number this interface is
247 					 * bound to */
248 	enum usb_interface_condition condition;		/* state of binding */
249 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
250 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
251 	unsigned unregistering:1;	/* unregistration is in progress */
252 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
253 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
254 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
255 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
256 	unsigned authorized:1;		/* used for interface authorization */
257 
258 	struct device dev;		/* interface specific device info */
259 	struct device *usb_dev;
260 	struct work_struct reset_ws;	/* for resets in atomic context */
261 
262 	ANDROID_KABI_RESERVE(1);
263 	ANDROID_KABI_RESERVE(2);
264 	ANDROID_KABI_RESERVE(3);
265 	ANDROID_KABI_RESERVE(4);
266 };
267 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
268 
usb_get_intfdata(struct usb_interface * intf)269 static inline void *usb_get_intfdata(struct usb_interface *intf)
270 {
271 	return dev_get_drvdata(&intf->dev);
272 }
273 
usb_set_intfdata(struct usb_interface * intf,void * data)274 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
275 {
276 	dev_set_drvdata(&intf->dev, data);
277 }
278 
279 struct usb_interface *usb_get_intf(struct usb_interface *intf);
280 void usb_put_intf(struct usb_interface *intf);
281 
282 /* Hard limit */
283 #define USB_MAXENDPOINTS	30
284 /* this maximum is arbitrary */
285 #define USB_MAXINTERFACES	32
286 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
287 
288 /*
289  * USB Resume Timer: Every Host controller driver should drive the resume
290  * signalling on the bus for the amount of time defined by this macro.
291  *
292  * That way we will have a 'stable' behavior among all HCDs supported by Linux.
293  *
294  * Note that the USB Specification states we should drive resume for *at least*
295  * 20 ms, but it doesn't give an upper bound. This creates two possible
296  * situations which we want to avoid:
297  *
298  * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
299  * us to fail USB Electrical Tests, thus failing Certification
300  *
301  * (b) Some (many) devices actually need more than 20 ms of resume signalling,
302  * and while we can argue that's against the USB Specification, we don't have
303  * control over which devices a certification laboratory will be using for
304  * certification. If CertLab uses a device which was tested against Windows and
305  * that happens to have relaxed resume signalling rules, we might fall into
306  * situations where we fail interoperability and electrical tests.
307  *
308  * In order to avoid both conditions, we're using a 40 ms resume timeout, which
309  * should cope with both LPJ calibration errors and devices not following every
310  * detail of the USB Specification.
311  */
312 #define USB_RESUME_TIMEOUT	40 /* ms */
313 
314 /**
315  * struct usb_interface_cache - long-term representation of a device interface
316  * @num_altsetting: number of altsettings defined.
317  * @ref: reference counter.
318  * @altsetting: variable-length array of interface structures, one for
319  *	each alternate setting that may be selected.  Each one includes a
320  *	set of endpoint configurations.  They will be in no particular order.
321  *
322  * These structures persist for the lifetime of a usb_device, unlike
323  * struct usb_interface (which persists only as long as its configuration
324  * is installed).  The altsetting arrays can be accessed through these
325  * structures at any time, permitting comparison of configurations and
326  * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
327  */
328 struct usb_interface_cache {
329 	unsigned num_altsetting;	/* number of alternate settings */
330 	struct kref ref;		/* reference counter */
331 
332 	/* variable-length array of alternate settings for this interface,
333 	 * stored in no particular order */
334 	struct usb_host_interface altsetting[];
335 };
336 #define	ref_to_usb_interface_cache(r) \
337 		container_of(r, struct usb_interface_cache, ref)
338 #define	altsetting_to_usb_interface_cache(a) \
339 		container_of(a, struct usb_interface_cache, altsetting[0])
340 
341 /**
342  * struct usb_host_config - representation of a device's configuration
343  * @desc: the device's configuration descriptor.
344  * @string: pointer to the cached version of the iConfiguration string, if
345  *	present for this configuration.
346  * @intf_assoc: list of any interface association descriptors in this config
347  * @interface: array of pointers to usb_interface structures, one for each
348  *	interface in the configuration.  The number of interfaces is stored
349  *	in desc.bNumInterfaces.  These pointers are valid only while the
350  *	configuration is active.
351  * @intf_cache: array of pointers to usb_interface_cache structures, one
352  *	for each interface in the configuration.  These structures exist
353  *	for the entire life of the device.
354  * @extra: pointer to buffer containing all extra descriptors associated
355  *	with this configuration (those preceding the first interface
356  *	descriptor).
357  * @extralen: length of the extra descriptors buffer.
358  *
359  * USB devices may have multiple configurations, but only one can be active
360  * at any time.  Each encapsulates a different operational environment;
361  * for example, a dual-speed device would have separate configurations for
362  * full-speed and high-speed operation.  The number of configurations
363  * available is stored in the device descriptor as bNumConfigurations.
364  *
365  * A configuration can contain multiple interfaces.  Each corresponds to
366  * a different function of the USB device, and all are available whenever
367  * the configuration is active.  The USB standard says that interfaces
368  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
369  * of devices get this wrong.  In addition, the interface array is not
370  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
371  * look up an interface entry based on its number.
372  *
373  * Device drivers should not attempt to activate configurations.  The choice
374  * of which configuration to install is a policy decision based on such
375  * considerations as available power, functionality provided, and the user's
376  * desires (expressed through userspace tools).  However, drivers can call
377  * usb_reset_configuration() to reinitialize the current configuration and
378  * all its interfaces.
379  */
380 struct usb_host_config {
381 	struct usb_config_descriptor	desc;
382 
383 	char *string;		/* iConfiguration string, if present */
384 
385 	/* List of any Interface Association Descriptors in this
386 	 * configuration. */
387 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
388 
389 	/* the interfaces associated with this configuration,
390 	 * stored in no particular order */
391 	struct usb_interface *interface[USB_MAXINTERFACES];
392 
393 	/* Interface information available even when this is not the
394 	 * active configuration */
395 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
396 
397 	unsigned char *extra;   /* Extra descriptors */
398 	int extralen;
399 };
400 
401 /* USB2.0 and USB3.0 device BOS descriptor set */
402 struct usb_host_bos {
403 	struct usb_bos_descriptor	*desc;
404 
405 	/* wireless cap descriptor is handled by wusb */
406 	struct usb_ext_cap_descriptor	*ext_cap;
407 	struct usb_ss_cap_descriptor	*ss_cap;
408 	struct usb_ssp_cap_descriptor	*ssp_cap;
409 	struct usb_ss_container_id_descriptor	*ss_id;
410 	struct usb_ptm_cap_descriptor	*ptm_cap;
411 
412 	ANDROID_KABI_RESERVE(1);
413 	ANDROID_KABI_RESERVE(2);
414 	ANDROID_KABI_RESERVE(3);
415 	ANDROID_KABI_RESERVE(4);
416 };
417 
418 int __usb_get_extra_descriptor(char *buffer, unsigned size,
419 	unsigned char type, void **ptr, size_t min);
420 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
421 				__usb_get_extra_descriptor((ifpoint)->extra, \
422 				(ifpoint)->extralen, \
423 				type, (void **)ptr, sizeof(**(ptr)))
424 
425 /* ----------------------------------------------------------------------- */
426 
427 /* USB device number allocation bitmap */
428 struct usb_devmap {
429 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
430 };
431 
432 /*
433  * Allocated per bus (tree of devices) we have:
434  */
435 struct usb_bus {
436 	struct device *controller;	/* host side hardware */
437 	struct device *sysdev;		/* as seen from firmware or bus */
438 	int busnum;			/* Bus number (in order of reg) */
439 	const char *bus_name;		/* stable id (PCI slot_name etc) */
440 	u8 uses_pio_for_control;	/*
441 					 * Does the host controller use PIO
442 					 * for control transfers?
443 					 */
444 	u8 otg_port;			/* 0, or number of OTG/HNP port */
445 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
446 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
447 	unsigned no_stop_on_short:1;    /*
448 					 * Quirk: some controllers don't stop
449 					 * the ep queue on a short transfer
450 					 * with the URB_SHORT_NOT_OK flag set.
451 					 */
452 	unsigned no_sg_constraint:1;	/* no sg constraint */
453 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
454 
455 	int devnum_next;		/* Next open device number in
456 					 * round-robin allocation */
457 	struct mutex devnum_next_mutex; /* devnum_next mutex */
458 
459 	struct usb_devmap devmap;	/* device address allocation map */
460 	struct usb_device *root_hub;	/* Root hub */
461 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
462 
463 	int bandwidth_allocated;	/* on this bus: how much of the time
464 					 * reserved for periodic (intr/iso)
465 					 * requests is used, on average?
466 					 * Units: microseconds/frame.
467 					 * Limits: Full/low speed reserve 90%,
468 					 * while high speed reserves 80%.
469 					 */
470 	int bandwidth_int_reqs;		/* number of Interrupt requests */
471 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
472 
473 	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
474 
475 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
476 	struct mon_bus *mon_bus;	/* non-null when associated */
477 	int monitored;			/* non-zero when monitored */
478 #endif
479 
480 	ANDROID_KABI_RESERVE(1);
481 	ANDROID_KABI_RESERVE(2);
482 	ANDROID_KABI_RESERVE(3);
483 	ANDROID_KABI_RESERVE(4);
484 };
485 
486 struct usb_dev_state;
487 
488 /* ----------------------------------------------------------------------- */
489 
490 struct usb_tt;
491 
492 enum usb_device_removable {
493 	USB_DEVICE_REMOVABLE_UNKNOWN = 0,
494 	USB_DEVICE_REMOVABLE,
495 	USB_DEVICE_FIXED,
496 };
497 
498 enum usb_port_connect_type {
499 	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
500 	USB_PORT_CONNECT_TYPE_HOT_PLUG,
501 	USB_PORT_CONNECT_TYPE_HARD_WIRED,
502 	USB_PORT_NOT_USED,
503 };
504 
505 /*
506  * USB port quirks.
507  */
508 
509 /* For the given port, prefer the old (faster) enumeration scheme. */
510 #define USB_PORT_QUIRK_OLD_SCHEME	BIT(0)
511 
512 /* Decrease TRSTRCY to 10ms during device enumeration. */
513 #define USB_PORT_QUIRK_FAST_ENUM	BIT(1)
514 
515 /*
516  * USB 2.0 Link Power Management (LPM) parameters.
517  */
518 struct usb2_lpm_parameters {
519 	/* Best effort service latency indicate how long the host will drive
520 	 * resume on an exit from L1.
521 	 */
522 	unsigned int besl;
523 
524 	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
525 	 * When the timer counts to zero, the parent hub will initiate a LPM
526 	 * transition to L1.
527 	 */
528 	int timeout;
529 };
530 
531 /*
532  * USB 3.0 Link Power Management (LPM) parameters.
533  *
534  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
535  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
536  * All three are stored in nanoseconds.
537  */
538 struct usb3_lpm_parameters {
539 	/*
540 	 * Maximum exit latency (MEL) for the host to send a packet to the
541 	 * device (either a Ping for isoc endpoints, or a data packet for
542 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
543 	 * in the path to transition the links to U0.
544 	 */
545 	unsigned int mel;
546 	/*
547 	 * Maximum exit latency for a device-initiated LPM transition to bring
548 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
549 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
550 	 */
551 	unsigned int pel;
552 
553 	/*
554 	 * The System Exit Latency (SEL) includes PEL, and three other
555 	 * latencies.  After a device initiates a U0 transition, it will take
556 	 * some time from when the device sends the ERDY to when it will finally
557 	 * receive the data packet.  Basically, SEL should be the worse-case
558 	 * latency from when a device starts initiating a U0 transition to when
559 	 * it will get data.
560 	 */
561 	unsigned int sel;
562 	/*
563 	 * The idle timeout value that is currently programmed into the parent
564 	 * hub for this device.  When the timer counts to zero, the parent hub
565 	 * will initiate an LPM transition to either U1 or U2.
566 	 */
567 	int timeout;
568 };
569 
570 /**
571  * struct usb_device - kernel's representation of a USB device
572  * @devnum: device number; address on a USB bus
573  * @devpath: device ID string for use in messages (e.g., /port/...)
574  * @route: tree topology hex string for use with xHCI
575  * @state: device state: configured, not attached, etc.
576  * @speed: device speed: high/full/low (or error)
577  * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
578  * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
579  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
580  * @ttport: device port on that tt hub
581  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
582  * @parent: our hub, unless we're the root
583  * @bus: bus we're part of
584  * @ep0: endpoint 0 data (default control pipe)
585  * @dev: generic device interface
586  * @descriptor: USB device descriptor
587  * @bos: USB device BOS descriptor set
588  * @config: all of the device's configs
589  * @actconfig: the active configuration
590  * @ep_in: array of IN endpoints
591  * @ep_out: array of OUT endpoints
592  * @rawdescriptors: raw descriptors for each config
593  * @bus_mA: Current available from the bus
594  * @portnum: parent port number (origin 1)
595  * @level: number of USB hub ancestors
596  * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
597  * @can_submit: URBs may be submitted
598  * @persist_enabled:  USB_PERSIST enabled for this device
599  * @have_langid: whether string_langid is valid
600  * @authorized: policy has said we can use it;
601  *	(user space) policy determines if we authorize this device to be
602  *	used or not. By default, wired USB devices are authorized.
603  *	WUSB devices are not, until we authorize them from user space.
604  *	FIXME -- complete doc
605  * @authenticated: Crypto authentication passed
606  * @wusb: device is Wireless USB
607  * @lpm_capable: device supports LPM
608  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
609  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
610  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
611  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
612  * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
613  * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
614  * @string_langid: language ID for strings
615  * @product: iProduct string, if present (static)
616  * @manufacturer: iManufacturer string, if present (static)
617  * @serial: iSerialNumber string, if present (static)
618  * @filelist: usbfs files that are open to this device
619  * @maxchild: number of ports if hub
620  * @quirks: quirks of the whole device
621  * @urbnum: number of URBs submitted for the whole device
622  * @active_duration: total time device is not suspended
623  * @connect_time: time device was first connected
624  * @do_remote_wakeup:  remote wakeup should be enabled
625  * @reset_resume: needs reset instead of resume
626  * @port_is_suspended: the upstream port is suspended (L2 or U3)
627  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
628  *	specific data for the device.
629  * @slot_id: Slot ID assigned by xHCI
630  * @removable: Device can be physically removed from this port
631  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
632  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
633  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
634  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
635  *	to keep track of the number of functions that require USB 3.0 Link Power
636  *	Management to be disabled for this usb_device.  This count should only
637  *	be manipulated by those functions, with the bandwidth_mutex is held.
638  * @hub_delay: cached value consisting of:
639  *	parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
640  *	Will be used as wValue for SetIsochDelay requests.
641  * @use_generic_driver: ask driver core to reprobe using the generic driver.
642  *
643  * Notes:
644  * Usbcore drivers should not set usbdev->state directly.  Instead use
645  * usb_set_device_state().
646  */
647 struct usb_device {
648 	int		devnum;
649 	char		devpath[16];
650 	u32		route;
651 	enum usb_device_state	state;
652 	enum usb_device_speed	speed;
653 	unsigned int		rx_lanes;
654 	unsigned int		tx_lanes;
655 
656 	struct usb_tt	*tt;
657 	int		ttport;
658 
659 	unsigned int toggle[2];
660 
661 	struct usb_device *parent;
662 	struct usb_bus *bus;
663 	struct usb_host_endpoint ep0;
664 
665 	struct device dev;
666 
667 	struct usb_device_descriptor descriptor;
668 	struct usb_host_bos *bos;
669 	struct usb_host_config *config;
670 
671 	struct usb_host_config *actconfig;
672 	struct usb_host_endpoint *ep_in[16];
673 	struct usb_host_endpoint *ep_out[16];
674 
675 	char **rawdescriptors;
676 
677 	unsigned short bus_mA;
678 	u8 portnum;
679 	u8 level;
680 	u8 devaddr;
681 
682 	unsigned can_submit:1;
683 	unsigned persist_enabled:1;
684 	unsigned have_langid:1;
685 	unsigned authorized:1;
686 	unsigned authenticated:1;
687 	unsigned wusb:1;
688 	unsigned lpm_capable:1;
689 	unsigned usb2_hw_lpm_capable:1;
690 	unsigned usb2_hw_lpm_besl_capable:1;
691 	unsigned usb2_hw_lpm_enabled:1;
692 	unsigned usb2_hw_lpm_allowed:1;
693 	unsigned usb3_lpm_u1_enabled:1;
694 	unsigned usb3_lpm_u2_enabled:1;
695 	int string_langid;
696 
697 	/* static strings from the device */
698 	char *product;
699 	char *manufacturer;
700 	char *serial;
701 
702 	struct list_head filelist;
703 
704 	int maxchild;
705 
706 	u32 quirks;
707 	atomic_t urbnum;
708 
709 	unsigned long active_duration;
710 
711 #ifdef CONFIG_PM
712 	unsigned long connect_time;
713 
714 	unsigned do_remote_wakeup:1;
715 	unsigned reset_resume:1;
716 	unsigned port_is_suspended:1;
717 #endif
718 	struct wusb_dev *wusb_dev;
719 	int slot_id;
720 	enum usb_device_removable removable;
721 	struct usb2_lpm_parameters l1_params;
722 	struct usb3_lpm_parameters u1_params;
723 	struct usb3_lpm_parameters u2_params;
724 	unsigned lpm_disable_count;
725 
726 	u16 hub_delay;
727 	unsigned use_generic_driver:1;
728 
729 	ANDROID_KABI_RESERVE(1);
730 	ANDROID_KABI_RESERVE(2);
731 	ANDROID_KABI_RESERVE(3);
732 	ANDROID_KABI_RESERVE(4);
733 };
734 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
735 
interface_to_usbdev(struct usb_interface * intf)736 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
737 {
738 	return to_usb_device(intf->dev.parent);
739 }
740 
741 extern struct usb_device *usb_get_dev(struct usb_device *dev);
742 extern void usb_put_dev(struct usb_device *dev);
743 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
744 	int port1);
745 
746 /**
747  * usb_hub_for_each_child - iterate over all child devices on the hub
748  * @hdev:  USB device belonging to the usb hub
749  * @port1: portnum associated with child device
750  * @child: child device pointer
751  */
752 #define usb_hub_for_each_child(hdev, port1, child) \
753 	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
754 			port1 <= hdev->maxchild; \
755 			child = usb_hub_find_child(hdev, ++port1)) \
756 		if (!child) continue; else
757 
758 /* USB device locking */
759 #define usb_lock_device(udev)			device_lock(&(udev)->dev)
760 #define usb_unlock_device(udev)			device_unlock(&(udev)->dev)
761 #define usb_lock_device_interruptible(udev)	device_lock_interruptible(&(udev)->dev)
762 #define usb_trylock_device(udev)		device_trylock(&(udev)->dev)
763 extern int usb_lock_device_for_reset(struct usb_device *udev,
764 				     const struct usb_interface *iface);
765 
766 /* USB port reset for device reinitialization */
767 extern int usb_reset_device(struct usb_device *dev);
768 extern void usb_queue_reset_device(struct usb_interface *dev);
769 
770 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
771 
772 #ifdef CONFIG_ACPI
773 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
774 	bool enable);
775 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
776 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)777 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
778 	bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)779 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
780 	{ return true; }
781 #endif
782 
783 /* USB autosuspend and autoresume */
784 #ifdef CONFIG_PM
785 extern void usb_enable_autosuspend(struct usb_device *udev);
786 extern void usb_disable_autosuspend(struct usb_device *udev);
787 
788 extern int usb_autopm_get_interface(struct usb_interface *intf);
789 extern void usb_autopm_put_interface(struct usb_interface *intf);
790 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
791 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
792 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
793 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
794 
usb_mark_last_busy(struct usb_device * udev)795 static inline void usb_mark_last_busy(struct usb_device *udev)
796 {
797 	pm_runtime_mark_last_busy(&udev->dev);
798 }
799 
800 #else
801 
usb_enable_autosuspend(struct usb_device * udev)802 static inline int usb_enable_autosuspend(struct usb_device *udev)
803 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)804 static inline int usb_disable_autosuspend(struct usb_device *udev)
805 { return 0; }
806 
usb_autopm_get_interface(struct usb_interface * intf)807 static inline int usb_autopm_get_interface(struct usb_interface *intf)
808 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)809 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
810 { return 0; }
811 
usb_autopm_put_interface(struct usb_interface * intf)812 static inline void usb_autopm_put_interface(struct usb_interface *intf)
813 { }
usb_autopm_put_interface_async(struct usb_interface * intf)814 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
815 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)816 static inline void usb_autopm_get_interface_no_resume(
817 		struct usb_interface *intf)
818 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)819 static inline void usb_autopm_put_interface_no_suspend(
820 		struct usb_interface *intf)
821 { }
usb_mark_last_busy(struct usb_device * udev)822 static inline void usb_mark_last_busy(struct usb_device *udev)
823 { }
824 #endif
825 
826 extern int usb_disable_lpm(struct usb_device *udev);
827 extern void usb_enable_lpm(struct usb_device *udev);
828 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
829 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
830 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
831 
832 extern int usb_disable_ltm(struct usb_device *udev);
833 extern void usb_enable_ltm(struct usb_device *udev);
834 
usb_device_supports_ltm(struct usb_device * udev)835 static inline bool usb_device_supports_ltm(struct usb_device *udev)
836 {
837 	if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
838 		return false;
839 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
840 }
841 
usb_device_no_sg_constraint(struct usb_device * udev)842 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
843 {
844 	return udev && udev->bus && udev->bus->no_sg_constraint;
845 }
846 
847 
848 /*-------------------------------------------------------------------------*/
849 
850 /* for drivers using iso endpoints */
851 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
852 
853 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
854 extern int usb_alloc_streams(struct usb_interface *interface,
855 		struct usb_host_endpoint **eps, unsigned int num_eps,
856 		unsigned int num_streams, gfp_t mem_flags);
857 
858 /* Reverts a group of bulk endpoints back to not using stream IDs. */
859 extern int usb_free_streams(struct usb_interface *interface,
860 		struct usb_host_endpoint **eps, unsigned int num_eps,
861 		gfp_t mem_flags);
862 
863 /* used these for multi-interface device registration */
864 extern int usb_driver_claim_interface(struct usb_driver *driver,
865 			struct usb_interface *iface, void *priv);
866 
867 /**
868  * usb_interface_claimed - returns true iff an interface is claimed
869  * @iface: the interface being checked
870  *
871  * Return: %true (nonzero) iff the interface is claimed, else %false
872  * (zero).
873  *
874  * Note:
875  * Callers must own the driver model's usb bus readlock.  So driver
876  * probe() entries don't need extra locking, but other call contexts
877  * may need to explicitly claim that lock.
878  *
879  */
usb_interface_claimed(struct usb_interface * iface)880 static inline int usb_interface_claimed(struct usb_interface *iface)
881 {
882 	return (iface->dev.driver != NULL);
883 }
884 
885 extern void usb_driver_release_interface(struct usb_driver *driver,
886 			struct usb_interface *iface);
887 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
888 					 const struct usb_device_id *id);
889 extern int usb_match_one_id(struct usb_interface *interface,
890 			    const struct usb_device_id *id);
891 
892 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
893 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
894 		int minor);
895 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
896 		unsigned ifnum);
897 extern struct usb_host_interface *usb_altnum_to_altsetting(
898 		const struct usb_interface *intf, unsigned int altnum);
899 extern struct usb_host_interface *usb_find_alt_setting(
900 		struct usb_host_config *config,
901 		unsigned int iface_num,
902 		unsigned int alt_num);
903 
904 /* port claiming functions */
905 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
906 		struct usb_dev_state *owner);
907 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
908 		struct usb_dev_state *owner);
909 
910 /**
911  * usb_make_path - returns stable device path in the usb tree
912  * @dev: the device whose path is being constructed
913  * @buf: where to put the string
914  * @size: how big is "buf"?
915  *
916  * Return: Length of the string (> 0) or negative if size was too small.
917  *
918  * Note:
919  * This identifier is intended to be "stable", reflecting physical paths in
920  * hardware such as physical bus addresses for host controllers or ports on
921  * USB hubs.  That makes it stay the same until systems are physically
922  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
923  * controllers.  Adding and removing devices, including virtual root hubs
924  * in host controller driver modules, does not change these path identifiers;
925  * neither does rebooting or re-enumerating.  These are more useful identifiers
926  * than changeable ("unstable") ones like bus numbers or device addresses.
927  *
928  * With a partial exception for devices connected to USB 2.0 root hubs, these
929  * identifiers are also predictable.  So long as the device tree isn't changed,
930  * plugging any USB device into a given hub port always gives it the same path.
931  * Because of the use of "companion" controllers, devices connected to ports on
932  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
933  * high speed, and a different one if they are full or low speed.
934  */
usb_make_path(struct usb_device * dev,char * buf,size_t size)935 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
936 {
937 	int actual;
938 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
939 			  dev->devpath);
940 	return (actual >= (int)size) ? -1 : actual;
941 }
942 
943 /*-------------------------------------------------------------------------*/
944 
945 #define USB_DEVICE_ID_MATCH_DEVICE \
946 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
947 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
948 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
949 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
950 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
951 #define USB_DEVICE_ID_MATCH_DEV_INFO \
952 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
953 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
954 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
955 #define USB_DEVICE_ID_MATCH_INT_INFO \
956 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
957 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
958 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
959 
960 /**
961  * USB_DEVICE - macro used to describe a specific usb device
962  * @vend: the 16 bit USB Vendor ID
963  * @prod: the 16 bit USB Product ID
964  *
965  * This macro is used to create a struct usb_device_id that matches a
966  * specific device.
967  */
968 #define USB_DEVICE(vend, prod) \
969 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
970 	.idVendor = (vend), \
971 	.idProduct = (prod)
972 /**
973  * USB_DEVICE_VER - describe a specific usb device with a version range
974  * @vend: the 16 bit USB Vendor ID
975  * @prod: the 16 bit USB Product ID
976  * @lo: the bcdDevice_lo value
977  * @hi: the bcdDevice_hi value
978  *
979  * This macro is used to create a struct usb_device_id that matches a
980  * specific device, with a version range.
981  */
982 #define USB_DEVICE_VER(vend, prod, lo, hi) \
983 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
984 	.idVendor = (vend), \
985 	.idProduct = (prod), \
986 	.bcdDevice_lo = (lo), \
987 	.bcdDevice_hi = (hi)
988 
989 /**
990  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
991  * @vend: the 16 bit USB Vendor ID
992  * @prod: the 16 bit USB Product ID
993  * @cl: bInterfaceClass value
994  *
995  * This macro is used to create a struct usb_device_id that matches a
996  * specific interface class of devices.
997  */
998 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
999 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1000 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
1001 	.idVendor = (vend), \
1002 	.idProduct = (prod), \
1003 	.bInterfaceClass = (cl)
1004 
1005 /**
1006  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
1007  * @vend: the 16 bit USB Vendor ID
1008  * @prod: the 16 bit USB Product ID
1009  * @pr: bInterfaceProtocol value
1010  *
1011  * This macro is used to create a struct usb_device_id that matches a
1012  * specific interface protocol of devices.
1013  */
1014 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1015 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1016 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1017 	.idVendor = (vend), \
1018 	.idProduct = (prod), \
1019 	.bInterfaceProtocol = (pr)
1020 
1021 /**
1022  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1023  * @vend: the 16 bit USB Vendor ID
1024  * @prod: the 16 bit USB Product ID
1025  * @num: bInterfaceNumber value
1026  *
1027  * This macro is used to create a struct usb_device_id that matches a
1028  * specific interface number of devices.
1029  */
1030 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1031 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1032 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
1033 	.idVendor = (vend), \
1034 	.idProduct = (prod), \
1035 	.bInterfaceNumber = (num)
1036 
1037 /**
1038  * USB_DEVICE_INFO - macro used to describe a class of usb devices
1039  * @cl: bDeviceClass value
1040  * @sc: bDeviceSubClass value
1041  * @pr: bDeviceProtocol value
1042  *
1043  * This macro is used to create a struct usb_device_id that matches a
1044  * specific class of devices.
1045  */
1046 #define USB_DEVICE_INFO(cl, sc, pr) \
1047 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1048 	.bDeviceClass = (cl), \
1049 	.bDeviceSubClass = (sc), \
1050 	.bDeviceProtocol = (pr)
1051 
1052 /**
1053  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1054  * @cl: bInterfaceClass value
1055  * @sc: bInterfaceSubClass value
1056  * @pr: bInterfaceProtocol value
1057  *
1058  * This macro is used to create a struct usb_device_id that matches a
1059  * specific class of interfaces.
1060  */
1061 #define USB_INTERFACE_INFO(cl, sc, pr) \
1062 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1063 	.bInterfaceClass = (cl), \
1064 	.bInterfaceSubClass = (sc), \
1065 	.bInterfaceProtocol = (pr)
1066 
1067 /**
1068  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1069  * @vend: the 16 bit USB Vendor ID
1070  * @prod: the 16 bit USB Product ID
1071  * @cl: bInterfaceClass value
1072  * @sc: bInterfaceSubClass value
1073  * @pr: bInterfaceProtocol value
1074  *
1075  * This macro is used to create a struct usb_device_id that matches a
1076  * specific device with a specific class of interfaces.
1077  *
1078  * This is especially useful when explicitly matching devices that have
1079  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1080  */
1081 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1082 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1083 		| USB_DEVICE_ID_MATCH_DEVICE, \
1084 	.idVendor = (vend), \
1085 	.idProduct = (prod), \
1086 	.bInterfaceClass = (cl), \
1087 	.bInterfaceSubClass = (sc), \
1088 	.bInterfaceProtocol = (pr)
1089 
1090 /**
1091  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1092  * @vend: the 16 bit USB Vendor ID
1093  * @cl: bInterfaceClass value
1094  * @sc: bInterfaceSubClass value
1095  * @pr: bInterfaceProtocol value
1096  *
1097  * This macro is used to create a struct usb_device_id that matches a
1098  * specific vendor with a specific class of interfaces.
1099  *
1100  * This is especially useful when explicitly matching devices that have
1101  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1102  */
1103 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1104 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1105 		| USB_DEVICE_ID_MATCH_VENDOR, \
1106 	.idVendor = (vend), \
1107 	.bInterfaceClass = (cl), \
1108 	.bInterfaceSubClass = (sc), \
1109 	.bInterfaceProtocol = (pr)
1110 
1111 /* ----------------------------------------------------------------------- */
1112 
1113 /* Stuff for dynamic usb ids */
1114 struct usb_dynids {
1115 	spinlock_t lock;
1116 	struct list_head list;
1117 };
1118 
1119 struct usb_dynid {
1120 	struct list_head node;
1121 	struct usb_device_id id;
1122 };
1123 
1124 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1125 				const struct usb_device_id *id_table,
1126 				struct device_driver *driver,
1127 				const char *buf, size_t count);
1128 
1129 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1130 
1131 /**
1132  * struct usbdrv_wrap - wrapper for driver-model structure
1133  * @driver: The driver-model core driver structure.
1134  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1135  */
1136 struct usbdrv_wrap {
1137 	struct device_driver driver;
1138 	int for_devices;
1139 };
1140 
1141 /**
1142  * struct usb_driver - identifies USB interface driver to usbcore
1143  * @name: The driver name should be unique among USB drivers,
1144  *	and should normally be the same as the module name.
1145  * @probe: Called to see if the driver is willing to manage a particular
1146  *	interface on a device.  If it is, probe returns zero and uses
1147  *	usb_set_intfdata() to associate driver-specific data with the
1148  *	interface.  It may also use usb_set_interface() to specify the
1149  *	appropriate altsetting.  If unwilling to manage the interface,
1150  *	return -ENODEV, if genuine IO errors occurred, an appropriate
1151  *	negative errno value.
1152  * @disconnect: Called when the interface is no longer accessible, usually
1153  *	because its device has been (or is being) disconnected or the
1154  *	driver module is being unloaded.
1155  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1156  *	the "usbfs" filesystem.  This lets devices provide ways to
1157  *	expose information to user space regardless of where they
1158  *	do (or don't) show up otherwise in the filesystem.
1159  * @suspend: Called when the device is going to be suspended by the
1160  *	system either from system sleep or runtime suspend context. The
1161  *	return value will be ignored in system sleep context, so do NOT
1162  *	try to continue using the device if suspend fails in this case.
1163  *	Instead, let the resume or reset-resume routine recover from
1164  *	the failure.
1165  * @resume: Called when the device is being resumed by the system.
1166  * @reset_resume: Called when the suspended device has been reset instead
1167  *	of being resumed.
1168  * @pre_reset: Called by usb_reset_device() when the device is about to be
1169  *	reset.  This routine must not return until the driver has no active
1170  *	URBs for the device, and no more URBs may be submitted until the
1171  *	post_reset method is called.
1172  * @post_reset: Called by usb_reset_device() after the device
1173  *	has been reset
1174  * @id_table: USB drivers use ID table to support hotplugging.
1175  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1176  *	or your driver's probe function will never get called.
1177  * @dev_groups: Attributes attached to the device that will be created once it
1178  *	is bound to the driver.
1179  * @dynids: used internally to hold the list of dynamically added device
1180  *	ids for this driver.
1181  * @drvwrap: Driver-model core structure wrapper.
1182  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1183  *	added to this driver by preventing the sysfs file from being created.
1184  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1185  *	for interfaces bound to this driver.
1186  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1187  *	endpoints before calling the driver's disconnect method.
1188  * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1189  *	to initiate lower power link state transitions when an idle timeout
1190  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1191  *
1192  * USB interface drivers must provide a name, probe() and disconnect()
1193  * methods, and an id_table.  Other driver fields are optional.
1194  *
1195  * The id_table is used in hotplugging.  It holds a set of descriptors,
1196  * and specialized data may be associated with each entry.  That table
1197  * is used by both user and kernel mode hotplugging support.
1198  *
1199  * The probe() and disconnect() methods are called in a context where
1200  * they can sleep, but they should avoid abusing the privilege.  Most
1201  * work to connect to a device should be done when the device is opened,
1202  * and undone at the last close.  The disconnect code needs to address
1203  * concurrency issues with respect to open() and close() methods, as
1204  * well as forcing all pending I/O requests to complete (by unlinking
1205  * them as necessary, and blocking until the unlinks complete).
1206  */
1207 struct usb_driver {
1208 	const char *name;
1209 
1210 	int (*probe) (struct usb_interface *intf,
1211 		      const struct usb_device_id *id);
1212 
1213 	void (*disconnect) (struct usb_interface *intf);
1214 
1215 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1216 			void *buf);
1217 
1218 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1219 	int (*resume) (struct usb_interface *intf);
1220 	int (*reset_resume)(struct usb_interface *intf);
1221 
1222 	int (*pre_reset)(struct usb_interface *intf);
1223 	int (*post_reset)(struct usb_interface *intf);
1224 
1225 	const struct usb_device_id *id_table;
1226 	const struct attribute_group **dev_groups;
1227 
1228 	struct usb_dynids dynids;
1229 	struct usbdrv_wrap drvwrap;
1230 	unsigned int no_dynamic_id:1;
1231 	unsigned int supports_autosuspend:1;
1232 	unsigned int disable_hub_initiated_lpm:1;
1233 	unsigned int soft_unbind:1;
1234 
1235 	ANDROID_KABI_RESERVE(1);
1236 	ANDROID_KABI_RESERVE(2);
1237 	ANDROID_KABI_RESERVE(3);
1238 	ANDROID_KABI_RESERVE(4);
1239 };
1240 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1241 
1242 /**
1243  * struct usb_device_driver - identifies USB device driver to usbcore
1244  * @name: The driver name should be unique among USB drivers,
1245  *	and should normally be the same as the module name.
1246  * @match: If set, used for better device/driver matching.
1247  * @probe: Called to see if the driver is willing to manage a particular
1248  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1249  *	to associate driver-specific data with the device.  If unwilling
1250  *	to manage the device, return a negative errno value.
1251  * @disconnect: Called when the device is no longer accessible, usually
1252  *	because it has been (or is being) disconnected or the driver's
1253  *	module is being unloaded.
1254  * @suspend: Called when the device is going to be suspended by the system.
1255  * @resume: Called when the device is being resumed by the system.
1256  * @dev_groups: Attributes attached to the device that will be created once it
1257  *	is bound to the driver.
1258  * @drvwrap: Driver-model core structure wrapper.
1259  * @id_table: used with @match() to select better matching driver at
1260  * 	probe() time.
1261  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1262  *	for devices bound to this driver.
1263  * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1264  *	resume and suspend functions will be called in addition to the driver's
1265  *	own, so this part of the setup does not need to be replicated.
1266  *
1267  * USB drivers must provide all the fields listed above except drvwrap,
1268  * match, and id_table.
1269  */
1270 struct usb_device_driver {
1271 	const char *name;
1272 
1273 	bool (*match) (struct usb_device *udev);
1274 	int (*probe) (struct usb_device *udev);
1275 	void (*disconnect) (struct usb_device *udev);
1276 
1277 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1278 	int (*resume) (struct usb_device *udev, pm_message_t message);
1279 	const struct attribute_group **dev_groups;
1280 	struct usbdrv_wrap drvwrap;
1281 	const struct usb_device_id *id_table;
1282 	unsigned int supports_autosuspend:1;
1283 	unsigned int generic_subclass:1;
1284 };
1285 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1286 		drvwrap.driver)
1287 
1288 extern struct bus_type usb_bus_type;
1289 
1290 /**
1291  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1292  * @name: the usb class device name for this driver.  Will show up in sysfs.
1293  * @devnode: Callback to provide a naming hint for a possible
1294  *	device node to create.
1295  * @fops: pointer to the struct file_operations of this driver.
1296  * @minor_base: the start of the minor range for this driver.
1297  *
1298  * This structure is used for the usb_register_dev() and
1299  * usb_deregister_dev() functions, to consolidate a number of the
1300  * parameters used for them.
1301  */
1302 struct usb_class_driver {
1303 	char *name;
1304 	char *(*devnode)(struct device *dev, umode_t *mode);
1305 	const struct file_operations *fops;
1306 	int minor_base;
1307 };
1308 
1309 /*
1310  * use these in module_init()/module_exit()
1311  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1312  */
1313 extern int usb_register_driver(struct usb_driver *, struct module *,
1314 			       const char *);
1315 
1316 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1317 #define usb_register(driver) \
1318 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1319 
1320 extern void usb_deregister(struct usb_driver *);
1321 
1322 /**
1323  * module_usb_driver() - Helper macro for registering a USB driver
1324  * @__usb_driver: usb_driver struct
1325  *
1326  * Helper macro for USB drivers which do not do anything special in module
1327  * init/exit. This eliminates a lot of boilerplate. Each module may only
1328  * use this macro once, and calling it replaces module_init() and module_exit()
1329  */
1330 #define module_usb_driver(__usb_driver) \
1331 	module_driver(__usb_driver, usb_register, \
1332 		       usb_deregister)
1333 
1334 extern int usb_register_device_driver(struct usb_device_driver *,
1335 			struct module *);
1336 extern void usb_deregister_device_driver(struct usb_device_driver *);
1337 
1338 extern int usb_register_dev(struct usb_interface *intf,
1339 			    struct usb_class_driver *class_driver);
1340 extern void usb_deregister_dev(struct usb_interface *intf,
1341 			       struct usb_class_driver *class_driver);
1342 
1343 extern int usb_disabled(void);
1344 
1345 /* ----------------------------------------------------------------------- */
1346 
1347 /*
1348  * URB support, for asynchronous request completions
1349  */
1350 
1351 /*
1352  * urb->transfer_flags:
1353  *
1354  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1355  */
1356 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1357 #define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1358 					 * slot in the schedule */
1359 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1360 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1361 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1362 					 * needed */
1363 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1364 
1365 /* The following flags are used internally by usbcore and HCDs */
1366 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1367 #define URB_DIR_OUT		0
1368 #define URB_DIR_MASK		URB_DIR_IN
1369 
1370 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1371 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1372 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1373 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1374 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1375 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1376 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1377 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1378 
1379 struct usb_iso_packet_descriptor {
1380 	unsigned int offset;
1381 	unsigned int length;		/* expected length */
1382 	unsigned int actual_length;
1383 	int status;
1384 };
1385 
1386 struct urb;
1387 
1388 struct usb_anchor {
1389 	struct list_head urb_list;
1390 	wait_queue_head_t wait;
1391 	spinlock_t lock;
1392 	atomic_t suspend_wakeups;
1393 	unsigned int poisoned:1;
1394 };
1395 
init_usb_anchor(struct usb_anchor * anchor)1396 static inline void init_usb_anchor(struct usb_anchor *anchor)
1397 {
1398 	memset(anchor, 0, sizeof(*anchor));
1399 	INIT_LIST_HEAD(&anchor->urb_list);
1400 	init_waitqueue_head(&anchor->wait);
1401 	spin_lock_init(&anchor->lock);
1402 }
1403 
1404 typedef void (*usb_complete_t)(struct urb *);
1405 
1406 /**
1407  * struct urb - USB Request Block
1408  * @urb_list: For use by current owner of the URB.
1409  * @anchor_list: membership in the list of an anchor
1410  * @anchor: to anchor URBs to a common mooring
1411  * @ep: Points to the endpoint's data structure.  Will eventually
1412  *	replace @pipe.
1413  * @pipe: Holds endpoint number, direction, type, and more.
1414  *	Create these values with the eight macros available;
1415  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1416  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1417  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1418  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1419  *	is a different endpoint (and pipe) from "out" endpoint two.
1420  *	The current configuration controls the existence, type, and
1421  *	maximum packet size of any given endpoint.
1422  * @stream_id: the endpoint's stream ID for bulk streams
1423  * @dev: Identifies the USB device to perform the request.
1424  * @status: This is read in non-iso completion functions to get the
1425  *	status of the particular request.  ISO requests only use it
1426  *	to tell whether the URB was unlinked; detailed status for
1427  *	each frame is in the fields of the iso_frame-desc.
1428  * @transfer_flags: A variety of flags may be used to affect how URB
1429  *	submission, unlinking, or operation are handled.  Different
1430  *	kinds of URB can use different flags.
1431  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1432  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1433  *	(however, do not leave garbage in transfer_buffer even then).
1434  *	This buffer must be suitable for DMA; allocate it with
1435  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1436  *	of this buffer will be modified.  This buffer is used for the data
1437  *	stage of control transfers.
1438  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1439  *	the device driver is saying that it provided this DMA address,
1440  *	which the host controller driver should use in preference to the
1441  *	transfer_buffer.
1442  * @sg: scatter gather buffer list, the buffer size of each element in
1443  * 	the list (except the last) must be divisible by the endpoint's
1444  * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1445  * @num_mapped_sgs: (internal) number of mapped sg entries
1446  * @num_sgs: number of entries in the sg list
1447  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1448  *	be broken up into chunks according to the current maximum packet
1449  *	size for the endpoint, which is a function of the configuration
1450  *	and is encoded in the pipe.  When the length is zero, neither
1451  *	transfer_buffer nor transfer_dma is used.
1452  * @actual_length: This is read in non-iso completion functions, and
1453  *	it tells how many bytes (out of transfer_buffer_length) were
1454  *	transferred.  It will normally be the same as requested, unless
1455  *	either an error was reported or a short read was performed.
1456  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1457  *	short reads be reported as errors.
1458  * @setup_packet: Only used for control transfers, this points to eight bytes
1459  *	of setup data.  Control transfers always start by sending this data
1460  *	to the device.  Then transfer_buffer is read or written, if needed.
1461  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1462  *	this field; setup_packet must point to a valid buffer.
1463  * @start_frame: Returns the initial frame for isochronous transfers.
1464  * @number_of_packets: Lists the number of ISO transfer buffers.
1465  * @interval: Specifies the polling interval for interrupt or isochronous
1466  *	transfers.  The units are frames (milliseconds) for full and low
1467  *	speed devices, and microframes (1/8 millisecond) for highspeed
1468  *	and SuperSpeed devices.
1469  * @error_count: Returns the number of ISO transfers that reported errors.
1470  * @context: For use in completion functions.  This normally points to
1471  *	request-specific driver context.
1472  * @complete: Completion handler. This URB is passed as the parameter to the
1473  *	completion function.  The completion function may then do what
1474  *	it likes with the URB, including resubmitting or freeing it.
1475  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1476  *	collect the transfer status for each buffer.
1477  *
1478  * This structure identifies USB transfer requests.  URBs must be allocated by
1479  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1480  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1481  * are submitted using usb_submit_urb(), and pending requests may be canceled
1482  * using usb_unlink_urb() or usb_kill_urb().
1483  *
1484  * Data Transfer Buffers:
1485  *
1486  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1487  * taken from the general page pool.  That is provided by transfer_buffer
1488  * (control requests also use setup_packet), and host controller drivers
1489  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1490  * mapping operations can be expensive on some platforms (perhaps using a dma
1491  * bounce buffer or talking to an IOMMU),
1492  * although they're cheap on commodity x86 and ppc hardware.
1493  *
1494  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1495  * which tells the host controller driver that no such mapping is needed for
1496  * the transfer_buffer since
1497  * the device driver is DMA-aware.  For example, a device driver might
1498  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1499  * When this transfer flag is provided, host controller drivers will
1500  * attempt to use the dma address found in the transfer_dma
1501  * field rather than determining a dma address themselves.
1502  *
1503  * Note that transfer_buffer must still be set if the controller
1504  * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1505  * to root hub. If you have to trasfer between highmem zone and the device
1506  * on such controller, create a bounce buffer or bail out with an error.
1507  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1508  * capable, assign NULL to it, so that usbmon knows not to use the value.
1509  * The setup_packet must always be set, so it cannot be located in highmem.
1510  *
1511  * Initialization:
1512  *
1513  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1514  * zero), and complete fields.  All URBs must also initialize
1515  * transfer_buffer and transfer_buffer_length.  They may provide the
1516  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1517  * to be treated as errors; that flag is invalid for write requests.
1518  *
1519  * Bulk URBs may
1520  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1521  * should always terminate with a short packet, even if it means adding an
1522  * extra zero length packet.
1523  *
1524  * Control URBs must provide a valid pointer in the setup_packet field.
1525  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1526  * beforehand.
1527  *
1528  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1529  * or, for highspeed devices, 125 microsecond units)
1530  * to poll for transfers.  After the URB has been submitted, the interval
1531  * field reflects how the transfer was actually scheduled.
1532  * The polling interval may be more frequent than requested.
1533  * For example, some controllers have a maximum interval of 32 milliseconds,
1534  * while others support intervals of up to 1024 milliseconds.
1535  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1536  * endpoints, as well as high speed interrupt endpoints, the encoding of
1537  * the transfer interval in the endpoint descriptor is logarithmic.
1538  * Device drivers must convert that value to linear units themselves.)
1539  *
1540  * If an isochronous endpoint queue isn't already running, the host
1541  * controller will schedule a new URB to start as soon as bandwidth
1542  * utilization allows.  If the queue is running then a new URB will be
1543  * scheduled to start in the first transfer slot following the end of the
1544  * preceding URB, if that slot has not already expired.  If the slot has
1545  * expired (which can happen when IRQ delivery is delayed for a long time),
1546  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1547  * is clear then the URB will be scheduled to start in the expired slot,
1548  * implying that some of its packets will not be transferred; if the flag
1549  * is set then the URB will be scheduled in the first unexpired slot,
1550  * breaking the queue's synchronization.  Upon URB completion, the
1551  * start_frame field will be set to the (micro)frame number in which the
1552  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1553  * and can go from as low as 256 to as high as 65536 frames.
1554  *
1555  * Isochronous URBs have a different data transfer model, in part because
1556  * the quality of service is only "best effort".  Callers provide specially
1557  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1558  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1559  * URBs are normally queued, submitted by drivers to arrange that
1560  * transfers are at least double buffered, and then explicitly resubmitted
1561  * in completion handlers, so
1562  * that data (such as audio or video) streams at as constant a rate as the
1563  * host controller scheduler can support.
1564  *
1565  * Completion Callbacks:
1566  *
1567  * The completion callback is made in_interrupt(), and one of the first
1568  * things that a completion handler should do is check the status field.
1569  * The status field is provided for all URBs.  It is used to report
1570  * unlinked URBs, and status for all non-ISO transfers.  It should not
1571  * be examined before the URB is returned to the completion handler.
1572  *
1573  * The context field is normally used to link URBs back to the relevant
1574  * driver or request state.
1575  *
1576  * When the completion callback is invoked for non-isochronous URBs, the
1577  * actual_length field tells how many bytes were transferred.  This field
1578  * is updated even when the URB terminated with an error or was unlinked.
1579  *
1580  * ISO transfer status is reported in the status and actual_length fields
1581  * of the iso_frame_desc array, and the number of errors is reported in
1582  * error_count.  Completion callbacks for ISO transfers will normally
1583  * (re)submit URBs to ensure a constant transfer rate.
1584  *
1585  * Note that even fields marked "public" should not be touched by the driver
1586  * when the urb is owned by the hcd, that is, since the call to
1587  * usb_submit_urb() till the entry into the completion routine.
1588  */
1589 struct urb {
1590 	/* private: usb core and host controller only fields in the urb */
1591 	struct kref kref;		/* reference count of the URB */
1592 	int unlinked;			/* unlink error code */
1593 	void *hcpriv;			/* private data for host controller */
1594 	atomic_t use_count;		/* concurrent submissions counter */
1595 	atomic_t reject;		/* submissions will fail */
1596 
1597 	/* public: documented fields in the urb that can be used by drivers */
1598 	struct list_head urb_list;	/* list head for use by the urb's
1599 					 * current owner */
1600 	struct list_head anchor_list;	/* the URB may be anchored */
1601 	struct usb_anchor *anchor;
1602 	struct usb_device *dev;		/* (in) pointer to associated device */
1603 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1604 	unsigned int pipe;		/* (in) pipe information */
1605 	unsigned int stream_id;		/* (in) stream ID */
1606 	int status;			/* (return) non-ISO status */
1607 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1608 	void *transfer_buffer;		/* (in) associated data buffer */
1609 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1610 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1611 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1612 	int num_sgs;			/* (in) number of entries in the sg list */
1613 	u32 transfer_buffer_length;	/* (in) data buffer length */
1614 	u32 actual_length;		/* (return) actual transfer length */
1615 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1616 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1617 	int start_frame;		/* (modify) start frame (ISO) */
1618 	int number_of_packets;		/* (in) number of ISO packets */
1619 	int interval;			/* (modify) transfer interval
1620 					 * (INT/ISO) */
1621 	int error_count;		/* (return) number of ISO errors */
1622 	void *context;			/* (in) context for completion */
1623 	usb_complete_t complete;	/* (in) completion routine */
1624 
1625 	ANDROID_KABI_RESERVE(1);
1626 	ANDROID_KABI_RESERVE(2);
1627 	ANDROID_KABI_RESERVE(3);
1628 	ANDROID_KABI_RESERVE(4);
1629 
1630 	struct usb_iso_packet_descriptor iso_frame_desc[];
1631 					/* (in) ISO ONLY */
1632 };
1633 
1634 /* ----------------------------------------------------------------------- */
1635 
1636 /**
1637  * usb_fill_control_urb - initializes a control urb
1638  * @urb: pointer to the urb to initialize.
1639  * @dev: pointer to the struct usb_device for this urb.
1640  * @pipe: the endpoint pipe
1641  * @setup_packet: pointer to the setup_packet buffer
1642  * @transfer_buffer: pointer to the transfer buffer
1643  * @buffer_length: length of the transfer buffer
1644  * @complete_fn: pointer to the usb_complete_t function
1645  * @context: what to set the urb context to.
1646  *
1647  * Initializes a control urb with the proper information needed to submit
1648  * it to a device.
1649  */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1650 static inline void usb_fill_control_urb(struct urb *urb,
1651 					struct usb_device *dev,
1652 					unsigned int pipe,
1653 					unsigned char *setup_packet,
1654 					void *transfer_buffer,
1655 					int buffer_length,
1656 					usb_complete_t complete_fn,
1657 					void *context)
1658 {
1659 	urb->dev = dev;
1660 	urb->pipe = pipe;
1661 	urb->setup_packet = setup_packet;
1662 	urb->transfer_buffer = transfer_buffer;
1663 	urb->transfer_buffer_length = buffer_length;
1664 	urb->complete = complete_fn;
1665 	urb->context = context;
1666 }
1667 
1668 /**
1669  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1670  * @urb: pointer to the urb to initialize.
1671  * @dev: pointer to the struct usb_device for this urb.
1672  * @pipe: the endpoint pipe
1673  * @transfer_buffer: pointer to the transfer buffer
1674  * @buffer_length: length of the transfer buffer
1675  * @complete_fn: pointer to the usb_complete_t function
1676  * @context: what to set the urb context to.
1677  *
1678  * Initializes a bulk urb with the proper information needed to submit it
1679  * to a device.
1680  */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1681 static inline void usb_fill_bulk_urb(struct urb *urb,
1682 				     struct usb_device *dev,
1683 				     unsigned int pipe,
1684 				     void *transfer_buffer,
1685 				     int buffer_length,
1686 				     usb_complete_t complete_fn,
1687 				     void *context)
1688 {
1689 	urb->dev = dev;
1690 	urb->pipe = pipe;
1691 	urb->transfer_buffer = transfer_buffer;
1692 	urb->transfer_buffer_length = buffer_length;
1693 	urb->complete = complete_fn;
1694 	urb->context = context;
1695 }
1696 
1697 /**
1698  * usb_fill_int_urb - macro to help initialize a interrupt urb
1699  * @urb: pointer to the urb to initialize.
1700  * @dev: pointer to the struct usb_device for this urb.
1701  * @pipe: the endpoint pipe
1702  * @transfer_buffer: pointer to the transfer buffer
1703  * @buffer_length: length of the transfer buffer
1704  * @complete_fn: pointer to the usb_complete_t function
1705  * @context: what to set the urb context to.
1706  * @interval: what to set the urb interval to, encoded like
1707  *	the endpoint descriptor's bInterval value.
1708  *
1709  * Initializes a interrupt urb with the proper information needed to submit
1710  * it to a device.
1711  *
1712  * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1713  * encoding of the endpoint interval, and express polling intervals in
1714  * microframes (eight per millisecond) rather than in frames (one per
1715  * millisecond).
1716  *
1717  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1718  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1719  * through to the host controller, rather than being translated into microframe
1720  * units.
1721  */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1722 static inline void usb_fill_int_urb(struct urb *urb,
1723 				    struct usb_device *dev,
1724 				    unsigned int pipe,
1725 				    void *transfer_buffer,
1726 				    int buffer_length,
1727 				    usb_complete_t complete_fn,
1728 				    void *context,
1729 				    int interval)
1730 {
1731 	urb->dev = dev;
1732 	urb->pipe = pipe;
1733 	urb->transfer_buffer = transfer_buffer;
1734 	urb->transfer_buffer_length = buffer_length;
1735 	urb->complete = complete_fn;
1736 	urb->context = context;
1737 
1738 	if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1739 		/* make sure interval is within allowed range */
1740 		interval = clamp(interval, 1, 16);
1741 
1742 		urb->interval = 1 << (interval - 1);
1743 	} else {
1744 		urb->interval = interval;
1745 	}
1746 
1747 	urb->start_frame = -1;
1748 }
1749 
1750 extern void usb_init_urb(struct urb *urb);
1751 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1752 extern void usb_free_urb(struct urb *urb);
1753 #define usb_put_urb usb_free_urb
1754 extern struct urb *usb_get_urb(struct urb *urb);
1755 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1756 extern int usb_unlink_urb(struct urb *urb);
1757 extern void usb_kill_urb(struct urb *urb);
1758 extern void usb_poison_urb(struct urb *urb);
1759 extern void usb_unpoison_urb(struct urb *urb);
1760 extern void usb_block_urb(struct urb *urb);
1761 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1762 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1763 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1764 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1765 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1766 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1767 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1768 extern void usb_unanchor_urb(struct urb *urb);
1769 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1770 					 unsigned int timeout);
1771 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1772 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1773 extern int usb_anchor_empty(struct usb_anchor *anchor);
1774 
1775 #define usb_unblock_urb	usb_unpoison_urb
1776 
1777 /**
1778  * usb_urb_dir_in - check if an URB describes an IN transfer
1779  * @urb: URB to be checked
1780  *
1781  * Return: 1 if @urb describes an IN transfer (device-to-host),
1782  * otherwise 0.
1783  */
usb_urb_dir_in(struct urb * urb)1784 static inline int usb_urb_dir_in(struct urb *urb)
1785 {
1786 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1787 }
1788 
1789 /**
1790  * usb_urb_dir_out - check if an URB describes an OUT transfer
1791  * @urb: URB to be checked
1792  *
1793  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1794  * otherwise 0.
1795  */
usb_urb_dir_out(struct urb * urb)1796 static inline int usb_urb_dir_out(struct urb *urb)
1797 {
1798 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1799 }
1800 
1801 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1802 int usb_urb_ep_type_check(const struct urb *urb);
1803 
1804 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1805 	gfp_t mem_flags, dma_addr_t *dma);
1806 void usb_free_coherent(struct usb_device *dev, size_t size,
1807 	void *addr, dma_addr_t dma);
1808 
1809 #if 0
1810 struct urb *usb_buffer_map(struct urb *urb);
1811 void usb_buffer_dmasync(struct urb *urb);
1812 void usb_buffer_unmap(struct urb *urb);
1813 #endif
1814 
1815 struct scatterlist;
1816 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1817 		      struct scatterlist *sg, int nents);
1818 #if 0
1819 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1820 			   struct scatterlist *sg, int n_hw_ents);
1821 #endif
1822 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1823 			 struct scatterlist *sg, int n_hw_ents);
1824 
1825 /*-------------------------------------------------------------------*
1826  *                         SYNCHRONOUS CALL SUPPORT                  *
1827  *-------------------------------------------------------------------*/
1828 
1829 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1830 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1831 	void *data, __u16 size, int timeout);
1832 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1833 	void *data, int len, int *actual_length, int timeout);
1834 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1835 	void *data, int len, int *actual_length,
1836 	int timeout);
1837 
1838 /* wrappers around usb_control_msg() for the most common standard requests */
1839 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1840 			 __u8 requesttype, __u16 value, __u16 index,
1841 			 const void *data, __u16 size, int timeout,
1842 			 gfp_t memflags);
1843 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1844 			 __u8 requesttype, __u16 value, __u16 index,
1845 			 void *data, __u16 size, int timeout,
1846 			 gfp_t memflags);
1847 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1848 	unsigned char descindex, void *buf, int size);
1849 extern int usb_get_status(struct usb_device *dev,
1850 	int recip, int type, int target, void *data);
1851 
usb_get_std_status(struct usb_device * dev,int recip,int target,void * data)1852 static inline int usb_get_std_status(struct usb_device *dev,
1853 	int recip, int target, void *data)
1854 {
1855 	return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1856 		data);
1857 }
1858 
usb_get_ptm_status(struct usb_device * dev,void * data)1859 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1860 {
1861 	return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1862 		0, data);
1863 }
1864 
1865 extern int usb_string(struct usb_device *dev, int index,
1866 	char *buf, size_t size);
1867 
1868 /* wrappers that also update important state inside usbcore */
1869 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1870 extern int usb_reset_configuration(struct usb_device *dev);
1871 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1872 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1873 
1874 /* this request isn't really synchronous, but it belongs with the others */
1875 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1876 
1877 /* choose and set configuration for device */
1878 extern int usb_choose_configuration(struct usb_device *udev);
1879 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1880 
1881 /*
1882  * timeouts, in milliseconds, used for sending/receiving control messages
1883  * they typically complete within a few frames (msec) after they're issued
1884  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1885  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1886  */
1887 #define USB_CTRL_GET_TIMEOUT	5000
1888 #define USB_CTRL_SET_TIMEOUT	5000
1889 
1890 
1891 /**
1892  * struct usb_sg_request - support for scatter/gather I/O
1893  * @status: zero indicates success, else negative errno
1894  * @bytes: counts bytes transferred.
1895  *
1896  * These requests are initialized using usb_sg_init(), and then are used
1897  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1898  * members of the request object aren't for driver access.
1899  *
1900  * The status and bytecount values are valid only after usb_sg_wait()
1901  * returns.  If the status is zero, then the bytecount matches the total
1902  * from the request.
1903  *
1904  * After an error completion, drivers may need to clear a halt condition
1905  * on the endpoint.
1906  */
1907 struct usb_sg_request {
1908 	int			status;
1909 	size_t			bytes;
1910 
1911 	/* private:
1912 	 * members below are private to usbcore,
1913 	 * and are not provided for driver access!
1914 	 */
1915 	spinlock_t		lock;
1916 
1917 	struct usb_device	*dev;
1918 	int			pipe;
1919 
1920 	int			entries;
1921 	struct urb		**urbs;
1922 
1923 	int			count;
1924 	struct completion	complete;
1925 };
1926 
1927 int usb_sg_init(
1928 	struct usb_sg_request	*io,
1929 	struct usb_device	*dev,
1930 	unsigned		pipe,
1931 	unsigned		period,
1932 	struct scatterlist	*sg,
1933 	int			nents,
1934 	size_t			length,
1935 	gfp_t			mem_flags
1936 );
1937 void usb_sg_cancel(struct usb_sg_request *io);
1938 void usb_sg_wait(struct usb_sg_request *io);
1939 
1940 
1941 /* ----------------------------------------------------------------------- */
1942 
1943 /*
1944  * For various legacy reasons, Linux has a small cookie that's paired with
1945  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1946  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1947  * an unsigned int encoded as:
1948  *
1949  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1950  *					 1 = Device-to-Host [In] ...
1951  *					like endpoint bEndpointAddress)
1952  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1953  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1954  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1955  *					 10 = control, 11 = bulk)
1956  *
1957  * Given the device address and endpoint descriptor, pipes are redundant.
1958  */
1959 
1960 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1961 /* (yet ... they're the values used by usbfs) */
1962 #define PIPE_ISOCHRONOUS		0
1963 #define PIPE_INTERRUPT			1
1964 #define PIPE_CONTROL			2
1965 #define PIPE_BULK			3
1966 
1967 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1968 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1969 
1970 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1971 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1972 
1973 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1974 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1975 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1976 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1977 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1978 
__create_pipe(struct usb_device * dev,unsigned int endpoint)1979 static inline unsigned int __create_pipe(struct usb_device *dev,
1980 		unsigned int endpoint)
1981 {
1982 	return (dev->devnum << 8) | (endpoint << 15);
1983 }
1984 
1985 /* Create various pipes... */
1986 #define usb_sndctrlpipe(dev, endpoint)	\
1987 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1988 #define usb_rcvctrlpipe(dev, endpoint)	\
1989 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1990 #define usb_sndisocpipe(dev, endpoint)	\
1991 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1992 #define usb_rcvisocpipe(dev, endpoint)	\
1993 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1994 #define usb_sndbulkpipe(dev, endpoint)	\
1995 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1996 #define usb_rcvbulkpipe(dev, endpoint)	\
1997 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1998 #define usb_sndintpipe(dev, endpoint)	\
1999 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
2000 #define usb_rcvintpipe(dev, endpoint)	\
2001 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2002 
2003 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)2004 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
2005 {
2006 	struct usb_host_endpoint **eps;
2007 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
2008 	return eps[usb_pipeendpoint(pipe)];
2009 }
2010 
2011 /*-------------------------------------------------------------------------*/
2012 
2013 static inline __u16
usb_maxpacket(struct usb_device * udev,int pipe,int is_out)2014 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
2015 {
2016 	struct usb_host_endpoint	*ep;
2017 	unsigned			epnum = usb_pipeendpoint(pipe);
2018 
2019 	if (is_out) {
2020 		WARN_ON(usb_pipein(pipe));
2021 		ep = udev->ep_out[epnum];
2022 	} else {
2023 		WARN_ON(usb_pipeout(pipe));
2024 		ep = udev->ep_in[epnum];
2025 	}
2026 	if (!ep)
2027 		return 0;
2028 
2029 	/* NOTE:  only 0x07ff bits are for packet size... */
2030 	return usb_endpoint_maxp(&ep->desc);
2031 }
2032 
2033 /* ----------------------------------------------------------------------- */
2034 
2035 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)2036 static inline int usb_translate_errors(int error_code)
2037 {
2038 	switch (error_code) {
2039 	case 0:
2040 	case -ENOMEM:
2041 	case -ENODEV:
2042 	case -EOPNOTSUPP:
2043 		return error_code;
2044 	default:
2045 		return -EIO;
2046 	}
2047 }
2048 
2049 /* Events from the usb core */
2050 #define USB_DEVICE_ADD		0x0001
2051 #define USB_DEVICE_REMOVE	0x0002
2052 #define USB_BUS_ADD		0x0003
2053 #define USB_BUS_REMOVE		0x0004
2054 extern void usb_register_notify(struct notifier_block *nb);
2055 extern void usb_unregister_notify(struct notifier_block *nb);
2056 
2057 /* debugfs stuff */
2058 extern struct dentry *usb_debug_root;
2059 
2060 /* LED triggers */
2061 enum usb_led_event {
2062 	USB_LED_EVENT_HOST = 0,
2063 	USB_LED_EVENT_GADGET = 1,
2064 };
2065 
2066 #ifdef CONFIG_USB_LED_TRIG
2067 extern void usb_led_activity(enum usb_led_event ev);
2068 #else
usb_led_activity(enum usb_led_event ev)2069 static inline void usb_led_activity(enum usb_led_event ev) {}
2070 #endif
2071 
2072 #endif  /* __KERNEL__ */
2073 
2074 #endif
2075