1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7
8 #define USB_MAJOR 180
9 #define USB_DEVICE_MAJOR 189
10
11
12 #ifdef __KERNEL__
13
14 #include <linux/errno.h> /* for -ENODEV */
15 #include <linux/delay.h> /* for mdelay() */
16 #include <linux/interrupt.h> /* for in_interrupt() */
17 #include <linux/list.h> /* for struct list_head */
18 #include <linux/kref.h> /* for struct kref */
19 #include <linux/device.h> /* for struct device */
20 #include <linux/fs.h> /* for struct file_operations */
21 #include <linux/completion.h> /* for struct completion */
22 #include <linux/sched.h> /* for current && schedule_timeout */
23 #include <linux/mutex.h> /* for struct mutex */
24 #include <linux/pm_runtime.h> /* for runtime PM */
25 #include <linux/android_kabi.h>
26
27 struct usb_device;
28 struct usb_driver;
29 struct wusb_dev;
30
31 /*-------------------------------------------------------------------------*/
32
33 /*
34 * Host-side wrappers for standard USB descriptors ... these are parsed
35 * from the data provided by devices. Parsing turns them from a flat
36 * sequence of descriptors into a hierarchy:
37 *
38 * - devices have one (usually) or more configs;
39 * - configs have one (often) or more interfaces;
40 * - interfaces have one (usually) or more settings;
41 * - each interface setting has zero or (usually) more endpoints.
42 * - a SuperSpeed endpoint has a companion descriptor
43 *
44 * And there might be other descriptors mixed in with those.
45 *
46 * Devices may also have class-specific or vendor-specific descriptors.
47 */
48
49 struct ep_device;
50
51 /**
52 * struct usb_host_endpoint - host-side endpoint descriptor and queue
53 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
54 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
55 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
56 * @urb_list: urbs queued to this endpoint; maintained by usbcore
57 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
58 * with one or more transfer descriptors (TDs) per urb
59 * @ep_dev: ep_device for sysfs info
60 * @extra: descriptors following this endpoint in the configuration
61 * @extralen: how many bytes of "extra" are valid
62 * @enabled: URBs may be submitted to this endpoint
63 * @streams: number of USB-3 streams allocated on the endpoint
64 *
65 * USB requests are always queued to a given endpoint, identified by a
66 * descriptor within an active interface in a given USB configuration.
67 */
68 struct usb_host_endpoint {
69 struct usb_endpoint_descriptor desc;
70 struct usb_ss_ep_comp_descriptor ss_ep_comp;
71 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp;
72 struct list_head urb_list;
73 void *hcpriv;
74 struct ep_device *ep_dev; /* For sysfs info */
75
76 unsigned char *extra; /* Extra descriptors */
77 int extralen;
78 int enabled;
79 int streams;
80 };
81
82 /* host-side wrapper for one interface setting's parsed descriptors */
83 struct usb_host_interface {
84 struct usb_interface_descriptor desc;
85
86 int extralen;
87 unsigned char *extra; /* Extra descriptors */
88
89 /* array of desc.bNumEndpoints endpoints associated with this
90 * interface setting. these will be in no particular order.
91 */
92 struct usb_host_endpoint *endpoint;
93
94 char *string; /* iInterface string, if present */
95 };
96
97 enum usb_interface_condition {
98 USB_INTERFACE_UNBOUND = 0,
99 USB_INTERFACE_BINDING,
100 USB_INTERFACE_BOUND,
101 USB_INTERFACE_UNBINDING,
102 };
103
104 int __must_check
105 usb_find_common_endpoints(struct usb_host_interface *alt,
106 struct usb_endpoint_descriptor **bulk_in,
107 struct usb_endpoint_descriptor **bulk_out,
108 struct usb_endpoint_descriptor **int_in,
109 struct usb_endpoint_descriptor **int_out);
110
111 int __must_check
112 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
113 struct usb_endpoint_descriptor **bulk_in,
114 struct usb_endpoint_descriptor **bulk_out,
115 struct usb_endpoint_descriptor **int_in,
116 struct usb_endpoint_descriptor **int_out);
117
118 static inline int __must_check
usb_find_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)119 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
120 struct usb_endpoint_descriptor **bulk_in)
121 {
122 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
123 }
124
125 static inline int __must_check
usb_find_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)126 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
127 struct usb_endpoint_descriptor **bulk_out)
128 {
129 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
130 }
131
132 static inline int __must_check
usb_find_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)133 usb_find_int_in_endpoint(struct usb_host_interface *alt,
134 struct usb_endpoint_descriptor **int_in)
135 {
136 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
137 }
138
139 static inline int __must_check
usb_find_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)140 usb_find_int_out_endpoint(struct usb_host_interface *alt,
141 struct usb_endpoint_descriptor **int_out)
142 {
143 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
144 }
145
146 static inline int __must_check
usb_find_last_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)147 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
148 struct usb_endpoint_descriptor **bulk_in)
149 {
150 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
151 }
152
153 static inline int __must_check
usb_find_last_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)154 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
155 struct usb_endpoint_descriptor **bulk_out)
156 {
157 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
158 }
159
160 static inline int __must_check
usb_find_last_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)161 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
162 struct usb_endpoint_descriptor **int_in)
163 {
164 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
165 }
166
167 static inline int __must_check
usb_find_last_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)168 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
169 struct usb_endpoint_descriptor **int_out)
170 {
171 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
172 }
173
174 /**
175 * struct usb_interface - what usb device drivers talk to
176 * @altsetting: array of interface structures, one for each alternate
177 * setting that may be selected. Each one includes a set of
178 * endpoint configurations. They will be in no particular order.
179 * @cur_altsetting: the current altsetting.
180 * @num_altsetting: number of altsettings defined.
181 * @intf_assoc: interface association descriptor
182 * @minor: the minor number assigned to this interface, if this
183 * interface is bound to a driver that uses the USB major number.
184 * If this interface does not use the USB major, this field should
185 * be unused. The driver should set this value in the probe()
186 * function of the driver, after it has been assigned a minor
187 * number from the USB core by calling usb_register_dev().
188 * @condition: binding state of the interface: not bound, binding
189 * (in probe()), bound to a driver, or unbinding (in disconnect())
190 * @sysfs_files_created: sysfs attributes exist
191 * @ep_devs_created: endpoint child pseudo-devices exist
192 * @unregistering: flag set when the interface is being unregistered
193 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
194 * capability during autosuspend.
195 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
196 * has been deferred.
197 * @needs_binding: flag set when the driver should be re-probed or unbound
198 * following a reset or suspend operation it doesn't support.
199 * @authorized: This allows to (de)authorize individual interfaces instead
200 * a whole device in contrast to the device authorization.
201 * @dev: driver model's view of this device
202 * @usb_dev: if an interface is bound to the USB major, this will point
203 * to the sysfs representation for that device.
204 * @reset_ws: Used for scheduling resets from atomic context.
205 * @resetting_device: USB core reset the device, so use alt setting 0 as
206 * current; needs bandwidth alloc after reset.
207 *
208 * USB device drivers attach to interfaces on a physical device. Each
209 * interface encapsulates a single high level function, such as feeding
210 * an audio stream to a speaker or reporting a change in a volume control.
211 * Many USB devices only have one interface. The protocol used to talk to
212 * an interface's endpoints can be defined in a usb "class" specification,
213 * or by a product's vendor. The (default) control endpoint is part of
214 * every interface, but is never listed among the interface's descriptors.
215 *
216 * The driver that is bound to the interface can use standard driver model
217 * calls such as dev_get_drvdata() on the dev member of this structure.
218 *
219 * Each interface may have alternate settings. The initial configuration
220 * of a device sets altsetting 0, but the device driver can change
221 * that setting using usb_set_interface(). Alternate settings are often
222 * used to control the use of periodic endpoints, such as by having
223 * different endpoints use different amounts of reserved USB bandwidth.
224 * All standards-conformant USB devices that use isochronous endpoints
225 * will use them in non-default settings.
226 *
227 * The USB specification says that alternate setting numbers must run from
228 * 0 to one less than the total number of alternate settings. But some
229 * devices manage to mess this up, and the structures aren't necessarily
230 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
231 * look up an alternate setting in the altsetting array based on its number.
232 */
233 struct usb_interface {
234 /* array of alternate settings for this interface,
235 * stored in no particular order */
236 struct usb_host_interface *altsetting;
237
238 struct usb_host_interface *cur_altsetting; /* the currently
239 * active alternate setting */
240 unsigned num_altsetting; /* number of alternate settings */
241
242 /* If there is an interface association descriptor then it will list
243 * the associated interfaces */
244 struct usb_interface_assoc_descriptor *intf_assoc;
245
246 int minor; /* minor number this interface is
247 * bound to */
248 enum usb_interface_condition condition; /* state of binding */
249 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
250 unsigned ep_devs_created:1; /* endpoint "devices" exist */
251 unsigned unregistering:1; /* unregistration is in progress */
252 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
253 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
254 unsigned needs_binding:1; /* needs delayed unbind/rebind */
255 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
256 unsigned authorized:1; /* used for interface authorization */
257
258 struct device dev; /* interface specific device info */
259 struct device *usb_dev;
260 struct work_struct reset_ws; /* for resets in atomic context */
261
262 ANDROID_KABI_RESERVE(1);
263 ANDROID_KABI_RESERVE(2);
264 ANDROID_KABI_RESERVE(3);
265 ANDROID_KABI_RESERVE(4);
266 };
267 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
268
usb_get_intfdata(struct usb_interface * intf)269 static inline void *usb_get_intfdata(struct usb_interface *intf)
270 {
271 return dev_get_drvdata(&intf->dev);
272 }
273
usb_set_intfdata(struct usb_interface * intf,void * data)274 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
275 {
276 dev_set_drvdata(&intf->dev, data);
277 }
278
279 struct usb_interface *usb_get_intf(struct usb_interface *intf);
280 void usb_put_intf(struct usb_interface *intf);
281
282 /* Hard limit */
283 #define USB_MAXENDPOINTS 30
284 /* this maximum is arbitrary */
285 #define USB_MAXINTERFACES 32
286 #define USB_MAXIADS (USB_MAXINTERFACES/2)
287
288 /*
289 * USB Resume Timer: Every Host controller driver should drive the resume
290 * signalling on the bus for the amount of time defined by this macro.
291 *
292 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
293 *
294 * Note that the USB Specification states we should drive resume for *at least*
295 * 20 ms, but it doesn't give an upper bound. This creates two possible
296 * situations which we want to avoid:
297 *
298 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
299 * us to fail USB Electrical Tests, thus failing Certification
300 *
301 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
302 * and while we can argue that's against the USB Specification, we don't have
303 * control over which devices a certification laboratory will be using for
304 * certification. If CertLab uses a device which was tested against Windows and
305 * that happens to have relaxed resume signalling rules, we might fall into
306 * situations where we fail interoperability and electrical tests.
307 *
308 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
309 * should cope with both LPJ calibration errors and devices not following every
310 * detail of the USB Specification.
311 */
312 #define USB_RESUME_TIMEOUT 40 /* ms */
313
314 /**
315 * struct usb_interface_cache - long-term representation of a device interface
316 * @num_altsetting: number of altsettings defined.
317 * @ref: reference counter.
318 * @altsetting: variable-length array of interface structures, one for
319 * each alternate setting that may be selected. Each one includes a
320 * set of endpoint configurations. They will be in no particular order.
321 *
322 * These structures persist for the lifetime of a usb_device, unlike
323 * struct usb_interface (which persists only as long as its configuration
324 * is installed). The altsetting arrays can be accessed through these
325 * structures at any time, permitting comparison of configurations and
326 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
327 */
328 struct usb_interface_cache {
329 unsigned num_altsetting; /* number of alternate settings */
330 struct kref ref; /* reference counter */
331
332 /* variable-length array of alternate settings for this interface,
333 * stored in no particular order */
334 struct usb_host_interface altsetting[];
335 };
336 #define ref_to_usb_interface_cache(r) \
337 container_of(r, struct usb_interface_cache, ref)
338 #define altsetting_to_usb_interface_cache(a) \
339 container_of(a, struct usb_interface_cache, altsetting[0])
340
341 /**
342 * struct usb_host_config - representation of a device's configuration
343 * @desc: the device's configuration descriptor.
344 * @string: pointer to the cached version of the iConfiguration string, if
345 * present for this configuration.
346 * @intf_assoc: list of any interface association descriptors in this config
347 * @interface: array of pointers to usb_interface structures, one for each
348 * interface in the configuration. The number of interfaces is stored
349 * in desc.bNumInterfaces. These pointers are valid only while the
350 * configuration is active.
351 * @intf_cache: array of pointers to usb_interface_cache structures, one
352 * for each interface in the configuration. These structures exist
353 * for the entire life of the device.
354 * @extra: pointer to buffer containing all extra descriptors associated
355 * with this configuration (those preceding the first interface
356 * descriptor).
357 * @extralen: length of the extra descriptors buffer.
358 *
359 * USB devices may have multiple configurations, but only one can be active
360 * at any time. Each encapsulates a different operational environment;
361 * for example, a dual-speed device would have separate configurations for
362 * full-speed and high-speed operation. The number of configurations
363 * available is stored in the device descriptor as bNumConfigurations.
364 *
365 * A configuration can contain multiple interfaces. Each corresponds to
366 * a different function of the USB device, and all are available whenever
367 * the configuration is active. The USB standard says that interfaces
368 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
369 * of devices get this wrong. In addition, the interface array is not
370 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
371 * look up an interface entry based on its number.
372 *
373 * Device drivers should not attempt to activate configurations. The choice
374 * of which configuration to install is a policy decision based on such
375 * considerations as available power, functionality provided, and the user's
376 * desires (expressed through userspace tools). However, drivers can call
377 * usb_reset_configuration() to reinitialize the current configuration and
378 * all its interfaces.
379 */
380 struct usb_host_config {
381 struct usb_config_descriptor desc;
382
383 char *string; /* iConfiguration string, if present */
384
385 /* List of any Interface Association Descriptors in this
386 * configuration. */
387 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
388
389 /* the interfaces associated with this configuration,
390 * stored in no particular order */
391 struct usb_interface *interface[USB_MAXINTERFACES];
392
393 /* Interface information available even when this is not the
394 * active configuration */
395 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
396
397 unsigned char *extra; /* Extra descriptors */
398 int extralen;
399 };
400
401 /* USB2.0 and USB3.0 device BOS descriptor set */
402 struct usb_host_bos {
403 struct usb_bos_descriptor *desc;
404
405 /* wireless cap descriptor is handled by wusb */
406 struct usb_ext_cap_descriptor *ext_cap;
407 struct usb_ss_cap_descriptor *ss_cap;
408 struct usb_ssp_cap_descriptor *ssp_cap;
409 struct usb_ss_container_id_descriptor *ss_id;
410 struct usb_ptm_cap_descriptor *ptm_cap;
411
412 ANDROID_KABI_RESERVE(1);
413 ANDROID_KABI_RESERVE(2);
414 ANDROID_KABI_RESERVE(3);
415 ANDROID_KABI_RESERVE(4);
416 };
417
418 int __usb_get_extra_descriptor(char *buffer, unsigned size,
419 unsigned char type, void **ptr, size_t min);
420 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
421 __usb_get_extra_descriptor((ifpoint)->extra, \
422 (ifpoint)->extralen, \
423 type, (void **)ptr, sizeof(**(ptr)))
424
425 /* ----------------------------------------------------------------------- */
426
427 /* USB device number allocation bitmap */
428 struct usb_devmap {
429 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
430 };
431
432 /*
433 * Allocated per bus (tree of devices) we have:
434 */
435 struct usb_bus {
436 struct device *controller; /* host side hardware */
437 struct device *sysdev; /* as seen from firmware or bus */
438 int busnum; /* Bus number (in order of reg) */
439 const char *bus_name; /* stable id (PCI slot_name etc) */
440 u8 uses_pio_for_control; /*
441 * Does the host controller use PIO
442 * for control transfers?
443 */
444 u8 otg_port; /* 0, or number of OTG/HNP port */
445 unsigned is_b_host:1; /* true during some HNP roleswitches */
446 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
447 unsigned no_stop_on_short:1; /*
448 * Quirk: some controllers don't stop
449 * the ep queue on a short transfer
450 * with the URB_SHORT_NOT_OK flag set.
451 */
452 unsigned no_sg_constraint:1; /* no sg constraint */
453 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
454
455 int devnum_next; /* Next open device number in
456 * round-robin allocation */
457 struct mutex devnum_next_mutex; /* devnum_next mutex */
458
459 struct usb_devmap devmap; /* device address allocation map */
460 struct usb_device *root_hub; /* Root hub */
461 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
462
463 int bandwidth_allocated; /* on this bus: how much of the time
464 * reserved for periodic (intr/iso)
465 * requests is used, on average?
466 * Units: microseconds/frame.
467 * Limits: Full/low speed reserve 90%,
468 * while high speed reserves 80%.
469 */
470 int bandwidth_int_reqs; /* number of Interrupt requests */
471 int bandwidth_isoc_reqs; /* number of Isoc. requests */
472
473 unsigned resuming_ports; /* bit array: resuming root-hub ports */
474
475 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
476 struct mon_bus *mon_bus; /* non-null when associated */
477 int monitored; /* non-zero when monitored */
478 #endif
479
480 ANDROID_KABI_RESERVE(1);
481 ANDROID_KABI_RESERVE(2);
482 ANDROID_KABI_RESERVE(3);
483 ANDROID_KABI_RESERVE(4);
484 };
485
486 struct usb_dev_state;
487
488 /* ----------------------------------------------------------------------- */
489
490 struct usb_tt;
491
492 enum usb_device_removable {
493 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
494 USB_DEVICE_REMOVABLE,
495 USB_DEVICE_FIXED,
496 };
497
498 enum usb_port_connect_type {
499 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
500 USB_PORT_CONNECT_TYPE_HOT_PLUG,
501 USB_PORT_CONNECT_TYPE_HARD_WIRED,
502 USB_PORT_NOT_USED,
503 };
504
505 /*
506 * USB port quirks.
507 */
508
509 /* For the given port, prefer the old (faster) enumeration scheme. */
510 #define USB_PORT_QUIRK_OLD_SCHEME BIT(0)
511
512 /* Decrease TRSTRCY to 10ms during device enumeration. */
513 #define USB_PORT_QUIRK_FAST_ENUM BIT(1)
514
515 /*
516 * USB 2.0 Link Power Management (LPM) parameters.
517 */
518 struct usb2_lpm_parameters {
519 /* Best effort service latency indicate how long the host will drive
520 * resume on an exit from L1.
521 */
522 unsigned int besl;
523
524 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
525 * When the timer counts to zero, the parent hub will initiate a LPM
526 * transition to L1.
527 */
528 int timeout;
529 };
530
531 /*
532 * USB 3.0 Link Power Management (LPM) parameters.
533 *
534 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
535 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
536 * All three are stored in nanoseconds.
537 */
538 struct usb3_lpm_parameters {
539 /*
540 * Maximum exit latency (MEL) for the host to send a packet to the
541 * device (either a Ping for isoc endpoints, or a data packet for
542 * interrupt endpoints), the hubs to decode the packet, and for all hubs
543 * in the path to transition the links to U0.
544 */
545 unsigned int mel;
546 /*
547 * Maximum exit latency for a device-initiated LPM transition to bring
548 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
549 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
550 */
551 unsigned int pel;
552
553 /*
554 * The System Exit Latency (SEL) includes PEL, and three other
555 * latencies. After a device initiates a U0 transition, it will take
556 * some time from when the device sends the ERDY to when it will finally
557 * receive the data packet. Basically, SEL should be the worse-case
558 * latency from when a device starts initiating a U0 transition to when
559 * it will get data.
560 */
561 unsigned int sel;
562 /*
563 * The idle timeout value that is currently programmed into the parent
564 * hub for this device. When the timer counts to zero, the parent hub
565 * will initiate an LPM transition to either U1 or U2.
566 */
567 int timeout;
568 };
569
570 /**
571 * struct usb_device - kernel's representation of a USB device
572 * @devnum: device number; address on a USB bus
573 * @devpath: device ID string for use in messages (e.g., /port/...)
574 * @route: tree topology hex string for use with xHCI
575 * @state: device state: configured, not attached, etc.
576 * @speed: device speed: high/full/low (or error)
577 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
578 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
579 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
580 * @ttport: device port on that tt hub
581 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
582 * @parent: our hub, unless we're the root
583 * @bus: bus we're part of
584 * @ep0: endpoint 0 data (default control pipe)
585 * @dev: generic device interface
586 * @descriptor: USB device descriptor
587 * @bos: USB device BOS descriptor set
588 * @config: all of the device's configs
589 * @actconfig: the active configuration
590 * @ep_in: array of IN endpoints
591 * @ep_out: array of OUT endpoints
592 * @rawdescriptors: raw descriptors for each config
593 * @bus_mA: Current available from the bus
594 * @portnum: parent port number (origin 1)
595 * @level: number of USB hub ancestors
596 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
597 * @can_submit: URBs may be submitted
598 * @persist_enabled: USB_PERSIST enabled for this device
599 * @have_langid: whether string_langid is valid
600 * @authorized: policy has said we can use it;
601 * (user space) policy determines if we authorize this device to be
602 * used or not. By default, wired USB devices are authorized.
603 * WUSB devices are not, until we authorize them from user space.
604 * FIXME -- complete doc
605 * @authenticated: Crypto authentication passed
606 * @wusb: device is Wireless USB
607 * @lpm_capable: device supports LPM
608 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
609 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
610 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
611 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
612 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
613 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
614 * @string_langid: language ID for strings
615 * @product: iProduct string, if present (static)
616 * @manufacturer: iManufacturer string, if present (static)
617 * @serial: iSerialNumber string, if present (static)
618 * @filelist: usbfs files that are open to this device
619 * @maxchild: number of ports if hub
620 * @quirks: quirks of the whole device
621 * @urbnum: number of URBs submitted for the whole device
622 * @active_duration: total time device is not suspended
623 * @connect_time: time device was first connected
624 * @do_remote_wakeup: remote wakeup should be enabled
625 * @reset_resume: needs reset instead of resume
626 * @port_is_suspended: the upstream port is suspended (L2 or U3)
627 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
628 * specific data for the device.
629 * @slot_id: Slot ID assigned by xHCI
630 * @removable: Device can be physically removed from this port
631 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
632 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
633 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
634 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
635 * to keep track of the number of functions that require USB 3.0 Link Power
636 * Management to be disabled for this usb_device. This count should only
637 * be manipulated by those functions, with the bandwidth_mutex is held.
638 * @hub_delay: cached value consisting of:
639 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
640 * Will be used as wValue for SetIsochDelay requests.
641 * @use_generic_driver: ask driver core to reprobe using the generic driver.
642 *
643 * Notes:
644 * Usbcore drivers should not set usbdev->state directly. Instead use
645 * usb_set_device_state().
646 */
647 struct usb_device {
648 int devnum;
649 char devpath[16];
650 u32 route;
651 enum usb_device_state state;
652 enum usb_device_speed speed;
653 unsigned int rx_lanes;
654 unsigned int tx_lanes;
655
656 struct usb_tt *tt;
657 int ttport;
658
659 unsigned int toggle[2];
660
661 struct usb_device *parent;
662 struct usb_bus *bus;
663 struct usb_host_endpoint ep0;
664
665 struct device dev;
666
667 struct usb_device_descriptor descriptor;
668 struct usb_host_bos *bos;
669 struct usb_host_config *config;
670
671 struct usb_host_config *actconfig;
672 struct usb_host_endpoint *ep_in[16];
673 struct usb_host_endpoint *ep_out[16];
674
675 char **rawdescriptors;
676
677 unsigned short bus_mA;
678 u8 portnum;
679 u8 level;
680 u8 devaddr;
681
682 unsigned can_submit:1;
683 unsigned persist_enabled:1;
684 unsigned have_langid:1;
685 unsigned authorized:1;
686 unsigned authenticated:1;
687 unsigned wusb:1;
688 unsigned lpm_capable:1;
689 unsigned usb2_hw_lpm_capable:1;
690 unsigned usb2_hw_lpm_besl_capable:1;
691 unsigned usb2_hw_lpm_enabled:1;
692 unsigned usb2_hw_lpm_allowed:1;
693 unsigned usb3_lpm_u1_enabled:1;
694 unsigned usb3_lpm_u2_enabled:1;
695 int string_langid;
696
697 /* static strings from the device */
698 char *product;
699 char *manufacturer;
700 char *serial;
701
702 struct list_head filelist;
703
704 int maxchild;
705
706 u32 quirks;
707 atomic_t urbnum;
708
709 unsigned long active_duration;
710
711 #ifdef CONFIG_PM
712 unsigned long connect_time;
713
714 unsigned do_remote_wakeup:1;
715 unsigned reset_resume:1;
716 unsigned port_is_suspended:1;
717 #endif
718 struct wusb_dev *wusb_dev;
719 int slot_id;
720 enum usb_device_removable removable;
721 struct usb2_lpm_parameters l1_params;
722 struct usb3_lpm_parameters u1_params;
723 struct usb3_lpm_parameters u2_params;
724 unsigned lpm_disable_count;
725
726 u16 hub_delay;
727 unsigned use_generic_driver:1;
728
729 ANDROID_KABI_RESERVE(1);
730 ANDROID_KABI_RESERVE(2);
731 ANDROID_KABI_RESERVE(3);
732 ANDROID_KABI_RESERVE(4);
733 };
734 #define to_usb_device(d) container_of(d, struct usb_device, dev)
735
interface_to_usbdev(struct usb_interface * intf)736 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
737 {
738 return to_usb_device(intf->dev.parent);
739 }
740
741 extern struct usb_device *usb_get_dev(struct usb_device *dev);
742 extern void usb_put_dev(struct usb_device *dev);
743 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
744 int port1);
745
746 /**
747 * usb_hub_for_each_child - iterate over all child devices on the hub
748 * @hdev: USB device belonging to the usb hub
749 * @port1: portnum associated with child device
750 * @child: child device pointer
751 */
752 #define usb_hub_for_each_child(hdev, port1, child) \
753 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
754 port1 <= hdev->maxchild; \
755 child = usb_hub_find_child(hdev, ++port1)) \
756 if (!child) continue; else
757
758 /* USB device locking */
759 #define usb_lock_device(udev) device_lock(&(udev)->dev)
760 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
761 #define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev)
762 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
763 extern int usb_lock_device_for_reset(struct usb_device *udev,
764 const struct usb_interface *iface);
765
766 /* USB port reset for device reinitialization */
767 extern int usb_reset_device(struct usb_device *dev);
768 extern void usb_queue_reset_device(struct usb_interface *dev);
769
770 extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
771
772 #ifdef CONFIG_ACPI
773 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
774 bool enable);
775 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
776 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)777 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
778 bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)779 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
780 { return true; }
781 #endif
782
783 /* USB autosuspend and autoresume */
784 #ifdef CONFIG_PM
785 extern void usb_enable_autosuspend(struct usb_device *udev);
786 extern void usb_disable_autosuspend(struct usb_device *udev);
787
788 extern int usb_autopm_get_interface(struct usb_interface *intf);
789 extern void usb_autopm_put_interface(struct usb_interface *intf);
790 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
791 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
792 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
793 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
794
usb_mark_last_busy(struct usb_device * udev)795 static inline void usb_mark_last_busy(struct usb_device *udev)
796 {
797 pm_runtime_mark_last_busy(&udev->dev);
798 }
799
800 #else
801
usb_enable_autosuspend(struct usb_device * udev)802 static inline int usb_enable_autosuspend(struct usb_device *udev)
803 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)804 static inline int usb_disable_autosuspend(struct usb_device *udev)
805 { return 0; }
806
usb_autopm_get_interface(struct usb_interface * intf)807 static inline int usb_autopm_get_interface(struct usb_interface *intf)
808 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)809 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
810 { return 0; }
811
usb_autopm_put_interface(struct usb_interface * intf)812 static inline void usb_autopm_put_interface(struct usb_interface *intf)
813 { }
usb_autopm_put_interface_async(struct usb_interface * intf)814 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
815 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)816 static inline void usb_autopm_get_interface_no_resume(
817 struct usb_interface *intf)
818 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)819 static inline void usb_autopm_put_interface_no_suspend(
820 struct usb_interface *intf)
821 { }
usb_mark_last_busy(struct usb_device * udev)822 static inline void usb_mark_last_busy(struct usb_device *udev)
823 { }
824 #endif
825
826 extern int usb_disable_lpm(struct usb_device *udev);
827 extern void usb_enable_lpm(struct usb_device *udev);
828 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
829 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
830 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
831
832 extern int usb_disable_ltm(struct usb_device *udev);
833 extern void usb_enable_ltm(struct usb_device *udev);
834
usb_device_supports_ltm(struct usb_device * udev)835 static inline bool usb_device_supports_ltm(struct usb_device *udev)
836 {
837 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
838 return false;
839 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
840 }
841
usb_device_no_sg_constraint(struct usb_device * udev)842 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
843 {
844 return udev && udev->bus && udev->bus->no_sg_constraint;
845 }
846
847
848 /*-------------------------------------------------------------------------*/
849
850 /* for drivers using iso endpoints */
851 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
852
853 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
854 extern int usb_alloc_streams(struct usb_interface *interface,
855 struct usb_host_endpoint **eps, unsigned int num_eps,
856 unsigned int num_streams, gfp_t mem_flags);
857
858 /* Reverts a group of bulk endpoints back to not using stream IDs. */
859 extern int usb_free_streams(struct usb_interface *interface,
860 struct usb_host_endpoint **eps, unsigned int num_eps,
861 gfp_t mem_flags);
862
863 /* used these for multi-interface device registration */
864 extern int usb_driver_claim_interface(struct usb_driver *driver,
865 struct usb_interface *iface, void *priv);
866
867 /**
868 * usb_interface_claimed - returns true iff an interface is claimed
869 * @iface: the interface being checked
870 *
871 * Return: %true (nonzero) iff the interface is claimed, else %false
872 * (zero).
873 *
874 * Note:
875 * Callers must own the driver model's usb bus readlock. So driver
876 * probe() entries don't need extra locking, but other call contexts
877 * may need to explicitly claim that lock.
878 *
879 */
usb_interface_claimed(struct usb_interface * iface)880 static inline int usb_interface_claimed(struct usb_interface *iface)
881 {
882 return (iface->dev.driver != NULL);
883 }
884
885 extern void usb_driver_release_interface(struct usb_driver *driver,
886 struct usb_interface *iface);
887 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
888 const struct usb_device_id *id);
889 extern int usb_match_one_id(struct usb_interface *interface,
890 const struct usb_device_id *id);
891
892 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
893 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
894 int minor);
895 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
896 unsigned ifnum);
897 extern struct usb_host_interface *usb_altnum_to_altsetting(
898 const struct usb_interface *intf, unsigned int altnum);
899 extern struct usb_host_interface *usb_find_alt_setting(
900 struct usb_host_config *config,
901 unsigned int iface_num,
902 unsigned int alt_num);
903
904 /* port claiming functions */
905 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
906 struct usb_dev_state *owner);
907 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
908 struct usb_dev_state *owner);
909
910 /**
911 * usb_make_path - returns stable device path in the usb tree
912 * @dev: the device whose path is being constructed
913 * @buf: where to put the string
914 * @size: how big is "buf"?
915 *
916 * Return: Length of the string (> 0) or negative if size was too small.
917 *
918 * Note:
919 * This identifier is intended to be "stable", reflecting physical paths in
920 * hardware such as physical bus addresses for host controllers or ports on
921 * USB hubs. That makes it stay the same until systems are physically
922 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
923 * controllers. Adding and removing devices, including virtual root hubs
924 * in host controller driver modules, does not change these path identifiers;
925 * neither does rebooting or re-enumerating. These are more useful identifiers
926 * than changeable ("unstable") ones like bus numbers or device addresses.
927 *
928 * With a partial exception for devices connected to USB 2.0 root hubs, these
929 * identifiers are also predictable. So long as the device tree isn't changed,
930 * plugging any USB device into a given hub port always gives it the same path.
931 * Because of the use of "companion" controllers, devices connected to ports on
932 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
933 * high speed, and a different one if they are full or low speed.
934 */
usb_make_path(struct usb_device * dev,char * buf,size_t size)935 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
936 {
937 int actual;
938 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
939 dev->devpath);
940 return (actual >= (int)size) ? -1 : actual;
941 }
942
943 /*-------------------------------------------------------------------------*/
944
945 #define USB_DEVICE_ID_MATCH_DEVICE \
946 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
947 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
948 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
949 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
950 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
951 #define USB_DEVICE_ID_MATCH_DEV_INFO \
952 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
953 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
954 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
955 #define USB_DEVICE_ID_MATCH_INT_INFO \
956 (USB_DEVICE_ID_MATCH_INT_CLASS | \
957 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
958 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
959
960 /**
961 * USB_DEVICE - macro used to describe a specific usb device
962 * @vend: the 16 bit USB Vendor ID
963 * @prod: the 16 bit USB Product ID
964 *
965 * This macro is used to create a struct usb_device_id that matches a
966 * specific device.
967 */
968 #define USB_DEVICE(vend, prod) \
969 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
970 .idVendor = (vend), \
971 .idProduct = (prod)
972 /**
973 * USB_DEVICE_VER - describe a specific usb device with a version range
974 * @vend: the 16 bit USB Vendor ID
975 * @prod: the 16 bit USB Product ID
976 * @lo: the bcdDevice_lo value
977 * @hi: the bcdDevice_hi value
978 *
979 * This macro is used to create a struct usb_device_id that matches a
980 * specific device, with a version range.
981 */
982 #define USB_DEVICE_VER(vend, prod, lo, hi) \
983 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
984 .idVendor = (vend), \
985 .idProduct = (prod), \
986 .bcdDevice_lo = (lo), \
987 .bcdDevice_hi = (hi)
988
989 /**
990 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
991 * @vend: the 16 bit USB Vendor ID
992 * @prod: the 16 bit USB Product ID
993 * @cl: bInterfaceClass value
994 *
995 * This macro is used to create a struct usb_device_id that matches a
996 * specific interface class of devices.
997 */
998 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
999 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1000 USB_DEVICE_ID_MATCH_INT_CLASS, \
1001 .idVendor = (vend), \
1002 .idProduct = (prod), \
1003 .bInterfaceClass = (cl)
1004
1005 /**
1006 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
1007 * @vend: the 16 bit USB Vendor ID
1008 * @prod: the 16 bit USB Product ID
1009 * @pr: bInterfaceProtocol value
1010 *
1011 * This macro is used to create a struct usb_device_id that matches a
1012 * specific interface protocol of devices.
1013 */
1014 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1015 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1016 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1017 .idVendor = (vend), \
1018 .idProduct = (prod), \
1019 .bInterfaceProtocol = (pr)
1020
1021 /**
1022 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1023 * @vend: the 16 bit USB Vendor ID
1024 * @prod: the 16 bit USB Product ID
1025 * @num: bInterfaceNumber value
1026 *
1027 * This macro is used to create a struct usb_device_id that matches a
1028 * specific interface number of devices.
1029 */
1030 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1031 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1032 USB_DEVICE_ID_MATCH_INT_NUMBER, \
1033 .idVendor = (vend), \
1034 .idProduct = (prod), \
1035 .bInterfaceNumber = (num)
1036
1037 /**
1038 * USB_DEVICE_INFO - macro used to describe a class of usb devices
1039 * @cl: bDeviceClass value
1040 * @sc: bDeviceSubClass value
1041 * @pr: bDeviceProtocol value
1042 *
1043 * This macro is used to create a struct usb_device_id that matches a
1044 * specific class of devices.
1045 */
1046 #define USB_DEVICE_INFO(cl, sc, pr) \
1047 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1048 .bDeviceClass = (cl), \
1049 .bDeviceSubClass = (sc), \
1050 .bDeviceProtocol = (pr)
1051
1052 /**
1053 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1054 * @cl: bInterfaceClass value
1055 * @sc: bInterfaceSubClass value
1056 * @pr: bInterfaceProtocol value
1057 *
1058 * This macro is used to create a struct usb_device_id that matches a
1059 * specific class of interfaces.
1060 */
1061 #define USB_INTERFACE_INFO(cl, sc, pr) \
1062 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1063 .bInterfaceClass = (cl), \
1064 .bInterfaceSubClass = (sc), \
1065 .bInterfaceProtocol = (pr)
1066
1067 /**
1068 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1069 * @vend: the 16 bit USB Vendor ID
1070 * @prod: the 16 bit USB Product ID
1071 * @cl: bInterfaceClass value
1072 * @sc: bInterfaceSubClass value
1073 * @pr: bInterfaceProtocol value
1074 *
1075 * This macro is used to create a struct usb_device_id that matches a
1076 * specific device with a specific class of interfaces.
1077 *
1078 * This is especially useful when explicitly matching devices that have
1079 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1080 */
1081 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1082 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1083 | USB_DEVICE_ID_MATCH_DEVICE, \
1084 .idVendor = (vend), \
1085 .idProduct = (prod), \
1086 .bInterfaceClass = (cl), \
1087 .bInterfaceSubClass = (sc), \
1088 .bInterfaceProtocol = (pr)
1089
1090 /**
1091 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1092 * @vend: the 16 bit USB Vendor ID
1093 * @cl: bInterfaceClass value
1094 * @sc: bInterfaceSubClass value
1095 * @pr: bInterfaceProtocol value
1096 *
1097 * This macro is used to create a struct usb_device_id that matches a
1098 * specific vendor with a specific class of interfaces.
1099 *
1100 * This is especially useful when explicitly matching devices that have
1101 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1102 */
1103 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1104 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1105 | USB_DEVICE_ID_MATCH_VENDOR, \
1106 .idVendor = (vend), \
1107 .bInterfaceClass = (cl), \
1108 .bInterfaceSubClass = (sc), \
1109 .bInterfaceProtocol = (pr)
1110
1111 /* ----------------------------------------------------------------------- */
1112
1113 /* Stuff for dynamic usb ids */
1114 struct usb_dynids {
1115 spinlock_t lock;
1116 struct list_head list;
1117 };
1118
1119 struct usb_dynid {
1120 struct list_head node;
1121 struct usb_device_id id;
1122 };
1123
1124 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1125 const struct usb_device_id *id_table,
1126 struct device_driver *driver,
1127 const char *buf, size_t count);
1128
1129 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1130
1131 /**
1132 * struct usbdrv_wrap - wrapper for driver-model structure
1133 * @driver: The driver-model core driver structure.
1134 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1135 */
1136 struct usbdrv_wrap {
1137 struct device_driver driver;
1138 int for_devices;
1139 };
1140
1141 /**
1142 * struct usb_driver - identifies USB interface driver to usbcore
1143 * @name: The driver name should be unique among USB drivers,
1144 * and should normally be the same as the module name.
1145 * @probe: Called to see if the driver is willing to manage a particular
1146 * interface on a device. If it is, probe returns zero and uses
1147 * usb_set_intfdata() to associate driver-specific data with the
1148 * interface. It may also use usb_set_interface() to specify the
1149 * appropriate altsetting. If unwilling to manage the interface,
1150 * return -ENODEV, if genuine IO errors occurred, an appropriate
1151 * negative errno value.
1152 * @disconnect: Called when the interface is no longer accessible, usually
1153 * because its device has been (or is being) disconnected or the
1154 * driver module is being unloaded.
1155 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1156 * the "usbfs" filesystem. This lets devices provide ways to
1157 * expose information to user space regardless of where they
1158 * do (or don't) show up otherwise in the filesystem.
1159 * @suspend: Called when the device is going to be suspended by the
1160 * system either from system sleep or runtime suspend context. The
1161 * return value will be ignored in system sleep context, so do NOT
1162 * try to continue using the device if suspend fails in this case.
1163 * Instead, let the resume or reset-resume routine recover from
1164 * the failure.
1165 * @resume: Called when the device is being resumed by the system.
1166 * @reset_resume: Called when the suspended device has been reset instead
1167 * of being resumed.
1168 * @pre_reset: Called by usb_reset_device() when the device is about to be
1169 * reset. This routine must not return until the driver has no active
1170 * URBs for the device, and no more URBs may be submitted until the
1171 * post_reset method is called.
1172 * @post_reset: Called by usb_reset_device() after the device
1173 * has been reset
1174 * @id_table: USB drivers use ID table to support hotplugging.
1175 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1176 * or your driver's probe function will never get called.
1177 * @dev_groups: Attributes attached to the device that will be created once it
1178 * is bound to the driver.
1179 * @dynids: used internally to hold the list of dynamically added device
1180 * ids for this driver.
1181 * @drvwrap: Driver-model core structure wrapper.
1182 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1183 * added to this driver by preventing the sysfs file from being created.
1184 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1185 * for interfaces bound to this driver.
1186 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1187 * endpoints before calling the driver's disconnect method.
1188 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1189 * to initiate lower power link state transitions when an idle timeout
1190 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1191 *
1192 * USB interface drivers must provide a name, probe() and disconnect()
1193 * methods, and an id_table. Other driver fields are optional.
1194 *
1195 * The id_table is used in hotplugging. It holds a set of descriptors,
1196 * and specialized data may be associated with each entry. That table
1197 * is used by both user and kernel mode hotplugging support.
1198 *
1199 * The probe() and disconnect() methods are called in a context where
1200 * they can sleep, but they should avoid abusing the privilege. Most
1201 * work to connect to a device should be done when the device is opened,
1202 * and undone at the last close. The disconnect code needs to address
1203 * concurrency issues with respect to open() and close() methods, as
1204 * well as forcing all pending I/O requests to complete (by unlinking
1205 * them as necessary, and blocking until the unlinks complete).
1206 */
1207 struct usb_driver {
1208 const char *name;
1209
1210 int (*probe) (struct usb_interface *intf,
1211 const struct usb_device_id *id);
1212
1213 void (*disconnect) (struct usb_interface *intf);
1214
1215 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1216 void *buf);
1217
1218 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1219 int (*resume) (struct usb_interface *intf);
1220 int (*reset_resume)(struct usb_interface *intf);
1221
1222 int (*pre_reset)(struct usb_interface *intf);
1223 int (*post_reset)(struct usb_interface *intf);
1224
1225 const struct usb_device_id *id_table;
1226 const struct attribute_group **dev_groups;
1227
1228 struct usb_dynids dynids;
1229 struct usbdrv_wrap drvwrap;
1230 unsigned int no_dynamic_id:1;
1231 unsigned int supports_autosuspend:1;
1232 unsigned int disable_hub_initiated_lpm:1;
1233 unsigned int soft_unbind:1;
1234
1235 ANDROID_KABI_RESERVE(1);
1236 ANDROID_KABI_RESERVE(2);
1237 ANDROID_KABI_RESERVE(3);
1238 ANDROID_KABI_RESERVE(4);
1239 };
1240 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1241
1242 /**
1243 * struct usb_device_driver - identifies USB device driver to usbcore
1244 * @name: The driver name should be unique among USB drivers,
1245 * and should normally be the same as the module name.
1246 * @match: If set, used for better device/driver matching.
1247 * @probe: Called to see if the driver is willing to manage a particular
1248 * device. If it is, probe returns zero and uses dev_set_drvdata()
1249 * to associate driver-specific data with the device. If unwilling
1250 * to manage the device, return a negative errno value.
1251 * @disconnect: Called when the device is no longer accessible, usually
1252 * because it has been (or is being) disconnected or the driver's
1253 * module is being unloaded.
1254 * @suspend: Called when the device is going to be suspended by the system.
1255 * @resume: Called when the device is being resumed by the system.
1256 * @dev_groups: Attributes attached to the device that will be created once it
1257 * is bound to the driver.
1258 * @drvwrap: Driver-model core structure wrapper.
1259 * @id_table: used with @match() to select better matching driver at
1260 * probe() time.
1261 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1262 * for devices bound to this driver.
1263 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1264 * resume and suspend functions will be called in addition to the driver's
1265 * own, so this part of the setup does not need to be replicated.
1266 *
1267 * USB drivers must provide all the fields listed above except drvwrap,
1268 * match, and id_table.
1269 */
1270 struct usb_device_driver {
1271 const char *name;
1272
1273 bool (*match) (struct usb_device *udev);
1274 int (*probe) (struct usb_device *udev);
1275 void (*disconnect) (struct usb_device *udev);
1276
1277 int (*suspend) (struct usb_device *udev, pm_message_t message);
1278 int (*resume) (struct usb_device *udev, pm_message_t message);
1279 const struct attribute_group **dev_groups;
1280 struct usbdrv_wrap drvwrap;
1281 const struct usb_device_id *id_table;
1282 unsigned int supports_autosuspend:1;
1283 unsigned int generic_subclass:1;
1284 };
1285 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1286 drvwrap.driver)
1287
1288 extern struct bus_type usb_bus_type;
1289
1290 /**
1291 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1292 * @name: the usb class device name for this driver. Will show up in sysfs.
1293 * @devnode: Callback to provide a naming hint for a possible
1294 * device node to create.
1295 * @fops: pointer to the struct file_operations of this driver.
1296 * @minor_base: the start of the minor range for this driver.
1297 *
1298 * This structure is used for the usb_register_dev() and
1299 * usb_deregister_dev() functions, to consolidate a number of the
1300 * parameters used for them.
1301 */
1302 struct usb_class_driver {
1303 char *name;
1304 char *(*devnode)(struct device *dev, umode_t *mode);
1305 const struct file_operations *fops;
1306 int minor_base;
1307 };
1308
1309 /*
1310 * use these in module_init()/module_exit()
1311 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1312 */
1313 extern int usb_register_driver(struct usb_driver *, struct module *,
1314 const char *);
1315
1316 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1317 #define usb_register(driver) \
1318 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1319
1320 extern void usb_deregister(struct usb_driver *);
1321
1322 /**
1323 * module_usb_driver() - Helper macro for registering a USB driver
1324 * @__usb_driver: usb_driver struct
1325 *
1326 * Helper macro for USB drivers which do not do anything special in module
1327 * init/exit. This eliminates a lot of boilerplate. Each module may only
1328 * use this macro once, and calling it replaces module_init() and module_exit()
1329 */
1330 #define module_usb_driver(__usb_driver) \
1331 module_driver(__usb_driver, usb_register, \
1332 usb_deregister)
1333
1334 extern int usb_register_device_driver(struct usb_device_driver *,
1335 struct module *);
1336 extern void usb_deregister_device_driver(struct usb_device_driver *);
1337
1338 extern int usb_register_dev(struct usb_interface *intf,
1339 struct usb_class_driver *class_driver);
1340 extern void usb_deregister_dev(struct usb_interface *intf,
1341 struct usb_class_driver *class_driver);
1342
1343 extern int usb_disabled(void);
1344
1345 /* ----------------------------------------------------------------------- */
1346
1347 /*
1348 * URB support, for asynchronous request completions
1349 */
1350
1351 /*
1352 * urb->transfer_flags:
1353 *
1354 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1355 */
1356 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1357 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1358 * slot in the schedule */
1359 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1360 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1361 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1362 * needed */
1363 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1364
1365 /* The following flags are used internally by usbcore and HCDs */
1366 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1367 #define URB_DIR_OUT 0
1368 #define URB_DIR_MASK URB_DIR_IN
1369
1370 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1371 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1372 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1373 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1374 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1375 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1376 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1377 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1378
1379 struct usb_iso_packet_descriptor {
1380 unsigned int offset;
1381 unsigned int length; /* expected length */
1382 unsigned int actual_length;
1383 int status;
1384 };
1385
1386 struct urb;
1387
1388 struct usb_anchor {
1389 struct list_head urb_list;
1390 wait_queue_head_t wait;
1391 spinlock_t lock;
1392 atomic_t suspend_wakeups;
1393 unsigned int poisoned:1;
1394 };
1395
init_usb_anchor(struct usb_anchor * anchor)1396 static inline void init_usb_anchor(struct usb_anchor *anchor)
1397 {
1398 memset(anchor, 0, sizeof(*anchor));
1399 INIT_LIST_HEAD(&anchor->urb_list);
1400 init_waitqueue_head(&anchor->wait);
1401 spin_lock_init(&anchor->lock);
1402 }
1403
1404 typedef void (*usb_complete_t)(struct urb *);
1405
1406 /**
1407 * struct urb - USB Request Block
1408 * @urb_list: For use by current owner of the URB.
1409 * @anchor_list: membership in the list of an anchor
1410 * @anchor: to anchor URBs to a common mooring
1411 * @ep: Points to the endpoint's data structure. Will eventually
1412 * replace @pipe.
1413 * @pipe: Holds endpoint number, direction, type, and more.
1414 * Create these values with the eight macros available;
1415 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1416 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1417 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1418 * numbers range from zero to fifteen. Note that "in" endpoint two
1419 * is a different endpoint (and pipe) from "out" endpoint two.
1420 * The current configuration controls the existence, type, and
1421 * maximum packet size of any given endpoint.
1422 * @stream_id: the endpoint's stream ID for bulk streams
1423 * @dev: Identifies the USB device to perform the request.
1424 * @status: This is read in non-iso completion functions to get the
1425 * status of the particular request. ISO requests only use it
1426 * to tell whether the URB was unlinked; detailed status for
1427 * each frame is in the fields of the iso_frame-desc.
1428 * @transfer_flags: A variety of flags may be used to affect how URB
1429 * submission, unlinking, or operation are handled. Different
1430 * kinds of URB can use different flags.
1431 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1432 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1433 * (however, do not leave garbage in transfer_buffer even then).
1434 * This buffer must be suitable for DMA; allocate it with
1435 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1436 * of this buffer will be modified. This buffer is used for the data
1437 * stage of control transfers.
1438 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1439 * the device driver is saying that it provided this DMA address,
1440 * which the host controller driver should use in preference to the
1441 * transfer_buffer.
1442 * @sg: scatter gather buffer list, the buffer size of each element in
1443 * the list (except the last) must be divisible by the endpoint's
1444 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1445 * @num_mapped_sgs: (internal) number of mapped sg entries
1446 * @num_sgs: number of entries in the sg list
1447 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1448 * be broken up into chunks according to the current maximum packet
1449 * size for the endpoint, which is a function of the configuration
1450 * and is encoded in the pipe. When the length is zero, neither
1451 * transfer_buffer nor transfer_dma is used.
1452 * @actual_length: This is read in non-iso completion functions, and
1453 * it tells how many bytes (out of transfer_buffer_length) were
1454 * transferred. It will normally be the same as requested, unless
1455 * either an error was reported or a short read was performed.
1456 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1457 * short reads be reported as errors.
1458 * @setup_packet: Only used for control transfers, this points to eight bytes
1459 * of setup data. Control transfers always start by sending this data
1460 * to the device. Then transfer_buffer is read or written, if needed.
1461 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1462 * this field; setup_packet must point to a valid buffer.
1463 * @start_frame: Returns the initial frame for isochronous transfers.
1464 * @number_of_packets: Lists the number of ISO transfer buffers.
1465 * @interval: Specifies the polling interval for interrupt or isochronous
1466 * transfers. The units are frames (milliseconds) for full and low
1467 * speed devices, and microframes (1/8 millisecond) for highspeed
1468 * and SuperSpeed devices.
1469 * @error_count: Returns the number of ISO transfers that reported errors.
1470 * @context: For use in completion functions. This normally points to
1471 * request-specific driver context.
1472 * @complete: Completion handler. This URB is passed as the parameter to the
1473 * completion function. The completion function may then do what
1474 * it likes with the URB, including resubmitting or freeing it.
1475 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1476 * collect the transfer status for each buffer.
1477 *
1478 * This structure identifies USB transfer requests. URBs must be allocated by
1479 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1480 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1481 * are submitted using usb_submit_urb(), and pending requests may be canceled
1482 * using usb_unlink_urb() or usb_kill_urb().
1483 *
1484 * Data Transfer Buffers:
1485 *
1486 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1487 * taken from the general page pool. That is provided by transfer_buffer
1488 * (control requests also use setup_packet), and host controller drivers
1489 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1490 * mapping operations can be expensive on some platforms (perhaps using a dma
1491 * bounce buffer or talking to an IOMMU),
1492 * although they're cheap on commodity x86 and ppc hardware.
1493 *
1494 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1495 * which tells the host controller driver that no such mapping is needed for
1496 * the transfer_buffer since
1497 * the device driver is DMA-aware. For example, a device driver might
1498 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1499 * When this transfer flag is provided, host controller drivers will
1500 * attempt to use the dma address found in the transfer_dma
1501 * field rather than determining a dma address themselves.
1502 *
1503 * Note that transfer_buffer must still be set if the controller
1504 * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1505 * to root hub. If you have to trasfer between highmem zone and the device
1506 * on such controller, create a bounce buffer or bail out with an error.
1507 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1508 * capable, assign NULL to it, so that usbmon knows not to use the value.
1509 * The setup_packet must always be set, so it cannot be located in highmem.
1510 *
1511 * Initialization:
1512 *
1513 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1514 * zero), and complete fields. All URBs must also initialize
1515 * transfer_buffer and transfer_buffer_length. They may provide the
1516 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1517 * to be treated as errors; that flag is invalid for write requests.
1518 *
1519 * Bulk URBs may
1520 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1521 * should always terminate with a short packet, even if it means adding an
1522 * extra zero length packet.
1523 *
1524 * Control URBs must provide a valid pointer in the setup_packet field.
1525 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1526 * beforehand.
1527 *
1528 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1529 * or, for highspeed devices, 125 microsecond units)
1530 * to poll for transfers. After the URB has been submitted, the interval
1531 * field reflects how the transfer was actually scheduled.
1532 * The polling interval may be more frequent than requested.
1533 * For example, some controllers have a maximum interval of 32 milliseconds,
1534 * while others support intervals of up to 1024 milliseconds.
1535 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1536 * endpoints, as well as high speed interrupt endpoints, the encoding of
1537 * the transfer interval in the endpoint descriptor is logarithmic.
1538 * Device drivers must convert that value to linear units themselves.)
1539 *
1540 * If an isochronous endpoint queue isn't already running, the host
1541 * controller will schedule a new URB to start as soon as bandwidth
1542 * utilization allows. If the queue is running then a new URB will be
1543 * scheduled to start in the first transfer slot following the end of the
1544 * preceding URB, if that slot has not already expired. If the slot has
1545 * expired (which can happen when IRQ delivery is delayed for a long time),
1546 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1547 * is clear then the URB will be scheduled to start in the expired slot,
1548 * implying that some of its packets will not be transferred; if the flag
1549 * is set then the URB will be scheduled in the first unexpired slot,
1550 * breaking the queue's synchronization. Upon URB completion, the
1551 * start_frame field will be set to the (micro)frame number in which the
1552 * transfer was scheduled. Ranges for frame counter values are HC-specific
1553 * and can go from as low as 256 to as high as 65536 frames.
1554 *
1555 * Isochronous URBs have a different data transfer model, in part because
1556 * the quality of service is only "best effort". Callers provide specially
1557 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1558 * at the end. Each such packet is an individual ISO transfer. Isochronous
1559 * URBs are normally queued, submitted by drivers to arrange that
1560 * transfers are at least double buffered, and then explicitly resubmitted
1561 * in completion handlers, so
1562 * that data (such as audio or video) streams at as constant a rate as the
1563 * host controller scheduler can support.
1564 *
1565 * Completion Callbacks:
1566 *
1567 * The completion callback is made in_interrupt(), and one of the first
1568 * things that a completion handler should do is check the status field.
1569 * The status field is provided for all URBs. It is used to report
1570 * unlinked URBs, and status for all non-ISO transfers. It should not
1571 * be examined before the URB is returned to the completion handler.
1572 *
1573 * The context field is normally used to link URBs back to the relevant
1574 * driver or request state.
1575 *
1576 * When the completion callback is invoked for non-isochronous URBs, the
1577 * actual_length field tells how many bytes were transferred. This field
1578 * is updated even when the URB terminated with an error or was unlinked.
1579 *
1580 * ISO transfer status is reported in the status and actual_length fields
1581 * of the iso_frame_desc array, and the number of errors is reported in
1582 * error_count. Completion callbacks for ISO transfers will normally
1583 * (re)submit URBs to ensure a constant transfer rate.
1584 *
1585 * Note that even fields marked "public" should not be touched by the driver
1586 * when the urb is owned by the hcd, that is, since the call to
1587 * usb_submit_urb() till the entry into the completion routine.
1588 */
1589 struct urb {
1590 /* private: usb core and host controller only fields in the urb */
1591 struct kref kref; /* reference count of the URB */
1592 int unlinked; /* unlink error code */
1593 void *hcpriv; /* private data for host controller */
1594 atomic_t use_count; /* concurrent submissions counter */
1595 atomic_t reject; /* submissions will fail */
1596
1597 /* public: documented fields in the urb that can be used by drivers */
1598 struct list_head urb_list; /* list head for use by the urb's
1599 * current owner */
1600 struct list_head anchor_list; /* the URB may be anchored */
1601 struct usb_anchor *anchor;
1602 struct usb_device *dev; /* (in) pointer to associated device */
1603 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1604 unsigned int pipe; /* (in) pipe information */
1605 unsigned int stream_id; /* (in) stream ID */
1606 int status; /* (return) non-ISO status */
1607 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1608 void *transfer_buffer; /* (in) associated data buffer */
1609 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1610 struct scatterlist *sg; /* (in) scatter gather buffer list */
1611 int num_mapped_sgs; /* (internal) mapped sg entries */
1612 int num_sgs; /* (in) number of entries in the sg list */
1613 u32 transfer_buffer_length; /* (in) data buffer length */
1614 u32 actual_length; /* (return) actual transfer length */
1615 unsigned char *setup_packet; /* (in) setup packet (control only) */
1616 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1617 int start_frame; /* (modify) start frame (ISO) */
1618 int number_of_packets; /* (in) number of ISO packets */
1619 int interval; /* (modify) transfer interval
1620 * (INT/ISO) */
1621 int error_count; /* (return) number of ISO errors */
1622 void *context; /* (in) context for completion */
1623 usb_complete_t complete; /* (in) completion routine */
1624
1625 ANDROID_KABI_RESERVE(1);
1626 ANDROID_KABI_RESERVE(2);
1627 ANDROID_KABI_RESERVE(3);
1628 ANDROID_KABI_RESERVE(4);
1629
1630 struct usb_iso_packet_descriptor iso_frame_desc[];
1631 /* (in) ISO ONLY */
1632 };
1633
1634 /* ----------------------------------------------------------------------- */
1635
1636 /**
1637 * usb_fill_control_urb - initializes a control urb
1638 * @urb: pointer to the urb to initialize.
1639 * @dev: pointer to the struct usb_device for this urb.
1640 * @pipe: the endpoint pipe
1641 * @setup_packet: pointer to the setup_packet buffer
1642 * @transfer_buffer: pointer to the transfer buffer
1643 * @buffer_length: length of the transfer buffer
1644 * @complete_fn: pointer to the usb_complete_t function
1645 * @context: what to set the urb context to.
1646 *
1647 * Initializes a control urb with the proper information needed to submit
1648 * it to a device.
1649 */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1650 static inline void usb_fill_control_urb(struct urb *urb,
1651 struct usb_device *dev,
1652 unsigned int pipe,
1653 unsigned char *setup_packet,
1654 void *transfer_buffer,
1655 int buffer_length,
1656 usb_complete_t complete_fn,
1657 void *context)
1658 {
1659 urb->dev = dev;
1660 urb->pipe = pipe;
1661 urb->setup_packet = setup_packet;
1662 urb->transfer_buffer = transfer_buffer;
1663 urb->transfer_buffer_length = buffer_length;
1664 urb->complete = complete_fn;
1665 urb->context = context;
1666 }
1667
1668 /**
1669 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1670 * @urb: pointer to the urb to initialize.
1671 * @dev: pointer to the struct usb_device for this urb.
1672 * @pipe: the endpoint pipe
1673 * @transfer_buffer: pointer to the transfer buffer
1674 * @buffer_length: length of the transfer buffer
1675 * @complete_fn: pointer to the usb_complete_t function
1676 * @context: what to set the urb context to.
1677 *
1678 * Initializes a bulk urb with the proper information needed to submit it
1679 * to a device.
1680 */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1681 static inline void usb_fill_bulk_urb(struct urb *urb,
1682 struct usb_device *dev,
1683 unsigned int pipe,
1684 void *transfer_buffer,
1685 int buffer_length,
1686 usb_complete_t complete_fn,
1687 void *context)
1688 {
1689 urb->dev = dev;
1690 urb->pipe = pipe;
1691 urb->transfer_buffer = transfer_buffer;
1692 urb->transfer_buffer_length = buffer_length;
1693 urb->complete = complete_fn;
1694 urb->context = context;
1695 }
1696
1697 /**
1698 * usb_fill_int_urb - macro to help initialize a interrupt urb
1699 * @urb: pointer to the urb to initialize.
1700 * @dev: pointer to the struct usb_device for this urb.
1701 * @pipe: the endpoint pipe
1702 * @transfer_buffer: pointer to the transfer buffer
1703 * @buffer_length: length of the transfer buffer
1704 * @complete_fn: pointer to the usb_complete_t function
1705 * @context: what to set the urb context to.
1706 * @interval: what to set the urb interval to, encoded like
1707 * the endpoint descriptor's bInterval value.
1708 *
1709 * Initializes a interrupt urb with the proper information needed to submit
1710 * it to a device.
1711 *
1712 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1713 * encoding of the endpoint interval, and express polling intervals in
1714 * microframes (eight per millisecond) rather than in frames (one per
1715 * millisecond).
1716 *
1717 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1718 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1719 * through to the host controller, rather than being translated into microframe
1720 * units.
1721 */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1722 static inline void usb_fill_int_urb(struct urb *urb,
1723 struct usb_device *dev,
1724 unsigned int pipe,
1725 void *transfer_buffer,
1726 int buffer_length,
1727 usb_complete_t complete_fn,
1728 void *context,
1729 int interval)
1730 {
1731 urb->dev = dev;
1732 urb->pipe = pipe;
1733 urb->transfer_buffer = transfer_buffer;
1734 urb->transfer_buffer_length = buffer_length;
1735 urb->complete = complete_fn;
1736 urb->context = context;
1737
1738 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1739 /* make sure interval is within allowed range */
1740 interval = clamp(interval, 1, 16);
1741
1742 urb->interval = 1 << (interval - 1);
1743 } else {
1744 urb->interval = interval;
1745 }
1746
1747 urb->start_frame = -1;
1748 }
1749
1750 extern void usb_init_urb(struct urb *urb);
1751 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1752 extern void usb_free_urb(struct urb *urb);
1753 #define usb_put_urb usb_free_urb
1754 extern struct urb *usb_get_urb(struct urb *urb);
1755 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1756 extern int usb_unlink_urb(struct urb *urb);
1757 extern void usb_kill_urb(struct urb *urb);
1758 extern void usb_poison_urb(struct urb *urb);
1759 extern void usb_unpoison_urb(struct urb *urb);
1760 extern void usb_block_urb(struct urb *urb);
1761 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1762 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1763 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1764 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1765 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1766 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1767 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1768 extern void usb_unanchor_urb(struct urb *urb);
1769 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1770 unsigned int timeout);
1771 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1772 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1773 extern int usb_anchor_empty(struct usb_anchor *anchor);
1774
1775 #define usb_unblock_urb usb_unpoison_urb
1776
1777 /**
1778 * usb_urb_dir_in - check if an URB describes an IN transfer
1779 * @urb: URB to be checked
1780 *
1781 * Return: 1 if @urb describes an IN transfer (device-to-host),
1782 * otherwise 0.
1783 */
usb_urb_dir_in(struct urb * urb)1784 static inline int usb_urb_dir_in(struct urb *urb)
1785 {
1786 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1787 }
1788
1789 /**
1790 * usb_urb_dir_out - check if an URB describes an OUT transfer
1791 * @urb: URB to be checked
1792 *
1793 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1794 * otherwise 0.
1795 */
usb_urb_dir_out(struct urb * urb)1796 static inline int usb_urb_dir_out(struct urb *urb)
1797 {
1798 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1799 }
1800
1801 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1802 int usb_urb_ep_type_check(const struct urb *urb);
1803
1804 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1805 gfp_t mem_flags, dma_addr_t *dma);
1806 void usb_free_coherent(struct usb_device *dev, size_t size,
1807 void *addr, dma_addr_t dma);
1808
1809 #if 0
1810 struct urb *usb_buffer_map(struct urb *urb);
1811 void usb_buffer_dmasync(struct urb *urb);
1812 void usb_buffer_unmap(struct urb *urb);
1813 #endif
1814
1815 struct scatterlist;
1816 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1817 struct scatterlist *sg, int nents);
1818 #if 0
1819 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1820 struct scatterlist *sg, int n_hw_ents);
1821 #endif
1822 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1823 struct scatterlist *sg, int n_hw_ents);
1824
1825 /*-------------------------------------------------------------------*
1826 * SYNCHRONOUS CALL SUPPORT *
1827 *-------------------------------------------------------------------*/
1828
1829 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1830 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1831 void *data, __u16 size, int timeout);
1832 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1833 void *data, int len, int *actual_length, int timeout);
1834 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1835 void *data, int len, int *actual_length,
1836 int timeout);
1837
1838 /* wrappers around usb_control_msg() for the most common standard requests */
1839 int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1840 __u8 requesttype, __u16 value, __u16 index,
1841 const void *data, __u16 size, int timeout,
1842 gfp_t memflags);
1843 int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1844 __u8 requesttype, __u16 value, __u16 index,
1845 void *data, __u16 size, int timeout,
1846 gfp_t memflags);
1847 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1848 unsigned char descindex, void *buf, int size);
1849 extern int usb_get_status(struct usb_device *dev,
1850 int recip, int type, int target, void *data);
1851
usb_get_std_status(struct usb_device * dev,int recip,int target,void * data)1852 static inline int usb_get_std_status(struct usb_device *dev,
1853 int recip, int target, void *data)
1854 {
1855 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1856 data);
1857 }
1858
usb_get_ptm_status(struct usb_device * dev,void * data)1859 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1860 {
1861 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1862 0, data);
1863 }
1864
1865 extern int usb_string(struct usb_device *dev, int index,
1866 char *buf, size_t size);
1867
1868 /* wrappers that also update important state inside usbcore */
1869 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1870 extern int usb_reset_configuration(struct usb_device *dev);
1871 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1872 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1873
1874 /* this request isn't really synchronous, but it belongs with the others */
1875 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1876
1877 /* choose and set configuration for device */
1878 extern int usb_choose_configuration(struct usb_device *udev);
1879 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1880
1881 /*
1882 * timeouts, in milliseconds, used for sending/receiving control messages
1883 * they typically complete within a few frames (msec) after they're issued
1884 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1885 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1886 */
1887 #define USB_CTRL_GET_TIMEOUT 5000
1888 #define USB_CTRL_SET_TIMEOUT 5000
1889
1890
1891 /**
1892 * struct usb_sg_request - support for scatter/gather I/O
1893 * @status: zero indicates success, else negative errno
1894 * @bytes: counts bytes transferred.
1895 *
1896 * These requests are initialized using usb_sg_init(), and then are used
1897 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1898 * members of the request object aren't for driver access.
1899 *
1900 * The status and bytecount values are valid only after usb_sg_wait()
1901 * returns. If the status is zero, then the bytecount matches the total
1902 * from the request.
1903 *
1904 * After an error completion, drivers may need to clear a halt condition
1905 * on the endpoint.
1906 */
1907 struct usb_sg_request {
1908 int status;
1909 size_t bytes;
1910
1911 /* private:
1912 * members below are private to usbcore,
1913 * and are not provided for driver access!
1914 */
1915 spinlock_t lock;
1916
1917 struct usb_device *dev;
1918 int pipe;
1919
1920 int entries;
1921 struct urb **urbs;
1922
1923 int count;
1924 struct completion complete;
1925 };
1926
1927 int usb_sg_init(
1928 struct usb_sg_request *io,
1929 struct usb_device *dev,
1930 unsigned pipe,
1931 unsigned period,
1932 struct scatterlist *sg,
1933 int nents,
1934 size_t length,
1935 gfp_t mem_flags
1936 );
1937 void usb_sg_cancel(struct usb_sg_request *io);
1938 void usb_sg_wait(struct usb_sg_request *io);
1939
1940
1941 /* ----------------------------------------------------------------------- */
1942
1943 /*
1944 * For various legacy reasons, Linux has a small cookie that's paired with
1945 * a struct usb_device to identify an endpoint queue. Queue characteristics
1946 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1947 * an unsigned int encoded as:
1948 *
1949 * - direction: bit 7 (0 = Host-to-Device [Out],
1950 * 1 = Device-to-Host [In] ...
1951 * like endpoint bEndpointAddress)
1952 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1953 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1954 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1955 * 10 = control, 11 = bulk)
1956 *
1957 * Given the device address and endpoint descriptor, pipes are redundant.
1958 */
1959
1960 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1961 /* (yet ... they're the values used by usbfs) */
1962 #define PIPE_ISOCHRONOUS 0
1963 #define PIPE_INTERRUPT 1
1964 #define PIPE_CONTROL 2
1965 #define PIPE_BULK 3
1966
1967 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1968 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1969
1970 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1971 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1972
1973 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1974 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1975 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1976 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1977 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1978
__create_pipe(struct usb_device * dev,unsigned int endpoint)1979 static inline unsigned int __create_pipe(struct usb_device *dev,
1980 unsigned int endpoint)
1981 {
1982 return (dev->devnum << 8) | (endpoint << 15);
1983 }
1984
1985 /* Create various pipes... */
1986 #define usb_sndctrlpipe(dev, endpoint) \
1987 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1988 #define usb_rcvctrlpipe(dev, endpoint) \
1989 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1990 #define usb_sndisocpipe(dev, endpoint) \
1991 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1992 #define usb_rcvisocpipe(dev, endpoint) \
1993 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1994 #define usb_sndbulkpipe(dev, endpoint) \
1995 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1996 #define usb_rcvbulkpipe(dev, endpoint) \
1997 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1998 #define usb_sndintpipe(dev, endpoint) \
1999 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
2000 #define usb_rcvintpipe(dev, endpoint) \
2001 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
2002
2003 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)2004 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
2005 {
2006 struct usb_host_endpoint **eps;
2007 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
2008 return eps[usb_pipeendpoint(pipe)];
2009 }
2010
2011 /*-------------------------------------------------------------------------*/
2012
2013 static inline __u16
usb_maxpacket(struct usb_device * udev,int pipe,int is_out)2014 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
2015 {
2016 struct usb_host_endpoint *ep;
2017 unsigned epnum = usb_pipeendpoint(pipe);
2018
2019 if (is_out) {
2020 WARN_ON(usb_pipein(pipe));
2021 ep = udev->ep_out[epnum];
2022 } else {
2023 WARN_ON(usb_pipeout(pipe));
2024 ep = udev->ep_in[epnum];
2025 }
2026 if (!ep)
2027 return 0;
2028
2029 /* NOTE: only 0x07ff bits are for packet size... */
2030 return usb_endpoint_maxp(&ep->desc);
2031 }
2032
2033 /* ----------------------------------------------------------------------- */
2034
2035 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)2036 static inline int usb_translate_errors(int error_code)
2037 {
2038 switch (error_code) {
2039 case 0:
2040 case -ENOMEM:
2041 case -ENODEV:
2042 case -EOPNOTSUPP:
2043 return error_code;
2044 default:
2045 return -EIO;
2046 }
2047 }
2048
2049 /* Events from the usb core */
2050 #define USB_DEVICE_ADD 0x0001
2051 #define USB_DEVICE_REMOVE 0x0002
2052 #define USB_BUS_ADD 0x0003
2053 #define USB_BUS_REMOVE 0x0004
2054 extern void usb_register_notify(struct notifier_block *nb);
2055 extern void usb_unregister_notify(struct notifier_block *nb);
2056
2057 /* debugfs stuff */
2058 extern struct dentry *usb_debug_root;
2059
2060 /* LED triggers */
2061 enum usb_led_event {
2062 USB_LED_EVENT_HOST = 0,
2063 USB_LED_EVENT_GADGET = 1,
2064 };
2065
2066 #ifdef CONFIG_USB_LED_TRIG
2067 extern void usb_led_activity(enum usb_led_event ev);
2068 #else
usb_led_activity(enum usb_led_event ev)2069 static inline void usb_led_activity(enum usb_led_event ev) {}
2070 #endif
2071
2072 #endif /* __KERNEL__ */
2073
2074 #endif
2075