xref: /OK3568_Linux_fs/kernel/drivers/scsi/ufs/ufshcd.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include "ufshcd.h"
20 #include "ufshcd-add-info.h"
21 #include "ufs_quirks.h"
22 #include "unipro.h"
23 #include "ufs-sysfs.h"
24 #include "ufs-debugfs.h"
25 #include "ufs_bsg.h"
26 #include "ufshcd-crypto.h"
27 #include "ufshpb.h"
28 #include <asm/unaligned.h>
29 #include <linux/blkdev.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/ufs.h>
33 
34 #undef CREATE_TRACE_POINTS
35 #include <trace/hooks/ufshcd.h>
36 
37 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
38 				 UTP_TASK_REQ_COMPL |\
39 				 UFSHCD_ERROR_MASK)
40 /* UIC command timeout, unit: ms */
41 #define UIC_CMD_TIMEOUT	5000
42 
43 /* NOP OUT retries waiting for NOP IN response */
44 #define NOP_OUT_RETRIES    10
45 /* Timeout after 50 msecs if NOP OUT hangs without response */
46 #define NOP_OUT_TIMEOUT    50 /* msecs */
47 
48 /* Query request retries */
49 #define QUERY_REQ_RETRIES 3
50 /* Query request timeout */
51 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
52 
53 /* Task management command timeout */
54 #define TM_CMD_TIMEOUT	100 /* msecs */
55 
56 /* maximum number of retries for a general UIC command  */
57 #define UFS_UIC_COMMAND_RETRIES 3
58 
59 /* maximum number of link-startup retries */
60 #define DME_LINKSTARTUP_RETRIES 3
61 
62 /* Maximum retries for Hibern8 enter */
63 #define UIC_HIBERN8_ENTER_RETRIES 3
64 
65 /* maximum number of reset retries before giving up */
66 #define MAX_HOST_RESET_RETRIES 5
67 
68 /* Expose the flag value from utp_upiu_query.value */
69 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
70 
71 /* Interrupt aggregation default timeout, unit: 40us */
72 #define INT_AGGR_DEF_TO	0x02
73 
74 /* default delay of autosuspend: 2000 ms */
75 #define RPM_AUTOSUSPEND_DELAY_MS 2000
76 
77 /* Default delay of RPM device flush delayed work */
78 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
79 
80 /* Default value of wait time before gating device ref clock */
81 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
82 
83 /* Polling time to wait for fDeviceInit */
84 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
85 
86 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
87 	({                                                              \
88 		int _ret;                                               \
89 		if (_on)                                                \
90 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
91 		else                                                    \
92 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
93 		_ret;                                                   \
94 	})
95 
96 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
97 	size_t __len = (len);                                            \
98 	print_hex_dump(KERN_ERR, prefix_str,                             \
99 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
100 		       16, 4, buf, __len, false);                        \
101 } while (0)
102 
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)103 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
104 		     const char *prefix)
105 {
106 	u32 *regs;
107 	size_t pos;
108 
109 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
110 		return -EINVAL;
111 
112 	regs = kzalloc(len, GFP_ATOMIC);
113 	if (!regs)
114 		return -ENOMEM;
115 
116 	for (pos = 0; pos < len; pos += 4) {
117 		if (offset == 0 &&
118 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
119 		    pos <= REG_UIC_ERROR_CODE_DME)
120 			continue;
121 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
122 	}
123 
124 	ufshcd_hex_dump(prefix, regs, len);
125 	kfree(regs);
126 
127 	return 0;
128 }
129 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
130 
131 enum {
132 	UFSHCD_MAX_CHANNEL	= 0,
133 	UFSHCD_MAX_ID		= 1,
134 	UFSHCD_NUM_RESERVED	= 1,
135 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
136 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
137 };
138 
139 /* UFSHCD states */
140 enum {
141 	UFSHCD_STATE_RESET,
142 	UFSHCD_STATE_ERROR,
143 	UFSHCD_STATE_OPERATIONAL,
144 	UFSHCD_STATE_EH_SCHEDULED_FATAL,
145 	UFSHCD_STATE_EH_SCHEDULED_NON_FATAL,
146 };
147 
148 /* UFSHCD error handling flags */
149 enum {
150 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
151 };
152 
153 /* UFSHCD UIC layer error flags */
154 enum {
155 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
156 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
157 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
158 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
159 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
160 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
161 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
162 };
163 
164 #define ufshcd_set_eh_in_progress(h) \
165 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
166 #define ufshcd_eh_in_progress(h) \
167 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
168 #define ufshcd_clear_eh_in_progress(h) \
169 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
170 
171 struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
172 	{UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
173 	{UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
174 	{UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
175 	{UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
176 	{UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
177 	{UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
178 };
179 
180 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)181 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
182 {
183 	return ufs_pm_lvl_states[lvl].dev_state;
184 }
185 
186 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)187 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
188 {
189 	return ufs_pm_lvl_states[lvl].link_state;
190 }
191 
192 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)193 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
194 					enum uic_link_state link_state)
195 {
196 	enum ufs_pm_level lvl;
197 
198 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
199 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
200 			(ufs_pm_lvl_states[lvl].link_state == link_state))
201 			return lvl;
202 	}
203 
204 	/* if no match found, return the level 0 */
205 	return UFS_PM_LVL_0;
206 }
207 
208 static struct ufs_dev_fix ufs_fixups[] = {
209 	/* UFS cards deviations table */
210 	UFS_FIX(UFS_VENDOR_MICRON, UFS_ANY_MODEL,
211 		UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
212 		UFS_DEVICE_QUIRK_SWAP_L2P_ENTRY_FOR_HPB_READ),
213 	UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL,
214 		UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
215 		UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
216 		UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS),
217 	UFS_FIX(UFS_VENDOR_SKHYNIX, UFS_ANY_MODEL,
218 		UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME),
219 	UFS_FIX(UFS_VENDOR_SKHYNIX, "hB8aL1" /*H28U62301AMR*/,
220 		UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME),
221 	UFS_FIX(UFS_VENDOR_TOSHIBA, UFS_ANY_MODEL,
222 		UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM),
223 	UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9C8KBADG",
224 		UFS_DEVICE_QUIRK_PA_TACTIVATE),
225 	UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9D8KBADG",
226 		UFS_DEVICE_QUIRK_PA_TACTIVATE),
227 	END_FIX
228 };
229 
230 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
231 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
232 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
233 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
234 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
235 static void ufshcd_hba_exit(struct ufs_hba *hba);
236 static int ufshcd_probe_hba(struct ufs_hba *hba, bool async);
237 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
238 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
239 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
240 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
241 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
242 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
243 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
244 static irqreturn_t ufshcd_intr(int irq, void *__hba);
245 static int ufshcd_change_power_mode(struct ufs_hba *hba,
246 			     struct ufs_pa_layer_attr *pwr_mode);
247 static void ufshcd_schedule_eh_work(struct ufs_hba *hba);
248 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
249 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
250 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
251 					 struct ufs_vreg *vreg);
252 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag);
253 static int ufshcd_wb_buf_flush_enable(struct ufs_hba *hba);
254 static int ufshcd_wb_buf_flush_disable(struct ufs_hba *hba);
255 static int ufshcd_wb_ctrl(struct ufs_hba *hba, bool enable);
256 static int ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set);
257 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable);
258 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
259 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
260 
ufshcd_valid_tag(struct ufs_hba * hba,int tag)261 static inline bool ufshcd_valid_tag(struct ufs_hba *hba, int tag)
262 {
263 	return tag >= 0 && tag < hba->nutrs;
264 }
265 
ufshcd_enable_irq(struct ufs_hba * hba)266 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
267 {
268 	if (!hba->is_irq_enabled) {
269 		enable_irq(hba->irq);
270 		hba->is_irq_enabled = true;
271 	}
272 }
273 
ufshcd_disable_irq(struct ufs_hba * hba)274 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
275 {
276 	if (hba->is_irq_enabled) {
277 		disable_irq(hba->irq);
278 		hba->is_irq_enabled = false;
279 	}
280 }
281 
ufshcd_wb_config(struct ufs_hba * hba)282 static inline void ufshcd_wb_config(struct ufs_hba *hba)
283 {
284 	int ret;
285 
286 	if (!ufshcd_is_wb_allowed(hba))
287 		return;
288 
289 	ret = ufshcd_wb_ctrl(hba, true);
290 	if (ret)
291 		dev_err(hba->dev, "%s: Enable WB failed: %d\n", __func__, ret);
292 	else
293 		dev_info(hba->dev, "%s: Write Booster Configured\n", __func__);
294 	ret = ufshcd_wb_toggle_flush_during_h8(hba, true);
295 	if (ret)
296 		dev_err(hba->dev, "%s: En WB flush during H8: failed: %d\n",
297 			__func__, ret);
298 	if (!(hba->quirks & UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL))
299 		ufshcd_wb_toggle_flush(hba, true);
300 }
301 
ufshcd_scsi_unblock_requests(struct ufs_hba * hba)302 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
303 {
304 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
305 		scsi_unblock_requests(hba->host);
306 }
307 
ufshcd_scsi_block_requests(struct ufs_hba * hba)308 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
309 {
310 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
311 		scsi_block_requests(hba->host);
312 }
313 
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)314 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
315 		const char *str)
316 {
317 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
318 
319 	trace_ufshcd_upiu(dev_name(hba->dev), str, &rq->header, &rq->sc.cdb);
320 }
321 
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)322 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, unsigned int tag,
323 		const char *str)
324 {
325 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
326 
327 	trace_ufshcd_upiu(dev_name(hba->dev), str, &rq->header, &rq->qr);
328 }
329 
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,const char * str)330 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
331 		const char *str)
332 {
333 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
334 
335 	trace_android_vh_ufs_send_tm_command(hba, tag, str);
336 	trace_ufshcd_upiu(dev_name(hba->dev), str, &descp->req_header,
337 			&descp->input_param1);
338 }
339 
ufshcd_add_uic_command_trace(struct ufs_hba * hba,struct uic_command * ucmd,const char * str)340 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
341 					 struct uic_command *ucmd,
342 					 const char *str)
343 {
344 	u32 cmd;
345 
346 	trace_android_vh_ufs_send_uic_command(hba, ucmd, str);
347 
348 	if (!trace_ufshcd_uic_command_enabled())
349 		return;
350 
351 	if (!strcmp(str, "send"))
352 		cmd = ucmd->command;
353 	else
354 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
355 
356 	trace_ufshcd_uic_command(dev_name(hba->dev), str, cmd,
357 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
358 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
359 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
360 }
361 
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,const char * str)362 static void ufshcd_add_command_trace(struct ufs_hba *hba,
363 		unsigned int tag, const char *str)
364 {
365 	sector_t lba = -1;
366 	u8 opcode = 0, group_id = 0;
367 	u32 intr, doorbell;
368 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
369 	struct scsi_cmnd *cmd = lrbp->cmd;
370 	int transfer_len = -1;
371 
372 	if (!trace_ufshcd_command_enabled()) {
373 		/* trace UPIU W/O tracing command */
374 		if (cmd)
375 			ufshcd_add_cmd_upiu_trace(hba, tag, str);
376 		return;
377 	}
378 
379 	if (cmd) { /* data phase exists */
380 		/* trace UPIU also */
381 		ufshcd_add_cmd_upiu_trace(hba, tag, str);
382 		opcode = cmd->cmnd[0];
383 		if ((opcode == READ_10) || (opcode == WRITE_10)) {
384 			/*
385 			 * Currently we only fully trace read(10) and write(10)
386 			 * commands
387 			 */
388 			if (cmd->request && cmd->request->bio)
389 				lba = cmd->request->bio->bi_iter.bi_sector;
390 			transfer_len = be32_to_cpu(
391 				lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
392 			if (opcode == WRITE_10)
393 				group_id = lrbp->cmd->cmnd[6];
394 		} else if (opcode == UNMAP) {
395 			if (cmd->request) {
396 				lba = scsi_get_lba(cmd);
397 				transfer_len = blk_rq_bytes(cmd->request);
398 			}
399 		}
400 	}
401 
402 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
403 	doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
404 	trace_ufshcd_command(dev_name(hba->dev), str, tag,
405 			doorbell, transfer_len, intr, lba, opcode, group_id);
406 }
407 
ufshcd_print_clk_freqs(struct ufs_hba * hba)408 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
409 {
410 	struct ufs_clk_info *clki;
411 	struct list_head *head = &hba->clk_list_head;
412 
413 	if (list_empty(head))
414 		return;
415 
416 	list_for_each_entry(clki, head, list) {
417 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
418 				clki->max_freq)
419 			dev_err(hba->dev, "clk: %s, rate: %u\n",
420 					clki->name, clki->curr_freq);
421 	}
422 }
423 
ufshcd_print_evt(struct ufs_hba * hba,u32 id,char * err_name)424 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
425 			     char *err_name)
426 {
427 	int i;
428 	bool found = false;
429 	struct ufs_event_hist *e;
430 
431 	if (id >= UFS_EVT_CNT)
432 		return;
433 
434 	e = &hba->ufs_stats.event[id];
435 
436 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
437 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
438 
439 		if (e->tstamp[p] == 0)
440 			continue;
441 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
442 			e->val[p], ktime_to_us(e->tstamp[p]));
443 		found = true;
444 	}
445 
446 	if (!found)
447 		dev_err(hba->dev, "No record of %s\n", err_name);
448 }
449 
ufshcd_print_evt_hist(struct ufs_hba * hba)450 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
451 {
452 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
453 
454 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
455 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
456 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
457 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
458 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
459 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
460 			 "auto_hibern8_err");
461 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
462 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
463 			 "link_startup_fail");
464 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
465 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
466 			 "suspend_fail");
467 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
468 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
469 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
470 
471 	ufshcd_vops_dbg_register_dump(hba);
472 }
473 
474 static
ufshcd_print_trs(struct ufs_hba * hba,unsigned long bitmap,bool pr_prdt)475 void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt)
476 {
477 	struct ufshcd_lrb *lrbp;
478 	int prdt_length;
479 	int tag;
480 
481 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
482 		lrbp = &hba->lrb[tag];
483 
484 		dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
485 				tag, ktime_to_us(lrbp->issue_time_stamp));
486 		dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
487 				tag, ktime_to_us(lrbp->compl_time_stamp));
488 		dev_err(hba->dev,
489 			"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
490 			tag, (u64)lrbp->utrd_dma_addr);
491 
492 		ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
493 				sizeof(struct utp_transfer_req_desc));
494 		dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
495 			(u64)lrbp->ucd_req_dma_addr);
496 		ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
497 				sizeof(struct utp_upiu_req));
498 		dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
499 			(u64)lrbp->ucd_rsp_dma_addr);
500 		ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
501 				sizeof(struct utp_upiu_rsp));
502 
503 		prdt_length = le16_to_cpu(
504 			lrbp->utr_descriptor_ptr->prd_table_length);
505 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
506 			prdt_length /= hba->sg_entry_size;
507 
508 		dev_err(hba->dev,
509 			"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
510 			tag, prdt_length,
511 			(u64)lrbp->ucd_prdt_dma_addr);
512 
513 		if (pr_prdt)
514 			ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
515 				hba->sg_entry_size * prdt_length);
516 	}
517 }
518 
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)519 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
520 {
521 	int tag;
522 
523 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
524 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
525 
526 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
527 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
528 	}
529 }
530 
ufshcd_print_host_state(struct ufs_hba * hba)531 static void ufshcd_print_host_state(struct ufs_hba *hba)
532 {
533 	struct scsi_device *sdev_ufs = hba->sdev_ufs_device;
534 
535 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
536 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
537 		hba->outstanding_reqs, hba->outstanding_tasks);
538 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
539 		hba->saved_err, hba->saved_uic_err);
540 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
541 		hba->curr_dev_pwr_mode, hba->uic_link_state);
542 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
543 		hba->pm_op_in_progress, hba->is_sys_suspended);
544 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
545 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
546 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
547 	dev_err(hba->dev,
548 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
549 		ktime_to_us(hba->ufs_stats.last_hibern8_exit_tstamp),
550 		hba->ufs_stats.hibern8_exit_cnt);
551 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
552 		ktime_to_us(hba->ufs_stats.last_intr_ts),
553 		hba->ufs_stats.last_intr_status);
554 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
555 		hba->eh_flags, hba->req_abort_count);
556 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
557 		hba->ufs_version, hba->capabilities, hba->caps);
558 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
559 		hba->dev_quirks);
560 	if (sdev_ufs)
561 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
562 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
563 
564 	ufshcd_print_clk_freqs(hba);
565 }
566 
567 /**
568  * ufshcd_print_pwr_info - print power params as saved in hba
569  * power info
570  * @hba: per-adapter instance
571  */
ufshcd_print_pwr_info(struct ufs_hba * hba)572 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
573 {
574 	static const char * const names[] = {
575 		"INVALID MODE",
576 		"FAST MODE",
577 		"SLOW_MODE",
578 		"INVALID MODE",
579 		"FASTAUTO_MODE",
580 		"SLOWAUTO_MODE",
581 		"INVALID MODE",
582 	};
583 
584 	dev_err(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
585 		 __func__,
586 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
587 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
588 		 names[hba->pwr_info.pwr_rx],
589 		 names[hba->pwr_info.pwr_tx],
590 		 hba->pwr_info.hs_rate);
591 }
592 
ufshcd_delay_us(unsigned long us,unsigned long tolerance)593 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
594 {
595 	if (!us)
596 		return;
597 
598 	if (us < 10)
599 		udelay(us);
600 	else
601 		usleep_range(us, us + tolerance);
602 }
603 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
604 
605 /**
606  * ufshcd_wait_for_register - wait for register value to change
607  * @hba: per-adapter interface
608  * @reg: mmio register offset
609  * @mask: mask to apply to the read register value
610  * @val: value to wait for
611  * @interval_us: polling interval in microseconds
612  * @timeout_ms: timeout in milliseconds
613  *
614  * Return:
615  * -ETIMEDOUT on error, zero on success.
616  */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)617 int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
618 				u32 val, unsigned long interval_us,
619 				unsigned long timeout_ms)
620 {
621 	int err = 0;
622 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
623 
624 	/* ignore bits that we don't intend to wait on */
625 	val = val & mask;
626 
627 	while ((ufshcd_readl(hba, reg) & mask) != val) {
628 		usleep_range(interval_us, interval_us + 50);
629 		if (time_after(jiffies, timeout)) {
630 			if ((ufshcd_readl(hba, reg) & mask) != val)
631 				err = -ETIMEDOUT;
632 			break;
633 		}
634 	}
635 
636 	return err;
637 }
638 
639 /**
640  * ufshcd_get_intr_mask - Get the interrupt bit mask
641  * @hba: Pointer to adapter instance
642  *
643  * Returns interrupt bit mask per version
644  */
ufshcd_get_intr_mask(struct ufs_hba * hba)645 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
646 {
647 	if (hba->ufs_version == ufshci_version(1, 0))
648 		return INTERRUPT_MASK_ALL_VER_10;
649 	if (hba->ufs_version <= ufshci_version(2, 0))
650 		return INTERRUPT_MASK_ALL_VER_11;
651 
652 	return INTERRUPT_MASK_ALL_VER_21;
653 }
654 
655 /**
656  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
657  * @hba: Pointer to adapter instance
658  *
659  * Returns UFSHCI version supported by the controller
660  */
ufshcd_get_ufs_version(struct ufs_hba * hba)661 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
662 {
663 	u32 ufshci_ver;
664 
665 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
666 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
667 	else
668 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
669 
670 	/*
671 	 * UFSHCI v1.x uses a different version scheme, in order
672 	 * to allow the use of comparisons with the ufshci_version
673 	 * function, we convert it to the same scheme as ufs 2.0+.
674 	 */
675 	if (ufshci_ver & 0x00010000)
676 		return ufshci_version(1, ufshci_ver & 0x00000100);
677 
678 	return ufshci_ver;
679 }
680 
681 /**
682  * ufshcd_is_device_present - Check if any device connected to
683  *			      the host controller
684  * @hba: pointer to adapter instance
685  *
686  * Returns true if device present, false if no device detected
687  */
ufshcd_is_device_present(struct ufs_hba * hba)688 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
689 {
690 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) &
691 						DEVICE_PRESENT) ? true : false;
692 }
693 
694 /**
695  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
696  * @lrbp: pointer to local command reference block
697  *
698  * This function is used to get the OCS field from UTRD
699  * Returns the OCS field in the UTRD
700  */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp)701 static inline int ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp)
702 {
703 	return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
704 }
705 
706 /**
707  * ufshcd_utrl_clear - Clear a bit in UTRLCLR register
708  * @hba: per adapter instance
709  * @pos: position of the bit to be cleared
710  */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 pos)711 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 pos)
712 {
713 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
714 		ufshcd_writel(hba, (1 << pos), REG_UTP_TRANSFER_REQ_LIST_CLEAR);
715 	else
716 		ufshcd_writel(hba, ~(1 << pos),
717 				REG_UTP_TRANSFER_REQ_LIST_CLEAR);
718 }
719 
720 /**
721  * ufshcd_utmrl_clear - Clear a bit in UTRMLCLR register
722  * @hba: per adapter instance
723  * @pos: position of the bit to be cleared
724  */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)725 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
726 {
727 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
728 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
729 	else
730 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
731 }
732 
733 /**
734  * ufshcd_outstanding_req_clear - Clear a bit in outstanding request field
735  * @hba: per adapter instance
736  * @tag: position of the bit to be cleared
737  */
ufshcd_outstanding_req_clear(struct ufs_hba * hba,int tag)738 static inline void ufshcd_outstanding_req_clear(struct ufs_hba *hba, int tag)
739 {
740 	clear_bit(tag, &hba->outstanding_reqs);
741 }
742 
743 /**
744  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
745  * @reg: Register value of host controller status
746  *
747  * Returns integer, 0 on Success and positive value if failed
748  */
ufshcd_get_lists_status(u32 reg)749 static inline int ufshcd_get_lists_status(u32 reg)
750 {
751 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
752 }
753 
754 /**
755  * ufshcd_get_uic_cmd_result - Get the UIC command result
756  * @hba: Pointer to adapter instance
757  *
758  * This function gets the result of UIC command completion
759  * Returns 0 on success, non zero value on error
760  */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)761 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
762 {
763 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
764 	       MASK_UIC_COMMAND_RESULT;
765 }
766 
767 /**
768  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
769  * @hba: Pointer to adapter instance
770  *
771  * This function gets UIC command argument3
772  * Returns 0 on success, non zero value on error
773  */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)774 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
775 {
776 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
777 }
778 
779 /**
780  * ufshcd_get_req_rsp - returns the TR response transaction type
781  * @ucd_rsp_ptr: pointer to response UPIU
782  */
783 static inline int
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)784 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
785 {
786 	return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
787 }
788 
789 /**
790  * ufshcd_get_rsp_upiu_result - Get the result from response UPIU
791  * @ucd_rsp_ptr: pointer to response UPIU
792  *
793  * This function gets the response status and scsi_status from response UPIU
794  * Returns the response result code.
795  */
796 static inline int
ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp * ucd_rsp_ptr)797 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
798 {
799 	return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
800 }
801 
802 /*
803  * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
804  *				from response UPIU
805  * @ucd_rsp_ptr: pointer to response UPIU
806  *
807  * Return the data segment length.
808  */
809 static inline unsigned int
ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp * ucd_rsp_ptr)810 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
811 {
812 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
813 		MASK_RSP_UPIU_DATA_SEG_LEN;
814 }
815 
816 /**
817  * ufshcd_is_exception_event - Check if the device raised an exception event
818  * @ucd_rsp_ptr: pointer to response UPIU
819  *
820  * The function checks if the device raised an exception event indicated in
821  * the Device Information field of response UPIU.
822  *
823  * Returns true if exception is raised, false otherwise.
824  */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)825 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
826 {
827 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
828 			MASK_RSP_EXCEPTION_EVENT ? true : false;
829 }
830 
831 /**
832  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
833  * @hba: per adapter instance
834  */
835 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)836 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
837 {
838 	ufshcd_writel(hba, INT_AGGR_ENABLE |
839 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
840 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
841 }
842 
843 /**
844  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
845  * @hba: per adapter instance
846  * @cnt: Interrupt aggregation counter threshold
847  * @tmout: Interrupt aggregation timeout value
848  */
849 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)850 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
851 {
852 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
853 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
854 		      INT_AGGR_TIMEOUT_VAL(tmout),
855 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
856 }
857 
858 /**
859  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
860  * @hba: per adapter instance
861  */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)862 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
863 {
864 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
865 }
866 
867 /**
868  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
869  *			When run-stop registers are set to 1, it indicates the
870  *			host controller that it can process the requests
871  * @hba: per adapter instance
872  */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)873 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
874 {
875 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
876 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
877 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
878 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
879 }
880 
881 /**
882  * ufshcd_hba_start - Start controller initialization sequence
883  * @hba: per adapter instance
884  */
ufshcd_hba_start(struct ufs_hba * hba)885 static inline void ufshcd_hba_start(struct ufs_hba *hba)
886 {
887 	u32 val = CONTROLLER_ENABLE;
888 
889 	if (ufshcd_crypto_enable(hba))
890 		val |= CRYPTO_GENERAL_ENABLE;
891 
892 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
893 }
894 
895 /**
896  * ufshcd_is_hba_active - Get controller state
897  * @hba: per adapter instance
898  *
899  * Returns false if controller is active, true otherwise
900  */
ufshcd_is_hba_active(struct ufs_hba * hba)901 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
902 {
903 	return (ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE)
904 		? false : true;
905 }
906 
ufshcd_get_local_unipro_ver(struct ufs_hba * hba)907 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
908 {
909 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
910 	if (hba->ufs_version <= ufshci_version(1, 1))
911 		return UFS_UNIPRO_VER_1_41;
912 	else
913 		return UFS_UNIPRO_VER_1_6;
914 }
915 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
916 
ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba * hba)917 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
918 {
919 	/*
920 	 * If both host and device support UniPro ver1.6 or later, PA layer
921 	 * parameters tuning happens during link startup itself.
922 	 *
923 	 * We can manually tune PA layer parameters if either host or device
924 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
925 	 * logic simple, we will only do manual tuning if local unipro version
926 	 * doesn't support ver1.6 or later.
927 	 */
928 	if (ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6)
929 		return true;
930 	else
931 		return false;
932 }
933 
934 /**
935  * ufshcd_set_clk_freq - set UFS controller clock frequencies
936  * @hba: per adapter instance
937  * @scale_up: If True, set max possible frequency othewise set low frequency
938  *
939  * Returns 0 if successful
940  * Returns < 0 for any other errors
941  */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)942 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
943 {
944 	int ret = 0;
945 	struct ufs_clk_info *clki;
946 	struct list_head *head = &hba->clk_list_head;
947 
948 	if (list_empty(head))
949 		goto out;
950 
951 	list_for_each_entry(clki, head, list) {
952 		if (!IS_ERR_OR_NULL(clki->clk)) {
953 			if (scale_up && clki->max_freq) {
954 				if (clki->curr_freq == clki->max_freq)
955 					continue;
956 
957 				ret = clk_set_rate(clki->clk, clki->max_freq);
958 				if (ret) {
959 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
960 						__func__, clki->name,
961 						clki->max_freq, ret);
962 					break;
963 				}
964 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
965 						"scaled up", clki->name,
966 						clki->curr_freq,
967 						clki->max_freq);
968 
969 				clki->curr_freq = clki->max_freq;
970 
971 			} else if (!scale_up && clki->min_freq) {
972 				if (clki->curr_freq == clki->min_freq)
973 					continue;
974 
975 				ret = clk_set_rate(clki->clk, clki->min_freq);
976 				if (ret) {
977 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
978 						__func__, clki->name,
979 						clki->min_freq, ret);
980 					break;
981 				}
982 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
983 						"scaled down", clki->name,
984 						clki->curr_freq,
985 						clki->min_freq);
986 				clki->curr_freq = clki->min_freq;
987 			}
988 		}
989 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
990 				clki->name, clk_get_rate(clki->clk));
991 	}
992 
993 out:
994 	return ret;
995 }
996 
997 /**
998  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
999  * @hba: per adapter instance
1000  * @scale_up: True if scaling up and false if scaling down
1001  *
1002  * Returns 0 if successful
1003  * Returns < 0 for any other errors
1004  */
ufshcd_scale_clks(struct ufs_hba * hba,bool scale_up)1005 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1006 {
1007 	int ret = 0;
1008 	ktime_t start = ktime_get();
1009 
1010 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1011 	if (ret)
1012 		goto out;
1013 
1014 	ret = ufshcd_set_clk_freq(hba, scale_up);
1015 	if (ret)
1016 		goto out;
1017 
1018 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1019 	if (ret)
1020 		ufshcd_set_clk_freq(hba, !scale_up);
1021 
1022 out:
1023 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1024 			(scale_up ? "up" : "down"),
1025 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1026 	return ret;
1027 }
1028 
1029 /**
1030  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1031  * @hba: per adapter instance
1032  * @scale_up: True if scaling up and false if scaling down
1033  *
1034  * Returns true if scaling is required, false otherwise.
1035  */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,bool scale_up)1036 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1037 					       bool scale_up)
1038 {
1039 	struct ufs_clk_info *clki;
1040 	struct list_head *head = &hba->clk_list_head;
1041 
1042 	if (list_empty(head))
1043 		return false;
1044 
1045 	list_for_each_entry(clki, head, list) {
1046 		if (!IS_ERR_OR_NULL(clki->clk)) {
1047 			if (scale_up && clki->max_freq) {
1048 				if (clki->curr_freq == clki->max_freq)
1049 					continue;
1050 				return true;
1051 			} else if (!scale_up && clki->min_freq) {
1052 				if (clki->curr_freq == clki->min_freq)
1053 					continue;
1054 				return true;
1055 			}
1056 		}
1057 	}
1058 
1059 	return false;
1060 }
1061 
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1062 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1063 					u64 wait_timeout_us)
1064 {
1065 	unsigned long flags;
1066 	int ret = 0;
1067 	u32 tm_doorbell;
1068 	u32 tr_doorbell;
1069 	bool timeout = false, do_last_check = false;
1070 	ktime_t start;
1071 
1072 	ufshcd_hold(hba, false);
1073 	spin_lock_irqsave(hba->host->host_lock, flags);
1074 	/*
1075 	 * Wait for all the outstanding tasks/transfer requests.
1076 	 * Verify by checking the doorbell registers are clear.
1077 	 */
1078 	start = ktime_get();
1079 	do {
1080 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1081 			ret = -EBUSY;
1082 			goto out;
1083 		}
1084 
1085 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1086 		tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
1087 		if (!tm_doorbell && !tr_doorbell) {
1088 			timeout = false;
1089 			break;
1090 		} else if (do_last_check) {
1091 			break;
1092 		}
1093 
1094 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1095 		schedule();
1096 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1097 		    wait_timeout_us) {
1098 			timeout = true;
1099 			/*
1100 			 * We might have scheduled out for long time so make
1101 			 * sure to check if doorbells are cleared by this time
1102 			 * or not.
1103 			 */
1104 			do_last_check = true;
1105 		}
1106 		spin_lock_irqsave(hba->host->host_lock, flags);
1107 	} while (tm_doorbell || tr_doorbell);
1108 
1109 	if (timeout) {
1110 		dev_err(hba->dev,
1111 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1112 			__func__, tm_doorbell, tr_doorbell);
1113 		ret = -EBUSY;
1114 	}
1115 out:
1116 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1117 	ufshcd_release(hba);
1118 	return ret;
1119 }
1120 
1121 /**
1122  * ufshcd_scale_gear - scale up/down UFS gear
1123  * @hba: per adapter instance
1124  * @scale_up: True for scaling up gear and false for scaling down
1125  *
1126  * Returns 0 for success,
1127  * Returns -EBUSY if scaling can't happen at this time
1128  * Returns non-zero for any other errors
1129  */
ufshcd_scale_gear(struct ufs_hba * hba,bool scale_up)1130 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1131 {
1132 	int ret = 0;
1133 	struct ufs_pa_layer_attr new_pwr_info;
1134 
1135 	if (scale_up) {
1136 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info,
1137 		       sizeof(struct ufs_pa_layer_attr));
1138 	} else {
1139 		memcpy(&new_pwr_info, &hba->pwr_info,
1140 		       sizeof(struct ufs_pa_layer_attr));
1141 
1142 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1143 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1144 			/* save the current power mode */
1145 			memcpy(&hba->clk_scaling.saved_pwr_info.info,
1146 				&hba->pwr_info,
1147 				sizeof(struct ufs_pa_layer_attr));
1148 
1149 			/* scale down gear */
1150 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1151 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1152 		}
1153 	}
1154 
1155 	/* check if the power mode needs to be changed or not? */
1156 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1157 	if (ret)
1158 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1159 			__func__, ret,
1160 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1161 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1162 
1163 	return ret;
1164 }
1165 
ufshcd_clock_scaling_prepare(struct ufs_hba * hba)1166 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba)
1167 {
1168 	#define DOORBELL_CLR_TOUT_US		(1000 * 1000) /* 1 sec */
1169 	int ret = 0;
1170 	/*
1171 	 * make sure that there are no outstanding requests when
1172 	 * clock scaling is in progress
1173 	 */
1174 	ufshcd_scsi_block_requests(hba);
1175 	down_write(&hba->clk_scaling_lock);
1176 
1177 	if (!hba->clk_scaling.is_allowed ||
1178 	    ufshcd_wait_for_doorbell_clr(hba, DOORBELL_CLR_TOUT_US)) {
1179 		ret = -EBUSY;
1180 		up_write(&hba->clk_scaling_lock);
1181 		ufshcd_scsi_unblock_requests(hba);
1182 		goto out;
1183 	}
1184 
1185 	/* let's not get into low power until clock scaling is completed */
1186 	ufshcd_hold(hba, false);
1187 
1188 out:
1189 	return ret;
1190 }
1191 
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,bool writelock)1192 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, bool writelock)
1193 {
1194 	if (writelock)
1195 		up_write(&hba->clk_scaling_lock);
1196 	else
1197 		up_read(&hba->clk_scaling_lock);
1198 	ufshcd_scsi_unblock_requests(hba);
1199 	ufshcd_release(hba);
1200 }
1201 
1202 /**
1203  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1204  * @hba: per adapter instance
1205  * @scale_up: True for scaling up and false for scalin down
1206  *
1207  * Returns 0 for success,
1208  * Returns -EBUSY if scaling can't happen at this time
1209  * Returns non-zero for any other errors
1210  */
ufshcd_devfreq_scale(struct ufs_hba * hba,bool scale_up)1211 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1212 {
1213 	int ret = 0;
1214 	bool is_writelock = true;
1215 
1216 	ret = ufshcd_clock_scaling_prepare(hba);
1217 	if (ret)
1218 		return ret;
1219 
1220 	/* scale down the gear before scaling down clocks */
1221 	if (!scale_up) {
1222 		ret = ufshcd_scale_gear(hba, false);
1223 		if (ret)
1224 			goto out_unprepare;
1225 	}
1226 
1227 	ret = ufshcd_scale_clks(hba, scale_up);
1228 	if (ret) {
1229 		if (!scale_up)
1230 			ufshcd_scale_gear(hba, true);
1231 		goto out_unprepare;
1232 	}
1233 
1234 	/* scale up the gear after scaling up clocks */
1235 	if (scale_up) {
1236 		ret = ufshcd_scale_gear(hba, true);
1237 		if (ret) {
1238 			ufshcd_scale_clks(hba, false);
1239 			goto out_unprepare;
1240 		}
1241 	}
1242 
1243 	/* Enable Write Booster if we have scaled up else disable it */
1244 	downgrade_write(&hba->clk_scaling_lock);
1245 	is_writelock = false;
1246 	ufshcd_wb_ctrl(hba, scale_up);
1247 
1248 out_unprepare:
1249 	ufshcd_clock_scaling_unprepare(hba, is_writelock);
1250 	return ret;
1251 }
1252 
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1253 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1254 {
1255 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1256 					   clk_scaling.suspend_work);
1257 	unsigned long irq_flags;
1258 
1259 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1260 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1261 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1262 		return;
1263 	}
1264 	hba->clk_scaling.is_suspended = true;
1265 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1266 
1267 	__ufshcd_suspend_clkscaling(hba);
1268 }
1269 
ufshcd_clk_scaling_resume_work(struct work_struct * work)1270 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1271 {
1272 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1273 					   clk_scaling.resume_work);
1274 	unsigned long irq_flags;
1275 
1276 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1277 	if (!hba->clk_scaling.is_suspended) {
1278 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1279 		return;
1280 	}
1281 	hba->clk_scaling.is_suspended = false;
1282 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1283 
1284 	devfreq_resume_device(hba->devfreq);
1285 }
1286 
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1287 static int ufshcd_devfreq_target(struct device *dev,
1288 				unsigned long *freq, u32 flags)
1289 {
1290 	int ret = 0;
1291 	struct ufs_hba *hba = dev_get_drvdata(dev);
1292 	ktime_t start;
1293 	bool scale_up, sched_clk_scaling_suspend_work = false;
1294 	struct list_head *clk_list = &hba->clk_list_head;
1295 	struct ufs_clk_info *clki;
1296 	unsigned long irq_flags;
1297 	bool force_out = false;
1298 	bool force_scaling = false;
1299 
1300 	if (!ufshcd_is_clkscaling_supported(hba))
1301 		return -EINVAL;
1302 
1303 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1304 	/* Override with the closest supported frequency */
1305 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1306 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1307 	if (ufshcd_eh_in_progress(hba)) {
1308 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1309 		return 0;
1310 	}
1311 
1312 	if (!hba->clk_scaling.active_reqs)
1313 		sched_clk_scaling_suspend_work = true;
1314 
1315 	if (list_empty(clk_list)) {
1316 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1317 		goto out;
1318 	}
1319 
1320 	/* Decide based on the rounded-off frequency and update */
1321 	scale_up = (*freq == clki->max_freq) ? true : false;
1322 	if (!scale_up)
1323 		*freq = clki->min_freq;
1324 
1325 	trace_android_vh_ufs_clock_scaling(hba, &force_out, &force_scaling, &scale_up);
1326 
1327 	/* Update the frequency */
1328 	if (force_out || (!force_scaling && !ufshcd_is_devfreq_scaling_required(hba, scale_up))) {
1329 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1330 		ret = 0;
1331 		goto out; /* no state change required */
1332 	}
1333 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1334 
1335 	start = ktime_get();
1336 	ret = ufshcd_devfreq_scale(hba, scale_up);
1337 
1338 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1339 		(scale_up ? "up" : "down"),
1340 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1341 
1342 out:
1343 	if (sched_clk_scaling_suspend_work)
1344 		queue_work(hba->clk_scaling.workq,
1345 			   &hba->clk_scaling.suspend_work);
1346 
1347 	return ret;
1348 }
1349 
ufshcd_is_busy(struct request * req,void * priv,bool reserved)1350 static bool ufshcd_is_busy(struct request *req, void *priv, bool reserved)
1351 {
1352 	int *busy = priv;
1353 
1354 	WARN_ON_ONCE(reserved);
1355 	(*busy)++;
1356 	return false;
1357 }
1358 
1359 /* Whether or not any tag is in use by a request that is in progress. */
ufshcd_any_tag_in_use(struct ufs_hba * hba)1360 static bool ufshcd_any_tag_in_use(struct ufs_hba *hba)
1361 {
1362 	struct request_queue *q = hba->cmd_queue;
1363 	int busy = 0;
1364 
1365 	blk_mq_tagset_busy_iter(q->tag_set, ufshcd_is_busy, &busy);
1366 	return busy;
1367 }
1368 
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1369 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1370 		struct devfreq_dev_status *stat)
1371 {
1372 	struct ufs_hba *hba = dev_get_drvdata(dev);
1373 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1374 	unsigned long flags;
1375 	struct list_head *clk_list = &hba->clk_list_head;
1376 	struct ufs_clk_info *clki;
1377 	ktime_t curr_t;
1378 
1379 	if (!ufshcd_is_clkscaling_supported(hba))
1380 		return -EINVAL;
1381 
1382 	memset(stat, 0, sizeof(*stat));
1383 
1384 	spin_lock_irqsave(hba->host->host_lock, flags);
1385 	curr_t = ktime_get();
1386 	if (!scaling->window_start_t)
1387 		goto start_window;
1388 
1389 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1390 	/*
1391 	 * If current frequency is 0, then the ondemand governor considers
1392 	 * there's no initial frequency set. And it always requests to set
1393 	 * to max. frequency.
1394 	 */
1395 	stat->current_frequency = clki->curr_freq;
1396 	if (scaling->is_busy_started)
1397 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1398 				scaling->busy_start_t);
1399 
1400 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1401 	stat->busy_time = scaling->tot_busy_t;
1402 start_window:
1403 	scaling->window_start_t = curr_t;
1404 	scaling->tot_busy_t = 0;
1405 
1406 	if (hba->outstanding_reqs) {
1407 		scaling->busy_start_t = curr_t;
1408 		scaling->is_busy_started = true;
1409 	} else {
1410 		scaling->busy_start_t = 0;
1411 		scaling->is_busy_started = false;
1412 	}
1413 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1414 	return 0;
1415 }
1416 
ufshcd_devfreq_init(struct ufs_hba * hba)1417 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1418 {
1419 	struct list_head *clk_list = &hba->clk_list_head;
1420 	struct ufs_clk_info *clki;
1421 	struct devfreq *devfreq;
1422 	int ret;
1423 
1424 	/* Skip devfreq if we don't have any clocks in the list */
1425 	if (list_empty(clk_list))
1426 		return 0;
1427 
1428 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1429 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1430 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1431 
1432 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1433 					 &hba->vps->ondemand_data);
1434 	devfreq = devfreq_add_device(hba->dev,
1435 			&hba->vps->devfreq_profile,
1436 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1437 			&hba->vps->ondemand_data);
1438 	if (IS_ERR(devfreq)) {
1439 		ret = PTR_ERR(devfreq);
1440 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1441 
1442 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1443 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1444 		return ret;
1445 	}
1446 
1447 	hba->devfreq = devfreq;
1448 
1449 	return 0;
1450 }
1451 
ufshcd_devfreq_remove(struct ufs_hba * hba)1452 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1453 {
1454 	struct list_head *clk_list = &hba->clk_list_head;
1455 	struct ufs_clk_info *clki;
1456 
1457 	if (!hba->devfreq)
1458 		return;
1459 
1460 	devfreq_remove_device(hba->devfreq);
1461 	hba->devfreq = NULL;
1462 
1463 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1464 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1465 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1466 }
1467 
__ufshcd_suspend_clkscaling(struct ufs_hba * hba)1468 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1469 {
1470 	unsigned long flags;
1471 
1472 	devfreq_suspend_device(hba->devfreq);
1473 	spin_lock_irqsave(hba->host->host_lock, flags);
1474 	hba->clk_scaling.window_start_t = 0;
1475 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1476 }
1477 
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1478 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1479 {
1480 	unsigned long flags;
1481 	bool suspend = false;
1482 
1483 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1484 	cancel_work_sync(&hba->clk_scaling.resume_work);
1485 
1486 	spin_lock_irqsave(hba->host->host_lock, flags);
1487 	if (!hba->clk_scaling.is_suspended) {
1488 		suspend = true;
1489 		hba->clk_scaling.is_suspended = true;
1490 	}
1491 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1492 
1493 	if (suspend)
1494 		__ufshcd_suspend_clkscaling(hba);
1495 }
1496 
ufshcd_resume_clkscaling(struct ufs_hba * hba)1497 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1498 {
1499 	unsigned long flags;
1500 	bool resume = false;
1501 
1502 	spin_lock_irqsave(hba->host->host_lock, flags);
1503 	if (hba->clk_scaling.is_suspended) {
1504 		resume = true;
1505 		hba->clk_scaling.is_suspended = false;
1506 	}
1507 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1508 
1509 	if (resume)
1510 		devfreq_resume_device(hba->devfreq);
1511 }
1512 
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1513 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1514 		struct device_attribute *attr, char *buf)
1515 {
1516 	struct ufs_hba *hba = dev_get_drvdata(dev);
1517 
1518 	return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_scaling.is_enabled);
1519 }
1520 
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1521 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1522 		struct device_attribute *attr, const char *buf, size_t count)
1523 {
1524 	struct ufs_hba *hba = dev_get_drvdata(dev);
1525 	u32 value;
1526 	int err = 0;
1527 
1528 	if (kstrtou32(buf, 0, &value))
1529 		return -EINVAL;
1530 
1531 	down(&hba->host_sem);
1532 	if (!ufshcd_is_user_access_allowed(hba)) {
1533 		err = -EBUSY;
1534 		goto out;
1535 	}
1536 
1537 	value = !!value;
1538 	if (value == hba->clk_scaling.is_enabled)
1539 		goto out;
1540 
1541 	pm_runtime_get_sync(hba->dev);
1542 	ufshcd_hold(hba, false);
1543 
1544 	hba->clk_scaling.is_enabled = value;
1545 
1546 	if (value) {
1547 		ufshcd_resume_clkscaling(hba);
1548 	} else {
1549 		ufshcd_suspend_clkscaling(hba);
1550 		err = ufshcd_devfreq_scale(hba, true);
1551 		if (err)
1552 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1553 					__func__, err);
1554 	}
1555 
1556 	ufshcd_release(hba);
1557 	pm_runtime_put_sync(hba->dev);
1558 out:
1559 	up(&hba->host_sem);
1560 	return err ? err : count;
1561 }
1562 
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1563 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1564 {
1565 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1566 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1567 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1568 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1569 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1570 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1571 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1572 }
1573 
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1574 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1575 {
1576 	if (hba->clk_scaling.enable_attr.attr.name)
1577 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1578 }
1579 
ufshcd_init_clk_scaling(struct ufs_hba * hba)1580 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1581 {
1582 	char wq_name[sizeof("ufs_clkscaling_00")];
1583 
1584 	if (!ufshcd_is_clkscaling_supported(hba))
1585 		return;
1586 
1587 	if (!hba->clk_scaling.min_gear)
1588 		hba->clk_scaling.min_gear = UFS_HS_G1;
1589 
1590 	INIT_WORK(&hba->clk_scaling.suspend_work,
1591 		  ufshcd_clk_scaling_suspend_work);
1592 	INIT_WORK(&hba->clk_scaling.resume_work,
1593 		  ufshcd_clk_scaling_resume_work);
1594 
1595 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1596 		 hba->host->host_no);
1597 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1598 
1599 	hba->clk_scaling.is_initialized = true;
1600 }
1601 
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1602 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1603 {
1604 	if (!hba->clk_scaling.is_initialized)
1605 		return;
1606 
1607 	ufshcd_remove_clk_scaling_sysfs(hba);
1608 	destroy_workqueue(hba->clk_scaling.workq);
1609 	ufshcd_devfreq_remove(hba);
1610 	hba->clk_scaling.is_initialized = false;
1611 }
1612 
ufshcd_ungate_work(struct work_struct * work)1613 static void ufshcd_ungate_work(struct work_struct *work)
1614 {
1615 	int ret;
1616 	unsigned long flags;
1617 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1618 			clk_gating.ungate_work);
1619 
1620 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1621 
1622 	spin_lock_irqsave(hba->host->host_lock, flags);
1623 	if (hba->clk_gating.state == CLKS_ON) {
1624 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1625 		goto unblock_reqs;
1626 	}
1627 
1628 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1629 	ufshcd_hba_vreg_set_hpm(hba);
1630 	ufshcd_setup_clocks(hba, true);
1631 
1632 	ufshcd_enable_irq(hba);
1633 
1634 	/* Exit from hibern8 */
1635 	if (ufshcd_can_hibern8_during_gating(hba)) {
1636 		/* Prevent gating in this path */
1637 		hba->clk_gating.is_suspended = true;
1638 		if (ufshcd_is_link_hibern8(hba)) {
1639 			ret = ufshcd_uic_hibern8_exit(hba);
1640 			if (ret)
1641 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1642 					__func__, ret);
1643 			else
1644 				ufshcd_set_link_active(hba);
1645 		}
1646 		hba->clk_gating.is_suspended = false;
1647 	}
1648 unblock_reqs:
1649 	ufshcd_scsi_unblock_requests(hba);
1650 }
1651 
1652 /**
1653  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1654  * Also, exit from hibern8 mode and set the link as active.
1655  * @hba: per adapter instance
1656  * @async: This indicates whether caller should ungate clocks asynchronously.
1657  */
ufshcd_hold(struct ufs_hba * hba,bool async)1658 int ufshcd_hold(struct ufs_hba *hba, bool async)
1659 {
1660 	int rc = 0;
1661 	bool flush_result;
1662 	unsigned long flags;
1663 
1664 	if (!ufshcd_is_clkgating_allowed(hba))
1665 		goto out;
1666 	spin_lock_irqsave(hba->host->host_lock, flags);
1667 	hba->clk_gating.active_reqs++;
1668 
1669 start:
1670 	switch (hba->clk_gating.state) {
1671 	case CLKS_ON:
1672 		/*
1673 		 * Wait for the ungate work to complete if in progress.
1674 		 * Though the clocks may be in ON state, the link could
1675 		 * still be in hibner8 state if hibern8 is allowed
1676 		 * during clock gating.
1677 		 * Make sure we exit hibern8 state also in addition to
1678 		 * clocks being ON.
1679 		 */
1680 		if (ufshcd_can_hibern8_during_gating(hba) &&
1681 		    ufshcd_is_link_hibern8(hba)) {
1682 			if (async) {
1683 				rc = -EAGAIN;
1684 				hba->clk_gating.active_reqs--;
1685 				break;
1686 			}
1687 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1688 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1689 			if (hba->clk_gating.is_suspended && !flush_result)
1690 				goto out;
1691 			spin_lock_irqsave(hba->host->host_lock, flags);
1692 			goto start;
1693 		}
1694 		break;
1695 	case REQ_CLKS_OFF:
1696 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1697 			hba->clk_gating.state = CLKS_ON;
1698 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1699 						hba->clk_gating.state);
1700 			break;
1701 		}
1702 		/*
1703 		 * If we are here, it means gating work is either done or
1704 		 * currently running. Hence, fall through to cancel gating
1705 		 * work and to enable clocks.
1706 		 */
1707 		fallthrough;
1708 	case CLKS_OFF:
1709 		hba->clk_gating.state = REQ_CLKS_ON;
1710 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1711 					hba->clk_gating.state);
1712 		if (queue_work(hba->clk_gating.clk_gating_workq,
1713 			       &hba->clk_gating.ungate_work))
1714 			ufshcd_scsi_block_requests(hba);
1715 		/*
1716 		 * fall through to check if we should wait for this
1717 		 * work to be done or not.
1718 		 */
1719 		fallthrough;
1720 	case REQ_CLKS_ON:
1721 		if (async) {
1722 			rc = -EAGAIN;
1723 			hba->clk_gating.active_reqs--;
1724 			break;
1725 		}
1726 
1727 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1728 		flush_work(&hba->clk_gating.ungate_work);
1729 		/* Make sure state is CLKS_ON before returning */
1730 		spin_lock_irqsave(hba->host->host_lock, flags);
1731 		goto start;
1732 	default:
1733 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1734 				__func__, hba->clk_gating.state);
1735 		break;
1736 	}
1737 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1738 out:
1739 	return rc;
1740 }
1741 EXPORT_SYMBOL_GPL(ufshcd_hold);
1742 
ufshcd_gate_work(struct work_struct * work)1743 static void ufshcd_gate_work(struct work_struct *work)
1744 {
1745 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1746 			clk_gating.gate_work.work);
1747 	unsigned long flags;
1748 	int ret;
1749 
1750 	spin_lock_irqsave(hba->host->host_lock, flags);
1751 	/*
1752 	 * In case you are here to cancel this work the gating state
1753 	 * would be marked as REQ_CLKS_ON. In this case save time by
1754 	 * skipping the gating work and exit after changing the clock
1755 	 * state to CLKS_ON.
1756 	 */
1757 	if (hba->clk_gating.is_suspended ||
1758 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1759 		hba->clk_gating.state = CLKS_ON;
1760 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1761 					hba->clk_gating.state);
1762 		goto rel_lock;
1763 	}
1764 
1765 	if (hba->clk_gating.active_reqs
1766 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1767 		|| ufshcd_any_tag_in_use(hba) || hba->outstanding_tasks
1768 		|| hba->active_uic_cmd || hba->uic_async_done)
1769 		goto rel_lock;
1770 
1771 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1772 
1773 	/* put the link into hibern8 mode before turning off clocks */
1774 	if (ufshcd_can_hibern8_during_gating(hba)) {
1775 		ret = ufshcd_uic_hibern8_enter(hba);
1776 		if (ret) {
1777 			hba->clk_gating.state = CLKS_ON;
1778 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1779 					__func__, ret);
1780 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1781 						hba->clk_gating.state);
1782 			goto out;
1783 		}
1784 		ufshcd_set_link_hibern8(hba);
1785 	}
1786 
1787 	ufshcd_disable_irq(hba);
1788 
1789 	ufshcd_setup_clocks(hba, false);
1790 
1791 	/* Put the host controller in low power mode if possible */
1792 	ufshcd_hba_vreg_set_lpm(hba);
1793 	/*
1794 	 * In case you are here to cancel this work the gating state
1795 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1796 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1797 	 * and a request to turn them on is pending. By doing this way,
1798 	 * we keep the state machine in tact and this would ultimately
1799 	 * prevent from doing cancel work multiple times when there are
1800 	 * new requests arriving before the current cancel work is done.
1801 	 */
1802 	spin_lock_irqsave(hba->host->host_lock, flags);
1803 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1804 		hba->clk_gating.state = CLKS_OFF;
1805 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1806 					hba->clk_gating.state);
1807 	}
1808 rel_lock:
1809 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1810 out:
1811 	return;
1812 }
1813 
1814 /* host lock must be held before calling this variant */
__ufshcd_release(struct ufs_hba * hba)1815 static void __ufshcd_release(struct ufs_hba *hba)
1816 {
1817 	if (!ufshcd_is_clkgating_allowed(hba))
1818 		return;
1819 
1820 	hba->clk_gating.active_reqs--;
1821 
1822 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1823 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1824 	    hba->outstanding_tasks ||
1825 	    hba->active_uic_cmd || hba->uic_async_done ||
1826 	    hba->clk_gating.state == CLKS_OFF)
1827 		return;
1828 
1829 	hba->clk_gating.state = REQ_CLKS_OFF;
1830 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1831 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1832 			   &hba->clk_gating.gate_work,
1833 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1834 }
1835 
ufshcd_release(struct ufs_hba * hba)1836 void ufshcd_release(struct ufs_hba *hba)
1837 {
1838 	unsigned long flags;
1839 
1840 	spin_lock_irqsave(hba->host->host_lock, flags);
1841 	__ufshcd_release(hba);
1842 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1843 }
1844 EXPORT_SYMBOL_GPL(ufshcd_release);
1845 
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)1846 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1847 		struct device_attribute *attr, char *buf)
1848 {
1849 	struct ufs_hba *hba = dev_get_drvdata(dev);
1850 
1851 	return snprintf(buf, PAGE_SIZE, "%lu\n", hba->clk_gating.delay_ms);
1852 }
1853 
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1854 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1855 		struct device_attribute *attr, const char *buf, size_t count)
1856 {
1857 	struct ufs_hba *hba = dev_get_drvdata(dev);
1858 	unsigned long flags, value;
1859 
1860 	if (kstrtoul(buf, 0, &value))
1861 		return -EINVAL;
1862 
1863 	spin_lock_irqsave(hba->host->host_lock, flags);
1864 	hba->clk_gating.delay_ms = value;
1865 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1866 	return count;
1867 }
1868 
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1869 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1870 		struct device_attribute *attr, char *buf)
1871 {
1872 	struct ufs_hba *hba = dev_get_drvdata(dev);
1873 
1874 	return snprintf(buf, PAGE_SIZE, "%d\n", hba->clk_gating.is_enabled);
1875 }
1876 
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1877 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1878 		struct device_attribute *attr, const char *buf, size_t count)
1879 {
1880 	struct ufs_hba *hba = dev_get_drvdata(dev);
1881 	unsigned long flags;
1882 	u32 value;
1883 
1884 	if (kstrtou32(buf, 0, &value))
1885 		return -EINVAL;
1886 
1887 	value = !!value;
1888 
1889 	spin_lock_irqsave(hba->host->host_lock, flags);
1890 	if (value == hba->clk_gating.is_enabled)
1891 		goto out;
1892 
1893 	if (value)
1894 		__ufshcd_release(hba);
1895 	else
1896 		hba->clk_gating.active_reqs++;
1897 
1898 	hba->clk_gating.is_enabled = value;
1899 out:
1900 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1901 	return count;
1902 }
1903 
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)1904 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1905 {
1906 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1907 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1908 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1909 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1910 	hba->clk_gating.delay_attr.attr.mode = 0644;
1911 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1912 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1913 
1914 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1915 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1916 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1917 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1918 	hba->clk_gating.enable_attr.attr.mode = 0644;
1919 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1920 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1921 }
1922 
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)1923 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
1924 {
1925 	if (hba->clk_gating.delay_attr.attr.name)
1926 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1927 	if (hba->clk_gating.enable_attr.attr.name)
1928 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1929 }
1930 
ufshcd_init_clk_gating(struct ufs_hba * hba)1931 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1932 {
1933 	char wq_name[sizeof("ufs_clk_gating_00")];
1934 
1935 	if (!ufshcd_is_clkgating_allowed(hba))
1936 		return;
1937 
1938 	hba->clk_gating.state = CLKS_ON;
1939 
1940 	hba->clk_gating.delay_ms = 150;
1941 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
1942 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
1943 
1944 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
1945 		 hba->host->host_no);
1946 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
1947 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
1948 
1949 	ufshcd_init_clk_gating_sysfs(hba);
1950 
1951 	hba->clk_gating.is_enabled = true;
1952 	hba->clk_gating.is_initialized = true;
1953 }
1954 
ufshcd_exit_clk_gating(struct ufs_hba * hba)1955 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
1956 {
1957 	if (!hba->clk_gating.is_initialized)
1958 		return;
1959 	ufshcd_remove_clk_gating_sysfs(hba);
1960 	cancel_work_sync(&hba->clk_gating.ungate_work);
1961 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1962 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
1963 	hba->clk_gating.is_initialized = false;
1964 }
1965 
1966 /* Must be called with host lock acquired */
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)1967 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
1968 {
1969 	bool queue_resume_work = false;
1970 	ktime_t curr_t = ktime_get();
1971 	unsigned long flags;
1972 
1973 	if (!ufshcd_is_clkscaling_supported(hba))
1974 		return;
1975 
1976 	spin_lock_irqsave(hba->host->host_lock, flags);
1977 	if (!hba->clk_scaling.active_reqs++)
1978 		queue_resume_work = true;
1979 
1980 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
1981 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1982 		return;
1983 	}
1984 
1985 	if (queue_resume_work)
1986 		queue_work(hba->clk_scaling.workq,
1987 			   &hba->clk_scaling.resume_work);
1988 
1989 	if (!hba->clk_scaling.window_start_t) {
1990 		hba->clk_scaling.window_start_t = curr_t;
1991 		hba->clk_scaling.tot_busy_t = 0;
1992 		hba->clk_scaling.is_busy_started = false;
1993 	}
1994 
1995 	if (!hba->clk_scaling.is_busy_started) {
1996 		hba->clk_scaling.busy_start_t = curr_t;
1997 		hba->clk_scaling.is_busy_started = true;
1998 	}
1999 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2000 }
2001 
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2002 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2003 {
2004 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2005 	unsigned long flags;
2006 
2007 	if (!ufshcd_is_clkscaling_supported(hba))
2008 		return;
2009 
2010 	spin_lock_irqsave(hba->host->host_lock, flags);
2011 	hba->clk_scaling.active_reqs--;
2012 	if (!hba->outstanding_reqs && scaling->is_busy_started) {
2013 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2014 					scaling->busy_start_t));
2015 		scaling->busy_start_t = 0;
2016 		scaling->is_busy_started = false;
2017 	}
2018 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2019 }
2020 
ufshcd_monitor_opcode2dir(u8 opcode)2021 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2022 {
2023 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2024 		return READ;
2025 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2026 		return WRITE;
2027 	else
2028 		return -EINVAL;
2029 }
2030 
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2031 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2032 						struct ufshcd_lrb *lrbp)
2033 {
2034 	struct ufs_hba_monitor *m = &hba->monitor;
2035 
2036 	return (m->enabled && lrbp && lrbp->cmd &&
2037 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2038 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2039 }
2040 
ufshcd_start_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2041 static void ufshcd_start_monitor(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2042 {
2043 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2044 	unsigned long flags;
2045 
2046 	spin_lock_irqsave(hba->host->host_lock, flags);
2047 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2048 		hba->monitor.busy_start_ts[dir] = ktime_get();
2049 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2050 }
2051 
ufshcd_update_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2052 static void ufshcd_update_monitor(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2053 {
2054 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2055 	unsigned long flags;
2056 
2057 	spin_lock_irqsave(hba->host->host_lock, flags);
2058 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2059 		struct request *req = lrbp->cmd->request;
2060 		struct ufs_hba_monitor *m = &hba->monitor;
2061 		ktime_t now, inc, lat;
2062 
2063 		now = lrbp->compl_time_stamp;
2064 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2065 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2066 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2067 
2068 		/* Update latencies */
2069 		m->nr_req[dir]++;
2070 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2071 		m->lat_sum[dir] += lat;
2072 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2073 			m->lat_max[dir] = lat;
2074 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2075 			m->lat_min[dir] = lat;
2076 
2077 		m->nr_queued[dir]--;
2078 		/* Push forward the busy start of monitor */
2079 		m->busy_start_ts[dir] = now;
2080 	}
2081 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2082 }
2083 
2084 /**
2085  * ufshcd_send_command - Send SCSI or device management commands
2086  * @hba: per adapter instance
2087  * @task_tag: Task tag of the command
2088  */
2089 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag)2090 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
2091 {
2092 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2093 
2094 	lrbp->issue_time_stamp = ktime_get();
2095 	lrbp->compl_time_stamp = ktime_set(0, 0);
2096 	trace_android_vh_ufs_send_command(hba, lrbp);
2097 	ufshcd_add_command_trace(hba, task_tag, "send");
2098 	ufshcd_clk_scaling_start_busy(hba);
2099 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2100 		ufshcd_start_monitor(hba, lrbp);
2101 	if (hba->vops && hba->vops->setup_xfer_req)
2102 		hba->vops->setup_xfer_req(hba, task_tag, !!lrbp->cmd);
2103 	if (ufshcd_has_utrlcnr(hba)) {
2104 		set_bit(task_tag, &hba->outstanding_reqs);
2105 		ufshcd_writel(hba, 1 << task_tag,
2106 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2107 	} else {
2108 		unsigned long flags;
2109 
2110 		spin_lock_irqsave(hba->host->host_lock, flags);
2111 		set_bit(task_tag, &hba->outstanding_reqs);
2112 		ufshcd_writel(hba, 1 << task_tag,
2113 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2114 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2115 	}
2116 	/* Make sure that doorbell is committed immediately */
2117 	wmb();
2118 }
2119 
2120 /**
2121  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2122  * @lrbp: pointer to local reference block
2123  */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)2124 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2125 {
2126 	int len;
2127 	if (lrbp->sense_buffer &&
2128 	    ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
2129 		int len_to_copy;
2130 
2131 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2132 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2133 
2134 		memcpy(lrbp->sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2135 		       len_to_copy);
2136 	}
2137 }
2138 
2139 /**
2140  * ufshcd_copy_query_response() - Copy the Query Response and the data
2141  * descriptor
2142  * @hba: per adapter instance
2143  * @lrbp: pointer to local reference block
2144  */
2145 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2146 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2147 {
2148 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2149 
2150 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2151 
2152 	/* Get the descriptor */
2153 	if (hba->dev_cmd.query.descriptor &&
2154 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2155 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2156 				GENERAL_UPIU_REQUEST_SIZE;
2157 		u16 resp_len;
2158 		u16 buf_len;
2159 
2160 		/* data segment length */
2161 		resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
2162 						MASK_QUERY_DATA_SEG_LEN;
2163 		buf_len = be16_to_cpu(
2164 				hba->dev_cmd.query.request.upiu_req.length);
2165 		if (likely(buf_len >= resp_len)) {
2166 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2167 		} else {
2168 			dev_warn(hba->dev,
2169 				 "%s: rsp size %d is bigger than buffer size %d",
2170 				 __func__, resp_len, buf_len);
2171 			return -EINVAL;
2172 		}
2173 	}
2174 
2175 	return 0;
2176 }
2177 
2178 /**
2179  * ufshcd_hba_capabilities - Read controller capabilities
2180  * @hba: per adapter instance
2181  *
2182  * Return: 0 on success, negative on error.
2183  */
ufshcd_hba_capabilities(struct ufs_hba * hba)2184 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2185 {
2186 	int err;
2187 
2188 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2189 
2190 	/* nutrs and nutmrs are 0 based values */
2191 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2192 	hba->nutmrs =
2193 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2194 	ufs_hba_add_info(hba)->reserved_slot = hba->nutrs - 1;
2195 
2196 	/* Read crypto capabilities */
2197 	err = ufshcd_hba_init_crypto_capabilities(hba);
2198 	if (err)
2199 		dev_err(hba->dev, "crypto setup failed\n");
2200 
2201 	return err;
2202 }
2203 
2204 /**
2205  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2206  *                            to accept UIC commands
2207  * @hba: per adapter instance
2208  * Return true on success, else false
2209  */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2210 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2211 {
2212 	if (ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY)
2213 		return true;
2214 	else
2215 		return false;
2216 }
2217 
2218 /**
2219  * ufshcd_get_upmcrs - Get the power mode change request status
2220  * @hba: Pointer to adapter instance
2221  *
2222  * This function gets the UPMCRS field of HCS register
2223  * Returns value of UPMCRS field
2224  */
ufshcd_get_upmcrs(struct ufs_hba * hba)2225 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2226 {
2227 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2228 }
2229 
2230 /**
2231  * ufshcd_dispatch_uic_cmd - Dispatch UIC commands to unipro layers
2232  * @hba: per adapter instance
2233  * @uic_cmd: UIC command
2234  *
2235  * Mutex must be held.
2236  */
2237 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2238 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2239 {
2240 	WARN_ON(hba->active_uic_cmd);
2241 
2242 	hba->active_uic_cmd = uic_cmd;
2243 
2244 	/* Write Args */
2245 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2246 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2247 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2248 
2249 	ufshcd_add_uic_command_trace(hba, uic_cmd, "send");
2250 
2251 	/* Write UIC Cmd */
2252 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2253 		      REG_UIC_COMMAND);
2254 }
2255 
2256 /**
2257  * ufshcd_wait_for_uic_cmd - Wait complectioin of UIC command
2258  * @hba: per adapter instance
2259  * @uic_cmd: UIC command
2260  *
2261  * Must be called with mutex held.
2262  * Returns 0 only if success.
2263  */
2264 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2265 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2266 {
2267 	int ret;
2268 	unsigned long flags;
2269 
2270 	if (wait_for_completion_timeout(&uic_cmd->done,
2271 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2272 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2273 	} else {
2274 		ret = -ETIMEDOUT;
2275 		dev_err(hba->dev,
2276 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2277 			uic_cmd->command, uic_cmd->argument3);
2278 
2279 		if (!uic_cmd->cmd_active) {
2280 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2281 				__func__);
2282 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2283 		}
2284 	}
2285 
2286 	spin_lock_irqsave(hba->host->host_lock, flags);
2287 	hba->active_uic_cmd = NULL;
2288 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2289 
2290 	return ret;
2291 }
2292 
2293 /**
2294  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2295  * @hba: per adapter instance
2296  * @uic_cmd: UIC command
2297  * @completion: initialize the completion only if this is set to true
2298  *
2299  * Identical to ufshcd_send_uic_cmd() expect mutex. Must be called
2300  * with mutex held and host_lock locked.
2301  * Returns 0 only if success.
2302  */
2303 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd,bool completion)2304 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2305 		      bool completion)
2306 {
2307 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2308 		dev_err(hba->dev,
2309 			"Controller not ready to accept UIC commands\n");
2310 		return -EIO;
2311 	}
2312 
2313 	if (completion)
2314 		init_completion(&uic_cmd->done);
2315 
2316 	uic_cmd->cmd_active = 1;
2317 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2318 
2319 	return 0;
2320 }
2321 
2322 /**
2323  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2324  * @hba: per adapter instance
2325  * @uic_cmd: UIC command
2326  *
2327  * Returns 0 only if success.
2328  */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2329 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2330 {
2331 	int ret;
2332 	unsigned long flags;
2333 
2334 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2335 		return 0;
2336 
2337 	ufshcd_hold(hba, false);
2338 	mutex_lock(&hba->uic_cmd_mutex);
2339 	ufshcd_add_delay_before_dme_cmd(hba);
2340 
2341 	spin_lock_irqsave(hba->host->host_lock, flags);
2342 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2343 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2344 	if (!ret)
2345 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2346 
2347 	mutex_unlock(&hba->uic_cmd_mutex);
2348 
2349 	ufshcd_release(hba);
2350 	return ret;
2351 }
2352 
2353 /**
2354  * ufshcd_map_sg - Map scatter-gather list to prdt
2355  * @hba: per adapter instance
2356  * @lrbp: pointer to local reference block
2357  *
2358  * Returns 0 in case of success, non-zero value in case of failure
2359  */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2360 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2361 {
2362 	struct ufshcd_sg_entry *prd;
2363 	struct scatterlist *sg;
2364 	struct scsi_cmnd *cmd;
2365 	int sg_segments;
2366 	int i;
2367 	int err;
2368 
2369 	cmd = lrbp->cmd;
2370 	sg_segments = scsi_dma_map(cmd);
2371 	if (sg_segments < 0)
2372 		return sg_segments;
2373 
2374 	if (sg_segments) {
2375 
2376 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2377 			lrbp->utr_descriptor_ptr->prd_table_length =
2378 				cpu_to_le16(sg_segments * hba->sg_entry_size);
2379 		else
2380 			lrbp->utr_descriptor_ptr->prd_table_length =
2381 				cpu_to_le16((u16) (sg_segments));
2382 
2383 		prd = (struct ufshcd_sg_entry *)lrbp->ucd_prdt_ptr;
2384 
2385 		scsi_for_each_sg(cmd, sg, sg_segments, i) {
2386 			prd->size =
2387 				cpu_to_le32(((u32) sg_dma_len(sg))-1);
2388 			prd->base_addr =
2389 				cpu_to_le32(lower_32_bits(sg->dma_address));
2390 			prd->upper_addr =
2391 				cpu_to_le32(upper_32_bits(sg->dma_address));
2392 			prd->reserved = 0;
2393 			prd = (void *)prd + hba->sg_entry_size;
2394 		}
2395 	} else {
2396 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2397 	}
2398 
2399 	err = 0;
2400 	trace_android_vh_ufs_fill_prdt(hba, lrbp, sg_segments, &err);
2401 	return err;
2402 }
2403 
2404 /**
2405  * ufshcd_enable_intr - enable interrupts
2406  * @hba: per adapter instance
2407  * @intrs: interrupt bits
2408  */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2409 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2410 {
2411 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2412 
2413 	if (hba->ufs_version == ufshci_version(1, 0)) {
2414 		u32 rw;
2415 		rw = set & INTERRUPT_MASK_RW_VER_10;
2416 		set = rw | ((set ^ intrs) & intrs);
2417 	} else {
2418 		set |= intrs;
2419 	}
2420 
2421 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2422 }
2423 
2424 /**
2425  * ufshcd_disable_intr - disable interrupts
2426  * @hba: per adapter instance
2427  * @intrs: interrupt bits
2428  */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2429 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2430 {
2431 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2432 
2433 	if (hba->ufs_version == ufshci_version(1, 0)) {
2434 		u32 rw;
2435 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2436 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2437 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2438 
2439 	} else {
2440 		set &= ~intrs;
2441 	}
2442 
2443 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2444 }
2445 
2446 /**
2447  * ufshcd_prepare_req_desc_hdr() - Fills the requests header
2448  * descriptor according to request
2449  * @lrbp: pointer to local reference block
2450  * @upiu_flags: flags required in the header
2451  * @cmd_dir: requests data direction
2452  */
ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir)2453 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp,
2454 			u8 *upiu_flags, enum dma_data_direction cmd_dir)
2455 {
2456 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2457 	u32 data_direction;
2458 	u32 dword_0;
2459 	u32 dword_1 = 0;
2460 	u32 dword_3 = 0;
2461 
2462 	if (cmd_dir == DMA_FROM_DEVICE) {
2463 		data_direction = UTP_DEVICE_TO_HOST;
2464 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2465 	} else if (cmd_dir == DMA_TO_DEVICE) {
2466 		data_direction = UTP_HOST_TO_DEVICE;
2467 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2468 	} else {
2469 		data_direction = UTP_NO_DATA_TRANSFER;
2470 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2471 	}
2472 
2473 	dword_0 = data_direction | (lrbp->command_type
2474 				<< UPIU_COMMAND_TYPE_OFFSET);
2475 	if (lrbp->intr_cmd)
2476 		dword_0 |= UTP_REQ_DESC_INT_CMD;
2477 
2478 	/* Prepare crypto related dwords */
2479 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3);
2480 
2481 	/* Transfer request descriptor header fields */
2482 	req_desc->header.dword_0 = cpu_to_le32(dword_0);
2483 	req_desc->header.dword_1 = cpu_to_le32(dword_1);
2484 	/*
2485 	 * assigning invalid value for command status. Controller
2486 	 * updates OCS on command completion, with the command
2487 	 * status
2488 	 */
2489 	req_desc->header.dword_2 =
2490 		cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
2491 	req_desc->header.dword_3 = cpu_to_le32(dword_3);
2492 
2493 	req_desc->prd_table_length = 0;
2494 }
2495 
2496 /**
2497  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2498  * for scsi commands
2499  * @lrbp: local reference block pointer
2500  * @upiu_flags: flags
2501  */
2502 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2503 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2504 {
2505 	struct scsi_cmnd *cmd = lrbp->cmd;
2506 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2507 	unsigned short cdb_len;
2508 
2509 	/* command descriptor fields */
2510 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2511 				UPIU_TRANSACTION_COMMAND, upiu_flags,
2512 				lrbp->lun, lrbp->task_tag);
2513 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2514 				UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
2515 
2516 	/* Total EHS length and Data segment length will be zero */
2517 	ucd_req_ptr->header.dword_2 = 0;
2518 
2519 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2520 
2521 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2522 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2523 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2524 
2525 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2526 }
2527 
2528 /**
2529  * ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc,
2530  * for query requsts
2531  * @hba: UFS hba
2532  * @lrbp: local reference block pointer
2533  * @upiu_flags: flags
2534  */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2535 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2536 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2537 {
2538 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2539 	struct ufs_query *query = &hba->dev_cmd.query;
2540 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2541 
2542 	/* Query request header */
2543 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2544 			UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
2545 			lrbp->lun, lrbp->task_tag);
2546 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2547 			0, query->request.query_func, 0, 0);
2548 
2549 	/* Data segment length only need for WRITE_DESC */
2550 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2551 		ucd_req_ptr->header.dword_2 =
2552 			UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
2553 	else
2554 		ucd_req_ptr->header.dword_2 = 0;
2555 
2556 	/* Copy the Query Request buffer as is */
2557 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2558 			QUERY_OSF_SIZE);
2559 
2560 	/* Copy the Descriptor */
2561 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2562 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2563 
2564 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2565 }
2566 
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2567 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2568 {
2569 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2570 
2571 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2572 
2573 	/* command descriptor fields */
2574 	ucd_req_ptr->header.dword_0 =
2575 		UPIU_HEADER_DWORD(
2576 			UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
2577 	/* clear rest of the fields of basic header */
2578 	ucd_req_ptr->header.dword_1 = 0;
2579 	ucd_req_ptr->header.dword_2 = 0;
2580 
2581 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2582 }
2583 
2584 /**
2585  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2586  *			     for Device Management Purposes
2587  * @hba: per adapter instance
2588  * @lrbp: pointer to local reference block
2589  */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2590 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2591 				      struct ufshcd_lrb *lrbp)
2592 {
2593 	u8 upiu_flags;
2594 	int ret = 0;
2595 
2596 	if (hba->ufs_version <= ufshci_version(1, 1))
2597 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2598 	else
2599 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2600 
2601 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
2602 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2603 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2604 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2605 		ufshcd_prepare_utp_nop_upiu(lrbp);
2606 	else
2607 		ret = -EINVAL;
2608 
2609 	return ret;
2610 }
2611 
2612 /**
2613  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2614  *			   for SCSI Purposes
2615  * @hba: per adapter instance
2616  * @lrbp: pointer to local reference block
2617  */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2618 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2619 {
2620 	u8 upiu_flags;
2621 	int ret = 0;
2622 
2623 	if (hba->ufs_version <= ufshci_version(1, 1))
2624 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2625 	else
2626 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2627 
2628 	if (likely(lrbp->cmd)) {
2629 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2630 						lrbp->cmd->sc_data_direction);
2631 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2632 	} else {
2633 		ret = -EINVAL;
2634 	}
2635 
2636 	return ret;
2637 }
2638 
2639 /**
2640  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2641  * @upiu_wlun_id: UPIU W-LUN id
2642  *
2643  * Returns SCSI W-LUN id
2644  */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2645 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2646 {
2647 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2648 }
2649 
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2650 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2651 {
2652 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2653 		i * sizeof_utp_transfer_cmd_desc(hba);
2654 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2655 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2656 		i * sizeof_utp_transfer_cmd_desc(hba);
2657 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2658 				       response_upiu);
2659 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2660 
2661 	lrb->utr_descriptor_ptr = utrdlp + i;
2662 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2663 		i * sizeof(struct utp_transfer_req_desc);
2664 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp;
2665 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2666 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2667 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2668 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2669 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2670 }
2671 
2672 /**
2673  * ufshcd_queuecommand - main entry point for SCSI requests
2674  * @host: SCSI host pointer
2675  * @cmd: command from SCSI Midlayer
2676  *
2677  * Returns 0 for success, non-zero in case of failure
2678  */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2679 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2680 {
2681 	struct ufshcd_lrb *lrbp;
2682 	struct ufs_hba *hba;
2683 	int tag;
2684 	int err = 0;
2685 
2686 	hba = shost_priv(host);
2687 
2688 	tag = cmd->request->tag;
2689 	if (!ufshcd_valid_tag(hba, tag)) {
2690 		dev_err(hba->dev,
2691 			"%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p",
2692 			__func__, tag, cmd, cmd->request);
2693 		BUG();
2694 	}
2695 
2696 	if (!down_read_trylock(&hba->clk_scaling_lock))
2697 		return SCSI_MLQUEUE_HOST_BUSY;
2698 
2699 	switch (hba->ufshcd_state) {
2700 	case UFSHCD_STATE_OPERATIONAL:
2701 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2702 		break;
2703 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2704 		/*
2705 		 * pm_runtime_get_sync() is used at error handling preparation
2706 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2707 		 * PM ops, it can never be finished if we let SCSI layer keep
2708 		 * retrying it, which gets err handler stuck forever. Neither
2709 		 * can we let the scsi cmd pass through, because UFS is in bad
2710 		 * state, the scsi cmd may eventually time out, which will get
2711 		 * err handler blocked for too long. So, just fail the scsi cmd
2712 		 * sent from PM ops, err handler can recover PM error anyways.
2713 		 */
2714 		if (hba->pm_op_in_progress) {
2715 			hba->force_reset = true;
2716 			set_host_byte(cmd, DID_BAD_TARGET);
2717 			cmd->scsi_done(cmd);
2718 			goto out;
2719 		}
2720 		fallthrough;
2721 	case UFSHCD_STATE_RESET:
2722 		err = SCSI_MLQUEUE_HOST_BUSY;
2723 		goto out;
2724 	case UFSHCD_STATE_ERROR:
2725 		set_host_byte(cmd, DID_ERROR);
2726 		cmd->scsi_done(cmd);
2727 		goto out;
2728 	default:
2729 		dev_WARN_ONCE(hba->dev, 1, "%s: invalid state %d\n",
2730 				__func__, hba->ufshcd_state);
2731 		set_host_byte(cmd, DID_BAD_TARGET);
2732 		cmd->scsi_done(cmd);
2733 		goto out;
2734 	}
2735 
2736 	hba->req_abort_count = 0;
2737 
2738 	err = ufshcd_hold(hba, true);
2739 	if (err) {
2740 		err = SCSI_MLQUEUE_HOST_BUSY;
2741 		goto out;
2742 	}
2743 	WARN_ON(ufshcd_is_clkgating_allowed(hba) &&
2744 		(hba->clk_gating.state != CLKS_ON));
2745 
2746 	lrbp = &hba->lrb[tag];
2747 	WARN_ON(lrbp->cmd);
2748 	lrbp->cmd = cmd;
2749 	lrbp->sense_bufflen = UFS_SENSE_SIZE;
2750 	lrbp->sense_buffer = cmd->sense_buffer;
2751 	lrbp->task_tag = tag;
2752 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2753 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba) ? true : false;
2754 
2755 	ufshcd_prepare_lrbp_crypto(cmd->request, lrbp);
2756 
2757 	trace_android_vh_ufs_prepare_command(hba, cmd->request, lrbp, &err);
2758 	if (err) {
2759 		lrbp->cmd = NULL;
2760 		ufshcd_release(hba);
2761 		goto out;
2762 	}
2763 
2764 	lrbp->req_abort_skip = false;
2765 
2766 	err = ufshpb_prep(hba, lrbp);
2767 	if (err == -EAGAIN) {
2768 		lrbp->cmd = NULL;
2769 		ufshcd_release(hba);
2770 		goto out;
2771 	}
2772 
2773 	ufshcd_comp_scsi_upiu(hba, lrbp);
2774 
2775 	err = ufshcd_map_sg(hba, lrbp);
2776 	if (err) {
2777 		lrbp->cmd = NULL;
2778 		ufshcd_release(hba);
2779 		goto out;
2780 	}
2781 	/* Make sure descriptors are ready before ringing the doorbell */
2782 	wmb();
2783 
2784 	ufshcd_send_command(hba, tag);
2785 out:
2786 	up_read(&hba->clk_scaling_lock);
2787 	return err;
2788 }
2789 
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)2790 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2791 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2792 {
2793 	lrbp->cmd = NULL;
2794 	lrbp->sense_bufflen = 0;
2795 	lrbp->sense_buffer = NULL;
2796 	lrbp->task_tag = tag;
2797 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2798 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2799 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2800 	hba->dev_cmd.type = cmd_type;
2801 
2802 	return ufshcd_compose_devman_upiu(hba, lrbp);
2803 }
2804 
2805 static int
ufshcd_clear_cmd(struct ufs_hba * hba,int tag)2806 ufshcd_clear_cmd(struct ufs_hba *hba, int tag)
2807 {
2808 	int err = 0;
2809 	unsigned long flags;
2810 	u32 mask = 1 << tag;
2811 
2812 	/* clear outstanding transaction before retry */
2813 	spin_lock_irqsave(hba->host->host_lock, flags);
2814 	ufshcd_utrl_clear(hba, tag);
2815 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2816 
2817 	/*
2818 	 * wait for for h/w to clear corresponding bit in door-bell.
2819 	 * max. wait is 1 sec.
2820 	 */
2821 	err = ufshcd_wait_for_register(hba,
2822 			REG_UTP_TRANSFER_REQ_DOOR_BELL,
2823 			mask, ~mask, 1000, 1000);
2824 
2825 	return err;
2826 }
2827 
2828 static int
ufshcd_check_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2829 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2830 {
2831 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2832 
2833 	/* Get the UPIU response */
2834 	query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
2835 				UPIU_RSP_CODE_OFFSET;
2836 	return query_res->response;
2837 }
2838 
2839 /**
2840  * ufshcd_dev_cmd_completion() - handles device management command responses
2841  * @hba: per adapter instance
2842  * @lrbp: pointer to local reference block
2843  */
2844 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2845 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2846 {
2847 	int resp;
2848 	int err = 0;
2849 
2850 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2851 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
2852 
2853 	switch (resp) {
2854 	case UPIU_TRANSACTION_NOP_IN:
2855 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
2856 			err = -EINVAL;
2857 			dev_err(hba->dev, "%s: unexpected response %x\n",
2858 					__func__, resp);
2859 		}
2860 		break;
2861 	case UPIU_TRANSACTION_QUERY_RSP:
2862 		err = ufshcd_check_query_response(hba, lrbp);
2863 		if (!err)
2864 			err = ufshcd_copy_query_response(hba, lrbp);
2865 		break;
2866 	case UPIU_TRANSACTION_REJECT_UPIU:
2867 		/* TODO: handle Reject UPIU Response */
2868 		err = -EPERM;
2869 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
2870 				__func__);
2871 		break;
2872 	default:
2873 		err = -EINVAL;
2874 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
2875 				__func__, resp);
2876 		break;
2877 	}
2878 
2879 	return err;
2880 }
2881 
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)2882 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
2883 		struct ufshcd_lrb *lrbp, int max_timeout)
2884 {
2885 	int err = 0;
2886 	unsigned long time_left;
2887 	unsigned long flags;
2888 
2889 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
2890 			msecs_to_jiffies(max_timeout));
2891 
2892 	/* Make sure descriptors are ready before ringing the doorbell */
2893 	wmb();
2894 	spin_lock_irqsave(hba->host->host_lock, flags);
2895 	hba->dev_cmd.complete = NULL;
2896 	if (likely(time_left)) {
2897 		err = ufshcd_get_tr_ocs(lrbp);
2898 		if (!err)
2899 			err = ufshcd_dev_cmd_completion(hba, lrbp);
2900 	}
2901 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2902 
2903 	if (!time_left) {
2904 		err = -ETIMEDOUT;
2905 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
2906 			__func__, lrbp->task_tag);
2907 		if (!ufshcd_clear_cmd(hba, lrbp->task_tag))
2908 			/* successfully cleared the command, retry if needed */
2909 			err = -EAGAIN;
2910 		/*
2911 		 * in case of an error, after clearing the doorbell,
2912 		 * we also need to clear the outstanding_request
2913 		 * field in hba
2914 		 */
2915 		ufshcd_outstanding_req_clear(hba, lrbp->task_tag);
2916 	}
2917 
2918 	return err;
2919 }
2920 
2921 /**
2922  * ufshcd_exec_dev_cmd - API for sending device management requests
2923  * @hba: UFS hba
2924  * @cmd_type: specifies the type (NOP, Query...)
2925  * @timeout: timeout in milliseconds
2926  *
2927  * NOTE: Since there is only one available tag for device management commands,
2928  * it is expected you hold the hba->dev_cmd.lock mutex.
2929  */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)2930 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
2931 		enum dev_cmd_type cmd_type, int timeout)
2932 {
2933 	DECLARE_COMPLETION_ONSTACK(wait);
2934 	const u32 tag = ufs_hba_add_info(hba)->reserved_slot;
2935 	struct ufshcd_lrb *lrbp;
2936 	int err;
2937 
2938 	/* Protects use of ufs_hba_add_info(hba)->reserved_slot. */
2939 	lockdep_assert_held(&hba->dev_cmd.lock);
2940 
2941 	down_read(&hba->clk_scaling_lock);
2942 
2943 	lrbp = &hba->lrb[tag];
2944 	WARN_ON(lrbp->cmd);
2945 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
2946 	if (unlikely(err))
2947 		goto out;
2948 
2949 	hba->dev_cmd.complete = &wait;
2950 
2951 	ufshcd_add_query_upiu_trace(hba, tag, "query_send");
2952 	/* Make sure descriptors are ready before ringing the doorbell */
2953 	wmb();
2954 
2955 	ufshcd_send_command(hba, tag);
2956 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
2957 	ufshcd_add_query_upiu_trace(hba, tag,
2958 			err ? "query_complete_err" : "query_complete");
2959 
2960 out:
2961 	up_read(&hba->clk_scaling_lock);
2962 	return err;
2963 }
2964 
2965 /**
2966  * ufshcd_init_query() - init the query response and request parameters
2967  * @hba: per-adapter instance
2968  * @request: address of the request pointer to be initialized
2969  * @response: address of the response pointer to be initialized
2970  * @opcode: operation to perform
2971  * @idn: flag idn to access
2972  * @index: LU number to access
2973  * @selector: query/flag/descriptor further identification
2974  */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)2975 static inline void ufshcd_init_query(struct ufs_hba *hba,
2976 		struct ufs_query_req **request, struct ufs_query_res **response,
2977 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
2978 {
2979 	*request = &hba->dev_cmd.query.request;
2980 	*response = &hba->dev_cmd.query.response;
2981 	memset(*request, 0, sizeof(struct ufs_query_req));
2982 	memset(*response, 0, sizeof(struct ufs_query_res));
2983 	(*request)->upiu_req.opcode = opcode;
2984 	(*request)->upiu_req.idn = idn;
2985 	(*request)->upiu_req.index = index;
2986 	(*request)->upiu_req.selector = selector;
2987 }
2988 
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)2989 int ufshcd_query_flag_retry(struct ufs_hba *hba,
2990 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
2991 {
2992 	int ret;
2993 	int retries;
2994 
2995 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
2996 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
2997 		if (ret)
2998 			dev_dbg(hba->dev,
2999 				"%s: failed with error %d, retries %d\n",
3000 				__func__, ret, retries);
3001 		else
3002 			break;
3003 	}
3004 
3005 	if (ret)
3006 		dev_err(hba->dev,
3007 			"%s: query attribute, opcode %d, idn %d, failed with error %d after %d retires\n",
3008 			__func__, opcode, idn, ret, retries);
3009 	return ret;
3010 }
3011 EXPORT_SYMBOL_GPL(ufshcd_query_flag_retry);
3012 
3013 /**
3014  * ufshcd_query_flag() - API function for sending flag query requests
3015  * @hba: per-adapter instance
3016  * @opcode: flag query to perform
3017  * @idn: flag idn to access
3018  * @index: flag index to access
3019  * @flag_res: the flag value after the query request completes
3020  *
3021  * Returns 0 for success, non-zero in case of failure
3022  */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3023 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3024 			enum flag_idn idn, u8 index, bool *flag_res)
3025 {
3026 	struct ufs_query_req *request = NULL;
3027 	struct ufs_query_res *response = NULL;
3028 	int err, selector = 0;
3029 	int timeout = QUERY_REQ_TIMEOUT;
3030 
3031 	BUG_ON(!hba);
3032 
3033 	ufshcd_hold(hba, false);
3034 	mutex_lock(&hba->dev_cmd.lock);
3035 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3036 			selector);
3037 
3038 	switch (opcode) {
3039 	case UPIU_QUERY_OPCODE_SET_FLAG:
3040 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3041 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3042 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3043 		break;
3044 	case UPIU_QUERY_OPCODE_READ_FLAG:
3045 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3046 		if (!flag_res) {
3047 			/* No dummy reads */
3048 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3049 					__func__);
3050 			err = -EINVAL;
3051 			goto out_unlock;
3052 		}
3053 		break;
3054 	default:
3055 		dev_err(hba->dev,
3056 			"%s: Expected query flag opcode but got = %d\n",
3057 			__func__, opcode);
3058 		err = -EINVAL;
3059 		goto out_unlock;
3060 	}
3061 
3062 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3063 
3064 	if (err) {
3065 		dev_err(hba->dev,
3066 			"%s: Sending flag query for idn %d failed, err = %d\n",
3067 			__func__, idn, err);
3068 		goto out_unlock;
3069 	}
3070 
3071 	if (flag_res)
3072 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3073 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3074 
3075 out_unlock:
3076 	mutex_unlock(&hba->dev_cmd.lock);
3077 	ufshcd_release(hba);
3078 	return err;
3079 }
3080 EXPORT_SYMBOL_GPL(ufshcd_query_flag);
3081 
3082 /**
3083  * ufshcd_query_attr - API function for sending attribute requests
3084  * @hba: per-adapter instance
3085  * @opcode: attribute opcode
3086  * @idn: attribute idn to access
3087  * @index: index field
3088  * @selector: selector field
3089  * @attr_val: the attribute value after the query request completes
3090  *
3091  * Returns 0 for success, non-zero in case of failure
3092 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3093 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3094 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3095 {
3096 	struct ufs_query_req *request = NULL;
3097 	struct ufs_query_res *response = NULL;
3098 	int err;
3099 
3100 	BUG_ON(!hba);
3101 
3102 	if (!attr_val) {
3103 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3104 				__func__, opcode);
3105 		return -EINVAL;
3106 	}
3107 
3108 	ufshcd_hold(hba, false);
3109 
3110 	mutex_lock(&hba->dev_cmd.lock);
3111 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3112 			selector);
3113 
3114 	switch (opcode) {
3115 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3116 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3117 		request->upiu_req.value = cpu_to_be32(*attr_val);
3118 		break;
3119 	case UPIU_QUERY_OPCODE_READ_ATTR:
3120 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3121 		break;
3122 	default:
3123 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3124 				__func__, opcode);
3125 		err = -EINVAL;
3126 		goto out_unlock;
3127 	}
3128 
3129 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3130 
3131 	if (err) {
3132 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3133 				__func__, opcode, idn, index, err);
3134 		goto out_unlock;
3135 	}
3136 
3137 	*attr_val = be32_to_cpu(response->upiu_res.value);
3138 
3139 out_unlock:
3140 	mutex_unlock(&hba->dev_cmd.lock);
3141 	ufshcd_release(hba);
3142 	return err;
3143 }
3144 EXPORT_SYMBOL_GPL(ufshcd_query_attr);
3145 
3146 /**
3147  * ufshcd_query_attr_retry() - API function for sending query
3148  * attribute with retries
3149  * @hba: per-adapter instance
3150  * @opcode: attribute opcode
3151  * @idn: attribute idn to access
3152  * @index: index field
3153  * @selector: selector field
3154  * @attr_val: the attribute value after the query request
3155  * completes
3156  *
3157  * Returns 0 for success, non-zero in case of failure
3158 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3159 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3160 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3161 	u32 *attr_val)
3162 {
3163 	int ret = 0;
3164 	u32 retries;
3165 
3166 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3167 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3168 						selector, attr_val);
3169 		if (ret)
3170 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3171 				__func__, ret, retries);
3172 		else
3173 			break;
3174 	}
3175 
3176 	if (ret)
3177 		dev_err(hba->dev,
3178 			"%s: query attribute, idn %d, failed with error %d after %d retires\n",
3179 			__func__, idn, ret, QUERY_REQ_RETRIES);
3180 	return ret;
3181 }
3182 EXPORT_SYMBOL_GPL(ufshcd_query_attr_retry);
3183 
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3184 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3185 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3186 			u8 selector, u8 *desc_buf, int *buf_len)
3187 {
3188 	struct ufs_query_req *request = NULL;
3189 	struct ufs_query_res *response = NULL;
3190 	int err;
3191 
3192 	BUG_ON(!hba);
3193 
3194 	if (!desc_buf) {
3195 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3196 				__func__, opcode);
3197 		return -EINVAL;
3198 	}
3199 
3200 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3201 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3202 				__func__, *buf_len);
3203 		return -EINVAL;
3204 	}
3205 
3206 	ufshcd_hold(hba, false);
3207 
3208 	mutex_lock(&hba->dev_cmd.lock);
3209 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3210 			selector);
3211 	hba->dev_cmd.query.descriptor = desc_buf;
3212 	request->upiu_req.length = cpu_to_be16(*buf_len);
3213 
3214 	switch (opcode) {
3215 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3216 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3217 		break;
3218 	case UPIU_QUERY_OPCODE_READ_DESC:
3219 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3220 		break;
3221 	default:
3222 		dev_err(hba->dev,
3223 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3224 				__func__, opcode);
3225 		err = -EINVAL;
3226 		goto out_unlock;
3227 	}
3228 
3229 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3230 
3231 	if (err) {
3232 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3233 				__func__, opcode, idn, index, err);
3234 		goto out_unlock;
3235 	}
3236 
3237 	*buf_len = be16_to_cpu(response->upiu_res.length);
3238 
3239 out_unlock:
3240 	hba->dev_cmd.query.descriptor = NULL;
3241 	mutex_unlock(&hba->dev_cmd.lock);
3242 	ufshcd_release(hba);
3243 	return err;
3244 }
3245 
3246 /**
3247  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3248  * @hba: per-adapter instance
3249  * @opcode: attribute opcode
3250  * @idn: attribute idn to access
3251  * @index: index field
3252  * @selector: selector field
3253  * @desc_buf: the buffer that contains the descriptor
3254  * @buf_len: length parameter passed to the device
3255  *
3256  * Returns 0 for success, non-zero in case of failure.
3257  * The buf_len parameter will contain, on return, the length parameter
3258  * received on the response.
3259  */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3260 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3261 				  enum query_opcode opcode,
3262 				  enum desc_idn idn, u8 index,
3263 				  u8 selector,
3264 				  u8 *desc_buf, int *buf_len)
3265 {
3266 	int err;
3267 	int retries;
3268 
3269 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3270 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3271 						selector, desc_buf, buf_len);
3272 		if (!err || err == -EINVAL)
3273 			break;
3274 	}
3275 
3276 	return err;
3277 }
3278 EXPORT_SYMBOL_GPL(ufshcd_query_descriptor_retry);
3279 
3280 /**
3281  * ufshcd_map_desc_id_to_length - map descriptor IDN to its length
3282  * @hba: Pointer to adapter instance
3283  * @desc_id: descriptor idn value
3284  * @desc_len: mapped desc length (out)
3285  */
ufshcd_map_desc_id_to_length(struct ufs_hba * hba,enum desc_idn desc_id,int * desc_len)3286 void ufshcd_map_desc_id_to_length(struct ufs_hba *hba, enum desc_idn desc_id,
3287 				  int *desc_len)
3288 {
3289 	if (desc_id >= QUERY_DESC_IDN_MAX || desc_id == QUERY_DESC_IDN_RFU_0 ||
3290 	    desc_id == QUERY_DESC_IDN_RFU_1)
3291 		*desc_len = 0;
3292 	else
3293 		*desc_len = hba->desc_size[desc_id];
3294 }
3295 EXPORT_SYMBOL(ufshcd_map_desc_id_to_length);
3296 
ufshcd_update_desc_length(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,unsigned char desc_len)3297 static void ufshcd_update_desc_length(struct ufs_hba *hba,
3298 				      enum desc_idn desc_id, int desc_index,
3299 				      unsigned char desc_len)
3300 {
3301 	if (hba->desc_size[desc_id] == QUERY_DESC_MAX_SIZE &&
3302 	    desc_id != QUERY_DESC_IDN_STRING && desc_index != UFS_RPMB_UNIT)
3303 		/* For UFS 3.1, the normal unit descriptor is 10 bytes larger
3304 		 * than the RPMB unit, however, both descriptors share the same
3305 		 * desc_idn, to cover both unit descriptors with one length, we
3306 		 * choose the normal unit descriptor length by desc_index.
3307 		 */
3308 		hba->desc_size[desc_id] = desc_len;
3309 }
3310 
3311 /**
3312  * ufshcd_read_desc_param - read the specified descriptor parameter
3313  * @hba: Pointer to adapter instance
3314  * @desc_id: descriptor idn value
3315  * @desc_index: descriptor index
3316  * @param_offset: offset of the parameter to read
3317  * @param_read_buf: pointer to buffer where parameter would be read
3318  * @param_size: sizeof(param_read_buf)
3319  *
3320  * Return 0 in case of success, non-zero otherwise
3321  */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3322 int ufshcd_read_desc_param(struct ufs_hba *hba,
3323 			   enum desc_idn desc_id,
3324 			   int desc_index,
3325 			   u8 param_offset,
3326 			   u8 *param_read_buf,
3327 			   u8 param_size)
3328 {
3329 	int ret;
3330 	u8 *desc_buf;
3331 	int buff_len;
3332 	bool is_kmalloc = true;
3333 
3334 	/* Safety check */
3335 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3336 		return -EINVAL;
3337 
3338 	/* Get the length of descriptor */
3339 	ufshcd_map_desc_id_to_length(hba, desc_id, &buff_len);
3340 	if (!buff_len) {
3341 		dev_err(hba->dev, "%s: Failed to get desc length\n", __func__);
3342 		return -EINVAL;
3343 	}
3344 
3345 	if (param_offset >= buff_len) {
3346 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3347 			__func__, param_offset, desc_id, buff_len);
3348 		return -EINVAL;
3349 	}
3350 
3351 	/* Check whether we need temp memory */
3352 	if (param_offset != 0 || param_size < buff_len) {
3353 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3354 		if (!desc_buf)
3355 			return -ENOMEM;
3356 	} else {
3357 		desc_buf = param_read_buf;
3358 		is_kmalloc = false;
3359 	}
3360 
3361 	/* Request for full descriptor */
3362 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3363 					desc_id, desc_index, 0,
3364 					desc_buf, &buff_len);
3365 
3366 	if (ret) {
3367 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3368 			__func__, desc_id, desc_index, param_offset, ret);
3369 		goto out;
3370 	}
3371 
3372 	/* Sanity check */
3373 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3374 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3375 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3376 		ret = -EINVAL;
3377 		goto out;
3378 	}
3379 
3380 	/* Update descriptor length */
3381 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3382 	ufshcd_update_desc_length(hba, desc_id, desc_index, buff_len);
3383 
3384 	if (is_kmalloc) {
3385 		/* Make sure we don't copy more data than available */
3386 		if (param_offset >= buff_len)
3387 			ret = -EINVAL;
3388 		else
3389 			memcpy(param_read_buf, &desc_buf[param_offset],
3390 			       min_t(u32, param_size, buff_len - param_offset));
3391 	}
3392 out:
3393 	if (is_kmalloc)
3394 		kfree(desc_buf);
3395 	return ret;
3396 }
3397 EXPORT_SYMBOL_GPL(ufshcd_read_desc_param);
3398 
3399 /**
3400  * struct uc_string_id - unicode string
3401  *
3402  * @len: size of this descriptor inclusive
3403  * @type: descriptor type
3404  * @uc: unicode string character
3405  */
3406 struct uc_string_id {
3407 	u8 len;
3408 	u8 type;
3409 	wchar_t uc[];
3410 } __packed;
3411 
3412 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3413 static inline char ufshcd_remove_non_printable(u8 ch)
3414 {
3415 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3416 }
3417 
3418 /**
3419  * ufshcd_read_string_desc - read string descriptor
3420  * @hba: pointer to adapter instance
3421  * @desc_index: descriptor index
3422  * @buf: pointer to buffer where descriptor would be read,
3423  *       the caller should free the memory.
3424  * @ascii: if true convert from unicode to ascii characters
3425  *         null terminated string.
3426  *
3427  * Return:
3428  * *      string size on success.
3429  * *      -ENOMEM: on allocation failure
3430  * *      -EINVAL: on a wrong parameter
3431  */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3432 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3433 			    u8 **buf, bool ascii)
3434 {
3435 	struct uc_string_id *uc_str;
3436 	u8 *str;
3437 	int ret;
3438 
3439 	if (!buf)
3440 		return -EINVAL;
3441 
3442 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3443 	if (!uc_str)
3444 		return -ENOMEM;
3445 
3446 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3447 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3448 	if (ret < 0) {
3449 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3450 			QUERY_REQ_RETRIES, ret);
3451 		str = NULL;
3452 		goto out;
3453 	}
3454 
3455 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3456 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3457 		str = NULL;
3458 		ret = 0;
3459 		goto out;
3460 	}
3461 
3462 	if (ascii) {
3463 		ssize_t ascii_len;
3464 		int i;
3465 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3466 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3467 		str = kzalloc(ascii_len, GFP_KERNEL);
3468 		if (!str) {
3469 			ret = -ENOMEM;
3470 			goto out;
3471 		}
3472 
3473 		/*
3474 		 * the descriptor contains string in UTF16 format
3475 		 * we need to convert to utf-8 so it can be displayed
3476 		 */
3477 		ret = utf16s_to_utf8s(uc_str->uc,
3478 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3479 				      UTF16_BIG_ENDIAN, str, ascii_len);
3480 
3481 		/* replace non-printable or non-ASCII characters with spaces */
3482 		for (i = 0; i < ret; i++)
3483 			str[i] = ufshcd_remove_non_printable(str[i]);
3484 
3485 		str[ret++] = '\0';
3486 
3487 	} else {
3488 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3489 		if (!str) {
3490 			ret = -ENOMEM;
3491 			goto out;
3492 		}
3493 		ret = uc_str->len;
3494 	}
3495 out:
3496 	*buf = str;
3497 	kfree(uc_str);
3498 	return ret;
3499 }
3500 
3501 /**
3502  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3503  * @hba: Pointer to adapter instance
3504  * @lun: lun id
3505  * @param_offset: offset of the parameter to read
3506  * @param_read_buf: pointer to buffer where parameter would be read
3507  * @param_size: sizeof(param_read_buf)
3508  *
3509  * Return 0 in case of success, non-zero otherwise
3510  */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3511 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3512 					      int lun,
3513 					      enum unit_desc_param param_offset,
3514 					      u8 *param_read_buf,
3515 					      u32 param_size)
3516 {
3517 	/*
3518 	 * Unit descriptors are only available for general purpose LUs (LUN id
3519 	 * from 0 to 7) and RPMB Well known LU.
3520 	 */
3521 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun, param_offset))
3522 		return -EOPNOTSUPP;
3523 
3524 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3525 				      param_offset, param_read_buf, param_size);
3526 }
3527 
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3528 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3529 {
3530 	int err = 0;
3531 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3532 
3533 	if (hba->dev_info.wspecversion >= 0x300) {
3534 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3535 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3536 				&gating_wait);
3537 		if (err)
3538 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3539 					 err, gating_wait);
3540 
3541 		if (gating_wait == 0) {
3542 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3543 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3544 					 gating_wait);
3545 		}
3546 
3547 		hba->dev_info.clk_gating_wait_us = gating_wait;
3548 	}
3549 
3550 	return err;
3551 }
3552 
3553 /**
3554  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3555  * @hba: per adapter instance
3556  *
3557  * 1. Allocate DMA memory for Command Descriptor array
3558  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3559  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3560  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3561  *	(UTMRDL)
3562  * 4. Allocate memory for local reference block(lrb).
3563  *
3564  * Returns 0 for success, non-zero in case of failure
3565  */
ufshcd_memory_alloc(struct ufs_hba * hba)3566 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3567 {
3568 	size_t utmrdl_size, utrdl_size, ucdl_size;
3569 
3570 	/* Allocate memory for UTP command descriptors */
3571 	ucdl_size = (sizeof_utp_transfer_cmd_desc(hba) * hba->nutrs);
3572 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3573 						  ucdl_size,
3574 						  &hba->ucdl_dma_addr,
3575 						  GFP_KERNEL);
3576 
3577 	/*
3578 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3579 	 * make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE
3580 	 * if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will
3581 	 * be aligned to 128 bytes as well
3582 	 */
3583 	if (!hba->ucdl_base_addr ||
3584 	    WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) {
3585 		dev_err(hba->dev,
3586 			"Command Descriptor Memory allocation failed\n");
3587 		goto out;
3588 	}
3589 
3590 	/*
3591 	 * Allocate memory for UTP Transfer descriptors
3592 	 * UFSHCI requires 1024 byte alignment of UTRD
3593 	 */
3594 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3595 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3596 						   utrdl_size,
3597 						   &hba->utrdl_dma_addr,
3598 						   GFP_KERNEL);
3599 	if (!hba->utrdl_base_addr ||
3600 	    WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) {
3601 		dev_err(hba->dev,
3602 			"Transfer Descriptor Memory allocation failed\n");
3603 		goto out;
3604 	}
3605 
3606 	/*
3607 	 * Allocate memory for UTP Task Management descriptors
3608 	 * UFSHCI requires 1024 byte alignment of UTMRD
3609 	 */
3610 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3611 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3612 						    utmrdl_size,
3613 						    &hba->utmrdl_dma_addr,
3614 						    GFP_KERNEL);
3615 	if (!hba->utmrdl_base_addr ||
3616 	    WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) {
3617 		dev_err(hba->dev,
3618 		"Task Management Descriptor Memory allocation failed\n");
3619 		goto out;
3620 	}
3621 
3622 	/* Allocate memory for local reference block */
3623 	hba->lrb = devm_kcalloc(hba->dev,
3624 				hba->nutrs, sizeof(struct ufshcd_lrb),
3625 				GFP_KERNEL);
3626 	if (!hba->lrb) {
3627 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3628 		goto out;
3629 	}
3630 	return 0;
3631 out:
3632 	return -ENOMEM;
3633 }
3634 
3635 /**
3636  * ufshcd_host_memory_configure - configure local reference block with
3637  *				memory offsets
3638  * @hba: per adapter instance
3639  *
3640  * Configure Host memory space
3641  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3642  * address.
3643  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3644  * and PRDT offset.
3645  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3646  * into local reference block.
3647  */
ufshcd_host_memory_configure(struct ufs_hba * hba)3648 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3649 {
3650 	struct utp_transfer_req_desc *utrdlp;
3651 	dma_addr_t cmd_desc_dma_addr;
3652 	dma_addr_t cmd_desc_element_addr;
3653 	u16 response_offset;
3654 	u16 prdt_offset;
3655 	int cmd_desc_size;
3656 	int i;
3657 
3658 	utrdlp = hba->utrdl_base_addr;
3659 
3660 	response_offset =
3661 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3662 	prdt_offset =
3663 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3664 
3665 	cmd_desc_size = sizeof_utp_transfer_cmd_desc(hba);
3666 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3667 
3668 	for (i = 0; i < hba->nutrs; i++) {
3669 		/* Configure UTRD with command descriptor base address */
3670 		cmd_desc_element_addr =
3671 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3672 		utrdlp[i].command_desc_base_addr_lo =
3673 				cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
3674 		utrdlp[i].command_desc_base_addr_hi =
3675 				cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
3676 
3677 		/* Response upiu and prdt offset should be in double words */
3678 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3679 			utrdlp[i].response_upiu_offset =
3680 				cpu_to_le16(response_offset);
3681 			utrdlp[i].prd_table_offset =
3682 				cpu_to_le16(prdt_offset);
3683 			utrdlp[i].response_upiu_length =
3684 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3685 		} else {
3686 			utrdlp[i].response_upiu_offset =
3687 				cpu_to_le16(response_offset >> 2);
3688 			utrdlp[i].prd_table_offset =
3689 				cpu_to_le16(prdt_offset >> 2);
3690 			utrdlp[i].response_upiu_length =
3691 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3692 		}
3693 
3694 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3695 	}
3696 }
3697 
3698 /**
3699  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3700  * @hba: per adapter instance
3701  *
3702  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3703  * in order to initialize the Unipro link startup procedure.
3704  * Once the Unipro links are up, the device connected to the controller
3705  * is detected.
3706  *
3707  * Returns 0 on success, non-zero value on failure
3708  */
ufshcd_dme_link_startup(struct ufs_hba * hba)3709 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3710 {
3711 	struct uic_command uic_cmd = {0};
3712 	int ret;
3713 
3714 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3715 
3716 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3717 	if (ret)
3718 		dev_dbg(hba->dev,
3719 			"dme-link-startup: error code %d\n", ret);
3720 	return ret;
3721 }
3722 /**
3723  * ufshcd_dme_reset - UIC command for DME_RESET
3724  * @hba: per adapter instance
3725  *
3726  * DME_RESET command is issued in order to reset UniPro stack.
3727  * This function now deals with cold reset.
3728  *
3729  * Returns 0 on success, non-zero value on failure
3730  */
ufshcd_dme_reset(struct ufs_hba * hba)3731 static int ufshcd_dme_reset(struct ufs_hba *hba)
3732 {
3733 	struct uic_command uic_cmd = {0};
3734 	int ret;
3735 
3736 	uic_cmd.command = UIC_CMD_DME_RESET;
3737 
3738 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3739 	if (ret)
3740 		dev_err(hba->dev,
3741 			"dme-reset: error code %d\n", ret);
3742 
3743 	return ret;
3744 }
3745 
3746 /**
3747  * ufshcd_dme_enable - UIC command for DME_ENABLE
3748  * @hba: per adapter instance
3749  *
3750  * DME_ENABLE command is issued in order to enable UniPro stack.
3751  *
3752  * Returns 0 on success, non-zero value on failure
3753  */
ufshcd_dme_enable(struct ufs_hba * hba)3754 static int ufshcd_dme_enable(struct ufs_hba *hba)
3755 {
3756 	struct uic_command uic_cmd = {0};
3757 	int ret;
3758 
3759 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3760 
3761 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3762 	if (ret)
3763 		dev_err(hba->dev,
3764 			"dme-enable: error code %d\n", ret);
3765 
3766 	return ret;
3767 }
3768 
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)3769 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3770 {
3771 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3772 	unsigned long min_sleep_time_us;
3773 
3774 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3775 		return;
3776 
3777 	/*
3778 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3779 	 * this function
3780 	 */
3781 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3782 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3783 	} else {
3784 		unsigned long delta =
3785 			(unsigned long) ktime_to_us(
3786 				ktime_sub(ktime_get(),
3787 				hba->last_dme_cmd_tstamp));
3788 
3789 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3790 			min_sleep_time_us =
3791 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3792 		else
3793 			return; /* no more delay required */
3794 	}
3795 
3796 	/* allow sleep for extra 50us if needed */
3797 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3798 }
3799 
3800 /**
3801  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3802  * @hba: per adapter instance
3803  * @attr_sel: uic command argument1
3804  * @attr_set: attribute set type as uic command argument2
3805  * @mib_val: setting value as uic command argument3
3806  * @peer: indicate whether peer or local
3807  *
3808  * Returns 0 on success, non-zero value on failure
3809  */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)3810 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3811 			u8 attr_set, u32 mib_val, u8 peer)
3812 {
3813 	struct uic_command uic_cmd = {0};
3814 	static const char *const action[] = {
3815 		"dme-set",
3816 		"dme-peer-set"
3817 	};
3818 	const char *set = action[!!peer];
3819 	int ret;
3820 	int retries = UFS_UIC_COMMAND_RETRIES;
3821 
3822 	uic_cmd.command = peer ?
3823 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
3824 	uic_cmd.argument1 = attr_sel;
3825 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
3826 	uic_cmd.argument3 = mib_val;
3827 
3828 	do {
3829 		/* for peer attributes we retry upon failure */
3830 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3831 		if (ret)
3832 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
3833 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
3834 	} while (ret && peer && --retries);
3835 
3836 	if (ret)
3837 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
3838 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
3839 			UFS_UIC_COMMAND_RETRIES - retries);
3840 
3841 	return ret;
3842 }
3843 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
3844 
3845 /**
3846  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
3847  * @hba: per adapter instance
3848  * @attr_sel: uic command argument1
3849  * @mib_val: the value of the attribute as returned by the UIC command
3850  * @peer: indicate whether peer or local
3851  *
3852  * Returns 0 on success, non-zero value on failure
3853  */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)3854 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
3855 			u32 *mib_val, u8 peer)
3856 {
3857 	struct uic_command uic_cmd = {0};
3858 	static const char *const action[] = {
3859 		"dme-get",
3860 		"dme-peer-get"
3861 	};
3862 	const char *get = action[!!peer];
3863 	int ret;
3864 	int retries = UFS_UIC_COMMAND_RETRIES;
3865 	struct ufs_pa_layer_attr orig_pwr_info;
3866 	struct ufs_pa_layer_attr temp_pwr_info;
3867 	bool pwr_mode_change = false;
3868 
3869 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
3870 		orig_pwr_info = hba->pwr_info;
3871 		temp_pwr_info = orig_pwr_info;
3872 
3873 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
3874 		    orig_pwr_info.pwr_rx == FAST_MODE) {
3875 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
3876 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
3877 			pwr_mode_change = true;
3878 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
3879 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
3880 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
3881 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
3882 			pwr_mode_change = true;
3883 		}
3884 		if (pwr_mode_change) {
3885 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
3886 			if (ret)
3887 				goto out;
3888 		}
3889 	}
3890 
3891 	uic_cmd.command = peer ?
3892 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
3893 	uic_cmd.argument1 = attr_sel;
3894 
3895 	do {
3896 		/* for peer attributes we retry upon failure */
3897 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3898 		if (ret)
3899 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
3900 				get, UIC_GET_ATTR_ID(attr_sel), ret);
3901 	} while (ret && peer && --retries);
3902 
3903 	if (ret)
3904 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
3905 			get, UIC_GET_ATTR_ID(attr_sel),
3906 			UFS_UIC_COMMAND_RETRIES - retries);
3907 
3908 	if (mib_val && !ret)
3909 		*mib_val = uic_cmd.argument3;
3910 
3911 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
3912 	    && pwr_mode_change)
3913 		ufshcd_change_power_mode(hba, &orig_pwr_info);
3914 out:
3915 	return ret;
3916 }
3917 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
3918 
3919 /**
3920  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
3921  * state) and waits for it to take effect.
3922  *
3923  * @hba: per adapter instance
3924  * @cmd: UIC command to execute
3925  *
3926  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
3927  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
3928  * and device UniPro link and hence it's final completion would be indicated by
3929  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
3930  * addition to normal UIC command completion Status (UCCS). This function only
3931  * returns after the relevant status bits indicate the completion.
3932  *
3933  * Returns 0 on success, non-zero value on failure
3934  */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)3935 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
3936 {
3937 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
3938 	unsigned long flags;
3939 	u8 status;
3940 	int ret;
3941 	bool reenable_intr = false;
3942 
3943 	mutex_lock(&hba->uic_cmd_mutex);
3944 	ufshcd_add_delay_before_dme_cmd(hba);
3945 
3946 	spin_lock_irqsave(hba->host->host_lock, flags);
3947 	if (ufshcd_is_link_broken(hba)) {
3948 		ret = -ENOLINK;
3949 		goto out_unlock;
3950 	}
3951 	hba->uic_async_done = &uic_async_done;
3952 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
3953 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
3954 		/*
3955 		 * Make sure UIC command completion interrupt is disabled before
3956 		 * issuing UIC command.
3957 		 */
3958 		wmb();
3959 		reenable_intr = true;
3960 	}
3961 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
3962 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3963 	if (ret) {
3964 		dev_err(hba->dev,
3965 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
3966 			cmd->command, cmd->argument3, ret);
3967 		goto out;
3968 	}
3969 
3970 	if (!wait_for_completion_timeout(hba->uic_async_done,
3971 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
3972 		dev_err(hba->dev,
3973 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
3974 			cmd->command, cmd->argument3);
3975 
3976 		if (!cmd->cmd_active) {
3977 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
3978 				__func__);
3979 			goto check_upmcrs;
3980 		}
3981 
3982 		ret = -ETIMEDOUT;
3983 		goto out;
3984 	}
3985 
3986 check_upmcrs:
3987 	status = ufshcd_get_upmcrs(hba);
3988 	if (status != PWR_LOCAL) {
3989 		dev_err(hba->dev,
3990 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
3991 			cmd->command, status);
3992 		ret = (status != PWR_OK) ? status : -1;
3993 	}
3994 out:
3995 	if (ret) {
3996 		ufshcd_print_host_state(hba);
3997 		ufshcd_print_pwr_info(hba);
3998 		ufshcd_print_evt_hist(hba);
3999 	}
4000 
4001 	spin_lock_irqsave(hba->host->host_lock, flags);
4002 	hba->active_uic_cmd = NULL;
4003 	hba->uic_async_done = NULL;
4004 	if (reenable_intr)
4005 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4006 	if (ret) {
4007 		dev_err(hba->dev,
4008 			"%s: Changing link power status failed (%d). Scheduling error handler\n",
4009 			__func__, ret);
4010 		ufshcd_set_link_broken(hba);
4011 		ufshcd_schedule_eh_work(hba);
4012 	}
4013 out_unlock:
4014 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4015 	mutex_unlock(&hba->uic_cmd_mutex);
4016 
4017 	return ret;
4018 }
4019 
4020 /**
4021  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4022  *				using DME_SET primitives.
4023  * @hba: per adapter instance
4024  * @mode: powr mode value
4025  *
4026  * Returns 0 on success, non-zero value on failure
4027  */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4028 static int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4029 {
4030 	struct uic_command uic_cmd = {0};
4031 	int ret;
4032 
4033 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4034 		ret = ufshcd_dme_set(hba,
4035 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4036 		if (ret) {
4037 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4038 						__func__, ret);
4039 			goto out;
4040 		}
4041 	}
4042 
4043 	uic_cmd.command = UIC_CMD_DME_SET;
4044 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4045 	uic_cmd.argument3 = mode;
4046 	ufshcd_hold(hba, false);
4047 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4048 	ufshcd_release(hba);
4049 
4050 out:
4051 	return ret;
4052 }
4053 
ufshcd_link_recovery(struct ufs_hba * hba)4054 int ufshcd_link_recovery(struct ufs_hba *hba)
4055 {
4056 	int ret;
4057 	unsigned long flags;
4058 
4059 	spin_lock_irqsave(hba->host->host_lock, flags);
4060 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4061 	ufshcd_set_eh_in_progress(hba);
4062 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4063 
4064 	/* Reset the attached device */
4065 	ufshcd_vops_device_reset(hba);
4066 
4067 	ret = ufshcd_host_reset_and_restore(hba);
4068 
4069 	spin_lock_irqsave(hba->host->host_lock, flags);
4070 	if (ret)
4071 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4072 	ufshcd_clear_eh_in_progress(hba);
4073 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4074 
4075 	if (ret)
4076 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4077 			__func__, ret);
4078 
4079 	return ret;
4080 }
4081 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4082 
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4083 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4084 {
4085 	int ret;
4086 	struct uic_command uic_cmd = {0};
4087 	ktime_t start = ktime_get();
4088 
4089 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4090 
4091 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4092 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4093 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4094 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4095 
4096 	if (ret)
4097 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4098 			__func__, ret);
4099 	else
4100 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4101 								POST_CHANGE);
4102 
4103 	return ret;
4104 }
4105 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4106 
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4107 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4108 {
4109 	struct uic_command uic_cmd = {0};
4110 	int ret;
4111 	ktime_t start = ktime_get();
4112 
4113 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4114 
4115 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4116 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4117 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4118 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4119 
4120 	if (ret) {
4121 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4122 			__func__, ret);
4123 	} else {
4124 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4125 								POST_CHANGE);
4126 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_get();
4127 		hba->ufs_stats.hibern8_exit_cnt++;
4128 	}
4129 
4130 	return ret;
4131 }
4132 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4133 
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4134 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4135 {
4136 	unsigned long flags;
4137 	bool update = false;
4138 
4139 	if (!ufshcd_is_auto_hibern8_supported(hba))
4140 		return;
4141 
4142 	spin_lock_irqsave(hba->host->host_lock, flags);
4143 	if (hba->ahit != ahit) {
4144 		hba->ahit = ahit;
4145 		update = true;
4146 	}
4147 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4148 
4149 	if (update && !pm_runtime_suspended(hba->dev)) {
4150 		pm_runtime_get_sync(hba->dev);
4151 		ufshcd_hold(hba, false);
4152 		ufshcd_auto_hibern8_enable(hba);
4153 		ufshcd_release(hba);
4154 		pm_runtime_put(hba->dev);
4155 	}
4156 }
4157 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4158 
ufshcd_auto_hibern8_enable(struct ufs_hba * hba)4159 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4160 {
4161 	unsigned long flags;
4162 
4163 	if (!ufshcd_is_auto_hibern8_supported(hba))
4164 		return;
4165 
4166 	spin_lock_irqsave(hba->host->host_lock, flags);
4167 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4168 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4169 }
4170 
4171  /**
4172  * ufshcd_init_pwr_info - setting the POR (power on reset)
4173  * values in hba power info
4174  * @hba: per-adapter instance
4175  */
ufshcd_init_pwr_info(struct ufs_hba * hba)4176 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4177 {
4178 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4179 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4180 	hba->pwr_info.lane_rx = 1;
4181 	hba->pwr_info.lane_tx = 1;
4182 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4183 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4184 	hba->pwr_info.hs_rate = 0;
4185 }
4186 
4187 /**
4188  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4189  * @hba: per-adapter instance
4190  */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4191 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4192 {
4193 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4194 
4195 	if (hba->max_pwr_info.is_valid)
4196 		return 0;
4197 
4198 	pwr_info->pwr_tx = FAST_MODE;
4199 	pwr_info->pwr_rx = FAST_MODE;
4200 	pwr_info->hs_rate = PA_HS_MODE_B;
4201 
4202 	/* Get the connected lane count */
4203 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4204 			&pwr_info->lane_rx);
4205 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4206 			&pwr_info->lane_tx);
4207 
4208 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4209 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4210 				__func__,
4211 				pwr_info->lane_rx,
4212 				pwr_info->lane_tx);
4213 		return -EINVAL;
4214 	}
4215 
4216 	/*
4217 	 * First, get the maximum gears of HS speed.
4218 	 * If a zero value, it means there is no HSGEAR capability.
4219 	 * Then, get the maximum gears of PWM speed.
4220 	 */
4221 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4222 	if (!pwr_info->gear_rx) {
4223 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4224 				&pwr_info->gear_rx);
4225 		if (!pwr_info->gear_rx) {
4226 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4227 				__func__, pwr_info->gear_rx);
4228 			return -EINVAL;
4229 		}
4230 		pwr_info->pwr_rx = SLOW_MODE;
4231 	}
4232 
4233 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4234 			&pwr_info->gear_tx);
4235 	if (!pwr_info->gear_tx) {
4236 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4237 				&pwr_info->gear_tx);
4238 		if (!pwr_info->gear_tx) {
4239 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4240 				__func__, pwr_info->gear_tx);
4241 			return -EINVAL;
4242 		}
4243 		pwr_info->pwr_tx = SLOW_MODE;
4244 	}
4245 
4246 	hba->max_pwr_info.is_valid = true;
4247 	return 0;
4248 }
4249 
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4250 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4251 			     struct ufs_pa_layer_attr *pwr_mode)
4252 {
4253 	int ret;
4254 
4255 	/* if already configured to the requested pwr_mode */
4256 	if (!hba->force_pmc &&
4257 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4258 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4259 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4260 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4261 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4262 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4263 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4264 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4265 		return 0;
4266 	}
4267 
4268 	/*
4269 	 * Configure attributes for power mode change with below.
4270 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4271 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4272 	 * - PA_HSSERIES
4273 	 */
4274 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4275 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4276 			pwr_mode->lane_rx);
4277 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4278 			pwr_mode->pwr_rx == FAST_MODE)
4279 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), TRUE);
4280 	else
4281 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), FALSE);
4282 
4283 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4284 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4285 			pwr_mode->lane_tx);
4286 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4287 			pwr_mode->pwr_tx == FAST_MODE)
4288 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), TRUE);
4289 	else
4290 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), FALSE);
4291 
4292 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4293 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4294 	    pwr_mode->pwr_rx == FAST_MODE ||
4295 	    pwr_mode->pwr_tx == FAST_MODE)
4296 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4297 						pwr_mode->hs_rate);
4298 
4299 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4300 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4301 				DL_FC0ProtectionTimeOutVal_Default);
4302 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4303 				DL_TC0ReplayTimeOutVal_Default);
4304 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4305 				DL_AFC0ReqTimeOutVal_Default);
4306 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4307 				DL_FC1ProtectionTimeOutVal_Default);
4308 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4309 				DL_TC1ReplayTimeOutVal_Default);
4310 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4311 				DL_AFC1ReqTimeOutVal_Default);
4312 
4313 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4314 				DL_FC0ProtectionTimeOutVal_Default);
4315 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4316 				DL_TC0ReplayTimeOutVal_Default);
4317 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4318 				DL_AFC0ReqTimeOutVal_Default);
4319 	}
4320 
4321 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4322 			| pwr_mode->pwr_tx);
4323 
4324 	if (ret) {
4325 		dev_err(hba->dev,
4326 			"%s: power mode change failed %d\n", __func__, ret);
4327 	} else {
4328 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4329 								pwr_mode);
4330 
4331 		memcpy(&hba->pwr_info, pwr_mode,
4332 			sizeof(struct ufs_pa_layer_attr));
4333 	}
4334 
4335 	return ret;
4336 }
4337 
4338 /**
4339  * ufshcd_config_pwr_mode - configure a new power mode
4340  * @hba: per-adapter instance
4341  * @desired_pwr_mode: desired power configuration
4342  */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4343 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4344 		struct ufs_pa_layer_attr *desired_pwr_mode)
4345 {
4346 	struct ufs_pa_layer_attr final_params = { 0 };
4347 	int ret;
4348 
4349 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4350 					desired_pwr_mode, &final_params);
4351 
4352 	if (ret)
4353 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4354 
4355 	ret = ufshcd_change_power_mode(hba, &final_params);
4356 
4357 	return ret;
4358 }
4359 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4360 
4361 /**
4362  * ufshcd_complete_dev_init() - checks device readiness
4363  * @hba: per-adapter instance
4364  *
4365  * Set fDeviceInit flag and poll until device toggles it.
4366  */
ufshcd_complete_dev_init(struct ufs_hba * hba)4367 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4368 {
4369 	int err;
4370 	bool flag_res = true;
4371 	ktime_t timeout;
4372 
4373 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4374 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4375 	if (err) {
4376 		dev_err(hba->dev,
4377 			"%s setting fDeviceInit flag failed with error %d\n",
4378 			__func__, err);
4379 		goto out;
4380 	}
4381 
4382 	/* Poll fDeviceInit flag to be cleared */
4383 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4384 	do {
4385 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4386 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4387 		if (!flag_res)
4388 			break;
4389 		usleep_range(500, 1000);
4390 	} while (ktime_before(ktime_get(), timeout));
4391 
4392 	if (err) {
4393 		dev_err(hba->dev,
4394 				"%s reading fDeviceInit flag failed with error %d\n",
4395 				__func__, err);
4396 	} else if (flag_res) {
4397 		dev_err(hba->dev,
4398 				"%s fDeviceInit was not cleared by the device\n",
4399 				__func__);
4400 		err = -EBUSY;
4401 	}
4402 out:
4403 	return err;
4404 }
4405 
4406 /**
4407  * ufshcd_make_hba_operational - Make UFS controller operational
4408  * @hba: per adapter instance
4409  *
4410  * To bring UFS host controller to operational state,
4411  * 1. Enable required interrupts
4412  * 2. Configure interrupt aggregation
4413  * 3. Program UTRL and UTMRL base address
4414  * 4. Configure run-stop-registers
4415  *
4416  * Returns 0 on success, non-zero value on failure
4417  */
ufshcd_make_hba_operational(struct ufs_hba * hba)4418 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4419 {
4420 	int err = 0;
4421 	u32 reg;
4422 
4423 	/* Enable required interrupts */
4424 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4425 
4426 	/* Configure interrupt aggregation */
4427 	if (ufshcd_is_intr_aggr_allowed(hba))
4428 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4429 	else
4430 		ufshcd_disable_intr_aggr(hba);
4431 
4432 	/* Configure UTRL and UTMRL base address registers */
4433 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4434 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4435 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4436 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4437 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4438 			REG_UTP_TASK_REQ_LIST_BASE_L);
4439 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4440 			REG_UTP_TASK_REQ_LIST_BASE_H);
4441 
4442 	/*
4443 	 * Make sure base address and interrupt setup are updated before
4444 	 * enabling the run/stop registers below.
4445 	 */
4446 	wmb();
4447 
4448 	/*
4449 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4450 	 */
4451 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4452 	if (!(ufshcd_get_lists_status(reg))) {
4453 		ufshcd_enable_run_stop_reg(hba);
4454 	} else {
4455 		dev_err(hba->dev,
4456 			"Host controller not ready to process requests");
4457 		err = -EIO;
4458 	}
4459 
4460 	return err;
4461 }
4462 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4463 
4464 /**
4465  * ufshcd_hba_stop - Send controller to reset state
4466  * @hba: per adapter instance
4467  */
ufshcd_hba_stop(struct ufs_hba * hba)4468 void ufshcd_hba_stop(struct ufs_hba *hba)
4469 {
4470 	unsigned long flags;
4471 	int err;
4472 
4473 	/*
4474 	 * Obtain the host lock to prevent that the controller is disabled
4475 	 * while the UFS interrupt handler is active on another CPU.
4476 	 */
4477 	spin_lock_irqsave(hba->host->host_lock, flags);
4478 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4479 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4480 
4481 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4482 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4483 					10, 1);
4484 	if (err)
4485 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4486 }
4487 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4488 
4489 /**
4490  * ufshcd_hba_execute_hce - initialize the controller
4491  * @hba: per adapter instance
4492  *
4493  * The controller resets itself and controller firmware initialization
4494  * sequence kicks off. When controller is ready it will set
4495  * the Host Controller Enable bit to 1.
4496  *
4497  * Returns 0 on success, non-zero value on failure
4498  */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4499 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4500 {
4501 	int retry_outer = 3;
4502 	int retry_inner;
4503 
4504 start:
4505 	if (!ufshcd_is_hba_active(hba))
4506 		/* change controller state to "reset state" */
4507 		ufshcd_hba_stop(hba);
4508 
4509 	/* UniPro link is disabled at this point */
4510 	ufshcd_set_link_off(hba);
4511 
4512 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4513 
4514 	/* start controller initialization sequence */
4515 	ufshcd_hba_start(hba);
4516 
4517 	/*
4518 	 * To initialize a UFS host controller HCE bit must be set to 1.
4519 	 * During initialization the HCE bit value changes from 1->0->1.
4520 	 * When the host controller completes initialization sequence
4521 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4522 	 * to check if the controller has completed initialization sequence.
4523 	 * So without this delay the value HCE = 1, set in the previous
4524 	 * instruction might be read back.
4525 	 * This delay can be changed based on the controller.
4526 	 */
4527 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4528 
4529 	/* wait for the host controller to complete initialization */
4530 	retry_inner = 50;
4531 	while (ufshcd_is_hba_active(hba)) {
4532 		if (retry_inner) {
4533 			retry_inner--;
4534 		} else {
4535 			dev_err(hba->dev,
4536 				"Controller enable failed\n");
4537 			if (retry_outer) {
4538 				retry_outer--;
4539 				goto start;
4540 			}
4541 			return -EIO;
4542 		}
4543 		usleep_range(1000, 1100);
4544 	}
4545 
4546 	/* enable UIC related interrupts */
4547 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4548 
4549 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4550 
4551 	return 0;
4552 }
4553 
ufshcd_hba_enable(struct ufs_hba * hba)4554 int ufshcd_hba_enable(struct ufs_hba *hba)
4555 {
4556 	int ret;
4557 
4558 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4559 		ufshcd_set_link_off(hba);
4560 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4561 
4562 		/* enable UIC related interrupts */
4563 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4564 		ret = ufshcd_dme_reset(hba);
4565 		if (!ret) {
4566 			ret = ufshcd_dme_enable(hba);
4567 			if (!ret)
4568 				ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4569 			if (ret)
4570 				dev_err(hba->dev,
4571 					"Host controller enable failed with non-hce\n");
4572 		}
4573 	} else {
4574 		ret = ufshcd_hba_execute_hce(hba);
4575 	}
4576 
4577 	return ret;
4578 }
4579 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4580 
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4581 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4582 {
4583 	int tx_lanes = 0, i, err = 0;
4584 
4585 	if (!peer)
4586 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4587 			       &tx_lanes);
4588 	else
4589 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4590 				    &tx_lanes);
4591 	for (i = 0; i < tx_lanes; i++) {
4592 		if (!peer)
4593 			err = ufshcd_dme_set(hba,
4594 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4595 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4596 					0);
4597 		else
4598 			err = ufshcd_dme_peer_set(hba,
4599 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4600 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4601 					0);
4602 		if (err) {
4603 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4604 				__func__, peer, i, err);
4605 			break;
4606 		}
4607 	}
4608 
4609 	return err;
4610 }
4611 
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4612 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4613 {
4614 	return ufshcd_disable_tx_lcc(hba, true);
4615 }
4616 
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)4617 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4618 {
4619 	struct ufs_event_hist *e;
4620 
4621 	if (id >= UFS_EVT_CNT)
4622 		return;
4623 
4624 	e = &hba->ufs_stats.event[id];
4625 	e->val[e->pos] = val;
4626 	e->tstamp[e->pos] = ktime_get();
4627 	e->cnt += 1;
4628 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4629 
4630 	ufshcd_vops_event_notify(hba, id, &val);
4631 }
4632 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4633 
4634 /**
4635  * ufshcd_link_startup - Initialize unipro link startup
4636  * @hba: per adapter instance
4637  *
4638  * Returns 0 for success, non-zero in case of failure
4639  */
ufshcd_link_startup(struct ufs_hba * hba)4640 static int ufshcd_link_startup(struct ufs_hba *hba)
4641 {
4642 	int ret;
4643 	int retries = DME_LINKSTARTUP_RETRIES;
4644 	bool link_startup_again = false;
4645 
4646 	/*
4647 	 * If UFS device isn't active then we will have to issue link startup
4648 	 * 2 times to make sure the device state move to active.
4649 	 */
4650 	if (!ufshcd_is_ufs_dev_active(hba))
4651 		link_startup_again = true;
4652 
4653 link_startup:
4654 	do {
4655 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4656 
4657 		ret = ufshcd_dme_link_startup(hba);
4658 
4659 		/* check if device is detected by inter-connect layer */
4660 		if (!ret && !ufshcd_is_device_present(hba)) {
4661 			ufshcd_update_evt_hist(hba,
4662 					       UFS_EVT_LINK_STARTUP_FAIL,
4663 					       0);
4664 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4665 			ret = -ENXIO;
4666 			goto out;
4667 		}
4668 
4669 		/*
4670 		 * DME link lost indication is only received when link is up,
4671 		 * but we can't be sure if the link is up until link startup
4672 		 * succeeds. So reset the local Uni-Pro and try again.
4673 		 */
4674 		if (ret && ufshcd_hba_enable(hba)) {
4675 			ufshcd_update_evt_hist(hba,
4676 					       UFS_EVT_LINK_STARTUP_FAIL,
4677 					       (u32)ret);
4678 			goto out;
4679 		}
4680 	} while (ret && retries--);
4681 
4682 	if (ret) {
4683 		/* failed to get the link up... retire */
4684 		ufshcd_update_evt_hist(hba,
4685 				       UFS_EVT_LINK_STARTUP_FAIL,
4686 				       (u32)ret);
4687 		goto out;
4688 	}
4689 
4690 	if (link_startup_again) {
4691 		link_startup_again = false;
4692 		retries = DME_LINKSTARTUP_RETRIES;
4693 		goto link_startup;
4694 	}
4695 
4696 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4697 	ufshcd_init_pwr_info(hba);
4698 	ufshcd_print_pwr_info(hba);
4699 
4700 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4701 		ret = ufshcd_disable_device_tx_lcc(hba);
4702 		if (ret)
4703 			goto out;
4704 	}
4705 
4706 	/* Include any host controller configuration via UIC commands */
4707 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4708 	if (ret)
4709 		goto out;
4710 
4711 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4712 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4713 	ret = ufshcd_make_hba_operational(hba);
4714 out:
4715 	if (ret) {
4716 		dev_err(hba->dev, "link startup failed %d\n", ret);
4717 		ufshcd_print_host_state(hba);
4718 		ufshcd_print_pwr_info(hba);
4719 		ufshcd_print_evt_hist(hba);
4720 	}
4721 	return ret;
4722 }
4723 
4724 /**
4725  * ufshcd_verify_dev_init() - Verify device initialization
4726  * @hba: per-adapter instance
4727  *
4728  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4729  * device Transport Protocol (UTP) layer is ready after a reset.
4730  * If the UTP layer at the device side is not initialized, it may
4731  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4732  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4733  */
ufshcd_verify_dev_init(struct ufs_hba * hba)4734 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4735 {
4736 	int err = 0;
4737 	int retries;
4738 
4739 	ufshcd_hold(hba, false);
4740 	mutex_lock(&hba->dev_cmd.lock);
4741 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4742 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4743 					       NOP_OUT_TIMEOUT);
4744 
4745 		if (!err || err == -ETIMEDOUT)
4746 			break;
4747 
4748 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4749 	}
4750 	mutex_unlock(&hba->dev_cmd.lock);
4751 	ufshcd_release(hba);
4752 
4753 	if (err)
4754 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4755 	return err;
4756 }
4757 
4758 /**
4759  * ufshcd_set_queue_depth - set lun queue depth
4760  * @sdev: pointer to SCSI device
4761  *
4762  * Read bLUQueueDepth value and activate scsi tagged command
4763  * queueing. For WLUN, queue depth is set to 1. For best-effort
4764  * cases (bLUQueueDepth = 0) the queue depth is set to a maximum
4765  * value that host can queue.
4766  */
ufshcd_set_queue_depth(struct scsi_device * sdev)4767 static void ufshcd_set_queue_depth(struct scsi_device *sdev)
4768 {
4769 	int ret = 0;
4770 	u8 lun_qdepth;
4771 	struct ufs_hba *hba;
4772 
4773 	hba = shost_priv(sdev->host);
4774 
4775 	lun_qdepth = hba->nutrs;
4776 	ret = ufshcd_read_unit_desc_param(hba,
4777 					  ufshcd_scsi_to_upiu_lun(sdev->lun),
4778 					  UNIT_DESC_PARAM_LU_Q_DEPTH,
4779 					  &lun_qdepth,
4780 					  sizeof(lun_qdepth));
4781 
4782 	/* Some WLUN doesn't support unit descriptor */
4783 	if (ret == -EOPNOTSUPP)
4784 		lun_qdepth = 1;
4785 	else if (!lun_qdepth)
4786 		/* eventually, we can figure out the real queue depth */
4787 		lun_qdepth = hba->nutrs;
4788 	else
4789 		lun_qdepth = min_t(int, lun_qdepth, hba->nutrs);
4790 
4791 	dev_dbg(hba->dev, "%s: activate tcq with queue depth %d\n",
4792 			__func__, lun_qdepth);
4793 	scsi_change_queue_depth(sdev, lun_qdepth);
4794 }
4795 
4796 /*
4797  * ufshcd_get_lu_wp - returns the "b_lu_write_protect" from UNIT DESCRIPTOR
4798  * @hba: per-adapter instance
4799  * @lun: UFS device lun id
4800  * @b_lu_write_protect: pointer to buffer to hold the LU's write protect info
4801  *
4802  * Returns 0 in case of success and b_lu_write_protect status would be returned
4803  * @b_lu_write_protect parameter.
4804  * Returns -ENOTSUPP if reading b_lu_write_protect is not supported.
4805  * Returns -EINVAL in case of invalid parameters passed to this function.
4806  */
ufshcd_get_lu_wp(struct ufs_hba * hba,u8 lun,u8 * b_lu_write_protect)4807 static int ufshcd_get_lu_wp(struct ufs_hba *hba,
4808 			    u8 lun,
4809 			    u8 *b_lu_write_protect)
4810 {
4811 	int ret;
4812 
4813 	if (!b_lu_write_protect)
4814 		ret = -EINVAL;
4815 	/*
4816 	 * According to UFS device spec, RPMB LU can't be write
4817 	 * protected so skip reading bLUWriteProtect parameter for
4818 	 * it. For other W-LUs, UNIT DESCRIPTOR is not available.
4819 	 */
4820 	else if (lun >= hba->dev_info.max_lu_supported)
4821 		ret = -ENOTSUPP;
4822 	else
4823 		ret = ufshcd_read_unit_desc_param(hba,
4824 					  lun,
4825 					  UNIT_DESC_PARAM_LU_WR_PROTECT,
4826 					  b_lu_write_protect,
4827 					  sizeof(*b_lu_write_protect));
4828 	return ret;
4829 }
4830 
4831 /**
4832  * ufshcd_get_lu_power_on_wp_status - get LU's power on write protect
4833  * status
4834  * @hba: per-adapter instance
4835  * @sdev: pointer to SCSI device
4836  *
4837  */
ufshcd_get_lu_power_on_wp_status(struct ufs_hba * hba,struct scsi_device * sdev)4838 static inline void ufshcd_get_lu_power_on_wp_status(struct ufs_hba *hba,
4839 						    struct scsi_device *sdev)
4840 {
4841 	if (hba->dev_info.f_power_on_wp_en &&
4842 	    !hba->dev_info.is_lu_power_on_wp) {
4843 		u8 b_lu_write_protect;
4844 
4845 		if (!ufshcd_get_lu_wp(hba, ufshcd_scsi_to_upiu_lun(sdev->lun),
4846 				      &b_lu_write_protect) &&
4847 		    (b_lu_write_protect == UFS_LU_POWER_ON_WP))
4848 			hba->dev_info.is_lu_power_on_wp = true;
4849 	}
4850 }
4851 
4852 /**
4853  * ufshcd_slave_alloc - handle initial SCSI device configurations
4854  * @sdev: pointer to SCSI device
4855  *
4856  * Returns success
4857  */
ufshcd_slave_alloc(struct scsi_device * sdev)4858 static int ufshcd_slave_alloc(struct scsi_device *sdev)
4859 {
4860 	struct ufs_hba *hba;
4861 
4862 	hba = shost_priv(sdev->host);
4863 
4864 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
4865 	sdev->use_10_for_ms = 1;
4866 
4867 	/* DBD field should be set to 1 in mode sense(10) */
4868 	sdev->set_dbd_for_ms = 1;
4869 
4870 	/* allow SCSI layer to restart the device in case of errors */
4871 	sdev->allow_restart = 1;
4872 
4873 	/* REPORT SUPPORTED OPERATION CODES is not supported */
4874 	sdev->no_report_opcodes = 1;
4875 
4876 	/* WRITE_SAME command is not supported */
4877 	sdev->no_write_same = 1;
4878 
4879 	ufshcd_set_queue_depth(sdev);
4880 
4881 	ufshcd_get_lu_power_on_wp_status(hba, sdev);
4882 
4883 	return 0;
4884 }
4885 
4886 /**
4887  * ufshcd_change_queue_depth - change queue depth
4888  * @sdev: pointer to SCSI device
4889  * @depth: required depth to set
4890  *
4891  * Change queue depth and make sure the max. limits are not crossed.
4892  */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)4893 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
4894 {
4895 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
4896 }
4897 
ufshcd_hpb_destroy(struct ufs_hba * hba,struct scsi_device * sdev)4898 static void ufshcd_hpb_destroy(struct ufs_hba *hba, struct scsi_device *sdev)
4899 {
4900 	/* skip well-known LU */
4901 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
4902 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
4903 		return;
4904 
4905 	ufshpb_destroy_lu(hba, sdev);
4906 }
4907 
ufshcd_hpb_configure(struct ufs_hba * hba,struct scsi_device * sdev)4908 static void ufshcd_hpb_configure(struct ufs_hba *hba, struct scsi_device *sdev)
4909 {
4910 	/* skip well-known LU */
4911 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
4912 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
4913 		return;
4914 
4915 	ufshpb_init_hpb_lu(hba, sdev);
4916 }
4917 
4918 /**
4919  * ufshcd_slave_configure - adjust SCSI device configurations
4920  * @sdev: pointer to SCSI device
4921  */
ufshcd_slave_configure(struct scsi_device * sdev)4922 static int ufshcd_slave_configure(struct scsi_device *sdev)
4923 {
4924 	struct ufs_hba *hba = shost_priv(sdev->host);
4925 	struct request_queue *q = sdev->request_queue;
4926 
4927 	ufshcd_hpb_configure(hba, sdev);
4928 
4929 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
4930 	if (hba->quirks & UFSHCD_QUIRK_ALIGN_SG_WITH_PAGE_SIZE)
4931 		blk_queue_update_dma_alignment(q, PAGE_SIZE - 1);
4932 
4933 	if (ufshcd_is_rpm_autosuspend_allowed(hba))
4934 		sdev->rpm_autosuspend = 1;
4935 
4936 	ufshcd_crypto_setup_rq_keyslot_manager(hba, q);
4937 
4938 	trace_android_vh_ufs_update_sdev(sdev);
4939 
4940 	return 0;
4941 }
4942 
4943 /**
4944  * ufshcd_slave_destroy - remove SCSI device configurations
4945  * @sdev: pointer to SCSI device
4946  */
ufshcd_slave_destroy(struct scsi_device * sdev)4947 static void ufshcd_slave_destroy(struct scsi_device *sdev)
4948 {
4949 	struct ufs_hba *hba;
4950 
4951 	hba = shost_priv(sdev->host);
4952 
4953 	ufshcd_hpb_destroy(hba, sdev);
4954 
4955 	/* Drop the reference as it won't be needed anymore */
4956 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
4957 		unsigned long flags;
4958 
4959 		spin_lock_irqsave(hba->host->host_lock, flags);
4960 		hba->sdev_ufs_device = NULL;
4961 		spin_unlock_irqrestore(hba->host->host_lock, flags);
4962 	}
4963 }
4964 
4965 /**
4966  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
4967  * @lrbp: pointer to local reference block of completed command
4968  * @scsi_status: SCSI command status
4969  *
4970  * Returns value base on SCSI command status
4971  */
4972 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)4973 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
4974 {
4975 	int result = 0;
4976 
4977 	switch (scsi_status) {
4978 	case SAM_STAT_CHECK_CONDITION:
4979 		ufshcd_copy_sense_data(lrbp);
4980 		fallthrough;
4981 	case SAM_STAT_GOOD:
4982 		result |= DID_OK << 16 |
4983 			  COMMAND_COMPLETE << 8 |
4984 			  scsi_status;
4985 		break;
4986 	case SAM_STAT_TASK_SET_FULL:
4987 	case SAM_STAT_BUSY:
4988 	case SAM_STAT_TASK_ABORTED:
4989 		ufshcd_copy_sense_data(lrbp);
4990 		result |= scsi_status;
4991 		break;
4992 	default:
4993 		result |= DID_ERROR << 16;
4994 		break;
4995 	} /* end of switch */
4996 
4997 	return result;
4998 }
4999 
5000 /**
5001  * ufshcd_transfer_rsp_status - Get overall status of the response
5002  * @hba: per adapter instance
5003  * @lrbp: pointer to local reference block of completed command
5004  *
5005  * Returns result of the command to notify SCSI midlayer
5006  */
5007 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5008 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
5009 {
5010 	int result = 0;
5011 	int scsi_status;
5012 	int ocs;
5013 
5014 	/* overall command status of utrd */
5015 	ocs = ufshcd_get_tr_ocs(lrbp);
5016 
5017 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5018 		if (be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_1) &
5019 					MASK_RSP_UPIU_RESULT)
5020 			ocs = OCS_SUCCESS;
5021 	}
5022 
5023 	switch (ocs) {
5024 	case OCS_SUCCESS:
5025 		result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
5026 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5027 		switch (result) {
5028 		case UPIU_TRANSACTION_RESPONSE:
5029 			/*
5030 			 * get the response UPIU result to extract
5031 			 * the SCSI command status
5032 			 */
5033 			result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
5034 
5035 			/*
5036 			 * get the result based on SCSI status response
5037 			 * to notify the SCSI midlayer of the command status
5038 			 */
5039 			scsi_status = result & MASK_SCSI_STATUS;
5040 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5041 
5042 			/*
5043 			 * Currently we are only supporting BKOPs exception
5044 			 * events hence we can ignore BKOPs exception event
5045 			 * during power management callbacks. BKOPs exception
5046 			 * event is not expected to be raised in runtime suspend
5047 			 * callback as it allows the urgent bkops.
5048 			 * During system suspend, we are anyway forcefully
5049 			 * disabling the bkops and if urgent bkops is needed
5050 			 * it will be enabled on system resume. Long term
5051 			 * solution could be to abort the system suspend if
5052 			 * UFS device needs urgent BKOPs.
5053 			 */
5054 			if (!hba->pm_op_in_progress &&
5055 			    !ufshcd_eh_in_progress(hba) &&
5056 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr) &&
5057 			    schedule_work(&hba->eeh_work)) {
5058 				/*
5059 				 * Prevent suspend once eeh_work is scheduled
5060 				 * to avoid deadlock between ufshcd_suspend
5061 				 * and exception event handler.
5062 				 */
5063 				pm_runtime_get_noresume(hba->dev);
5064 			}
5065 
5066 			if (scsi_status == SAM_STAT_GOOD)
5067 				ufshpb_rsp_upiu(hba, lrbp);
5068 			break;
5069 		case UPIU_TRANSACTION_REJECT_UPIU:
5070 			/* TODO: handle Reject UPIU Response */
5071 			result = DID_ERROR << 16;
5072 			dev_err(hba->dev,
5073 				"Reject UPIU not fully implemented\n");
5074 			break;
5075 		default:
5076 			dev_err(hba->dev,
5077 				"Unexpected request response code = %x\n",
5078 				result);
5079 			result = DID_ERROR << 16;
5080 			break;
5081 		}
5082 		break;
5083 	case OCS_ABORTED:
5084 		result |= DID_ABORT << 16;
5085 		break;
5086 	case OCS_INVALID_COMMAND_STATUS:
5087 		dev_err_ratelimited(hba->dev,
5088 			"Retrying request with tag %d / cdb %#02x because of invalid command status\n",
5089 			lrbp->task_tag, lrbp->cmd && lrbp->cmd->cmnd ?
5090 			lrbp->cmd->cmnd[0] : 0);
5091 		result |= DID_REQUEUE << 16;
5092 		break;
5093 	case OCS_INVALID_CMD_TABLE_ATTR:
5094 	case OCS_INVALID_PRDT_ATTR:
5095 	case OCS_MISMATCH_DATA_BUF_SIZE:
5096 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5097 	case OCS_PEER_COMM_FAILURE:
5098 	case OCS_FATAL_ERROR:
5099 	case OCS_DEVICE_FATAL_ERROR:
5100 	case OCS_INVALID_CRYPTO_CONFIG:
5101 	case OCS_GENERAL_CRYPTO_ERROR:
5102 	default:
5103 		result |= DID_ERROR << 16;
5104 		dev_err(hba->dev,
5105 				"OCS error from controller = %x for tag %d\n",
5106 				ocs, lrbp->task_tag);
5107 		ufshcd_print_evt_hist(hba);
5108 		ufshcd_print_host_state(hba);
5109 		break;
5110 	} /* end of switch */
5111 
5112 	if ((host_byte(result) != DID_OK) &&
5113 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5114 		ufshcd_print_trs(hba, 1 << lrbp->task_tag, true);
5115 	return result;
5116 }
5117 
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5118 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5119 					 u32 intr_mask)
5120 {
5121 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5122 	    !ufshcd_is_auto_hibern8_enabled(hba))
5123 		return false;
5124 
5125 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5126 		return false;
5127 
5128 	if (hba->active_uic_cmd &&
5129 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5130 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5131 		return false;
5132 
5133 	return true;
5134 }
5135 
5136 /**
5137  * ufshcd_uic_cmd_compl - handle completion of uic command
5138  * @hba: per adapter instance
5139  * @intr_status: interrupt status generated by the controller
5140  *
5141  * Returns
5142  *  IRQ_HANDLED - If interrupt is valid
5143  *  IRQ_NONE    - If invalid interrupt
5144  */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5145 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5146 {
5147 	irqreturn_t retval = IRQ_NONE;
5148 
5149 	spin_lock(hba->host->host_lock);
5150 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5151 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5152 
5153 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5154 		hba->active_uic_cmd->argument2 |=
5155 			ufshcd_get_uic_cmd_result(hba);
5156 		hba->active_uic_cmd->argument3 =
5157 			ufshcd_get_dme_attr_val(hba);
5158 		if (!hba->uic_async_done)
5159 			hba->active_uic_cmd->cmd_active = 0;
5160 		complete(&hba->active_uic_cmd->done);
5161 		retval = IRQ_HANDLED;
5162 	}
5163 
5164 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5165 		hba->active_uic_cmd->cmd_active = 0;
5166 		complete(hba->uic_async_done);
5167 		retval = IRQ_HANDLED;
5168 	}
5169 
5170 	if (retval == IRQ_HANDLED)
5171 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5172 					     "complete");
5173 	spin_unlock(hba->host->host_lock);
5174 	return retval;
5175 }
5176 
5177 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5178 static void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5179 				    struct ufshcd_lrb *lrbp)
5180 {
5181 	struct scsi_cmnd *cmd = lrbp->cmd;
5182 
5183 	scsi_dma_unmap(cmd);
5184 	ufshcd_crypto_clear_prdt(hba, lrbp);
5185 	lrbp->cmd = NULL;	/* Mark the command as completed. */
5186 	ufshcd_release(hba);
5187 	ufshcd_clk_scaling_update_busy(hba);
5188 }
5189 
5190 /**
5191  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5192  * @hba: per adapter instance
5193  * @completed_reqs: requests to complete
5194  */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5195 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5196 					unsigned long completed_reqs)
5197 {
5198 	struct ufshcd_lrb *lrbp;
5199 	struct scsi_cmnd *cmd;
5200 	int index;
5201 
5202 	for_each_set_bit(index, &completed_reqs, hba->nutrs) {
5203 		if (!test_and_clear_bit(index, &hba->outstanding_reqs))
5204 			continue;
5205 		lrbp = &hba->lrb[index];
5206 		lrbp->compl_time_stamp = ktime_get();
5207 		cmd = lrbp->cmd;
5208 		if (cmd) {
5209 			if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5210 				ufshcd_update_monitor(hba, lrbp);
5211 			trace_android_vh_ufs_compl_command(hba, lrbp);
5212 			ufshcd_add_command_trace(hba, index, "complete");
5213 			cmd->result = ufshcd_transfer_rsp_status(hba, lrbp);
5214 			ufshcd_release_scsi_cmd(hba, lrbp);
5215 			/* Do not touch lrbp after scsi done */
5216 			cmd->scsi_done(cmd);
5217 		} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5218 			lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5219 			if (hba->dev_cmd.complete) {
5220 				trace_android_vh_ufs_compl_command(hba, lrbp);
5221 				ufshcd_add_command_trace(hba, index,
5222 						"dev_complete");
5223 				complete(hba->dev_cmd.complete);
5224 				ufshcd_clk_scaling_update_busy(hba);
5225 			}
5226 		}
5227 	}
5228 }
5229 
5230 /**
5231  * ufshcd_trc_handler - handle transfer requests completion
5232  * @hba: per adapter instance
5233  * @use_utrlcnr: get completed requests from UTRLCNR
5234  *
5235  * Returns
5236  *  IRQ_HANDLED - If interrupt is valid
5237  *  IRQ_NONE    - If invalid interrupt
5238  */
ufshcd_trc_handler(struct ufs_hba * hba,bool use_utrlcnr)5239 static irqreturn_t ufshcd_trc_handler(struct ufs_hba *hba, bool use_utrlcnr)
5240 {
5241 	unsigned long completed_reqs = 0;
5242 
5243 	/* Resetting interrupt aggregation counters first and reading the
5244 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5245 	 * In order to prevent other interrupts starvation the DB is read once
5246 	 * after reset. The down side of this solution is the possibility of
5247 	 * false interrupt if device completes another request after resetting
5248 	 * aggregation and before reading the DB.
5249 	 */
5250 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5251 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5252 		ufshcd_reset_intr_aggr(hba);
5253 
5254 	if (use_utrlcnr) {
5255 		u32 utrlcnr;
5256 
5257 		utrlcnr = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_LIST_COMPL);
5258 		if (utrlcnr) {
5259 			ufshcd_writel(hba, utrlcnr,
5260 				      REG_UTP_TRANSFER_REQ_LIST_COMPL);
5261 			completed_reqs = utrlcnr;
5262 		}
5263 	} else {
5264 		unsigned long flags;
5265 		u32 tr_doorbell;
5266 
5267 		spin_lock_irqsave(hba->host->host_lock, flags);
5268 		tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5269 		completed_reqs = tr_doorbell ^ hba->outstanding_reqs;
5270 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5271 	}
5272 
5273 	if (completed_reqs) {
5274 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5275 		return IRQ_HANDLED;
5276 	} else {
5277 		return IRQ_NONE;
5278 	}
5279 }
5280 
5281 /**
5282  * ufshcd_disable_ee - disable exception event
5283  * @hba: per-adapter instance
5284  * @mask: exception event to disable
5285  *
5286  * Disables exception event in the device so that the EVENT_ALERT
5287  * bit is not set.
5288  *
5289  * Returns zero on success, non-zero error value on failure.
5290  */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5291 static int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5292 {
5293 	int err = 0;
5294 	u32 val;
5295 
5296 	if (!(hba->ee_ctrl_mask & mask))
5297 		goto out;
5298 
5299 	val = hba->ee_ctrl_mask & ~mask;
5300 	val &= MASK_EE_STATUS;
5301 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5302 			QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val);
5303 	if (!err)
5304 		hba->ee_ctrl_mask &= ~mask;
5305 out:
5306 	return err;
5307 }
5308 
5309 /**
5310  * ufshcd_enable_ee - enable exception event
5311  * @hba: per-adapter instance
5312  * @mask: exception event to enable
5313  *
5314  * Enable corresponding exception event in the device to allow
5315  * device to alert host in critical scenarios.
5316  *
5317  * Returns zero on success, non-zero error value on failure.
5318  */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5319 static int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5320 {
5321 	int err = 0;
5322 	u32 val;
5323 
5324 	if (hba->ee_ctrl_mask & mask)
5325 		goto out;
5326 
5327 	val = hba->ee_ctrl_mask | mask;
5328 	val &= MASK_EE_STATUS;
5329 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5330 			QUERY_ATTR_IDN_EE_CONTROL, 0, 0, &val);
5331 	if (!err)
5332 		hba->ee_ctrl_mask |= mask;
5333 out:
5334 	return err;
5335 }
5336 
5337 /**
5338  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5339  * @hba: per-adapter instance
5340  *
5341  * Allow device to manage background operations on its own. Enabling
5342  * this might lead to inconsistent latencies during normal data transfers
5343  * as the device is allowed to manage its own way of handling background
5344  * operations.
5345  *
5346  * Returns zero on success, non-zero on failure.
5347  */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5348 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5349 {
5350 	int err = 0;
5351 
5352 	if (hba->auto_bkops_enabled)
5353 		goto out;
5354 
5355 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5356 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5357 	if (err) {
5358 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5359 				__func__, err);
5360 		goto out;
5361 	}
5362 
5363 	hba->auto_bkops_enabled = true;
5364 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5365 
5366 	/* No need of URGENT_BKOPS exception from the device */
5367 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5368 	if (err)
5369 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5370 				__func__, err);
5371 out:
5372 	return err;
5373 }
5374 
5375 /**
5376  * ufshcd_disable_auto_bkops - block device in doing background operations
5377  * @hba: per-adapter instance
5378  *
5379  * Disabling background operations improves command response latency but
5380  * has drawback of device moving into critical state where the device is
5381  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5382  * host is idle so that BKOPS are managed effectively without any negative
5383  * impacts.
5384  *
5385  * Returns zero on success, non-zero on failure.
5386  */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5387 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5388 {
5389 	int err = 0;
5390 
5391 	if (!hba->auto_bkops_enabled)
5392 		goto out;
5393 
5394 	/*
5395 	 * If host assisted BKOPs is to be enabled, make sure
5396 	 * urgent bkops exception is allowed.
5397 	 */
5398 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5399 	if (err) {
5400 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5401 				__func__, err);
5402 		goto out;
5403 	}
5404 
5405 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5406 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5407 	if (err) {
5408 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5409 				__func__, err);
5410 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5411 		goto out;
5412 	}
5413 
5414 	hba->auto_bkops_enabled = false;
5415 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5416 	hba->is_urgent_bkops_lvl_checked = false;
5417 out:
5418 	return err;
5419 }
5420 
5421 /**
5422  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5423  * @hba: per adapter instance
5424  *
5425  * After a device reset the device may toggle the BKOPS_EN flag
5426  * to default value. The s/w tracking variables should be updated
5427  * as well. This function would change the auto-bkops state based on
5428  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5429  */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5430 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5431 {
5432 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5433 		hba->auto_bkops_enabled = false;
5434 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5435 		ufshcd_enable_auto_bkops(hba);
5436 	} else {
5437 		hba->auto_bkops_enabled = true;
5438 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5439 		ufshcd_disable_auto_bkops(hba);
5440 	}
5441 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5442 	hba->is_urgent_bkops_lvl_checked = false;
5443 }
5444 
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5445 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5446 {
5447 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5448 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5449 }
5450 
5451 /**
5452  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5453  * @hba: per-adapter instance
5454  * @status: bkops_status value
5455  *
5456  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5457  * flag in the device to permit background operations if the device
5458  * bkops_status is greater than or equal to "status" argument passed to
5459  * this function, disable otherwise.
5460  *
5461  * Returns 0 for success, non-zero in case of failure.
5462  *
5463  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5464  * to know whether auto bkops is enabled or disabled after this function
5465  * returns control to it.
5466  */
ufshcd_bkops_ctrl(struct ufs_hba * hba,enum bkops_status status)5467 int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5468 			     enum bkops_status status)
5469 {
5470 	int err;
5471 	u32 curr_status = 0;
5472 
5473 	err = ufshcd_get_bkops_status(hba, &curr_status);
5474 	if (err) {
5475 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5476 				__func__, err);
5477 		goto out;
5478 	} else if (curr_status > BKOPS_STATUS_MAX) {
5479 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5480 				__func__, curr_status);
5481 		err = -EINVAL;
5482 		goto out;
5483 	}
5484 
5485 	if (curr_status >= status)
5486 		err = ufshcd_enable_auto_bkops(hba);
5487 	else
5488 		err = ufshcd_disable_auto_bkops(hba);
5489 out:
5490 	return err;
5491 }
5492 EXPORT_SYMBOL_GPL(ufshcd_bkops_ctrl);
5493 
5494 /**
5495  * ufshcd_urgent_bkops - handle urgent bkops exception event
5496  * @hba: per-adapter instance
5497  *
5498  * Enable fBackgroundOpsEn flag in the device to permit background
5499  * operations.
5500  *
5501  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5502  * and negative error value for any other failure.
5503  */
ufshcd_urgent_bkops(struct ufs_hba * hba)5504 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5505 {
5506 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5507 }
5508 
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5509 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5510 {
5511 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5512 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5513 }
5514 
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5515 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5516 {
5517 	int err;
5518 	u32 curr_status = 0;
5519 
5520 	if (hba->is_urgent_bkops_lvl_checked)
5521 		goto enable_auto_bkops;
5522 
5523 	err = ufshcd_get_bkops_status(hba, &curr_status);
5524 	if (err) {
5525 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5526 				__func__, err);
5527 		goto out;
5528 	}
5529 
5530 	/*
5531 	 * We are seeing that some devices are raising the urgent bkops
5532 	 * exception events even when BKOPS status doesn't indicate performace
5533 	 * impacted or critical. Handle these device by determining their urgent
5534 	 * bkops status at runtime.
5535 	 */
5536 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5537 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5538 				__func__, curr_status);
5539 		/* update the current status as the urgent bkops level */
5540 		hba->urgent_bkops_lvl = curr_status;
5541 		hba->is_urgent_bkops_lvl_checked = true;
5542 	}
5543 
5544 enable_auto_bkops:
5545 	err = ufshcd_enable_auto_bkops(hba);
5546 out:
5547 	if (err < 0)
5548 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5549 				__func__, err);
5550 }
5551 
ufshcd_wb_ctrl(struct ufs_hba * hba,bool enable)5552 static int ufshcd_wb_ctrl(struct ufs_hba *hba, bool enable)
5553 {
5554 	int ret;
5555 	u8 index;
5556 	enum query_opcode opcode;
5557 
5558 	if (!ufshcd_is_wb_allowed(hba))
5559 		return 0;
5560 
5561 	if (!(enable ^ hba->wb_enabled))
5562 		return 0;
5563 	if (enable)
5564 		opcode = UPIU_QUERY_OPCODE_SET_FLAG;
5565 	else
5566 		opcode = UPIU_QUERY_OPCODE_CLEAR_FLAG;
5567 
5568 	index = ufshcd_wb_get_query_index(hba);
5569 	ret = ufshcd_query_flag_retry(hba, opcode,
5570 				      QUERY_FLAG_IDN_WB_EN, index, NULL);
5571 	if (ret) {
5572 		dev_err(hba->dev, "%s write booster %s failed %d\n",
5573 			__func__, enable ? "enable" : "disable", ret);
5574 		return ret;
5575 	}
5576 
5577 	hba->wb_enabled = enable;
5578 	dev_dbg(hba->dev, "%s write booster %s %d\n",
5579 			__func__, enable ? "enable" : "disable", ret);
5580 
5581 	return ret;
5582 }
5583 
ufshcd_wb_toggle_flush_during_h8(struct ufs_hba * hba,bool set)5584 static int ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set)
5585 {
5586 	int val;
5587 	u8 index;
5588 
5589 	if (set)
5590 		val =  UPIU_QUERY_OPCODE_SET_FLAG;
5591 	else
5592 		val = UPIU_QUERY_OPCODE_CLEAR_FLAG;
5593 
5594 	index = ufshcd_wb_get_query_index(hba);
5595 	return ufshcd_query_flag_retry(hba, val,
5596 				QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8,
5597 				index, NULL);
5598 }
5599 
ufshcd_wb_toggle_flush(struct ufs_hba * hba,bool enable)5600 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable)
5601 {
5602 	if (enable)
5603 		ufshcd_wb_buf_flush_enable(hba);
5604 	else
5605 		ufshcd_wb_buf_flush_disable(hba);
5606 
5607 }
5608 
ufshcd_wb_buf_flush_enable(struct ufs_hba * hba)5609 static int ufshcd_wb_buf_flush_enable(struct ufs_hba *hba)
5610 {
5611 	int ret;
5612 	u8 index;
5613 
5614 	if (!ufshcd_is_wb_allowed(hba) || hba->wb_buf_flush_enabled)
5615 		return 0;
5616 
5617 	index = ufshcd_wb_get_query_index(hba);
5618 	ret = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5619 				      QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN,
5620 				      index, NULL);
5621 	if (ret)
5622 		dev_err(hba->dev, "%s WB - buf flush enable failed %d\n",
5623 			__func__, ret);
5624 	else
5625 		hba->wb_buf_flush_enabled = true;
5626 
5627 	dev_dbg(hba->dev, "WB - Flush enabled: %d\n", ret);
5628 	return ret;
5629 }
5630 
ufshcd_wb_buf_flush_disable(struct ufs_hba * hba)5631 static int ufshcd_wb_buf_flush_disable(struct ufs_hba *hba)
5632 {
5633 	int ret;
5634 	u8 index;
5635 
5636 	if (!ufshcd_is_wb_allowed(hba) || !hba->wb_buf_flush_enabled)
5637 		return 0;
5638 
5639 	index = ufshcd_wb_get_query_index(hba);
5640 	ret = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5641 				      QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN,
5642 				      index, NULL);
5643 	if (ret) {
5644 		dev_warn(hba->dev, "%s: WB - buf flush disable failed %d\n",
5645 			 __func__, ret);
5646 	} else {
5647 		hba->wb_buf_flush_enabled = false;
5648 		dev_dbg(hba->dev, "WB - Flush disabled: %d\n", ret);
5649 	}
5650 
5651 	return ret;
5652 }
5653 
ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba * hba,u32 avail_buf)5654 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5655 						u32 avail_buf)
5656 {
5657 	u32 cur_buf;
5658 	int ret;
5659 	u8 index;
5660 
5661 	index = ufshcd_wb_get_query_index(hba);
5662 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5663 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5664 					      index, 0, &cur_buf);
5665 	if (ret) {
5666 		dev_err(hba->dev, "%s dCurWriteBoosterBufferSize read failed %d\n",
5667 			__func__, ret);
5668 		return false;
5669 	}
5670 
5671 	if (!cur_buf) {
5672 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5673 			 cur_buf);
5674 		return false;
5675 	}
5676 	/* Let it continue to flush when available buffer exceeds threshold */
5677 	if (avail_buf < hba->vps->wb_flush_threshold)
5678 		return true;
5679 
5680 	return false;
5681 }
5682 
ufshcd_wb_need_flush(struct ufs_hba * hba)5683 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
5684 {
5685 	int ret;
5686 	u32 avail_buf;
5687 	u8 index;
5688 
5689 	if (!ufshcd_is_wb_allowed(hba))
5690 		return false;
5691 	/*
5692 	 * The ufs device needs the vcc to be ON to flush.
5693 	 * With user-space reduction enabled, it's enough to enable flush
5694 	 * by checking only the available buffer. The threshold
5695 	 * defined here is > 90% full.
5696 	 * With user-space preserved enabled, the current-buffer
5697 	 * should be checked too because the wb buffer size can reduce
5698 	 * when disk tends to be full. This info is provided by current
5699 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
5700 	 * keeping vcc on when current buffer is empty.
5701 	 */
5702 	index = ufshcd_wb_get_query_index(hba);
5703 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5704 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
5705 				      index, 0, &avail_buf);
5706 	if (ret) {
5707 		dev_warn(hba->dev, "%s dAvailableWriteBoosterBufferSize read failed %d\n",
5708 			 __func__, ret);
5709 		return false;
5710 	}
5711 
5712 	if (!hba->dev_info.b_presrv_uspc_en) {
5713 		if (avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10))
5714 			return true;
5715 		return false;
5716 	}
5717 
5718 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
5719 }
5720 
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)5721 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
5722 {
5723 	struct ufs_hba *hba = container_of(to_delayed_work(work),
5724 					   struct ufs_hba,
5725 					   rpm_dev_flush_recheck_work);
5726 	/*
5727 	 * To prevent unnecessary VCC power drain after device finishes
5728 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
5729 	 * after a certain delay to recheck the threshold by next runtime
5730 	 * suspend.
5731 	 */
5732 	pm_runtime_get_sync(hba->dev);
5733 	pm_runtime_put_sync(hba->dev);
5734 }
5735 
5736 /**
5737  * ufshcd_exception_event_handler - handle exceptions raised by device
5738  * @work: pointer to work data
5739  *
5740  * Read bExceptionEventStatus attribute from the device and handle the
5741  * exception event accordingly.
5742  */
ufshcd_exception_event_handler(struct work_struct * work)5743 static void ufshcd_exception_event_handler(struct work_struct *work)
5744 {
5745 	struct ufs_hba *hba;
5746 	int err;
5747 	u32 status = 0;
5748 	hba = container_of(work, struct ufs_hba, eeh_work);
5749 
5750 	pm_runtime_get_sync(hba->dev);
5751 	ufshcd_scsi_block_requests(hba);
5752 	err = ufshcd_get_ee_status(hba, &status);
5753 	if (err) {
5754 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
5755 				__func__, err);
5756 		goto out;
5757 	}
5758 
5759 	status &= hba->ee_ctrl_mask;
5760 
5761 	if (status & MASK_EE_URGENT_BKOPS)
5762 		ufshcd_bkops_exception_event_handler(hba);
5763 
5764 out:
5765 	ufshcd_scsi_unblock_requests(hba);
5766 	/*
5767 	 * pm_runtime_get_noresume is called while scheduling
5768 	 * eeh_work to avoid suspend racing with exception work.
5769 	 * Hence decrement usage counter using pm_runtime_put_noidle
5770 	 * to allow suspend on completion of exception event handler.
5771 	 */
5772 	pm_runtime_put_noidle(hba->dev);
5773 	pm_runtime_put(hba->dev);
5774 	return;
5775 }
5776 
5777 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba)5778 static void ufshcd_complete_requests(struct ufs_hba *hba)
5779 {
5780 	ufshcd_trc_handler(hba, false);
5781 	ufshcd_tmc_handler(hba);
5782 }
5783 
5784 /**
5785  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
5786  *				to recover from the DL NAC errors or not.
5787  * @hba: per-adapter instance
5788  *
5789  * Returns true if error handling is required, false otherwise
5790  */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)5791 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
5792 {
5793 	unsigned long flags;
5794 	bool err_handling = true;
5795 
5796 	spin_lock_irqsave(hba->host->host_lock, flags);
5797 	/*
5798 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
5799 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
5800 	 */
5801 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
5802 		goto out;
5803 
5804 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
5805 	    ((hba->saved_err & UIC_ERROR) &&
5806 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
5807 		goto out;
5808 
5809 	if ((hba->saved_err & UIC_ERROR) &&
5810 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
5811 		int err;
5812 		/*
5813 		 * wait for 50ms to see if we can get any other errors or not.
5814 		 */
5815 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5816 		msleep(50);
5817 		spin_lock_irqsave(hba->host->host_lock, flags);
5818 
5819 		/*
5820 		 * now check if we have got any other severe errors other than
5821 		 * DL NAC error?
5822 		 */
5823 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
5824 		    ((hba->saved_err & UIC_ERROR) &&
5825 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
5826 			goto out;
5827 
5828 		/*
5829 		 * As DL NAC is the only error received so far, send out NOP
5830 		 * command to confirm if link is still active or not.
5831 		 *   - If we don't get any response then do error recovery.
5832 		 *   - If we get response then clear the DL NAC error bit.
5833 		 */
5834 
5835 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5836 		err = ufshcd_verify_dev_init(hba);
5837 		spin_lock_irqsave(hba->host->host_lock, flags);
5838 
5839 		if (err)
5840 			goto out;
5841 
5842 		/* Link seems to be alive hence ignore the DL NAC errors */
5843 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
5844 			hba->saved_err &= ~UIC_ERROR;
5845 		/* clear NAC error */
5846 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
5847 		if (!hba->saved_uic_err)
5848 			err_handling = false;
5849 	}
5850 out:
5851 	spin_unlock_irqrestore(hba->host->host_lock, flags);
5852 	return err_handling;
5853 }
5854 
5855 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)5856 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
5857 {
5858 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
5859 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
5860 }
5861 
5862 /* host lock must be held before calling this func */
ufshcd_schedule_eh_work(struct ufs_hba * hba)5863 static inline void ufshcd_schedule_eh_work(struct ufs_hba *hba)
5864 {
5865 	/* handle fatal errors only when link is not in error state */
5866 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
5867 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
5868 		    ufshcd_is_saved_err_fatal(hba))
5869 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
5870 		else
5871 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
5872 		queue_work(hba->eh_wq, &hba->eh_work);
5873 	}
5874 }
5875 
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)5876 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
5877 {
5878 	down_write(&hba->clk_scaling_lock);
5879 	hba->clk_scaling.is_allowed = allow;
5880 	up_write(&hba->clk_scaling_lock);
5881 }
5882 
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)5883 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
5884 {
5885 	if (suspend) {
5886 		if (hba->clk_scaling.is_enabled)
5887 			ufshcd_suspend_clkscaling(hba);
5888 		ufshcd_clk_scaling_allow(hba, false);
5889 	} else {
5890 		ufshcd_clk_scaling_allow(hba, true);
5891 		if (hba->clk_scaling.is_enabled)
5892 			ufshcd_resume_clkscaling(hba);
5893 	}
5894 }
5895 
ufshcd_err_handling_prepare(struct ufs_hba * hba)5896 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
5897 {
5898 	pm_runtime_get_sync(hba->dev);
5899 	if (pm_runtime_status_suspended(hba->dev) || hba->is_sys_suspended) {
5900 		enum ufs_pm_op pm_op;
5901 
5902 		/*
5903 		 * Don't assume anything of pm_runtime_get_sync(), if
5904 		 * resume fails, irq and clocks can be OFF, and powers
5905 		 * can be OFF or in LPM.
5906 		 */
5907 		ufshcd_setup_hba_vreg(hba, true);
5908 		ufshcd_enable_irq(hba);
5909 		ufshcd_setup_vreg(hba, true);
5910 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
5911 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
5912 		ufshcd_hold(hba, false);
5913 		if (!ufshcd_is_clkgating_allowed(hba))
5914 			ufshcd_setup_clocks(hba, true);
5915 		ufshcd_release(hba);
5916 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
5917 		ufshcd_vops_resume(hba, pm_op);
5918 	} else {
5919 		ufshcd_hold(hba, false);
5920 		if (ufshcd_is_clkscaling_supported(hba) &&
5921 		    hba->clk_scaling.is_enabled)
5922 			ufshcd_suspend_clkscaling(hba);
5923 		ufshcd_clk_scaling_allow(hba, false);
5924 	}
5925 	ufshcd_scsi_block_requests(hba);
5926 	/* Drain ufshcd_queuecommand() */
5927 	down_write(&hba->clk_scaling_lock);
5928 	up_write(&hba->clk_scaling_lock);
5929 	cancel_work_sync(&hba->eeh_work);
5930 }
5931 
ufshcd_err_handling_unprepare(struct ufs_hba * hba)5932 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
5933 {
5934 	ufshcd_scsi_unblock_requests(hba);
5935 	ufshcd_release(hba);
5936 	if (ufshcd_is_clkscaling_supported(hba))
5937 		ufshcd_clk_scaling_suspend(hba, false);
5938 	pm_runtime_put(hba->dev);
5939 }
5940 
ufshcd_err_handling_should_stop(struct ufs_hba * hba)5941 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
5942 {
5943 	return (!hba->is_powered || hba->shutting_down ||
5944 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
5945 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
5946 		   ufshcd_is_link_broken(hba))));
5947 }
5948 
5949 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)5950 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
5951 {
5952 	struct Scsi_Host *shost = hba->host;
5953 	struct scsi_device *sdev;
5954 	struct request_queue *q;
5955 	int ret;
5956 
5957 	hba->is_sys_suspended = false;
5958 	/*
5959 	 * Set RPM status of hba device to RPM_ACTIVE,
5960 	 * this also clears its runtime error.
5961 	 */
5962 	ret = pm_runtime_set_active(hba->dev);
5963 	/*
5964 	 * If hba device had runtime error, we also need to resume those
5965 	 * scsi devices under hba in case any of them has failed to be
5966 	 * resumed due to hba runtime resume failure. This is to unblock
5967 	 * blk_queue_enter in case there are bios waiting inside it.
5968 	 */
5969 	if (!ret) {
5970 		shost_for_each_device(sdev, shost) {
5971 			q = sdev->request_queue;
5972 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
5973 				       q->rpm_status == RPM_SUSPENDING))
5974 				pm_request_resume(q->dev);
5975 		}
5976 	}
5977 }
5978 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)5979 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
5980 {
5981 }
5982 #endif
5983 
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)5984 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
5985 {
5986 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
5987 	u32 mode;
5988 
5989 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
5990 
5991 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
5992 		return true;
5993 
5994 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
5995 		return true;
5996 
5997 	return false;
5998 }
5999 
6000 /**
6001  * ufshcd_err_handler - handle UFS errors that require s/w attention
6002  * @work: pointer to work structure
6003  */
ufshcd_err_handler(struct work_struct * work)6004 static void ufshcd_err_handler(struct work_struct *work)
6005 {
6006 	struct ufs_hba *hba;
6007 	unsigned long flags;
6008 	bool err_xfer = false;
6009 	bool err_tm = false;
6010 	int err = 0, pmc_err;
6011 	int tag;
6012 	bool needs_reset = false, needs_restore = false;
6013 
6014 	hba = container_of(work, struct ufs_hba, eh_work);
6015 
6016 	down(&hba->host_sem);
6017 	spin_lock_irqsave(hba->host->host_lock, flags);
6018 	if (ufshcd_err_handling_should_stop(hba)) {
6019 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6020 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6021 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6022 		up(&hba->host_sem);
6023 		return;
6024 	}
6025 	ufshcd_set_eh_in_progress(hba);
6026 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6027 	ufshcd_err_handling_prepare(hba);
6028 	/* Complete requests that have door-bell cleared by h/w */
6029 	ufshcd_complete_requests(hba);
6030 	spin_lock_irqsave(hba->host->host_lock, flags);
6031 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6032 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6033 	/*
6034 	 * A full reset and restore might have happened after preparation
6035 	 * is finished, double check whether we should stop.
6036 	 */
6037 	if (ufshcd_err_handling_should_stop(hba))
6038 		goto skip_err_handling;
6039 
6040 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6041 		bool ret;
6042 
6043 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6044 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6045 		ret = ufshcd_quirk_dl_nac_errors(hba);
6046 		spin_lock_irqsave(hba->host->host_lock, flags);
6047 		if (!ret && ufshcd_err_handling_should_stop(hba))
6048 			goto skip_err_handling;
6049 	}
6050 
6051 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6052 	    (hba->saved_uic_err &&
6053 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6054 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6055 
6056 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6057 		ufshcd_print_host_state(hba);
6058 		ufshcd_print_pwr_info(hba);
6059 		ufshcd_print_evt_hist(hba);
6060 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6061 		ufshcd_print_trs(hba, hba->outstanding_reqs, pr_prdt);
6062 		spin_lock_irqsave(hba->host->host_lock, flags);
6063 	}
6064 
6065 	/*
6066 	 * if host reset is required then skip clearing the pending
6067 	 * transfers forcefully because they will get cleared during
6068 	 * host reset and restore
6069 	 */
6070 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6071 	    ufshcd_is_saved_err_fatal(hba) ||
6072 	    ((hba->saved_err & UIC_ERROR) &&
6073 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6074 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6075 		needs_reset = true;
6076 		goto do_reset;
6077 	}
6078 
6079 	/*
6080 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6081 	 * check if power mode restore is needed.
6082 	 */
6083 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6084 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6085 		if (!hba->saved_uic_err)
6086 			hba->saved_err &= ~UIC_ERROR;
6087 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6088 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6089 			needs_restore = true;
6090 		spin_lock_irqsave(hba->host->host_lock, flags);
6091 		if (!hba->saved_err && !needs_restore)
6092 			goto skip_err_handling;
6093 	}
6094 
6095 	hba->silence_err_logs = true;
6096 	/* release lock as clear command might sleep */
6097 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6098 	/* Clear pending transfer requests */
6099 	for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) {
6100 		if (ufshcd_try_to_abort_task(hba, tag)) {
6101 			err_xfer = true;
6102 			goto lock_skip_pending_xfer_clear;
6103 		}
6104 	}
6105 
6106 	/* Clear pending task management requests */
6107 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6108 		if (ufshcd_clear_tm_cmd(hba, tag)) {
6109 			err_tm = true;
6110 			goto lock_skip_pending_xfer_clear;
6111 		}
6112 	}
6113 
6114 lock_skip_pending_xfer_clear:
6115 	/* Complete the requests that are cleared by s/w */
6116 	ufshcd_complete_requests(hba);
6117 
6118 	spin_lock_irqsave(hba->host->host_lock, flags);
6119 	hba->silence_err_logs = false;
6120 	if (err_xfer || err_tm) {
6121 		needs_reset = true;
6122 		goto do_reset;
6123 	}
6124 
6125 	/*
6126 	 * After all reqs and tasks are cleared from doorbell,
6127 	 * now it is safe to retore power mode.
6128 	 */
6129 	if (needs_restore) {
6130 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6131 		/*
6132 		 * Hold the scaling lock just in case dev cmds
6133 		 * are sent via bsg and/or sysfs.
6134 		 */
6135 		down_write(&hba->clk_scaling_lock);
6136 		hba->force_pmc = true;
6137 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6138 		if (pmc_err) {
6139 			needs_reset = true;
6140 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6141 					__func__, pmc_err);
6142 		}
6143 		hba->force_pmc = false;
6144 		ufshcd_print_pwr_info(hba);
6145 		up_write(&hba->clk_scaling_lock);
6146 		spin_lock_irqsave(hba->host->host_lock, flags);
6147 	}
6148 
6149 do_reset:
6150 	/* Fatal errors need reset */
6151 	if (needs_reset) {
6152 		hba->force_reset = false;
6153 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6154 		err = ufshcd_reset_and_restore(hba);
6155 		if (err)
6156 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6157 					__func__, err);
6158 		else
6159 			ufshcd_recover_pm_error(hba);
6160 		spin_lock_irqsave(hba->host->host_lock, flags);
6161 	}
6162 
6163 skip_err_handling:
6164 	if (!needs_reset) {
6165 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6166 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6167 		if (hba->saved_err || hba->saved_uic_err)
6168 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6169 			    __func__, hba->saved_err, hba->saved_uic_err);
6170 	}
6171 	ufshcd_clear_eh_in_progress(hba);
6172 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6173 	ufshcd_err_handling_unprepare(hba);
6174 	up(&hba->host_sem);
6175 }
6176 
6177 /**
6178  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6179  * @hba: per-adapter instance
6180  *
6181  * Returns
6182  *  IRQ_HANDLED - If interrupt is valid
6183  *  IRQ_NONE    - If invalid interrupt
6184  */
ufshcd_update_uic_error(struct ufs_hba * hba)6185 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6186 {
6187 	u32 reg;
6188 	irqreturn_t retval = IRQ_NONE;
6189 
6190 	/* PHY layer error */
6191 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6192 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6193 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6194 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6195 		/*
6196 		 * To know whether this error is fatal or not, DB timeout
6197 		 * must be checked but this error is handled separately.
6198 		 */
6199 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6200 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6201 					__func__);
6202 
6203 		/* Got a LINERESET indication. */
6204 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6205 			struct uic_command *cmd = NULL;
6206 
6207 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6208 			if (hba->uic_async_done && hba->active_uic_cmd)
6209 				cmd = hba->active_uic_cmd;
6210 			/*
6211 			 * Ignore the LINERESET during power mode change
6212 			 * operation via DME_SET command.
6213 			 */
6214 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6215 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6216 		}
6217 		retval |= IRQ_HANDLED;
6218 	}
6219 
6220 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6221 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6222 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6223 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6224 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6225 
6226 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6227 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6228 		else if (hba->dev_quirks &
6229 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6230 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6231 				hba->uic_error |=
6232 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6233 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6234 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6235 		}
6236 		retval |= IRQ_HANDLED;
6237 	}
6238 
6239 	/* UIC NL/TL/DME errors needs software retry */
6240 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6241 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6242 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6243 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6244 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6245 		retval |= IRQ_HANDLED;
6246 	}
6247 
6248 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6249 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6250 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6251 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6252 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6253 		retval |= IRQ_HANDLED;
6254 	}
6255 
6256 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6257 	if ((reg & UIC_DME_ERROR) &&
6258 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6259 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6260 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6261 		retval |= IRQ_HANDLED;
6262 	}
6263 
6264 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6265 			__func__, hba->uic_error);
6266 	return retval;
6267 }
6268 
6269 /**
6270  * ufshcd_check_errors - Check for errors that need s/w attention
6271  * @hba: per-adapter instance
6272  * @intr_status: interrupt status generated by the controller
6273  *
6274  * Returns
6275  *  IRQ_HANDLED - If interrupt is valid
6276  *  IRQ_NONE    - If invalid interrupt
6277  */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6278 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6279 {
6280 	bool queue_eh_work = false;
6281 	irqreturn_t retval = IRQ_NONE;
6282 
6283 	spin_lock(hba->host->host_lock);
6284 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6285 
6286 	if (hba->errors & INT_FATAL_ERRORS) {
6287 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6288 				       hba->errors);
6289 		queue_eh_work = true;
6290 	}
6291 
6292 	if (hba->errors & UIC_ERROR) {
6293 		hba->uic_error = 0;
6294 		retval = ufshcd_update_uic_error(hba);
6295 		if (hba->uic_error) {
6296 			dev_err(hba->dev,
6297 			  "Scheduling error handler because of an UIC error\n");
6298 			queue_eh_work = true;
6299 		}
6300 	}
6301 
6302 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6303 		dev_err(hba->dev,
6304 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6305 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6306 			"Enter" : "Exit",
6307 			hba->errors, ufshcd_get_upmcrs(hba));
6308 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6309 				       hba->errors);
6310 		ufshcd_set_link_broken(hba);
6311 		queue_eh_work = true;
6312 	}
6313 
6314 	trace_android_vh_ufs_check_int_errors(hba, queue_eh_work);
6315 
6316 	if (queue_eh_work) {
6317 		/*
6318 		 * update the transfer error masks to sticky bits, let's do this
6319 		 * irrespective of current ufshcd_state.
6320 		 */
6321 		hba->saved_err |= hba->errors;
6322 		hba->saved_uic_err |= hba->uic_error;
6323 
6324 		/* dump controller state before resetting */
6325 		if ((hba->saved_err &
6326 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6327 		    (hba->saved_uic_err &&
6328 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6329 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6330 					__func__, hba->saved_err,
6331 					hba->saved_uic_err);
6332 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6333 					 "host_regs: ");
6334 			ufshcd_print_pwr_info(hba);
6335 		}
6336 		ufshcd_schedule_eh_work(hba);
6337 		retval |= IRQ_HANDLED;
6338 	}
6339 	/*
6340 	 * if (!queue_eh_work) -
6341 	 * Other errors are either non-fatal where host recovers
6342 	 * itself without s/w intervention or errors that will be
6343 	 * handled by the SCSI core layer.
6344 	 */
6345 	hba->errors = 0;
6346 	hba->uic_error = 0;
6347 	spin_unlock(hba->host->host_lock);
6348 	return retval;
6349 }
6350 
6351 /**
6352  * ufshcd_tmc_handler - handle task management function completion
6353  * @hba: per adapter instance
6354  *
6355  * Returns
6356  *  IRQ_HANDLED - If interrupt is valid
6357  *  IRQ_NONE    - If invalid interrupt
6358  */
ufshcd_tmc_handler(struct ufs_hba * hba)6359 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6360 {
6361 	struct request **tmf_rqs = ufs_hba_add_info(hba)->tmf_rqs;
6362 	unsigned long flags, pending, issued;
6363 	irqreturn_t ret = IRQ_NONE;
6364 	int tag;
6365 
6366 	spin_lock_irqsave(hba->host->host_lock, flags);
6367 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6368 	issued = hba->outstanding_tasks & ~pending;
6369 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6370 		struct request *req = tmf_rqs[tag];
6371 		struct completion *c = req->end_io_data;
6372 
6373 		complete(c);
6374 		ret = IRQ_HANDLED;
6375 	}
6376 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6377 
6378 	return ret;
6379 }
6380 
6381 /**
6382  * ufshcd_sl_intr - Interrupt service routine
6383  * @hba: per adapter instance
6384  * @intr_status: contains interrupts generated by the controller
6385  *
6386  * Returns
6387  *  IRQ_HANDLED - If interrupt is valid
6388  *  IRQ_NONE    - If invalid interrupt
6389  */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)6390 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6391 {
6392 	irqreturn_t retval = IRQ_NONE;
6393 
6394 	if (intr_status & UFSHCD_UIC_MASK)
6395 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6396 
6397 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6398 		retval |= ufshcd_check_errors(hba, intr_status);
6399 
6400 	if (intr_status & UTP_TASK_REQ_COMPL)
6401 		retval |= ufshcd_tmc_handler(hba);
6402 
6403 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6404 		retval |= ufshcd_trc_handler(hba, ufshcd_has_utrlcnr(hba));
6405 
6406 	return retval;
6407 }
6408 
6409 /**
6410  * ufshcd_intr - Main interrupt service routine
6411  * @irq: irq number
6412  * @__hba: pointer to adapter instance
6413  *
6414  * Returns
6415  *  IRQ_HANDLED - If interrupt is valid
6416  *  IRQ_NONE    - If invalid interrupt
6417  */
ufshcd_intr(int irq,void * __hba)6418 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6419 {
6420 	u32 intr_status, enabled_intr_status = 0;
6421 	irqreturn_t retval = IRQ_NONE;
6422 	struct ufs_hba *hba = __hba;
6423 	int retries = hba->nutrs;
6424 
6425 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6426 	hba->ufs_stats.last_intr_status = intr_status;
6427 	hba->ufs_stats.last_intr_ts = ktime_get();
6428 
6429 	/*
6430 	 * There could be max of hba->nutrs reqs in flight and in worst case
6431 	 * if the reqs get finished 1 by 1 after the interrupt status is
6432 	 * read, make sure we handle them by checking the interrupt status
6433 	 * again in a loop until we process all of the reqs before returning.
6434 	 */
6435 	while (intr_status && retries--) {
6436 		enabled_intr_status =
6437 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6438 		if (intr_status)
6439 			ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6440 		if (enabled_intr_status)
6441 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6442 
6443 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6444 	}
6445 
6446 	if (enabled_intr_status && retval == IRQ_NONE &&
6447 				!ufshcd_eh_in_progress(hba)) {
6448 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6449 					__func__,
6450 					intr_status,
6451 					hba->ufs_stats.last_intr_status,
6452 					enabled_intr_status);
6453 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6454 	}
6455 
6456 	return retval;
6457 }
6458 
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)6459 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6460 {
6461 	int err = 0;
6462 	u32 mask = 1 << tag;
6463 	unsigned long flags;
6464 
6465 	if (!test_bit(tag, &hba->outstanding_tasks))
6466 		goto out;
6467 
6468 	spin_lock_irqsave(hba->host->host_lock, flags);
6469 	ufshcd_utmrl_clear(hba, tag);
6470 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6471 
6472 	/* poll for max. 1 sec to clear door bell register by h/w */
6473 	err = ufshcd_wait_for_register(hba,
6474 			REG_UTP_TASK_REQ_DOOR_BELL,
6475 			mask, 0, 1000, 1000);
6476 out:
6477 	return err;
6478 }
6479 
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)6480 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6481 		struct utp_task_req_desc *treq, u8 tm_function)
6482 {
6483 	struct request **tmf_rqs = ufs_hba_add_info(hba)->tmf_rqs;
6484 	struct request_queue *q = hba->tmf_queue;
6485 	struct Scsi_Host *host = hba->host;
6486 	DECLARE_COMPLETION_ONSTACK(wait);
6487 	struct request *req;
6488 	unsigned long flags;
6489 	int task_tag, err;
6490 
6491 	/*
6492 	 * blk_get_request() is used here only to get a free tag.
6493 	 */
6494 	req = blk_get_request(q, REQ_OP_DRV_OUT, 0);
6495 	if (IS_ERR(req))
6496 		return PTR_ERR(req);
6497 
6498 	req->end_io_data = &wait;
6499 	ufshcd_hold(hba, false);
6500 
6501 	spin_lock_irqsave(host->host_lock, flags);
6502 
6503 	task_tag = req->tag;
6504 	tmf_rqs[req->tag] = req;
6505 	treq->req_header.dword_0 |= cpu_to_be32(task_tag);
6506 
6507 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6508 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6509 
6510 	/* send command to the controller */
6511 	__set_bit(task_tag, &hba->outstanding_tasks);
6512 
6513 	/* Make sure descriptors are ready before ringing the task doorbell */
6514 	wmb();
6515 
6516 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6517 	/* Make sure that doorbell is committed immediately */
6518 	wmb();
6519 
6520 	spin_unlock_irqrestore(host->host_lock, flags);
6521 
6522 	ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_send");
6523 
6524 	/* wait until the task management command is completed */
6525 	err = wait_for_completion_io_timeout(&wait,
6526 			msecs_to_jiffies(TM_CMD_TIMEOUT));
6527 	if (!err) {
6528 		ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_complete_err");
6529 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6530 				__func__, tm_function);
6531 		if (ufshcd_clear_tm_cmd(hba, task_tag))
6532 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6533 					__func__, task_tag);
6534 		err = -ETIMEDOUT;
6535 	} else {
6536 		err = 0;
6537 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6538 
6539 		ufshcd_add_tm_upiu_trace(hba, task_tag, "tm_complete");
6540 	}
6541 
6542 	spin_lock_irqsave(hba->host->host_lock, flags);
6543 	tmf_rqs[req->tag] = NULL;
6544 	__clear_bit(task_tag, &hba->outstanding_tasks);
6545 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6546 
6547 	ufshcd_release(hba);
6548 	blk_put_request(req);
6549 
6550 	return err;
6551 }
6552 
6553 /**
6554  * ufshcd_issue_tm_cmd - issues task management commands to controller
6555  * @hba: per adapter instance
6556  * @lun_id: LUN ID to which TM command is sent
6557  * @task_id: task ID to which the TM command is applicable
6558  * @tm_function: task management function opcode
6559  * @tm_response: task management service response return value
6560  *
6561  * Returns non-zero value on error, zero on success.
6562  */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)6563 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
6564 		u8 tm_function, u8 *tm_response)
6565 {
6566 	struct utp_task_req_desc treq = { { 0 }, };
6567 	int ocs_value, err;
6568 
6569 	/* Configure task request descriptor */
6570 	treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6571 	treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6572 
6573 	/* Configure task request UPIU */
6574 	treq.req_header.dword_0 = cpu_to_be32(lun_id << 8) |
6575 				  cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24);
6576 	treq.req_header.dword_1 = cpu_to_be32(tm_function << 16);
6577 
6578 	/*
6579 	 * The host shall provide the same value for LUN field in the basic
6580 	 * header and for Input Parameter.
6581 	 */
6582 	treq.input_param1 = cpu_to_be32(lun_id);
6583 	treq.input_param2 = cpu_to_be32(task_id);
6584 
6585 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
6586 	if (err == -ETIMEDOUT)
6587 		return err;
6588 
6589 	ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6590 	if (ocs_value != OCS_SUCCESS)
6591 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
6592 				__func__, ocs_value);
6593 	else if (tm_response)
6594 		*tm_response = be32_to_cpu(treq.output_param1) &
6595 				MASK_TM_SERVICE_RESP;
6596 	return err;
6597 }
6598 
6599 /**
6600  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
6601  * @hba:	per-adapter instance
6602  * @req_upiu:	upiu request
6603  * @rsp_upiu:	upiu reply
6604  * @desc_buff:	pointer to descriptor buffer, NULL if NA
6605  * @buff_len:	descriptor size, 0 if NA
6606  * @cmd_type:	specifies the type (NOP, Query...)
6607  * @desc_op:	descriptor operation
6608  *
6609  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
6610  * Therefore, it "rides" the device management infrastructure: uses its tag and
6611  * tasks work queues.
6612  *
6613  * Since there is only one available tag for device management commands,
6614  * the caller is expected to hold the hba->dev_cmd.lock mutex.
6615  */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)6616 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
6617 					struct utp_upiu_req *req_upiu,
6618 					struct utp_upiu_req *rsp_upiu,
6619 					u8 *desc_buff, int *buff_len,
6620 					enum dev_cmd_type cmd_type,
6621 					enum query_opcode desc_op)
6622 {
6623 	DECLARE_COMPLETION_ONSTACK(wait);
6624 	const u32 tag = ufs_hba_add_info(hba)->reserved_slot;
6625 	struct ufshcd_lrb *lrbp;
6626 	int err = 0;
6627 	u8 upiu_flags;
6628 
6629 	/* Protects use of ufs_hba_add_info(hba)->reserved_slot. */
6630 	lockdep_assert_held(&hba->dev_cmd.lock);
6631 
6632 	down_read(&hba->clk_scaling_lock);
6633 
6634 	lrbp = &hba->lrb[tag];
6635 	WARN_ON(lrbp->cmd);
6636 	lrbp->cmd = NULL;
6637 	lrbp->sense_bufflen = 0;
6638 	lrbp->sense_buffer = NULL;
6639 	lrbp->task_tag = tag;
6640 	lrbp->lun = 0;
6641 	lrbp->intr_cmd = true;
6642 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
6643 	hba->dev_cmd.type = cmd_type;
6644 
6645 	if (hba->ufs_version <= ufshci_version(1, 1))
6646 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
6647 	else
6648 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
6649 
6650 	/* update the task tag in the request upiu */
6651 	req_upiu->header.dword_0 |= cpu_to_be32(tag);
6652 
6653 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
6654 
6655 	/* just copy the upiu request as it is */
6656 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
6657 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
6658 		/* The Data Segment Area is optional depending upon the query
6659 		 * function value. for WRITE DESCRIPTOR, the data segment
6660 		 * follows right after the tsf.
6661 		 */
6662 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
6663 		*buff_len = 0;
6664 	}
6665 
6666 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
6667 
6668 	hba->dev_cmd.complete = &wait;
6669 
6670 	/* Make sure descriptors are ready before ringing the doorbell */
6671 	wmb();
6672 
6673 	ufshcd_send_command(hba, tag);
6674 	/*
6675 	 * ignore the returning value here - ufshcd_check_query_response is
6676 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
6677 	 * read the response directly ignoring all errors.
6678 	 */
6679 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
6680 
6681 	/* just copy the upiu response as it is */
6682 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
6683 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
6684 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
6685 		u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
6686 			       MASK_QUERY_DATA_SEG_LEN;
6687 
6688 		if (*buff_len >= resp_len) {
6689 			memcpy(desc_buff, descp, resp_len);
6690 			*buff_len = resp_len;
6691 		} else {
6692 			dev_warn(hba->dev,
6693 				 "%s: rsp size %d is bigger than buffer size %d",
6694 				 __func__, resp_len, *buff_len);
6695 			*buff_len = 0;
6696 			err = -EINVAL;
6697 		}
6698 	}
6699 
6700 	up_read(&hba->clk_scaling_lock);
6701 	return err;
6702 }
6703 
6704 /**
6705  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
6706  * @hba:	per-adapter instance
6707  * @req_upiu:	upiu request
6708  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
6709  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
6710  * @desc_buff:	pointer to descriptor buffer, NULL if NA
6711  * @buff_len:	descriptor size, 0 if NA
6712  * @desc_op:	descriptor operation
6713  *
6714  * Supports UTP Transfer requests (nop and query), and UTP Task
6715  * Management requests.
6716  * It is up to the caller to fill the upiu conent properly, as it will
6717  * be copied without any further input validations.
6718  */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,int msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)6719 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
6720 			     struct utp_upiu_req *req_upiu,
6721 			     struct utp_upiu_req *rsp_upiu,
6722 			     int msgcode,
6723 			     u8 *desc_buff, int *buff_len,
6724 			     enum query_opcode desc_op)
6725 {
6726 	int err;
6727 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
6728 	struct utp_task_req_desc treq = { { 0 }, };
6729 	int ocs_value;
6730 	u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC;
6731 
6732 	switch (msgcode) {
6733 	case UPIU_TRANSACTION_NOP_OUT:
6734 		cmd_type = DEV_CMD_TYPE_NOP;
6735 		fallthrough;
6736 	case UPIU_TRANSACTION_QUERY_REQ:
6737 		ufshcd_hold(hba, false);
6738 		mutex_lock(&hba->dev_cmd.lock);
6739 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
6740 						   desc_buff, buff_len,
6741 						   cmd_type, desc_op);
6742 		mutex_unlock(&hba->dev_cmd.lock);
6743 		ufshcd_release(hba);
6744 
6745 		break;
6746 	case UPIU_TRANSACTION_TASK_REQ:
6747 		treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6748 		treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6749 
6750 		memcpy(&treq.req_header, req_upiu, sizeof(*req_upiu));
6751 
6752 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
6753 		if (err == -ETIMEDOUT)
6754 			break;
6755 
6756 		ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6757 		if (ocs_value != OCS_SUCCESS) {
6758 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
6759 				ocs_value);
6760 			break;
6761 		}
6762 
6763 		memcpy(rsp_upiu, &treq.rsp_header, sizeof(*rsp_upiu));
6764 
6765 		break;
6766 	default:
6767 		err = -EINVAL;
6768 
6769 		break;
6770 	}
6771 
6772 	return err;
6773 }
6774 
6775 /**
6776  * ufshcd_eh_device_reset_handler - device reset handler registered to
6777  *                                    scsi layer.
6778  * @cmd: SCSI command pointer
6779  *
6780  * Returns SUCCESS/FAILED
6781  */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)6782 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
6783 {
6784 	struct Scsi_Host *host;
6785 	struct ufs_hba *hba;
6786 	u32 pos;
6787 	int err;
6788 	u8 resp = 0xF, lun;
6789 
6790 	host = cmd->device->host;
6791 	hba = shost_priv(host);
6792 
6793 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
6794 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
6795 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6796 		if (!err)
6797 			err = resp;
6798 		goto out;
6799 	}
6800 
6801 	/* clear the commands that were pending for corresponding LUN */
6802 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) {
6803 		if (hba->lrb[pos].lun == lun) {
6804 			err = ufshcd_clear_cmd(hba, pos);
6805 			if (err)
6806 				break;
6807 			__ufshcd_transfer_req_compl(hba, 1U << pos);
6808 		}
6809 	}
6810 
6811 out:
6812 	hba->req_abort_count = 0;
6813 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
6814 	if (!err) {
6815 		err = SUCCESS;
6816 	} else {
6817 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
6818 		err = FAILED;
6819 	}
6820 	return err;
6821 }
6822 
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)6823 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
6824 {
6825 	struct ufshcd_lrb *lrbp;
6826 	int tag;
6827 
6828 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
6829 		lrbp = &hba->lrb[tag];
6830 		lrbp->req_abort_skip = true;
6831 	}
6832 }
6833 
6834 /**
6835  * ufshcd_try_to_abort_task - abort a specific task
6836  * @hba: Pointer to adapter instance
6837  * @tag: Task tag/index to be aborted
6838  *
6839  * Abort the pending command in device by sending UFS_ABORT_TASK task management
6840  * command, and in host controller by clearing the door-bell register. There can
6841  * be race between controller sending the command to the device while abort is
6842  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
6843  * really issued and then try to abort it.
6844  *
6845  * Returns zero on success, non-zero on failure
6846  */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)6847 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
6848 {
6849 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6850 	int err = 0;
6851 	int poll_cnt;
6852 	u8 resp = 0xF;
6853 	u32 reg;
6854 
6855 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
6856 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
6857 				UFS_QUERY_TASK, &resp);
6858 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
6859 			/* cmd pending in the device */
6860 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
6861 				__func__, tag);
6862 			break;
6863 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6864 			/*
6865 			 * cmd not pending in the device, check if it is
6866 			 * in transition.
6867 			 */
6868 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
6869 				__func__, tag);
6870 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
6871 			if (reg & (1 << tag)) {
6872 				/* sleep for max. 200us to stabilize */
6873 				usleep_range(100, 200);
6874 				continue;
6875 			}
6876 			/* command completed already */
6877 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
6878 				__func__, tag);
6879 			goto out;
6880 		} else {
6881 			dev_err(hba->dev,
6882 				"%s: no response from device. tag = %d, err %d\n",
6883 				__func__, tag, err);
6884 			if (!err)
6885 				err = resp; /* service response error */
6886 			goto out;
6887 		}
6888 	}
6889 
6890 	if (!poll_cnt) {
6891 		err = -EBUSY;
6892 		goto out;
6893 	}
6894 
6895 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
6896 			UFS_ABORT_TASK, &resp);
6897 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6898 		if (!err) {
6899 			err = resp; /* service response error */
6900 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
6901 				__func__, tag, err);
6902 		}
6903 		goto out;
6904 	}
6905 
6906 	err = ufshcd_clear_cmd(hba, tag);
6907 	if (err)
6908 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
6909 			__func__, tag, err);
6910 
6911 out:
6912 	return err;
6913 }
6914 
6915 /**
6916  * ufshcd_abort - scsi host template eh_abort_handler callback
6917  * @cmd: SCSI command pointer
6918  *
6919  * Returns SUCCESS/FAILED
6920  */
ufshcd_abort(struct scsi_cmnd * cmd)6921 static int ufshcd_abort(struct scsi_cmnd *cmd)
6922 {
6923 	struct Scsi_Host *host;
6924 	struct ufs_hba *hba;
6925 	unsigned long flags;
6926 	unsigned int tag;
6927 	int err = FAILED, res;
6928 	bool outstanding;
6929 	struct ufshcd_lrb *lrbp;
6930 	u32 reg;
6931 
6932 	host = cmd->device->host;
6933 	hba = shost_priv(host);
6934 	tag = cmd->request->tag;
6935 	lrbp = &hba->lrb[tag];
6936 	if (!ufshcd_valid_tag(hba, tag)) {
6937 		dev_err(hba->dev,
6938 			"%s: invalid command tag %d: cmd=0x%p, cmd->request=0x%p",
6939 			__func__, tag, cmd, cmd->request);
6940 		BUG();
6941 	}
6942 
6943 	ufshcd_hold(hba, false);
6944 	reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
6945 	/* If command is already aborted/completed, return FAILED. */
6946 	if (!(test_bit(tag, &hba->outstanding_reqs))) {
6947 		dev_err(hba->dev,
6948 			"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
6949 			__func__, tag, hba->outstanding_reqs, reg);
6950 		goto release;
6951 	}
6952 
6953 	/* Print Transfer Request of aborted task */
6954 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
6955 
6956 	/*
6957 	 * Print detailed info about aborted request.
6958 	 * As more than one request might get aborted at the same time,
6959 	 * print full information only for the first aborted request in order
6960 	 * to reduce repeated printouts. For other aborted requests only print
6961 	 * basic details.
6962 	 */
6963 	scsi_print_command(cmd);
6964 	if (!hba->req_abort_count) {
6965 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
6966 		ufshcd_print_evt_hist(hba);
6967 		ufshcd_print_host_state(hba);
6968 		ufshcd_print_pwr_info(hba);
6969 		ufshcd_print_trs(hba, 1 << tag, true);
6970 	} else {
6971 		ufshcd_print_trs(hba, 1 << tag, false);
6972 	}
6973 	hba->req_abort_count++;
6974 
6975 	if (!(reg & (1 << tag))) {
6976 		dev_err(hba->dev,
6977 		"%s: cmd was completed, but without a notifying intr, tag = %d",
6978 		__func__, tag);
6979 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
6980 		goto release;
6981 	}
6982 
6983 	/*
6984 	 * Task abort to the device W-LUN is illegal. When this command
6985 	 * will fail, due to spec violation, scsi err handling next step
6986 	 * will be to send LU reset which, again, is a spec violation.
6987 	 * To avoid these unnecessary/illegal steps, first we clean up
6988 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
6989 	 * then queue the eh_work and bail.
6990 	 */
6991 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
6992 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
6993 
6994 		spin_lock_irqsave(host->host_lock, flags);
6995 		hba->force_reset = true;
6996 		ufshcd_schedule_eh_work(hba);
6997 		spin_unlock_irqrestore(host->host_lock, flags);
6998 		goto release;
6999 	}
7000 
7001 	/* Skip task abort in case previous aborts failed and report failure */
7002 	if (lrbp->req_abort_skip) {
7003 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7004 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7005 		goto release;
7006 	}
7007 
7008 	res = ufshcd_try_to_abort_task(hba, tag);
7009 	if (res) {
7010 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, res);
7011 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7012 		goto release;
7013 	}
7014 
7015 	/*
7016 	 * Clear the corresponding bit from outstanding_reqs since the command
7017 	 * has been aborted successfully.
7018 	 */
7019 	spin_lock_irqsave(host->host_lock, flags);
7020 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7021 	spin_unlock_irqrestore(host->host_lock, flags);
7022 
7023 	if (outstanding)
7024 		ufshcd_release_scsi_cmd(hba, lrbp);
7025 
7026 	err = SUCCESS;
7027 
7028 release:
7029 	/* Matches the ufshcd_hold() call at the start of this function. */
7030 	ufshcd_release(hba);
7031 	return err;
7032 }
7033 
7034 /**
7035  * ufshcd_host_reset_and_restore - reset and restore host controller
7036  * @hba: per-adapter instance
7037  *
7038  * Note that host controller reset may issue DME_RESET to
7039  * local and remote (device) Uni-Pro stack and the attributes
7040  * are reset to default state.
7041  *
7042  * Returns zero on success, non-zero on failure
7043  */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7044 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7045 {
7046 	int err;
7047 
7048 	ufshpb_reset_host(hba);
7049 	/*
7050 	 * Stop the host controller and complete the requests
7051 	 * cleared by h/w
7052 	 */
7053 	ufshcd_hba_stop(hba);
7054 	hba->silence_err_logs = true;
7055 	ufshcd_complete_requests(hba);
7056 	hba->silence_err_logs = false;
7057 
7058 	/* scale up clocks to max frequency before full reinitialization */
7059 	ufshcd_set_clk_freq(hba, true);
7060 
7061 	err = ufshcd_hba_enable(hba);
7062 
7063 	/* Establish the link again and restore the device */
7064 	if (!err)
7065 		err = ufshcd_probe_hba(hba, false);
7066 
7067 	if (err)
7068 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7069 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7070 	return err;
7071 }
7072 
7073 /**
7074  * ufshcd_reset_and_restore - reset and re-initialize host/device
7075  * @hba: per-adapter instance
7076  *
7077  * Reset and recover device, host and re-establish link. This
7078  * is helpful to recover the communication in fatal error conditions.
7079  *
7080  * Returns zero on success, non-zero on failure
7081  */
ufshcd_reset_and_restore(struct ufs_hba * hba)7082 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7083 {
7084 	u32 saved_err;
7085 	u32 saved_uic_err;
7086 	int err = 0;
7087 	unsigned long flags;
7088 	int retries = MAX_HOST_RESET_RETRIES;
7089 
7090 	/*
7091 	 * This is a fresh start, cache and clear saved error first,
7092 	 * in case new error generated during reset and restore.
7093 	 */
7094 	spin_lock_irqsave(hba->host->host_lock, flags);
7095 	saved_err = hba->saved_err;
7096 	saved_uic_err = hba->saved_uic_err;
7097 	hba->saved_err = 0;
7098 	hba->saved_uic_err = 0;
7099 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7100 
7101 	do {
7102 		/* Reset the attached device */
7103 		ufshcd_vops_device_reset(hba);
7104 
7105 		err = ufshcd_host_reset_and_restore(hba);
7106 	} while (err && --retries);
7107 
7108 	spin_lock_irqsave(hba->host->host_lock, flags);
7109 	/*
7110 	 * Inform scsi mid-layer that we did reset and allow to handle
7111 	 * Unit Attention properly.
7112 	 */
7113 	scsi_report_bus_reset(hba->host, 0);
7114 	if (err) {
7115 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7116 		hba->saved_err |= saved_err;
7117 		hba->saved_uic_err |= saved_uic_err;
7118 	}
7119 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7120 
7121 	return err;
7122 }
7123 
7124 /**
7125  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7126  * @cmd: SCSI command pointer
7127  *
7128  * Returns SUCCESS/FAILED
7129  */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)7130 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7131 {
7132 	int err = SUCCESS;
7133 	unsigned long flags;
7134 	struct ufs_hba *hba;
7135 
7136 	hba = shost_priv(cmd->device->host);
7137 
7138 	spin_lock_irqsave(hba->host->host_lock, flags);
7139 	hba->force_reset = true;
7140 	ufshcd_schedule_eh_work(hba);
7141 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7142 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7143 
7144 	flush_work(&hba->eh_work);
7145 
7146 	spin_lock_irqsave(hba->host->host_lock, flags);
7147 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7148 		err = FAILED;
7149 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7150 
7151 	return err;
7152 }
7153 
7154 /**
7155  * ufshcd_get_max_icc_level - calculate the ICC level
7156  * @sup_curr_uA: max. current supported by the regulator
7157  * @start_scan: row at the desc table to start scan from
7158  * @buff: power descriptor buffer
7159  *
7160  * Returns calculated max ICC level for specific regulator
7161  */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,char * buff)7162 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, char *buff)
7163 {
7164 	int i;
7165 	int curr_uA;
7166 	u16 data;
7167 	u16 unit;
7168 
7169 	for (i = start_scan; i >= 0; i--) {
7170 		data = be16_to_cpup((__be16 *)&buff[2 * i]);
7171 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7172 						ATTR_ICC_LVL_UNIT_OFFSET;
7173 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7174 		switch (unit) {
7175 		case UFSHCD_NANO_AMP:
7176 			curr_uA = curr_uA / 1000;
7177 			break;
7178 		case UFSHCD_MILI_AMP:
7179 			curr_uA = curr_uA * 1000;
7180 			break;
7181 		case UFSHCD_AMP:
7182 			curr_uA = curr_uA * 1000 * 1000;
7183 			break;
7184 		case UFSHCD_MICRO_AMP:
7185 		default:
7186 			break;
7187 		}
7188 		if (sup_curr_uA >= curr_uA)
7189 			break;
7190 	}
7191 	if (i < 0) {
7192 		i = 0;
7193 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7194 	}
7195 
7196 	return (u32)i;
7197 }
7198 
7199 /**
7200  * ufshcd_calc_icc_level - calculate the max ICC level
7201  * In case regulators are not initialized we'll return 0
7202  * @hba: per-adapter instance
7203  * @desc_buf: power descriptor buffer to extract ICC levels from.
7204  * @len: length of desc_buff
7205  *
7206  * Returns calculated ICC level
7207  */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,u8 * desc_buf,int len)7208 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7209 							u8 *desc_buf, int len)
7210 {
7211 	u32 icc_level = 0;
7212 
7213 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7214 						!hba->vreg_info.vccq2) {
7215 		dev_err(hba->dev,
7216 			"%s: Regulator capability was not set, actvIccLevel=%d",
7217 							__func__, icc_level);
7218 		goto out;
7219 	}
7220 
7221 	if (hba->vreg_info.vcc && hba->vreg_info.vcc->max_uA)
7222 		icc_level = ufshcd_get_max_icc_level(
7223 				hba->vreg_info.vcc->max_uA,
7224 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7225 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7226 
7227 	if (hba->vreg_info.vccq && hba->vreg_info.vccq->max_uA)
7228 		icc_level = ufshcd_get_max_icc_level(
7229 				hba->vreg_info.vccq->max_uA,
7230 				icc_level,
7231 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7232 
7233 	if (hba->vreg_info.vccq2 && hba->vreg_info.vccq2->max_uA)
7234 		icc_level = ufshcd_get_max_icc_level(
7235 				hba->vreg_info.vccq2->max_uA,
7236 				icc_level,
7237 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7238 out:
7239 	return icc_level;
7240 }
7241 
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)7242 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7243 {
7244 	int ret;
7245 	int buff_len = hba->desc_size[QUERY_DESC_IDN_POWER];
7246 	u8 *desc_buf;
7247 	u32 icc_level;
7248 
7249 	desc_buf = kmalloc(buff_len, GFP_KERNEL);
7250 	if (!desc_buf)
7251 		return;
7252 
7253 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7254 				     desc_buf, buff_len);
7255 	if (ret) {
7256 		dev_err(hba->dev,
7257 			"%s: Failed reading power descriptor.len = %d ret = %d",
7258 			__func__, buff_len, ret);
7259 		goto out;
7260 	}
7261 
7262 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf,
7263 							 buff_len);
7264 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7265 
7266 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7267 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7268 
7269 	if (ret)
7270 		dev_err(hba->dev,
7271 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7272 			__func__, icc_level, ret);
7273 
7274 out:
7275 	kfree(desc_buf);
7276 }
7277 
7278 /**
7279  * ufshcd_scsi_add_wlus - Adds required W-LUs
7280  * @hba: per-adapter instance
7281  *
7282  * UFS device specification requires the UFS devices to support 4 well known
7283  * logical units:
7284  *	"REPORT_LUNS" (address: 01h)
7285  *	"UFS Device" (address: 50h)
7286  *	"RPMB" (address: 44h)
7287  *	"BOOT" (address: 30h)
7288  * UFS device's power management needs to be controlled by "POWER CONDITION"
7289  * field of SSU (START STOP UNIT) command. But this "power condition" field
7290  * will take effect only when its sent to "UFS device" well known logical unit
7291  * hence we require the scsi_device instance to represent this logical unit in
7292  * order for the UFS host driver to send the SSU command for power management.
7293  *
7294  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7295  * Block) LU so user space process can control this LU. User space may also
7296  * want to have access to BOOT LU.
7297  *
7298  * This function adds scsi device instances for each of all well known LUs
7299  * (except "REPORT LUNS" LU).
7300  *
7301  * Returns zero on success (all required W-LUs are added successfully),
7302  * non-zero error value on failure (if failed to add any of the required W-LU).
7303  */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)7304 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7305 {
7306 	int ret = 0;
7307 	struct scsi_device *sdev_boot;
7308 
7309 	hba->sdev_ufs_device = __scsi_add_device(hba->host, 0, 0,
7310 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7311 	if (IS_ERR(hba->sdev_ufs_device)) {
7312 		ret = PTR_ERR(hba->sdev_ufs_device);
7313 		hba->sdev_ufs_device = NULL;
7314 		goto out;
7315 	}
7316 	scsi_device_put(hba->sdev_ufs_device);
7317 
7318 	hba->sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7319 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7320 	if (IS_ERR(hba->sdev_rpmb)) {
7321 		ret = PTR_ERR(hba->sdev_rpmb);
7322 		goto remove_sdev_ufs_device;
7323 	}
7324 	scsi_device_put(hba->sdev_rpmb);
7325 
7326 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7327 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7328 	if (IS_ERR(sdev_boot))
7329 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7330 	else
7331 		scsi_device_put(sdev_boot);
7332 	goto out;
7333 
7334 remove_sdev_ufs_device:
7335 	scsi_remove_device(hba->sdev_ufs_device);
7336 out:
7337 	return ret;
7338 }
7339 
ufshcd_wb_probe(struct ufs_hba * hba,u8 * desc_buf)7340 static void ufshcd_wb_probe(struct ufs_hba *hba, u8 *desc_buf)
7341 {
7342 	struct ufs_dev_info *dev_info = &hba->dev_info;
7343 	u8 lun;
7344 	u32 d_lu_wb_buf_alloc;
7345 
7346 	if (!ufshcd_is_wb_allowed(hba))
7347 		return;
7348 	/*
7349 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7350 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7351 	 * enabled
7352 	 */
7353 	if (!(dev_info->wspecversion >= 0x310 ||
7354 	      dev_info->wspecversion == 0x220 ||
7355 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7356 		goto wb_disabled;
7357 
7358 	if (hba->desc_size[QUERY_DESC_IDN_DEVICE] <
7359 	    DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP + 4)
7360 		goto wb_disabled;
7361 
7362 	dev_info->d_ext_ufs_feature_sup =
7363 		get_unaligned_be32(desc_buf +
7364 				   DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7365 
7366 	if (!(dev_info->d_ext_ufs_feature_sup & UFS_DEV_WRITE_BOOSTER_SUP))
7367 		goto wb_disabled;
7368 
7369 	/*
7370 	 * WB may be supported but not configured while provisioning.
7371 	 * The spec says, in dedicated wb buffer mode,
7372 	 * a max of 1 lun would have wb buffer configured.
7373 	 * Now only shared buffer mode is supported.
7374 	 */
7375 	dev_info->b_wb_buffer_type =
7376 		desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7377 
7378 	dev_info->b_presrv_uspc_en =
7379 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7380 
7381 	if (dev_info->b_wb_buffer_type == WB_BUF_MODE_SHARED) {
7382 		dev_info->d_wb_alloc_units =
7383 		get_unaligned_be32(desc_buf +
7384 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS);
7385 		if (!dev_info->d_wb_alloc_units)
7386 			goto wb_disabled;
7387 	} else {
7388 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7389 			d_lu_wb_buf_alloc = 0;
7390 			ufshcd_read_unit_desc_param(hba,
7391 					lun,
7392 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7393 					(u8 *)&d_lu_wb_buf_alloc,
7394 					sizeof(d_lu_wb_buf_alloc));
7395 			if (d_lu_wb_buf_alloc) {
7396 				dev_info->wb_dedicated_lu = lun;
7397 				break;
7398 			}
7399 		}
7400 
7401 		if (!d_lu_wb_buf_alloc)
7402 			goto wb_disabled;
7403 	}
7404 	return;
7405 
7406 wb_disabled:
7407 	hba->caps &= ~UFSHCD_CAP_WB_EN;
7408 }
7409 
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,struct ufs_dev_fix * fixups)7410 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, struct ufs_dev_fix *fixups)
7411 {
7412 	struct ufs_dev_fix *f;
7413 	struct ufs_dev_info *dev_info = &hba->dev_info;
7414 
7415 	if (!fixups)
7416 		return;
7417 
7418 	for (f = fixups; f->quirk; f++) {
7419 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
7420 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
7421 		     ((dev_info->model &&
7422 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
7423 		      !strcmp(f->model, UFS_ANY_MODEL)))
7424 			hba->dev_quirks |= f->quirk;
7425 	}
7426 }
7427 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
7428 
ufs_fixup_device_setup(struct ufs_hba * hba)7429 static void ufs_fixup_device_setup(struct ufs_hba *hba)
7430 {
7431 	/* fix by general quirk table */
7432 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
7433 
7434 	/* allow vendors to fix quirks */
7435 	ufshcd_vops_fixup_dev_quirks(hba);
7436 }
7437 
ufs_get_device_desc(struct ufs_hba * hba)7438 static int ufs_get_device_desc(struct ufs_hba *hba)
7439 {
7440 	int err;
7441 	u8 model_index;
7442 	u8 b_ufs_feature_sup;
7443 	u8 *desc_buf;
7444 	struct ufs_dev_info *dev_info = &hba->dev_info;
7445 
7446 	desc_buf = kmalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7447 	if (!desc_buf) {
7448 		err = -ENOMEM;
7449 		goto out;
7450 	}
7451 
7452 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
7453 				     hba->desc_size[QUERY_DESC_IDN_DEVICE]);
7454 	if (err) {
7455 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
7456 			__func__, err);
7457 		goto out;
7458 	}
7459 
7460 	/*
7461 	 * getting vendor (manufacturerID) and Bank Index in big endian
7462 	 * format
7463 	 */
7464 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
7465 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
7466 
7467 	/* getting Specification Version in big endian format */
7468 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
7469 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
7470 	b_ufs_feature_sup = desc_buf[DEVICE_DESC_PARAM_UFS_FEAT];
7471 
7472 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
7473 
7474 	if (dev_info->wspecversion >= UFS_DEV_HPB_SUPPORT_VERSION &&
7475 	    (b_ufs_feature_sup & UFS_DEV_HPB_SUPPORT)) {
7476 		bool hpb_en = false;
7477 
7478 		ufshpb_get_dev_info(hba, desc_buf);
7479 
7480 		if (!ufshpb_is_legacy(hba))
7481 			err = ufshcd_query_flag_retry(hba,
7482 						      UPIU_QUERY_OPCODE_READ_FLAG,
7483 						      QUERY_FLAG_IDN_HPB_EN, 0,
7484 						      &hpb_en);
7485 
7486 		if (ufshpb_is_legacy(hba) || (!err && hpb_en))
7487 			dev_info->hpb_enabled = true;
7488 	}
7489 
7490 	err = ufshcd_read_string_desc(hba, model_index,
7491 				      &dev_info->model, SD_ASCII_STD);
7492 	if (err < 0) {
7493 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
7494 			__func__, err);
7495 		goto out;
7496 	}
7497 
7498 	ufs_fixup_device_setup(hba);
7499 
7500 	ufshcd_wb_probe(hba, desc_buf);
7501 
7502 	/*
7503 	 * ufshcd_read_string_desc returns size of the string
7504 	 * reset the error value
7505 	 */
7506 	err = 0;
7507 
7508 out:
7509 	kfree(desc_buf);
7510 	return err;
7511 }
7512 
ufs_put_device_desc(struct ufs_hba * hba)7513 static void ufs_put_device_desc(struct ufs_hba *hba)
7514 {
7515 	struct ufs_dev_info *dev_info = &hba->dev_info;
7516 
7517 	kfree(dev_info->model);
7518 	dev_info->model = NULL;
7519 }
7520 
7521 /**
7522  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
7523  * @hba: per-adapter instance
7524  *
7525  * PA_TActivate parameter can be tuned manually if UniPro version is less than
7526  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
7527  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
7528  * the hibern8 exit latency.
7529  *
7530  * Returns zero on success, non-zero error value on failure.
7531  */
ufshcd_tune_pa_tactivate(struct ufs_hba * hba)7532 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
7533 {
7534 	int ret = 0;
7535 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
7536 
7537 	ret = ufshcd_dme_peer_get(hba,
7538 				  UIC_ARG_MIB_SEL(
7539 					RX_MIN_ACTIVATETIME_CAPABILITY,
7540 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7541 				  &peer_rx_min_activatetime);
7542 	if (ret)
7543 		goto out;
7544 
7545 	/* make sure proper unit conversion is applied */
7546 	tuned_pa_tactivate =
7547 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
7548 		 / PA_TACTIVATE_TIME_UNIT_US);
7549 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7550 			     tuned_pa_tactivate);
7551 
7552 out:
7553 	return ret;
7554 }
7555 
7556 /**
7557  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
7558  * @hba: per-adapter instance
7559  *
7560  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
7561  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
7562  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
7563  * This optimal value can help reduce the hibern8 exit latency.
7564  *
7565  * Returns zero on success, non-zero error value on failure.
7566  */
ufshcd_tune_pa_hibern8time(struct ufs_hba * hba)7567 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
7568 {
7569 	int ret = 0;
7570 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
7571 	u32 max_hibern8_time, tuned_pa_hibern8time;
7572 
7573 	ret = ufshcd_dme_get(hba,
7574 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
7575 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
7576 				  &local_tx_hibern8_time_cap);
7577 	if (ret)
7578 		goto out;
7579 
7580 	ret = ufshcd_dme_peer_get(hba,
7581 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
7582 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7583 				  &peer_rx_hibern8_time_cap);
7584 	if (ret)
7585 		goto out;
7586 
7587 	max_hibern8_time = max(local_tx_hibern8_time_cap,
7588 			       peer_rx_hibern8_time_cap);
7589 	/* make sure proper unit conversion is applied */
7590 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
7591 				/ PA_HIBERN8_TIME_UNIT_US);
7592 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
7593 			     tuned_pa_hibern8time);
7594 out:
7595 	return ret;
7596 }
7597 
7598 /**
7599  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
7600  * less than device PA_TACTIVATE time.
7601  * @hba: per-adapter instance
7602  *
7603  * Some UFS devices require host PA_TACTIVATE to be lower than device
7604  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
7605  * for such devices.
7606  *
7607  * Returns zero on success, non-zero error value on failure.
7608  */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)7609 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
7610 {
7611 	int ret = 0;
7612 	u32 granularity, peer_granularity;
7613 	u32 pa_tactivate, peer_pa_tactivate;
7614 	u32 pa_tactivate_us, peer_pa_tactivate_us;
7615 	u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
7616 
7617 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7618 				  &granularity);
7619 	if (ret)
7620 		goto out;
7621 
7622 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7623 				  &peer_granularity);
7624 	if (ret)
7625 		goto out;
7626 
7627 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
7628 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
7629 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
7630 			__func__, granularity);
7631 		return -EINVAL;
7632 	}
7633 
7634 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
7635 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
7636 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
7637 			__func__, peer_granularity);
7638 		return -EINVAL;
7639 	}
7640 
7641 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
7642 	if (ret)
7643 		goto out;
7644 
7645 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
7646 				  &peer_pa_tactivate);
7647 	if (ret)
7648 		goto out;
7649 
7650 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
7651 	peer_pa_tactivate_us = peer_pa_tactivate *
7652 			     gran_to_us_table[peer_granularity - 1];
7653 
7654 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
7655 		u32 new_peer_pa_tactivate;
7656 
7657 		new_peer_pa_tactivate = pa_tactivate_us /
7658 				      gran_to_us_table[peer_granularity - 1];
7659 		new_peer_pa_tactivate++;
7660 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7661 					  new_peer_pa_tactivate);
7662 	}
7663 
7664 out:
7665 	return ret;
7666 }
7667 
ufshcd_tune_unipro_params(struct ufs_hba * hba)7668 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
7669 {
7670 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
7671 		ufshcd_tune_pa_tactivate(hba);
7672 		ufshcd_tune_pa_hibern8time(hba);
7673 	}
7674 
7675 	ufshcd_vops_apply_dev_quirks(hba);
7676 
7677 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
7678 		/* set 1ms timeout for PA_TACTIVATE */
7679 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
7680 
7681 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
7682 		ufshcd_quirk_tune_host_pa_tactivate(hba);
7683 }
7684 
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)7685 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
7686 {
7687 	hba->ufs_stats.hibern8_exit_cnt = 0;
7688 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
7689 	hba->req_abort_count = 0;
7690 }
7691 
ufshcd_device_geo_params_init(struct ufs_hba * hba)7692 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
7693 {
7694 	int err;
7695 	size_t buff_len;
7696 	u8 *desc_buf;
7697 
7698 	buff_len = hba->desc_size[QUERY_DESC_IDN_GEOMETRY];
7699 	desc_buf = kmalloc(buff_len, GFP_KERNEL);
7700 	if (!desc_buf) {
7701 		err = -ENOMEM;
7702 		goto out;
7703 	}
7704 
7705 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
7706 				     desc_buf, buff_len);
7707 	if (err) {
7708 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
7709 				__func__, err);
7710 		goto out;
7711 	}
7712 
7713 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
7714 		hba->dev_info.max_lu_supported = 32;
7715 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
7716 		hba->dev_info.max_lu_supported = 8;
7717 
7718 	if (hba->desc_size[QUERY_DESC_IDN_GEOMETRY] >=
7719 		GEOMETRY_DESC_PARAM_HPB_MAX_ACTIVE_REGS)
7720 		ufshpb_get_geo_info(hba, desc_buf);
7721 
7722 out:
7723 	kfree(desc_buf);
7724 	return err;
7725 }
7726 
7727 static struct ufs_ref_clk ufs_ref_clk_freqs[] = {
7728 	{19200000, REF_CLK_FREQ_19_2_MHZ},
7729 	{26000000, REF_CLK_FREQ_26_MHZ},
7730 	{38400000, REF_CLK_FREQ_38_4_MHZ},
7731 	{52000000, REF_CLK_FREQ_52_MHZ},
7732 	{0, REF_CLK_FREQ_INVAL},
7733 };
7734 
7735 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)7736 ufs_get_bref_clk_from_hz(unsigned long freq)
7737 {
7738 	int i;
7739 
7740 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
7741 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
7742 			return ufs_ref_clk_freqs[i].val;
7743 
7744 	return REF_CLK_FREQ_INVAL;
7745 }
7746 
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)7747 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
7748 {
7749 	unsigned long freq;
7750 
7751 	freq = clk_get_rate(refclk);
7752 
7753 	hba->dev_ref_clk_freq =
7754 		ufs_get_bref_clk_from_hz(freq);
7755 
7756 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
7757 		dev_err(hba->dev,
7758 		"invalid ref_clk setting = %ld\n", freq);
7759 }
7760 
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)7761 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
7762 {
7763 	int err;
7764 	u32 ref_clk;
7765 	u32 freq = hba->dev_ref_clk_freq;
7766 
7767 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
7768 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
7769 
7770 	if (err) {
7771 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
7772 			err);
7773 		goto out;
7774 	}
7775 
7776 	if (ref_clk == freq)
7777 		goto out; /* nothing to update */
7778 
7779 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7780 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
7781 
7782 	if (err) {
7783 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
7784 			ufs_ref_clk_freqs[freq].freq_hz);
7785 		goto out;
7786 	}
7787 
7788 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
7789 			ufs_ref_clk_freqs[freq].freq_hz);
7790 
7791 out:
7792 	return err;
7793 }
7794 
ufshcd_device_params_init(struct ufs_hba * hba)7795 static int ufshcd_device_params_init(struct ufs_hba *hba)
7796 {
7797 	bool flag;
7798 	int ret, i;
7799 
7800 	 /* Init device descriptor sizes */
7801 	for (i = 0; i < QUERY_DESC_IDN_MAX; i++)
7802 		hba->desc_size[i] = QUERY_DESC_MAX_SIZE;
7803 
7804 	/* Init UFS geometry descriptor related parameters */
7805 	ret = ufshcd_device_geo_params_init(hba);
7806 	if (ret)
7807 		goto out;
7808 
7809 	/* Check and apply UFS device quirks */
7810 	ret = ufs_get_device_desc(hba);
7811 	if (ret) {
7812 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
7813 			__func__, ret);
7814 		goto out;
7815 	}
7816 
7817 	ufshcd_get_ref_clk_gating_wait(hba);
7818 
7819 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
7820 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
7821 		hba->dev_info.f_power_on_wp_en = flag;
7822 
7823 	/* Probe maximum power mode co-supported by both UFS host and device */
7824 	if (ufshcd_get_max_pwr_mode(hba))
7825 		dev_err(hba->dev,
7826 			"%s: Failed getting max supported power mode\n",
7827 			__func__);
7828 out:
7829 	return ret;
7830 }
7831 
7832 /**
7833  * ufshcd_add_lus - probe and add UFS logical units
7834  * @hba: per-adapter instance
7835  */
ufshcd_add_lus(struct ufs_hba * hba)7836 static int ufshcd_add_lus(struct ufs_hba *hba)
7837 {
7838 	int ret;
7839 
7840 	/* Add required well known logical units to scsi mid layer */
7841 	ret = ufshcd_scsi_add_wlus(hba);
7842 	if (ret)
7843 		goto out;
7844 
7845 	/* Initialize devfreq after UFS device is detected */
7846 	if (ufshcd_is_clkscaling_supported(hba)) {
7847 		memcpy(&hba->clk_scaling.saved_pwr_info.info,
7848 			&hba->pwr_info,
7849 			sizeof(struct ufs_pa_layer_attr));
7850 		hba->clk_scaling.saved_pwr_info.is_valid = true;
7851 		hba->clk_scaling.is_allowed = true;
7852 
7853 		ret = ufshcd_devfreq_init(hba);
7854 		if (ret)
7855 			goto out;
7856 
7857 		hba->clk_scaling.is_enabled = true;
7858 		ufshcd_init_clk_scaling_sysfs(hba);
7859 	}
7860 
7861 	ufs_bsg_probe(hba);
7862 	ufshpb_init(hba);
7863 	scsi_scan_host(hba->host);
7864 	pm_runtime_put_sync(hba->dev);
7865 
7866 out:
7867 	return ret;
7868 }
7869 
7870 /**
7871  * ufshcd_probe_hba - probe hba to detect device and initialize
7872  * @hba: per-adapter instance
7873  * @async: asynchronous execution or not
7874  *
7875  * Execute link-startup and verify device initialization
7876  */
ufshcd_probe_hba(struct ufs_hba * hba,bool async)7877 static int ufshcd_probe_hba(struct ufs_hba *hba, bool async)
7878 {
7879 	int ret;
7880 	unsigned long flags;
7881 	ktime_t start = ktime_get();
7882 
7883 	hba->ufshcd_state = UFSHCD_STATE_RESET;
7884 
7885 	ret = ufshcd_link_startup(hba);
7886 	if (ret)
7887 		goto out;
7888 
7889 	if (hba->quirks & UFSHCD_QUIRK_SKIP_INTERFACE_CONFIGURATION)
7890 		goto out;
7891 
7892 	/* Debug counters initialization */
7893 	ufshcd_clear_dbg_ufs_stats(hba);
7894 
7895 	/* UniPro link is active now */
7896 	ufshcd_set_link_active(hba);
7897 
7898 	/* Verify device initialization by sending NOP OUT UPIU */
7899 	ret = ufshcd_verify_dev_init(hba);
7900 	if (ret)
7901 		goto out;
7902 
7903 	/* Initiate UFS initialization, and waiting until completion */
7904 	ret = ufshcd_complete_dev_init(hba);
7905 	if (ret)
7906 		goto out;
7907 
7908 	/*
7909 	 * Initialize UFS device parameters used by driver, these
7910 	 * parameters are associated with UFS descriptors.
7911 	 */
7912 	if (async) {
7913 		ret = ufshcd_device_params_init(hba);
7914 		if (ret)
7915 			goto out;
7916 	}
7917 
7918 	ufshcd_tune_unipro_params(hba);
7919 
7920 	/* UFS device is also active now */
7921 	ufshcd_set_ufs_dev_active(hba);
7922 	ufshcd_force_reset_auto_bkops(hba);
7923 
7924 	/* Gear up to HS gear if supported */
7925 	if (hba->max_pwr_info.is_valid) {
7926 		/*
7927 		 * Set the right value to bRefClkFreq before attempting to
7928 		 * switch to HS gears.
7929 		 */
7930 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
7931 			ufshcd_set_dev_ref_clk(hba);
7932 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
7933 		if (ret) {
7934 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
7935 					__func__, ret);
7936 			goto out;
7937 		}
7938 		ufshcd_print_pwr_info(hba);
7939 	}
7940 
7941 	/*
7942 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
7943 	 * and for removable UFS card as well, hence always set the parameter.
7944 	 * Note: Error handler may issue the device reset hence resetting
7945 	 * bActiveICCLevel as well so it is always safe to set this here.
7946 	 */
7947 	ufshcd_set_active_icc_lvl(hba);
7948 
7949 	ufshcd_wb_config(hba);
7950 	/* Enable Auto-Hibernate if configured */
7951 	ufshcd_auto_hibern8_enable(hba);
7952 
7953 	ufshpb_reset(hba);
7954 
7955 	trace_android_rvh_ufs_complete_init(hba);
7956 out:
7957 	spin_lock_irqsave(hba->host->host_lock, flags);
7958 	if (ret)
7959 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7960 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7961 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7962 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7963 
7964 	trace_ufshcd_init(dev_name(hba->dev), ret,
7965 		ktime_to_us(ktime_sub(ktime_get(), start)),
7966 		hba->curr_dev_pwr_mode, hba->uic_link_state);
7967 	return ret;
7968 }
7969 
7970 /**
7971  * ufshcd_async_scan - asynchronous execution for probing hba
7972  * @data: data pointer to pass to this function
7973  * @cookie: cookie data
7974  */
ufshcd_async_scan(void * data,async_cookie_t cookie)7975 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
7976 {
7977 	struct ufs_hba *hba = (struct ufs_hba *)data;
7978 	int ret;
7979 
7980 	down(&hba->host_sem);
7981 	/* Initialize hba, detect and initialize UFS device */
7982 	ret = ufshcd_probe_hba(hba, true);
7983 	up(&hba->host_sem);
7984 	if (ret)
7985 		goto out;
7986 
7987 	/* Probe and add UFS logical units  */
7988 	ret = ufshcd_add_lus(hba);
7989 out:
7990 	/*
7991 	 * If we failed to initialize the device or the device is not
7992 	 * present, turn off the power/clocks etc.
7993 	 */
7994 	if (ret) {
7995 		pm_runtime_put_sync(hba->dev);
7996 		ufshcd_hba_exit(hba);
7997 	}
7998 }
7999 
8000 static const struct attribute_group *ufshcd_driver_groups[] = {
8001 	&ufs_sysfs_unit_descriptor_group,
8002 	&ufs_sysfs_lun_attributes_group,
8003 #ifdef CONFIG_SCSI_UFS_HPB
8004 	&ufs_sysfs_hpb_stat_group,
8005 	&ufs_sysfs_hpb_param_group,
8006 #endif
8007 	NULL,
8008 };
8009 
8010 static struct ufs_hba_variant_params ufs_hba_vps = {
8011 	.hba_enable_delay_us		= 1000,
8012 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8013 	.devfreq_profile.polling_ms	= 100,
8014 	.devfreq_profile.target		= ufshcd_devfreq_target,
8015 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8016 	.ondemand_data.upthreshold	= 70,
8017 	.ondemand_data.downdifferential	= 5,
8018 };
8019 
8020 static struct scsi_host_template ufshcd_driver_template = {
8021 	.module			= THIS_MODULE,
8022 	.name			= UFSHCD,
8023 	.proc_name		= UFSHCD,
8024 	.queuecommand		= ufshcd_queuecommand,
8025 	.slave_alloc		= ufshcd_slave_alloc,
8026 	.slave_configure	= ufshcd_slave_configure,
8027 	.slave_destroy		= ufshcd_slave_destroy,
8028 	.change_queue_depth	= ufshcd_change_queue_depth,
8029 	.eh_abort_handler	= ufshcd_abort,
8030 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8031 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8032 	.this_id		= -1,
8033 	.sg_tablesize		= SG_ALL,
8034 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8035 	.can_queue		= UFSHCD_CAN_QUEUE,
8036 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8037 	.max_host_blocked	= 1,
8038 	.track_queue_depth	= 1,
8039 	.sdev_groups		= ufshcd_driver_groups,
8040 	.dma_boundary		= PAGE_SIZE - 1,
8041 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8042 };
8043 
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)8044 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8045 				   int ua)
8046 {
8047 	int ret;
8048 
8049 	if (!vreg)
8050 		return 0;
8051 
8052 	/*
8053 	 * "set_load" operation shall be required on those regulators
8054 	 * which specifically configured current limitation. Otherwise
8055 	 * zero max_uA may cause unexpected behavior when regulator is
8056 	 * enabled or set as high power mode.
8057 	 */
8058 	if (!vreg->max_uA)
8059 		return 0;
8060 
8061 	ret = regulator_set_load(vreg->reg, ua);
8062 	if (ret < 0) {
8063 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8064 				__func__, vreg->name, ua, ret);
8065 	}
8066 
8067 	return ret;
8068 }
8069 
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)8070 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8071 					 struct ufs_vreg *vreg)
8072 {
8073 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8074 }
8075 
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)8076 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8077 					 struct ufs_vreg *vreg)
8078 {
8079 	if (!vreg)
8080 		return 0;
8081 
8082 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8083 }
8084 
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)8085 static int ufshcd_config_vreg(struct device *dev,
8086 		struct ufs_vreg *vreg, bool on)
8087 {
8088 	int ret = 0;
8089 	struct regulator *reg;
8090 	const char *name;
8091 	int min_uV, uA_load;
8092 
8093 	BUG_ON(!vreg);
8094 
8095 	reg = vreg->reg;
8096 	name = vreg->name;
8097 
8098 	if (regulator_count_voltages(reg) > 0) {
8099 		uA_load = on ? vreg->max_uA : 0;
8100 		ret = ufshcd_config_vreg_load(dev, vreg, uA_load);
8101 		if (ret)
8102 			goto out;
8103 
8104 		if (vreg->min_uV && vreg->max_uV) {
8105 			min_uV = on ? vreg->min_uV : 0;
8106 			ret = regulator_set_voltage(reg, min_uV, vreg->max_uV);
8107 			if (ret)
8108 				dev_err(dev,
8109 					"%s: %s set voltage failed, err=%d\n",
8110 					__func__, name, ret);
8111 		}
8112 	}
8113 out:
8114 	return ret;
8115 }
8116 
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)8117 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8118 {
8119 	int ret = 0;
8120 
8121 	if (!vreg || vreg->enabled)
8122 		goto out;
8123 
8124 	ret = ufshcd_config_vreg(dev, vreg, true);
8125 	if (!ret)
8126 		ret = regulator_enable(vreg->reg);
8127 
8128 	if (!ret)
8129 		vreg->enabled = true;
8130 	else
8131 		dev_err(dev, "%s: %s enable failed, err=%d\n",
8132 				__func__, vreg->name, ret);
8133 out:
8134 	return ret;
8135 }
8136 
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)8137 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8138 {
8139 	int ret = 0;
8140 
8141 	if (!vreg || !vreg->enabled || vreg->always_on)
8142 		goto out;
8143 
8144 	ret = regulator_disable(vreg->reg);
8145 
8146 	if (!ret) {
8147 		/* ignore errors on applying disable config */
8148 		ufshcd_config_vreg(dev, vreg, false);
8149 		vreg->enabled = false;
8150 	} else {
8151 		dev_err(dev, "%s: %s disable failed, err=%d\n",
8152 				__func__, vreg->name, ret);
8153 	}
8154 out:
8155 	return ret;
8156 }
8157 
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)8158 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8159 {
8160 	int ret = 0;
8161 	struct device *dev = hba->dev;
8162 	struct ufs_vreg_info *info = &hba->vreg_info;
8163 
8164 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8165 	if (ret)
8166 		goto out;
8167 
8168 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8169 	if (ret)
8170 		goto out;
8171 
8172 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
8173 
8174 out:
8175 	if (ret) {
8176 		ufshcd_toggle_vreg(dev, info->vccq2, false);
8177 		ufshcd_toggle_vreg(dev, info->vccq, false);
8178 		ufshcd_toggle_vreg(dev, info->vcc, false);
8179 	}
8180 	return ret;
8181 }
8182 
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)8183 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
8184 {
8185 	struct ufs_vreg_info *info = &hba->vreg_info;
8186 
8187 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
8188 }
8189 
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)8190 static int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
8191 {
8192 	int ret = 0;
8193 
8194 	if (!vreg)
8195 		goto out;
8196 
8197 	vreg->reg = devm_regulator_get(dev, vreg->name);
8198 	if (IS_ERR(vreg->reg)) {
8199 		ret = PTR_ERR(vreg->reg);
8200 		dev_err(dev, "%s: %s get failed, err=%d\n",
8201 				__func__, vreg->name, ret);
8202 	}
8203 out:
8204 	return ret;
8205 }
8206 
ufshcd_init_vreg(struct ufs_hba * hba)8207 static int ufshcd_init_vreg(struct ufs_hba *hba)
8208 {
8209 	int ret = 0;
8210 	struct device *dev = hba->dev;
8211 	struct ufs_vreg_info *info = &hba->vreg_info;
8212 
8213 	ret = ufshcd_get_vreg(dev, info->vcc);
8214 	if (ret)
8215 		goto out;
8216 
8217 	ret = ufshcd_get_vreg(dev, info->vccq);
8218 	if (!ret)
8219 		ret = ufshcd_get_vreg(dev, info->vccq2);
8220 out:
8221 	return ret;
8222 }
8223 
ufshcd_init_hba_vreg(struct ufs_hba * hba)8224 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
8225 {
8226 	struct ufs_vreg_info *info = &hba->vreg_info;
8227 
8228 	if (info)
8229 		return ufshcd_get_vreg(hba->dev, info->vdd_hba);
8230 
8231 	return 0;
8232 }
8233 
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)8234 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
8235 {
8236 	int ret = 0;
8237 	struct ufs_clk_info *clki;
8238 	struct list_head *head = &hba->clk_list_head;
8239 	unsigned long flags;
8240 	ktime_t start = ktime_get();
8241 	bool clk_state_changed = false;
8242 
8243 	if (list_empty(head))
8244 		goto out;
8245 
8246 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
8247 	if (ret)
8248 		return ret;
8249 
8250 	list_for_each_entry(clki, head, list) {
8251 		if (!IS_ERR_OR_NULL(clki->clk)) {
8252 			/*
8253 			 * Don't disable clocks which are needed
8254 			 * to keep the link active.
8255 			 */
8256 			if (ufshcd_is_link_active(hba) &&
8257 			    clki->keep_link_active)
8258 				continue;
8259 
8260 			clk_state_changed = on ^ clki->enabled;
8261 			if (on && !clki->enabled) {
8262 				ret = clk_prepare_enable(clki->clk);
8263 				if (ret) {
8264 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
8265 						__func__, clki->name, ret);
8266 					goto out;
8267 				}
8268 			} else if (!on && clki->enabled) {
8269 				clk_disable_unprepare(clki->clk);
8270 			}
8271 			clki->enabled = on;
8272 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
8273 					clki->name, on ? "en" : "dis");
8274 		}
8275 	}
8276 
8277 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
8278 	if (ret)
8279 		return ret;
8280 
8281 out:
8282 	if (ret) {
8283 		list_for_each_entry(clki, head, list) {
8284 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
8285 				clk_disable_unprepare(clki->clk);
8286 		}
8287 	} else if (!ret && on) {
8288 		spin_lock_irqsave(hba->host->host_lock, flags);
8289 		hba->clk_gating.state = CLKS_ON;
8290 		trace_ufshcd_clk_gating(dev_name(hba->dev),
8291 					hba->clk_gating.state);
8292 		spin_unlock_irqrestore(hba->host->host_lock, flags);
8293 	}
8294 
8295 	if (clk_state_changed)
8296 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
8297 			(on ? "on" : "off"),
8298 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
8299 	return ret;
8300 }
8301 
ufshcd_init_clocks(struct ufs_hba * hba)8302 static int ufshcd_init_clocks(struct ufs_hba *hba)
8303 {
8304 	int ret = 0;
8305 	struct ufs_clk_info *clki;
8306 	struct device *dev = hba->dev;
8307 	struct list_head *head = &hba->clk_list_head;
8308 
8309 	if (list_empty(head))
8310 		goto out;
8311 
8312 	list_for_each_entry(clki, head, list) {
8313 		if (!clki->name)
8314 			continue;
8315 
8316 		clki->clk = devm_clk_get(dev, clki->name);
8317 		if (IS_ERR(clki->clk)) {
8318 			ret = PTR_ERR(clki->clk);
8319 			dev_err(dev, "%s: %s clk get failed, %d\n",
8320 					__func__, clki->name, ret);
8321 			goto out;
8322 		}
8323 
8324 		/*
8325 		 * Parse device ref clk freq as per device tree "ref_clk".
8326 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
8327 		 * in ufshcd_alloc_host().
8328 		 */
8329 		if (!strcmp(clki->name, "ref_clk"))
8330 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
8331 
8332 		if (clki->max_freq) {
8333 			ret = clk_set_rate(clki->clk, clki->max_freq);
8334 			if (ret) {
8335 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
8336 					__func__, clki->name,
8337 					clki->max_freq, ret);
8338 				goto out;
8339 			}
8340 			clki->curr_freq = clki->max_freq;
8341 		}
8342 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
8343 				clki->name, clk_get_rate(clki->clk));
8344 	}
8345 out:
8346 	return ret;
8347 }
8348 
ufshcd_variant_hba_init(struct ufs_hba * hba)8349 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
8350 {
8351 	int err = 0;
8352 
8353 	if (!hba->vops)
8354 		goto out;
8355 
8356 	err = ufshcd_vops_init(hba);
8357 	if (err)
8358 		goto out;
8359 
8360 	err = ufshcd_vops_setup_regulators(hba, true);
8361 	if (err)
8362 		ufshcd_vops_exit(hba);
8363 out:
8364 	if (err)
8365 		dev_err(hba->dev, "%s: variant %s init failed err %d\n",
8366 			__func__, ufshcd_get_var_name(hba), err);
8367 	return err;
8368 }
8369 
ufshcd_variant_hba_exit(struct ufs_hba * hba)8370 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
8371 {
8372 	if (!hba->vops)
8373 		return;
8374 
8375 	ufshcd_vops_setup_regulators(hba, false);
8376 
8377 	ufshcd_vops_exit(hba);
8378 }
8379 
ufshcd_hba_init(struct ufs_hba * hba)8380 static int ufshcd_hba_init(struct ufs_hba *hba)
8381 {
8382 	int err;
8383 
8384 	/*
8385 	 * Handle host controller power separately from the UFS device power
8386 	 * rails as it will help controlling the UFS host controller power
8387 	 * collapse easily which is different than UFS device power collapse.
8388 	 * Also, enable the host controller power before we go ahead with rest
8389 	 * of the initialization here.
8390 	 */
8391 	err = ufshcd_init_hba_vreg(hba);
8392 	if (err)
8393 		goto out;
8394 
8395 	err = ufshcd_setup_hba_vreg(hba, true);
8396 	if (err)
8397 		goto out;
8398 
8399 	err = ufshcd_init_clocks(hba);
8400 	if (err)
8401 		goto out_disable_hba_vreg;
8402 
8403 	err = ufshcd_setup_clocks(hba, true);
8404 	if (err)
8405 		goto out_disable_hba_vreg;
8406 
8407 	err = ufshcd_init_vreg(hba);
8408 	if (err)
8409 		goto out_disable_clks;
8410 
8411 	err = ufshcd_setup_vreg(hba, true);
8412 	if (err)
8413 		goto out_disable_clks;
8414 
8415 	err = ufshcd_variant_hba_init(hba);
8416 	if (err)
8417 		goto out_disable_vreg;
8418 
8419 	ufs_debugfs_hba_init(hba);
8420 
8421 	hba->is_powered = true;
8422 	goto out;
8423 
8424 out_disable_vreg:
8425 	ufshcd_setup_vreg(hba, false);
8426 out_disable_clks:
8427 	ufshcd_setup_clocks(hba, false);
8428 out_disable_hba_vreg:
8429 	ufshcd_setup_hba_vreg(hba, false);
8430 out:
8431 	return err;
8432 }
8433 
ufshcd_hba_exit(struct ufs_hba * hba)8434 static void ufshcd_hba_exit(struct ufs_hba *hba)
8435 {
8436 	if (hba->is_powered) {
8437 		ufshcd_exit_clk_scaling(hba);
8438 		ufshcd_exit_clk_gating(hba);
8439 		if (hba->eh_wq)
8440 			destroy_workqueue(hba->eh_wq);
8441 		ufs_debugfs_hba_exit(hba);
8442 		ufshcd_variant_hba_exit(hba);
8443 		ufshcd_setup_vreg(hba, false);
8444 		ufshcd_setup_clocks(hba, false);
8445 		ufshcd_setup_hba_vreg(hba, false);
8446 		hba->is_powered = false;
8447 		ufs_put_device_desc(hba);
8448 	}
8449 }
8450 
8451 /**
8452  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
8453  *			     power mode
8454  * @hba: per adapter instance
8455  * @pwr_mode: device power mode to set
8456  *
8457  * Returns 0 if requested power mode is set successfully
8458  * Returns non-zero if failed to set the requested power mode
8459  */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)8460 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
8461 				     enum ufs_dev_pwr_mode pwr_mode)
8462 {
8463 	unsigned char cmd[6] = { START_STOP };
8464 	struct scsi_sense_hdr sshdr;
8465 	struct scsi_device *sdp;
8466 	unsigned long flags;
8467 	int ret, retries;
8468 
8469 	spin_lock_irqsave(hba->host->host_lock, flags);
8470 	sdp = hba->sdev_ufs_device;
8471 	if (sdp) {
8472 		ret = scsi_device_get(sdp);
8473 		if (!ret && !scsi_device_online(sdp)) {
8474 			ret = -ENODEV;
8475 			scsi_device_put(sdp);
8476 		}
8477 	} else {
8478 		ret = -ENODEV;
8479 	}
8480 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8481 
8482 	if (ret)
8483 		return ret;
8484 
8485 	/*
8486 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
8487 	 * handling, which would wait for host to be resumed. Since we know
8488 	 * we are functional while we are here, skip host resume in error
8489 	 * handling context.
8490 	 */
8491 	hba->host->eh_noresume = 1;
8492 
8493 	cmd[4] = pwr_mode << 4;
8494 
8495 	/*
8496 	 * Current function would be generally called from the power management
8497 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
8498 	 * already suspended childs.
8499 	 */
8500 	for (retries = 3; retries > 0; --retries) {
8501 		ret = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
8502 				START_STOP_TIMEOUT, 0, 0, RQF_PM, NULL);
8503 		if (!scsi_status_is_check_condition(ret) ||
8504 				!scsi_sense_valid(&sshdr) ||
8505 				sshdr.sense_key != UNIT_ATTENTION)
8506 			break;
8507 	}
8508 	if (ret) {
8509 		sdev_printk(KERN_WARNING, sdp,
8510 			    "START_STOP failed for power mode: %d, result %x\n",
8511 			    pwr_mode, ret);
8512 		if (driver_byte(ret) == DRIVER_SENSE)
8513 			scsi_print_sense_hdr(sdp, NULL, &sshdr);
8514 	}
8515 
8516 	if (!ret)
8517 		hba->curr_dev_pwr_mode = pwr_mode;
8518 
8519 	scsi_device_put(sdp);
8520 	hba->host->eh_noresume = 0;
8521 	return ret;
8522 }
8523 
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,int check_for_bkops)8524 static int ufshcd_link_state_transition(struct ufs_hba *hba,
8525 					enum uic_link_state req_link_state,
8526 					int check_for_bkops)
8527 {
8528 	int ret = 0;
8529 
8530 	if (req_link_state == hba->uic_link_state)
8531 		return 0;
8532 
8533 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
8534 		ret = ufshcd_uic_hibern8_enter(hba);
8535 		if (!ret) {
8536 			ufshcd_set_link_hibern8(hba);
8537 		} else {
8538 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8539 					__func__, ret);
8540 			goto out;
8541 		}
8542 	}
8543 	/*
8544 	 * If autobkops is enabled, link can't be turned off because
8545 	 * turning off the link would also turn off the device.
8546 	 */
8547 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
8548 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
8549 		/*
8550 		 * Let's make sure that link is in low power mode, we are doing
8551 		 * this currently by putting the link in Hibern8. Otherway to
8552 		 * put the link in low power mode is to send the DME end point
8553 		 * to device and then send the DME reset command to local
8554 		 * unipro. But putting the link in hibern8 is much faster.
8555 		 */
8556 		ret = ufshcd_uic_hibern8_enter(hba);
8557 		if (ret) {
8558 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8559 					__func__, ret);
8560 			goto out;
8561 		}
8562 		/*
8563 		 * Change controller state to "reset state" which
8564 		 * should also put the link in off/reset state
8565 		 */
8566 		ufshcd_hba_stop(hba);
8567 		/*
8568 		 * TODO: Check if we need any delay to make sure that
8569 		 * controller is reset
8570 		 */
8571 		ufshcd_set_link_off(hba);
8572 	}
8573 
8574 out:
8575 	return ret;
8576 }
8577 
ufshcd_vreg_set_lpm(struct ufs_hba * hba)8578 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
8579 {
8580 	bool vcc_off = false;
8581 
8582 	/*
8583 	 * It seems some UFS devices may keep drawing more than sleep current
8584 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
8585 	 * To avoid this situation, add 2ms delay before putting these UFS
8586 	 * rails in LPM mode.
8587 	 */
8588 	if (!ufshcd_is_link_active(hba) &&
8589 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
8590 		usleep_range(2000, 2100);
8591 
8592 	/*
8593 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
8594 	 * power.
8595 	 *
8596 	 * If UFS device and link is in OFF state, all power supplies (VCC,
8597 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
8598 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
8599 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
8600 	 *
8601 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
8602 	 * in low power state which would save some power.
8603 	 *
8604 	 * If Write Booster is enabled and the device needs to flush the WB
8605 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
8606 	 */
8607 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8608 	    !hba->dev_info.is_lu_power_on_wp) {
8609 		ufshcd_setup_vreg(hba, false);
8610 		vcc_off = true;
8611 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
8612 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8613 		vcc_off = true;
8614 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
8615 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8616 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
8617 		}
8618 	}
8619 
8620 	/*
8621 	 * Some UFS devices require delay after VCC power rail is turned-off.
8622 	 */
8623 	if (vcc_off && hba->vreg_info.vcc &&
8624 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
8625 		usleep_range(5000, 5100);
8626 }
8627 
ufshcd_vreg_set_hpm(struct ufs_hba * hba)8628 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
8629 {
8630 	int ret = 0;
8631 
8632 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8633 	    !hba->dev_info.is_lu_power_on_wp) {
8634 		ret = ufshcd_setup_vreg(hba, true);
8635 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
8636 		if (!ufshcd_is_link_active(hba)) {
8637 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
8638 			if (ret)
8639 				goto vcc_disable;
8640 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
8641 			if (ret)
8642 				goto vccq_lpm;
8643 		}
8644 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
8645 	}
8646 	goto out;
8647 
8648 vccq_lpm:
8649 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8650 vcc_disable:
8651 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8652 out:
8653 	return ret;
8654 }
8655 
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)8656 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
8657 {
8658 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
8659 		ufshcd_setup_hba_vreg(hba, false);
8660 }
8661 
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)8662 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
8663 {
8664 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
8665 		ufshcd_setup_hba_vreg(hba, true);
8666 }
8667 
8668 /**
8669  * ufshcd_suspend - helper function for suspend operations
8670  * @hba: per adapter instance
8671  * @pm_op: desired low power operation type
8672  *
8673  * This function will try to put the UFS device and link into low power
8674  * mode based on the "rpm_lvl" (Runtime PM level) or "spm_lvl"
8675  * (System PM level).
8676  *
8677  * If this function is called during shutdown, it will make sure that
8678  * both UFS device and UFS link is powered off.
8679  *
8680  * NOTE: UFS device & link must be active before we enter in this function.
8681  *
8682  * Returns 0 for success and non-zero for failure
8683  */
ufshcd_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)8684 static int ufshcd_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
8685 {
8686 	int ret = 0;
8687 	enum ufs_pm_level pm_lvl;
8688 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
8689 	enum uic_link_state req_link_state;
8690 
8691 	hba->pm_op_in_progress = 1;
8692 	if (!ufshcd_is_shutdown_pm(pm_op)) {
8693 		pm_lvl = ufshcd_is_runtime_pm(pm_op) ?
8694 			 hba->rpm_lvl : hba->spm_lvl;
8695 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
8696 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
8697 	} else {
8698 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
8699 		req_link_state = UIC_LINK_OFF_STATE;
8700 	}
8701 
8702 	ufshpb_suspend(hba);
8703 
8704 	/*
8705 	 * If we can't transition into any of the low power modes
8706 	 * just gate the clocks.
8707 	 */
8708 	ufshcd_hold(hba, false);
8709 	hba->clk_gating.is_suspended = true;
8710 
8711 	if (ufshcd_is_clkscaling_supported(hba))
8712 		ufshcd_clk_scaling_suspend(hba, true);
8713 
8714 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
8715 			req_link_state == UIC_LINK_ACTIVE_STATE) {
8716 		goto disable_clks;
8717 	}
8718 
8719 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
8720 	    (req_link_state == hba->uic_link_state))
8721 		goto enable_gating;
8722 
8723 	/* UFS device & link must be active before we enter in this function */
8724 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
8725 		ret = -EINVAL;
8726 		goto enable_gating;
8727 	}
8728 
8729 	if (ufshcd_is_runtime_pm(pm_op)) {
8730 		if (ufshcd_can_autobkops_during_suspend(hba)) {
8731 			/*
8732 			 * The device is idle with no requests in the queue,
8733 			 * allow background operations if bkops status shows
8734 			 * that performance might be impacted.
8735 			 */
8736 			ret = ufshcd_urgent_bkops(hba);
8737 			if (ret)
8738 				goto enable_gating;
8739 		} else {
8740 			/* make sure that auto bkops is disabled */
8741 			ufshcd_disable_auto_bkops(hba);
8742 		}
8743 		/*
8744 		 * If device needs to do BKOP or WB buffer flush during
8745 		 * Hibern8, keep device power mode as "active power mode"
8746 		 * and VCC supply.
8747 		 */
8748 		hba->dev_info.b_rpm_dev_flush_capable =
8749 			hba->auto_bkops_enabled ||
8750 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
8751 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
8752 			ufshcd_is_auto_hibern8_enabled(hba))) &&
8753 			ufshcd_wb_need_flush(hba));
8754 	}
8755 
8756 	flush_work(&hba->eeh_work);
8757 
8758 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
8759 		if ((ufshcd_is_runtime_pm(pm_op) && !hba->auto_bkops_enabled) ||
8760 		    !ufshcd_is_runtime_pm(pm_op)) {
8761 			/* ensure that bkops is disabled */
8762 			ufshcd_disable_auto_bkops(hba);
8763 		}
8764 
8765 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
8766 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
8767 			if (ret)
8768 				goto enable_gating;
8769 		}
8770 	}
8771 
8772 	ret = ufshcd_link_state_transition(hba, req_link_state, 1);
8773 	if (ret)
8774 		goto set_dev_active;
8775 
8776 disable_clks:
8777 	/*
8778 	 * Call vendor specific suspend callback. As these callbacks may access
8779 	 * vendor specific host controller register space call them before the
8780 	 * host clocks are ON.
8781 	 */
8782 	ret = ufshcd_vops_suspend(hba, pm_op);
8783 	if (ret)
8784 		goto set_link_active;
8785 	/*
8786 	 * Disable the host irq as host controller as there won't be any
8787 	 * host controller transaction expected till resume.
8788 	 */
8789 	ufshcd_disable_irq(hba);
8790 
8791 	ufshcd_setup_clocks(hba, false);
8792 
8793 	if (ufshcd_is_clkgating_allowed(hba)) {
8794 		hba->clk_gating.state = CLKS_OFF;
8795 		trace_ufshcd_clk_gating(dev_name(hba->dev),
8796 					hba->clk_gating.state);
8797 	}
8798 
8799 	ufshcd_vreg_set_lpm(hba);
8800 
8801 	/* Put the host controller in low power mode if possible */
8802 	ufshcd_hba_vreg_set_lpm(hba);
8803 	goto out;
8804 
8805 set_link_active:
8806 	ufshcd_vreg_set_hpm(hba);
8807 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
8808 		ufshcd_set_link_active(hba);
8809 	else if (ufshcd_is_link_off(hba))
8810 		ufshcd_host_reset_and_restore(hba);
8811 set_dev_active:
8812 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
8813 		ufshcd_disable_auto_bkops(hba);
8814 enable_gating:
8815 	if (ufshcd_is_clkscaling_supported(hba))
8816 		ufshcd_clk_scaling_suspend(hba, false);
8817 
8818 	hba->clk_gating.is_suspended = false;
8819 	hba->dev_info.b_rpm_dev_flush_capable = false;
8820 	ufshcd_release(hba);
8821 	ufshpb_resume(hba);
8822 out:
8823 	if (hba->dev_info.b_rpm_dev_flush_capable) {
8824 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
8825 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
8826 	}
8827 
8828 	hba->pm_op_in_progress = 0;
8829 
8830 	if (ret)
8831 		ufshcd_update_evt_hist(hba, UFS_EVT_SUSPEND_ERR, (u32)ret);
8832 	return ret;
8833 }
8834 
8835 /**
8836  * ufshcd_resume - helper function for resume operations
8837  * @hba: per adapter instance
8838  * @pm_op: runtime PM or system PM
8839  *
8840  * This function basically brings the UFS device, UniPro link and controller
8841  * to active state.
8842  *
8843  * Returns 0 for success and non-zero for failure
8844  */
ufshcd_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)8845 static int ufshcd_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
8846 {
8847 	int ret;
8848 	enum uic_link_state old_link_state;
8849 
8850 	hba->pm_op_in_progress = 1;
8851 	old_link_state = hba->uic_link_state;
8852 
8853 	ufshcd_hba_vreg_set_hpm(hba);
8854 	ret = ufshcd_vreg_set_hpm(hba);
8855 	if (ret)
8856 		goto out;
8857 
8858 	/* Make sure clocks are enabled before accessing controller */
8859 	ret = ufshcd_setup_clocks(hba, true);
8860 	if (ret)
8861 		goto disable_vreg;
8862 
8863 	/* enable the host irq as host controller would be active soon */
8864 	ufshcd_enable_irq(hba);
8865 
8866 	/*
8867 	 * Call vendor specific resume callback. As these callbacks may access
8868 	 * vendor specific host controller register space call them when the
8869 	 * host clocks are ON.
8870 	 */
8871 	ret = ufshcd_vops_resume(hba, pm_op);
8872 	if (ret)
8873 		goto disable_irq_and_vops_clks;
8874 
8875 	if (ufshcd_is_link_hibern8(hba)) {
8876 		ret = ufshcd_uic_hibern8_exit(hba);
8877 		if (!ret) {
8878 			ufshcd_set_link_active(hba);
8879 		} else {
8880 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
8881 					__func__, ret);
8882 			goto vendor_suspend;
8883 		}
8884 	} else if (ufshcd_is_link_off(hba)) {
8885 		/*
8886 		 * A full initialization of the host and the device is
8887 		 * required since the link was put to off during suspend.
8888 		 */
8889 		ret = ufshcd_reset_and_restore(hba);
8890 		/*
8891 		 * ufshcd_reset_and_restore() should have already
8892 		 * set the link state as active
8893 		 */
8894 		if (ret || !ufshcd_is_link_active(hba))
8895 			goto vendor_suspend;
8896 	}
8897 
8898 	if (!ufshcd_is_ufs_dev_active(hba)) {
8899 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
8900 		if (ret)
8901 			goto set_old_link_state;
8902 	}
8903 
8904 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
8905 		ufshcd_enable_auto_bkops(hba);
8906 	else
8907 		/*
8908 		 * If BKOPs operations are urgently needed at this moment then
8909 		 * keep auto-bkops enabled or else disable it.
8910 		 */
8911 		ufshcd_urgent_bkops(hba);
8912 
8913 	hba->clk_gating.is_suspended = false;
8914 
8915 	if (ufshcd_is_clkscaling_supported(hba))
8916 		ufshcd_clk_scaling_suspend(hba, false);
8917 
8918 	/* Enable Auto-Hibernate if configured */
8919 	ufshcd_auto_hibern8_enable(hba);
8920 
8921 	ufshpb_resume(hba);
8922 
8923 	if (hba->dev_info.b_rpm_dev_flush_capable) {
8924 		hba->dev_info.b_rpm_dev_flush_capable = false;
8925 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
8926 	}
8927 
8928 	/* Schedule clock gating in case of no access to UFS device yet */
8929 	ufshcd_release(hba);
8930 
8931 	goto out;
8932 
8933 set_old_link_state:
8934 	ufshcd_link_state_transition(hba, old_link_state, 0);
8935 vendor_suspend:
8936 	ufshcd_vops_suspend(hba, pm_op);
8937 disable_irq_and_vops_clks:
8938 	ufshcd_disable_irq(hba);
8939 	ufshcd_setup_clocks(hba, false);
8940 	if (ufshcd_is_clkgating_allowed(hba)) {
8941 		hba->clk_gating.state = CLKS_OFF;
8942 		trace_ufshcd_clk_gating(dev_name(hba->dev),
8943 					hba->clk_gating.state);
8944 	}
8945 disable_vreg:
8946 	ufshcd_vreg_set_lpm(hba);
8947 out:
8948 	hba->pm_op_in_progress = 0;
8949 	if (ret)
8950 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
8951 	return ret;
8952 }
8953 
8954 /**
8955  * ufshcd_system_suspend - system suspend routine
8956  * @hba: per adapter instance
8957  *
8958  * Check the description of ufshcd_suspend() function for more details.
8959  *
8960  * Returns 0 for success and non-zero for failure
8961  */
ufshcd_system_suspend(struct ufs_hba * hba)8962 int ufshcd_system_suspend(struct ufs_hba *hba)
8963 {
8964 	int ret = 0;
8965 	ktime_t start = ktime_get();
8966 
8967 	down(&hba->host_sem);
8968 
8969 	if (!hba->is_powered)
8970 		return 0;
8971 
8972 	cancel_delayed_work_sync(&hba->rpm_dev_flush_recheck_work);
8973 
8974 	if ((ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl) ==
8975 	     hba->curr_dev_pwr_mode) &&
8976 	    (ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl) ==
8977 	     hba->uic_link_state) &&
8978 	     pm_runtime_suspended(hba->dev) &&
8979 	     !hba->dev_info.b_rpm_dev_flush_capable)
8980 		goto out;
8981 
8982 	if (pm_runtime_suspended(hba->dev)) {
8983 		/*
8984 		 * UFS device and/or UFS link low power states during runtime
8985 		 * suspend seems to be different than what is expected during
8986 		 * system suspend. Hence runtime resume the devic & link and
8987 		 * let the system suspend low power states to take effect.
8988 		 * TODO: If resume takes longer time, we might have optimize
8989 		 * it in future by not resuming everything if possible.
8990 		 */
8991 		ret = ufshcd_runtime_resume(hba);
8992 		if (ret)
8993 			goto out;
8994 	}
8995 
8996 	ret = ufshcd_suspend(hba, UFS_SYSTEM_PM);
8997 out:
8998 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
8999 		ktime_to_us(ktime_sub(ktime_get(), start)),
9000 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9001 	if (!ret)
9002 		hba->is_sys_suspended = true;
9003 	else
9004 		up(&hba->host_sem);
9005 	return ret;
9006 }
9007 EXPORT_SYMBOL(ufshcd_system_suspend);
9008 
9009 /**
9010  * ufshcd_system_resume - system resume routine
9011  * @hba: per adapter instance
9012  *
9013  * Returns 0 for success and non-zero for failure
9014  */
9015 
ufshcd_system_resume(struct ufs_hba * hba)9016 int ufshcd_system_resume(struct ufs_hba *hba)
9017 {
9018 	int ret = 0;
9019 	ktime_t start = ktime_get();
9020 
9021 	if (!hba->is_powered || pm_runtime_suspended(hba->dev))
9022 		/*
9023 		 * Let the runtime resume take care of resuming
9024 		 * if runtime suspended.
9025 		 */
9026 		goto out;
9027 	else
9028 		ret = ufshcd_resume(hba, UFS_SYSTEM_PM);
9029 out:
9030 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
9031 		ktime_to_us(ktime_sub(ktime_get(), start)),
9032 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9033 	if (!ret)
9034 		hba->is_sys_suspended = false;
9035 	up(&hba->host_sem);
9036 	return ret;
9037 }
9038 EXPORT_SYMBOL(ufshcd_system_resume);
9039 
9040 /**
9041  * ufshcd_runtime_suspend - runtime suspend routine
9042  * @hba: per adapter instance
9043  *
9044  * Check the description of ufshcd_suspend() function for more details.
9045  *
9046  * Returns 0 for success and non-zero for failure
9047  */
ufshcd_runtime_suspend(struct ufs_hba * hba)9048 int ufshcd_runtime_suspend(struct ufs_hba *hba)
9049 {
9050 	int ret = 0;
9051 	ktime_t start = ktime_get();
9052 
9053 	if (!hba->is_powered)
9054 		goto out;
9055 	else
9056 		ret = ufshcd_suspend(hba, UFS_RUNTIME_PM);
9057 out:
9058 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
9059 		ktime_to_us(ktime_sub(ktime_get(), start)),
9060 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9061 	return ret;
9062 }
9063 EXPORT_SYMBOL(ufshcd_runtime_suspend);
9064 
9065 /**
9066  * ufshcd_runtime_resume - runtime resume routine
9067  * @hba: per adapter instance
9068  *
9069  * This function basically brings the UFS device, UniPro link and controller
9070  * to active state. Following operations are done in this function:
9071  *
9072  * 1. Turn on all the controller related clocks
9073  * 2. Bring the UniPro link out of Hibernate state
9074  * 3. If UFS device is in sleep state, turn ON VCC rail and bring the UFS device
9075  *    to active state.
9076  * 4. If auto-bkops is enabled on the device, disable it.
9077  *
9078  * So following would be the possible power state after this function return
9079  * successfully:
9080  *	S1: UFS device in Active state with VCC rail ON
9081  *	    UniPro link in Active state
9082  *	    All the UFS/UniPro controller clocks are ON
9083  *
9084  * Returns 0 for success and non-zero for failure
9085  */
ufshcd_runtime_resume(struct ufs_hba * hba)9086 int ufshcd_runtime_resume(struct ufs_hba *hba)
9087 {
9088 	int ret = 0;
9089 	ktime_t start = ktime_get();
9090 
9091 	if (!hba->is_powered)
9092 		goto out;
9093 	else
9094 		ret = ufshcd_resume(hba, UFS_RUNTIME_PM);
9095 out:
9096 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
9097 		ktime_to_us(ktime_sub(ktime_get(), start)),
9098 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9099 	return ret;
9100 }
9101 EXPORT_SYMBOL(ufshcd_runtime_resume);
9102 
ufshcd_runtime_idle(struct ufs_hba * hba)9103 int ufshcd_runtime_idle(struct ufs_hba *hba)
9104 {
9105 	return 0;
9106 }
9107 EXPORT_SYMBOL(ufshcd_runtime_idle);
9108 
9109 /**
9110  * ufshcd_shutdown - shutdown routine
9111  * @hba: per adapter instance
9112  *
9113  * This function would power off both UFS device and UFS link.
9114  *
9115  * Returns 0 always to allow force shutdown even in case of errors.
9116  */
ufshcd_shutdown(struct ufs_hba * hba)9117 int ufshcd_shutdown(struct ufs_hba *hba)
9118 {
9119 	int ret = 0;
9120 
9121 	down(&hba->host_sem);
9122 	hba->shutting_down = true;
9123 	up(&hba->host_sem);
9124 
9125 	if (!hba->is_powered)
9126 		goto out;
9127 
9128 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
9129 		goto out;
9130 
9131 	pm_runtime_get_sync(hba->dev);
9132 
9133 	ret = ufshcd_suspend(hba, UFS_SHUTDOWN_PM);
9134 out:
9135 	if (ret)
9136 		dev_err(hba->dev, "%s failed, err %d\n", __func__, ret);
9137 	hba->is_powered = false;
9138 	/* allow force shutdown even in case of errors */
9139 	return 0;
9140 }
9141 EXPORT_SYMBOL(ufshcd_shutdown);
9142 
9143 /**
9144  * ufshcd_remove - de-allocate SCSI host and host memory space
9145  *		data structure memory
9146  * @hba: per adapter instance
9147  */
ufshcd_remove(struct ufs_hba * hba)9148 void ufshcd_remove(struct ufs_hba *hba)
9149 {
9150 	ufs_bsg_remove(hba);
9151 	ufshpb_remove(hba);
9152 	ufs_sysfs_remove_nodes(hba->dev);
9153 	blk_cleanup_queue(hba->tmf_queue);
9154 	blk_mq_free_tag_set(&hba->tmf_tag_set);
9155 	blk_cleanup_queue(hba->cmd_queue);
9156 	scsi_remove_host(hba->host);
9157 	/* disable interrupts */
9158 	ufshcd_disable_intr(hba, hba->intr_mask);
9159 	ufshcd_hba_stop(hba);
9160 	ufshcd_hba_exit(hba);
9161 }
9162 EXPORT_SYMBOL_GPL(ufshcd_remove);
9163 
9164 /**
9165  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
9166  * @hba: pointer to Host Bus Adapter (HBA)
9167  */
ufshcd_dealloc_host(struct ufs_hba * hba)9168 void ufshcd_dealloc_host(struct ufs_hba *hba)
9169 {
9170 	scsi_host_put(hba->host);
9171 }
9172 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
9173 
9174 /**
9175  * ufshcd_set_dma_mask - Set dma mask based on the controller
9176  *			 addressing capability
9177  * @hba: per adapter instance
9178  *
9179  * Returns 0 for success, non-zero for failure
9180  */
ufshcd_set_dma_mask(struct ufs_hba * hba)9181 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
9182 {
9183 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
9184 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
9185 			return 0;
9186 	}
9187 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
9188 }
9189 
9190 /**
9191  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
9192  * @dev: pointer to device handle
9193  * @hba_handle: driver private handle
9194  * Returns 0 on success, non-zero value on failure
9195  */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)9196 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
9197 {
9198 	struct Scsi_Host *host;
9199 	struct ufs_hba *hba;
9200 	int err = 0;
9201 
9202 	if (!dev) {
9203 		dev_err(dev,
9204 		"Invalid memory reference for dev is NULL\n");
9205 		err = -ENODEV;
9206 		goto out_error;
9207 	}
9208 
9209 	host = scsi_host_alloc(&ufshcd_driver_template,
9210 			       sizeof(struct ufs_hba_add_info));
9211 	if (!host) {
9212 		dev_err(dev, "scsi_host_alloc failed\n");
9213 		err = -ENOMEM;
9214 		goto out_error;
9215 	}
9216 	hba = shost_priv(host);
9217 	hba->host = host;
9218 	hba->dev = dev;
9219 	*hba_handle = hba;
9220 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
9221 	hba->sg_entry_size = sizeof(struct ufshcd_sg_entry);
9222 
9223 	INIT_LIST_HEAD(&hba->clk_list_head);
9224 
9225 out_error:
9226 	return err;
9227 }
9228 EXPORT_SYMBOL(ufshcd_alloc_host);
9229 
9230 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)9231 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
9232 				     const struct blk_mq_queue_data *qd)
9233 {
9234 	WARN_ON_ONCE(true);
9235 	return BLK_STS_NOTSUPP;
9236 }
9237 
9238 static const struct blk_mq_ops ufshcd_tmf_ops = {
9239 	.queue_rq = ufshcd_queue_tmf,
9240 };
9241 
9242 /**
9243  * ufshcd_init - Driver initialization routine
9244  * @hba: per-adapter instance
9245  * @mmio_base: base register address
9246  * @irq: Interrupt line of device
9247  * Returns 0 on success, non-zero value on failure
9248  */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)9249 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
9250 {
9251 	struct request ***tmf_rqs = &ufs_hba_add_info(hba)->tmf_rqs;
9252 	int err;
9253 	struct Scsi_Host *host = hba->host;
9254 	struct device *dev = hba->dev;
9255 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
9256 
9257 	/*
9258 	 * dev_set_drvdata() must be called before any callbacks are registered
9259 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
9260 	 * sysfs).
9261 	 */
9262 	dev_set_drvdata(dev, hba);
9263 
9264 	if (!mmio_base) {
9265 		dev_err(hba->dev,
9266 		"Invalid memory reference for mmio_base is NULL\n");
9267 		err = -ENODEV;
9268 		goto out_error;
9269 	}
9270 
9271 	hba->mmio_base = mmio_base;
9272 	hba->irq = irq;
9273 	hba->vps = &ufs_hba_vps;
9274 
9275 	err = ufshcd_hba_init(hba);
9276 	if (err)
9277 		goto out_error;
9278 
9279 	/* Read capabilities registers */
9280 	err = ufshcd_hba_capabilities(hba);
9281 	if (err)
9282 		goto out_disable;
9283 
9284 	/* Get UFS version supported by the controller */
9285 	hba->ufs_version = ufshcd_get_ufs_version(hba);
9286 
9287 	if (hba->ufs_version < ufshci_version(1, 0))
9288 		dev_err(hba->dev, "invalid UFS version 0x%x\n",
9289 			hba->ufs_version);
9290 
9291 	/* Get Interrupt bit mask per version */
9292 	hba->intr_mask = ufshcd_get_intr_mask(hba);
9293 
9294 	err = ufshcd_set_dma_mask(hba);
9295 	if (err) {
9296 		dev_err(hba->dev, "set dma mask failed\n");
9297 		goto out_disable;
9298 	}
9299 
9300 	/* Allocate memory for host memory space */
9301 	err = ufshcd_memory_alloc(hba);
9302 	if (err) {
9303 		dev_err(hba->dev, "Memory allocation failed\n");
9304 		goto out_disable;
9305 	}
9306 
9307 	/* Configure LRB */
9308 	ufshcd_host_memory_configure(hba);
9309 
9310 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
9311 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
9312 	host->max_id = UFSHCD_MAX_ID;
9313 	host->max_lun = UFS_MAX_LUNS;
9314 	host->max_channel = UFSHCD_MAX_CHANNEL;
9315 	host->unique_id = host->host_no;
9316 	host->max_cmd_len = UFS_CDB_SIZE;
9317 
9318 	hba->max_pwr_info.is_valid = false;
9319 
9320 	/* Initialize work queues */
9321 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
9322 		 hba->host->host_no);
9323 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
9324 	if (!hba->eh_wq) {
9325 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
9326 				__func__);
9327 		err = -ENOMEM;
9328 		goto out_disable;
9329 	}
9330 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
9331 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
9332 
9333 	sema_init(&hba->host_sem, 1);
9334 
9335 	/* Initialize UIC command mutex */
9336 	mutex_init(&hba->uic_cmd_mutex);
9337 
9338 	/* Initialize mutex for device management commands */
9339 	mutex_init(&hba->dev_cmd.lock);
9340 
9341 	init_rwsem(&hba->clk_scaling_lock);
9342 
9343 	ufshcd_init_clk_gating(hba);
9344 
9345 	ufshcd_init_clk_scaling(hba);
9346 
9347 	/*
9348 	 * In order to avoid any spurious interrupt immediately after
9349 	 * registering UFS controller interrupt handler, clear any pending UFS
9350 	 * interrupt status and disable all the UFS interrupts.
9351 	 */
9352 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
9353 		      REG_INTERRUPT_STATUS);
9354 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
9355 	/*
9356 	 * Make sure that UFS interrupts are disabled and any pending interrupt
9357 	 * status is cleared before registering UFS interrupt handler.
9358 	 */
9359 	mb();
9360 
9361 	/* IRQ registration */
9362 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
9363 	if (err) {
9364 		dev_err(hba->dev, "request irq failed\n");
9365 		goto out_disable;
9366 	} else {
9367 		hba->is_irq_enabled = true;
9368 	}
9369 
9370 	err = scsi_add_host(host, hba->dev);
9371 	if (err) {
9372 		dev_err(hba->dev, "scsi_add_host failed\n");
9373 		goto out_disable;
9374 	}
9375 
9376 	hba->cmd_queue = blk_mq_init_queue(&hba->host->tag_set);
9377 	if (IS_ERR(hba->cmd_queue)) {
9378 		err = PTR_ERR(hba->cmd_queue);
9379 		goto out_remove_scsi_host;
9380 	}
9381 
9382 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
9383 		.nr_hw_queues	= 1,
9384 		.queue_depth	= hba->nutmrs,
9385 		.ops		= &ufshcd_tmf_ops,
9386 		.flags		= BLK_MQ_F_NO_SCHED,
9387 	};
9388 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
9389 	if (err < 0)
9390 		goto free_cmd_queue;
9391 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
9392 	if (IS_ERR(hba->tmf_queue)) {
9393 		err = PTR_ERR(hba->tmf_queue);
9394 		goto free_tmf_tag_set;
9395 	}
9396 	*tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs, sizeof(**tmf_rqs),
9397 				GFP_KERNEL);
9398 	if (!*tmf_rqs) {
9399 		err = -ENOMEM;
9400 		goto free_tmf_queue;
9401 	}
9402 
9403 	/* Reset the attached device */
9404 	ufshcd_vops_device_reset(hba);
9405 
9406 	ufshcd_init_crypto(hba);
9407 
9408 	/* Host controller enable */
9409 	err = ufshcd_hba_enable(hba);
9410 	if (err) {
9411 		dev_err(hba->dev, "Host controller enable failed\n");
9412 		ufshcd_print_evt_hist(hba);
9413 		ufshcd_print_host_state(hba);
9414 		goto free_tmf_queue;
9415 	}
9416 
9417 	/*
9418 	 * Set the default power management level for runtime and system PM.
9419 	 * Default power saving mode is to keep UFS link in Hibern8 state
9420 	 * and UFS device in sleep state.
9421 	 */
9422 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9423 						UFS_SLEEP_PWR_MODE,
9424 						UIC_LINK_HIBERN8_STATE);
9425 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9426 						UFS_SLEEP_PWR_MODE,
9427 						UIC_LINK_HIBERN8_STATE);
9428 
9429 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
9430 			  ufshcd_rpm_dev_flush_recheck_work);
9431 
9432 	/* Set the default auto-hiberate idle timer value to 150 ms */
9433 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
9434 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
9435 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
9436 	}
9437 
9438 	/* Hold auto suspend until async scan completes */
9439 	pm_runtime_get_sync(dev);
9440 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
9441 	/*
9442 	 * We are assuming that device wasn't put in sleep/power-down
9443 	 * state exclusively during the boot stage before kernel.
9444 	 * This assumption helps avoid doing link startup twice during
9445 	 * ufshcd_probe_hba().
9446 	 */
9447 	ufshcd_set_ufs_dev_active(hba);
9448 
9449 	async_schedule(ufshcd_async_scan, hba);
9450 	ufs_sysfs_add_nodes(hba);
9451 
9452 	device_enable_async_suspend(dev);
9453 	return 0;
9454 
9455 free_tmf_queue:
9456 	blk_cleanup_queue(hba->tmf_queue);
9457 free_tmf_tag_set:
9458 	blk_mq_free_tag_set(&hba->tmf_tag_set);
9459 free_cmd_queue:
9460 	blk_cleanup_queue(hba->cmd_queue);
9461 out_remove_scsi_host:
9462 	scsi_remove_host(hba->host);
9463 out_disable:
9464 	hba->is_irq_enabled = false;
9465 	ufshcd_hba_exit(hba);
9466 out_error:
9467 	return err;
9468 }
9469 EXPORT_SYMBOL_GPL(ufshcd_init);
9470 
ufshcd_core_init(void)9471 static int __init ufshcd_core_init(void)
9472 {
9473 	ufs_debugfs_init();
9474 	return 0;
9475 }
9476 
ufshcd_core_exit(void)9477 static void __exit ufshcd_core_exit(void)
9478 {
9479 	ufs_debugfs_exit();
9480 }
9481 
9482 module_init(ufshcd_core_init);
9483 module_exit(ufshcd_core_exit);
9484 
9485 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
9486 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
9487 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
9488 MODULE_LICENSE("GPL");
9489 MODULE_VERSION(UFSHCD_DRIVER_VERSION);
9490