1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The User Datagram Protocol (UDP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 *
15 * Fixes:
16 * Alan Cox : verify_area() calls
17 * Alan Cox : stopped close while in use off icmp
18 * messages. Not a fix but a botch that
19 * for udp at least is 'valid'.
20 * Alan Cox : Fixed icmp handling properly
21 * Alan Cox : Correct error for oversized datagrams
22 * Alan Cox : Tidied select() semantics.
23 * Alan Cox : udp_err() fixed properly, also now
24 * select and read wake correctly on errors
25 * Alan Cox : udp_send verify_area moved to avoid mem leak
26 * Alan Cox : UDP can count its memory
27 * Alan Cox : send to an unknown connection causes
28 * an ECONNREFUSED off the icmp, but
29 * does NOT close.
30 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
32 * bug no longer crashes it.
33 * Fred Van Kempen : Net2e support for sk->broadcast.
34 * Alan Cox : Uses skb_free_datagram
35 * Alan Cox : Added get/set sockopt support.
36 * Alan Cox : Broadcasting without option set returns EACCES.
37 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
38 * Alan Cox : Use ip_tos and ip_ttl
39 * Alan Cox : SNMP Mibs
40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
41 * Matt Dillon : UDP length checks.
42 * Alan Cox : Smarter af_inet used properly.
43 * Alan Cox : Use new kernel side addressing.
44 * Alan Cox : Incorrect return on truncated datagram receive.
45 * Arnt Gulbrandsen : New udp_send and stuff
46 * Alan Cox : Cache last socket
47 * Alan Cox : Route cache
48 * Jon Peatfield : Minor efficiency fix to sendto().
49 * Mike Shaver : RFC1122 checks.
50 * Alan Cox : Nonblocking error fix.
51 * Willy Konynenberg : Transparent proxying support.
52 * Mike McLagan : Routing by source
53 * David S. Miller : New socket lookup architecture.
54 * Last socket cache retained as it
55 * does have a high hit rate.
56 * Olaf Kirch : Don't linearise iovec on sendmsg.
57 * Andi Kleen : Some cleanups, cache destination entry
58 * for connect.
59 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
60 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
61 * return ENOTCONN for unconnected sockets (POSIX)
62 * Janos Farkas : don't deliver multi/broadcasts to a different
63 * bound-to-device socket
64 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * datagrams.
66 * Hirokazu Takahashi : sendfile() on UDP works now.
67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
70 * a single port at the same time.
71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72 * James Chapman : Add L2TP encapsulation type.
73 */
74
75 #define pr_fmt(fmt) "UDP: " fmt
76
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <linux/btf_ids.h>
110 #include <trace/events/skb.h>
111 #include <net/busy_poll.h>
112 #include "udp_impl.h"
113 #include <net/sock_reuseport.h>
114 #include <net/addrconf.h>
115 #include <net/udp_tunnel.h>
116 #if IS_ENABLED(CONFIG_IPV6)
117 #include <net/ipv6_stubs.h>
118 #endif
119 #include <trace/hooks/ipv4.h>
120
121 struct udp_table udp_table __read_mostly;
122 EXPORT_SYMBOL(udp_table);
123
124 long sysctl_udp_mem[3] __read_mostly;
125 EXPORT_SYMBOL(sysctl_udp_mem);
126
127 atomic_long_t udp_memory_allocated;
128 EXPORT_SYMBOL(udp_memory_allocated);
129
130 #define MAX_UDP_PORTS 65536
131 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
132
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)133 static int udp_lib_lport_inuse(struct net *net, __u16 num,
134 const struct udp_hslot *hslot,
135 unsigned long *bitmap,
136 struct sock *sk, unsigned int log)
137 {
138 struct sock *sk2;
139 kuid_t uid = sock_i_uid(sk);
140
141 sk_for_each(sk2, &hslot->head) {
142 if (net_eq(sock_net(sk2), net) &&
143 sk2 != sk &&
144 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
145 (!sk2->sk_reuse || !sk->sk_reuse) &&
146 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
147 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
148 inet_rcv_saddr_equal(sk, sk2, true)) {
149 if (sk2->sk_reuseport && sk->sk_reuseport &&
150 !rcu_access_pointer(sk->sk_reuseport_cb) &&
151 uid_eq(uid, sock_i_uid(sk2))) {
152 if (!bitmap)
153 return 0;
154 } else {
155 if (!bitmap)
156 return 1;
157 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
158 bitmap);
159 }
160 }
161 }
162 return 0;
163 }
164
165 /*
166 * Note: we still hold spinlock of primary hash chain, so no other writer
167 * can insert/delete a socket with local_port == num
168 */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)169 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
170 struct udp_hslot *hslot2,
171 struct sock *sk)
172 {
173 struct sock *sk2;
174 kuid_t uid = sock_i_uid(sk);
175 int res = 0;
176
177 spin_lock(&hslot2->lock);
178 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
179 if (net_eq(sock_net(sk2), net) &&
180 sk2 != sk &&
181 (udp_sk(sk2)->udp_port_hash == num) &&
182 (!sk2->sk_reuse || !sk->sk_reuse) &&
183 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
184 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
185 inet_rcv_saddr_equal(sk, sk2, true)) {
186 if (sk2->sk_reuseport && sk->sk_reuseport &&
187 !rcu_access_pointer(sk->sk_reuseport_cb) &&
188 uid_eq(uid, sock_i_uid(sk2))) {
189 res = 0;
190 } else {
191 res = 1;
192 }
193 break;
194 }
195 }
196 spin_unlock(&hslot2->lock);
197 return res;
198 }
199
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)200 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
201 {
202 struct net *net = sock_net(sk);
203 kuid_t uid = sock_i_uid(sk);
204 struct sock *sk2;
205
206 sk_for_each(sk2, &hslot->head) {
207 if (net_eq(sock_net(sk2), net) &&
208 sk2 != sk &&
209 sk2->sk_family == sk->sk_family &&
210 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
211 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
212 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
213 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
214 inet_rcv_saddr_equal(sk, sk2, false)) {
215 return reuseport_add_sock(sk, sk2,
216 inet_rcv_saddr_any(sk));
217 }
218 }
219
220 return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
221 }
222
223 /**
224 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
225 *
226 * @sk: socket struct in question
227 * @snum: port number to look up
228 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
229 * with NULL address
230 */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)231 int udp_lib_get_port(struct sock *sk, unsigned short snum,
232 unsigned int hash2_nulladdr)
233 {
234 struct udp_hslot *hslot, *hslot2;
235 struct udp_table *udptable = sk->sk_prot->h.udp_table;
236 int error = 1;
237 struct net *net = sock_net(sk);
238
239 if (!snum) {
240 int low, high, remaining;
241 unsigned int rand;
242 unsigned short first, last;
243 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
244
245 inet_get_local_port_range(net, &low, &high);
246 remaining = (high - low) + 1;
247
248 rand = prandom_u32();
249 first = reciprocal_scale(rand, remaining) + low;
250 /*
251 * force rand to be an odd multiple of UDP_HTABLE_SIZE
252 */
253 rand = (rand | 1) * (udptable->mask + 1);
254 last = first + udptable->mask + 1;
255 do {
256 hslot = udp_hashslot(udptable, net, first);
257 bitmap_zero(bitmap, PORTS_PER_CHAIN);
258 spin_lock_bh(&hslot->lock);
259 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
260 udptable->log);
261
262 snum = first;
263 /*
264 * Iterate on all possible values of snum for this hash.
265 * Using steps of an odd multiple of UDP_HTABLE_SIZE
266 * give us randomization and full range coverage.
267 */
268 do {
269 if (low <= snum && snum <= high &&
270 !test_bit(snum >> udptable->log, bitmap) &&
271 !inet_is_local_reserved_port(net, snum))
272 goto found;
273 snum += rand;
274 } while (snum != first);
275 spin_unlock_bh(&hslot->lock);
276 cond_resched();
277 } while (++first != last);
278 goto fail;
279 } else {
280 hslot = udp_hashslot(udptable, net, snum);
281 spin_lock_bh(&hslot->lock);
282 if (hslot->count > 10) {
283 int exist;
284 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
285
286 slot2 &= udptable->mask;
287 hash2_nulladdr &= udptable->mask;
288
289 hslot2 = udp_hashslot2(udptable, slot2);
290 if (hslot->count < hslot2->count)
291 goto scan_primary_hash;
292
293 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
294 if (!exist && (hash2_nulladdr != slot2)) {
295 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
296 exist = udp_lib_lport_inuse2(net, snum, hslot2,
297 sk);
298 }
299 if (exist)
300 goto fail_unlock;
301 else
302 goto found;
303 }
304 scan_primary_hash:
305 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
306 goto fail_unlock;
307 }
308 found:
309 inet_sk(sk)->inet_num = snum;
310 udp_sk(sk)->udp_port_hash = snum;
311 udp_sk(sk)->udp_portaddr_hash ^= snum;
312 if (sk_unhashed(sk)) {
313 if (sk->sk_reuseport &&
314 udp_reuseport_add_sock(sk, hslot)) {
315 inet_sk(sk)->inet_num = 0;
316 udp_sk(sk)->udp_port_hash = 0;
317 udp_sk(sk)->udp_portaddr_hash ^= snum;
318 goto fail_unlock;
319 }
320
321 sk_add_node_rcu(sk, &hslot->head);
322 hslot->count++;
323 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
324
325 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
326 spin_lock(&hslot2->lock);
327 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
328 sk->sk_family == AF_INET6)
329 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
330 &hslot2->head);
331 else
332 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
333 &hslot2->head);
334 hslot2->count++;
335 spin_unlock(&hslot2->lock);
336 }
337 sock_set_flag(sk, SOCK_RCU_FREE);
338 error = 0;
339 fail_unlock:
340 spin_unlock_bh(&hslot->lock);
341 fail:
342 return error;
343 }
344 EXPORT_SYMBOL(udp_lib_get_port);
345
udp_v4_get_port(struct sock * sk,unsigned short snum)346 int udp_v4_get_port(struct sock *sk, unsigned short snum)
347 {
348 unsigned int hash2_nulladdr =
349 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
350 unsigned int hash2_partial =
351 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
352
353 /* precompute partial secondary hash */
354 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
355 return udp_lib_get_port(sk, snum, hash2_nulladdr);
356 }
357
compute_score(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)358 static int compute_score(struct sock *sk, struct net *net,
359 __be32 saddr, __be16 sport,
360 __be32 daddr, unsigned short hnum,
361 int dif, int sdif)
362 {
363 int score;
364 struct inet_sock *inet;
365 bool dev_match;
366
367 if (!net_eq(sock_net(sk), net) ||
368 udp_sk(sk)->udp_port_hash != hnum ||
369 ipv6_only_sock(sk))
370 return -1;
371
372 if (sk->sk_rcv_saddr != daddr)
373 return -1;
374
375 score = (sk->sk_family == PF_INET) ? 2 : 1;
376
377 inet = inet_sk(sk);
378 if (inet->inet_daddr) {
379 if (inet->inet_daddr != saddr)
380 return -1;
381 score += 4;
382 }
383
384 if (inet->inet_dport) {
385 if (inet->inet_dport != sport)
386 return -1;
387 score += 4;
388 }
389
390 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
391 dif, sdif);
392 if (!dev_match)
393 return -1;
394 if (sk->sk_bound_dev_if)
395 score += 4;
396
397 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
398 score++;
399 return score;
400 }
401
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)402 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
403 const __u16 lport, const __be32 faddr,
404 const __be16 fport)
405 {
406 static u32 udp_ehash_secret __read_mostly;
407
408 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
409
410 return __inet_ehashfn(laddr, lport, faddr, fport,
411 udp_ehash_secret + net_hash_mix(net));
412 }
413
lookup_reuseport(struct net * net,struct sock * sk,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum)414 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
415 struct sk_buff *skb,
416 __be32 saddr, __be16 sport,
417 __be32 daddr, unsigned short hnum)
418 {
419 struct sock *reuse_sk = NULL;
420 u32 hash;
421
422 if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
423 hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
424 reuse_sk = reuseport_select_sock(sk, hash, skb,
425 sizeof(struct udphdr));
426 }
427 return reuse_sk;
428 }
429
430 /* called with rcu_read_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)431 static struct sock *udp4_lib_lookup2(struct net *net,
432 __be32 saddr, __be16 sport,
433 __be32 daddr, unsigned int hnum,
434 int dif, int sdif,
435 struct udp_hslot *hslot2,
436 struct sk_buff *skb)
437 {
438 struct sock *sk, *result;
439 int score, badness;
440
441 result = NULL;
442 badness = 0;
443 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
444 score = compute_score(sk, net, saddr, sport,
445 daddr, hnum, dif, sdif);
446 if (score > badness) {
447 result = lookup_reuseport(net, sk, skb,
448 saddr, sport, daddr, hnum);
449 /* Fall back to scoring if group has connections */
450 if (result && !reuseport_has_conns(sk))
451 return result;
452
453 result = result ? : sk;
454 badness = score;
455 }
456 }
457 return result;
458 }
459
udp4_lookup_run_bpf(struct net * net,struct udp_table * udptable,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,u16 hnum)460 static struct sock *udp4_lookup_run_bpf(struct net *net,
461 struct udp_table *udptable,
462 struct sk_buff *skb,
463 __be32 saddr, __be16 sport,
464 __be32 daddr, u16 hnum)
465 {
466 struct sock *sk, *reuse_sk;
467 bool no_reuseport;
468
469 if (udptable != &udp_table)
470 return NULL; /* only UDP is supported */
471
472 no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP,
473 saddr, sport, daddr, hnum, &sk);
474 if (no_reuseport || IS_ERR_OR_NULL(sk))
475 return sk;
476
477 reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
478 if (reuse_sk)
479 sk = reuse_sk;
480 return sk;
481 }
482
483 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
484 * harder than this. -DaveM
485 */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)486 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
487 __be16 sport, __be32 daddr, __be16 dport, int dif,
488 int sdif, struct udp_table *udptable, struct sk_buff *skb)
489 {
490 unsigned short hnum = ntohs(dport);
491 unsigned int hash2, slot2;
492 struct udp_hslot *hslot2;
493 struct sock *result, *sk;
494
495 hash2 = ipv4_portaddr_hash(net, daddr, hnum);
496 slot2 = hash2 & udptable->mask;
497 hslot2 = &udptable->hash2[slot2];
498
499 /* Lookup connected or non-wildcard socket */
500 result = udp4_lib_lookup2(net, saddr, sport,
501 daddr, hnum, dif, sdif,
502 hslot2, skb);
503 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
504 goto done;
505
506 /* Lookup redirect from BPF */
507 if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
508 sk = udp4_lookup_run_bpf(net, udptable, skb,
509 saddr, sport, daddr, hnum);
510 if (sk) {
511 result = sk;
512 goto done;
513 }
514 }
515
516 /* Got non-wildcard socket or error on first lookup */
517 if (result)
518 goto done;
519
520 /* Lookup wildcard sockets */
521 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
522 slot2 = hash2 & udptable->mask;
523 hslot2 = &udptable->hash2[slot2];
524
525 result = udp4_lib_lookup2(net, saddr, sport,
526 htonl(INADDR_ANY), hnum, dif, sdif,
527 hslot2, skb);
528 done:
529 if (IS_ERR(result))
530 return NULL;
531 return result;
532 }
533 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
534
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)535 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
536 __be16 sport, __be16 dport,
537 struct udp_table *udptable)
538 {
539 const struct iphdr *iph = ip_hdr(skb);
540
541 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
542 iph->daddr, dport, inet_iif(skb),
543 inet_sdif(skb), udptable, skb);
544 }
545
udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport)546 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
547 __be16 sport, __be16 dport)
548 {
549 const struct iphdr *iph = ip_hdr(skb);
550
551 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
552 iph->daddr, dport, inet_iif(skb),
553 inet_sdif(skb), &udp_table, NULL);
554 }
555 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
556
557 /* Must be called under rcu_read_lock().
558 * Does increment socket refcount.
559 */
560 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)561 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
562 __be32 daddr, __be16 dport, int dif)
563 {
564 struct sock *sk;
565
566 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
567 dif, 0, &udp_table, NULL);
568 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
569 sk = NULL;
570 return sk;
571 }
572 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
573 #endif
574
__udp_is_mcast_sock(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)575 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
576 __be16 loc_port, __be32 loc_addr,
577 __be16 rmt_port, __be32 rmt_addr,
578 int dif, int sdif, unsigned short hnum)
579 {
580 struct inet_sock *inet = inet_sk(sk);
581
582 if (!net_eq(sock_net(sk), net) ||
583 udp_sk(sk)->udp_port_hash != hnum ||
584 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
585 (inet->inet_dport != rmt_port && inet->inet_dport) ||
586 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
587 ipv6_only_sock(sk) ||
588 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
589 return false;
590 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
591 return false;
592 return true;
593 }
594
595 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
udp_encap_enable(void)596 void udp_encap_enable(void)
597 {
598 static_branch_inc(&udp_encap_needed_key);
599 }
600 EXPORT_SYMBOL(udp_encap_enable);
601
udp_encap_disable(void)602 void udp_encap_disable(void)
603 {
604 static_branch_dec(&udp_encap_needed_key);
605 }
606 EXPORT_SYMBOL(udp_encap_disable);
607
608 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
609 * through error handlers in encapsulations looking for a match.
610 */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)611 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
612 {
613 int i;
614
615 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
616 int (*handler)(struct sk_buff *skb, u32 info);
617 const struct ip_tunnel_encap_ops *encap;
618
619 encap = rcu_dereference(iptun_encaps[i]);
620 if (!encap)
621 continue;
622 handler = encap->err_handler;
623 if (handler && !handler(skb, info))
624 return 0;
625 }
626
627 return -ENOENT;
628 }
629
630 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
631 * reversing source and destination port: this will match tunnels that force the
632 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
633 * lwtunnels might actually break this assumption by being configured with
634 * different destination ports on endpoints, in this case we won't be able to
635 * trace ICMP messages back to them.
636 *
637 * If this doesn't match any socket, probe tunnels with arbitrary destination
638 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
639 * we've sent packets to won't necessarily match the local destination port.
640 *
641 * Then ask the tunnel implementation to match the error against a valid
642 * association.
643 *
644 * Return an error if we can't find a match, the socket if we need further
645 * processing, zero otherwise.
646 */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sk_buff * skb,u32 info)647 static struct sock *__udp4_lib_err_encap(struct net *net,
648 const struct iphdr *iph,
649 struct udphdr *uh,
650 struct udp_table *udptable,
651 struct sk_buff *skb, u32 info)
652 {
653 int network_offset, transport_offset;
654 struct sock *sk;
655
656 network_offset = skb_network_offset(skb);
657 transport_offset = skb_transport_offset(skb);
658
659 /* Network header needs to point to the outer IPv4 header inside ICMP */
660 skb_reset_network_header(skb);
661
662 /* Transport header needs to point to the UDP header */
663 skb_set_transport_header(skb, iph->ihl << 2);
664
665 sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
666 iph->saddr, uh->dest, skb->dev->ifindex, 0,
667 udptable, NULL);
668 if (sk) {
669 int (*lookup)(struct sock *sk, struct sk_buff *skb);
670 struct udp_sock *up = udp_sk(sk);
671
672 lookup = READ_ONCE(up->encap_err_lookup);
673 if (!lookup || lookup(sk, skb))
674 sk = NULL;
675 }
676
677 if (!sk)
678 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
679
680 skb_set_transport_header(skb, transport_offset);
681 skb_set_network_header(skb, network_offset);
682
683 return sk;
684 }
685
686 /*
687 * This routine is called by the ICMP module when it gets some
688 * sort of error condition. If err < 0 then the socket should
689 * be closed and the error returned to the user. If err > 0
690 * it's just the icmp type << 8 | icmp code.
691 * Header points to the ip header of the error packet. We move
692 * on past this. Then (as it used to claim before adjustment)
693 * header points to the first 8 bytes of the udp header. We need
694 * to find the appropriate port.
695 */
696
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)697 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
698 {
699 struct inet_sock *inet;
700 const struct iphdr *iph = (const struct iphdr *)skb->data;
701 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
702 const int type = icmp_hdr(skb)->type;
703 const int code = icmp_hdr(skb)->code;
704 bool tunnel = false;
705 struct sock *sk;
706 int harderr;
707 int err;
708 struct net *net = dev_net(skb->dev);
709
710 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
711 iph->saddr, uh->source, skb->dev->ifindex,
712 inet_sdif(skb), udptable, NULL);
713 if (!sk) {
714 /* No socket for error: try tunnels before discarding */
715 sk = ERR_PTR(-ENOENT);
716 if (static_branch_unlikely(&udp_encap_needed_key)) {
717 sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
718 info);
719 if (!sk)
720 return 0;
721 }
722
723 if (IS_ERR(sk)) {
724 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
725 return PTR_ERR(sk);
726 }
727
728 tunnel = true;
729 }
730
731 err = 0;
732 harderr = 0;
733 inet = inet_sk(sk);
734
735 switch (type) {
736 default:
737 case ICMP_TIME_EXCEEDED:
738 err = EHOSTUNREACH;
739 break;
740 case ICMP_SOURCE_QUENCH:
741 goto out;
742 case ICMP_PARAMETERPROB:
743 err = EPROTO;
744 harderr = 1;
745 break;
746 case ICMP_DEST_UNREACH:
747 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
748 ipv4_sk_update_pmtu(skb, sk, info);
749 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
750 err = EMSGSIZE;
751 harderr = 1;
752 break;
753 }
754 goto out;
755 }
756 err = EHOSTUNREACH;
757 if (code <= NR_ICMP_UNREACH) {
758 harderr = icmp_err_convert[code].fatal;
759 err = icmp_err_convert[code].errno;
760 }
761 break;
762 case ICMP_REDIRECT:
763 ipv4_sk_redirect(skb, sk);
764 goto out;
765 }
766
767 /*
768 * RFC1122: OK. Passes ICMP errors back to application, as per
769 * 4.1.3.3.
770 */
771 if (tunnel) {
772 /* ...not for tunnels though: we don't have a sending socket */
773 goto out;
774 }
775 if (!inet->recverr) {
776 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
777 goto out;
778 } else
779 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
780
781 sk->sk_err = err;
782 sk->sk_error_report(sk);
783 out:
784 return 0;
785 }
786
udp_err(struct sk_buff * skb,u32 info)787 int udp_err(struct sk_buff *skb, u32 info)
788 {
789 return __udp4_lib_err(skb, info, &udp_table);
790 }
791
792 /*
793 * Throw away all pending data and cancel the corking. Socket is locked.
794 */
udp_flush_pending_frames(struct sock * sk)795 void udp_flush_pending_frames(struct sock *sk)
796 {
797 struct udp_sock *up = udp_sk(sk);
798
799 if (up->pending) {
800 up->len = 0;
801 up->pending = 0;
802 ip_flush_pending_frames(sk);
803 }
804 }
805 EXPORT_SYMBOL(udp_flush_pending_frames);
806
807 /**
808 * udp4_hwcsum - handle outgoing HW checksumming
809 * @skb: sk_buff containing the filled-in UDP header
810 * (checksum field must be zeroed out)
811 * @src: source IP address
812 * @dst: destination IP address
813 */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)814 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
815 {
816 struct udphdr *uh = udp_hdr(skb);
817 int offset = skb_transport_offset(skb);
818 int len = skb->len - offset;
819 int hlen = len;
820 __wsum csum = 0;
821
822 if (!skb_has_frag_list(skb)) {
823 /*
824 * Only one fragment on the socket.
825 */
826 skb->csum_start = skb_transport_header(skb) - skb->head;
827 skb->csum_offset = offsetof(struct udphdr, check);
828 uh->check = ~csum_tcpudp_magic(src, dst, len,
829 IPPROTO_UDP, 0);
830 } else {
831 struct sk_buff *frags;
832
833 /*
834 * HW-checksum won't work as there are two or more
835 * fragments on the socket so that all csums of sk_buffs
836 * should be together
837 */
838 skb_walk_frags(skb, frags) {
839 csum = csum_add(csum, frags->csum);
840 hlen -= frags->len;
841 }
842
843 csum = skb_checksum(skb, offset, hlen, csum);
844 skb->ip_summed = CHECKSUM_NONE;
845
846 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
847 if (uh->check == 0)
848 uh->check = CSUM_MANGLED_0;
849 }
850 }
851 EXPORT_SYMBOL_GPL(udp4_hwcsum);
852
853 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
854 * for the simple case like when setting the checksum for a UDP tunnel.
855 */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)856 void udp_set_csum(bool nocheck, struct sk_buff *skb,
857 __be32 saddr, __be32 daddr, int len)
858 {
859 struct udphdr *uh = udp_hdr(skb);
860
861 if (nocheck) {
862 uh->check = 0;
863 } else if (skb_is_gso(skb)) {
864 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
865 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
866 uh->check = 0;
867 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
868 if (uh->check == 0)
869 uh->check = CSUM_MANGLED_0;
870 } else {
871 skb->ip_summed = CHECKSUM_PARTIAL;
872 skb->csum_start = skb_transport_header(skb) - skb->head;
873 skb->csum_offset = offsetof(struct udphdr, check);
874 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
875 }
876 }
877 EXPORT_SYMBOL(udp_set_csum);
878
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)879 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
880 struct inet_cork *cork)
881 {
882 struct sock *sk = skb->sk;
883 struct inet_sock *inet = inet_sk(sk);
884 struct udphdr *uh;
885 int err = 0;
886 int is_udplite = IS_UDPLITE(sk);
887 int offset = skb_transport_offset(skb);
888 int len = skb->len - offset;
889 int datalen = len - sizeof(*uh);
890 __wsum csum = 0;
891
892 /*
893 * Create a UDP header
894 */
895 uh = udp_hdr(skb);
896 uh->source = inet->inet_sport;
897 uh->dest = fl4->fl4_dport;
898 uh->len = htons(len);
899 uh->check = 0;
900
901 if (cork->gso_size) {
902 const int hlen = skb_network_header_len(skb) +
903 sizeof(struct udphdr);
904
905 if (hlen + cork->gso_size > cork->fragsize) {
906 kfree_skb(skb);
907 return -EINVAL;
908 }
909 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
910 kfree_skb(skb);
911 return -EINVAL;
912 }
913 if (sk->sk_no_check_tx) {
914 kfree_skb(skb);
915 return -EINVAL;
916 }
917 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
918 dst_xfrm(skb_dst(skb))) {
919 kfree_skb(skb);
920 return -EIO;
921 }
922
923 if (datalen > cork->gso_size) {
924 skb_shinfo(skb)->gso_size = cork->gso_size;
925 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
926 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
927 cork->gso_size);
928 }
929 goto csum_partial;
930 }
931
932 if (is_udplite) /* UDP-Lite */
933 csum = udplite_csum(skb);
934
935 else if (sk->sk_no_check_tx) { /* UDP csum off */
936
937 skb->ip_summed = CHECKSUM_NONE;
938 goto send;
939
940 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
941 csum_partial:
942
943 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
944 goto send;
945
946 } else
947 csum = udp_csum(skb);
948
949 /* add protocol-dependent pseudo-header */
950 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
951 sk->sk_protocol, csum);
952 if (uh->check == 0)
953 uh->check = CSUM_MANGLED_0;
954
955 send:
956 err = ip_send_skb(sock_net(sk), skb);
957 if (err) {
958 if (err == -ENOBUFS && !inet->recverr) {
959 UDP_INC_STATS(sock_net(sk),
960 UDP_MIB_SNDBUFERRORS, is_udplite);
961 err = 0;
962 }
963 } else
964 UDP_INC_STATS(sock_net(sk),
965 UDP_MIB_OUTDATAGRAMS, is_udplite);
966 return err;
967 }
968
969 /*
970 * Push out all pending data as one UDP datagram. Socket is locked.
971 */
udp_push_pending_frames(struct sock * sk)972 int udp_push_pending_frames(struct sock *sk)
973 {
974 struct udp_sock *up = udp_sk(sk);
975 struct inet_sock *inet = inet_sk(sk);
976 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
977 struct sk_buff *skb;
978 int err = 0;
979
980 skb = ip_finish_skb(sk, fl4);
981 if (!skb)
982 goto out;
983
984 err = udp_send_skb(skb, fl4, &inet->cork.base);
985
986 out:
987 up->len = 0;
988 up->pending = 0;
989 return err;
990 }
991 EXPORT_SYMBOL(udp_push_pending_frames);
992
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)993 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
994 {
995 switch (cmsg->cmsg_type) {
996 case UDP_SEGMENT:
997 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
998 return -EINVAL;
999 *gso_size = *(__u16 *)CMSG_DATA(cmsg);
1000 return 0;
1001 default:
1002 return -EINVAL;
1003 }
1004 }
1005
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)1006 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1007 {
1008 struct cmsghdr *cmsg;
1009 bool need_ip = false;
1010 int err;
1011
1012 for_each_cmsghdr(cmsg, msg) {
1013 if (!CMSG_OK(msg, cmsg))
1014 return -EINVAL;
1015
1016 if (cmsg->cmsg_level != SOL_UDP) {
1017 need_ip = true;
1018 continue;
1019 }
1020
1021 err = __udp_cmsg_send(cmsg, gso_size);
1022 if (err)
1023 return err;
1024 }
1025
1026 return need_ip;
1027 }
1028 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1029
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1030 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1031 {
1032 struct inet_sock *inet = inet_sk(sk);
1033 struct udp_sock *up = udp_sk(sk);
1034 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1035 struct flowi4 fl4_stack;
1036 struct flowi4 *fl4;
1037 int ulen = len;
1038 struct ipcm_cookie ipc;
1039 struct rtable *rt = NULL;
1040 int free = 0;
1041 int connected = 0;
1042 __be32 daddr, faddr, saddr;
1043 __be16 dport;
1044 u8 tos;
1045 int err, is_udplite = IS_UDPLITE(sk);
1046 int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1047 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1048 struct sk_buff *skb;
1049 struct ip_options_data opt_copy;
1050
1051 if (len > 0xFFFF)
1052 return -EMSGSIZE;
1053
1054 /*
1055 * Check the flags.
1056 */
1057
1058 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1059 return -EOPNOTSUPP;
1060 trace_android_rvh_udp_sendmsg(sk);
1061
1062 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1063
1064 fl4 = &inet->cork.fl.u.ip4;
1065 if (up->pending) {
1066 /*
1067 * There are pending frames.
1068 * The socket lock must be held while it's corked.
1069 */
1070 lock_sock(sk);
1071 if (likely(up->pending)) {
1072 if (unlikely(up->pending != AF_INET)) {
1073 release_sock(sk);
1074 return -EINVAL;
1075 }
1076 goto do_append_data;
1077 }
1078 release_sock(sk);
1079 }
1080 ulen += sizeof(struct udphdr);
1081
1082 /*
1083 * Get and verify the address.
1084 */
1085 if (usin) {
1086 if (msg->msg_namelen < sizeof(*usin))
1087 return -EINVAL;
1088 if (usin->sin_family != AF_INET) {
1089 if (usin->sin_family != AF_UNSPEC)
1090 return -EAFNOSUPPORT;
1091 }
1092
1093 daddr = usin->sin_addr.s_addr;
1094 dport = usin->sin_port;
1095 if (dport == 0)
1096 return -EINVAL;
1097 } else {
1098 if (sk->sk_state != TCP_ESTABLISHED)
1099 return -EDESTADDRREQ;
1100 daddr = inet->inet_daddr;
1101 dport = inet->inet_dport;
1102 /* Open fast path for connected socket.
1103 Route will not be used, if at least one option is set.
1104 */
1105 connected = 1;
1106 }
1107
1108 ipcm_init_sk(&ipc, inet);
1109 ipc.gso_size = READ_ONCE(up->gso_size);
1110
1111 if (msg->msg_controllen) {
1112 err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1113 if (err > 0)
1114 err = ip_cmsg_send(sk, msg, &ipc,
1115 sk->sk_family == AF_INET6);
1116 if (unlikely(err < 0)) {
1117 kfree(ipc.opt);
1118 return err;
1119 }
1120 if (ipc.opt)
1121 free = 1;
1122 connected = 0;
1123 }
1124 if (!ipc.opt) {
1125 struct ip_options_rcu *inet_opt;
1126
1127 rcu_read_lock();
1128 inet_opt = rcu_dereference(inet->inet_opt);
1129 if (inet_opt) {
1130 memcpy(&opt_copy, inet_opt,
1131 sizeof(*inet_opt) + inet_opt->opt.optlen);
1132 ipc.opt = &opt_copy.opt;
1133 }
1134 rcu_read_unlock();
1135 }
1136
1137 if (cgroup_bpf_enabled && !connected) {
1138 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1139 (struct sockaddr *)usin, &ipc.addr);
1140 if (err)
1141 goto out_free;
1142 if (usin) {
1143 if (usin->sin_port == 0) {
1144 /* BPF program set invalid port. Reject it. */
1145 err = -EINVAL;
1146 goto out_free;
1147 }
1148 daddr = usin->sin_addr.s_addr;
1149 dport = usin->sin_port;
1150 }
1151 }
1152
1153 saddr = ipc.addr;
1154 ipc.addr = faddr = daddr;
1155
1156 if (ipc.opt && ipc.opt->opt.srr) {
1157 if (!daddr) {
1158 err = -EINVAL;
1159 goto out_free;
1160 }
1161 faddr = ipc.opt->opt.faddr;
1162 connected = 0;
1163 }
1164 tos = get_rttos(&ipc, inet);
1165 if (sock_flag(sk, SOCK_LOCALROUTE) ||
1166 (msg->msg_flags & MSG_DONTROUTE) ||
1167 (ipc.opt && ipc.opt->opt.is_strictroute)) {
1168 tos |= RTO_ONLINK;
1169 connected = 0;
1170 }
1171
1172 if (ipv4_is_multicast(daddr)) {
1173 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1174 ipc.oif = inet->mc_index;
1175 if (!saddr)
1176 saddr = inet->mc_addr;
1177 connected = 0;
1178 } else if (!ipc.oif) {
1179 ipc.oif = inet->uc_index;
1180 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1181 /* oif is set, packet is to local broadcast and
1182 * uc_index is set. oif is most likely set
1183 * by sk_bound_dev_if. If uc_index != oif check if the
1184 * oif is an L3 master and uc_index is an L3 slave.
1185 * If so, we want to allow the send using the uc_index.
1186 */
1187 if (ipc.oif != inet->uc_index &&
1188 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1189 inet->uc_index)) {
1190 ipc.oif = inet->uc_index;
1191 }
1192 }
1193
1194 if (connected)
1195 rt = (struct rtable *)sk_dst_check(sk, 0);
1196
1197 if (!rt) {
1198 struct net *net = sock_net(sk);
1199 __u8 flow_flags = inet_sk_flowi_flags(sk);
1200
1201 fl4 = &fl4_stack;
1202
1203 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1204 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1205 flow_flags,
1206 faddr, saddr, dport, inet->inet_sport,
1207 sk->sk_uid);
1208
1209 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1210 rt = ip_route_output_flow(net, fl4, sk);
1211 if (IS_ERR(rt)) {
1212 err = PTR_ERR(rt);
1213 rt = NULL;
1214 if (err == -ENETUNREACH)
1215 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1216 goto out;
1217 }
1218
1219 err = -EACCES;
1220 if ((rt->rt_flags & RTCF_BROADCAST) &&
1221 !sock_flag(sk, SOCK_BROADCAST))
1222 goto out;
1223 if (connected)
1224 sk_dst_set(sk, dst_clone(&rt->dst));
1225 }
1226
1227 if (msg->msg_flags&MSG_CONFIRM)
1228 goto do_confirm;
1229 back_from_confirm:
1230
1231 saddr = fl4->saddr;
1232 if (!ipc.addr)
1233 daddr = ipc.addr = fl4->daddr;
1234
1235 /* Lockless fast path for the non-corking case. */
1236 if (!corkreq) {
1237 struct inet_cork cork;
1238
1239 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1240 sizeof(struct udphdr), &ipc, &rt,
1241 &cork, msg->msg_flags);
1242 err = PTR_ERR(skb);
1243 if (!IS_ERR_OR_NULL(skb))
1244 err = udp_send_skb(skb, fl4, &cork);
1245 goto out;
1246 }
1247
1248 lock_sock(sk);
1249 if (unlikely(up->pending)) {
1250 /* The socket is already corked while preparing it. */
1251 /* ... which is an evident application bug. --ANK */
1252 release_sock(sk);
1253
1254 net_dbg_ratelimited("socket already corked\n");
1255 err = -EINVAL;
1256 goto out;
1257 }
1258 /*
1259 * Now cork the socket to pend data.
1260 */
1261 fl4 = &inet->cork.fl.u.ip4;
1262 fl4->daddr = daddr;
1263 fl4->saddr = saddr;
1264 fl4->fl4_dport = dport;
1265 fl4->fl4_sport = inet->inet_sport;
1266 up->pending = AF_INET;
1267
1268 do_append_data:
1269 up->len += ulen;
1270 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1271 sizeof(struct udphdr), &ipc, &rt,
1272 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1273 if (err)
1274 udp_flush_pending_frames(sk);
1275 else if (!corkreq)
1276 err = udp_push_pending_frames(sk);
1277 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1278 up->pending = 0;
1279 release_sock(sk);
1280
1281 out:
1282 ip_rt_put(rt);
1283 out_free:
1284 if (free)
1285 kfree(ipc.opt);
1286 if (!err)
1287 return len;
1288 /*
1289 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1290 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1291 * we don't have a good statistic (IpOutDiscards but it can be too many
1292 * things). We could add another new stat but at least for now that
1293 * seems like overkill.
1294 */
1295 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1296 UDP_INC_STATS(sock_net(sk),
1297 UDP_MIB_SNDBUFERRORS, is_udplite);
1298 }
1299 return err;
1300
1301 do_confirm:
1302 if (msg->msg_flags & MSG_PROBE)
1303 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1304 if (!(msg->msg_flags&MSG_PROBE) || len)
1305 goto back_from_confirm;
1306 err = 0;
1307 goto out;
1308 }
1309 EXPORT_SYMBOL(udp_sendmsg);
1310
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1311 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1312 size_t size, int flags)
1313 {
1314 struct inet_sock *inet = inet_sk(sk);
1315 struct udp_sock *up = udp_sk(sk);
1316 int ret;
1317
1318 if (flags & MSG_SENDPAGE_NOTLAST)
1319 flags |= MSG_MORE;
1320
1321 if (!up->pending) {
1322 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1323
1324 /* Call udp_sendmsg to specify destination address which
1325 * sendpage interface can't pass.
1326 * This will succeed only when the socket is connected.
1327 */
1328 ret = udp_sendmsg(sk, &msg, 0);
1329 if (ret < 0)
1330 return ret;
1331 }
1332
1333 lock_sock(sk);
1334
1335 if (unlikely(!up->pending)) {
1336 release_sock(sk);
1337
1338 net_dbg_ratelimited("cork failed\n");
1339 return -EINVAL;
1340 }
1341
1342 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1343 page, offset, size, flags);
1344 if (ret == -EOPNOTSUPP) {
1345 release_sock(sk);
1346 return sock_no_sendpage(sk->sk_socket, page, offset,
1347 size, flags);
1348 }
1349 if (ret < 0) {
1350 udp_flush_pending_frames(sk);
1351 goto out;
1352 }
1353
1354 up->len += size;
1355 if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1356 ret = udp_push_pending_frames(sk);
1357 if (!ret)
1358 ret = size;
1359 out:
1360 release_sock(sk);
1361 return ret;
1362 }
1363
1364 #define UDP_SKB_IS_STATELESS 0x80000000
1365
1366 /* all head states (dst, sk, nf conntrack) except skb extensions are
1367 * cleared by udp_rcv().
1368 *
1369 * We need to preserve secpath, if present, to eventually process
1370 * IP_CMSG_PASSSEC at recvmsg() time.
1371 *
1372 * Other extensions can be cleared.
1373 */
udp_try_make_stateless(struct sk_buff * skb)1374 static bool udp_try_make_stateless(struct sk_buff *skb)
1375 {
1376 if (!skb_has_extensions(skb))
1377 return true;
1378
1379 if (!secpath_exists(skb)) {
1380 skb_ext_reset(skb);
1381 return true;
1382 }
1383
1384 return false;
1385 }
1386
udp_set_dev_scratch(struct sk_buff * skb)1387 static void udp_set_dev_scratch(struct sk_buff *skb)
1388 {
1389 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1390
1391 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1392 scratch->_tsize_state = skb->truesize;
1393 #if BITS_PER_LONG == 64
1394 scratch->len = skb->len;
1395 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1396 scratch->is_linear = !skb_is_nonlinear(skb);
1397 #endif
1398 if (udp_try_make_stateless(skb))
1399 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1400 }
1401
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1402 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1403 {
1404 /* We come here after udp_lib_checksum_complete() returned 0.
1405 * This means that __skb_checksum_complete() might have
1406 * set skb->csum_valid to 1.
1407 * On 64bit platforms, we can set csum_unnecessary
1408 * to true, but only if the skb is not shared.
1409 */
1410 #if BITS_PER_LONG == 64
1411 if (!skb_shared(skb))
1412 udp_skb_scratch(skb)->csum_unnecessary = true;
1413 #endif
1414 }
1415
udp_skb_truesize(struct sk_buff * skb)1416 static int udp_skb_truesize(struct sk_buff *skb)
1417 {
1418 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1419 }
1420
udp_skb_has_head_state(struct sk_buff * skb)1421 static bool udp_skb_has_head_state(struct sk_buff *skb)
1422 {
1423 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1424 }
1425
1426 /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,int size,int partial,bool rx_queue_lock_held)1427 static void udp_rmem_release(struct sock *sk, int size, int partial,
1428 bool rx_queue_lock_held)
1429 {
1430 struct udp_sock *up = udp_sk(sk);
1431 struct sk_buff_head *sk_queue;
1432 int amt;
1433
1434 if (likely(partial)) {
1435 up->forward_deficit += size;
1436 size = up->forward_deficit;
1437 if (size < (sk->sk_rcvbuf >> 2) &&
1438 !skb_queue_empty(&up->reader_queue))
1439 return;
1440 } else {
1441 size += up->forward_deficit;
1442 }
1443 up->forward_deficit = 0;
1444
1445 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1446 * if the called don't held it already
1447 */
1448 sk_queue = &sk->sk_receive_queue;
1449 if (!rx_queue_lock_held)
1450 spin_lock(&sk_queue->lock);
1451
1452
1453 sk->sk_forward_alloc += size;
1454 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1455 sk->sk_forward_alloc -= amt;
1456
1457 if (amt)
1458 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1459
1460 atomic_sub(size, &sk->sk_rmem_alloc);
1461
1462 /* this can save us from acquiring the rx queue lock on next receive */
1463 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1464
1465 if (!rx_queue_lock_held)
1466 spin_unlock(&sk_queue->lock);
1467 }
1468
1469 /* Note: called with reader_queue.lock held.
1470 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1471 * This avoids a cache line miss while receive_queue lock is held.
1472 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1473 */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1474 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1475 {
1476 prefetch(&skb->data);
1477 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1478 }
1479 EXPORT_SYMBOL(udp_skb_destructor);
1480
1481 /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1482 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1483 {
1484 prefetch(&skb->data);
1485 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1486 }
1487
1488 /* Idea of busylocks is to let producers grab an extra spinlock
1489 * to relieve pressure on the receive_queue spinlock shared by consumer.
1490 * Under flood, this means that only one producer can be in line
1491 * trying to acquire the receive_queue spinlock.
1492 * These busylock can be allocated on a per cpu manner, instead of a
1493 * per socket one (that would consume a cache line per socket)
1494 */
1495 static int udp_busylocks_log __read_mostly;
1496 static spinlock_t *udp_busylocks __read_mostly;
1497
busylock_acquire(void * ptr)1498 static spinlock_t *busylock_acquire(void *ptr)
1499 {
1500 spinlock_t *busy;
1501
1502 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1503 spin_lock(busy);
1504 return busy;
1505 }
1506
busylock_release(spinlock_t * busy)1507 static void busylock_release(spinlock_t *busy)
1508 {
1509 if (busy)
1510 spin_unlock(busy);
1511 }
1512
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1513 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1514 {
1515 struct sk_buff_head *list = &sk->sk_receive_queue;
1516 int rmem, delta, amt, err = -ENOMEM;
1517 spinlock_t *busy = NULL;
1518 int size;
1519
1520 /* try to avoid the costly atomic add/sub pair when the receive
1521 * queue is full; always allow at least a packet
1522 */
1523 rmem = atomic_read(&sk->sk_rmem_alloc);
1524 if (rmem > sk->sk_rcvbuf)
1525 goto drop;
1526
1527 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1528 * having linear skbs :
1529 * - Reduce memory overhead and thus increase receive queue capacity
1530 * - Less cache line misses at copyout() time
1531 * - Less work at consume_skb() (less alien page frag freeing)
1532 */
1533 if (rmem > (sk->sk_rcvbuf >> 1)) {
1534 skb_condense(skb);
1535
1536 busy = busylock_acquire(sk);
1537 }
1538 size = skb->truesize;
1539 udp_set_dev_scratch(skb);
1540
1541 /* we drop only if the receive buf is full and the receive
1542 * queue contains some other skb
1543 */
1544 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1545 if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1546 goto uncharge_drop;
1547
1548 spin_lock(&list->lock);
1549 if (size >= sk->sk_forward_alloc) {
1550 amt = sk_mem_pages(size);
1551 delta = amt << SK_MEM_QUANTUM_SHIFT;
1552 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1553 err = -ENOBUFS;
1554 spin_unlock(&list->lock);
1555 goto uncharge_drop;
1556 }
1557
1558 sk->sk_forward_alloc += delta;
1559 }
1560
1561 sk->sk_forward_alloc -= size;
1562
1563 /* no need to setup a destructor, we will explicitly release the
1564 * forward allocated memory on dequeue
1565 */
1566 sock_skb_set_dropcount(sk, skb);
1567
1568 __skb_queue_tail(list, skb);
1569 spin_unlock(&list->lock);
1570
1571 if (!sock_flag(sk, SOCK_DEAD))
1572 sk->sk_data_ready(sk);
1573
1574 busylock_release(busy);
1575 return 0;
1576
1577 uncharge_drop:
1578 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1579
1580 drop:
1581 atomic_inc(&sk->sk_drops);
1582 busylock_release(busy);
1583 return err;
1584 }
1585 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1586
udp_destruct_sock(struct sock * sk)1587 void udp_destruct_sock(struct sock *sk)
1588 {
1589 /* reclaim completely the forward allocated memory */
1590 struct udp_sock *up = udp_sk(sk);
1591 unsigned int total = 0;
1592 struct sk_buff *skb;
1593
1594 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1595 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1596 total += skb->truesize;
1597 kfree_skb(skb);
1598 }
1599 udp_rmem_release(sk, total, 0, true);
1600
1601 inet_sock_destruct(sk);
1602 }
1603 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1604
udp_init_sock(struct sock * sk)1605 int udp_init_sock(struct sock *sk)
1606 {
1607 skb_queue_head_init(&udp_sk(sk)->reader_queue);
1608 sk->sk_destruct = udp_destruct_sock;
1609 return 0;
1610 }
1611 EXPORT_SYMBOL_GPL(udp_init_sock);
1612
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1613 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1614 {
1615 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1616 bool slow = lock_sock_fast(sk);
1617
1618 sk_peek_offset_bwd(sk, len);
1619 unlock_sock_fast(sk, slow);
1620 }
1621
1622 if (!skb_unref(skb))
1623 return;
1624
1625 /* In the more common cases we cleared the head states previously,
1626 * see __udp_queue_rcv_skb().
1627 */
1628 if (unlikely(udp_skb_has_head_state(skb)))
1629 skb_release_head_state(skb);
1630 __consume_stateless_skb(skb);
1631 }
1632 EXPORT_SYMBOL_GPL(skb_consume_udp);
1633
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,int * total)1634 static struct sk_buff *__first_packet_length(struct sock *sk,
1635 struct sk_buff_head *rcvq,
1636 int *total)
1637 {
1638 struct sk_buff *skb;
1639
1640 while ((skb = skb_peek(rcvq)) != NULL) {
1641 if (udp_lib_checksum_complete(skb)) {
1642 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1643 IS_UDPLITE(sk));
1644 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1645 IS_UDPLITE(sk));
1646 atomic_inc(&sk->sk_drops);
1647 __skb_unlink(skb, rcvq);
1648 *total += skb->truesize;
1649 kfree_skb(skb);
1650 } else {
1651 udp_skb_csum_unnecessary_set(skb);
1652 break;
1653 }
1654 }
1655 return skb;
1656 }
1657
1658 /**
1659 * first_packet_length - return length of first packet in receive queue
1660 * @sk: socket
1661 *
1662 * Drops all bad checksum frames, until a valid one is found.
1663 * Returns the length of found skb, or -1 if none is found.
1664 */
first_packet_length(struct sock * sk)1665 static int first_packet_length(struct sock *sk)
1666 {
1667 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1668 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1669 struct sk_buff *skb;
1670 int total = 0;
1671 int res;
1672
1673 spin_lock_bh(&rcvq->lock);
1674 skb = __first_packet_length(sk, rcvq, &total);
1675 if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1676 spin_lock(&sk_queue->lock);
1677 skb_queue_splice_tail_init(sk_queue, rcvq);
1678 spin_unlock(&sk_queue->lock);
1679
1680 skb = __first_packet_length(sk, rcvq, &total);
1681 }
1682 res = skb ? skb->len : -1;
1683 if (total)
1684 udp_rmem_release(sk, total, 1, false);
1685 spin_unlock_bh(&rcvq->lock);
1686 return res;
1687 }
1688
1689 /*
1690 * IOCTL requests applicable to the UDP protocol
1691 */
1692
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1693 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1694 {
1695 switch (cmd) {
1696 case SIOCOUTQ:
1697 {
1698 int amount = sk_wmem_alloc_get(sk);
1699
1700 return put_user(amount, (int __user *)arg);
1701 }
1702
1703 case SIOCINQ:
1704 {
1705 int amount = max_t(int, 0, first_packet_length(sk));
1706
1707 return put_user(amount, (int __user *)arg);
1708 }
1709
1710 default:
1711 return -ENOIOCTLCMD;
1712 }
1713
1714 return 0;
1715 }
1716 EXPORT_SYMBOL(udp_ioctl);
1717
__skb_recv_udp(struct sock * sk,unsigned int flags,int noblock,int * off,int * err)1718 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1719 int noblock, int *off, int *err)
1720 {
1721 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1722 struct sk_buff_head *queue;
1723 struct sk_buff *last;
1724 long timeo;
1725 int error;
1726
1727 queue = &udp_sk(sk)->reader_queue;
1728 flags |= noblock ? MSG_DONTWAIT : 0;
1729 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1730 do {
1731 struct sk_buff *skb;
1732
1733 error = sock_error(sk);
1734 if (error)
1735 break;
1736
1737 error = -EAGAIN;
1738 do {
1739 spin_lock_bh(&queue->lock);
1740 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1741 err, &last);
1742 if (skb) {
1743 if (!(flags & MSG_PEEK))
1744 udp_skb_destructor(sk, skb);
1745 spin_unlock_bh(&queue->lock);
1746 return skb;
1747 }
1748
1749 if (skb_queue_empty_lockless(sk_queue)) {
1750 spin_unlock_bh(&queue->lock);
1751 goto busy_check;
1752 }
1753
1754 /* refill the reader queue and walk it again
1755 * keep both queues locked to avoid re-acquiring
1756 * the sk_receive_queue lock if fwd memory scheduling
1757 * is needed.
1758 */
1759 spin_lock(&sk_queue->lock);
1760 skb_queue_splice_tail_init(sk_queue, queue);
1761
1762 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1763 err, &last);
1764 if (skb && !(flags & MSG_PEEK))
1765 udp_skb_dtor_locked(sk, skb);
1766 spin_unlock(&sk_queue->lock);
1767 spin_unlock_bh(&queue->lock);
1768 if (skb)
1769 return skb;
1770
1771 busy_check:
1772 if (!sk_can_busy_loop(sk))
1773 break;
1774
1775 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1776 } while (!skb_queue_empty_lockless(sk_queue));
1777
1778 /* sk_queue is empty, reader_queue may contain peeked packets */
1779 } while (timeo &&
1780 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1781 &error, &timeo,
1782 (struct sk_buff *)sk_queue));
1783
1784 *err = error;
1785 return NULL;
1786 }
1787 EXPORT_SYMBOL(__skb_recv_udp);
1788
1789 /*
1790 * This should be easy, if there is something there we
1791 * return it, otherwise we block.
1792 */
1793
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)1794 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1795 int flags, int *addr_len)
1796 {
1797 struct inet_sock *inet = inet_sk(sk);
1798 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1799 struct sk_buff *skb;
1800 unsigned int ulen, copied;
1801 int off, err, peeking = flags & MSG_PEEK;
1802 int is_udplite = IS_UDPLITE(sk);
1803 bool checksum_valid = false;
1804
1805 if (flags & MSG_ERRQUEUE)
1806 return ip_recv_error(sk, msg, len, addr_len);
1807
1808 try_again:
1809 off = sk_peek_offset(sk, flags);
1810 skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1811 if (!skb)
1812 return err;
1813 trace_android_rvh_udp_recvmsg(sk);
1814
1815 ulen = udp_skb_len(skb);
1816 copied = len;
1817 if (copied > ulen - off)
1818 copied = ulen - off;
1819 else if (copied < ulen)
1820 msg->msg_flags |= MSG_TRUNC;
1821
1822 /*
1823 * If checksum is needed at all, try to do it while copying the
1824 * data. If the data is truncated, or if we only want a partial
1825 * coverage checksum (UDP-Lite), do it before the copy.
1826 */
1827
1828 if (copied < ulen || peeking ||
1829 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1830 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1831 !__udp_lib_checksum_complete(skb);
1832 if (!checksum_valid)
1833 goto csum_copy_err;
1834 }
1835
1836 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1837 if (udp_skb_is_linear(skb))
1838 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1839 else
1840 err = skb_copy_datagram_msg(skb, off, msg, copied);
1841 } else {
1842 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1843
1844 if (err == -EINVAL)
1845 goto csum_copy_err;
1846 }
1847
1848 if (unlikely(err)) {
1849 if (!peeking) {
1850 atomic_inc(&sk->sk_drops);
1851 UDP_INC_STATS(sock_net(sk),
1852 UDP_MIB_INERRORS, is_udplite);
1853 }
1854 kfree_skb(skb);
1855 return err;
1856 }
1857
1858 if (!peeking)
1859 UDP_INC_STATS(sock_net(sk),
1860 UDP_MIB_INDATAGRAMS, is_udplite);
1861
1862 sock_recv_ts_and_drops(msg, sk, skb);
1863
1864 /* Copy the address. */
1865 if (sin) {
1866 sin->sin_family = AF_INET;
1867 sin->sin_port = udp_hdr(skb)->source;
1868 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1869 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1870 *addr_len = sizeof(*sin);
1871
1872 if (cgroup_bpf_enabled)
1873 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1874 (struct sockaddr *)sin);
1875 }
1876
1877 if (udp_sk(sk)->gro_enabled)
1878 udp_cmsg_recv(msg, sk, skb);
1879
1880 if (inet->cmsg_flags)
1881 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1882
1883 err = copied;
1884 if (flags & MSG_TRUNC)
1885 err = ulen;
1886
1887 skb_consume_udp(sk, skb, peeking ? -err : err);
1888 return err;
1889
1890 csum_copy_err:
1891 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1892 udp_skb_destructor)) {
1893 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1894 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1895 }
1896 kfree_skb(skb);
1897
1898 /* starting over for a new packet, but check if we need to yield */
1899 cond_resched();
1900 msg->msg_flags &= ~MSG_TRUNC;
1901 goto try_again;
1902 }
1903
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)1904 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1905 {
1906 /* This check is replicated from __ip4_datagram_connect() and
1907 * intended to prevent BPF program called below from accessing bytes
1908 * that are out of the bound specified by user in addr_len.
1909 */
1910 if (addr_len < sizeof(struct sockaddr_in))
1911 return -EINVAL;
1912
1913 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1914 }
1915 EXPORT_SYMBOL(udp_pre_connect);
1916
__udp_disconnect(struct sock * sk,int flags)1917 int __udp_disconnect(struct sock *sk, int flags)
1918 {
1919 struct inet_sock *inet = inet_sk(sk);
1920 /*
1921 * 1003.1g - break association.
1922 */
1923
1924 sk->sk_state = TCP_CLOSE;
1925 inet->inet_daddr = 0;
1926 inet->inet_dport = 0;
1927 sock_rps_reset_rxhash(sk);
1928 sk->sk_bound_dev_if = 0;
1929 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1930 inet_reset_saddr(sk);
1931 if (sk->sk_prot->rehash &&
1932 (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1933 sk->sk_prot->rehash(sk);
1934 }
1935
1936 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1937 sk->sk_prot->unhash(sk);
1938 inet->inet_sport = 0;
1939 }
1940 sk_dst_reset(sk);
1941 return 0;
1942 }
1943 EXPORT_SYMBOL(__udp_disconnect);
1944
udp_disconnect(struct sock * sk,int flags)1945 int udp_disconnect(struct sock *sk, int flags)
1946 {
1947 lock_sock(sk);
1948 __udp_disconnect(sk, flags);
1949 release_sock(sk);
1950 return 0;
1951 }
1952 EXPORT_SYMBOL(udp_disconnect);
1953
udp_lib_unhash(struct sock * sk)1954 void udp_lib_unhash(struct sock *sk)
1955 {
1956 if (sk_hashed(sk)) {
1957 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1958 struct udp_hslot *hslot, *hslot2;
1959
1960 hslot = udp_hashslot(udptable, sock_net(sk),
1961 udp_sk(sk)->udp_port_hash);
1962 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1963
1964 spin_lock_bh(&hslot->lock);
1965 if (rcu_access_pointer(sk->sk_reuseport_cb))
1966 reuseport_detach_sock(sk);
1967 if (sk_del_node_init_rcu(sk)) {
1968 hslot->count--;
1969 inet_sk(sk)->inet_num = 0;
1970 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1971
1972 spin_lock(&hslot2->lock);
1973 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1974 hslot2->count--;
1975 spin_unlock(&hslot2->lock);
1976 }
1977 spin_unlock_bh(&hslot->lock);
1978 }
1979 }
1980 EXPORT_SYMBOL(udp_lib_unhash);
1981
1982 /*
1983 * inet_rcv_saddr was changed, we must rehash secondary hash
1984 */
udp_lib_rehash(struct sock * sk,u16 newhash)1985 void udp_lib_rehash(struct sock *sk, u16 newhash)
1986 {
1987 if (sk_hashed(sk)) {
1988 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1989 struct udp_hslot *hslot, *hslot2, *nhslot2;
1990
1991 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1992 nhslot2 = udp_hashslot2(udptable, newhash);
1993 udp_sk(sk)->udp_portaddr_hash = newhash;
1994
1995 if (hslot2 != nhslot2 ||
1996 rcu_access_pointer(sk->sk_reuseport_cb)) {
1997 hslot = udp_hashslot(udptable, sock_net(sk),
1998 udp_sk(sk)->udp_port_hash);
1999 /* we must lock primary chain too */
2000 spin_lock_bh(&hslot->lock);
2001 if (rcu_access_pointer(sk->sk_reuseport_cb))
2002 reuseport_detach_sock(sk);
2003
2004 if (hslot2 != nhslot2) {
2005 spin_lock(&hslot2->lock);
2006 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2007 hslot2->count--;
2008 spin_unlock(&hslot2->lock);
2009
2010 spin_lock(&nhslot2->lock);
2011 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2012 &nhslot2->head);
2013 nhslot2->count++;
2014 spin_unlock(&nhslot2->lock);
2015 }
2016
2017 spin_unlock_bh(&hslot->lock);
2018 }
2019 }
2020 }
2021 EXPORT_SYMBOL(udp_lib_rehash);
2022
udp_v4_rehash(struct sock * sk)2023 void udp_v4_rehash(struct sock *sk)
2024 {
2025 u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2026 inet_sk(sk)->inet_rcv_saddr,
2027 inet_sk(sk)->inet_num);
2028 udp_lib_rehash(sk, new_hash);
2029 }
2030
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2031 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2032 {
2033 int rc;
2034
2035 if (inet_sk(sk)->inet_daddr) {
2036 sock_rps_save_rxhash(sk, skb);
2037 sk_mark_napi_id(sk, skb);
2038 sk_incoming_cpu_update(sk);
2039 } else {
2040 sk_mark_napi_id_once(sk, skb);
2041 }
2042
2043 rc = __udp_enqueue_schedule_skb(sk, skb);
2044 if (rc < 0) {
2045 int is_udplite = IS_UDPLITE(sk);
2046
2047 /* Note that an ENOMEM error is charged twice */
2048 if (rc == -ENOMEM)
2049 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2050 is_udplite);
2051 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2052 kfree_skb(skb);
2053 trace_udp_fail_queue_rcv_skb(rc, sk);
2054 return -1;
2055 }
2056
2057 return 0;
2058 }
2059
2060 /* returns:
2061 * -1: error
2062 * 0: success
2063 * >0: "udp encap" protocol resubmission
2064 *
2065 * Note that in the success and error cases, the skb is assumed to
2066 * have either been requeued or freed.
2067 */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2068 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2069 {
2070 struct udp_sock *up = udp_sk(sk);
2071 int is_udplite = IS_UDPLITE(sk);
2072
2073 /*
2074 * Charge it to the socket, dropping if the queue is full.
2075 */
2076 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2077 goto drop;
2078 nf_reset_ct(skb);
2079
2080 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2081 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2082
2083 /*
2084 * This is an encapsulation socket so pass the skb to
2085 * the socket's udp_encap_rcv() hook. Otherwise, just
2086 * fall through and pass this up the UDP socket.
2087 * up->encap_rcv() returns the following value:
2088 * =0 if skb was successfully passed to the encap
2089 * handler or was discarded by it.
2090 * >0 if skb should be passed on to UDP.
2091 * <0 if skb should be resubmitted as proto -N
2092 */
2093
2094 /* if we're overly short, let UDP handle it */
2095 encap_rcv = READ_ONCE(up->encap_rcv);
2096 if (encap_rcv) {
2097 int ret;
2098
2099 /* Verify checksum before giving to encap */
2100 if (udp_lib_checksum_complete(skb))
2101 goto csum_error;
2102
2103 ret = encap_rcv(sk, skb);
2104 if (ret <= 0) {
2105 __UDP_INC_STATS(sock_net(sk),
2106 UDP_MIB_INDATAGRAMS,
2107 is_udplite);
2108 return -ret;
2109 }
2110 }
2111
2112 /* FALLTHROUGH -- it's a UDP Packet */
2113 }
2114
2115 /*
2116 * UDP-Lite specific tests, ignored on UDP sockets
2117 */
2118 if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
2119
2120 /*
2121 * MIB statistics other than incrementing the error count are
2122 * disabled for the following two types of errors: these depend
2123 * on the application settings, not on the functioning of the
2124 * protocol stack as such.
2125 *
2126 * RFC 3828 here recommends (sec 3.3): "There should also be a
2127 * way ... to ... at least let the receiving application block
2128 * delivery of packets with coverage values less than a value
2129 * provided by the application."
2130 */
2131 if (up->pcrlen == 0) { /* full coverage was set */
2132 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2133 UDP_SKB_CB(skb)->cscov, skb->len);
2134 goto drop;
2135 }
2136 /* The next case involves violating the min. coverage requested
2137 * by the receiver. This is subtle: if receiver wants x and x is
2138 * greater than the buffersize/MTU then receiver will complain
2139 * that it wants x while sender emits packets of smaller size y.
2140 * Therefore the above ...()->partial_cov statement is essential.
2141 */
2142 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
2143 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2144 UDP_SKB_CB(skb)->cscov, up->pcrlen);
2145 goto drop;
2146 }
2147 }
2148
2149 prefetch(&sk->sk_rmem_alloc);
2150 if (rcu_access_pointer(sk->sk_filter) &&
2151 udp_lib_checksum_complete(skb))
2152 goto csum_error;
2153
2154 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2155 goto drop;
2156
2157 udp_csum_pull_header(skb);
2158
2159 ipv4_pktinfo_prepare(sk, skb);
2160 return __udp_queue_rcv_skb(sk, skb);
2161
2162 csum_error:
2163 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2164 drop:
2165 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2166 atomic_inc(&sk->sk_drops);
2167 kfree_skb(skb);
2168 return -1;
2169 }
2170
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2171 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2172 {
2173 struct sk_buff *next, *segs;
2174 int ret;
2175
2176 if (likely(!udp_unexpected_gso(sk, skb)))
2177 return udp_queue_rcv_one_skb(sk, skb);
2178
2179 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2180 __skb_push(skb, -skb_mac_offset(skb));
2181 segs = udp_rcv_segment(sk, skb, true);
2182 skb_list_walk_safe(segs, skb, next) {
2183 __skb_pull(skb, skb_transport_offset(skb));
2184 ret = udp_queue_rcv_one_skb(sk, skb);
2185 if (ret > 0)
2186 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2187 }
2188 return 0;
2189 }
2190
2191 /* For TCP sockets, sk_rx_dst is protected by socket lock
2192 * For UDP, we use xchg() to guard against concurrent changes.
2193 */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2194 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2195 {
2196 struct dst_entry *old;
2197
2198 if (dst_hold_safe(dst)) {
2199 old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2200 dst_release(old);
2201 return old != dst;
2202 }
2203 return false;
2204 }
2205 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2206
2207 /*
2208 * Multicasts and broadcasts go to each listener.
2209 *
2210 * Note: called only from the BH handler context.
2211 */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2212 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2213 struct udphdr *uh,
2214 __be32 saddr, __be32 daddr,
2215 struct udp_table *udptable,
2216 int proto)
2217 {
2218 struct sock *sk, *first = NULL;
2219 unsigned short hnum = ntohs(uh->dest);
2220 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2221 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2222 unsigned int offset = offsetof(typeof(*sk), sk_node);
2223 int dif = skb->dev->ifindex;
2224 int sdif = inet_sdif(skb);
2225 struct hlist_node *node;
2226 struct sk_buff *nskb;
2227
2228 if (use_hash2) {
2229 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2230 udptable->mask;
2231 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2232 start_lookup:
2233 hslot = &udptable->hash2[hash2];
2234 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2235 }
2236
2237 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2238 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2239 uh->source, saddr, dif, sdif, hnum))
2240 continue;
2241
2242 if (!first) {
2243 first = sk;
2244 continue;
2245 }
2246 nskb = skb_clone(skb, GFP_ATOMIC);
2247
2248 if (unlikely(!nskb)) {
2249 atomic_inc(&sk->sk_drops);
2250 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2251 IS_UDPLITE(sk));
2252 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2253 IS_UDPLITE(sk));
2254 continue;
2255 }
2256 if (udp_queue_rcv_skb(sk, nskb) > 0)
2257 consume_skb(nskb);
2258 }
2259
2260 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2261 if (use_hash2 && hash2 != hash2_any) {
2262 hash2 = hash2_any;
2263 goto start_lookup;
2264 }
2265
2266 if (first) {
2267 if (udp_queue_rcv_skb(first, skb) > 0)
2268 consume_skb(skb);
2269 } else {
2270 kfree_skb(skb);
2271 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2272 proto == IPPROTO_UDPLITE);
2273 }
2274 return 0;
2275 }
2276
2277 /* Initialize UDP checksum. If exited with zero value (success),
2278 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2279 * Otherwise, csum completion requires checksumming packet body,
2280 * including udp header and folding it to skb->csum.
2281 */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2282 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2283 int proto)
2284 {
2285 int err;
2286
2287 UDP_SKB_CB(skb)->partial_cov = 0;
2288 UDP_SKB_CB(skb)->cscov = skb->len;
2289
2290 if (proto == IPPROTO_UDPLITE) {
2291 err = udplite_checksum_init(skb, uh);
2292 if (err)
2293 return err;
2294
2295 if (UDP_SKB_CB(skb)->partial_cov) {
2296 skb->csum = inet_compute_pseudo(skb, proto);
2297 return 0;
2298 }
2299 }
2300
2301 /* Note, we are only interested in != 0 or == 0, thus the
2302 * force to int.
2303 */
2304 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2305 inet_compute_pseudo);
2306 if (err)
2307 return err;
2308
2309 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2310 /* If SW calculated the value, we know it's bad */
2311 if (skb->csum_complete_sw)
2312 return 1;
2313
2314 /* HW says the value is bad. Let's validate that.
2315 * skb->csum is no longer the full packet checksum,
2316 * so don't treat it as such.
2317 */
2318 skb_checksum_complete_unset(skb);
2319 }
2320
2321 return 0;
2322 }
2323
2324 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2325 * return code conversion for ip layer consumption
2326 */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2327 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2328 struct udphdr *uh)
2329 {
2330 int ret;
2331
2332 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2333 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2334
2335 ret = udp_queue_rcv_skb(sk, skb);
2336
2337 /* a return value > 0 means to resubmit the input, but
2338 * it wants the return to be -protocol, or 0
2339 */
2340 if (ret > 0)
2341 return -ret;
2342 return 0;
2343 }
2344
2345 /*
2346 * All we need to do is get the socket, and then do a checksum.
2347 */
2348
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2349 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2350 int proto)
2351 {
2352 struct sock *sk;
2353 struct udphdr *uh;
2354 unsigned short ulen;
2355 struct rtable *rt = skb_rtable(skb);
2356 __be32 saddr, daddr;
2357 struct net *net = dev_net(skb->dev);
2358 bool refcounted;
2359
2360 /*
2361 * Validate the packet.
2362 */
2363 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2364 goto drop; /* No space for header. */
2365
2366 uh = udp_hdr(skb);
2367 ulen = ntohs(uh->len);
2368 saddr = ip_hdr(skb)->saddr;
2369 daddr = ip_hdr(skb)->daddr;
2370
2371 if (ulen > skb->len)
2372 goto short_packet;
2373
2374 if (proto == IPPROTO_UDP) {
2375 /* UDP validates ulen. */
2376 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2377 goto short_packet;
2378 uh = udp_hdr(skb);
2379 }
2380
2381 if (udp4_csum_init(skb, uh, proto))
2382 goto csum_error;
2383
2384 sk = skb_steal_sock(skb, &refcounted);
2385 if (sk) {
2386 struct dst_entry *dst = skb_dst(skb);
2387 int ret;
2388
2389 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2390 udp_sk_rx_dst_set(sk, dst);
2391
2392 ret = udp_unicast_rcv_skb(sk, skb, uh);
2393 if (refcounted)
2394 sock_put(sk);
2395 return ret;
2396 }
2397
2398 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2399 return __udp4_lib_mcast_deliver(net, skb, uh,
2400 saddr, daddr, udptable, proto);
2401
2402 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2403 if (sk)
2404 return udp_unicast_rcv_skb(sk, skb, uh);
2405
2406 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2407 goto drop;
2408 nf_reset_ct(skb);
2409
2410 /* No socket. Drop packet silently, if checksum is wrong */
2411 if (udp_lib_checksum_complete(skb))
2412 goto csum_error;
2413
2414 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2415 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2416
2417 /*
2418 * Hmm. We got an UDP packet to a port to which we
2419 * don't wanna listen. Ignore it.
2420 */
2421 kfree_skb(skb);
2422 return 0;
2423
2424 short_packet:
2425 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2426 proto == IPPROTO_UDPLITE ? "Lite" : "",
2427 &saddr, ntohs(uh->source),
2428 ulen, skb->len,
2429 &daddr, ntohs(uh->dest));
2430 goto drop;
2431
2432 csum_error:
2433 /*
2434 * RFC1122: OK. Discards the bad packet silently (as far as
2435 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2436 */
2437 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2438 proto == IPPROTO_UDPLITE ? "Lite" : "",
2439 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2440 ulen);
2441 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2442 drop:
2443 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2444 kfree_skb(skb);
2445 return 0;
2446 }
2447
2448 /* We can only early demux multicast if there is a single matching socket.
2449 * If more than one socket found returns NULL
2450 */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2451 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2452 __be16 loc_port, __be32 loc_addr,
2453 __be16 rmt_port, __be32 rmt_addr,
2454 int dif, int sdif)
2455 {
2456 struct sock *sk, *result;
2457 unsigned short hnum = ntohs(loc_port);
2458 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2459 struct udp_hslot *hslot = &udp_table.hash[slot];
2460
2461 /* Do not bother scanning a too big list */
2462 if (hslot->count > 10)
2463 return NULL;
2464
2465 result = NULL;
2466 sk_for_each_rcu(sk, &hslot->head) {
2467 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2468 rmt_port, rmt_addr, dif, sdif, hnum)) {
2469 if (result)
2470 return NULL;
2471 result = sk;
2472 }
2473 }
2474
2475 return result;
2476 }
2477
2478 /* For unicast we should only early demux connected sockets or we can
2479 * break forwarding setups. The chains here can be long so only check
2480 * if the first socket is an exact match and if not move on.
2481 */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2482 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2483 __be16 loc_port, __be32 loc_addr,
2484 __be16 rmt_port, __be32 rmt_addr,
2485 int dif, int sdif)
2486 {
2487 unsigned short hnum = ntohs(loc_port);
2488 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2489 unsigned int slot2 = hash2 & udp_table.mask;
2490 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2491 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2492 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2493 struct sock *sk;
2494
2495 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2496 if (INET_MATCH(net, sk, acookie, ports, dif, sdif))
2497 return sk;
2498 /* Only check first socket in chain */
2499 break;
2500 }
2501 return NULL;
2502 }
2503
udp_v4_early_demux(struct sk_buff * skb)2504 int udp_v4_early_demux(struct sk_buff *skb)
2505 {
2506 struct net *net = dev_net(skb->dev);
2507 struct in_device *in_dev = NULL;
2508 const struct iphdr *iph;
2509 const struct udphdr *uh;
2510 struct sock *sk = NULL;
2511 struct dst_entry *dst;
2512 int dif = skb->dev->ifindex;
2513 int sdif = inet_sdif(skb);
2514 int ours;
2515
2516 /* validate the packet */
2517 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2518 return 0;
2519
2520 iph = ip_hdr(skb);
2521 uh = udp_hdr(skb);
2522
2523 if (skb->pkt_type == PACKET_MULTICAST) {
2524 in_dev = __in_dev_get_rcu(skb->dev);
2525
2526 if (!in_dev)
2527 return 0;
2528
2529 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2530 iph->protocol);
2531 if (!ours)
2532 return 0;
2533
2534 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2535 uh->source, iph->saddr,
2536 dif, sdif);
2537 } else if (skb->pkt_type == PACKET_HOST) {
2538 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2539 uh->source, iph->saddr, dif, sdif);
2540 }
2541
2542 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2543 return 0;
2544
2545 skb->sk = sk;
2546 skb->destructor = sock_efree;
2547 dst = rcu_dereference(sk->sk_rx_dst);
2548
2549 if (dst)
2550 dst = dst_check(dst, 0);
2551 if (dst) {
2552 u32 itag = 0;
2553
2554 /* set noref for now.
2555 * any place which wants to hold dst has to call
2556 * dst_hold_safe()
2557 */
2558 skb_dst_set_noref(skb, dst);
2559
2560 /* for unconnected multicast sockets we need to validate
2561 * the source on each packet
2562 */
2563 if (!inet_sk(sk)->inet_daddr && in_dev)
2564 return ip_mc_validate_source(skb, iph->daddr,
2565 iph->saddr,
2566 iph->tos & IPTOS_RT_MASK,
2567 skb->dev, in_dev, &itag);
2568 }
2569 return 0;
2570 }
2571
udp_rcv(struct sk_buff * skb)2572 int udp_rcv(struct sk_buff *skb)
2573 {
2574 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2575 }
2576
udp_destroy_sock(struct sock * sk)2577 void udp_destroy_sock(struct sock *sk)
2578 {
2579 struct udp_sock *up = udp_sk(sk);
2580 bool slow = lock_sock_fast(sk);
2581
2582 /* protects from races with udp_abort() */
2583 sock_set_flag(sk, SOCK_DEAD);
2584 udp_flush_pending_frames(sk);
2585 unlock_sock_fast(sk, slow);
2586 if (static_branch_unlikely(&udp_encap_needed_key)) {
2587 if (up->encap_type) {
2588 void (*encap_destroy)(struct sock *sk);
2589 encap_destroy = READ_ONCE(up->encap_destroy);
2590 if (encap_destroy)
2591 encap_destroy(sk);
2592 }
2593 if (up->encap_enabled)
2594 static_branch_dec(&udp_encap_needed_key);
2595 }
2596 }
2597
2598 /*
2599 * Socket option code for UDP
2600 */
udp_lib_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2601 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2602 sockptr_t optval, unsigned int optlen,
2603 int (*push_pending_frames)(struct sock *))
2604 {
2605 struct udp_sock *up = udp_sk(sk);
2606 int val, valbool;
2607 int err = 0;
2608 int is_udplite = IS_UDPLITE(sk);
2609
2610 if (optlen < sizeof(int))
2611 return -EINVAL;
2612
2613 if (copy_from_sockptr(&val, optval, sizeof(val)))
2614 return -EFAULT;
2615
2616 valbool = val ? 1 : 0;
2617
2618 switch (optname) {
2619 case UDP_CORK:
2620 if (val != 0) {
2621 WRITE_ONCE(up->corkflag, 1);
2622 } else {
2623 WRITE_ONCE(up->corkflag, 0);
2624 lock_sock(sk);
2625 push_pending_frames(sk);
2626 release_sock(sk);
2627 }
2628 break;
2629
2630 case UDP_ENCAP:
2631 switch (val) {
2632 case 0:
2633 #ifdef CONFIG_XFRM
2634 case UDP_ENCAP_ESPINUDP:
2635 case UDP_ENCAP_ESPINUDP_NON_IKE:
2636 #if IS_ENABLED(CONFIG_IPV6)
2637 if (sk->sk_family == AF_INET6)
2638 up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2639 else
2640 #endif
2641 up->encap_rcv = xfrm4_udp_encap_rcv;
2642 #endif
2643 fallthrough;
2644 case UDP_ENCAP_L2TPINUDP:
2645 up->encap_type = val;
2646 lock_sock(sk);
2647 udp_tunnel_encap_enable(sk->sk_socket);
2648 release_sock(sk);
2649 break;
2650 default:
2651 err = -ENOPROTOOPT;
2652 break;
2653 }
2654 break;
2655
2656 case UDP_NO_CHECK6_TX:
2657 up->no_check6_tx = valbool;
2658 break;
2659
2660 case UDP_NO_CHECK6_RX:
2661 up->no_check6_rx = valbool;
2662 break;
2663
2664 case UDP_SEGMENT:
2665 if (val < 0 || val > USHRT_MAX)
2666 return -EINVAL;
2667 WRITE_ONCE(up->gso_size, val);
2668 break;
2669
2670 case UDP_GRO:
2671 lock_sock(sk);
2672
2673 /* when enabling GRO, accept the related GSO packet type */
2674 if (valbool)
2675 udp_tunnel_encap_enable(sk->sk_socket);
2676 up->gro_enabled = valbool;
2677 up->accept_udp_l4 = valbool;
2678 release_sock(sk);
2679 break;
2680
2681 /*
2682 * UDP-Lite's partial checksum coverage (RFC 3828).
2683 */
2684 /* The sender sets actual checksum coverage length via this option.
2685 * The case coverage > packet length is handled by send module. */
2686 case UDPLITE_SEND_CSCOV:
2687 if (!is_udplite) /* Disable the option on UDP sockets */
2688 return -ENOPROTOOPT;
2689 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2690 val = 8;
2691 else if (val > USHRT_MAX)
2692 val = USHRT_MAX;
2693 up->pcslen = val;
2694 up->pcflag |= UDPLITE_SEND_CC;
2695 break;
2696
2697 /* The receiver specifies a minimum checksum coverage value. To make
2698 * sense, this should be set to at least 8 (as done below). If zero is
2699 * used, this again means full checksum coverage. */
2700 case UDPLITE_RECV_CSCOV:
2701 if (!is_udplite) /* Disable the option on UDP sockets */
2702 return -ENOPROTOOPT;
2703 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2704 val = 8;
2705 else if (val > USHRT_MAX)
2706 val = USHRT_MAX;
2707 up->pcrlen = val;
2708 up->pcflag |= UDPLITE_RECV_CC;
2709 break;
2710
2711 default:
2712 err = -ENOPROTOOPT;
2713 break;
2714 }
2715
2716 return err;
2717 }
2718 EXPORT_SYMBOL(udp_lib_setsockopt);
2719
udp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)2720 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2721 unsigned int optlen)
2722 {
2723 if (level == SOL_UDP || level == SOL_UDPLITE)
2724 return udp_lib_setsockopt(sk, level, optname,
2725 optval, optlen,
2726 udp_push_pending_frames);
2727 return ip_setsockopt(sk, level, optname, optval, optlen);
2728 }
2729
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2730 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2731 char __user *optval, int __user *optlen)
2732 {
2733 struct udp_sock *up = udp_sk(sk);
2734 int val, len;
2735
2736 if (get_user(len, optlen))
2737 return -EFAULT;
2738
2739 len = min_t(unsigned int, len, sizeof(int));
2740
2741 if (len < 0)
2742 return -EINVAL;
2743
2744 switch (optname) {
2745 case UDP_CORK:
2746 val = READ_ONCE(up->corkflag);
2747 break;
2748
2749 case UDP_ENCAP:
2750 val = up->encap_type;
2751 break;
2752
2753 case UDP_NO_CHECK6_TX:
2754 val = up->no_check6_tx;
2755 break;
2756
2757 case UDP_NO_CHECK6_RX:
2758 val = up->no_check6_rx;
2759 break;
2760
2761 case UDP_SEGMENT:
2762 val = READ_ONCE(up->gso_size);
2763 break;
2764
2765 case UDP_GRO:
2766 val = up->gro_enabled;
2767 break;
2768
2769 /* The following two cannot be changed on UDP sockets, the return is
2770 * always 0 (which corresponds to the full checksum coverage of UDP). */
2771 case UDPLITE_SEND_CSCOV:
2772 val = up->pcslen;
2773 break;
2774
2775 case UDPLITE_RECV_CSCOV:
2776 val = up->pcrlen;
2777 break;
2778
2779 default:
2780 return -ENOPROTOOPT;
2781 }
2782
2783 if (put_user(len, optlen))
2784 return -EFAULT;
2785 if (copy_to_user(optval, &val, len))
2786 return -EFAULT;
2787 return 0;
2788 }
2789 EXPORT_SYMBOL(udp_lib_getsockopt);
2790
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2791 int udp_getsockopt(struct sock *sk, int level, int optname,
2792 char __user *optval, int __user *optlen)
2793 {
2794 if (level == SOL_UDP || level == SOL_UDPLITE)
2795 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2796 return ip_getsockopt(sk, level, optname, optval, optlen);
2797 }
2798
2799 /**
2800 * udp_poll - wait for a UDP event.
2801 * @file: - file struct
2802 * @sock: - socket
2803 * @wait: - poll table
2804 *
2805 * This is same as datagram poll, except for the special case of
2806 * blocking sockets. If application is using a blocking fd
2807 * and a packet with checksum error is in the queue;
2808 * then it could get return from select indicating data available
2809 * but then block when reading it. Add special case code
2810 * to work around these arguably broken applications.
2811 */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2812 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2813 {
2814 __poll_t mask = datagram_poll(file, sock, wait);
2815 struct sock *sk = sock->sk;
2816
2817 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2818 mask |= EPOLLIN | EPOLLRDNORM;
2819
2820 /* Check for false positives due to checksum errors */
2821 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2822 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2823 mask &= ~(EPOLLIN | EPOLLRDNORM);
2824
2825 return mask;
2826
2827 }
2828 EXPORT_SYMBOL(udp_poll);
2829
udp_abort(struct sock * sk,int err)2830 int udp_abort(struct sock *sk, int err)
2831 {
2832 lock_sock(sk);
2833
2834 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2835 * with close()
2836 */
2837 if (sock_flag(sk, SOCK_DEAD))
2838 goto out;
2839
2840 sk->sk_err = err;
2841 sk->sk_error_report(sk);
2842 __udp_disconnect(sk, 0);
2843
2844 out:
2845 release_sock(sk);
2846
2847 return 0;
2848 }
2849 EXPORT_SYMBOL_GPL(udp_abort);
2850
2851 struct proto udp_prot = {
2852 .name = "UDP",
2853 .owner = THIS_MODULE,
2854 .close = udp_lib_close,
2855 .pre_connect = udp_pre_connect,
2856 .connect = ip4_datagram_connect,
2857 .disconnect = udp_disconnect,
2858 .ioctl = udp_ioctl,
2859 .init = udp_init_sock,
2860 .destroy = udp_destroy_sock,
2861 .setsockopt = udp_setsockopt,
2862 .getsockopt = udp_getsockopt,
2863 .sendmsg = udp_sendmsg,
2864 .recvmsg = udp_recvmsg,
2865 .sendpage = udp_sendpage,
2866 .release_cb = ip4_datagram_release_cb,
2867 .hash = udp_lib_hash,
2868 .unhash = udp_lib_unhash,
2869 .rehash = udp_v4_rehash,
2870 .get_port = udp_v4_get_port,
2871 .memory_allocated = &udp_memory_allocated,
2872 .sysctl_mem = sysctl_udp_mem,
2873 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2874 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2875 .obj_size = sizeof(struct udp_sock),
2876 .h.udp_table = &udp_table,
2877 .diag_destroy = udp_abort,
2878 };
2879 EXPORT_SYMBOL(udp_prot);
2880
2881 /* ------------------------------------------------------------------------ */
2882 #ifdef CONFIG_PROC_FS
2883
udp_get_first(struct seq_file * seq,int start)2884 static struct sock *udp_get_first(struct seq_file *seq, int start)
2885 {
2886 struct sock *sk;
2887 struct udp_seq_afinfo *afinfo;
2888 struct udp_iter_state *state = seq->private;
2889 struct net *net = seq_file_net(seq);
2890
2891 if (state->bpf_seq_afinfo)
2892 afinfo = state->bpf_seq_afinfo;
2893 else
2894 afinfo = PDE_DATA(file_inode(seq->file));
2895
2896 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2897 ++state->bucket) {
2898 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2899
2900 if (hlist_empty(&hslot->head))
2901 continue;
2902
2903 spin_lock_bh(&hslot->lock);
2904 sk_for_each(sk, &hslot->head) {
2905 if (!net_eq(sock_net(sk), net))
2906 continue;
2907 if (afinfo->family == AF_UNSPEC ||
2908 sk->sk_family == afinfo->family)
2909 goto found;
2910 }
2911 spin_unlock_bh(&hslot->lock);
2912 }
2913 sk = NULL;
2914 found:
2915 return sk;
2916 }
2917
udp_get_next(struct seq_file * seq,struct sock * sk)2918 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2919 {
2920 struct udp_seq_afinfo *afinfo;
2921 struct udp_iter_state *state = seq->private;
2922 struct net *net = seq_file_net(seq);
2923
2924 if (state->bpf_seq_afinfo)
2925 afinfo = state->bpf_seq_afinfo;
2926 else
2927 afinfo = PDE_DATA(file_inode(seq->file));
2928
2929 do {
2930 sk = sk_next(sk);
2931 } while (sk && (!net_eq(sock_net(sk), net) ||
2932 (afinfo->family != AF_UNSPEC &&
2933 sk->sk_family != afinfo->family)));
2934
2935 if (!sk) {
2936 if (state->bucket <= afinfo->udp_table->mask)
2937 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2938 return udp_get_first(seq, state->bucket + 1);
2939 }
2940 return sk;
2941 }
2942
udp_get_idx(struct seq_file * seq,loff_t pos)2943 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2944 {
2945 struct sock *sk = udp_get_first(seq, 0);
2946
2947 if (sk)
2948 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2949 --pos;
2950 return pos ? NULL : sk;
2951 }
2952
udp_seq_start(struct seq_file * seq,loff_t * pos)2953 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2954 {
2955 struct udp_iter_state *state = seq->private;
2956 state->bucket = MAX_UDP_PORTS;
2957
2958 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2959 }
2960 EXPORT_SYMBOL(udp_seq_start);
2961
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)2962 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2963 {
2964 struct sock *sk;
2965
2966 if (v == SEQ_START_TOKEN)
2967 sk = udp_get_idx(seq, 0);
2968 else
2969 sk = udp_get_next(seq, v);
2970
2971 ++*pos;
2972 return sk;
2973 }
2974 EXPORT_SYMBOL(udp_seq_next);
2975
udp_seq_stop(struct seq_file * seq,void * v)2976 void udp_seq_stop(struct seq_file *seq, void *v)
2977 {
2978 struct udp_seq_afinfo *afinfo;
2979 struct udp_iter_state *state = seq->private;
2980
2981 if (state->bpf_seq_afinfo)
2982 afinfo = state->bpf_seq_afinfo;
2983 else
2984 afinfo = PDE_DATA(file_inode(seq->file));
2985
2986 if (state->bucket <= afinfo->udp_table->mask)
2987 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2988 }
2989 EXPORT_SYMBOL(udp_seq_stop);
2990
2991 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)2992 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2993 int bucket)
2994 {
2995 struct inet_sock *inet = inet_sk(sp);
2996 __be32 dest = inet->inet_daddr;
2997 __be32 src = inet->inet_rcv_saddr;
2998 __u16 destp = ntohs(inet->inet_dport);
2999 __u16 srcp = ntohs(inet->inet_sport);
3000
3001 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3002 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3003 bucket, src, srcp, dest, destp, sp->sk_state,
3004 sk_wmem_alloc_get(sp),
3005 udp_rqueue_get(sp),
3006 0, 0L, 0,
3007 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3008 0, sock_i_ino(sp),
3009 refcount_read(&sp->sk_refcnt), sp,
3010 atomic_read(&sp->sk_drops));
3011 }
3012
udp4_seq_show(struct seq_file * seq,void * v)3013 int udp4_seq_show(struct seq_file *seq, void *v)
3014 {
3015 seq_setwidth(seq, 127);
3016 if (v == SEQ_START_TOKEN)
3017 seq_puts(seq, " sl local_address rem_address st tx_queue "
3018 "rx_queue tr tm->when retrnsmt uid timeout "
3019 "inode ref pointer drops");
3020 else {
3021 struct udp_iter_state *state = seq->private;
3022
3023 udp4_format_sock(v, seq, state->bucket);
3024 }
3025 seq_pad(seq, '\n');
3026 return 0;
3027 }
3028
3029 #ifdef CONFIG_BPF_SYSCALL
3030 struct bpf_iter__udp {
3031 __bpf_md_ptr(struct bpf_iter_meta *, meta);
3032 __bpf_md_ptr(struct udp_sock *, udp_sk);
3033 uid_t uid __aligned(8);
3034 int bucket __aligned(8);
3035 };
3036
udp_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3037 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3038 struct udp_sock *udp_sk, uid_t uid, int bucket)
3039 {
3040 struct bpf_iter__udp ctx;
3041
3042 meta->seq_num--; /* skip SEQ_START_TOKEN */
3043 ctx.meta = meta;
3044 ctx.udp_sk = udp_sk;
3045 ctx.uid = uid;
3046 ctx.bucket = bucket;
3047 return bpf_iter_run_prog(prog, &ctx);
3048 }
3049
bpf_iter_udp_seq_show(struct seq_file * seq,void * v)3050 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3051 {
3052 struct udp_iter_state *state = seq->private;
3053 struct bpf_iter_meta meta;
3054 struct bpf_prog *prog;
3055 struct sock *sk = v;
3056 uid_t uid;
3057
3058 if (v == SEQ_START_TOKEN)
3059 return 0;
3060
3061 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3062 meta.seq = seq;
3063 prog = bpf_iter_get_info(&meta, false);
3064 return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3065 }
3066
bpf_iter_udp_seq_stop(struct seq_file * seq,void * v)3067 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3068 {
3069 struct bpf_iter_meta meta;
3070 struct bpf_prog *prog;
3071
3072 if (!v) {
3073 meta.seq = seq;
3074 prog = bpf_iter_get_info(&meta, true);
3075 if (prog)
3076 (void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3077 }
3078
3079 udp_seq_stop(seq, v);
3080 }
3081
3082 static const struct seq_operations bpf_iter_udp_seq_ops = {
3083 .start = udp_seq_start,
3084 .next = udp_seq_next,
3085 .stop = bpf_iter_udp_seq_stop,
3086 .show = bpf_iter_udp_seq_show,
3087 };
3088 #endif
3089
3090 const struct seq_operations udp_seq_ops = {
3091 .start = udp_seq_start,
3092 .next = udp_seq_next,
3093 .stop = udp_seq_stop,
3094 .show = udp4_seq_show,
3095 };
3096 EXPORT_SYMBOL(udp_seq_ops);
3097
3098 static struct udp_seq_afinfo udp4_seq_afinfo = {
3099 .family = AF_INET,
3100 .udp_table = &udp_table,
3101 };
3102
udp4_proc_init_net(struct net * net)3103 static int __net_init udp4_proc_init_net(struct net *net)
3104 {
3105 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3106 sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3107 return -ENOMEM;
3108 return 0;
3109 }
3110
udp4_proc_exit_net(struct net * net)3111 static void __net_exit udp4_proc_exit_net(struct net *net)
3112 {
3113 remove_proc_entry("udp", net->proc_net);
3114 }
3115
3116 static struct pernet_operations udp4_net_ops = {
3117 .init = udp4_proc_init_net,
3118 .exit = udp4_proc_exit_net,
3119 };
3120
udp4_proc_init(void)3121 int __init udp4_proc_init(void)
3122 {
3123 return register_pernet_subsys(&udp4_net_ops);
3124 }
3125
udp4_proc_exit(void)3126 void udp4_proc_exit(void)
3127 {
3128 unregister_pernet_subsys(&udp4_net_ops);
3129 }
3130 #endif /* CONFIG_PROC_FS */
3131
3132 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3133 static int __init set_uhash_entries(char *str)
3134 {
3135 ssize_t ret;
3136
3137 if (!str)
3138 return 0;
3139
3140 ret = kstrtoul(str, 0, &uhash_entries);
3141 if (ret)
3142 return 0;
3143
3144 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3145 uhash_entries = UDP_HTABLE_SIZE_MIN;
3146 return 1;
3147 }
3148 __setup("uhash_entries=", set_uhash_entries);
3149
udp_table_init(struct udp_table * table,const char * name)3150 void __init udp_table_init(struct udp_table *table, const char *name)
3151 {
3152 unsigned int i;
3153
3154 table->hash = alloc_large_system_hash(name,
3155 2 * sizeof(struct udp_hslot),
3156 uhash_entries,
3157 21, /* one slot per 2 MB */
3158 0,
3159 &table->log,
3160 &table->mask,
3161 UDP_HTABLE_SIZE_MIN,
3162 64 * 1024);
3163
3164 table->hash2 = table->hash + (table->mask + 1);
3165 for (i = 0; i <= table->mask; i++) {
3166 INIT_HLIST_HEAD(&table->hash[i].head);
3167 table->hash[i].count = 0;
3168 spin_lock_init(&table->hash[i].lock);
3169 }
3170 for (i = 0; i <= table->mask; i++) {
3171 INIT_HLIST_HEAD(&table->hash2[i].head);
3172 table->hash2[i].count = 0;
3173 spin_lock_init(&table->hash2[i].lock);
3174 }
3175 }
3176
udp_flow_hashrnd(void)3177 u32 udp_flow_hashrnd(void)
3178 {
3179 static u32 hashrnd __read_mostly;
3180
3181 net_get_random_once(&hashrnd, sizeof(hashrnd));
3182
3183 return hashrnd;
3184 }
3185 EXPORT_SYMBOL(udp_flow_hashrnd);
3186
__udp_sysctl_init(struct net * net)3187 static void __udp_sysctl_init(struct net *net)
3188 {
3189 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3190 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3191
3192 #ifdef CONFIG_NET_L3_MASTER_DEV
3193 net->ipv4.sysctl_udp_l3mdev_accept = 0;
3194 #endif
3195 }
3196
udp_sysctl_init(struct net * net)3197 static int __net_init udp_sysctl_init(struct net *net)
3198 {
3199 __udp_sysctl_init(net);
3200 return 0;
3201 }
3202
3203 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3204 .init = udp_sysctl_init,
3205 };
3206
3207 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3208 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3209 struct udp_sock *udp_sk, uid_t uid, int bucket)
3210
3211 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3212 {
3213 struct udp_iter_state *st = priv_data;
3214 struct udp_seq_afinfo *afinfo;
3215 int ret;
3216
3217 afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3218 if (!afinfo)
3219 return -ENOMEM;
3220
3221 afinfo->family = AF_UNSPEC;
3222 afinfo->udp_table = &udp_table;
3223 st->bpf_seq_afinfo = afinfo;
3224 ret = bpf_iter_init_seq_net(priv_data, aux);
3225 if (ret)
3226 kfree(afinfo);
3227 return ret;
3228 }
3229
bpf_iter_fini_udp(void * priv_data)3230 static void bpf_iter_fini_udp(void *priv_data)
3231 {
3232 struct udp_iter_state *st = priv_data;
3233
3234 kfree(st->bpf_seq_afinfo);
3235 bpf_iter_fini_seq_net(priv_data);
3236 }
3237
3238 static const struct bpf_iter_seq_info udp_seq_info = {
3239 .seq_ops = &bpf_iter_udp_seq_ops,
3240 .init_seq_private = bpf_iter_init_udp,
3241 .fini_seq_private = bpf_iter_fini_udp,
3242 .seq_priv_size = sizeof(struct udp_iter_state),
3243 };
3244
3245 static struct bpf_iter_reg udp_reg_info = {
3246 .target = "udp",
3247 .ctx_arg_info_size = 1,
3248 .ctx_arg_info = {
3249 { offsetof(struct bpf_iter__udp, udp_sk),
3250 PTR_TO_BTF_ID_OR_NULL },
3251 },
3252 .seq_info = &udp_seq_info,
3253 };
3254
bpf_iter_register(void)3255 static void __init bpf_iter_register(void)
3256 {
3257 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3258 if (bpf_iter_reg_target(&udp_reg_info))
3259 pr_warn("Warning: could not register bpf iterator udp\n");
3260 }
3261 #endif
3262
udp_init(void)3263 void __init udp_init(void)
3264 {
3265 unsigned long limit;
3266 unsigned int i;
3267
3268 udp_table_init(&udp_table, "UDP");
3269 limit = nr_free_buffer_pages() / 8;
3270 limit = max(limit, 128UL);
3271 sysctl_udp_mem[0] = limit / 4 * 3;
3272 sysctl_udp_mem[1] = limit;
3273 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3274
3275 __udp_sysctl_init(&init_net);
3276
3277 /* 16 spinlocks per cpu */
3278 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3279 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3280 GFP_KERNEL);
3281 if (!udp_busylocks)
3282 panic("UDP: failed to alloc udp_busylocks\n");
3283 for (i = 0; i < (1U << udp_busylocks_log); i++)
3284 spin_lock_init(udp_busylocks + i);
3285
3286 if (register_pernet_subsys(&udp_sysctl_ops))
3287 panic("UDP: failed to init sysctl parameters.\n");
3288
3289 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3290 bpf_iter_register();
3291 #endif
3292 }
3293