1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 STRATO. All rights reserved.
4 */
5
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17
18 /* Just an arbitrary number so we can be sure this happened */
19 #define BACKREF_FOUND_SHARED 6
20
21 struct extent_inode_elem {
22 u64 inum;
23 u64 offset;
24 struct extent_inode_elem *next;
25 };
26
check_extent_in_eb(const struct btrfs_key * key,const struct extent_buffer * eb,const struct btrfs_file_extent_item * fi,u64 extent_item_pos,struct extent_inode_elem ** eie,bool ignore_offset)27 static int check_extent_in_eb(const struct btrfs_key *key,
28 const struct extent_buffer *eb,
29 const struct btrfs_file_extent_item *fi,
30 u64 extent_item_pos,
31 struct extent_inode_elem **eie,
32 bool ignore_offset)
33 {
34 u64 offset = 0;
35 struct extent_inode_elem *e;
36
37 if (!ignore_offset &&
38 !btrfs_file_extent_compression(eb, fi) &&
39 !btrfs_file_extent_encryption(eb, fi) &&
40 !btrfs_file_extent_other_encoding(eb, fi)) {
41 u64 data_offset;
42 u64 data_len;
43
44 data_offset = btrfs_file_extent_offset(eb, fi);
45 data_len = btrfs_file_extent_num_bytes(eb, fi);
46
47 if (extent_item_pos < data_offset ||
48 extent_item_pos >= data_offset + data_len)
49 return 1;
50 offset = extent_item_pos - data_offset;
51 }
52
53 e = kmalloc(sizeof(*e), GFP_NOFS);
54 if (!e)
55 return -ENOMEM;
56
57 e->next = *eie;
58 e->inum = key->objectid;
59 e->offset = key->offset + offset;
60 *eie = e;
61
62 return 0;
63 }
64
free_inode_elem_list(struct extent_inode_elem * eie)65 static void free_inode_elem_list(struct extent_inode_elem *eie)
66 {
67 struct extent_inode_elem *eie_next;
68
69 for (; eie; eie = eie_next) {
70 eie_next = eie->next;
71 kfree(eie);
72 }
73 }
74
find_extent_in_eb(const struct extent_buffer * eb,u64 wanted_disk_byte,u64 extent_item_pos,struct extent_inode_elem ** eie,bool ignore_offset)75 static int find_extent_in_eb(const struct extent_buffer *eb,
76 u64 wanted_disk_byte, u64 extent_item_pos,
77 struct extent_inode_elem **eie,
78 bool ignore_offset)
79 {
80 u64 disk_byte;
81 struct btrfs_key key;
82 struct btrfs_file_extent_item *fi;
83 int slot;
84 int nritems;
85 int extent_type;
86 int ret;
87
88 /*
89 * from the shared data ref, we only have the leaf but we need
90 * the key. thus, we must look into all items and see that we
91 * find one (some) with a reference to our extent item.
92 */
93 nritems = btrfs_header_nritems(eb);
94 for (slot = 0; slot < nritems; ++slot) {
95 btrfs_item_key_to_cpu(eb, &key, slot);
96 if (key.type != BTRFS_EXTENT_DATA_KEY)
97 continue;
98 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
99 extent_type = btrfs_file_extent_type(eb, fi);
100 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
101 continue;
102 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
103 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
104 if (disk_byte != wanted_disk_byte)
105 continue;
106
107 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
108 if (ret < 0)
109 return ret;
110 }
111
112 return 0;
113 }
114
115 struct preftree {
116 struct rb_root_cached root;
117 unsigned int count;
118 };
119
120 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
121
122 struct preftrees {
123 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
124 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
125 struct preftree indirect_missing_keys;
126 };
127
128 /*
129 * Checks for a shared extent during backref search.
130 *
131 * The share_count tracks prelim_refs (direct and indirect) having a
132 * ref->count >0:
133 * - incremented when a ref->count transitions to >0
134 * - decremented when a ref->count transitions to <1
135 */
136 struct share_check {
137 u64 root_objectid;
138 u64 inum;
139 int share_count;
140 bool have_delayed_delete_refs;
141 };
142
extent_is_shared(struct share_check * sc)143 static inline int extent_is_shared(struct share_check *sc)
144 {
145 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
146 }
147
148 static struct kmem_cache *btrfs_prelim_ref_cache;
149
btrfs_prelim_ref_init(void)150 int __init btrfs_prelim_ref_init(void)
151 {
152 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
153 sizeof(struct prelim_ref),
154 0,
155 SLAB_MEM_SPREAD,
156 NULL);
157 if (!btrfs_prelim_ref_cache)
158 return -ENOMEM;
159 return 0;
160 }
161
btrfs_prelim_ref_exit(void)162 void __cold btrfs_prelim_ref_exit(void)
163 {
164 kmem_cache_destroy(btrfs_prelim_ref_cache);
165 }
166
free_pref(struct prelim_ref * ref)167 static void free_pref(struct prelim_ref *ref)
168 {
169 kmem_cache_free(btrfs_prelim_ref_cache, ref);
170 }
171
172 /*
173 * Return 0 when both refs are for the same block (and can be merged).
174 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
175 * indicates a 'higher' block.
176 */
prelim_ref_compare(struct prelim_ref * ref1,struct prelim_ref * ref2)177 static int prelim_ref_compare(struct prelim_ref *ref1,
178 struct prelim_ref *ref2)
179 {
180 if (ref1->level < ref2->level)
181 return -1;
182 if (ref1->level > ref2->level)
183 return 1;
184 if (ref1->root_id < ref2->root_id)
185 return -1;
186 if (ref1->root_id > ref2->root_id)
187 return 1;
188 if (ref1->key_for_search.type < ref2->key_for_search.type)
189 return -1;
190 if (ref1->key_for_search.type > ref2->key_for_search.type)
191 return 1;
192 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
193 return -1;
194 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
195 return 1;
196 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
197 return -1;
198 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
199 return 1;
200 if (ref1->parent < ref2->parent)
201 return -1;
202 if (ref1->parent > ref2->parent)
203 return 1;
204
205 return 0;
206 }
207
update_share_count(struct share_check * sc,int oldcount,int newcount)208 static void update_share_count(struct share_check *sc, int oldcount,
209 int newcount)
210 {
211 if ((!sc) || (oldcount == 0 && newcount < 1))
212 return;
213
214 if (oldcount > 0 && newcount < 1)
215 sc->share_count--;
216 else if (oldcount < 1 && newcount > 0)
217 sc->share_count++;
218 }
219
220 /*
221 * Add @newref to the @root rbtree, merging identical refs.
222 *
223 * Callers should assume that newref has been freed after calling.
224 */
prelim_ref_insert(const struct btrfs_fs_info * fs_info,struct preftree * preftree,struct prelim_ref * newref,struct share_check * sc)225 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
226 struct preftree *preftree,
227 struct prelim_ref *newref,
228 struct share_check *sc)
229 {
230 struct rb_root_cached *root;
231 struct rb_node **p;
232 struct rb_node *parent = NULL;
233 struct prelim_ref *ref;
234 int result;
235 bool leftmost = true;
236
237 root = &preftree->root;
238 p = &root->rb_root.rb_node;
239
240 while (*p) {
241 parent = *p;
242 ref = rb_entry(parent, struct prelim_ref, rbnode);
243 result = prelim_ref_compare(ref, newref);
244 if (result < 0) {
245 p = &(*p)->rb_left;
246 } else if (result > 0) {
247 p = &(*p)->rb_right;
248 leftmost = false;
249 } else {
250 /* Identical refs, merge them and free @newref */
251 struct extent_inode_elem *eie = ref->inode_list;
252
253 while (eie && eie->next)
254 eie = eie->next;
255
256 if (!eie)
257 ref->inode_list = newref->inode_list;
258 else
259 eie->next = newref->inode_list;
260 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
261 preftree->count);
262 /*
263 * A delayed ref can have newref->count < 0.
264 * The ref->count is updated to follow any
265 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
266 */
267 update_share_count(sc, ref->count,
268 ref->count + newref->count);
269 ref->count += newref->count;
270 free_pref(newref);
271 return;
272 }
273 }
274
275 update_share_count(sc, 0, newref->count);
276 preftree->count++;
277 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
278 rb_link_node(&newref->rbnode, parent, p);
279 rb_insert_color_cached(&newref->rbnode, root, leftmost);
280 }
281
282 /*
283 * Release the entire tree. We don't care about internal consistency so
284 * just free everything and then reset the tree root.
285 */
prelim_release(struct preftree * preftree)286 static void prelim_release(struct preftree *preftree)
287 {
288 struct prelim_ref *ref, *next_ref;
289
290 rbtree_postorder_for_each_entry_safe(ref, next_ref,
291 &preftree->root.rb_root, rbnode) {
292 free_inode_elem_list(ref->inode_list);
293 free_pref(ref);
294 }
295
296 preftree->root = RB_ROOT_CACHED;
297 preftree->count = 0;
298 }
299
300 /*
301 * the rules for all callers of this function are:
302 * - obtaining the parent is the goal
303 * - if you add a key, you must know that it is a correct key
304 * - if you cannot add the parent or a correct key, then we will look into the
305 * block later to set a correct key
306 *
307 * delayed refs
308 * ============
309 * backref type | shared | indirect | shared | indirect
310 * information | tree | tree | data | data
311 * --------------------+--------+----------+--------+----------
312 * parent logical | y | - | - | -
313 * key to resolve | - | y | y | y
314 * tree block logical | - | - | - | -
315 * root for resolving | y | y | y | y
316 *
317 * - column 1: we've the parent -> done
318 * - column 2, 3, 4: we use the key to find the parent
319 *
320 * on disk refs (inline or keyed)
321 * ==============================
322 * backref type | shared | indirect | shared | indirect
323 * information | tree | tree | data | data
324 * --------------------+--------+----------+--------+----------
325 * parent logical | y | - | y | -
326 * key to resolve | - | - | - | y
327 * tree block logical | y | y | y | y
328 * root for resolving | - | y | y | y
329 *
330 * - column 1, 3: we've the parent -> done
331 * - column 2: we take the first key from the block to find the parent
332 * (see add_missing_keys)
333 * - column 4: we use the key to find the parent
334 *
335 * additional information that's available but not required to find the parent
336 * block might help in merging entries to gain some speed.
337 */
add_prelim_ref(const struct btrfs_fs_info * fs_info,struct preftree * preftree,u64 root_id,const struct btrfs_key * key,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)338 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
339 struct preftree *preftree, u64 root_id,
340 const struct btrfs_key *key, int level, u64 parent,
341 u64 wanted_disk_byte, int count,
342 struct share_check *sc, gfp_t gfp_mask)
343 {
344 struct prelim_ref *ref;
345
346 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
347 return 0;
348
349 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
350 if (!ref)
351 return -ENOMEM;
352
353 ref->root_id = root_id;
354 if (key)
355 ref->key_for_search = *key;
356 else
357 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
358
359 ref->inode_list = NULL;
360 ref->level = level;
361 ref->count = count;
362 ref->parent = parent;
363 ref->wanted_disk_byte = wanted_disk_byte;
364 prelim_ref_insert(fs_info, preftree, ref, sc);
365 return extent_is_shared(sc);
366 }
367
368 /* direct refs use root == 0, key == NULL */
add_direct_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)369 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
370 struct preftrees *preftrees, int level, u64 parent,
371 u64 wanted_disk_byte, int count,
372 struct share_check *sc, gfp_t gfp_mask)
373 {
374 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
375 parent, wanted_disk_byte, count, sc, gfp_mask);
376 }
377
378 /* indirect refs use parent == 0 */
add_indirect_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,u64 root_id,const struct btrfs_key * key,int level,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)379 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
380 struct preftrees *preftrees, u64 root_id,
381 const struct btrfs_key *key, int level,
382 u64 wanted_disk_byte, int count,
383 struct share_check *sc, gfp_t gfp_mask)
384 {
385 struct preftree *tree = &preftrees->indirect;
386
387 if (!key)
388 tree = &preftrees->indirect_missing_keys;
389 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
390 wanted_disk_byte, count, sc, gfp_mask);
391 }
392
is_shared_data_backref(struct preftrees * preftrees,u64 bytenr)393 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
394 {
395 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
396 struct rb_node *parent = NULL;
397 struct prelim_ref *ref = NULL;
398 struct prelim_ref target = {};
399 int result;
400
401 target.parent = bytenr;
402
403 while (*p) {
404 parent = *p;
405 ref = rb_entry(parent, struct prelim_ref, rbnode);
406 result = prelim_ref_compare(ref, &target);
407
408 if (result < 0)
409 p = &(*p)->rb_left;
410 else if (result > 0)
411 p = &(*p)->rb_right;
412 else
413 return 1;
414 }
415 return 0;
416 }
417
add_all_parents(struct btrfs_root * root,struct btrfs_path * path,struct ulist * parents,struct preftrees * preftrees,struct prelim_ref * ref,int level,u64 time_seq,const u64 * extent_item_pos,bool ignore_offset)418 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
419 struct ulist *parents,
420 struct preftrees *preftrees, struct prelim_ref *ref,
421 int level, u64 time_seq, const u64 *extent_item_pos,
422 bool ignore_offset)
423 {
424 int ret = 0;
425 int slot;
426 struct extent_buffer *eb;
427 struct btrfs_key key;
428 struct btrfs_key *key_for_search = &ref->key_for_search;
429 struct btrfs_file_extent_item *fi;
430 struct extent_inode_elem *eie = NULL, *old = NULL;
431 u64 disk_byte;
432 u64 wanted_disk_byte = ref->wanted_disk_byte;
433 u64 count = 0;
434 u64 data_offset;
435
436 if (level != 0) {
437 eb = path->nodes[level];
438 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
439 if (ret < 0)
440 return ret;
441 return 0;
442 }
443
444 /*
445 * 1. We normally enter this function with the path already pointing to
446 * the first item to check. But sometimes, we may enter it with
447 * slot == nritems.
448 * 2. We are searching for normal backref but bytenr of this leaf
449 * matches shared data backref
450 * 3. The leaf owner is not equal to the root we are searching
451 *
452 * For these cases, go to the next leaf before we continue.
453 */
454 eb = path->nodes[0];
455 if (path->slots[0] >= btrfs_header_nritems(eb) ||
456 is_shared_data_backref(preftrees, eb->start) ||
457 ref->root_id != btrfs_header_owner(eb)) {
458 if (time_seq == SEQ_LAST)
459 ret = btrfs_next_leaf(root, path);
460 else
461 ret = btrfs_next_old_leaf(root, path, time_seq);
462 }
463
464 while (!ret && count < ref->count) {
465 eb = path->nodes[0];
466 slot = path->slots[0];
467
468 btrfs_item_key_to_cpu(eb, &key, slot);
469
470 if (key.objectid != key_for_search->objectid ||
471 key.type != BTRFS_EXTENT_DATA_KEY)
472 break;
473
474 /*
475 * We are searching for normal backref but bytenr of this leaf
476 * matches shared data backref, OR
477 * the leaf owner is not equal to the root we are searching for
478 */
479 if (slot == 0 &&
480 (is_shared_data_backref(preftrees, eb->start) ||
481 ref->root_id != btrfs_header_owner(eb))) {
482 if (time_seq == SEQ_LAST)
483 ret = btrfs_next_leaf(root, path);
484 else
485 ret = btrfs_next_old_leaf(root, path, time_seq);
486 continue;
487 }
488 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
489 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
490 data_offset = btrfs_file_extent_offset(eb, fi);
491
492 if (disk_byte == wanted_disk_byte) {
493 eie = NULL;
494 old = NULL;
495 if (ref->key_for_search.offset == key.offset - data_offset)
496 count++;
497 else
498 goto next;
499 if (extent_item_pos) {
500 ret = check_extent_in_eb(&key, eb, fi,
501 *extent_item_pos,
502 &eie, ignore_offset);
503 if (ret < 0)
504 break;
505 }
506 if (ret > 0)
507 goto next;
508 ret = ulist_add_merge_ptr(parents, eb->start,
509 eie, (void **)&old, GFP_NOFS);
510 if (ret < 0)
511 break;
512 if (!ret && extent_item_pos) {
513 while (old->next)
514 old = old->next;
515 old->next = eie;
516 }
517 eie = NULL;
518 }
519 next:
520 if (time_seq == SEQ_LAST)
521 ret = btrfs_next_item(root, path);
522 else
523 ret = btrfs_next_old_item(root, path, time_seq);
524 }
525
526 if (ret > 0)
527 ret = 0;
528 else if (ret < 0)
529 free_inode_elem_list(eie);
530 return ret;
531 }
532
533 /*
534 * resolve an indirect backref in the form (root_id, key, level)
535 * to a logical address
536 */
resolve_indirect_ref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct preftrees * preftrees,struct prelim_ref * ref,struct ulist * parents,const u64 * extent_item_pos,bool ignore_offset)537 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
538 struct btrfs_path *path, u64 time_seq,
539 struct preftrees *preftrees,
540 struct prelim_ref *ref, struct ulist *parents,
541 const u64 *extent_item_pos, bool ignore_offset)
542 {
543 struct btrfs_root *root;
544 struct extent_buffer *eb;
545 int ret = 0;
546 int root_level;
547 int level = ref->level;
548 struct btrfs_key search_key = ref->key_for_search;
549
550 /*
551 * If we're search_commit_root we could possibly be holding locks on
552 * other tree nodes. This happens when qgroups does backref walks when
553 * adding new delayed refs. To deal with this we need to look in cache
554 * for the root, and if we don't find it then we need to search the
555 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
556 * here.
557 */
558 if (path->search_commit_root)
559 root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
560 else
561 root = btrfs_get_fs_root(fs_info, ref->root_id, false);
562 if (IS_ERR(root)) {
563 ret = PTR_ERR(root);
564 goto out_free;
565 }
566
567 if (!path->search_commit_root &&
568 test_bit(BTRFS_ROOT_DELETING, &root->state)) {
569 ret = -ENOENT;
570 goto out;
571 }
572
573 if (btrfs_is_testing(fs_info)) {
574 ret = -ENOENT;
575 goto out;
576 }
577
578 if (path->search_commit_root)
579 root_level = btrfs_header_level(root->commit_root);
580 else if (time_seq == SEQ_LAST)
581 root_level = btrfs_header_level(root->node);
582 else
583 root_level = btrfs_old_root_level(root, time_seq);
584
585 if (root_level + 1 == level)
586 goto out;
587
588 /*
589 * We can often find data backrefs with an offset that is too large
590 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
591 * subtracting a file's offset with the data offset of its
592 * corresponding extent data item. This can happen for example in the
593 * clone ioctl.
594 *
595 * So if we detect such case we set the search key's offset to zero to
596 * make sure we will find the matching file extent item at
597 * add_all_parents(), otherwise we will miss it because the offset
598 * taken form the backref is much larger then the offset of the file
599 * extent item. This can make us scan a very large number of file
600 * extent items, but at least it will not make us miss any.
601 *
602 * This is an ugly workaround for a behaviour that should have never
603 * existed, but it does and a fix for the clone ioctl would touch a lot
604 * of places, cause backwards incompatibility and would not fix the
605 * problem for extents cloned with older kernels.
606 */
607 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
608 search_key.offset >= LLONG_MAX)
609 search_key.offset = 0;
610 path->lowest_level = level;
611 if (time_seq == SEQ_LAST)
612 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
613 else
614 ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
615
616 btrfs_debug(fs_info,
617 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
618 ref->root_id, level, ref->count, ret,
619 ref->key_for_search.objectid, ref->key_for_search.type,
620 ref->key_for_search.offset);
621 if (ret < 0)
622 goto out;
623
624 eb = path->nodes[level];
625 while (!eb) {
626 if (WARN_ON(!level)) {
627 ret = 1;
628 goto out;
629 }
630 level--;
631 eb = path->nodes[level];
632 }
633
634 ret = add_all_parents(root, path, parents, preftrees, ref, level,
635 time_seq, extent_item_pos, ignore_offset);
636 out:
637 btrfs_put_root(root);
638 out_free:
639 path->lowest_level = 0;
640 btrfs_release_path(path);
641 return ret;
642 }
643
644 static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node * node)645 unode_aux_to_inode_list(struct ulist_node *node)
646 {
647 if (!node)
648 return NULL;
649 return (struct extent_inode_elem *)(uintptr_t)node->aux;
650 }
651
free_leaf_list(struct ulist * ulist)652 static void free_leaf_list(struct ulist *ulist)
653 {
654 struct ulist_node *node;
655 struct ulist_iterator uiter;
656
657 ULIST_ITER_INIT(&uiter);
658 while ((node = ulist_next(ulist, &uiter)))
659 free_inode_elem_list(unode_aux_to_inode_list(node));
660
661 ulist_free(ulist);
662 }
663
664 /*
665 * We maintain three separate rbtrees: one for direct refs, one for
666 * indirect refs which have a key, and one for indirect refs which do not
667 * have a key. Each tree does merge on insertion.
668 *
669 * Once all of the references are located, we iterate over the tree of
670 * indirect refs with missing keys. An appropriate key is located and
671 * the ref is moved onto the tree for indirect refs. After all missing
672 * keys are thus located, we iterate over the indirect ref tree, resolve
673 * each reference, and then insert the resolved reference onto the
674 * direct tree (merging there too).
675 *
676 * New backrefs (i.e., for parent nodes) are added to the appropriate
677 * rbtree as they are encountered. The new backrefs are subsequently
678 * resolved as above.
679 */
resolve_indirect_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct preftrees * preftrees,const u64 * extent_item_pos,struct share_check * sc,bool ignore_offset)680 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
681 struct btrfs_path *path, u64 time_seq,
682 struct preftrees *preftrees,
683 const u64 *extent_item_pos,
684 struct share_check *sc, bool ignore_offset)
685 {
686 int err;
687 int ret = 0;
688 struct ulist *parents;
689 struct ulist_node *node;
690 struct ulist_iterator uiter;
691 struct rb_node *rnode;
692
693 parents = ulist_alloc(GFP_NOFS);
694 if (!parents)
695 return -ENOMEM;
696
697 /*
698 * We could trade memory usage for performance here by iterating
699 * the tree, allocating new refs for each insertion, and then
700 * freeing the entire indirect tree when we're done. In some test
701 * cases, the tree can grow quite large (~200k objects).
702 */
703 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
704 struct prelim_ref *ref;
705
706 ref = rb_entry(rnode, struct prelim_ref, rbnode);
707 if (WARN(ref->parent,
708 "BUG: direct ref found in indirect tree")) {
709 ret = -EINVAL;
710 goto out;
711 }
712
713 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
714 preftrees->indirect.count--;
715
716 if (ref->count == 0) {
717 free_pref(ref);
718 continue;
719 }
720
721 if (sc && sc->root_objectid &&
722 ref->root_id != sc->root_objectid) {
723 free_pref(ref);
724 ret = BACKREF_FOUND_SHARED;
725 goto out;
726 }
727 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
728 ref, parents, extent_item_pos,
729 ignore_offset);
730 /*
731 * we can only tolerate ENOENT,otherwise,we should catch error
732 * and return directly.
733 */
734 if (err == -ENOENT) {
735 prelim_ref_insert(fs_info, &preftrees->direct, ref,
736 NULL);
737 continue;
738 } else if (err) {
739 free_pref(ref);
740 ret = err;
741 goto out;
742 }
743
744 /* we put the first parent into the ref at hand */
745 ULIST_ITER_INIT(&uiter);
746 node = ulist_next(parents, &uiter);
747 ref->parent = node ? node->val : 0;
748 ref->inode_list = unode_aux_to_inode_list(node);
749
750 /* Add a prelim_ref(s) for any other parent(s). */
751 while ((node = ulist_next(parents, &uiter))) {
752 struct prelim_ref *new_ref;
753
754 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
755 GFP_NOFS);
756 if (!new_ref) {
757 free_pref(ref);
758 ret = -ENOMEM;
759 goto out;
760 }
761 memcpy(new_ref, ref, sizeof(*ref));
762 new_ref->parent = node->val;
763 new_ref->inode_list = unode_aux_to_inode_list(node);
764 prelim_ref_insert(fs_info, &preftrees->direct,
765 new_ref, NULL);
766 }
767
768 /*
769 * Now it's a direct ref, put it in the direct tree. We must
770 * do this last because the ref could be merged/freed here.
771 */
772 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
773
774 ulist_reinit(parents);
775 cond_resched();
776 }
777 out:
778 /*
779 * We may have inode lists attached to refs in the parents ulist, so we
780 * must free them before freeing the ulist and its refs.
781 */
782 free_leaf_list(parents);
783 return ret;
784 }
785
786 /*
787 * read tree blocks and add keys where required.
788 */
add_missing_keys(struct btrfs_fs_info * fs_info,struct preftrees * preftrees,bool lock)789 static int add_missing_keys(struct btrfs_fs_info *fs_info,
790 struct preftrees *preftrees, bool lock)
791 {
792 struct prelim_ref *ref;
793 struct extent_buffer *eb;
794 struct preftree *tree = &preftrees->indirect_missing_keys;
795 struct rb_node *node;
796
797 while ((node = rb_first_cached(&tree->root))) {
798 ref = rb_entry(node, struct prelim_ref, rbnode);
799 rb_erase_cached(node, &tree->root);
800
801 BUG_ON(ref->parent); /* should not be a direct ref */
802 BUG_ON(ref->key_for_search.type);
803 BUG_ON(!ref->wanted_disk_byte);
804
805 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
806 ref->level - 1, NULL);
807 if (IS_ERR(eb)) {
808 free_pref(ref);
809 return PTR_ERR(eb);
810 } else if (!extent_buffer_uptodate(eb)) {
811 free_pref(ref);
812 free_extent_buffer(eb);
813 return -EIO;
814 }
815 if (lock)
816 btrfs_tree_read_lock(eb);
817 if (btrfs_header_level(eb) == 0)
818 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
819 else
820 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
821 if (lock)
822 btrfs_tree_read_unlock(eb);
823 free_extent_buffer(eb);
824 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
825 cond_resched();
826 }
827 return 0;
828 }
829
830 /*
831 * add all currently queued delayed refs from this head whose seq nr is
832 * smaller or equal that seq to the list
833 */
add_delayed_refs(const struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_head * head,u64 seq,struct preftrees * preftrees,struct share_check * sc)834 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
835 struct btrfs_delayed_ref_head *head, u64 seq,
836 struct preftrees *preftrees, struct share_check *sc)
837 {
838 struct btrfs_delayed_ref_node *node;
839 struct btrfs_key key;
840 struct rb_node *n;
841 int count;
842 int ret = 0;
843
844 spin_lock(&head->lock);
845 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
846 node = rb_entry(n, struct btrfs_delayed_ref_node,
847 ref_node);
848 if (node->seq > seq)
849 continue;
850
851 switch (node->action) {
852 case BTRFS_ADD_DELAYED_EXTENT:
853 case BTRFS_UPDATE_DELAYED_HEAD:
854 WARN_ON(1);
855 continue;
856 case BTRFS_ADD_DELAYED_REF:
857 count = node->ref_mod;
858 break;
859 case BTRFS_DROP_DELAYED_REF:
860 count = node->ref_mod * -1;
861 break;
862 default:
863 BUG();
864 }
865 switch (node->type) {
866 case BTRFS_TREE_BLOCK_REF_KEY: {
867 /* NORMAL INDIRECT METADATA backref */
868 struct btrfs_delayed_tree_ref *ref;
869 struct btrfs_key *key_ptr = NULL;
870
871 if (head->extent_op && head->extent_op->update_key) {
872 btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
873 key_ptr = &key;
874 }
875
876 ref = btrfs_delayed_node_to_tree_ref(node);
877 ret = add_indirect_ref(fs_info, preftrees, ref->root,
878 key_ptr, ref->level + 1,
879 node->bytenr, count, sc,
880 GFP_ATOMIC);
881 break;
882 }
883 case BTRFS_SHARED_BLOCK_REF_KEY: {
884 /* SHARED DIRECT METADATA backref */
885 struct btrfs_delayed_tree_ref *ref;
886
887 ref = btrfs_delayed_node_to_tree_ref(node);
888
889 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
890 ref->parent, node->bytenr, count,
891 sc, GFP_ATOMIC);
892 break;
893 }
894 case BTRFS_EXTENT_DATA_REF_KEY: {
895 /* NORMAL INDIRECT DATA backref */
896 struct btrfs_delayed_data_ref *ref;
897 ref = btrfs_delayed_node_to_data_ref(node);
898
899 key.objectid = ref->objectid;
900 key.type = BTRFS_EXTENT_DATA_KEY;
901 key.offset = ref->offset;
902
903 /*
904 * If we have a share check context and a reference for
905 * another inode, we can't exit immediately. This is
906 * because even if this is a BTRFS_ADD_DELAYED_REF
907 * reference we may find next a BTRFS_DROP_DELAYED_REF
908 * which cancels out this ADD reference.
909 *
910 * If this is a DROP reference and there was no previous
911 * ADD reference, then we need to signal that when we
912 * process references from the extent tree (through
913 * add_inline_refs() and add_keyed_refs()), we should
914 * not exit early if we find a reference for another
915 * inode, because one of the delayed DROP references
916 * may cancel that reference in the extent tree.
917 */
918 if (sc && count < 0)
919 sc->have_delayed_delete_refs = true;
920
921 ret = add_indirect_ref(fs_info, preftrees, ref->root,
922 &key, 0, node->bytenr, count, sc,
923 GFP_ATOMIC);
924 break;
925 }
926 case BTRFS_SHARED_DATA_REF_KEY: {
927 /* SHARED DIRECT FULL backref */
928 struct btrfs_delayed_data_ref *ref;
929
930 ref = btrfs_delayed_node_to_data_ref(node);
931
932 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
933 node->bytenr, count, sc,
934 GFP_ATOMIC);
935 break;
936 }
937 default:
938 WARN_ON(1);
939 }
940 /*
941 * We must ignore BACKREF_FOUND_SHARED until all delayed
942 * refs have been checked.
943 */
944 if (ret && (ret != BACKREF_FOUND_SHARED))
945 break;
946 }
947 if (!ret)
948 ret = extent_is_shared(sc);
949
950 spin_unlock(&head->lock);
951 return ret;
952 }
953
954 /*
955 * add all inline backrefs for bytenr to the list
956 *
957 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
958 */
add_inline_refs(const struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,int * info_level,struct preftrees * preftrees,struct share_check * sc)959 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
960 struct btrfs_path *path, u64 bytenr,
961 int *info_level, struct preftrees *preftrees,
962 struct share_check *sc)
963 {
964 int ret = 0;
965 int slot;
966 struct extent_buffer *leaf;
967 struct btrfs_key key;
968 struct btrfs_key found_key;
969 unsigned long ptr;
970 unsigned long end;
971 struct btrfs_extent_item *ei;
972 u64 flags;
973 u64 item_size;
974
975 /*
976 * enumerate all inline refs
977 */
978 leaf = path->nodes[0];
979 slot = path->slots[0];
980
981 item_size = btrfs_item_size_nr(leaf, slot);
982 BUG_ON(item_size < sizeof(*ei));
983
984 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
985 flags = btrfs_extent_flags(leaf, ei);
986 btrfs_item_key_to_cpu(leaf, &found_key, slot);
987
988 ptr = (unsigned long)(ei + 1);
989 end = (unsigned long)ei + item_size;
990
991 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
992 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
993 struct btrfs_tree_block_info *info;
994
995 info = (struct btrfs_tree_block_info *)ptr;
996 *info_level = btrfs_tree_block_level(leaf, info);
997 ptr += sizeof(struct btrfs_tree_block_info);
998 BUG_ON(ptr > end);
999 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1000 *info_level = found_key.offset;
1001 } else {
1002 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1003 }
1004
1005 while (ptr < end) {
1006 struct btrfs_extent_inline_ref *iref;
1007 u64 offset;
1008 int type;
1009
1010 iref = (struct btrfs_extent_inline_ref *)ptr;
1011 type = btrfs_get_extent_inline_ref_type(leaf, iref,
1012 BTRFS_REF_TYPE_ANY);
1013 if (type == BTRFS_REF_TYPE_INVALID)
1014 return -EUCLEAN;
1015
1016 offset = btrfs_extent_inline_ref_offset(leaf, iref);
1017
1018 switch (type) {
1019 case BTRFS_SHARED_BLOCK_REF_KEY:
1020 ret = add_direct_ref(fs_info, preftrees,
1021 *info_level + 1, offset,
1022 bytenr, 1, NULL, GFP_NOFS);
1023 break;
1024 case BTRFS_SHARED_DATA_REF_KEY: {
1025 struct btrfs_shared_data_ref *sdref;
1026 int count;
1027
1028 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1029 count = btrfs_shared_data_ref_count(leaf, sdref);
1030
1031 ret = add_direct_ref(fs_info, preftrees, 0, offset,
1032 bytenr, count, sc, GFP_NOFS);
1033 break;
1034 }
1035 case BTRFS_TREE_BLOCK_REF_KEY:
1036 ret = add_indirect_ref(fs_info, preftrees, offset,
1037 NULL, *info_level + 1,
1038 bytenr, 1, NULL, GFP_NOFS);
1039 break;
1040 case BTRFS_EXTENT_DATA_REF_KEY: {
1041 struct btrfs_extent_data_ref *dref;
1042 int count;
1043 u64 root;
1044
1045 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1046 count = btrfs_extent_data_ref_count(leaf, dref);
1047 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1048 dref);
1049 key.type = BTRFS_EXTENT_DATA_KEY;
1050 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1051
1052 if (sc && sc->inum && key.objectid != sc->inum &&
1053 !sc->have_delayed_delete_refs) {
1054 ret = BACKREF_FOUND_SHARED;
1055 break;
1056 }
1057
1058 root = btrfs_extent_data_ref_root(leaf, dref);
1059
1060 ret = add_indirect_ref(fs_info, preftrees, root,
1061 &key, 0, bytenr, count,
1062 sc, GFP_NOFS);
1063
1064 break;
1065 }
1066 default:
1067 WARN_ON(1);
1068 }
1069 if (ret)
1070 return ret;
1071 ptr += btrfs_extent_inline_ref_size(type);
1072 }
1073
1074 return 0;
1075 }
1076
1077 /*
1078 * add all non-inline backrefs for bytenr to the list
1079 *
1080 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1081 */
add_keyed_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,int info_level,struct preftrees * preftrees,struct share_check * sc)1082 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1083 struct btrfs_path *path, u64 bytenr,
1084 int info_level, struct preftrees *preftrees,
1085 struct share_check *sc)
1086 {
1087 struct btrfs_root *extent_root = fs_info->extent_root;
1088 int ret;
1089 int slot;
1090 struct extent_buffer *leaf;
1091 struct btrfs_key key;
1092
1093 while (1) {
1094 ret = btrfs_next_item(extent_root, path);
1095 if (ret < 0)
1096 break;
1097 if (ret) {
1098 ret = 0;
1099 break;
1100 }
1101
1102 slot = path->slots[0];
1103 leaf = path->nodes[0];
1104 btrfs_item_key_to_cpu(leaf, &key, slot);
1105
1106 if (key.objectid != bytenr)
1107 break;
1108 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1109 continue;
1110 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1111 break;
1112
1113 switch (key.type) {
1114 case BTRFS_SHARED_BLOCK_REF_KEY:
1115 /* SHARED DIRECT METADATA backref */
1116 ret = add_direct_ref(fs_info, preftrees,
1117 info_level + 1, key.offset,
1118 bytenr, 1, NULL, GFP_NOFS);
1119 break;
1120 case BTRFS_SHARED_DATA_REF_KEY: {
1121 /* SHARED DIRECT FULL backref */
1122 struct btrfs_shared_data_ref *sdref;
1123 int count;
1124
1125 sdref = btrfs_item_ptr(leaf, slot,
1126 struct btrfs_shared_data_ref);
1127 count = btrfs_shared_data_ref_count(leaf, sdref);
1128 ret = add_direct_ref(fs_info, preftrees, 0,
1129 key.offset, bytenr, count,
1130 sc, GFP_NOFS);
1131 break;
1132 }
1133 case BTRFS_TREE_BLOCK_REF_KEY:
1134 /* NORMAL INDIRECT METADATA backref */
1135 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1136 NULL, info_level + 1, bytenr,
1137 1, NULL, GFP_NOFS);
1138 break;
1139 case BTRFS_EXTENT_DATA_REF_KEY: {
1140 /* NORMAL INDIRECT DATA backref */
1141 struct btrfs_extent_data_ref *dref;
1142 int count;
1143 u64 root;
1144
1145 dref = btrfs_item_ptr(leaf, slot,
1146 struct btrfs_extent_data_ref);
1147 count = btrfs_extent_data_ref_count(leaf, dref);
1148 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1149 dref);
1150 key.type = BTRFS_EXTENT_DATA_KEY;
1151 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1152
1153 if (sc && sc->inum && key.objectid != sc->inum &&
1154 !sc->have_delayed_delete_refs) {
1155 ret = BACKREF_FOUND_SHARED;
1156 break;
1157 }
1158
1159 root = btrfs_extent_data_ref_root(leaf, dref);
1160 ret = add_indirect_ref(fs_info, preftrees, root,
1161 &key, 0, bytenr, count,
1162 sc, GFP_NOFS);
1163 break;
1164 }
1165 default:
1166 WARN_ON(1);
1167 }
1168 if (ret)
1169 return ret;
1170
1171 }
1172
1173 return ret;
1174 }
1175
1176 /*
1177 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1178 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1179 * indirect refs to their parent bytenr.
1180 * When roots are found, they're added to the roots list
1181 *
1182 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1183 * much like trans == NULL case, the difference only lies in it will not
1184 * commit root.
1185 * The special case is for qgroup to search roots in commit_transaction().
1186 *
1187 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1188 * shared extent is detected.
1189 *
1190 * Otherwise this returns 0 for success and <0 for an error.
1191 *
1192 * If ignore_offset is set to false, only extent refs whose offsets match
1193 * extent_item_pos are returned. If true, every extent ref is returned
1194 * and extent_item_pos is ignored.
1195 *
1196 * FIXME some caching might speed things up
1197 */
find_parent_nodes(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 time_seq,struct ulist * refs,struct ulist * roots,const u64 * extent_item_pos,struct share_check * sc,bool ignore_offset)1198 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1199 struct btrfs_fs_info *fs_info, u64 bytenr,
1200 u64 time_seq, struct ulist *refs,
1201 struct ulist *roots, const u64 *extent_item_pos,
1202 struct share_check *sc, bool ignore_offset)
1203 {
1204 struct btrfs_key key;
1205 struct btrfs_path *path;
1206 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1207 struct btrfs_delayed_ref_head *head;
1208 int info_level = 0;
1209 int ret;
1210 struct prelim_ref *ref;
1211 struct rb_node *node;
1212 struct extent_inode_elem *eie = NULL;
1213 struct preftrees preftrees = {
1214 .direct = PREFTREE_INIT,
1215 .indirect = PREFTREE_INIT,
1216 .indirect_missing_keys = PREFTREE_INIT
1217 };
1218
1219 key.objectid = bytenr;
1220 key.offset = (u64)-1;
1221 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1222 key.type = BTRFS_METADATA_ITEM_KEY;
1223 else
1224 key.type = BTRFS_EXTENT_ITEM_KEY;
1225
1226 path = btrfs_alloc_path();
1227 if (!path)
1228 return -ENOMEM;
1229 if (!trans) {
1230 path->search_commit_root = 1;
1231 path->skip_locking = 1;
1232 }
1233
1234 if (time_seq == SEQ_LAST)
1235 path->skip_locking = 1;
1236
1237 /*
1238 * grab both a lock on the path and a lock on the delayed ref head.
1239 * We need both to get a consistent picture of how the refs look
1240 * at a specified point in time
1241 */
1242 again:
1243 head = NULL;
1244
1245 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1246 if (ret < 0)
1247 goto out;
1248 if (ret == 0) {
1249 /* This shouldn't happen, indicates a bug or fs corruption. */
1250 ASSERT(ret != 0);
1251 ret = -EUCLEAN;
1252 goto out;
1253 }
1254
1255 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1256 if (trans && likely(trans->type != __TRANS_DUMMY) &&
1257 time_seq != SEQ_LAST) {
1258 #else
1259 if (trans && time_seq != SEQ_LAST) {
1260 #endif
1261 /*
1262 * look if there are updates for this ref queued and lock the
1263 * head
1264 */
1265 delayed_refs = &trans->transaction->delayed_refs;
1266 spin_lock(&delayed_refs->lock);
1267 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1268 if (head) {
1269 if (!mutex_trylock(&head->mutex)) {
1270 refcount_inc(&head->refs);
1271 spin_unlock(&delayed_refs->lock);
1272
1273 btrfs_release_path(path);
1274
1275 /*
1276 * Mutex was contended, block until it's
1277 * released and try again
1278 */
1279 mutex_lock(&head->mutex);
1280 mutex_unlock(&head->mutex);
1281 btrfs_put_delayed_ref_head(head);
1282 goto again;
1283 }
1284 spin_unlock(&delayed_refs->lock);
1285 ret = add_delayed_refs(fs_info, head, time_seq,
1286 &preftrees, sc);
1287 mutex_unlock(&head->mutex);
1288 if (ret)
1289 goto out;
1290 } else {
1291 spin_unlock(&delayed_refs->lock);
1292 }
1293 }
1294
1295 if (path->slots[0]) {
1296 struct extent_buffer *leaf;
1297 int slot;
1298
1299 path->slots[0]--;
1300 leaf = path->nodes[0];
1301 slot = path->slots[0];
1302 btrfs_item_key_to_cpu(leaf, &key, slot);
1303 if (key.objectid == bytenr &&
1304 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1305 key.type == BTRFS_METADATA_ITEM_KEY)) {
1306 ret = add_inline_refs(fs_info, path, bytenr,
1307 &info_level, &preftrees, sc);
1308 if (ret)
1309 goto out;
1310 ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1311 &preftrees, sc);
1312 if (ret)
1313 goto out;
1314 }
1315 }
1316
1317 btrfs_release_path(path);
1318
1319 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1320 if (ret)
1321 goto out;
1322
1323 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1324
1325 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1326 extent_item_pos, sc, ignore_offset);
1327 if (ret)
1328 goto out;
1329
1330 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1331
1332 /*
1333 * This walks the tree of merged and resolved refs. Tree blocks are
1334 * read in as needed. Unique entries are added to the ulist, and
1335 * the list of found roots is updated.
1336 *
1337 * We release the entire tree in one go before returning.
1338 */
1339 node = rb_first_cached(&preftrees.direct.root);
1340 while (node) {
1341 ref = rb_entry(node, struct prelim_ref, rbnode);
1342 node = rb_next(&ref->rbnode);
1343 /*
1344 * ref->count < 0 can happen here if there are delayed
1345 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1346 * prelim_ref_insert() relies on this when merging
1347 * identical refs to keep the overall count correct.
1348 * prelim_ref_insert() will merge only those refs
1349 * which compare identically. Any refs having
1350 * e.g. different offsets would not be merged,
1351 * and would retain their original ref->count < 0.
1352 */
1353 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1354 if (sc && sc->root_objectid &&
1355 ref->root_id != sc->root_objectid) {
1356 ret = BACKREF_FOUND_SHARED;
1357 goto out;
1358 }
1359
1360 /* no parent == root of tree */
1361 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1362 if (ret < 0)
1363 goto out;
1364 }
1365 if (ref->count && ref->parent) {
1366 if (extent_item_pos && !ref->inode_list &&
1367 ref->level == 0) {
1368 struct extent_buffer *eb;
1369
1370 eb = read_tree_block(fs_info, ref->parent, 0,
1371 ref->level, NULL);
1372 if (IS_ERR(eb)) {
1373 ret = PTR_ERR(eb);
1374 goto out;
1375 } else if (!extent_buffer_uptodate(eb)) {
1376 free_extent_buffer(eb);
1377 ret = -EIO;
1378 goto out;
1379 }
1380
1381 if (!path->skip_locking) {
1382 btrfs_tree_read_lock(eb);
1383 btrfs_set_lock_blocking_read(eb);
1384 }
1385 ret = find_extent_in_eb(eb, bytenr,
1386 *extent_item_pos, &eie, ignore_offset);
1387 if (!path->skip_locking)
1388 btrfs_tree_read_unlock_blocking(eb);
1389 free_extent_buffer(eb);
1390 if (ret < 0)
1391 goto out;
1392 ref->inode_list = eie;
1393 /*
1394 * We transferred the list ownership to the ref,
1395 * so set to NULL to avoid a double free in case
1396 * an error happens after this.
1397 */
1398 eie = NULL;
1399 }
1400 ret = ulist_add_merge_ptr(refs, ref->parent,
1401 ref->inode_list,
1402 (void **)&eie, GFP_NOFS);
1403 if (ret < 0)
1404 goto out;
1405 if (!ret && extent_item_pos) {
1406 /*
1407 * We've recorded that parent, so we must extend
1408 * its inode list here.
1409 *
1410 * However if there was corruption we may not
1411 * have found an eie, return an error in this
1412 * case.
1413 */
1414 ASSERT(eie);
1415 if (!eie) {
1416 ret = -EUCLEAN;
1417 goto out;
1418 }
1419 while (eie->next)
1420 eie = eie->next;
1421 eie->next = ref->inode_list;
1422 }
1423 eie = NULL;
1424 /*
1425 * We have transferred the inode list ownership from
1426 * this ref to the ref we added to the 'refs' ulist.
1427 * So set this ref's inode list to NULL to avoid
1428 * use-after-free when our caller uses it or double
1429 * frees in case an error happens before we return.
1430 */
1431 ref->inode_list = NULL;
1432 }
1433 cond_resched();
1434 }
1435
1436 out:
1437 btrfs_free_path(path);
1438
1439 prelim_release(&preftrees.direct);
1440 prelim_release(&preftrees.indirect);
1441 prelim_release(&preftrees.indirect_missing_keys);
1442
1443 if (ret < 0)
1444 free_inode_elem_list(eie);
1445 return ret;
1446 }
1447
1448 /*
1449 * Finds all leafs with a reference to the specified combination of bytenr and
1450 * offset. key_list_head will point to a list of corresponding keys (caller must
1451 * free each list element). The leafs will be stored in the leafs ulist, which
1452 * must be freed with ulist_free.
1453 *
1454 * returns 0 on success, <0 on error
1455 */
1456 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1457 struct btrfs_fs_info *fs_info, u64 bytenr,
1458 u64 time_seq, struct ulist **leafs,
1459 const u64 *extent_item_pos, bool ignore_offset)
1460 {
1461 int ret;
1462
1463 *leafs = ulist_alloc(GFP_NOFS);
1464 if (!*leafs)
1465 return -ENOMEM;
1466
1467 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1468 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
1469 if (ret < 0 && ret != -ENOENT) {
1470 free_leaf_list(*leafs);
1471 return ret;
1472 }
1473
1474 return 0;
1475 }
1476
1477 /*
1478 * walk all backrefs for a given extent to find all roots that reference this
1479 * extent. Walking a backref means finding all extents that reference this
1480 * extent and in turn walk the backrefs of those, too. Naturally this is a
1481 * recursive process, but here it is implemented in an iterative fashion: We
1482 * find all referencing extents for the extent in question and put them on a
1483 * list. In turn, we find all referencing extents for those, further appending
1484 * to the list. The way we iterate the list allows adding more elements after
1485 * the current while iterating. The process stops when we reach the end of the
1486 * list. Found roots are added to the roots list.
1487 *
1488 * returns 0 on success, < 0 on error.
1489 */
1490 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1491 struct btrfs_fs_info *fs_info, u64 bytenr,
1492 u64 time_seq, struct ulist **roots,
1493 bool ignore_offset)
1494 {
1495 struct ulist *tmp;
1496 struct ulist_node *node = NULL;
1497 struct ulist_iterator uiter;
1498 int ret;
1499
1500 tmp = ulist_alloc(GFP_NOFS);
1501 if (!tmp)
1502 return -ENOMEM;
1503 *roots = ulist_alloc(GFP_NOFS);
1504 if (!*roots) {
1505 ulist_free(tmp);
1506 return -ENOMEM;
1507 }
1508
1509 ULIST_ITER_INIT(&uiter);
1510 while (1) {
1511 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1512 tmp, *roots, NULL, NULL, ignore_offset);
1513 if (ret < 0 && ret != -ENOENT) {
1514 ulist_free(tmp);
1515 ulist_free(*roots);
1516 *roots = NULL;
1517 return ret;
1518 }
1519 node = ulist_next(tmp, &uiter);
1520 if (!node)
1521 break;
1522 bytenr = node->val;
1523 cond_resched();
1524 }
1525
1526 ulist_free(tmp);
1527 return 0;
1528 }
1529
1530 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1531 struct btrfs_fs_info *fs_info, u64 bytenr,
1532 u64 time_seq, struct ulist **roots,
1533 bool ignore_offset)
1534 {
1535 int ret;
1536
1537 if (!trans)
1538 down_read(&fs_info->commit_root_sem);
1539 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1540 time_seq, roots, ignore_offset);
1541 if (!trans)
1542 up_read(&fs_info->commit_root_sem);
1543 return ret;
1544 }
1545
1546 /**
1547 * btrfs_check_shared - tell us whether an extent is shared
1548 *
1549 * btrfs_check_shared uses the backref walking code but will short
1550 * circuit as soon as it finds a root or inode that doesn't match the
1551 * one passed in. This provides a significant performance benefit for
1552 * callers (such as fiemap) which want to know whether the extent is
1553 * shared but do not need a ref count.
1554 *
1555 * This attempts to attach to the running transaction in order to account for
1556 * delayed refs, but continues on even when no running transaction exists.
1557 *
1558 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1559 */
1560 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1561 struct ulist *roots, struct ulist *tmp)
1562 {
1563 struct btrfs_fs_info *fs_info = root->fs_info;
1564 struct btrfs_trans_handle *trans;
1565 struct ulist_iterator uiter;
1566 struct ulist_node *node;
1567 struct seq_list elem = SEQ_LIST_INIT(elem);
1568 int ret = 0;
1569 struct share_check shared = {
1570 .root_objectid = root->root_key.objectid,
1571 .inum = inum,
1572 .share_count = 0,
1573 .have_delayed_delete_refs = false,
1574 };
1575
1576 ulist_init(roots);
1577 ulist_init(tmp);
1578
1579 trans = btrfs_join_transaction_nostart(root);
1580 if (IS_ERR(trans)) {
1581 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1582 ret = PTR_ERR(trans);
1583 goto out;
1584 }
1585 trans = NULL;
1586 down_read(&fs_info->commit_root_sem);
1587 } else {
1588 btrfs_get_tree_mod_seq(fs_info, &elem);
1589 }
1590
1591 ULIST_ITER_INIT(&uiter);
1592 while (1) {
1593 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1594 roots, NULL, &shared, false);
1595 if (ret == BACKREF_FOUND_SHARED) {
1596 /* this is the only condition under which we return 1 */
1597 ret = 1;
1598 break;
1599 }
1600 if (ret < 0 && ret != -ENOENT)
1601 break;
1602 ret = 0;
1603 node = ulist_next(tmp, &uiter);
1604 if (!node)
1605 break;
1606 bytenr = node->val;
1607 shared.share_count = 0;
1608 shared.have_delayed_delete_refs = false;
1609 cond_resched();
1610 }
1611
1612 if (trans) {
1613 btrfs_put_tree_mod_seq(fs_info, &elem);
1614 btrfs_end_transaction(trans);
1615 } else {
1616 up_read(&fs_info->commit_root_sem);
1617 }
1618 out:
1619 ulist_release(roots);
1620 ulist_release(tmp);
1621 return ret;
1622 }
1623
1624 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1625 u64 start_off, struct btrfs_path *path,
1626 struct btrfs_inode_extref **ret_extref,
1627 u64 *found_off)
1628 {
1629 int ret, slot;
1630 struct btrfs_key key;
1631 struct btrfs_key found_key;
1632 struct btrfs_inode_extref *extref;
1633 const struct extent_buffer *leaf;
1634 unsigned long ptr;
1635
1636 key.objectid = inode_objectid;
1637 key.type = BTRFS_INODE_EXTREF_KEY;
1638 key.offset = start_off;
1639
1640 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1641 if (ret < 0)
1642 return ret;
1643
1644 while (1) {
1645 leaf = path->nodes[0];
1646 slot = path->slots[0];
1647 if (slot >= btrfs_header_nritems(leaf)) {
1648 /*
1649 * If the item at offset is not found,
1650 * btrfs_search_slot will point us to the slot
1651 * where it should be inserted. In our case
1652 * that will be the slot directly before the
1653 * next INODE_REF_KEY_V2 item. In the case
1654 * that we're pointing to the last slot in a
1655 * leaf, we must move one leaf over.
1656 */
1657 ret = btrfs_next_leaf(root, path);
1658 if (ret) {
1659 if (ret >= 1)
1660 ret = -ENOENT;
1661 break;
1662 }
1663 continue;
1664 }
1665
1666 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1667
1668 /*
1669 * Check that we're still looking at an extended ref key for
1670 * this particular objectid. If we have different
1671 * objectid or type then there are no more to be found
1672 * in the tree and we can exit.
1673 */
1674 ret = -ENOENT;
1675 if (found_key.objectid != inode_objectid)
1676 break;
1677 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1678 break;
1679
1680 ret = 0;
1681 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1682 extref = (struct btrfs_inode_extref *)ptr;
1683 *ret_extref = extref;
1684 if (found_off)
1685 *found_off = found_key.offset;
1686 break;
1687 }
1688
1689 return ret;
1690 }
1691
1692 /*
1693 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1694 * Elements of the path are separated by '/' and the path is guaranteed to be
1695 * 0-terminated. the path is only given within the current file system.
1696 * Therefore, it never starts with a '/'. the caller is responsible to provide
1697 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1698 * the start point of the resulting string is returned. this pointer is within
1699 * dest, normally.
1700 * in case the path buffer would overflow, the pointer is decremented further
1701 * as if output was written to the buffer, though no more output is actually
1702 * generated. that way, the caller can determine how much space would be
1703 * required for the path to fit into the buffer. in that case, the returned
1704 * value will be smaller than dest. callers must check this!
1705 */
1706 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1707 u32 name_len, unsigned long name_off,
1708 struct extent_buffer *eb_in, u64 parent,
1709 char *dest, u32 size)
1710 {
1711 int slot;
1712 u64 next_inum;
1713 int ret;
1714 s64 bytes_left = ((s64)size) - 1;
1715 struct extent_buffer *eb = eb_in;
1716 struct btrfs_key found_key;
1717 int leave_spinning = path->leave_spinning;
1718 struct btrfs_inode_ref *iref;
1719
1720 if (bytes_left >= 0)
1721 dest[bytes_left] = '\0';
1722
1723 path->leave_spinning = 1;
1724 while (1) {
1725 bytes_left -= name_len;
1726 if (bytes_left >= 0)
1727 read_extent_buffer(eb, dest + bytes_left,
1728 name_off, name_len);
1729 if (eb != eb_in) {
1730 if (!path->skip_locking)
1731 btrfs_tree_read_unlock_blocking(eb);
1732 free_extent_buffer(eb);
1733 }
1734 ret = btrfs_find_item(fs_root, path, parent, 0,
1735 BTRFS_INODE_REF_KEY, &found_key);
1736 if (ret > 0)
1737 ret = -ENOENT;
1738 if (ret)
1739 break;
1740
1741 next_inum = found_key.offset;
1742
1743 /* regular exit ahead */
1744 if (parent == next_inum)
1745 break;
1746
1747 slot = path->slots[0];
1748 eb = path->nodes[0];
1749 /* make sure we can use eb after releasing the path */
1750 if (eb != eb_in) {
1751 if (!path->skip_locking)
1752 btrfs_set_lock_blocking_read(eb);
1753 path->nodes[0] = NULL;
1754 path->locks[0] = 0;
1755 }
1756 btrfs_release_path(path);
1757 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1758
1759 name_len = btrfs_inode_ref_name_len(eb, iref);
1760 name_off = (unsigned long)(iref + 1);
1761
1762 parent = next_inum;
1763 --bytes_left;
1764 if (bytes_left >= 0)
1765 dest[bytes_left] = '/';
1766 }
1767
1768 btrfs_release_path(path);
1769 path->leave_spinning = leave_spinning;
1770
1771 if (ret)
1772 return ERR_PTR(ret);
1773
1774 return dest + bytes_left;
1775 }
1776
1777 /*
1778 * this makes the path point to (logical EXTENT_ITEM *)
1779 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1780 * tree blocks and <0 on error.
1781 */
1782 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1783 struct btrfs_path *path, struct btrfs_key *found_key,
1784 u64 *flags_ret)
1785 {
1786 int ret;
1787 u64 flags;
1788 u64 size = 0;
1789 u32 item_size;
1790 const struct extent_buffer *eb;
1791 struct btrfs_extent_item *ei;
1792 struct btrfs_key key;
1793
1794 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1795 key.type = BTRFS_METADATA_ITEM_KEY;
1796 else
1797 key.type = BTRFS_EXTENT_ITEM_KEY;
1798 key.objectid = logical;
1799 key.offset = (u64)-1;
1800
1801 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1802 if (ret < 0)
1803 return ret;
1804
1805 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1806 if (ret) {
1807 if (ret > 0)
1808 ret = -ENOENT;
1809 return ret;
1810 }
1811 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1812 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1813 size = fs_info->nodesize;
1814 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1815 size = found_key->offset;
1816
1817 if (found_key->objectid > logical ||
1818 found_key->objectid + size <= logical) {
1819 btrfs_debug(fs_info,
1820 "logical %llu is not within any extent", logical);
1821 return -ENOENT;
1822 }
1823
1824 eb = path->nodes[0];
1825 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1826 BUG_ON(item_size < sizeof(*ei));
1827
1828 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1829 flags = btrfs_extent_flags(eb, ei);
1830
1831 btrfs_debug(fs_info,
1832 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1833 logical, logical - found_key->objectid, found_key->objectid,
1834 found_key->offset, flags, item_size);
1835
1836 WARN_ON(!flags_ret);
1837 if (flags_ret) {
1838 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1839 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1840 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1841 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1842 else
1843 BUG();
1844 return 0;
1845 }
1846
1847 return -EIO;
1848 }
1849
1850 /*
1851 * helper function to iterate extent inline refs. ptr must point to a 0 value
1852 * for the first call and may be modified. it is used to track state.
1853 * if more refs exist, 0 is returned and the next call to
1854 * get_extent_inline_ref must pass the modified ptr parameter to get the
1855 * next ref. after the last ref was processed, 1 is returned.
1856 * returns <0 on error
1857 */
1858 static int get_extent_inline_ref(unsigned long *ptr,
1859 const struct extent_buffer *eb,
1860 const struct btrfs_key *key,
1861 const struct btrfs_extent_item *ei,
1862 u32 item_size,
1863 struct btrfs_extent_inline_ref **out_eiref,
1864 int *out_type)
1865 {
1866 unsigned long end;
1867 u64 flags;
1868 struct btrfs_tree_block_info *info;
1869
1870 if (!*ptr) {
1871 /* first call */
1872 flags = btrfs_extent_flags(eb, ei);
1873 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1874 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1875 /* a skinny metadata extent */
1876 *out_eiref =
1877 (struct btrfs_extent_inline_ref *)(ei + 1);
1878 } else {
1879 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1880 info = (struct btrfs_tree_block_info *)(ei + 1);
1881 *out_eiref =
1882 (struct btrfs_extent_inline_ref *)(info + 1);
1883 }
1884 } else {
1885 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1886 }
1887 *ptr = (unsigned long)*out_eiref;
1888 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1889 return -ENOENT;
1890 }
1891
1892 end = (unsigned long)ei + item_size;
1893 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1894 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1895 BTRFS_REF_TYPE_ANY);
1896 if (*out_type == BTRFS_REF_TYPE_INVALID)
1897 return -EUCLEAN;
1898
1899 *ptr += btrfs_extent_inline_ref_size(*out_type);
1900 WARN_ON(*ptr > end);
1901 if (*ptr == end)
1902 return 1; /* last */
1903
1904 return 0;
1905 }
1906
1907 /*
1908 * reads the tree block backref for an extent. tree level and root are returned
1909 * through out_level and out_root. ptr must point to a 0 value for the first
1910 * call and may be modified (see get_extent_inline_ref comment).
1911 * returns 0 if data was provided, 1 if there was no more data to provide or
1912 * <0 on error.
1913 */
1914 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1915 struct btrfs_key *key, struct btrfs_extent_item *ei,
1916 u32 item_size, u64 *out_root, u8 *out_level)
1917 {
1918 int ret;
1919 int type;
1920 struct btrfs_extent_inline_ref *eiref;
1921
1922 if (*ptr == (unsigned long)-1)
1923 return 1;
1924
1925 while (1) {
1926 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1927 &eiref, &type);
1928 if (ret < 0)
1929 return ret;
1930
1931 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1932 type == BTRFS_SHARED_BLOCK_REF_KEY)
1933 break;
1934
1935 if (ret == 1)
1936 return 1;
1937 }
1938
1939 /* we can treat both ref types equally here */
1940 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1941
1942 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1943 struct btrfs_tree_block_info *info;
1944
1945 info = (struct btrfs_tree_block_info *)(ei + 1);
1946 *out_level = btrfs_tree_block_level(eb, info);
1947 } else {
1948 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1949 *out_level = (u8)key->offset;
1950 }
1951
1952 if (ret == 1)
1953 *ptr = (unsigned long)-1;
1954
1955 return 0;
1956 }
1957
1958 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1959 struct extent_inode_elem *inode_list,
1960 u64 root, u64 extent_item_objectid,
1961 iterate_extent_inodes_t *iterate, void *ctx)
1962 {
1963 struct extent_inode_elem *eie;
1964 int ret = 0;
1965
1966 for (eie = inode_list; eie; eie = eie->next) {
1967 btrfs_debug(fs_info,
1968 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1969 extent_item_objectid, eie->inum,
1970 eie->offset, root);
1971 ret = iterate(eie->inum, eie->offset, root, ctx);
1972 if (ret) {
1973 btrfs_debug(fs_info,
1974 "stopping iteration for %llu due to ret=%d",
1975 extent_item_objectid, ret);
1976 break;
1977 }
1978 }
1979
1980 return ret;
1981 }
1982
1983 /*
1984 * calls iterate() for every inode that references the extent identified by
1985 * the given parameters.
1986 * when the iterator function returns a non-zero value, iteration stops.
1987 */
1988 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1989 u64 extent_item_objectid, u64 extent_item_pos,
1990 int search_commit_root,
1991 iterate_extent_inodes_t *iterate, void *ctx,
1992 bool ignore_offset)
1993 {
1994 int ret;
1995 struct btrfs_trans_handle *trans = NULL;
1996 struct ulist *refs = NULL;
1997 struct ulist *roots = NULL;
1998 struct ulist_node *ref_node = NULL;
1999 struct ulist_node *root_node = NULL;
2000 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
2001 struct ulist_iterator ref_uiter;
2002 struct ulist_iterator root_uiter;
2003
2004 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
2005 extent_item_objectid);
2006
2007 if (!search_commit_root) {
2008 trans = btrfs_attach_transaction(fs_info->extent_root);
2009 if (IS_ERR(trans)) {
2010 if (PTR_ERR(trans) != -ENOENT &&
2011 PTR_ERR(trans) != -EROFS)
2012 return PTR_ERR(trans);
2013 trans = NULL;
2014 }
2015 }
2016
2017 if (trans)
2018 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2019 else
2020 down_read(&fs_info->commit_root_sem);
2021
2022 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
2023 tree_mod_seq_elem.seq, &refs,
2024 &extent_item_pos, ignore_offset);
2025 if (ret)
2026 goto out;
2027
2028 ULIST_ITER_INIT(&ref_uiter);
2029 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2030 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
2031 tree_mod_seq_elem.seq, &roots,
2032 ignore_offset);
2033 if (ret)
2034 break;
2035 ULIST_ITER_INIT(&root_uiter);
2036 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2037 btrfs_debug(fs_info,
2038 "root %llu references leaf %llu, data list %#llx",
2039 root_node->val, ref_node->val,
2040 ref_node->aux);
2041 ret = iterate_leaf_refs(fs_info,
2042 (struct extent_inode_elem *)
2043 (uintptr_t)ref_node->aux,
2044 root_node->val,
2045 extent_item_objectid,
2046 iterate, ctx);
2047 }
2048 ulist_free(roots);
2049 }
2050
2051 free_leaf_list(refs);
2052 out:
2053 if (trans) {
2054 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2055 btrfs_end_transaction(trans);
2056 } else {
2057 up_read(&fs_info->commit_root_sem);
2058 }
2059
2060 return ret;
2061 }
2062
2063 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
2064 {
2065 struct btrfs_data_container *inodes = ctx;
2066 const size_t c = 3 * sizeof(u64);
2067
2068 if (inodes->bytes_left >= c) {
2069 inodes->bytes_left -= c;
2070 inodes->val[inodes->elem_cnt] = inum;
2071 inodes->val[inodes->elem_cnt + 1] = offset;
2072 inodes->val[inodes->elem_cnt + 2] = root;
2073 inodes->elem_cnt += 3;
2074 } else {
2075 inodes->bytes_missing += c - inodes->bytes_left;
2076 inodes->bytes_left = 0;
2077 inodes->elem_missed += 3;
2078 }
2079
2080 return 0;
2081 }
2082
2083 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2084 struct btrfs_path *path,
2085 void *ctx, bool ignore_offset)
2086 {
2087 int ret;
2088 u64 extent_item_pos;
2089 u64 flags = 0;
2090 struct btrfs_key found_key;
2091 int search_commit_root = path->search_commit_root;
2092
2093 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2094 btrfs_release_path(path);
2095 if (ret < 0)
2096 return ret;
2097 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2098 return -EINVAL;
2099
2100 extent_item_pos = logical - found_key.objectid;
2101 ret = iterate_extent_inodes(fs_info, found_key.objectid,
2102 extent_item_pos, search_commit_root,
2103 build_ino_list, ctx, ignore_offset);
2104
2105 return ret;
2106 }
2107
2108 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2109 struct extent_buffer *eb, void *ctx);
2110
2111 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2112 struct btrfs_path *path,
2113 iterate_irefs_t *iterate, void *ctx)
2114 {
2115 int ret = 0;
2116 int slot;
2117 u32 cur;
2118 u32 len;
2119 u32 name_len;
2120 u64 parent = 0;
2121 int found = 0;
2122 struct extent_buffer *eb;
2123 struct btrfs_item *item;
2124 struct btrfs_inode_ref *iref;
2125 struct btrfs_key found_key;
2126
2127 while (!ret) {
2128 ret = btrfs_find_item(fs_root, path, inum,
2129 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2130 &found_key);
2131
2132 if (ret < 0)
2133 break;
2134 if (ret) {
2135 ret = found ? 0 : -ENOENT;
2136 break;
2137 }
2138 ++found;
2139
2140 parent = found_key.offset;
2141 slot = path->slots[0];
2142 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2143 if (!eb) {
2144 ret = -ENOMEM;
2145 break;
2146 }
2147 btrfs_release_path(path);
2148
2149 item = btrfs_item_nr(slot);
2150 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2151
2152 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2153 name_len = btrfs_inode_ref_name_len(eb, iref);
2154 /* path must be released before calling iterate()! */
2155 btrfs_debug(fs_root->fs_info,
2156 "following ref at offset %u for inode %llu in tree %llu",
2157 cur, found_key.objectid,
2158 fs_root->root_key.objectid);
2159 ret = iterate(parent, name_len,
2160 (unsigned long)(iref + 1), eb, ctx);
2161 if (ret)
2162 break;
2163 len = sizeof(*iref) + name_len;
2164 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2165 }
2166 free_extent_buffer(eb);
2167 }
2168
2169 btrfs_release_path(path);
2170
2171 return ret;
2172 }
2173
2174 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2175 struct btrfs_path *path,
2176 iterate_irefs_t *iterate, void *ctx)
2177 {
2178 int ret;
2179 int slot;
2180 u64 offset = 0;
2181 u64 parent;
2182 int found = 0;
2183 struct extent_buffer *eb;
2184 struct btrfs_inode_extref *extref;
2185 u32 item_size;
2186 u32 cur_offset;
2187 unsigned long ptr;
2188
2189 while (1) {
2190 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2191 &offset);
2192 if (ret < 0)
2193 break;
2194 if (ret) {
2195 ret = found ? 0 : -ENOENT;
2196 break;
2197 }
2198 ++found;
2199
2200 slot = path->slots[0];
2201 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2202 if (!eb) {
2203 ret = -ENOMEM;
2204 break;
2205 }
2206 btrfs_release_path(path);
2207
2208 item_size = btrfs_item_size_nr(eb, slot);
2209 ptr = btrfs_item_ptr_offset(eb, slot);
2210 cur_offset = 0;
2211
2212 while (cur_offset < item_size) {
2213 u32 name_len;
2214
2215 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2216 parent = btrfs_inode_extref_parent(eb, extref);
2217 name_len = btrfs_inode_extref_name_len(eb, extref);
2218 ret = iterate(parent, name_len,
2219 (unsigned long)&extref->name, eb, ctx);
2220 if (ret)
2221 break;
2222
2223 cur_offset += btrfs_inode_extref_name_len(eb, extref);
2224 cur_offset += sizeof(*extref);
2225 }
2226 free_extent_buffer(eb);
2227
2228 offset++;
2229 }
2230
2231 btrfs_release_path(path);
2232
2233 return ret;
2234 }
2235
2236 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2237 struct btrfs_path *path, iterate_irefs_t *iterate,
2238 void *ctx)
2239 {
2240 int ret;
2241 int found_refs = 0;
2242
2243 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2244 if (!ret)
2245 ++found_refs;
2246 else if (ret != -ENOENT)
2247 return ret;
2248
2249 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2250 if (ret == -ENOENT && found_refs)
2251 return 0;
2252
2253 return ret;
2254 }
2255
2256 /*
2257 * returns 0 if the path could be dumped (probably truncated)
2258 * returns <0 in case of an error
2259 */
2260 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2261 struct extent_buffer *eb, void *ctx)
2262 {
2263 struct inode_fs_paths *ipath = ctx;
2264 char *fspath;
2265 char *fspath_min;
2266 int i = ipath->fspath->elem_cnt;
2267 const int s_ptr = sizeof(char *);
2268 u32 bytes_left;
2269
2270 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2271 ipath->fspath->bytes_left - s_ptr : 0;
2272
2273 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2274 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2275 name_off, eb, inum, fspath_min, bytes_left);
2276 if (IS_ERR(fspath))
2277 return PTR_ERR(fspath);
2278
2279 if (fspath > fspath_min) {
2280 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2281 ++ipath->fspath->elem_cnt;
2282 ipath->fspath->bytes_left = fspath - fspath_min;
2283 } else {
2284 ++ipath->fspath->elem_missed;
2285 ipath->fspath->bytes_missing += fspath_min - fspath;
2286 ipath->fspath->bytes_left = 0;
2287 }
2288
2289 return 0;
2290 }
2291
2292 /*
2293 * this dumps all file system paths to the inode into the ipath struct, provided
2294 * is has been created large enough. each path is zero-terminated and accessed
2295 * from ipath->fspath->val[i].
2296 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2297 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2298 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2299 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2300 * have been needed to return all paths.
2301 */
2302 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2303 {
2304 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2305 inode_to_path, ipath);
2306 }
2307
2308 struct btrfs_data_container *init_data_container(u32 total_bytes)
2309 {
2310 struct btrfs_data_container *data;
2311 size_t alloc_bytes;
2312
2313 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2314 data = kvmalloc(alloc_bytes, GFP_KERNEL);
2315 if (!data)
2316 return ERR_PTR(-ENOMEM);
2317
2318 if (total_bytes >= sizeof(*data)) {
2319 data->bytes_left = total_bytes - sizeof(*data);
2320 data->bytes_missing = 0;
2321 } else {
2322 data->bytes_missing = sizeof(*data) - total_bytes;
2323 data->bytes_left = 0;
2324 }
2325
2326 data->elem_cnt = 0;
2327 data->elem_missed = 0;
2328
2329 return data;
2330 }
2331
2332 /*
2333 * allocates space to return multiple file system paths for an inode.
2334 * total_bytes to allocate are passed, note that space usable for actual path
2335 * information will be total_bytes - sizeof(struct inode_fs_paths).
2336 * the returned pointer must be freed with free_ipath() in the end.
2337 */
2338 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2339 struct btrfs_path *path)
2340 {
2341 struct inode_fs_paths *ifp;
2342 struct btrfs_data_container *fspath;
2343
2344 fspath = init_data_container(total_bytes);
2345 if (IS_ERR(fspath))
2346 return ERR_CAST(fspath);
2347
2348 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2349 if (!ifp) {
2350 kvfree(fspath);
2351 return ERR_PTR(-ENOMEM);
2352 }
2353
2354 ifp->btrfs_path = path;
2355 ifp->fspath = fspath;
2356 ifp->fs_root = fs_root;
2357
2358 return ifp;
2359 }
2360
2361 void free_ipath(struct inode_fs_paths *ipath)
2362 {
2363 if (!ipath)
2364 return;
2365 kvfree(ipath->fspath);
2366 kfree(ipath);
2367 }
2368
2369 struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2370 struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2371 {
2372 struct btrfs_backref_iter *ret;
2373
2374 ret = kzalloc(sizeof(*ret), gfp_flag);
2375 if (!ret)
2376 return NULL;
2377
2378 ret->path = btrfs_alloc_path();
2379 if (!ret->path) {
2380 kfree(ret);
2381 return NULL;
2382 }
2383
2384 /* Current backref iterator only supports iteration in commit root */
2385 ret->path->search_commit_root = 1;
2386 ret->path->skip_locking = 1;
2387 ret->fs_info = fs_info;
2388
2389 return ret;
2390 }
2391
2392 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2393 {
2394 struct btrfs_fs_info *fs_info = iter->fs_info;
2395 struct btrfs_path *path = iter->path;
2396 struct btrfs_extent_item *ei;
2397 struct btrfs_key key;
2398 int ret;
2399
2400 key.objectid = bytenr;
2401 key.type = BTRFS_METADATA_ITEM_KEY;
2402 key.offset = (u64)-1;
2403 iter->bytenr = bytenr;
2404
2405 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
2406 if (ret < 0)
2407 return ret;
2408 if (ret == 0) {
2409 ret = -EUCLEAN;
2410 goto release;
2411 }
2412 if (path->slots[0] == 0) {
2413 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2414 ret = -EUCLEAN;
2415 goto release;
2416 }
2417 path->slots[0]--;
2418
2419 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2420 if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2421 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2422 ret = -ENOENT;
2423 goto release;
2424 }
2425 memcpy(&iter->cur_key, &key, sizeof(key));
2426 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2427 path->slots[0]);
2428 iter->end_ptr = (u32)(iter->item_ptr +
2429 btrfs_item_size_nr(path->nodes[0], path->slots[0]));
2430 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2431 struct btrfs_extent_item);
2432
2433 /*
2434 * Only support iteration on tree backref yet.
2435 *
2436 * This is an extra precaution for non skinny-metadata, where
2437 * EXTENT_ITEM is also used for tree blocks, that we can only use
2438 * extent flags to determine if it's a tree block.
2439 */
2440 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2441 ret = -ENOTSUPP;
2442 goto release;
2443 }
2444 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2445
2446 /* If there is no inline backref, go search for keyed backref */
2447 if (iter->cur_ptr >= iter->end_ptr) {
2448 ret = btrfs_next_item(fs_info->extent_root, path);
2449
2450 /* No inline nor keyed ref */
2451 if (ret > 0) {
2452 ret = -ENOENT;
2453 goto release;
2454 }
2455 if (ret < 0)
2456 goto release;
2457
2458 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2459 path->slots[0]);
2460 if (iter->cur_key.objectid != bytenr ||
2461 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2462 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2463 ret = -ENOENT;
2464 goto release;
2465 }
2466 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2467 path->slots[0]);
2468 iter->item_ptr = iter->cur_ptr;
2469 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
2470 path->nodes[0], path->slots[0]));
2471 }
2472
2473 return 0;
2474 release:
2475 btrfs_backref_iter_release(iter);
2476 return ret;
2477 }
2478
2479 /*
2480 * Go to the next backref item of current bytenr, can be either inlined or
2481 * keyed.
2482 *
2483 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2484 *
2485 * Return 0 if we get next backref without problem.
2486 * Return >0 if there is no extra backref for this bytenr.
2487 * Return <0 if there is something wrong happened.
2488 */
2489 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2490 {
2491 struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2492 struct btrfs_path *path = iter->path;
2493 struct btrfs_extent_inline_ref *iref;
2494 int ret;
2495 u32 size;
2496
2497 if (btrfs_backref_iter_is_inline_ref(iter)) {
2498 /* We're still inside the inline refs */
2499 ASSERT(iter->cur_ptr < iter->end_ptr);
2500
2501 if (btrfs_backref_has_tree_block_info(iter)) {
2502 /* First tree block info */
2503 size = sizeof(struct btrfs_tree_block_info);
2504 } else {
2505 /* Use inline ref type to determine the size */
2506 int type;
2507
2508 iref = (struct btrfs_extent_inline_ref *)
2509 ((unsigned long)iter->cur_ptr);
2510 type = btrfs_extent_inline_ref_type(eb, iref);
2511
2512 size = btrfs_extent_inline_ref_size(type);
2513 }
2514 iter->cur_ptr += size;
2515 if (iter->cur_ptr < iter->end_ptr)
2516 return 0;
2517
2518 /* All inline items iterated, fall through */
2519 }
2520
2521 /* We're at keyed items, there is no inline item, go to the next one */
2522 ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
2523 if (ret)
2524 return ret;
2525
2526 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2527 if (iter->cur_key.objectid != iter->bytenr ||
2528 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2529 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2530 return 1;
2531 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2532 path->slots[0]);
2533 iter->cur_ptr = iter->item_ptr;
2534 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
2535 path->slots[0]);
2536 return 0;
2537 }
2538
2539 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2540 struct btrfs_backref_cache *cache, int is_reloc)
2541 {
2542 int i;
2543
2544 cache->rb_root = RB_ROOT;
2545 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2546 INIT_LIST_HEAD(&cache->pending[i]);
2547 INIT_LIST_HEAD(&cache->changed);
2548 INIT_LIST_HEAD(&cache->detached);
2549 INIT_LIST_HEAD(&cache->leaves);
2550 INIT_LIST_HEAD(&cache->pending_edge);
2551 INIT_LIST_HEAD(&cache->useless_node);
2552 cache->fs_info = fs_info;
2553 cache->is_reloc = is_reloc;
2554 }
2555
2556 struct btrfs_backref_node *btrfs_backref_alloc_node(
2557 struct btrfs_backref_cache *cache, u64 bytenr, int level)
2558 {
2559 struct btrfs_backref_node *node;
2560
2561 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2562 node = kzalloc(sizeof(*node), GFP_NOFS);
2563 if (!node)
2564 return node;
2565
2566 INIT_LIST_HEAD(&node->list);
2567 INIT_LIST_HEAD(&node->upper);
2568 INIT_LIST_HEAD(&node->lower);
2569 RB_CLEAR_NODE(&node->rb_node);
2570 cache->nr_nodes++;
2571 node->level = level;
2572 node->bytenr = bytenr;
2573
2574 return node;
2575 }
2576
2577 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2578 struct btrfs_backref_cache *cache)
2579 {
2580 struct btrfs_backref_edge *edge;
2581
2582 edge = kzalloc(sizeof(*edge), GFP_NOFS);
2583 if (edge)
2584 cache->nr_edges++;
2585 return edge;
2586 }
2587
2588 /*
2589 * Drop the backref node from cache, also cleaning up all its
2590 * upper edges and any uncached nodes in the path.
2591 *
2592 * This cleanup happens bottom up, thus the node should either
2593 * be the lowest node in the cache or a detached node.
2594 */
2595 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2596 struct btrfs_backref_node *node)
2597 {
2598 struct btrfs_backref_node *upper;
2599 struct btrfs_backref_edge *edge;
2600
2601 if (!node)
2602 return;
2603
2604 BUG_ON(!node->lowest && !node->detached);
2605 while (!list_empty(&node->upper)) {
2606 edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2607 list[LOWER]);
2608 upper = edge->node[UPPER];
2609 list_del(&edge->list[LOWER]);
2610 list_del(&edge->list[UPPER]);
2611 btrfs_backref_free_edge(cache, edge);
2612
2613 /*
2614 * Add the node to leaf node list if no other child block
2615 * cached.
2616 */
2617 if (list_empty(&upper->lower)) {
2618 list_add_tail(&upper->lower, &cache->leaves);
2619 upper->lowest = 1;
2620 }
2621 }
2622
2623 btrfs_backref_drop_node(cache, node);
2624 }
2625
2626 /*
2627 * Release all nodes/edges from current cache
2628 */
2629 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2630 {
2631 struct btrfs_backref_node *node;
2632 int i;
2633
2634 while (!list_empty(&cache->detached)) {
2635 node = list_entry(cache->detached.next,
2636 struct btrfs_backref_node, list);
2637 btrfs_backref_cleanup_node(cache, node);
2638 }
2639
2640 while (!list_empty(&cache->leaves)) {
2641 node = list_entry(cache->leaves.next,
2642 struct btrfs_backref_node, lower);
2643 btrfs_backref_cleanup_node(cache, node);
2644 }
2645
2646 cache->last_trans = 0;
2647
2648 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2649 ASSERT(list_empty(&cache->pending[i]));
2650 ASSERT(list_empty(&cache->pending_edge));
2651 ASSERT(list_empty(&cache->useless_node));
2652 ASSERT(list_empty(&cache->changed));
2653 ASSERT(list_empty(&cache->detached));
2654 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2655 ASSERT(!cache->nr_nodes);
2656 ASSERT(!cache->nr_edges);
2657 }
2658
2659 /*
2660 * Handle direct tree backref
2661 *
2662 * Direct tree backref means, the backref item shows its parent bytenr
2663 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2664 *
2665 * @ref_key: The converted backref key.
2666 * For keyed backref, it's the item key.
2667 * For inlined backref, objectid is the bytenr,
2668 * type is btrfs_inline_ref_type, offset is
2669 * btrfs_inline_ref_offset.
2670 */
2671 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2672 struct btrfs_key *ref_key,
2673 struct btrfs_backref_node *cur)
2674 {
2675 struct btrfs_backref_edge *edge;
2676 struct btrfs_backref_node *upper;
2677 struct rb_node *rb_node;
2678
2679 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2680
2681 /* Only reloc root uses backref pointing to itself */
2682 if (ref_key->objectid == ref_key->offset) {
2683 struct btrfs_root *root;
2684
2685 cur->is_reloc_root = 1;
2686 /* Only reloc backref cache cares about a specific root */
2687 if (cache->is_reloc) {
2688 root = find_reloc_root(cache->fs_info, cur->bytenr);
2689 if (!root)
2690 return -ENOENT;
2691 cur->root = root;
2692 } else {
2693 /*
2694 * For generic purpose backref cache, reloc root node
2695 * is useless.
2696 */
2697 list_add(&cur->list, &cache->useless_node);
2698 }
2699 return 0;
2700 }
2701
2702 edge = btrfs_backref_alloc_edge(cache);
2703 if (!edge)
2704 return -ENOMEM;
2705
2706 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2707 if (!rb_node) {
2708 /* Parent node not yet cached */
2709 upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2710 cur->level + 1);
2711 if (!upper) {
2712 btrfs_backref_free_edge(cache, edge);
2713 return -ENOMEM;
2714 }
2715
2716 /*
2717 * Backrefs for the upper level block isn't cached, add the
2718 * block to pending list
2719 */
2720 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2721 } else {
2722 /* Parent node already cached */
2723 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2724 ASSERT(upper->checked);
2725 INIT_LIST_HEAD(&edge->list[UPPER]);
2726 }
2727 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2728 return 0;
2729 }
2730
2731 /*
2732 * Handle indirect tree backref
2733 *
2734 * Indirect tree backref means, we only know which tree the node belongs to.
2735 * We still need to do a tree search to find out the parents. This is for
2736 * TREE_BLOCK_REF backref (keyed or inlined).
2737 *
2738 * @ref_key: The same as @ref_key in handle_direct_tree_backref()
2739 * @tree_key: The first key of this tree block.
2740 * @path: A clean (released) path, to avoid allocating path everytime
2741 * the function get called.
2742 */
2743 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2744 struct btrfs_path *path,
2745 struct btrfs_key *ref_key,
2746 struct btrfs_key *tree_key,
2747 struct btrfs_backref_node *cur)
2748 {
2749 struct btrfs_fs_info *fs_info = cache->fs_info;
2750 struct btrfs_backref_node *upper;
2751 struct btrfs_backref_node *lower;
2752 struct btrfs_backref_edge *edge;
2753 struct extent_buffer *eb;
2754 struct btrfs_root *root;
2755 struct rb_node *rb_node;
2756 int level;
2757 bool need_check = true;
2758 int ret;
2759
2760 root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2761 if (IS_ERR(root))
2762 return PTR_ERR(root);
2763 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2764 cur->cowonly = 1;
2765
2766 if (btrfs_root_level(&root->root_item) == cur->level) {
2767 /* Tree root */
2768 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2769 /*
2770 * For reloc backref cache, we may ignore reloc root. But for
2771 * general purpose backref cache, we can't rely on
2772 * btrfs_should_ignore_reloc_root() as it may conflict with
2773 * current running relocation and lead to missing root.
2774 *
2775 * For general purpose backref cache, reloc root detection is
2776 * completely relying on direct backref (key->offset is parent
2777 * bytenr), thus only do such check for reloc cache.
2778 */
2779 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2780 btrfs_put_root(root);
2781 list_add(&cur->list, &cache->useless_node);
2782 } else {
2783 cur->root = root;
2784 }
2785 return 0;
2786 }
2787
2788 level = cur->level + 1;
2789
2790 /* Search the tree to find parent blocks referring to the block */
2791 path->search_commit_root = 1;
2792 path->skip_locking = 1;
2793 path->lowest_level = level;
2794 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2795 path->lowest_level = 0;
2796 if (ret < 0) {
2797 btrfs_put_root(root);
2798 return ret;
2799 }
2800 if (ret > 0 && path->slots[level] > 0)
2801 path->slots[level]--;
2802
2803 eb = path->nodes[level];
2804 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2805 btrfs_err(fs_info,
2806 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2807 cur->bytenr, level - 1, root->root_key.objectid,
2808 tree_key->objectid, tree_key->type, tree_key->offset);
2809 btrfs_put_root(root);
2810 ret = -ENOENT;
2811 goto out;
2812 }
2813 lower = cur;
2814
2815 /* Add all nodes and edges in the path */
2816 for (; level < BTRFS_MAX_LEVEL; level++) {
2817 if (!path->nodes[level]) {
2818 ASSERT(btrfs_root_bytenr(&root->root_item) ==
2819 lower->bytenr);
2820 /* Same as previous should_ignore_reloc_root() call */
2821 if (btrfs_should_ignore_reloc_root(root) &&
2822 cache->is_reloc) {
2823 btrfs_put_root(root);
2824 list_add(&lower->list, &cache->useless_node);
2825 } else {
2826 lower->root = root;
2827 }
2828 break;
2829 }
2830
2831 edge = btrfs_backref_alloc_edge(cache);
2832 if (!edge) {
2833 btrfs_put_root(root);
2834 ret = -ENOMEM;
2835 goto out;
2836 }
2837
2838 eb = path->nodes[level];
2839 rb_node = rb_simple_search(&cache->rb_root, eb->start);
2840 if (!rb_node) {
2841 upper = btrfs_backref_alloc_node(cache, eb->start,
2842 lower->level + 1);
2843 if (!upper) {
2844 btrfs_put_root(root);
2845 btrfs_backref_free_edge(cache, edge);
2846 ret = -ENOMEM;
2847 goto out;
2848 }
2849 upper->owner = btrfs_header_owner(eb);
2850 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2851 upper->cowonly = 1;
2852
2853 /*
2854 * If we know the block isn't shared we can avoid
2855 * checking its backrefs.
2856 */
2857 if (btrfs_block_can_be_shared(root, eb))
2858 upper->checked = 0;
2859 else
2860 upper->checked = 1;
2861
2862 /*
2863 * Add the block to pending list if we need to check its
2864 * backrefs, we only do this once while walking up a
2865 * tree as we will catch anything else later on.
2866 */
2867 if (!upper->checked && need_check) {
2868 need_check = false;
2869 list_add_tail(&edge->list[UPPER],
2870 &cache->pending_edge);
2871 } else {
2872 if (upper->checked)
2873 need_check = true;
2874 INIT_LIST_HEAD(&edge->list[UPPER]);
2875 }
2876 } else {
2877 upper = rb_entry(rb_node, struct btrfs_backref_node,
2878 rb_node);
2879 ASSERT(upper->checked);
2880 INIT_LIST_HEAD(&edge->list[UPPER]);
2881 if (!upper->owner)
2882 upper->owner = btrfs_header_owner(eb);
2883 }
2884 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2885
2886 if (rb_node) {
2887 btrfs_put_root(root);
2888 break;
2889 }
2890 lower = upper;
2891 upper = NULL;
2892 }
2893 out:
2894 btrfs_release_path(path);
2895 return ret;
2896 }
2897
2898 /*
2899 * Add backref node @cur into @cache.
2900 *
2901 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2902 * links aren't yet bi-directional. Needs to finish such links.
2903 * Use btrfs_backref_finish_upper_links() to finish such linkage.
2904 *
2905 * @path: Released path for indirect tree backref lookup
2906 * @iter: Released backref iter for extent tree search
2907 * @node_key: The first key of the tree block
2908 */
2909 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2910 struct btrfs_path *path,
2911 struct btrfs_backref_iter *iter,
2912 struct btrfs_key *node_key,
2913 struct btrfs_backref_node *cur)
2914 {
2915 struct btrfs_fs_info *fs_info = cache->fs_info;
2916 struct btrfs_backref_edge *edge;
2917 struct btrfs_backref_node *exist;
2918 int ret;
2919
2920 ret = btrfs_backref_iter_start(iter, cur->bytenr);
2921 if (ret < 0)
2922 return ret;
2923 /*
2924 * We skip the first btrfs_tree_block_info, as we don't use the key
2925 * stored in it, but fetch it from the tree block
2926 */
2927 if (btrfs_backref_has_tree_block_info(iter)) {
2928 ret = btrfs_backref_iter_next(iter);
2929 if (ret < 0)
2930 goto out;
2931 /* No extra backref? This means the tree block is corrupted */
2932 if (ret > 0) {
2933 ret = -EUCLEAN;
2934 goto out;
2935 }
2936 }
2937 WARN_ON(cur->checked);
2938 if (!list_empty(&cur->upper)) {
2939 /*
2940 * The backref was added previously when processing backref of
2941 * type BTRFS_TREE_BLOCK_REF_KEY
2942 */
2943 ASSERT(list_is_singular(&cur->upper));
2944 edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2945 list[LOWER]);
2946 ASSERT(list_empty(&edge->list[UPPER]));
2947 exist = edge->node[UPPER];
2948 /*
2949 * Add the upper level block to pending list if we need check
2950 * its backrefs
2951 */
2952 if (!exist->checked)
2953 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2954 } else {
2955 exist = NULL;
2956 }
2957
2958 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2959 struct extent_buffer *eb;
2960 struct btrfs_key key;
2961 int type;
2962
2963 cond_resched();
2964 eb = btrfs_backref_get_eb(iter);
2965
2966 key.objectid = iter->bytenr;
2967 if (btrfs_backref_iter_is_inline_ref(iter)) {
2968 struct btrfs_extent_inline_ref *iref;
2969
2970 /* Update key for inline backref */
2971 iref = (struct btrfs_extent_inline_ref *)
2972 ((unsigned long)iter->cur_ptr);
2973 type = btrfs_get_extent_inline_ref_type(eb, iref,
2974 BTRFS_REF_TYPE_BLOCK);
2975 if (type == BTRFS_REF_TYPE_INVALID) {
2976 ret = -EUCLEAN;
2977 goto out;
2978 }
2979 key.type = type;
2980 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2981 } else {
2982 key.type = iter->cur_key.type;
2983 key.offset = iter->cur_key.offset;
2984 }
2985
2986 /*
2987 * Parent node found and matches current inline ref, no need to
2988 * rebuild this node for this inline ref
2989 */
2990 if (exist &&
2991 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2992 exist->owner == key.offset) ||
2993 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2994 exist->bytenr == key.offset))) {
2995 exist = NULL;
2996 continue;
2997 }
2998
2999 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3000 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3001 ret = handle_direct_tree_backref(cache, &key, cur);
3002 if (ret < 0)
3003 goto out;
3004 continue;
3005 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3006 ret = -EINVAL;
3007 btrfs_print_v0_err(fs_info);
3008 btrfs_handle_fs_error(fs_info, ret, NULL);
3009 goto out;
3010 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
3011 continue;
3012 }
3013
3014 /*
3015 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
3016 * means the root objectid. We need to search the tree to get
3017 * its parent bytenr.
3018 */
3019 ret = handle_indirect_tree_backref(cache, path, &key, node_key,
3020 cur);
3021 if (ret < 0)
3022 goto out;
3023 }
3024 ret = 0;
3025 cur->checked = 1;
3026 WARN_ON(exist);
3027 out:
3028 btrfs_backref_iter_release(iter);
3029 return ret;
3030 }
3031
3032 /*
3033 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3034 */
3035 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3036 struct btrfs_backref_node *start)
3037 {
3038 struct list_head *useless_node = &cache->useless_node;
3039 struct btrfs_backref_edge *edge;
3040 struct rb_node *rb_node;
3041 LIST_HEAD(pending_edge);
3042
3043 ASSERT(start->checked);
3044
3045 /* Insert this node to cache if it's not COW-only */
3046 if (!start->cowonly) {
3047 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3048 &start->rb_node);
3049 if (rb_node)
3050 btrfs_backref_panic(cache->fs_info, start->bytenr,
3051 -EEXIST);
3052 list_add_tail(&start->lower, &cache->leaves);
3053 }
3054
3055 /*
3056 * Use breadth first search to iterate all related edges.
3057 *
3058 * The starting points are all the edges of this node
3059 */
3060 list_for_each_entry(edge, &start->upper, list[LOWER])
3061 list_add_tail(&edge->list[UPPER], &pending_edge);
3062
3063 while (!list_empty(&pending_edge)) {
3064 struct btrfs_backref_node *upper;
3065 struct btrfs_backref_node *lower;
3066
3067 edge = list_first_entry(&pending_edge,
3068 struct btrfs_backref_edge, list[UPPER]);
3069 list_del_init(&edge->list[UPPER]);
3070 upper = edge->node[UPPER];
3071 lower = edge->node[LOWER];
3072
3073 /* Parent is detached, no need to keep any edges */
3074 if (upper->detached) {
3075 list_del(&edge->list[LOWER]);
3076 btrfs_backref_free_edge(cache, edge);
3077
3078 /* Lower node is orphan, queue for cleanup */
3079 if (list_empty(&lower->upper))
3080 list_add(&lower->list, useless_node);
3081 continue;
3082 }
3083
3084 /*
3085 * All new nodes added in current build_backref_tree() haven't
3086 * been linked to the cache rb tree.
3087 * So if we have upper->rb_node populated, this means a cache
3088 * hit. We only need to link the edge, as @upper and all its
3089 * parents have already been linked.
3090 */
3091 if (!RB_EMPTY_NODE(&upper->rb_node)) {
3092 if (upper->lowest) {
3093 list_del_init(&upper->lower);
3094 upper->lowest = 0;
3095 }
3096
3097 list_add_tail(&edge->list[UPPER], &upper->lower);
3098 continue;
3099 }
3100
3101 /* Sanity check, we shouldn't have any unchecked nodes */
3102 if (!upper->checked) {
3103 ASSERT(0);
3104 return -EUCLEAN;
3105 }
3106
3107 /* Sanity check, COW-only node has non-COW-only parent */
3108 if (start->cowonly != upper->cowonly) {
3109 ASSERT(0);
3110 return -EUCLEAN;
3111 }
3112
3113 /* Only cache non-COW-only (subvolume trees) tree blocks */
3114 if (!upper->cowonly) {
3115 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3116 &upper->rb_node);
3117 if (rb_node) {
3118 btrfs_backref_panic(cache->fs_info,
3119 upper->bytenr, -EEXIST);
3120 return -EUCLEAN;
3121 }
3122 }
3123
3124 list_add_tail(&edge->list[UPPER], &upper->lower);
3125
3126 /*
3127 * Also queue all the parent edges of this uncached node
3128 * to finish the upper linkage
3129 */
3130 list_for_each_entry(edge, &upper->upper, list[LOWER])
3131 list_add_tail(&edge->list[UPPER], &pending_edge);
3132 }
3133 return 0;
3134 }
3135
3136 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3137 struct btrfs_backref_node *node)
3138 {
3139 struct btrfs_backref_node *lower;
3140 struct btrfs_backref_node *upper;
3141 struct btrfs_backref_edge *edge;
3142
3143 while (!list_empty(&cache->useless_node)) {
3144 lower = list_first_entry(&cache->useless_node,
3145 struct btrfs_backref_node, list);
3146 list_del_init(&lower->list);
3147 }
3148 while (!list_empty(&cache->pending_edge)) {
3149 edge = list_first_entry(&cache->pending_edge,
3150 struct btrfs_backref_edge, list[UPPER]);
3151 list_del(&edge->list[UPPER]);
3152 list_del(&edge->list[LOWER]);
3153 lower = edge->node[LOWER];
3154 upper = edge->node[UPPER];
3155 btrfs_backref_free_edge(cache, edge);
3156
3157 /*
3158 * Lower is no longer linked to any upper backref nodes and
3159 * isn't in the cache, we can free it ourselves.
3160 */
3161 if (list_empty(&lower->upper) &&
3162 RB_EMPTY_NODE(&lower->rb_node))
3163 list_add(&lower->list, &cache->useless_node);
3164
3165 if (!RB_EMPTY_NODE(&upper->rb_node))
3166 continue;
3167
3168 /* Add this guy's upper edges to the list to process */
3169 list_for_each_entry(edge, &upper->upper, list[LOWER])
3170 list_add_tail(&edge->list[UPPER],
3171 &cache->pending_edge);
3172 if (list_empty(&upper->upper))
3173 list_add(&upper->list, &cache->useless_node);
3174 }
3175
3176 while (!list_empty(&cache->useless_node)) {
3177 lower = list_first_entry(&cache->useless_node,
3178 struct btrfs_backref_node, list);
3179 list_del_init(&lower->list);
3180 if (lower == node)
3181 node = NULL;
3182 btrfs_backref_drop_node(cache, lower);
3183 }
3184
3185 btrfs_backref_cleanup_node(cache, node);
3186 ASSERT(list_empty(&cache->useless_node) &&
3187 list_empty(&cache->pending_edge));
3188 }
3189