1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * No idle tick implementation for low and high resolution timers
8 *
9 * Started by: Thomas Gleixner and Ingo Molnar
10 */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/module.h>
24 #include <linux/irq_work.h>
25 #include <linux/posix-timers.h>
26 #include <linux/context_tracking.h>
27 #include <linux/mm.h>
28 #include <trace/hooks/sched.h>
29
30 #include <asm/irq_regs.h>
31
32 #include "tick-internal.h"
33
34 #include <trace/events/timer.h>
35
36 /*
37 * Per-CPU nohz control structure
38 */
39 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
40
tick_get_tick_sched(int cpu)41 struct tick_sched *tick_get_tick_sched(int cpu)
42 {
43 return &per_cpu(tick_cpu_sched, cpu);
44 }
45
46 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
47 /*
48 * The time, when the last jiffy update happened. Protected by jiffies_lock.
49 */
50 static ktime_t last_jiffies_update;
51
52 /*
53 * Must be called with interrupts disabled !
54 */
tick_do_update_jiffies64(ktime_t now)55 static void tick_do_update_jiffies64(ktime_t now)
56 {
57 unsigned long ticks = 0;
58 ktime_t delta;
59
60 /*
61 * Do a quick check without holding jiffies_lock:
62 * The READ_ONCE() pairs with two updates done later in this function.
63 */
64 delta = ktime_sub(now, READ_ONCE(last_jiffies_update));
65 if (delta < tick_period)
66 return;
67
68 /* Reevaluate with jiffies_lock held */
69 raw_spin_lock(&jiffies_lock);
70 write_seqcount_begin(&jiffies_seq);
71
72 delta = ktime_sub(now, last_jiffies_update);
73 if (delta >= tick_period) {
74
75 delta = ktime_sub(delta, tick_period);
76 /* Pairs with the lockless read in this function. */
77 WRITE_ONCE(last_jiffies_update,
78 ktime_add(last_jiffies_update, tick_period));
79
80 /* Slow path for long timeouts */
81 if (unlikely(delta >= tick_period)) {
82 s64 incr = ktime_to_ns(tick_period);
83
84 ticks = ktime_divns(delta, incr);
85
86 /* Pairs with the lockless read in this function. */
87 WRITE_ONCE(last_jiffies_update,
88 ktime_add_ns(last_jiffies_update,
89 incr * ticks));
90 }
91 do_timer(++ticks);
92
93 /* Keep the tick_next_period variable up to date */
94 tick_next_period = ktime_add(last_jiffies_update, tick_period);
95 } else {
96 write_seqcount_end(&jiffies_seq);
97 raw_spin_unlock(&jiffies_lock);
98 return;
99 }
100 write_seqcount_end(&jiffies_seq);
101 raw_spin_unlock(&jiffies_lock);
102 update_wall_time();
103 }
104
105 /*
106 * Initialize and return retrieve the jiffies update.
107 */
tick_init_jiffy_update(void)108 static ktime_t tick_init_jiffy_update(void)
109 {
110 ktime_t period;
111
112 raw_spin_lock(&jiffies_lock);
113 write_seqcount_begin(&jiffies_seq);
114 /* Did we start the jiffies update yet ? */
115 if (last_jiffies_update == 0)
116 last_jiffies_update = tick_next_period;
117 period = last_jiffies_update;
118 write_seqcount_end(&jiffies_seq);
119 raw_spin_unlock(&jiffies_lock);
120 return period;
121 }
122
tick_sched_do_timer(struct tick_sched * ts,ktime_t now)123 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
124 {
125 int cpu = smp_processor_id();
126
127 #ifdef CONFIG_NO_HZ_COMMON
128 /*
129 * Check if the do_timer duty was dropped. We don't care about
130 * concurrency: This happens only when the CPU in charge went
131 * into a long sleep. If two CPUs happen to assign themselves to
132 * this duty, then the jiffies update is still serialized by
133 * jiffies_lock.
134 *
135 * If nohz_full is enabled, this should not happen because the
136 * tick_do_timer_cpu never relinquishes.
137 */
138 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
139 #ifdef CONFIG_NO_HZ_FULL
140 WARN_ON_ONCE(tick_nohz_full_running);
141 #endif
142 tick_do_timer_cpu = cpu;
143 }
144 #endif
145
146 /* Check, if the jiffies need an update */
147 if (tick_do_timer_cpu == cpu) {
148 tick_do_update_jiffies64(now);
149 trace_android_vh_jiffies_update(NULL);
150 }
151
152 if (ts->inidle)
153 ts->got_idle_tick = 1;
154 }
155
tick_sched_handle(struct tick_sched * ts,struct pt_regs * regs)156 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
157 {
158 #ifdef CONFIG_NO_HZ_COMMON
159 /*
160 * When we are idle and the tick is stopped, we have to touch
161 * the watchdog as we might not schedule for a really long
162 * time. This happens on complete idle SMP systems while
163 * waiting on the login prompt. We also increment the "start of
164 * idle" jiffy stamp so the idle accounting adjustment we do
165 * when we go busy again does not account too much ticks.
166 */
167 if (ts->tick_stopped) {
168 touch_softlockup_watchdog_sched();
169 if (is_idle_task(current))
170 ts->idle_jiffies++;
171 /*
172 * In case the current tick fired too early past its expected
173 * expiration, make sure we don't bypass the next clock reprogramming
174 * to the same deadline.
175 */
176 ts->next_tick = 0;
177 }
178 #endif
179 update_process_times(user_mode(regs));
180 profile_tick(CPU_PROFILING);
181 }
182 #endif
183
184 #ifdef CONFIG_NO_HZ_FULL
185 cpumask_var_t tick_nohz_full_mask;
186 bool tick_nohz_full_running;
187 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
188 static atomic_t tick_dep_mask;
189
check_tick_dependency(atomic_t * dep)190 static bool check_tick_dependency(atomic_t *dep)
191 {
192 int val = atomic_read(dep);
193
194 if (val & TICK_DEP_MASK_POSIX_TIMER) {
195 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
196 return true;
197 }
198
199 if (val & TICK_DEP_MASK_PERF_EVENTS) {
200 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
201 return true;
202 }
203
204 if (val & TICK_DEP_MASK_SCHED) {
205 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
206 return true;
207 }
208
209 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
210 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
211 return true;
212 }
213
214 if (val & TICK_DEP_MASK_RCU) {
215 trace_tick_stop(0, TICK_DEP_MASK_RCU);
216 return true;
217 }
218
219 return false;
220 }
221
can_stop_full_tick(int cpu,struct tick_sched * ts)222 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
223 {
224 lockdep_assert_irqs_disabled();
225
226 if (unlikely(!cpu_online(cpu)))
227 return false;
228
229 if (check_tick_dependency(&tick_dep_mask))
230 return false;
231
232 if (check_tick_dependency(&ts->tick_dep_mask))
233 return false;
234
235 if (check_tick_dependency(¤t->tick_dep_mask))
236 return false;
237
238 if (check_tick_dependency(¤t->signal->tick_dep_mask))
239 return false;
240
241 return true;
242 }
243
nohz_full_kick_func(struct irq_work * work)244 static void nohz_full_kick_func(struct irq_work *work)
245 {
246 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
247 }
248
249 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
250 .func = nohz_full_kick_func,
251 .flags = ATOMIC_INIT(IRQ_WORK_HARD_IRQ),
252 };
253
254 /*
255 * Kick this CPU if it's full dynticks in order to force it to
256 * re-evaluate its dependency on the tick and restart it if necessary.
257 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
258 * is NMI safe.
259 */
tick_nohz_full_kick(void)260 static void tick_nohz_full_kick(void)
261 {
262 if (!tick_nohz_full_cpu(smp_processor_id()))
263 return;
264
265 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
266 }
267
268 /*
269 * Kick the CPU if it's full dynticks in order to force it to
270 * re-evaluate its dependency on the tick and restart it if necessary.
271 */
tick_nohz_full_kick_cpu(int cpu)272 void tick_nohz_full_kick_cpu(int cpu)
273 {
274 if (!tick_nohz_full_cpu(cpu))
275 return;
276
277 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
278 }
279
280 /*
281 * Kick all full dynticks CPUs in order to force these to re-evaluate
282 * their dependency on the tick and restart it if necessary.
283 */
tick_nohz_full_kick_all(void)284 static void tick_nohz_full_kick_all(void)
285 {
286 int cpu;
287
288 if (!tick_nohz_full_running)
289 return;
290
291 preempt_disable();
292 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
293 tick_nohz_full_kick_cpu(cpu);
294 preempt_enable();
295 }
296
tick_nohz_dep_set_all(atomic_t * dep,enum tick_dep_bits bit)297 static void tick_nohz_dep_set_all(atomic_t *dep,
298 enum tick_dep_bits bit)
299 {
300 int prev;
301
302 prev = atomic_fetch_or(BIT(bit), dep);
303 if (!prev)
304 tick_nohz_full_kick_all();
305 }
306
307 /*
308 * Set a global tick dependency. Used by perf events that rely on freq and
309 * by unstable clock.
310 */
tick_nohz_dep_set(enum tick_dep_bits bit)311 void tick_nohz_dep_set(enum tick_dep_bits bit)
312 {
313 tick_nohz_dep_set_all(&tick_dep_mask, bit);
314 }
315
tick_nohz_dep_clear(enum tick_dep_bits bit)316 void tick_nohz_dep_clear(enum tick_dep_bits bit)
317 {
318 atomic_andnot(BIT(bit), &tick_dep_mask);
319 }
320
321 /*
322 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
323 * manage events throttling.
324 */
tick_nohz_dep_set_cpu(int cpu,enum tick_dep_bits bit)325 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
326 {
327 int prev;
328 struct tick_sched *ts;
329
330 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
331
332 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
333 if (!prev) {
334 preempt_disable();
335 /* Perf needs local kick that is NMI safe */
336 if (cpu == smp_processor_id()) {
337 tick_nohz_full_kick();
338 } else {
339 /* Remote irq work not NMI-safe */
340 if (!WARN_ON_ONCE(in_nmi()))
341 tick_nohz_full_kick_cpu(cpu);
342 }
343 preempt_enable();
344 }
345 }
346 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
347
tick_nohz_dep_clear_cpu(int cpu,enum tick_dep_bits bit)348 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
349 {
350 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
351
352 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
353 }
354 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
355
356 /*
357 * Set a per-task tick dependency. RCU need this. Also posix CPU timers
358 * in order to elapse per task timers.
359 */
tick_nohz_dep_set_task(struct task_struct * tsk,enum tick_dep_bits bit)360 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
361 {
362 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) {
363 if (tsk == current) {
364 preempt_disable();
365 tick_nohz_full_kick();
366 preempt_enable();
367 } else {
368 /*
369 * Some future tick_nohz_full_kick_task()
370 * should optimize this.
371 */
372 tick_nohz_full_kick_all();
373 }
374 }
375 }
376 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
377
tick_nohz_dep_clear_task(struct task_struct * tsk,enum tick_dep_bits bit)378 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
379 {
380 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
381 }
382 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
383
384 /*
385 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
386 * per process timers.
387 */
tick_nohz_dep_set_signal(struct signal_struct * sig,enum tick_dep_bits bit)388 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
389 {
390 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
391 }
392
tick_nohz_dep_clear_signal(struct signal_struct * sig,enum tick_dep_bits bit)393 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
394 {
395 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
396 }
397
398 /*
399 * Re-evaluate the need for the tick as we switch the current task.
400 * It might need the tick due to per task/process properties:
401 * perf events, posix CPU timers, ...
402 */
__tick_nohz_task_switch(void)403 void __tick_nohz_task_switch(void)
404 {
405 unsigned long flags;
406 struct tick_sched *ts;
407
408 local_irq_save(flags);
409
410 if (!tick_nohz_full_cpu(smp_processor_id()))
411 goto out;
412
413 ts = this_cpu_ptr(&tick_cpu_sched);
414
415 if (ts->tick_stopped) {
416 if (atomic_read(¤t->tick_dep_mask) ||
417 atomic_read(¤t->signal->tick_dep_mask))
418 tick_nohz_full_kick();
419 }
420 out:
421 local_irq_restore(flags);
422 }
423
424 /* Get the boot-time nohz CPU list from the kernel parameters. */
tick_nohz_full_setup(cpumask_var_t cpumask)425 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
426 {
427 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
428 cpumask_copy(tick_nohz_full_mask, cpumask);
429 tick_nohz_full_running = true;
430 }
431
tick_nohz_cpu_down(unsigned int cpu)432 static int tick_nohz_cpu_down(unsigned int cpu)
433 {
434 /*
435 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
436 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
437 * CPUs. It must remain online when nohz full is enabled.
438 */
439 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
440 return -EBUSY;
441 return 0;
442 }
443
tick_nohz_init(void)444 void __init tick_nohz_init(void)
445 {
446 int cpu, ret;
447
448 if (!tick_nohz_full_running)
449 return;
450
451 /*
452 * Full dynticks uses irq work to drive the tick rescheduling on safe
453 * locking contexts. But then we need irq work to raise its own
454 * interrupts to avoid circular dependency on the tick
455 */
456 if (!arch_irq_work_has_interrupt()) {
457 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
458 cpumask_clear(tick_nohz_full_mask);
459 tick_nohz_full_running = false;
460 return;
461 }
462
463 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
464 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
465 cpu = smp_processor_id();
466
467 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
468 pr_warn("NO_HZ: Clearing %d from nohz_full range "
469 "for timekeeping\n", cpu);
470 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
471 }
472 }
473
474 for_each_cpu(cpu, tick_nohz_full_mask)
475 context_tracking_cpu_set(cpu);
476
477 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
478 "kernel/nohz:predown", NULL,
479 tick_nohz_cpu_down);
480 WARN_ON(ret < 0);
481 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
482 cpumask_pr_args(tick_nohz_full_mask));
483 }
484 #endif
485
486 /*
487 * NOHZ - aka dynamic tick functionality
488 */
489 #ifdef CONFIG_NO_HZ_COMMON
490 /*
491 * NO HZ enabled ?
492 */
493 bool tick_nohz_enabled __read_mostly = true;
494 unsigned long tick_nohz_active __read_mostly;
495 /*
496 * Enable / Disable tickless mode
497 */
setup_tick_nohz(char * str)498 static int __init setup_tick_nohz(char *str)
499 {
500 return (kstrtobool(str, &tick_nohz_enabled) == 0);
501 }
502
503 __setup("nohz=", setup_tick_nohz);
504
tick_nohz_tick_stopped(void)505 bool tick_nohz_tick_stopped(void)
506 {
507 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
508
509 return ts->tick_stopped;
510 }
511
tick_nohz_tick_stopped_cpu(int cpu)512 bool tick_nohz_tick_stopped_cpu(int cpu)
513 {
514 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
515
516 return ts->tick_stopped;
517 }
518
519 /**
520 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
521 *
522 * Called from interrupt entry when the CPU was idle
523 *
524 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
525 * must be updated. Otherwise an interrupt handler could use a stale jiffy
526 * value. We do this unconditionally on any CPU, as we don't know whether the
527 * CPU, which has the update task assigned is in a long sleep.
528 */
tick_nohz_update_jiffies(ktime_t now)529 static void tick_nohz_update_jiffies(ktime_t now)
530 {
531 unsigned long flags;
532
533 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
534
535 local_irq_save(flags);
536 tick_do_update_jiffies64(now);
537 local_irq_restore(flags);
538
539 touch_softlockup_watchdog_sched();
540 }
541
542 /*
543 * Updates the per-CPU time idle statistics counters
544 */
545 static void
update_ts_time_stats(int cpu,struct tick_sched * ts,ktime_t now,u64 * last_update_time)546 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
547 {
548 ktime_t delta;
549
550 if (ts->idle_active) {
551 delta = ktime_sub(now, ts->idle_entrytime);
552 if (nr_iowait_cpu(cpu) > 0)
553 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
554 else
555 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
556 ts->idle_entrytime = now;
557 }
558
559 if (last_update_time)
560 *last_update_time = ktime_to_us(now);
561
562 }
563
tick_nohz_stop_idle(struct tick_sched * ts,ktime_t now)564 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
565 {
566 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
567 ts->idle_active = 0;
568
569 sched_clock_idle_wakeup_event();
570 }
571
tick_nohz_start_idle(struct tick_sched * ts)572 static void tick_nohz_start_idle(struct tick_sched *ts)
573 {
574 ts->idle_entrytime = ktime_get();
575 ts->idle_active = 1;
576 sched_clock_idle_sleep_event();
577 }
578
579 /**
580 * get_cpu_idle_time_us - get the total idle time of a CPU
581 * @cpu: CPU number to query
582 * @last_update_time: variable to store update time in. Do not update
583 * counters if NULL.
584 *
585 * Return the cumulative idle time (since boot) for a given
586 * CPU, in microseconds.
587 *
588 * This time is measured via accounting rather than sampling,
589 * and is as accurate as ktime_get() is.
590 *
591 * This function returns -1 if NOHZ is not enabled.
592 */
get_cpu_idle_time_us(int cpu,u64 * last_update_time)593 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
594 {
595 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
596 ktime_t now, idle;
597
598 if (!tick_nohz_active)
599 return -1;
600
601 now = ktime_get();
602 if (last_update_time) {
603 update_ts_time_stats(cpu, ts, now, last_update_time);
604 idle = ts->idle_sleeptime;
605 } else {
606 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
607 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
608
609 idle = ktime_add(ts->idle_sleeptime, delta);
610 } else {
611 idle = ts->idle_sleeptime;
612 }
613 }
614
615 return ktime_to_us(idle);
616
617 }
618 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
619
620 /**
621 * get_cpu_iowait_time_us - get the total iowait time of a CPU
622 * @cpu: CPU number to query
623 * @last_update_time: variable to store update time in. Do not update
624 * counters if NULL.
625 *
626 * Return the cumulative iowait time (since boot) for a given
627 * CPU, in microseconds.
628 *
629 * This time is measured via accounting rather than sampling,
630 * and is as accurate as ktime_get() is.
631 *
632 * This function returns -1 if NOHZ is not enabled.
633 */
get_cpu_iowait_time_us(int cpu,u64 * last_update_time)634 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
635 {
636 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
637 ktime_t now, iowait;
638
639 if (!tick_nohz_active)
640 return -1;
641
642 now = ktime_get();
643 if (last_update_time) {
644 update_ts_time_stats(cpu, ts, now, last_update_time);
645 iowait = ts->iowait_sleeptime;
646 } else {
647 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
648 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
649
650 iowait = ktime_add(ts->iowait_sleeptime, delta);
651 } else {
652 iowait = ts->iowait_sleeptime;
653 }
654 }
655
656 return ktime_to_us(iowait);
657 }
658 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
659
tick_nohz_restart(struct tick_sched * ts,ktime_t now)660 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
661 {
662 hrtimer_cancel(&ts->sched_timer);
663 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
664
665 /* Forward the time to expire in the future */
666 hrtimer_forward(&ts->sched_timer, now, tick_period);
667
668 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
669 hrtimer_start_expires(&ts->sched_timer,
670 HRTIMER_MODE_ABS_PINNED_HARD);
671 } else {
672 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
673 }
674
675 /*
676 * Reset to make sure next tick stop doesn't get fooled by past
677 * cached clock deadline.
678 */
679 ts->next_tick = 0;
680 }
681
local_timer_softirq_pending(void)682 static inline bool local_timer_softirq_pending(void)
683 {
684 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
685 }
686
tick_nohz_next_event(struct tick_sched * ts,int cpu)687 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
688 {
689 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
690 unsigned long basejiff;
691 unsigned int seq;
692
693 /* Read jiffies and the time when jiffies were updated last */
694 do {
695 seq = read_seqcount_begin(&jiffies_seq);
696 basemono = last_jiffies_update;
697 basejiff = jiffies;
698 } while (read_seqcount_retry(&jiffies_seq, seq));
699 ts->last_jiffies = basejiff;
700 ts->timer_expires_base = basemono;
701
702 /*
703 * Keep the periodic tick, when RCU, architecture or irq_work
704 * requests it.
705 * Aside of that check whether the local timer softirq is
706 * pending. If so its a bad idea to call get_next_timer_interrupt()
707 * because there is an already expired timer, so it will request
708 * immeditate expiry, which rearms the hardware timer with a
709 * minimal delta which brings us back to this place
710 * immediately. Lather, rinse and repeat...
711 */
712 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
713 irq_work_needs_cpu() || local_timer_softirq_pending()) {
714 next_tick = basemono + TICK_NSEC;
715 } else {
716 /*
717 * Get the next pending timer. If high resolution
718 * timers are enabled this only takes the timer wheel
719 * timers into account. If high resolution timers are
720 * disabled this also looks at the next expiring
721 * hrtimer.
722 */
723 next_tmr = get_next_timer_interrupt(basejiff, basemono);
724 ts->next_timer = next_tmr;
725 /* Take the next rcu event into account */
726 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
727 }
728
729 /*
730 * If the tick is due in the next period, keep it ticking or
731 * force prod the timer.
732 */
733 delta = next_tick - basemono;
734 if (delta <= (u64)TICK_NSEC) {
735 /*
736 * Tell the timer code that the base is not idle, i.e. undo
737 * the effect of get_next_timer_interrupt():
738 */
739 timer_clear_idle();
740 /*
741 * We've not stopped the tick yet, and there's a timer in the
742 * next period, so no point in stopping it either, bail.
743 */
744 if (!ts->tick_stopped) {
745 ts->timer_expires = 0;
746 goto out;
747 }
748 }
749
750 /*
751 * If this CPU is the one which had the do_timer() duty last, we limit
752 * the sleep time to the timekeeping max_deferment value.
753 * Otherwise we can sleep as long as we want.
754 */
755 delta = timekeeping_max_deferment();
756 if (cpu != tick_do_timer_cpu &&
757 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
758 delta = KTIME_MAX;
759
760 /* Calculate the next expiry time */
761 if (delta < (KTIME_MAX - basemono))
762 expires = basemono + delta;
763 else
764 expires = KTIME_MAX;
765
766 ts->timer_expires = min_t(u64, expires, next_tick);
767
768 out:
769 return ts->timer_expires;
770 }
771
tick_nohz_stop_tick(struct tick_sched * ts,int cpu)772 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
773 {
774 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
775 u64 basemono = ts->timer_expires_base;
776 u64 expires = ts->timer_expires;
777 ktime_t tick = expires;
778
779 /* Make sure we won't be trying to stop it twice in a row. */
780 ts->timer_expires_base = 0;
781
782 /*
783 * If this CPU is the one which updates jiffies, then give up
784 * the assignment and let it be taken by the CPU which runs
785 * the tick timer next, which might be this CPU as well. If we
786 * don't drop this here the jiffies might be stale and
787 * do_timer() never invoked. Keep track of the fact that it
788 * was the one which had the do_timer() duty last.
789 */
790 if (cpu == tick_do_timer_cpu) {
791 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
792 ts->do_timer_last = 1;
793 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
794 ts->do_timer_last = 0;
795 }
796
797 /* Skip reprogram of event if its not changed */
798 if (ts->tick_stopped && (expires == ts->next_tick)) {
799 /* Sanity check: make sure clockevent is actually programmed */
800 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
801 return;
802
803 WARN_ON_ONCE(1);
804 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
805 basemono, ts->next_tick, dev->next_event,
806 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
807 }
808
809 /*
810 * nohz_stop_sched_tick can be called several times before
811 * the nohz_restart_sched_tick is called. This happens when
812 * interrupts arrive which do not cause a reschedule. In the
813 * first call we save the current tick time, so we can restart
814 * the scheduler tick in nohz_restart_sched_tick.
815 */
816 if (!ts->tick_stopped) {
817 calc_load_nohz_start();
818 quiet_vmstat();
819
820 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
821 ts->tick_stopped = 1;
822 trace_tick_stop(1, TICK_DEP_MASK_NONE);
823 }
824
825 ts->next_tick = tick;
826
827 /*
828 * If the expiration time == KTIME_MAX, then we simply stop
829 * the tick timer.
830 */
831 if (unlikely(expires == KTIME_MAX)) {
832 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
833 hrtimer_cancel(&ts->sched_timer);
834 return;
835 }
836
837 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
838 hrtimer_start(&ts->sched_timer, tick,
839 HRTIMER_MODE_ABS_PINNED_HARD);
840 } else {
841 hrtimer_set_expires(&ts->sched_timer, tick);
842 tick_program_event(tick, 1);
843 }
844 }
845
tick_nohz_retain_tick(struct tick_sched * ts)846 static void tick_nohz_retain_tick(struct tick_sched *ts)
847 {
848 ts->timer_expires_base = 0;
849 }
850
851 #ifdef CONFIG_NO_HZ_FULL
tick_nohz_stop_sched_tick(struct tick_sched * ts,int cpu)852 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
853 {
854 if (tick_nohz_next_event(ts, cpu))
855 tick_nohz_stop_tick(ts, cpu);
856 else
857 tick_nohz_retain_tick(ts);
858 }
859 #endif /* CONFIG_NO_HZ_FULL */
860
tick_nohz_restart_sched_tick(struct tick_sched * ts,ktime_t now)861 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
862 {
863 /* Update jiffies first */
864 tick_do_update_jiffies64(now);
865
866 /*
867 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
868 * the clock forward checks in the enqueue path:
869 */
870 timer_clear_idle();
871
872 calc_load_nohz_stop();
873 touch_softlockup_watchdog_sched();
874 /*
875 * Cancel the scheduled timer and restore the tick
876 */
877 ts->tick_stopped = 0;
878 ts->idle_exittime = now;
879
880 tick_nohz_restart(ts, now);
881 }
882
tick_nohz_full_update_tick(struct tick_sched * ts)883 static void tick_nohz_full_update_tick(struct tick_sched *ts)
884 {
885 #ifdef CONFIG_NO_HZ_FULL
886 int cpu = smp_processor_id();
887
888 if (!tick_nohz_full_cpu(cpu))
889 return;
890
891 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
892 return;
893
894 if (can_stop_full_tick(cpu, ts))
895 tick_nohz_stop_sched_tick(ts, cpu);
896 else if (ts->tick_stopped)
897 tick_nohz_restart_sched_tick(ts, ktime_get());
898 #endif
899 }
900
can_stop_idle_tick(int cpu,struct tick_sched * ts)901 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
902 {
903 /*
904 * If this CPU is offline and it is the one which updates
905 * jiffies, then give up the assignment and let it be taken by
906 * the CPU which runs the tick timer next. If we don't drop
907 * this here the jiffies might be stale and do_timer() never
908 * invoked.
909 */
910 if (unlikely(!cpu_online(cpu))) {
911 if (cpu == tick_do_timer_cpu)
912 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
913 /*
914 * Make sure the CPU doesn't get fooled by obsolete tick
915 * deadline if it comes back online later.
916 */
917 ts->next_tick = 0;
918 return false;
919 }
920
921 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
922 return false;
923
924 if (need_resched())
925 return false;
926
927 if (unlikely(local_softirq_pending())) {
928 static int ratelimit;
929
930 if (ratelimit < 10 &&
931 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
932 pr_warn("NOHZ tick-stop error: Non-RCU local softirq work is pending, handler #%02x!!!\n",
933 (unsigned int) local_softirq_pending());
934 ratelimit++;
935 }
936 return false;
937 }
938
939 if (tick_nohz_full_enabled()) {
940 /*
941 * Keep the tick alive to guarantee timekeeping progression
942 * if there are full dynticks CPUs around
943 */
944 if (tick_do_timer_cpu == cpu)
945 return false;
946
947 /* Should not happen for nohz-full */
948 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
949 return false;
950 }
951
952 return true;
953 }
954
__tick_nohz_idle_stop_tick(struct tick_sched * ts)955 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
956 {
957 ktime_t expires;
958 int cpu = smp_processor_id();
959
960 /*
961 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
962 * tick timer expiration time is known already.
963 */
964 if (ts->timer_expires_base)
965 expires = ts->timer_expires;
966 else if (can_stop_idle_tick(cpu, ts))
967 expires = tick_nohz_next_event(ts, cpu);
968 else
969 return;
970
971 ts->idle_calls++;
972
973 if (expires > 0LL) {
974 int was_stopped = ts->tick_stopped;
975
976 tick_nohz_stop_tick(ts, cpu);
977
978 ts->idle_sleeps++;
979 ts->idle_expires = expires;
980
981 if (!was_stopped && ts->tick_stopped) {
982 ts->idle_jiffies = ts->last_jiffies;
983 nohz_balance_enter_idle(cpu);
984 }
985 } else {
986 tick_nohz_retain_tick(ts);
987 }
988 }
989
990 /**
991 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
992 *
993 * When the next event is more than a tick into the future, stop the idle tick
994 */
tick_nohz_idle_stop_tick(void)995 void tick_nohz_idle_stop_tick(void)
996 {
997 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
998 }
999
tick_nohz_idle_retain_tick(void)1000 void tick_nohz_idle_retain_tick(void)
1001 {
1002 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1003 /*
1004 * Undo the effect of get_next_timer_interrupt() called from
1005 * tick_nohz_next_event().
1006 */
1007 timer_clear_idle();
1008 }
1009
1010 /**
1011 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1012 *
1013 * Called when we start the idle loop.
1014 */
tick_nohz_idle_enter(void)1015 void tick_nohz_idle_enter(void)
1016 {
1017 struct tick_sched *ts;
1018
1019 lockdep_assert_irqs_enabled();
1020
1021 local_irq_disable();
1022
1023 ts = this_cpu_ptr(&tick_cpu_sched);
1024
1025 WARN_ON_ONCE(ts->timer_expires_base);
1026
1027 ts->inidle = 1;
1028 tick_nohz_start_idle(ts);
1029
1030 local_irq_enable();
1031 }
1032
1033 /**
1034 * tick_nohz_irq_exit - update next tick event from interrupt exit
1035 *
1036 * When an interrupt fires while we are idle and it doesn't cause
1037 * a reschedule, it may still add, modify or delete a timer, enqueue
1038 * an RCU callback, etc...
1039 * So we need to re-calculate and reprogram the next tick event.
1040 */
tick_nohz_irq_exit(void)1041 void tick_nohz_irq_exit(void)
1042 {
1043 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1044
1045 if (ts->inidle)
1046 tick_nohz_start_idle(ts);
1047 else
1048 tick_nohz_full_update_tick(ts);
1049 }
1050
1051 /**
1052 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1053 */
tick_nohz_idle_got_tick(void)1054 bool tick_nohz_idle_got_tick(void)
1055 {
1056 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1057
1058 if (ts->got_idle_tick) {
1059 ts->got_idle_tick = 0;
1060 return true;
1061 }
1062 return false;
1063 }
1064
1065 /**
1066 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1067 * or the tick, whatever that expires first. Note that, if the tick has been
1068 * stopped, it returns the next hrtimer.
1069 *
1070 * Called from power state control code with interrupts disabled
1071 */
tick_nohz_get_next_hrtimer(void)1072 ktime_t tick_nohz_get_next_hrtimer(void)
1073 {
1074 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1075 }
1076
1077 /**
1078 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1079 * @delta_next: duration until the next event if the tick cannot be stopped
1080 *
1081 * Called from power state control code with interrupts disabled
1082 */
tick_nohz_get_sleep_length(ktime_t * delta_next)1083 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1084 {
1085 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1086 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1087 int cpu = smp_processor_id();
1088 /*
1089 * The idle entry time is expected to be a sufficient approximation of
1090 * the current time at this point.
1091 */
1092 ktime_t now = ts->idle_entrytime;
1093 ktime_t next_event;
1094
1095 WARN_ON_ONCE(!ts->inidle);
1096
1097 *delta_next = ktime_sub(dev->next_event, now);
1098
1099 if (!can_stop_idle_tick(cpu, ts))
1100 return *delta_next;
1101
1102 next_event = tick_nohz_next_event(ts, cpu);
1103 if (!next_event)
1104 return *delta_next;
1105
1106 /*
1107 * If the next highres timer to expire is earlier than next_event, the
1108 * idle governor needs to know that.
1109 */
1110 next_event = min_t(u64, next_event,
1111 hrtimer_next_event_without(&ts->sched_timer));
1112
1113 return ktime_sub(next_event, now);
1114 }
1115 EXPORT_SYMBOL_GPL(tick_nohz_get_sleep_length);
1116
1117 /**
1118 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1119 * for a particular CPU.
1120 *
1121 * Called from the schedutil frequency scaling governor in scheduler context.
1122 */
tick_nohz_get_idle_calls_cpu(int cpu)1123 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1124 {
1125 struct tick_sched *ts = tick_get_tick_sched(cpu);
1126
1127 return ts->idle_calls;
1128 }
1129 EXPORT_SYMBOL_GPL(tick_nohz_get_idle_calls_cpu);
1130
1131 /**
1132 * tick_nohz_get_idle_calls - return the current idle calls counter value
1133 *
1134 * Called from the schedutil frequency scaling governor in scheduler context.
1135 */
tick_nohz_get_idle_calls(void)1136 unsigned long tick_nohz_get_idle_calls(void)
1137 {
1138 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1139
1140 return ts->idle_calls;
1141 }
1142
tick_nohz_account_idle_ticks(struct tick_sched * ts)1143 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1144 {
1145 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1146 unsigned long ticks;
1147
1148 if (vtime_accounting_enabled_this_cpu())
1149 return;
1150 /*
1151 * We stopped the tick in idle. Update process times would miss the
1152 * time we slept as update_process_times does only a 1 tick
1153 * accounting. Enforce that this is accounted to idle !
1154 */
1155 ticks = jiffies - ts->idle_jiffies;
1156 /*
1157 * We might be one off. Do not randomly account a huge number of ticks!
1158 */
1159 if (ticks && ticks < LONG_MAX)
1160 account_idle_ticks(ticks);
1161 #endif
1162 }
1163
__tick_nohz_idle_restart_tick(struct tick_sched * ts,ktime_t now)1164 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1165 {
1166 tick_nohz_restart_sched_tick(ts, now);
1167 tick_nohz_account_idle_ticks(ts);
1168 }
1169
tick_nohz_idle_restart_tick(void)1170 void tick_nohz_idle_restart_tick(void)
1171 {
1172 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1173
1174 if (ts->tick_stopped)
1175 __tick_nohz_idle_restart_tick(ts, ktime_get());
1176 }
1177
1178 /**
1179 * tick_nohz_idle_exit - restart the idle tick from the idle task
1180 *
1181 * Restart the idle tick when the CPU is woken up from idle
1182 * This also exit the RCU extended quiescent state. The CPU
1183 * can use RCU again after this function is called.
1184 */
tick_nohz_idle_exit(void)1185 void tick_nohz_idle_exit(void)
1186 {
1187 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1188 bool idle_active, tick_stopped;
1189 ktime_t now;
1190
1191 local_irq_disable();
1192
1193 WARN_ON_ONCE(!ts->inidle);
1194 WARN_ON_ONCE(ts->timer_expires_base);
1195
1196 ts->inidle = 0;
1197 idle_active = ts->idle_active;
1198 tick_stopped = ts->tick_stopped;
1199
1200 if (idle_active || tick_stopped)
1201 now = ktime_get();
1202
1203 if (idle_active)
1204 tick_nohz_stop_idle(ts, now);
1205
1206 if (tick_stopped)
1207 __tick_nohz_idle_restart_tick(ts, now);
1208
1209 local_irq_enable();
1210 }
1211
1212 /*
1213 * The nohz low res interrupt handler
1214 */
tick_nohz_handler(struct clock_event_device * dev)1215 static void tick_nohz_handler(struct clock_event_device *dev)
1216 {
1217 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1218 struct pt_regs *regs = get_irq_regs();
1219 ktime_t now = ktime_get();
1220
1221 dev->next_event = KTIME_MAX;
1222
1223 tick_sched_do_timer(ts, now);
1224 tick_sched_handle(ts, regs);
1225
1226 /* No need to reprogram if we are running tickless */
1227 if (unlikely(ts->tick_stopped))
1228 return;
1229
1230 hrtimer_forward(&ts->sched_timer, now, tick_period);
1231 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1232 }
1233
tick_nohz_activate(struct tick_sched * ts,int mode)1234 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1235 {
1236 if (!tick_nohz_enabled)
1237 return;
1238 ts->nohz_mode = mode;
1239 /* One update is enough */
1240 if (!test_and_set_bit(0, &tick_nohz_active))
1241 timers_update_nohz();
1242 }
1243
1244 /**
1245 * tick_nohz_switch_to_nohz - switch to nohz mode
1246 */
tick_nohz_switch_to_nohz(void)1247 static void tick_nohz_switch_to_nohz(void)
1248 {
1249 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1250 ktime_t next;
1251
1252 if (!tick_nohz_enabled)
1253 return;
1254
1255 if (tick_switch_to_oneshot(tick_nohz_handler))
1256 return;
1257
1258 /*
1259 * Recycle the hrtimer in ts, so we can share the
1260 * hrtimer_forward with the highres code.
1261 */
1262 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1263 /* Get the next period */
1264 next = tick_init_jiffy_update();
1265
1266 hrtimer_set_expires(&ts->sched_timer, next);
1267 hrtimer_forward_now(&ts->sched_timer, tick_period);
1268 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1269 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1270 }
1271
tick_nohz_irq_enter(void)1272 static inline void tick_nohz_irq_enter(void)
1273 {
1274 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1275 ktime_t now;
1276
1277 if (!ts->idle_active && !ts->tick_stopped)
1278 return;
1279 now = ktime_get();
1280 if (ts->idle_active)
1281 tick_nohz_stop_idle(ts, now);
1282 if (ts->tick_stopped)
1283 tick_nohz_update_jiffies(now);
1284 }
1285
1286 #else
1287
tick_nohz_switch_to_nohz(void)1288 static inline void tick_nohz_switch_to_nohz(void) { }
tick_nohz_irq_enter(void)1289 static inline void tick_nohz_irq_enter(void) { }
tick_nohz_activate(struct tick_sched * ts,int mode)1290 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1291
1292 #endif /* CONFIG_NO_HZ_COMMON */
1293
1294 /*
1295 * Called from irq_enter to notify about the possible interruption of idle()
1296 */
tick_irq_enter(void)1297 void tick_irq_enter(void)
1298 {
1299 tick_check_oneshot_broadcast_this_cpu();
1300 tick_nohz_irq_enter();
1301 }
1302
1303 /*
1304 * High resolution timer specific code
1305 */
1306 #ifdef CONFIG_HIGH_RES_TIMERS
1307 /*
1308 * We rearm the timer until we get disabled by the idle code.
1309 * Called with interrupts disabled.
1310 */
tick_sched_timer(struct hrtimer * timer)1311 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1312 {
1313 struct tick_sched *ts =
1314 container_of(timer, struct tick_sched, sched_timer);
1315 struct pt_regs *regs = get_irq_regs();
1316 ktime_t now = ktime_get();
1317
1318 tick_sched_do_timer(ts, now);
1319
1320 /*
1321 * Do not call, when we are not in irq context and have
1322 * no valid regs pointer
1323 */
1324 if (regs)
1325 tick_sched_handle(ts, regs);
1326 else
1327 ts->next_tick = 0;
1328
1329 /* No need to reprogram if we are in idle or full dynticks mode */
1330 if (unlikely(ts->tick_stopped))
1331 return HRTIMER_NORESTART;
1332
1333 hrtimer_forward(timer, now, tick_period);
1334
1335 return HRTIMER_RESTART;
1336 }
1337
1338 static int sched_skew_tick;
1339
skew_tick(char * str)1340 static int __init skew_tick(char *str)
1341 {
1342 get_option(&str, &sched_skew_tick);
1343
1344 return 0;
1345 }
1346 early_param("skew_tick", skew_tick);
1347
1348 /**
1349 * tick_setup_sched_timer - setup the tick emulation timer
1350 */
tick_setup_sched_timer(void)1351 void tick_setup_sched_timer(void)
1352 {
1353 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1354 ktime_t now = ktime_get();
1355
1356 /*
1357 * Emulate tick processing via per-CPU hrtimers:
1358 */
1359 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1360 ts->sched_timer.function = tick_sched_timer;
1361
1362 /* Get the next period (per-CPU) */
1363 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1364
1365 /* Offset the tick to avert jiffies_lock contention. */
1366 if (sched_skew_tick) {
1367 u64 offset = ktime_to_ns(tick_period) >> 1;
1368 do_div(offset, num_possible_cpus());
1369 offset *= smp_processor_id();
1370 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1371 }
1372
1373 hrtimer_forward(&ts->sched_timer, now, tick_period);
1374 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1375 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1376 }
1377 #endif /* HIGH_RES_TIMERS */
1378
1379 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
tick_cancel_sched_timer(int cpu)1380 void tick_cancel_sched_timer(int cpu)
1381 {
1382 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1383
1384 # ifdef CONFIG_HIGH_RES_TIMERS
1385 if (ts->sched_timer.base)
1386 hrtimer_cancel(&ts->sched_timer);
1387 # endif
1388
1389 memset(ts, 0, sizeof(*ts));
1390 }
1391 #endif
1392
1393 /**
1394 * Async notification about clocksource changes
1395 */
tick_clock_notify(void)1396 void tick_clock_notify(void)
1397 {
1398 int cpu;
1399
1400 for_each_possible_cpu(cpu)
1401 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1402 }
1403
1404 /*
1405 * Async notification about clock event changes
1406 */
tick_oneshot_notify(void)1407 void tick_oneshot_notify(void)
1408 {
1409 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1410
1411 set_bit(0, &ts->check_clocks);
1412 }
1413
1414 /**
1415 * Check, if a change happened, which makes oneshot possible.
1416 *
1417 * Called cyclic from the hrtimer softirq (driven by the timer
1418 * softirq) allow_nohz signals, that we can switch into low-res nohz
1419 * mode, because high resolution timers are disabled (either compile
1420 * or runtime). Called with interrupts disabled.
1421 */
tick_check_oneshot_change(int allow_nohz)1422 int tick_check_oneshot_change(int allow_nohz)
1423 {
1424 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1425
1426 if (!test_and_clear_bit(0, &ts->check_clocks))
1427 return 0;
1428
1429 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1430 return 0;
1431
1432 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1433 return 0;
1434
1435 if (!allow_nohz)
1436 return 1;
1437
1438 tick_nohz_switch_to_nohz();
1439 return 0;
1440 }
1441