xref: /OK3568_Linux_fs/kernel/kernel/time/tick-common.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains the base functions to manage periodic tick
4  * related events.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/nmi.h>
15 #include <linux/percpu.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/module.h>
19 #include <trace/events/power.h>
20 #include <trace/hooks/sched.h>
21 
22 #include <asm/irq_regs.h>
23 
24 #include "tick-internal.h"
25 
26 /*
27  * Tick devices
28  */
29 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
30 /*
31  * Tick next event: keeps track of the tick time
32  */
33 ktime_t tick_next_period;
34 ktime_t tick_period;
35 
36 /*
37  * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
38  * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
39  * variable has two functions:
40  *
41  * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
42  *    timekeeping lock all at once. Only the CPU which is assigned to do the
43  *    update is handling it.
44  *
45  * 2) Hand off the duty in the NOHZ idle case by setting the value to
46  *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
47  *    at it will take over and keep the time keeping alive.  The handover
48  *    procedure also covers cpu hotplug.
49  */
50 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
51 #ifdef CONFIG_NO_HZ_FULL
52 /*
53  * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
54  * tick_do_timer_cpu and it should be taken over by an eligible secondary
55  * when one comes online.
56  */
57 static int tick_do_timer_boot_cpu __read_mostly = -1;
58 #endif
59 
60 /*
61  * Debugging: see timer_list.c
62  */
tick_get_device(int cpu)63 struct tick_device *tick_get_device(int cpu)
64 {
65 	return &per_cpu(tick_cpu_device, cpu);
66 }
67 
68 /**
69  * tick_is_oneshot_available - check for a oneshot capable event device
70  */
tick_is_oneshot_available(void)71 int tick_is_oneshot_available(void)
72 {
73 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
74 
75 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
76 		return 0;
77 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
78 		return 1;
79 	return tick_broadcast_oneshot_available();
80 }
81 
82 /*
83  * Periodic tick
84  */
tick_periodic(int cpu)85 static void tick_periodic(int cpu)
86 {
87 	if (tick_do_timer_cpu == cpu) {
88 		raw_spin_lock(&jiffies_lock);
89 		write_seqcount_begin(&jiffies_seq);
90 
91 		/* Keep track of the next tick event */
92 		tick_next_period = ktime_add(tick_next_period, tick_period);
93 
94 		do_timer(1);
95 		write_seqcount_end(&jiffies_seq);
96 		raw_spin_unlock(&jiffies_lock);
97 		update_wall_time();
98 		trace_android_vh_jiffies_update(NULL);
99 	}
100 
101 	update_process_times(user_mode(get_irq_regs()));
102 	profile_tick(CPU_PROFILING);
103 }
104 
105 /*
106  * Event handler for periodic ticks
107  */
tick_handle_periodic(struct clock_event_device * dev)108 void tick_handle_periodic(struct clock_event_device *dev)
109 {
110 	int cpu = smp_processor_id();
111 	ktime_t next = dev->next_event;
112 
113 	tick_periodic(cpu);
114 
115 #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
116 	/*
117 	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
118 	 * update_process_times() -> run_local_timers() ->
119 	 * hrtimer_run_queues().
120 	 */
121 	if (dev->event_handler != tick_handle_periodic)
122 		return;
123 #endif
124 
125 	if (!clockevent_state_oneshot(dev))
126 		return;
127 	for (;;) {
128 		/*
129 		 * Setup the next period for devices, which do not have
130 		 * periodic mode:
131 		 */
132 		next = ktime_add(next, tick_period);
133 
134 		if (!clockevents_program_event(dev, next, false))
135 			return;
136 		/*
137 		 * Have to be careful here. If we're in oneshot mode,
138 		 * before we call tick_periodic() in a loop, we need
139 		 * to be sure we're using a real hardware clocksource.
140 		 * Otherwise we could get trapped in an infinite
141 		 * loop, as the tick_periodic() increments jiffies,
142 		 * which then will increment time, possibly causing
143 		 * the loop to trigger again and again.
144 		 */
145 		if (timekeeping_valid_for_hres())
146 			tick_periodic(cpu);
147 	}
148 }
149 
150 /*
151  * Setup the device for a periodic tick
152  */
tick_setup_periodic(struct clock_event_device * dev,int broadcast)153 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
154 {
155 	tick_set_periodic_handler(dev, broadcast);
156 
157 	/* Broadcast setup ? */
158 	if (!tick_device_is_functional(dev))
159 		return;
160 
161 	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
162 	    !tick_broadcast_oneshot_active()) {
163 		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
164 	} else {
165 		unsigned int seq;
166 		ktime_t next;
167 
168 		do {
169 			seq = read_seqcount_begin(&jiffies_seq);
170 			next = tick_next_period;
171 		} while (read_seqcount_retry(&jiffies_seq, seq));
172 
173 		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
174 
175 		for (;;) {
176 			if (!clockevents_program_event(dev, next, false))
177 				return;
178 			next = ktime_add(next, tick_period);
179 		}
180 	}
181 }
182 
183 #ifdef CONFIG_NO_HZ_FULL
giveup_do_timer(void * info)184 static void giveup_do_timer(void *info)
185 {
186 	int cpu = *(unsigned int *)info;
187 
188 	WARN_ON(tick_do_timer_cpu != smp_processor_id());
189 
190 	tick_do_timer_cpu = cpu;
191 }
192 
tick_take_do_timer_from_boot(void)193 static void tick_take_do_timer_from_boot(void)
194 {
195 	int cpu = smp_processor_id();
196 	int from = tick_do_timer_boot_cpu;
197 
198 	if (from >= 0 && from != cpu)
199 		smp_call_function_single(from, giveup_do_timer, &cpu, 1);
200 }
201 #endif
202 
203 /*
204  * Setup the tick device
205  */
tick_setup_device(struct tick_device * td,struct clock_event_device * newdev,int cpu,const struct cpumask * cpumask)206 static void tick_setup_device(struct tick_device *td,
207 			      struct clock_event_device *newdev, int cpu,
208 			      const struct cpumask *cpumask)
209 {
210 	void (*handler)(struct clock_event_device *) = NULL;
211 	ktime_t next_event = 0;
212 
213 	/*
214 	 * First device setup ?
215 	 */
216 	if (!td->evtdev) {
217 		/*
218 		 * If no cpu took the do_timer update, assign it to
219 		 * this cpu:
220 		 */
221 		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
222 			tick_do_timer_cpu = cpu;
223 
224 			tick_next_period = ktime_get();
225 			tick_period = NSEC_PER_SEC / HZ;
226 #ifdef CONFIG_NO_HZ_FULL
227 			/*
228 			 * The boot CPU may be nohz_full, in which case set
229 			 * tick_do_timer_boot_cpu so the first housekeeping
230 			 * secondary that comes up will take do_timer from
231 			 * us.
232 			 */
233 			if (tick_nohz_full_cpu(cpu))
234 				tick_do_timer_boot_cpu = cpu;
235 
236 		} else if (tick_do_timer_boot_cpu != -1 &&
237 						!tick_nohz_full_cpu(cpu)) {
238 			tick_take_do_timer_from_boot();
239 			tick_do_timer_boot_cpu = -1;
240 			WARN_ON(tick_do_timer_cpu != cpu);
241 #endif
242 		}
243 
244 		/*
245 		 * Startup in periodic mode first.
246 		 */
247 		td->mode = TICKDEV_MODE_PERIODIC;
248 	} else {
249 		handler = td->evtdev->event_handler;
250 		next_event = td->evtdev->next_event;
251 		td->evtdev->event_handler = clockevents_handle_noop;
252 	}
253 
254 	td->evtdev = newdev;
255 
256 	/*
257 	 * When the device is not per cpu, pin the interrupt to the
258 	 * current cpu:
259 	 */
260 	if (!cpumask_equal(newdev->cpumask, cpumask))
261 		irq_set_affinity(newdev->irq, cpumask);
262 
263 	/*
264 	 * When global broadcasting is active, check if the current
265 	 * device is registered as a placeholder for broadcast mode.
266 	 * This allows us to handle this x86 misfeature in a generic
267 	 * way. This function also returns !=0 when we keep the
268 	 * current active broadcast state for this CPU.
269 	 */
270 	if (tick_device_uses_broadcast(newdev, cpu))
271 		return;
272 
273 	if (td->mode == TICKDEV_MODE_PERIODIC)
274 		tick_setup_periodic(newdev, 0);
275 	else
276 		tick_setup_oneshot(newdev, handler, next_event);
277 }
278 
tick_install_replacement(struct clock_event_device * newdev)279 void tick_install_replacement(struct clock_event_device *newdev)
280 {
281 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
282 	int cpu = smp_processor_id();
283 
284 	clockevents_exchange_device(td->evtdev, newdev);
285 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
286 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
287 		tick_oneshot_notify();
288 }
289 
tick_check_percpu(struct clock_event_device * curdev,struct clock_event_device * newdev,int cpu)290 static bool tick_check_percpu(struct clock_event_device *curdev,
291 			      struct clock_event_device *newdev, int cpu)
292 {
293 	if (!cpumask_test_cpu(cpu, newdev->cpumask))
294 		return false;
295 	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
296 		return true;
297 	/* Check if irq affinity can be set */
298 	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
299 		return false;
300 	/* Prefer an existing cpu local device */
301 	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
302 		return false;
303 	return true;
304 }
305 
tick_check_preferred(struct clock_event_device * curdev,struct clock_event_device * newdev)306 static bool tick_check_preferred(struct clock_event_device *curdev,
307 				 struct clock_event_device *newdev)
308 {
309 	/* Prefer oneshot capable device */
310 	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
311 		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
312 			return false;
313 		if (tick_oneshot_mode_active())
314 			return false;
315 	}
316 
317 	/*
318 	 * Use the higher rated one, but prefer a CPU local device with a lower
319 	 * rating than a non-CPU local device
320 	 */
321 	return !curdev ||
322 		newdev->rating > curdev->rating ||
323 	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
324 }
325 
326 /*
327  * Check whether the new device is a better fit than curdev. curdev
328  * can be NULL !
329  */
tick_check_replacement(struct clock_event_device * curdev,struct clock_event_device * newdev)330 bool tick_check_replacement(struct clock_event_device *curdev,
331 			    struct clock_event_device *newdev)
332 {
333 	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
334 		return false;
335 
336 	return tick_check_preferred(curdev, newdev);
337 }
338 
339 /*
340  * Check, if the new registered device should be used. Called with
341  * clockevents_lock held and interrupts disabled.
342  */
tick_check_new_device(struct clock_event_device * newdev)343 void tick_check_new_device(struct clock_event_device *newdev)
344 {
345 	struct clock_event_device *curdev;
346 	struct tick_device *td;
347 	int cpu;
348 
349 	cpu = smp_processor_id();
350 	td = &per_cpu(tick_cpu_device, cpu);
351 	curdev = td->evtdev;
352 
353 	/* cpu local device ? */
354 	if (!tick_check_percpu(curdev, newdev, cpu))
355 		goto out_bc;
356 
357 	/* Preference decision */
358 	if (!tick_check_preferred(curdev, newdev))
359 		goto out_bc;
360 
361 	if (!try_module_get(newdev->owner))
362 		return;
363 
364 	/*
365 	 * Replace the eventually existing device by the new
366 	 * device. If the current device is the broadcast device, do
367 	 * not give it back to the clockevents layer !
368 	 */
369 	if (tick_is_broadcast_device(curdev)) {
370 		clockevents_shutdown(curdev);
371 		curdev = NULL;
372 	}
373 	clockevents_exchange_device(curdev, newdev);
374 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
375 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
376 		tick_oneshot_notify();
377 	return;
378 
379 out_bc:
380 	/*
381 	 * Can the new device be used as a broadcast device ?
382 	 */
383 	tick_install_broadcast_device(newdev, cpu);
384 }
385 
386 /**
387  * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
388  * @state:	The target state (enter/exit)
389  *
390  * The system enters/leaves a state, where affected devices might stop
391  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
392  *
393  * Called with interrupts disabled, so clockevents_lock is not
394  * required here because the local clock event device cannot go away
395  * under us.
396  */
tick_broadcast_oneshot_control(enum tick_broadcast_state state)397 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
398 {
399 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
400 
401 	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
402 		return 0;
403 
404 	return __tick_broadcast_oneshot_control(state);
405 }
406 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
407 
408 #ifdef CONFIG_HOTPLUG_CPU
409 /*
410  * Transfer the do_timer job away from a dying cpu.
411  *
412  * Called with interrupts disabled. Not locking required. If
413  * tick_do_timer_cpu is owned by this cpu, nothing can change it.
414  */
tick_handover_do_timer(void)415 void tick_handover_do_timer(void)
416 {
417 	if (tick_do_timer_cpu == smp_processor_id()) {
418 		int cpu = cpumask_first(cpu_online_mask);
419 
420 		tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
421 			TICK_DO_TIMER_NONE;
422 	}
423 }
424 
425 /*
426  * Shutdown an event device on a given cpu:
427  *
428  * This is called on a life CPU, when a CPU is dead. So we cannot
429  * access the hardware device itself.
430  * We just set the mode and remove it from the lists.
431  */
tick_shutdown(unsigned int cpu)432 void tick_shutdown(unsigned int cpu)
433 {
434 	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
435 	struct clock_event_device *dev = td->evtdev;
436 
437 	td->mode = TICKDEV_MODE_PERIODIC;
438 	if (dev) {
439 		/*
440 		 * Prevent that the clock events layer tries to call
441 		 * the set mode function!
442 		 */
443 		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
444 		clockevents_exchange_device(dev, NULL);
445 		dev->event_handler = clockevents_handle_noop;
446 		td->evtdev = NULL;
447 	}
448 }
449 #endif
450 
451 /**
452  * tick_suspend_local - Suspend the local tick device
453  *
454  * Called from the local cpu for freeze with interrupts disabled.
455  *
456  * No locks required. Nothing can change the per cpu device.
457  */
tick_suspend_local(void)458 void tick_suspend_local(void)
459 {
460 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
461 
462 	clockevents_shutdown(td->evtdev);
463 }
464 
465 /**
466  * tick_resume_local - Resume the local tick device
467  *
468  * Called from the local CPU for unfreeze or XEN resume magic.
469  *
470  * No locks required. Nothing can change the per cpu device.
471  */
tick_resume_local(void)472 void tick_resume_local(void)
473 {
474 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
475 	bool broadcast = tick_resume_check_broadcast();
476 
477 	clockevents_tick_resume(td->evtdev);
478 	if (!broadcast) {
479 		if (td->mode == TICKDEV_MODE_PERIODIC)
480 			tick_setup_periodic(td->evtdev, 0);
481 		else
482 			tick_resume_oneshot();
483 	}
484 }
485 
486 /**
487  * tick_suspend - Suspend the tick and the broadcast device
488  *
489  * Called from syscore_suspend() via timekeeping_suspend with only one
490  * CPU online and interrupts disabled or from tick_unfreeze() under
491  * tick_freeze_lock.
492  *
493  * No locks required. Nothing can change the per cpu device.
494  */
tick_suspend(void)495 void tick_suspend(void)
496 {
497 	tick_suspend_local();
498 	tick_suspend_broadcast();
499 }
500 
501 /**
502  * tick_resume - Resume the tick and the broadcast device
503  *
504  * Called from syscore_resume() via timekeeping_resume with only one
505  * CPU online and interrupts disabled.
506  *
507  * No locks required. Nothing can change the per cpu device.
508  */
tick_resume(void)509 void tick_resume(void)
510 {
511 	tick_resume_broadcast();
512 	tick_resume_local();
513 }
514 
515 #ifdef CONFIG_SUSPEND
516 static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
517 static unsigned int tick_freeze_depth;
518 
519 /**
520  * tick_freeze - Suspend the local tick and (possibly) timekeeping.
521  *
522  * Check if this is the last online CPU executing the function and if so,
523  * suspend timekeeping.  Otherwise suspend the local tick.
524  *
525  * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
526  * Interrupts must not be enabled before the subsequent %tick_unfreeze().
527  */
tick_freeze(void)528 void tick_freeze(void)
529 {
530 	raw_spin_lock(&tick_freeze_lock);
531 
532 	tick_freeze_depth++;
533 	if (tick_freeze_depth == num_online_cpus()) {
534 		trace_suspend_resume(TPS("timekeeping_freeze"),
535 				     smp_processor_id(), true);
536 		system_state = SYSTEM_SUSPEND;
537 		sched_clock_suspend();
538 		timekeeping_suspend();
539 	} else {
540 		tick_suspend_local();
541 	}
542 
543 	raw_spin_unlock(&tick_freeze_lock);
544 }
545 
546 /**
547  * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
548  *
549  * Check if this is the first CPU executing the function and if so, resume
550  * timekeeping.  Otherwise resume the local tick.
551  *
552  * Call with interrupts disabled.  Must be balanced with %tick_freeze().
553  * Interrupts must not be enabled after the preceding %tick_freeze().
554  */
tick_unfreeze(void)555 void tick_unfreeze(void)
556 {
557 	raw_spin_lock(&tick_freeze_lock);
558 
559 	if (tick_freeze_depth == num_online_cpus()) {
560 		timekeeping_resume();
561 		sched_clock_resume();
562 		system_state = SYSTEM_RUNNING;
563 		trace_suspend_resume(TPS("timekeeping_freeze"),
564 				     smp_processor_id(), false);
565 	} else {
566 		touch_softlockup_watchdog();
567 		tick_resume_local();
568 	}
569 
570 	tick_freeze_depth--;
571 
572 	raw_spin_unlock(&tick_freeze_lock);
573 }
574 #endif /* CONFIG_SUSPEND */
575 
576 /**
577  * tick_init - initialize the tick control
578  */
tick_init(void)579 void __init tick_init(void)
580 {
581 	tick_broadcast_init();
582 	tick_nohz_init();
583 }
584