xref: /optee_os/core/arch/arm/kernel/thread.c (revision 053593356df20f185a674a23e3cc34d67675636e)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016-2022, Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2020-2021, Arm Limited
6  */
7 
8 #include <platform_config.h>
9 
10 #include <arm.h>
11 #include <assert.h>
12 #include <config.h>
13 #include <io.h>
14 #include <keep.h>
15 #include <kernel/asan.h>
16 #include <kernel/boot.h>
17 #include <kernel/interrupt.h>
18 #include <kernel/linker.h>
19 #include <kernel/lockdep.h>
20 #include <kernel/misc.h>
21 #include <kernel/panic.h>
22 #include <kernel/spinlock.h>
23 #include <kernel/spmc_sp_handler.h>
24 #include <kernel/tee_ta_manager.h>
25 #include <kernel/thread.h>
26 #include <kernel/thread_private.h>
27 #include <kernel/user_access.h>
28 #include <kernel/user_mode_ctx.h>
29 #include <kernel/virtualization.h>
30 #include <mm/core_memprot.h>
31 #include <mm/mobj.h>
32 #include <mm/tee_mm.h>
33 #include <mm/tee_pager.h>
34 #include <mm/vm.h>
35 #include <sm/sm.h>
36 #include <smccc.h>
37 #include <trace.h>
38 #include <util.h>
39 
40 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0
41 static vaddr_t thread_user_kcode_va __nex_bss;
42 long thread_user_kcode_offset __nex_bss;
43 static size_t thread_user_kcode_size __nex_bss;
44 #endif
45 
46 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \
47 	defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
48 long thread_user_kdata_sp_offset __nex_bss;
49 static uint8_t thread_user_kdata_page[
50 	ROUNDUP(sizeof(struct thread_core_local) * CFG_TEE_CORE_NB_CORE,
51 		SMALL_PAGE_SIZE)]
52 	__aligned(SMALL_PAGE_SIZE)
53 #ifndef CFG_NS_VIRTUALIZATION
54 	__section(".nozi.kdata_page");
55 #else
56 	__section(".nex_nozi.kdata_page");
57 #endif
58 #endif
59 
60 #ifdef ARM32
thread_get_exceptions(void)61 uint32_t __nostackcheck thread_get_exceptions(void)
62 {
63 	uint32_t cpsr = read_cpsr();
64 
65 	return (cpsr >> CPSR_F_SHIFT) & THREAD_EXCP_ALL;
66 }
67 
thread_set_exceptions(uint32_t exceptions)68 void __nostackcheck thread_set_exceptions(uint32_t exceptions)
69 {
70 	uint32_t cpsr = read_cpsr();
71 
72 	/* Foreign interrupts must not be unmasked while holding a spinlock */
73 	if (!(exceptions & THREAD_EXCP_FOREIGN_INTR))
74 		assert_have_no_spinlock();
75 
76 	cpsr &= ~(THREAD_EXCP_ALL << CPSR_F_SHIFT);
77 	cpsr |= ((exceptions & THREAD_EXCP_ALL) << CPSR_F_SHIFT);
78 
79 	barrier();
80 	write_cpsr(cpsr);
81 	barrier();
82 }
83 #endif /*ARM32*/
84 
85 #ifdef ARM64
thread_get_exceptions(void)86 uint32_t __nostackcheck thread_get_exceptions(void)
87 {
88 	uint32_t daif = read_daif();
89 
90 	return (daif >> DAIF_F_SHIFT) & THREAD_EXCP_ALL;
91 }
92 
thread_set_exceptions(uint32_t exceptions)93 void __nostackcheck thread_set_exceptions(uint32_t exceptions)
94 {
95 	uint32_t daif = read_daif();
96 
97 	/* Foreign interrupts must not be unmasked while holding a spinlock */
98 	if (!(exceptions & THREAD_EXCP_FOREIGN_INTR))
99 		assert_have_no_spinlock();
100 
101 	daif &= ~(THREAD_EXCP_ALL << DAIF_F_SHIFT);
102 	daif |= ((exceptions & THREAD_EXCP_ALL) << DAIF_F_SHIFT);
103 
104 	barrier();
105 	write_daif(daif);
106 	barrier();
107 }
108 #endif /*ARM64*/
109 
thread_mask_exceptions(uint32_t exceptions)110 uint32_t __nostackcheck thread_mask_exceptions(uint32_t exceptions)
111 {
112 	uint32_t state = thread_get_exceptions();
113 
114 	thread_set_exceptions(state | (exceptions & THREAD_EXCP_ALL));
115 	return state;
116 }
117 
thread_unmask_exceptions(uint32_t state)118 void __nostackcheck thread_unmask_exceptions(uint32_t state)
119 {
120 	thread_set_exceptions(state & THREAD_EXCP_ALL);
121 }
122 
thread_lazy_save_ns_vfp(void)123 static void thread_lazy_save_ns_vfp(void)
124 {
125 #ifdef CFG_WITH_VFP
126 	struct thread_ctx *thr = threads + thread_get_id();
127 
128 	thr->vfp_state.ns_saved = false;
129 	vfp_lazy_save_state_init(&thr->vfp_state.ns);
130 #endif /*CFG_WITH_VFP*/
131 }
132 
thread_lazy_restore_ns_vfp(void)133 static void thread_lazy_restore_ns_vfp(void)
134 {
135 #ifdef CFG_WITH_VFP
136 	struct thread_ctx *thr = threads + thread_get_id();
137 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
138 
139 	assert(!thr->vfp_state.sec_lazy_saved && !thr->vfp_state.sec_saved);
140 
141 	if (tuv && tuv->lazy_saved && !tuv->saved) {
142 		vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/);
143 		tuv->saved = true;
144 	}
145 
146 	vfp_lazy_restore_state(&thr->vfp_state.ns, thr->vfp_state.ns_saved);
147 	thr->vfp_state.ns_saved = false;
148 #endif /*CFG_WITH_VFP*/
149 }
150 
151 #ifdef ARM32
init_regs(struct thread_ctx * thread,uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3,uint32_t a4,uint32_t a5,uint32_t a6,uint32_t a7,void * pc)152 static void init_regs(struct thread_ctx *thread, uint32_t a0, uint32_t a1,
153 		      uint32_t a2, uint32_t a3, uint32_t a4, uint32_t a5,
154 		      uint32_t a6, uint32_t a7, void *pc)
155 {
156 	thread->regs.pc = (uint32_t)pc;
157 
158 	/*
159 	 * Stdcalls starts in SVC mode with masked foreign interrupts, masked
160 	 * Asynchronous abort and unmasked native interrupts.
161 	 */
162 	thread->regs.cpsr = read_cpsr() & ARM32_CPSR_E;
163 	thread->regs.cpsr |= CPSR_MODE_SVC | CPSR_A |
164 			(THREAD_EXCP_FOREIGN_INTR << ARM32_CPSR_F_SHIFT);
165 	/* Enable thumb mode if it's a thumb instruction */
166 	if (thread->regs.pc & 1)
167 		thread->regs.cpsr |= CPSR_T;
168 	/* Reinitialize stack pointer */
169 	thread->regs.svc_sp = thread->stack_va_end;
170 
171 	/*
172 	 * Copy arguments into context. This will make the
173 	 * arguments appear in r0-r7 when thread is started.
174 	 */
175 	thread->regs.r0 = a0;
176 	thread->regs.r1 = a1;
177 	thread->regs.r2 = a2;
178 	thread->regs.r3 = a3;
179 	thread->regs.r4 = a4;
180 	thread->regs.r5 = a5;
181 	thread->regs.r6 = a6;
182 	thread->regs.r7 = a7;
183 }
184 #endif /*ARM32*/
185 
186 #ifdef ARM64
init_regs(struct thread_ctx * thread,uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3,uint32_t a4,uint32_t a5,uint32_t a6,uint32_t a7,void * pc)187 static void init_regs(struct thread_ctx *thread, uint32_t a0, uint32_t a1,
188 		      uint32_t a2, uint32_t a3, uint32_t a4, uint32_t a5,
189 		      uint32_t a6, uint32_t a7, void *pc)
190 {
191 	thread->regs.pc = (uint64_t)pc;
192 
193 	/*
194 	 * Stdcalls starts in SVC mode with masked foreign interrupts, masked
195 	 * Asynchronous abort and unmasked native interrupts.
196 	 */
197 	thread->regs.cpsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0,
198 				THREAD_EXCP_FOREIGN_INTR | DAIFBIT_ABT);
199 	/* Reinitialize stack pointer */
200 	thread->regs.sp = thread->stack_va_end;
201 
202 	/*
203 	 * Copy arguments into context. This will make the
204 	 * arguments appear in x0-x7 when thread is started.
205 	 */
206 	thread->regs.x[0] = a0;
207 	thread->regs.x[1] = a1;
208 	thread->regs.x[2] = a2;
209 	thread->regs.x[3] = a3;
210 	thread->regs.x[4] = a4;
211 	thread->regs.x[5] = a5;
212 	thread->regs.x[6] = a6;
213 	thread->regs.x[7] = a7;
214 
215 	/* Set up frame pointer as per the Aarch64 AAPCS */
216 	thread->regs.x[29] = 0;
217 }
218 #endif /*ARM64*/
219 
__thread_alloc_and_run(uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3,uint32_t a4,uint32_t a5,uint32_t a6,uint32_t a7,void * pc,uint32_t flags)220 static void __thread_alloc_and_run(uint32_t a0, uint32_t a1, uint32_t a2,
221 				   uint32_t a3, uint32_t a4, uint32_t a5,
222 				   uint32_t a6, uint32_t a7,
223 				   void *pc, uint32_t flags)
224 {
225 	struct thread_core_local *l = thread_get_core_local();
226 	bool found_thread = false;
227 	size_t n = 0;
228 
229 	assert(l->curr_thread == THREAD_ID_INVALID);
230 
231 	thread_lock_global();
232 
233 	for (n = 0; n < CFG_NUM_THREADS; n++) {
234 		if (threads[n].state == THREAD_STATE_FREE) {
235 			threads[n].state = THREAD_STATE_ACTIVE;
236 			found_thread = true;
237 			break;
238 		}
239 	}
240 
241 	thread_unlock_global();
242 
243 	if (!found_thread)
244 		return;
245 
246 	l->curr_thread = n;
247 
248 	threads[n].flags = flags;
249 	init_regs(threads + n, a0, a1, a2, a3, a4, a5, a6, a7, pc);
250 #ifdef CFG_CORE_PAUTH
251 	/*
252 	 * Copy the APIA key into the registers to be restored with
253 	 * thread_resume().
254 	 */
255 	threads[n].regs.apiakey_hi = threads[n].keys.apia_hi;
256 	threads[n].regs.apiakey_lo = threads[n].keys.apia_lo;
257 #endif
258 
259 	thread_lazy_save_ns_vfp();
260 
261 	l->flags &= ~THREAD_CLF_TMP;
262 	thread_resume(&threads[n].regs);
263 	/*NOTREACHED*/
264 	panic();
265 }
266 
thread_alloc_and_run(uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3,uint32_t a4,uint32_t a5)267 void thread_alloc_and_run(uint32_t a0, uint32_t a1, uint32_t a2, uint32_t a3,
268 			  uint32_t a4, uint32_t a5)
269 {
270 	__thread_alloc_and_run(a0, a1, a2, a3, a4, a5, 0, 0,
271 			       thread_std_smc_entry, 0);
272 }
273 
274 #ifdef CFG_SECURE_PARTITION
thread_sp_alloc_and_run(struct thread_smc_args * args __maybe_unused)275 void thread_sp_alloc_and_run(struct thread_smc_args *args __maybe_unused)
276 {
277 	__thread_alloc_and_run(args->a0, args->a1, args->a2, args->a3, args->a4,
278 			       args->a5, args->a6, args->a7,
279 			       spmc_sp_thread_entry, THREAD_FLAGS_FFA_ONLY);
280 }
281 #endif
282 
283 #ifdef ARM32
copy_a0_to_a3(struct thread_ctx_regs * regs,uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3)284 static void copy_a0_to_a3(struct thread_ctx_regs *regs, uint32_t a0,
285 			  uint32_t a1, uint32_t a2, uint32_t a3)
286 {
287 	/*
288 	 * Update returned values from RPC, values will appear in
289 	 * r0-r3 when thread is resumed.
290 	 */
291 	regs->r0 = a0;
292 	regs->r1 = a1;
293 	regs->r2 = a2;
294 	regs->r3 = a3;
295 }
296 #endif /*ARM32*/
297 
298 #ifdef ARM64
copy_a0_to_a3(struct thread_ctx_regs * regs,uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3)299 static void copy_a0_to_a3(struct thread_ctx_regs *regs, uint32_t a0,
300 			  uint32_t a1, uint32_t a2, uint32_t a3)
301 {
302 	/*
303 	 * Update returned values from RPC, values will appear in
304 	 * x0-x3 when thread is resumed.
305 	 */
306 	regs->x[0] = a0;
307 	regs->x[1] = a1;
308 	regs->x[2] = a2;
309 	regs->x[3] = a3;
310 }
311 #endif /*ARM64*/
312 
313 #ifdef ARM32
is_from_user(uint32_t cpsr)314 static bool is_from_user(uint32_t cpsr)
315 {
316 	return (cpsr & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_USR;
317 }
318 #endif
319 
320 #ifdef ARM64
is_from_user(uint32_t cpsr)321 static bool is_from_user(uint32_t cpsr)
322 {
323 	if (cpsr & (SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT))
324 		return true;
325 	if (((cpsr >> SPSR_64_MODE_EL_SHIFT) & SPSR_64_MODE_EL_MASK) ==
326 	     SPSR_64_MODE_EL0)
327 		return true;
328 	return false;
329 }
330 #endif
331 
332 #ifdef CFG_SYSCALL_FTRACE
ftrace_suspend(void)333 static void __noprof ftrace_suspend(void)
334 {
335 	struct ts_session *s = TAILQ_FIRST(&thread_get_tsd()->sess_stack);
336 	TEE_Result res = TEE_SUCCESS;
337 
338 	if (s && s->fbuf) {
339 		res = vm_check_access_rights(to_user_mode_ctx(s->ctx),
340 					     TEE_MEMORY_ACCESS_WRITE |
341 					     TEE_MEMORY_ACCESS_ANY_OWNER,
342 					     (uaddr_t)s->fbuf,
343 					     sizeof(*s->fbuf));
344 		if (!res)
345 			s->fbuf->syscall_trace_suspended = true;
346 	}
347 }
348 
ftrace_resume(void)349 static void __noprof ftrace_resume(void)
350 {
351 	struct ts_session *s = TAILQ_FIRST(&thread_get_tsd()->sess_stack);
352 	TEE_Result res = TEE_SUCCESS;
353 
354 	if (s && s->fbuf) {
355 		res = vm_check_access_rights(to_user_mode_ctx(s->ctx),
356 					     TEE_MEMORY_ACCESS_WRITE |
357 					     TEE_MEMORY_ACCESS_ANY_OWNER,
358 					     (uaddr_t)s->fbuf,
359 					     sizeof(*s->fbuf));
360 		if (!res)
361 			s->fbuf->syscall_trace_suspended = false;
362 	}
363 }
364 #else
ftrace_suspend(void)365 static void __noprof ftrace_suspend(void)
366 {
367 }
368 
ftrace_resume(void)369 static void __noprof ftrace_resume(void)
370 {
371 }
372 #endif
373 
is_user_mode(struct thread_ctx_regs * regs)374 static bool is_user_mode(struct thread_ctx_regs *regs)
375 {
376 	return is_from_user((uint32_t)regs->cpsr);
377 }
378 
thread_resume_from_rpc(uint32_t thread_id,uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3)379 void thread_resume_from_rpc(uint32_t thread_id, uint32_t a0, uint32_t a1,
380 			    uint32_t a2, uint32_t a3)
381 {
382 	size_t n = thread_id;
383 	struct thread_core_local *l = thread_get_core_local();
384 	bool found_thread = false;
385 
386 	assert(l->curr_thread == THREAD_ID_INVALID);
387 
388 	thread_lock_global();
389 
390 	if (n < CFG_NUM_THREADS && threads[n].state == THREAD_STATE_SUSPENDED) {
391 		threads[n].state = THREAD_STATE_ACTIVE;
392 		found_thread = true;
393 	}
394 
395 	thread_unlock_global();
396 
397 	if (!found_thread)
398 		return;
399 
400 	l->curr_thread = n;
401 
402 	if (threads[n].have_user_map) {
403 		core_mmu_set_user_map(&threads[n].user_map);
404 		if (threads[n].flags & THREAD_FLAGS_EXIT_ON_FOREIGN_INTR)
405 			tee_ta_ftrace_update_times_resume();
406 	}
407 
408 	if (is_user_mode(&threads[n].regs))
409 		tee_ta_update_session_utime_resume();
410 
411 	/*
412 	 * Return from RPC to request service of a foreign interrupt must not
413 	 * get parameters from non-secure world.
414 	 */
415 	if (threads[n].flags & THREAD_FLAGS_COPY_ARGS_ON_RETURN) {
416 		copy_a0_to_a3(&threads[n].regs, a0, a1, a2, a3);
417 		threads[n].flags &= ~THREAD_FLAGS_COPY_ARGS_ON_RETURN;
418 	}
419 
420 	thread_lazy_save_ns_vfp();
421 
422 	if (threads[n].have_user_map)
423 		ftrace_resume();
424 
425 	l->flags &= ~THREAD_CLF_TMP;
426 	thread_resume(&threads[n].regs);
427 	/*NOTREACHED*/
428 	panic();
429 }
430 
431 #ifdef ARM64
spsr_from_pstate(void)432 static uint64_t spsr_from_pstate(void)
433 {
434 	uint64_t spsr = SPSR_64(SPSR_64_MODE_EL1, SPSR_64_MODE_SP_EL0, 0);
435 
436 	spsr |= read_daif();
437 	if (IS_ENABLED(CFG_PAN) && feat_pan_implemented() && read_pan())
438 		spsr |= SPSR_64_PAN;
439 
440 	return spsr;
441 }
442 
__thread_rpc(uint32_t rv[THREAD_RPC_NUM_ARGS])443 void __thread_rpc(uint32_t rv[THREAD_RPC_NUM_ARGS])
444 {
445 	thread_rpc_spsr(rv, spsr_from_pstate());
446 }
447 
thread_get_saved_thread_sp(void)448 vaddr_t thread_get_saved_thread_sp(void)
449 {
450 	struct thread_core_local *l = thread_get_core_local();
451 	int ct = l->curr_thread;
452 
453 	assert(ct != THREAD_ID_INVALID);
454 	return threads[ct].kern_sp;
455 }
456 #endif /*ARM64*/
457 
458 #ifdef ARM32
thread_is_in_normal_mode(void)459 bool __noprof thread_is_in_normal_mode(void)
460 {
461 	return (read_cpsr() & ARM32_CPSR_MODE_MASK) == ARM32_CPSR_MODE_SVC;
462 }
463 #endif
464 
thread_state_free(void)465 void thread_state_free(void)
466 {
467 	struct thread_core_local *l = thread_get_core_local();
468 	int ct = l->curr_thread;
469 
470 	assert(ct != THREAD_ID_INVALID);
471 
472 	thread_lazy_restore_ns_vfp();
473 	tee_pager_release_phys(
474 		(void *)(threads[ct].stack_va_end - STACK_THREAD_SIZE),
475 		STACK_THREAD_SIZE);
476 
477 	thread_lock_global();
478 
479 	assert(threads[ct].state == THREAD_STATE_ACTIVE);
480 	threads[ct].state = THREAD_STATE_FREE;
481 	threads[ct].flags = 0;
482 	l->curr_thread = THREAD_ID_INVALID;
483 
484 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
485 		virt_unset_guest();
486 	thread_unlock_global();
487 }
488 
489 #ifdef CFG_WITH_PAGER
release_unused_kernel_stack(struct thread_ctx * thr,uint32_t cpsr __maybe_unused)490 static void release_unused_kernel_stack(struct thread_ctx *thr,
491 					uint32_t cpsr __maybe_unused)
492 {
493 #ifdef ARM64
494 	/*
495 	 * If we're from user mode then thr->regs.sp is the saved user
496 	 * stack pointer and thr->kern_sp holds the last kernel stack
497 	 * pointer. But if we're from kernel mode then thr->kern_sp isn't
498 	 * up to date so we need to read from thr->regs.sp instead.
499 	 */
500 	vaddr_t sp = is_from_user(cpsr) ?  thr->kern_sp : thr->regs.sp;
501 #else
502 	vaddr_t sp = thr->regs.svc_sp;
503 #endif
504 	vaddr_t base = thr->stack_va_end - STACK_THREAD_SIZE;
505 	size_t len = sp - base;
506 
507 	tee_pager_release_phys((void *)base, len);
508 }
509 #else
release_unused_kernel_stack(struct thread_ctx * thr __unused,uint32_t cpsr __unused)510 static void release_unused_kernel_stack(struct thread_ctx *thr __unused,
511 					uint32_t cpsr __unused)
512 {
513 }
514 #endif
515 
thread_state_suspend(uint32_t flags,uint32_t cpsr,vaddr_t pc)516 int thread_state_suspend(uint32_t flags, uint32_t cpsr, vaddr_t pc)
517 {
518 	struct thread_core_local *l = thread_get_core_local();
519 	int ct = l->curr_thread;
520 
521 	assert(ct != THREAD_ID_INVALID);
522 
523 	if (core_mmu_user_mapping_is_active())
524 		ftrace_suspend();
525 
526 	thread_check_canaries();
527 
528 	release_unused_kernel_stack(threads + ct, cpsr);
529 
530 	if (is_from_user(cpsr)) {
531 		thread_user_save_vfp();
532 		tee_ta_update_session_utime_suspend();
533 		tee_ta_gprof_sample_pc(pc);
534 	}
535 	thread_lazy_restore_ns_vfp();
536 
537 	thread_lock_global();
538 
539 	assert(threads[ct].state == THREAD_STATE_ACTIVE);
540 	threads[ct].flags |= flags;
541 	threads[ct].regs.cpsr = cpsr;
542 	threads[ct].regs.pc = pc;
543 	threads[ct].state = THREAD_STATE_SUSPENDED;
544 
545 	threads[ct].have_user_map = core_mmu_user_mapping_is_active();
546 	if (threads[ct].have_user_map) {
547 		if (threads[ct].flags & THREAD_FLAGS_EXIT_ON_FOREIGN_INTR)
548 			tee_ta_ftrace_update_times_suspend();
549 		core_mmu_get_user_map(&threads[ct].user_map);
550 		core_mmu_set_user_map(NULL);
551 	}
552 
553 	if (IS_ENABLED(CFG_SECURE_PARTITION)) {
554 		struct ts_session *ts_sess =
555 			TAILQ_FIRST(&threads[ct].tsd.sess_stack);
556 
557 		spmc_sp_set_to_preempted(ts_sess);
558 	}
559 
560 	l->curr_thread = THREAD_ID_INVALID;
561 
562 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
563 		virt_unset_guest();
564 
565 	thread_unlock_global();
566 
567 	return ct;
568 }
569 
570 static void __maybe_unused
set_core_local_kcode_offset(struct thread_core_local * cls,long offset)571 set_core_local_kcode_offset(struct thread_core_local *cls, long offset)
572 {
573 	size_t n = 0;
574 
575 	for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++)
576 		cls[n].kcode_offset = offset;
577 }
578 
init_user_kcode(void)579 static void init_user_kcode(void)
580 {
581 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0
582 	vaddr_t v = (vaddr_t)thread_excp_vect;
583 	vaddr_t ve = (vaddr_t)thread_excp_vect_end;
584 
585 	thread_user_kcode_va = ROUNDDOWN(v, CORE_MMU_USER_CODE_SIZE);
586 	ve = ROUNDUP(ve, CORE_MMU_USER_CODE_SIZE);
587 	thread_user_kcode_size = ve - thread_user_kcode_va;
588 
589 	core_mmu_get_user_va_range(&v, NULL);
590 	thread_user_kcode_offset = thread_user_kcode_va - v;
591 
592 	set_core_local_kcode_offset(thread_core_local,
593 				    thread_user_kcode_offset);
594 #if defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
595 	set_core_local_kcode_offset((void *)thread_user_kdata_page,
596 				    thread_user_kcode_offset);
597 	/*
598 	 * When transitioning to EL0 subtract SP with this much to point to
599 	 * this special kdata page instead. SP is restored by add this much
600 	 * while transitioning back to EL1.
601 	 */
602 	v += thread_user_kcode_size;
603 	thread_user_kdata_sp_offset = (vaddr_t)thread_core_local - v;
604 #endif
605 #endif /*CFG_CORE_UNMAP_CORE_AT_EL0*/
606 }
607 
thread_init_primary(void)608 void thread_init_primary(void)
609 {
610 	init_user_kcode();
611 }
612 
get_midr_implementer(uint32_t midr)613 static uint32_t __maybe_unused get_midr_implementer(uint32_t midr)
614 {
615 	return (midr >> MIDR_IMPLEMENTER_SHIFT) & MIDR_IMPLEMENTER_MASK;
616 }
617 
get_midr_primary_part(uint32_t midr)618 static uint32_t __maybe_unused get_midr_primary_part(uint32_t midr)
619 {
620 	return (midr >> MIDR_PRIMARY_PART_NUM_SHIFT) &
621 	       MIDR_PRIMARY_PART_NUM_MASK;
622 }
623 
get_midr_variant(uint32_t midr)624 static uint32_t __maybe_unused get_midr_variant(uint32_t midr)
625 {
626 	return (midr >> MIDR_VARIANT_SHIFT) & MIDR_VARIANT_MASK;
627 }
628 
get_midr_revision(uint32_t midr)629 static uint32_t __maybe_unused get_midr_revision(uint32_t midr)
630 {
631 	return (midr >> MIDR_REVISION_SHIFT) & MIDR_REVISION_MASK;
632 }
633 
634 #ifdef CFG_CORE_WORKAROUND_SPECTRE_BP_SEC
635 #ifdef ARM64
probe_workaround_available(uint32_t wa_id)636 static bool probe_workaround_available(uint32_t wa_id)
637 {
638 	int32_t r;
639 
640 	r = thread_smc(SMCCC_VERSION, 0, 0, 0);
641 	if (r < 0)
642 		return false;
643 	if (r < 0x10001)	/* compare with version 1.1 */
644 		return false;
645 
646 	/* Version >= 1.1, so SMCCC_ARCH_FEATURES is available */
647 	r = thread_smc(SMCCC_ARCH_FEATURES, wa_id, 0, 0);
648 	return r >= 0;
649 }
650 
select_vector_wa_spectre_v2(void)651 static vaddr_t __maybe_unused select_vector_wa_spectre_v2(void)
652 {
653 	if (probe_workaround_available(SMCCC_ARCH_WORKAROUND_1)) {
654 		DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") available",
655 		     SMCCC_ARCH_WORKAROUND_1);
656 		DMSG("SMC Workaround for CVE-2017-5715 used");
657 		return (vaddr_t)thread_excp_vect_wa_spectre_v2;
658 	}
659 
660 	DMSG("SMCCC_ARCH_WORKAROUND_1 (%#08" PRIx32 ") unavailable",
661 	     SMCCC_ARCH_WORKAROUND_1);
662 	DMSG("SMC Workaround for CVE-2017-5715 not needed (if ARM-TF is up to date)");
663 	return (vaddr_t)thread_excp_vect;
664 }
665 #else
select_vector_wa_spectre_v2(void)666 static vaddr_t __maybe_unused select_vector_wa_spectre_v2(void)
667 {
668 	return (vaddr_t)thread_excp_vect_wa_spectre_v2;
669 }
670 #endif
671 #endif
672 
673 #ifdef CFG_CORE_WORKAROUND_SPECTRE_BP_SEC
select_vector_wa_spectre_bhb(uint8_t loop_count __maybe_unused)674 static vaddr_t select_vector_wa_spectre_bhb(uint8_t loop_count __maybe_unused)
675 {
676 	/*
677 	 * Spectre-BHB has only been analyzed for AArch64 so far. For
678 	 * AArch32 fall back to the Spectre-V2 workaround which is likely
679 	 * to work even if perhaps a bit more expensive than a more
680 	 * optimized workaround.
681 	 */
682 #ifdef ARM64
683 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0
684 	struct thread_core_local *cl = (void *)thread_user_kdata_page;
685 
686 	cl[get_core_pos()].bhb_loop_count = loop_count;
687 #endif
688 	thread_get_core_local()->bhb_loop_count = loop_count;
689 
690 	DMSG("Spectre-BHB CVE-2022-23960 workaround enabled with \"K\" = %u",
691 	     loop_count);
692 
693 	return (vaddr_t)thread_excp_vect_wa_spectre_bhb;
694 #else
695 	return select_vector_wa_spectre_v2();
696 #endif
697 }
698 #endif
699 
get_excp_vect(void)700 static vaddr_t get_excp_vect(void)
701 {
702 #ifdef CFG_CORE_WORKAROUND_SPECTRE_BP_SEC
703 	uint32_t midr = read_midr();
704 	uint8_t vers = 0;
705 
706 	if (get_midr_implementer(midr) != MIDR_IMPLEMENTER_ARM)
707 		return (vaddr_t)thread_excp_vect;
708 	/*
709 	 * Variant rx, Revision py, for instance
710 	 * Variant 2 Revision 0 = r2p0 = 0x20
711 	 */
712 	vers = (get_midr_variant(midr) << 4) | get_midr_revision(midr);
713 
714 	/*
715 	 * Spectre-V2 (CVE-2017-5715) software workarounds covers what's
716 	 * needed for Spectre-BHB (CVE-2022-23960) too. The workaround for
717 	 * Spectre-V2 is more expensive than the one for Spectre-BHB so if
718 	 * possible select the workaround for Spectre-BHB.
719 	 */
720 	switch (get_midr_primary_part(midr)) {
721 #ifdef ARM32
722 	/* Spectre-V2 */
723 	case CORTEX_A8_PART_NUM:
724 	case CORTEX_A9_PART_NUM:
725 	case CORTEX_A17_PART_NUM:
726 #endif
727 	/* Spectre-V2 */
728 	case CORTEX_A57_PART_NUM:
729 	case CORTEX_A73_PART_NUM:
730 	case CORTEX_A75_PART_NUM:
731 		return select_vector_wa_spectre_v2();
732 #ifdef ARM32
733 	/* Spectre-V2 */
734 	case CORTEX_A15_PART_NUM:
735 		return (vaddr_t)thread_excp_vect_wa_a15_spectre_v2;
736 #endif
737 	/*
738 	 * Spectre-V2 for vers < r1p0
739 	 * Spectre-BHB for vers >= r1p0
740 	 */
741 	case CORTEX_A72_PART_NUM:
742 		if (vers < 0x10)
743 			return select_vector_wa_spectre_v2();
744 		return select_vector_wa_spectre_bhb(8);
745 
746 	/*
747 	 * Doing the more safe but expensive Spectre-V2 workaround for CPUs
748 	 * still being researched on the best mitigation sequence.
749 	 */
750 	case CORTEX_A65_PART_NUM:
751 	case CORTEX_A65AE_PART_NUM:
752 	case NEOVERSE_E1_PART_NUM:
753 		return select_vector_wa_spectre_v2();
754 
755 	/* Spectre-BHB */
756 	case CORTEX_A76_PART_NUM:
757 	case CORTEX_A76AE_PART_NUM:
758 	case CORTEX_A77_PART_NUM:
759 		return select_vector_wa_spectre_bhb(24);
760 	case CORTEX_A78_PART_NUM:
761 	case CORTEX_A78AE_PART_NUM:
762 	case CORTEX_A78C_PART_NUM:
763 	case CORTEX_A710_PART_NUM:
764 	case CORTEX_X1_PART_NUM:
765 	case CORTEX_X2_PART_NUM:
766 		return select_vector_wa_spectre_bhb(32);
767 	case NEOVERSE_N1_PART_NUM:
768 		return select_vector_wa_spectre_bhb(24);
769 	case NEOVERSE_N2_PART_NUM:
770 	case NEOVERSE_V1_PART_NUM:
771 		return select_vector_wa_spectre_bhb(32);
772 
773 	default:
774 		return (vaddr_t)thread_excp_vect;
775 	}
776 #endif /*CFG_CORE_WORKAROUND_SPECTRE_BP_SEC*/
777 
778 	return (vaddr_t)thread_excp_vect;
779 }
780 
thread_init_per_cpu(void)781 void thread_init_per_cpu(void)
782 {
783 	thread_init_vbar(get_excp_vect());
784 
785 #ifdef CFG_FTRACE_SUPPORT
786 	/*
787 	 * Enable accesses to frequency register and physical counter
788 	 * register in EL0/PL0 required for timestamping during
789 	 * function tracing.
790 	 */
791 	write_cntkctl(read_cntkctl() | CNTKCTL_PL0PCTEN);
792 #endif
793 }
794 
795 #ifdef CFG_WITH_VFP
thread_kernel_enable_vfp(void)796 uint32_t thread_kernel_enable_vfp(void)
797 {
798 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
799 	struct thread_ctx *thr = threads + thread_get_id();
800 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
801 
802 	assert(!vfp_is_enabled());
803 
804 	if (!thr->vfp_state.ns_saved) {
805 		vfp_lazy_save_state_final(&thr->vfp_state.ns,
806 					  true /*force_save*/);
807 		thr->vfp_state.ns_saved = true;
808 	} else if (thr->vfp_state.sec_lazy_saved &&
809 		   !thr->vfp_state.sec_saved) {
810 		/*
811 		 * This happens when we're handling an abort while the
812 		 * thread was using the VFP state.
813 		 */
814 		vfp_lazy_save_state_final(&thr->vfp_state.sec,
815 					  false /*!force_save*/);
816 		thr->vfp_state.sec_saved = true;
817 	} else if (tuv && tuv->lazy_saved && !tuv->saved) {
818 		/*
819 		 * This can happen either during syscall or abort
820 		 * processing (while processing a syscall).
821 		 */
822 		vfp_lazy_save_state_final(&tuv->vfp, false /*!force_save*/);
823 		tuv->saved = true;
824 	}
825 
826 	vfp_enable();
827 	return exceptions;
828 }
829 
thread_kernel_disable_vfp(uint32_t state)830 void thread_kernel_disable_vfp(uint32_t state)
831 {
832 	uint32_t exceptions;
833 
834 	assert(vfp_is_enabled());
835 
836 	vfp_disable();
837 	exceptions = thread_get_exceptions();
838 	assert(exceptions & THREAD_EXCP_FOREIGN_INTR);
839 	exceptions &= ~THREAD_EXCP_FOREIGN_INTR;
840 	exceptions |= state & THREAD_EXCP_FOREIGN_INTR;
841 	thread_set_exceptions(exceptions);
842 }
843 
thread_kernel_save_vfp(void)844 void thread_kernel_save_vfp(void)
845 {
846 	struct thread_ctx *thr = threads + thread_get_id();
847 
848 	assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
849 	if (vfp_is_enabled()) {
850 		vfp_lazy_save_state_init(&thr->vfp_state.sec);
851 		thr->vfp_state.sec_lazy_saved = true;
852 	}
853 }
854 
thread_kernel_restore_vfp(void)855 void thread_kernel_restore_vfp(void)
856 {
857 	struct thread_ctx *thr = threads + thread_get_id();
858 
859 	assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
860 	assert(!vfp_is_enabled());
861 	if (thr->vfp_state.sec_lazy_saved) {
862 		vfp_lazy_restore_state(&thr->vfp_state.sec,
863 				       thr->vfp_state.sec_saved);
864 		thr->vfp_state.sec_saved = false;
865 		thr->vfp_state.sec_lazy_saved = false;
866 	}
867 }
868 
thread_user_enable_vfp(struct thread_user_vfp_state * uvfp)869 void thread_user_enable_vfp(struct thread_user_vfp_state *uvfp)
870 {
871 	struct thread_ctx *thr = threads + thread_get_id();
872 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
873 
874 	assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
875 	assert(!vfp_is_enabled());
876 
877 	if (!thr->vfp_state.ns_saved) {
878 		vfp_lazy_save_state_final(&thr->vfp_state.ns,
879 					  true /*force_save*/);
880 		thr->vfp_state.ns_saved = true;
881 	} else if (tuv && uvfp != tuv) {
882 		if (tuv->lazy_saved && !tuv->saved) {
883 			vfp_lazy_save_state_final(&tuv->vfp,
884 						  false /*!force_save*/);
885 			tuv->saved = true;
886 		}
887 	}
888 
889 	if (uvfp->lazy_saved)
890 		vfp_lazy_restore_state(&uvfp->vfp, uvfp->saved);
891 	uvfp->lazy_saved = false;
892 	uvfp->saved = false;
893 
894 	thr->vfp_state.uvfp = uvfp;
895 	vfp_enable();
896 }
897 
thread_user_save_vfp(void)898 void thread_user_save_vfp(void)
899 {
900 	struct thread_ctx *thr = threads + thread_get_id();
901 	struct thread_user_vfp_state *tuv = thr->vfp_state.uvfp;
902 
903 	assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
904 	if (!vfp_is_enabled())
905 		return;
906 
907 	assert(tuv && !tuv->lazy_saved && !tuv->saved);
908 	vfp_lazy_save_state_init(&tuv->vfp);
909 	tuv->lazy_saved = true;
910 }
911 
thread_user_clear_vfp(struct user_mode_ctx * uctx)912 void thread_user_clear_vfp(struct user_mode_ctx *uctx)
913 {
914 	struct thread_user_vfp_state *uvfp = &uctx->vfp;
915 	struct thread_ctx *thr = threads + thread_get_id();
916 
917 	if (uvfp == thr->vfp_state.uvfp)
918 		thr->vfp_state.uvfp = NULL;
919 	uvfp->lazy_saved = false;
920 	uvfp->saved = false;
921 }
922 #endif /*CFG_WITH_VFP*/
923 
924 #ifdef ARM32
get_spsr(bool is_32bit,unsigned long entry_func,uint32_t * spsr)925 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
926 {
927 	uint32_t s;
928 
929 	if (!is_32bit)
930 		return false;
931 
932 	s = read_cpsr();
933 	s &= ~(CPSR_MODE_MASK | CPSR_T | CPSR_IT_MASK1 | CPSR_IT_MASK2);
934 	s |= CPSR_MODE_USR;
935 	if (entry_func & 1)
936 		s |= CPSR_T;
937 	*spsr = s;
938 	return true;
939 }
940 #endif
941 
942 #ifdef ARM64
get_spsr(bool is_32bit,unsigned long entry_func,uint32_t * spsr)943 static bool get_spsr(bool is_32bit, unsigned long entry_func, uint32_t *spsr)
944 {
945 	uint32_t s;
946 
947 	if (is_32bit) {
948 		s = read_daif() & (SPSR_32_AIF_MASK << SPSR_32_AIF_SHIFT);
949 		s |= SPSR_MODE_RW_32 << SPSR_MODE_RW_SHIFT;
950 		s |= (entry_func & SPSR_32_T_MASK) << SPSR_32_T_SHIFT;
951 	} else {
952 		s = read_daif() & (SPSR_64_DAIF_MASK << SPSR_64_DAIF_SHIFT);
953 	}
954 
955 	*spsr = s;
956 	return true;
957 }
958 #endif
959 
set_ctx_regs(struct thread_ctx_regs * regs,unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long user_sp,unsigned long entry_func,uint32_t spsr,struct thread_pauth_keys * keys __maybe_unused)960 static void set_ctx_regs(struct thread_ctx_regs *regs, unsigned long a0,
961 			 unsigned long a1, unsigned long a2, unsigned long a3,
962 			 unsigned long user_sp, unsigned long entry_func,
963 			 uint32_t spsr,
964 			 struct thread_pauth_keys *keys __maybe_unused)
965 {
966 	/*
967 	 * First clear all registers to avoid leaking information from
968 	 * other TAs or even the Core itself.
969 	 */
970 	*regs = (struct thread_ctx_regs){ };
971 #ifdef ARM32
972 	regs->r0 = a0;
973 	regs->r1 = a1;
974 	regs->r2 = a2;
975 	regs->r3 = a3;
976 	regs->usr_sp = user_sp;
977 	regs->pc = entry_func;
978 	regs->cpsr = spsr;
979 #endif
980 #ifdef ARM64
981 	regs->x[0] = a0;
982 	regs->x[1] = a1;
983 	regs->x[2] = a2;
984 	regs->x[3] = a3;
985 	regs->pc = entry_func;
986 	regs->cpsr = spsr;
987 	regs->x[13] = user_sp;	/* Used when running TA in Aarch32 */
988 	regs->sp = user_sp;	/* Used when running TA in Aarch64 */
989 #ifdef CFG_TA_PAUTH
990 	assert(keys);
991 	regs->apiakey_hi = keys->apia_hi;
992 	regs->apiakey_lo = keys->apia_lo;
993 #endif
994 	/* Set frame pointer (user stack can't be unwound past this point) */
995 	regs->x[29] = 0;
996 #endif
997 }
998 
thread_get_pauth_keys(void)999 static struct thread_pauth_keys *thread_get_pauth_keys(void)
1000 {
1001 #if defined(CFG_TA_PAUTH)
1002 	struct ts_session *s = ts_get_current_session();
1003 
1004 	if  (is_user_ta_ctx(s->ctx)) {
1005 		struct user_ta_ctx *utc = to_user_ta_ctx(s->ctx);
1006 
1007 		return &utc->uctx.keys;
1008 	} else if (is_sp_ctx(s->ctx)) {
1009 		struct sp_ctx *spc = to_sp_ctx(s->ctx);
1010 
1011 		return &spc->uctx.keys;
1012 	}
1013 
1014 	panic("[abort] Only user TAs and SPs support PAUTH keys");
1015 #else
1016 	return NULL;
1017 #endif
1018 }
1019 
thread_enter_user_mode(unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long user_sp,unsigned long entry_func,bool is_32bit,uint32_t * exit_status0,uint32_t * exit_status1)1020 uint32_t thread_enter_user_mode(unsigned long a0, unsigned long a1,
1021 		unsigned long a2, unsigned long a3, unsigned long user_sp,
1022 		unsigned long entry_func, bool is_32bit,
1023 		uint32_t *exit_status0, uint32_t *exit_status1)
1024 {
1025 	uint32_t spsr = 0;
1026 	uint32_t exceptions = 0;
1027 	uint32_t rc = 0;
1028 	struct thread_ctx_regs *regs = NULL;
1029 	struct thread_pauth_keys *keys = NULL;
1030 
1031 	tee_ta_update_session_utime_resume();
1032 
1033 	keys = thread_get_pauth_keys();
1034 
1035 	/* Derive SPSR from current CPSR/PSTATE readout. */
1036 	if (!get_spsr(is_32bit, entry_func, &spsr)) {
1037 		*exit_status0 = 1; /* panic */
1038 		*exit_status1 = 0xbadbadba;
1039 		return 0;
1040 	}
1041 
1042 	exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
1043 	/*
1044 	 * We're using the per thread location of saved context registers
1045 	 * for temporary storage. Now that exceptions are masked they will
1046 	 * not be used for any thing else until they are eventually
1047 	 * unmasked when user mode has been entered.
1048 	 */
1049 	regs = thread_get_ctx_regs();
1050 	set_ctx_regs(regs, a0, a1, a2, a3, user_sp, entry_func, spsr, keys);
1051 	rc = __thread_enter_user_mode(regs, exit_status0, exit_status1);
1052 	thread_unmask_exceptions(exceptions);
1053 	return rc;
1054 }
1055 
1056 #ifdef CFG_CORE_UNMAP_CORE_AT_EL0
thread_get_user_kcode(struct mobj ** mobj,size_t * offset,vaddr_t * va,size_t * sz)1057 void thread_get_user_kcode(struct mobj **mobj, size_t *offset,
1058 			   vaddr_t *va, size_t *sz)
1059 {
1060 	core_mmu_get_user_va_range(va, NULL);
1061 	*mobj = mobj_tee_ram_rx;
1062 	*sz = thread_user_kcode_size;
1063 	*offset = thread_user_kcode_va - (vaddr_t)mobj_get_va(*mobj, 0, *sz);
1064 }
1065 #endif
1066 
1067 #if defined(CFG_CORE_UNMAP_CORE_AT_EL0) && \
1068 	defined(CFG_CORE_WORKAROUND_SPECTRE_BP_SEC) && defined(ARM64)
thread_get_user_kdata(struct mobj ** mobj,size_t * offset,vaddr_t * va,size_t * sz)1069 void thread_get_user_kdata(struct mobj **mobj, size_t *offset,
1070 			   vaddr_t *va, size_t *sz)
1071 {
1072 	vaddr_t v;
1073 
1074 	core_mmu_get_user_va_range(&v, NULL);
1075 	*va = v + thread_user_kcode_size;
1076 	*mobj = mobj_tee_ram_rw;
1077 	*sz = sizeof(thread_user_kdata_page);
1078 	*offset = (vaddr_t)thread_user_kdata_page -
1079 		  (vaddr_t)mobj_get_va(*mobj, 0, *sz);
1080 }
1081 #endif
1082 
setup_unwind_user_mode(struct thread_scall_regs * regs)1083 static void setup_unwind_user_mode(struct thread_scall_regs *regs)
1084 {
1085 #ifdef ARM32
1086 	regs->lr = (uintptr_t)thread_unwind_user_mode;
1087 	regs->spsr = read_cpsr();
1088 #endif
1089 #ifdef ARM64
1090 	regs->elr = (uintptr_t)thread_unwind_user_mode;
1091 	regs->spsr = spsr_from_pstate();
1092 	/*
1093 	 * Regs is the value of stack pointer before calling the SVC
1094 	 * handler.  By the addition matches for the reserved space at the
1095 	 * beginning of el0_sync_svc(). This prepares the stack when
1096 	 * returning to thread_unwind_user_mode instead of a normal
1097 	 * exception return.
1098 	 */
1099 	regs->sp_el0 = (uint64_t)(regs + 1);
1100 #endif
1101 }
1102 
gprof_set_status(struct ts_session * s __maybe_unused,enum ts_gprof_status status __maybe_unused)1103 static void gprof_set_status(struct ts_session *s __maybe_unused,
1104 			     enum ts_gprof_status status __maybe_unused)
1105 {
1106 #ifdef CFG_TA_GPROF_SUPPORT
1107 	if (s->ctx->ops->gprof_set_status)
1108 		s->ctx->ops->gprof_set_status(status);
1109 #endif
1110 }
1111 
1112 /*
1113  * Note: this function is weak just to make it possible to exclude it from
1114  * the unpaged area.
1115  */
thread_scall_handler(struct thread_scall_regs * regs)1116 void __weak thread_scall_handler(struct thread_scall_regs *regs)
1117 {
1118 	struct ts_session *sess = NULL;
1119 	uint32_t state = 0;
1120 
1121 	/* Enable native interrupts */
1122 	state = thread_get_exceptions();
1123 	thread_unmask_exceptions(state & ~THREAD_EXCP_NATIVE_INTR);
1124 
1125 	thread_user_save_vfp();
1126 
1127 	sess = ts_get_current_session();
1128 	/*
1129 	 * User mode service has just entered kernel mode, suspend gprof
1130 	 * collection until we're about to switch back again.
1131 	 */
1132 	gprof_set_status(sess, TS_GPROF_SUSPEND);
1133 
1134 	/* Restore foreign interrupts which are disabled on exception entry */
1135 	thread_restore_foreign_intr();
1136 
1137 	assert(sess && sess->handle_scall);
1138 	if (sess->handle_scall(regs)) {
1139 		/* We're about to switch back to user mode */
1140 		gprof_set_status(sess, TS_GPROF_RESUME);
1141 	} else {
1142 		/* We're returning from __thread_enter_user_mode() */
1143 		setup_unwind_user_mode(regs);
1144 	}
1145 }
1146 
1147 #ifdef CFG_WITH_ARM_TRUSTED_FW
1148 /*
1149  * These five functions are __weak to allow platforms to override them if
1150  * needed.
1151  */
thread_cpu_off_handler(unsigned long a0 __unused,unsigned long a1 __unused)1152 unsigned long __weak thread_cpu_off_handler(unsigned long a0 __unused,
1153 					    unsigned long a1 __unused)
1154 {
1155 	return 0;
1156 }
1157 DECLARE_KEEP_PAGER(thread_cpu_off_handler);
1158 
thread_cpu_suspend_handler(unsigned long a0 __unused,unsigned long a1 __unused)1159 unsigned long __weak thread_cpu_suspend_handler(unsigned long a0 __unused,
1160 						unsigned long a1 __unused)
1161 {
1162 	return 0;
1163 }
1164 DECLARE_KEEP_PAGER(thread_cpu_suspend_handler);
1165 
thread_cpu_resume_handler(unsigned long a0 __unused,unsigned long a1 __unused)1166 unsigned long __weak thread_cpu_resume_handler(unsigned long a0 __unused,
1167 					       unsigned long a1 __unused)
1168 {
1169 	return 0;
1170 }
1171 DECLARE_KEEP_PAGER(thread_cpu_resume_handler);
1172 
thread_system_off_handler(unsigned long a0 __unused,unsigned long a1 __unused)1173 unsigned long __weak thread_system_off_handler(unsigned long a0 __unused,
1174 					       unsigned long a1 __unused)
1175 {
1176 	return 0;
1177 }
1178 DECLARE_KEEP_PAGER(thread_system_off_handler);
1179 
thread_system_reset_handler(unsigned long a0 __unused,unsigned long a1 __unused)1180 unsigned long __weak thread_system_reset_handler(unsigned long a0 __unused,
1181 						 unsigned long a1 __unused)
1182 {
1183 	return 0;
1184 }
1185 DECLARE_KEEP_PAGER(thread_system_reset_handler);
1186 #endif /*CFG_WITH_ARM_TRUSTED_FW*/
1187 
1188 #ifdef CFG_CORE_WORKAROUND_ARM_NMFI
interrupt_main_handler(void)1189 void __noreturn interrupt_main_handler(void)
1190 {
1191 	/*
1192 	 * Note: overrides the default implementation of this function so that
1193 	 * if there would be another handler defined there would be duplicate
1194 	 * symbol error during linking.
1195 	 */
1196 	panic("Secure interrupt received but it is not supported");
1197 }
1198 #endif
1199