1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282
283 #include <trace/hooks/ipv4.h>
284
285 struct percpu_counter tcp_orphan_count;
286 EXPORT_SYMBOL_GPL(tcp_orphan_count);
287
288 long sysctl_tcp_mem[3] __read_mostly;
289 EXPORT_SYMBOL(sysctl_tcp_mem);
290
291 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
292 EXPORT_SYMBOL(tcp_memory_allocated);
293
294 #if IS_ENABLED(CONFIG_SMC)
295 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
296 EXPORT_SYMBOL(tcp_have_smc);
297 #endif
298
299 /*
300 * Current number of TCP sockets.
301 */
302 struct percpu_counter tcp_sockets_allocated;
303 EXPORT_SYMBOL(tcp_sockets_allocated);
304
305 /*
306 * TCP splice context
307 */
308 struct tcp_splice_state {
309 struct pipe_inode_info *pipe;
310 size_t len;
311 unsigned int flags;
312 };
313
314 /*
315 * Pressure flag: try to collapse.
316 * Technical note: it is used by multiple contexts non atomically.
317 * All the __sk_mem_schedule() is of this nature: accounting
318 * is strict, actions are advisory and have some latency.
319 */
320 unsigned long tcp_memory_pressure __read_mostly;
321 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
322
323 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
324 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
325
326 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
327
tcp_enter_memory_pressure(struct sock * sk)328 void tcp_enter_memory_pressure(struct sock *sk)
329 {
330 unsigned long val;
331
332 if (READ_ONCE(tcp_memory_pressure))
333 return;
334 val = jiffies;
335
336 if (!val)
337 val--;
338 if (!cmpxchg(&tcp_memory_pressure, 0, val))
339 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
340 }
341 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
342
tcp_leave_memory_pressure(struct sock * sk)343 void tcp_leave_memory_pressure(struct sock *sk)
344 {
345 unsigned long val;
346
347 if (!READ_ONCE(tcp_memory_pressure))
348 return;
349 val = xchg(&tcp_memory_pressure, 0);
350 if (val)
351 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
352 jiffies_to_msecs(jiffies - val));
353 }
354 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
355
356 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)357 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
358 {
359 u8 res = 0;
360
361 if (seconds > 0) {
362 int period = timeout;
363
364 res = 1;
365 while (seconds > period && res < 255) {
366 res++;
367 timeout <<= 1;
368 if (timeout > rto_max)
369 timeout = rto_max;
370 period += timeout;
371 }
372 }
373 return res;
374 }
375
376 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)377 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
378 {
379 int period = 0;
380
381 if (retrans > 0) {
382 period = timeout;
383 while (--retrans) {
384 timeout <<= 1;
385 if (timeout > rto_max)
386 timeout = rto_max;
387 period += timeout;
388 }
389 }
390 return period;
391 }
392
tcp_compute_delivery_rate(const struct tcp_sock * tp)393 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
394 {
395 u32 rate = READ_ONCE(tp->rate_delivered);
396 u32 intv = READ_ONCE(tp->rate_interval_us);
397 u64 rate64 = 0;
398
399 if (rate && intv) {
400 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
401 do_div(rate64, intv);
402 }
403 return rate64;
404 }
405
406 /* Address-family independent initialization for a tcp_sock.
407 *
408 * NOTE: A lot of things set to zero explicitly by call to
409 * sk_alloc() so need not be done here.
410 */
tcp_init_sock(struct sock * sk)411 void tcp_init_sock(struct sock *sk)
412 {
413 struct inet_connection_sock *icsk = inet_csk(sk);
414 struct tcp_sock *tp = tcp_sk(sk);
415
416 tp->out_of_order_queue = RB_ROOT;
417 sk->tcp_rtx_queue = RB_ROOT;
418 tcp_init_xmit_timers(sk);
419 INIT_LIST_HEAD(&tp->tsq_node);
420 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
421
422 icsk->icsk_rto = TCP_TIMEOUT_INIT;
423 icsk->icsk_rto_min = TCP_RTO_MIN;
424 icsk->icsk_delack_max = TCP_DELACK_MAX;
425 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
426 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
427
428 /* So many TCP implementations out there (incorrectly) count the
429 * initial SYN frame in their delayed-ACK and congestion control
430 * algorithms that we must have the following bandaid to talk
431 * efficiently to them. -DaveM
432 */
433 tp->snd_cwnd = TCP_INIT_CWND;
434
435 /* There's a bubble in the pipe until at least the first ACK. */
436 tp->app_limited = ~0U;
437
438 /* See draft-stevens-tcpca-spec-01 for discussion of the
439 * initialization of these values.
440 */
441 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
442 tp->snd_cwnd_clamp = ~0;
443 tp->mss_cache = TCP_MSS_DEFAULT;
444
445 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
446 tcp_assign_congestion_control(sk);
447
448 tp->tsoffset = 0;
449 tp->rack.reo_wnd_steps = 1;
450
451 sk->sk_write_space = sk_stream_write_space;
452 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
453
454 icsk->icsk_sync_mss = tcp_sync_mss;
455
456 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
457 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
458
459 sk_sockets_allocated_inc(sk);
460 sk->sk_route_forced_caps = NETIF_F_GSO;
461 }
462 EXPORT_SYMBOL(tcp_init_sock);
463
tcp_tx_timestamp(struct sock * sk,u16 tsflags)464 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
465 {
466 struct sk_buff *skb = tcp_write_queue_tail(sk);
467
468 if (tsflags && skb) {
469 struct skb_shared_info *shinfo = skb_shinfo(skb);
470 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
471
472 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
473 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
474 tcb->txstamp_ack = 1;
475 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
476 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
477 }
478 }
479
tcp_stream_is_readable(const struct tcp_sock * tp,int target,struct sock * sk)480 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
481 int target, struct sock *sk)
482 {
483 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
484
485 if (avail > 0) {
486 if (avail >= target)
487 return true;
488 if (tcp_rmem_pressure(sk))
489 return true;
490 if (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss)
491 return true;
492 }
493 if (sk->sk_prot->stream_memory_read)
494 return sk->sk_prot->stream_memory_read(sk);
495 return false;
496 }
497
498 /*
499 * Wait for a TCP event.
500 *
501 * Note that we don't need to lock the socket, as the upper poll layers
502 * take care of normal races (between the test and the event) and we don't
503 * go look at any of the socket buffers directly.
504 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)505 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
506 {
507 __poll_t mask;
508 struct sock *sk = sock->sk;
509 const struct tcp_sock *tp = tcp_sk(sk);
510 int state;
511
512 sock_poll_wait(file, sock, wait);
513
514 state = inet_sk_state_load(sk);
515 if (state == TCP_LISTEN)
516 return inet_csk_listen_poll(sk);
517
518 /* Socket is not locked. We are protected from async events
519 * by poll logic and correct handling of state changes
520 * made by other threads is impossible in any case.
521 */
522
523 mask = 0;
524
525 /*
526 * EPOLLHUP is certainly not done right. But poll() doesn't
527 * have a notion of HUP in just one direction, and for a
528 * socket the read side is more interesting.
529 *
530 * Some poll() documentation says that EPOLLHUP is incompatible
531 * with the EPOLLOUT/POLLWR flags, so somebody should check this
532 * all. But careful, it tends to be safer to return too many
533 * bits than too few, and you can easily break real applications
534 * if you don't tell them that something has hung up!
535 *
536 * Check-me.
537 *
538 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
539 * our fs/select.c). It means that after we received EOF,
540 * poll always returns immediately, making impossible poll() on write()
541 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
542 * if and only if shutdown has been made in both directions.
543 * Actually, it is interesting to look how Solaris and DUX
544 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
545 * then we could set it on SND_SHUTDOWN. BTW examples given
546 * in Stevens' books assume exactly this behaviour, it explains
547 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
548 *
549 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
550 * blocking on fresh not-connected or disconnected socket. --ANK
551 */
552 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
553 mask |= EPOLLHUP;
554 if (sk->sk_shutdown & RCV_SHUTDOWN)
555 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
556
557 /* Connected or passive Fast Open socket? */
558 if (state != TCP_SYN_SENT &&
559 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
560 int target = sock_rcvlowat(sk, 0, INT_MAX);
561
562 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
563 !sock_flag(sk, SOCK_URGINLINE) &&
564 tp->urg_data)
565 target++;
566
567 if (tcp_stream_is_readable(tp, target, sk))
568 mask |= EPOLLIN | EPOLLRDNORM;
569
570 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
571 if (__sk_stream_is_writeable(sk, 1)) {
572 mask |= EPOLLOUT | EPOLLWRNORM;
573 } else { /* send SIGIO later */
574 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
575 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
576
577 /* Race breaker. If space is freed after
578 * wspace test but before the flags are set,
579 * IO signal will be lost. Memory barrier
580 * pairs with the input side.
581 */
582 smp_mb__after_atomic();
583 if (__sk_stream_is_writeable(sk, 1))
584 mask |= EPOLLOUT | EPOLLWRNORM;
585 }
586 } else
587 mask |= EPOLLOUT | EPOLLWRNORM;
588
589 if (tp->urg_data & TCP_URG_VALID)
590 mask |= EPOLLPRI;
591 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
592 /* Active TCP fastopen socket with defer_connect
593 * Return EPOLLOUT so application can call write()
594 * in order for kernel to generate SYN+data
595 */
596 mask |= EPOLLOUT | EPOLLWRNORM;
597 }
598 /* This barrier is coupled with smp_wmb() in tcp_reset() */
599 smp_rmb();
600 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
601 mask |= EPOLLERR;
602
603 return mask;
604 }
605 EXPORT_SYMBOL(tcp_poll);
606
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)607 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
608 {
609 struct tcp_sock *tp = tcp_sk(sk);
610 int answ;
611 bool slow;
612
613 switch (cmd) {
614 case SIOCINQ:
615 if (sk->sk_state == TCP_LISTEN)
616 return -EINVAL;
617
618 slow = lock_sock_fast(sk);
619 answ = tcp_inq(sk);
620 unlock_sock_fast(sk, slow);
621 break;
622 case SIOCATMARK:
623 answ = tp->urg_data &&
624 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
625 break;
626 case SIOCOUTQ:
627 if (sk->sk_state == TCP_LISTEN)
628 return -EINVAL;
629
630 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
631 answ = 0;
632 else
633 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
634 break;
635 case SIOCOUTQNSD:
636 if (sk->sk_state == TCP_LISTEN)
637 return -EINVAL;
638
639 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
640 answ = 0;
641 else
642 answ = READ_ONCE(tp->write_seq) -
643 READ_ONCE(tp->snd_nxt);
644 break;
645 default:
646 return -ENOIOCTLCMD;
647 }
648
649 return put_user(answ, (int __user *)arg);
650 }
651 EXPORT_SYMBOL(tcp_ioctl);
652
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)653 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
654 {
655 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
656 tp->pushed_seq = tp->write_seq;
657 }
658
forced_push(const struct tcp_sock * tp)659 static inline bool forced_push(const struct tcp_sock *tp)
660 {
661 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
662 }
663
skb_entail(struct sock * sk,struct sk_buff * skb)664 static void skb_entail(struct sock *sk, struct sk_buff *skb)
665 {
666 struct tcp_sock *tp = tcp_sk(sk);
667 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
668
669 skb->csum = 0;
670 tcb->seq = tcb->end_seq = tp->write_seq;
671 tcb->tcp_flags = TCPHDR_ACK;
672 tcb->sacked = 0;
673 __skb_header_release(skb);
674 tcp_add_write_queue_tail(sk, skb);
675 sk_wmem_queued_add(sk, skb->truesize);
676 sk_mem_charge(sk, skb->truesize);
677 if (tp->nonagle & TCP_NAGLE_PUSH)
678 tp->nonagle &= ~TCP_NAGLE_PUSH;
679
680 tcp_slow_start_after_idle_check(sk);
681 }
682
tcp_mark_urg(struct tcp_sock * tp,int flags)683 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
684 {
685 if (flags & MSG_OOB)
686 tp->snd_up = tp->write_seq;
687 }
688
689 /* If a not yet filled skb is pushed, do not send it if
690 * we have data packets in Qdisc or NIC queues :
691 * Because TX completion will happen shortly, it gives a chance
692 * to coalesce future sendmsg() payload into this skb, without
693 * need for a timer, and with no latency trade off.
694 * As packets containing data payload have a bigger truesize
695 * than pure acks (dataless) packets, the last checks prevent
696 * autocorking if we only have an ACK in Qdisc/NIC queues,
697 * or if TX completion was delayed after we processed ACK packet.
698 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)699 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
700 int size_goal)
701 {
702 return skb->len < size_goal &&
703 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
704 !tcp_rtx_queue_empty(sk) &&
705 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
706 }
707
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)708 void tcp_push(struct sock *sk, int flags, int mss_now,
709 int nonagle, int size_goal)
710 {
711 struct tcp_sock *tp = tcp_sk(sk);
712 struct sk_buff *skb;
713
714 skb = tcp_write_queue_tail(sk);
715 if (!skb)
716 return;
717 if (!(flags & MSG_MORE) || forced_push(tp))
718 tcp_mark_push(tp, skb);
719
720 tcp_mark_urg(tp, flags);
721
722 if (tcp_should_autocork(sk, skb, size_goal)) {
723
724 /* avoid atomic op if TSQ_THROTTLED bit is already set */
725 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
726 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
727 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
728 }
729 /* It is possible TX completion already happened
730 * before we set TSQ_THROTTLED.
731 */
732 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
733 return;
734 }
735
736 if (flags & MSG_MORE)
737 nonagle = TCP_NAGLE_CORK;
738
739 __tcp_push_pending_frames(sk, mss_now, nonagle);
740 }
741
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)742 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
743 unsigned int offset, size_t len)
744 {
745 struct tcp_splice_state *tss = rd_desc->arg.data;
746 int ret;
747
748 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
749 min(rd_desc->count, len), tss->flags);
750 if (ret > 0)
751 rd_desc->count -= ret;
752 return ret;
753 }
754
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)755 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
756 {
757 /* Store TCP splice context information in read_descriptor_t. */
758 read_descriptor_t rd_desc = {
759 .arg.data = tss,
760 .count = tss->len,
761 };
762
763 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
764 }
765
766 /**
767 * tcp_splice_read - splice data from TCP socket to a pipe
768 * @sock: socket to splice from
769 * @ppos: position (not valid)
770 * @pipe: pipe to splice to
771 * @len: number of bytes to splice
772 * @flags: splice modifier flags
773 *
774 * Description:
775 * Will read pages from given socket and fill them into a pipe.
776 *
777 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)778 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
779 struct pipe_inode_info *pipe, size_t len,
780 unsigned int flags)
781 {
782 struct sock *sk = sock->sk;
783 struct tcp_splice_state tss = {
784 .pipe = pipe,
785 .len = len,
786 .flags = flags,
787 };
788 long timeo;
789 ssize_t spliced;
790 int ret;
791
792 sock_rps_record_flow(sk);
793 /*
794 * We can't seek on a socket input
795 */
796 if (unlikely(*ppos))
797 return -ESPIPE;
798
799 ret = spliced = 0;
800
801 lock_sock(sk);
802
803 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
804 while (tss.len) {
805 ret = __tcp_splice_read(sk, &tss);
806 if (ret < 0)
807 break;
808 else if (!ret) {
809 if (spliced)
810 break;
811 if (sock_flag(sk, SOCK_DONE))
812 break;
813 if (sk->sk_err) {
814 ret = sock_error(sk);
815 break;
816 }
817 if (sk->sk_shutdown & RCV_SHUTDOWN)
818 break;
819 if (sk->sk_state == TCP_CLOSE) {
820 /*
821 * This occurs when user tries to read
822 * from never connected socket.
823 */
824 ret = -ENOTCONN;
825 break;
826 }
827 if (!timeo) {
828 ret = -EAGAIN;
829 break;
830 }
831 /* if __tcp_splice_read() got nothing while we have
832 * an skb in receive queue, we do not want to loop.
833 * This might happen with URG data.
834 */
835 if (!skb_queue_empty(&sk->sk_receive_queue))
836 break;
837 sk_wait_data(sk, &timeo, NULL);
838 if (signal_pending(current)) {
839 ret = sock_intr_errno(timeo);
840 break;
841 }
842 continue;
843 }
844 tss.len -= ret;
845 spliced += ret;
846
847 if (!timeo)
848 break;
849 release_sock(sk);
850 lock_sock(sk);
851
852 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
853 (sk->sk_shutdown & RCV_SHUTDOWN) ||
854 signal_pending(current))
855 break;
856 }
857
858 release_sock(sk);
859
860 if (spliced)
861 return spliced;
862
863 return ret;
864 }
865 EXPORT_SYMBOL(tcp_splice_read);
866
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)867 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
868 bool force_schedule)
869 {
870 struct sk_buff *skb;
871
872 if (likely(!size)) {
873 skb = sk->sk_tx_skb_cache;
874 if (skb) {
875 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
876 sk->sk_tx_skb_cache = NULL;
877 pskb_trim(skb, 0);
878 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
879 skb_shinfo(skb)->tx_flags = 0;
880 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
881 return skb;
882 }
883 }
884 /* The TCP header must be at least 32-bit aligned. */
885 size = ALIGN(size, 4);
886
887 if (unlikely(tcp_under_memory_pressure(sk)))
888 sk_mem_reclaim_partial(sk);
889
890 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
891 if (likely(skb)) {
892 bool mem_scheduled;
893
894 if (force_schedule) {
895 mem_scheduled = true;
896 sk_forced_mem_schedule(sk, skb->truesize);
897 } else {
898 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
899 }
900 if (likely(mem_scheduled)) {
901 skb_reserve(skb, sk->sk_prot->max_header);
902 /*
903 * Make sure that we have exactly size bytes
904 * available to the caller, no more, no less.
905 */
906 skb->reserved_tailroom = skb->end - skb->tail - size;
907 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
908 return skb;
909 }
910 __kfree_skb(skb);
911 } else {
912 sk->sk_prot->enter_memory_pressure(sk);
913 sk_stream_moderate_sndbuf(sk);
914 }
915 return NULL;
916 }
917
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)918 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
919 int large_allowed)
920 {
921 struct tcp_sock *tp = tcp_sk(sk);
922 u32 new_size_goal, size_goal;
923
924 if (!large_allowed)
925 return mss_now;
926
927 /* Note : tcp_tso_autosize() will eventually split this later */
928 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
929 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
930
931 /* We try hard to avoid divides here */
932 size_goal = tp->gso_segs * mss_now;
933 if (unlikely(new_size_goal < size_goal ||
934 new_size_goal >= size_goal + mss_now)) {
935 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
936 sk->sk_gso_max_segs);
937 size_goal = tp->gso_segs * mss_now;
938 }
939
940 return max(size_goal, mss_now);
941 }
942
tcp_send_mss(struct sock * sk,int * size_goal,int flags)943 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
944 {
945 int mss_now;
946
947 mss_now = tcp_current_mss(sk);
948 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
949
950 return mss_now;
951 }
952
953 /* In some cases, both sendpage() and sendmsg() could have added
954 * an skb to the write queue, but failed adding payload on it.
955 * We need to remove it to consume less memory, but more
956 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
957 * users.
958 */
tcp_remove_empty_skb(struct sock * sk,struct sk_buff * skb)959 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
960 {
961 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
962 tcp_unlink_write_queue(skb, sk);
963 if (tcp_write_queue_empty(sk))
964 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
965 sk_wmem_free_skb(sk, skb);
966 }
967 }
968
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)969 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
970 size_t size, int flags)
971 {
972 struct tcp_sock *tp = tcp_sk(sk);
973 int mss_now, size_goal;
974 int err;
975 ssize_t copied;
976 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
977
978 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
979 WARN_ONCE(!sendpage_ok(page),
980 "page must not be a Slab one and have page_count > 0"))
981 return -EINVAL;
982
983 /* Wait for a connection to finish. One exception is TCP Fast Open
984 * (passive side) where data is allowed to be sent before a connection
985 * is fully established.
986 */
987 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
988 !tcp_passive_fastopen(sk)) {
989 err = sk_stream_wait_connect(sk, &timeo);
990 if (err != 0)
991 goto out_err;
992 }
993
994 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
995
996 mss_now = tcp_send_mss(sk, &size_goal, flags);
997 copied = 0;
998
999 err = -EPIPE;
1000 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1001 goto out_err;
1002
1003 while (size > 0) {
1004 struct sk_buff *skb = tcp_write_queue_tail(sk);
1005 int copy, i;
1006 bool can_coalesce;
1007
1008 if (!skb || (copy = size_goal - skb->len) <= 0 ||
1009 !tcp_skb_can_collapse_to(skb)) {
1010 new_segment:
1011 if (!sk_stream_memory_free(sk))
1012 goto wait_for_space;
1013
1014 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1015 tcp_rtx_and_write_queues_empty(sk));
1016 if (!skb)
1017 goto wait_for_space;
1018
1019 #ifdef CONFIG_TLS_DEVICE
1020 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1021 #endif
1022 skb_entail(sk, skb);
1023 copy = size_goal;
1024 }
1025
1026 if (copy > size)
1027 copy = size;
1028
1029 i = skb_shinfo(skb)->nr_frags;
1030 can_coalesce = skb_can_coalesce(skb, i, page, offset);
1031 if (!can_coalesce && i >= sysctl_max_skb_frags) {
1032 tcp_mark_push(tp, skb);
1033 goto new_segment;
1034 }
1035 if (!sk_wmem_schedule(sk, copy))
1036 goto wait_for_space;
1037
1038 if (can_coalesce) {
1039 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1040 } else {
1041 get_page(page);
1042 skb_fill_page_desc(skb, i, page, offset, copy);
1043 }
1044
1045 if (!(flags & MSG_NO_SHARED_FRAGS))
1046 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1047
1048 skb->len += copy;
1049 skb->data_len += copy;
1050 skb->truesize += copy;
1051 sk_wmem_queued_add(sk, copy);
1052 sk_mem_charge(sk, copy);
1053 skb->ip_summed = CHECKSUM_PARTIAL;
1054 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1055 TCP_SKB_CB(skb)->end_seq += copy;
1056 tcp_skb_pcount_set(skb, 0);
1057
1058 if (!copied)
1059 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1060
1061 copied += copy;
1062 offset += copy;
1063 size -= copy;
1064 if (!size)
1065 goto out;
1066
1067 if (skb->len < size_goal || (flags & MSG_OOB))
1068 continue;
1069
1070 if (forced_push(tp)) {
1071 tcp_mark_push(tp, skb);
1072 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1073 } else if (skb == tcp_send_head(sk))
1074 tcp_push_one(sk, mss_now);
1075 continue;
1076
1077 wait_for_space:
1078 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1079 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1080 TCP_NAGLE_PUSH, size_goal);
1081
1082 err = sk_stream_wait_memory(sk, &timeo);
1083 if (err != 0)
1084 goto do_error;
1085
1086 mss_now = tcp_send_mss(sk, &size_goal, flags);
1087 }
1088
1089 out:
1090 if (copied) {
1091 tcp_tx_timestamp(sk, sk->sk_tsflags);
1092 if (!(flags & MSG_SENDPAGE_NOTLAST))
1093 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1094 }
1095 return copied;
1096
1097 do_error:
1098 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1099 if (copied)
1100 goto out;
1101 out_err:
1102 /* make sure we wake any epoll edge trigger waiter */
1103 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1104 sk->sk_write_space(sk);
1105 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1106 }
1107 return sk_stream_error(sk, flags, err);
1108 }
1109 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1110
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1111 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1112 size_t size, int flags)
1113 {
1114 if (!(sk->sk_route_caps & NETIF_F_SG))
1115 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1116
1117 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1118
1119 return do_tcp_sendpages(sk, page, offset, size, flags);
1120 }
1121 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1122
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1123 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1124 size_t size, int flags)
1125 {
1126 int ret;
1127
1128 lock_sock(sk);
1129 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1130 release_sock(sk);
1131
1132 return ret;
1133 }
1134 EXPORT_SYMBOL(tcp_sendpage);
1135
tcp_free_fastopen_req(struct tcp_sock * tp)1136 void tcp_free_fastopen_req(struct tcp_sock *tp)
1137 {
1138 if (tp->fastopen_req) {
1139 kfree(tp->fastopen_req);
1140 tp->fastopen_req = NULL;
1141 }
1142 }
1143
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1144 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1145 int *copied, size_t size,
1146 struct ubuf_info *uarg)
1147 {
1148 struct tcp_sock *tp = tcp_sk(sk);
1149 struct inet_sock *inet = inet_sk(sk);
1150 struct sockaddr *uaddr = msg->msg_name;
1151 int err, flags;
1152
1153 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1154 TFO_CLIENT_ENABLE) ||
1155 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1156 uaddr->sa_family == AF_UNSPEC))
1157 return -EOPNOTSUPP;
1158 if (tp->fastopen_req)
1159 return -EALREADY; /* Another Fast Open is in progress */
1160
1161 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1162 sk->sk_allocation);
1163 if (unlikely(!tp->fastopen_req))
1164 return -ENOBUFS;
1165 tp->fastopen_req->data = msg;
1166 tp->fastopen_req->size = size;
1167 tp->fastopen_req->uarg = uarg;
1168
1169 if (inet->defer_connect) {
1170 err = tcp_connect(sk);
1171 /* Same failure procedure as in tcp_v4/6_connect */
1172 if (err) {
1173 tcp_set_state(sk, TCP_CLOSE);
1174 inet->inet_dport = 0;
1175 sk->sk_route_caps = 0;
1176 }
1177 }
1178 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1179 err = __inet_stream_connect(sk->sk_socket, uaddr,
1180 msg->msg_namelen, flags, 1);
1181 /* fastopen_req could already be freed in __inet_stream_connect
1182 * if the connection times out or gets rst
1183 */
1184 if (tp->fastopen_req) {
1185 *copied = tp->fastopen_req->copied;
1186 tcp_free_fastopen_req(tp);
1187 inet->defer_connect = 0;
1188 }
1189 return err;
1190 }
1191
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1192 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1193 {
1194 struct tcp_sock *tp = tcp_sk(sk);
1195 struct ubuf_info *uarg = NULL;
1196 struct sk_buff *skb;
1197 struct sockcm_cookie sockc;
1198 int flags, err, copied = 0;
1199 int mss_now = 0, size_goal, copied_syn = 0;
1200 int process_backlog = 0;
1201 bool zc = false;
1202 long timeo;
1203
1204 trace_android_rvh_tcp_sendmsg_locked(sk, size);
1205 flags = msg->msg_flags;
1206
1207 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1208 skb = tcp_write_queue_tail(sk);
1209 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1210 if (!uarg) {
1211 err = -ENOBUFS;
1212 goto out_err;
1213 }
1214
1215 zc = sk->sk_route_caps & NETIF_F_SG;
1216 if (!zc)
1217 uarg->zerocopy = 0;
1218 }
1219
1220 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1221 !tp->repair) {
1222 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1223 if (err == -EINPROGRESS && copied_syn > 0)
1224 goto out;
1225 else if (err)
1226 goto out_err;
1227 }
1228
1229 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1230
1231 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1232
1233 /* Wait for a connection to finish. One exception is TCP Fast Open
1234 * (passive side) where data is allowed to be sent before a connection
1235 * is fully established.
1236 */
1237 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1238 !tcp_passive_fastopen(sk)) {
1239 err = sk_stream_wait_connect(sk, &timeo);
1240 if (err != 0)
1241 goto do_error;
1242 }
1243
1244 if (unlikely(tp->repair)) {
1245 if (tp->repair_queue == TCP_RECV_QUEUE) {
1246 copied = tcp_send_rcvq(sk, msg, size);
1247 goto out_nopush;
1248 }
1249
1250 err = -EINVAL;
1251 if (tp->repair_queue == TCP_NO_QUEUE)
1252 goto out_err;
1253
1254 /* 'common' sending to sendq */
1255 }
1256
1257 sockcm_init(&sockc, sk);
1258 if (msg->msg_controllen) {
1259 err = sock_cmsg_send(sk, msg, &sockc);
1260 if (unlikely(err)) {
1261 err = -EINVAL;
1262 goto out_err;
1263 }
1264 }
1265
1266 /* This should be in poll */
1267 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1268
1269 /* Ok commence sending. */
1270 copied = 0;
1271
1272 restart:
1273 mss_now = tcp_send_mss(sk, &size_goal, flags);
1274
1275 err = -EPIPE;
1276 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1277 goto do_error;
1278
1279 while (msg_data_left(msg)) {
1280 int copy = 0;
1281
1282 skb = tcp_write_queue_tail(sk);
1283 if (skb)
1284 copy = size_goal - skb->len;
1285
1286 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1287 bool first_skb;
1288
1289 new_segment:
1290 if (!sk_stream_memory_free(sk))
1291 goto wait_for_space;
1292
1293 if (unlikely(process_backlog >= 16)) {
1294 process_backlog = 0;
1295 if (sk_flush_backlog(sk))
1296 goto restart;
1297 }
1298 first_skb = tcp_rtx_and_write_queues_empty(sk);
1299 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1300 first_skb);
1301 if (!skb)
1302 goto wait_for_space;
1303
1304 process_backlog++;
1305 skb->ip_summed = CHECKSUM_PARTIAL;
1306
1307 skb_entail(sk, skb);
1308 copy = size_goal;
1309
1310 /* All packets are restored as if they have
1311 * already been sent. skb_mstamp_ns isn't set to
1312 * avoid wrong rtt estimation.
1313 */
1314 if (tp->repair)
1315 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1316 }
1317
1318 /* Try to append data to the end of skb. */
1319 if (copy > msg_data_left(msg))
1320 copy = msg_data_left(msg);
1321
1322 /* Where to copy to? */
1323 if (skb_availroom(skb) > 0 && !zc) {
1324 /* We have some space in skb head. Superb! */
1325 copy = min_t(int, copy, skb_availroom(skb));
1326 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1327 if (err)
1328 goto do_fault;
1329 } else if (!zc) {
1330 bool merge = true;
1331 int i = skb_shinfo(skb)->nr_frags;
1332 struct page_frag *pfrag = sk_page_frag(sk);
1333
1334 if (!sk_page_frag_refill(sk, pfrag))
1335 goto wait_for_space;
1336
1337 if (!skb_can_coalesce(skb, i, pfrag->page,
1338 pfrag->offset)) {
1339 if (i >= sysctl_max_skb_frags) {
1340 tcp_mark_push(tp, skb);
1341 goto new_segment;
1342 }
1343 merge = false;
1344 }
1345
1346 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1347
1348 if (!sk_wmem_schedule(sk, copy))
1349 goto wait_for_space;
1350
1351 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1352 pfrag->page,
1353 pfrag->offset,
1354 copy);
1355 if (err)
1356 goto do_error;
1357
1358 /* Update the skb. */
1359 if (merge) {
1360 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1361 } else {
1362 skb_fill_page_desc(skb, i, pfrag->page,
1363 pfrag->offset, copy);
1364 page_ref_inc(pfrag->page);
1365 }
1366 pfrag->offset += copy;
1367 } else {
1368 if (!sk_wmem_schedule(sk, copy))
1369 goto wait_for_space;
1370
1371 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1372 if (err == -EMSGSIZE || err == -EEXIST) {
1373 tcp_mark_push(tp, skb);
1374 goto new_segment;
1375 }
1376 if (err < 0)
1377 goto do_error;
1378 copy = err;
1379 }
1380
1381 if (!copied)
1382 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1383
1384 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1385 TCP_SKB_CB(skb)->end_seq += copy;
1386 tcp_skb_pcount_set(skb, 0);
1387
1388 copied += copy;
1389 if (!msg_data_left(msg)) {
1390 if (unlikely(flags & MSG_EOR))
1391 TCP_SKB_CB(skb)->eor = 1;
1392 goto out;
1393 }
1394
1395 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1396 continue;
1397
1398 if (forced_push(tp)) {
1399 tcp_mark_push(tp, skb);
1400 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1401 } else if (skb == tcp_send_head(sk))
1402 tcp_push_one(sk, mss_now);
1403 continue;
1404
1405 wait_for_space:
1406 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1407 if (copied)
1408 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1409 TCP_NAGLE_PUSH, size_goal);
1410
1411 err = sk_stream_wait_memory(sk, &timeo);
1412 if (err != 0)
1413 goto do_error;
1414
1415 mss_now = tcp_send_mss(sk, &size_goal, flags);
1416 }
1417
1418 out:
1419 if (copied) {
1420 tcp_tx_timestamp(sk, sockc.tsflags);
1421 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1422 }
1423 out_nopush:
1424 sock_zerocopy_put(uarg);
1425 return copied + copied_syn;
1426
1427 do_error:
1428 skb = tcp_write_queue_tail(sk);
1429 do_fault:
1430 tcp_remove_empty_skb(sk, skb);
1431
1432 if (copied + copied_syn)
1433 goto out;
1434 out_err:
1435 sock_zerocopy_put_abort(uarg, true);
1436 err = sk_stream_error(sk, flags, err);
1437 /* make sure we wake any epoll edge trigger waiter */
1438 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1439 sk->sk_write_space(sk);
1440 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1441 }
1442 return err;
1443 }
1444 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1445
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1446 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1447 {
1448 int ret;
1449
1450 lock_sock(sk);
1451 ret = tcp_sendmsg_locked(sk, msg, size);
1452 release_sock(sk);
1453
1454 return ret;
1455 }
1456 EXPORT_SYMBOL(tcp_sendmsg);
1457
1458 /*
1459 * Handle reading urgent data. BSD has very simple semantics for
1460 * this, no blocking and very strange errors 8)
1461 */
1462
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1463 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1464 {
1465 struct tcp_sock *tp = tcp_sk(sk);
1466
1467 /* No URG data to read. */
1468 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1469 tp->urg_data == TCP_URG_READ)
1470 return -EINVAL; /* Yes this is right ! */
1471
1472 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1473 return -ENOTCONN;
1474
1475 if (tp->urg_data & TCP_URG_VALID) {
1476 int err = 0;
1477 char c = tp->urg_data;
1478
1479 if (!(flags & MSG_PEEK))
1480 tp->urg_data = TCP_URG_READ;
1481
1482 /* Read urgent data. */
1483 msg->msg_flags |= MSG_OOB;
1484
1485 if (len > 0) {
1486 if (!(flags & MSG_TRUNC))
1487 err = memcpy_to_msg(msg, &c, 1);
1488 len = 1;
1489 } else
1490 msg->msg_flags |= MSG_TRUNC;
1491
1492 return err ? -EFAULT : len;
1493 }
1494
1495 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1496 return 0;
1497
1498 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1499 * the available implementations agree in this case:
1500 * this call should never block, independent of the
1501 * blocking state of the socket.
1502 * Mike <pall@rz.uni-karlsruhe.de>
1503 */
1504 return -EAGAIN;
1505 }
1506
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1507 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1508 {
1509 struct sk_buff *skb;
1510 int copied = 0, err = 0;
1511
1512 /* XXX -- need to support SO_PEEK_OFF */
1513
1514 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1515 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1516 if (err)
1517 return err;
1518 copied += skb->len;
1519 }
1520
1521 skb_queue_walk(&sk->sk_write_queue, skb) {
1522 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1523 if (err)
1524 break;
1525
1526 copied += skb->len;
1527 }
1528
1529 return err ?: copied;
1530 }
1531
1532 /* Clean up the receive buffer for full frames taken by the user,
1533 * then send an ACK if necessary. COPIED is the number of bytes
1534 * tcp_recvmsg has given to the user so far, it speeds up the
1535 * calculation of whether or not we must ACK for the sake of
1536 * a window update.
1537 */
tcp_cleanup_rbuf(struct sock * sk,int copied)1538 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1539 {
1540 struct tcp_sock *tp = tcp_sk(sk);
1541 bool time_to_ack = false;
1542
1543 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1544
1545 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1546 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1547 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1548
1549 if (inet_csk_ack_scheduled(sk)) {
1550 const struct inet_connection_sock *icsk = inet_csk(sk);
1551
1552 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1553 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1554 /*
1555 * If this read emptied read buffer, we send ACK, if
1556 * connection is not bidirectional, user drained
1557 * receive buffer and there was a small segment
1558 * in queue.
1559 */
1560 (copied > 0 &&
1561 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1562 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1563 !inet_csk_in_pingpong_mode(sk))) &&
1564 !atomic_read(&sk->sk_rmem_alloc)))
1565 time_to_ack = true;
1566 }
1567
1568 /* We send an ACK if we can now advertise a non-zero window
1569 * which has been raised "significantly".
1570 *
1571 * Even if window raised up to infinity, do not send window open ACK
1572 * in states, where we will not receive more. It is useless.
1573 */
1574 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1575 __u32 rcv_window_now = tcp_receive_window(tp);
1576
1577 /* Optimize, __tcp_select_window() is not cheap. */
1578 if (2*rcv_window_now <= tp->window_clamp) {
1579 __u32 new_window = __tcp_select_window(sk);
1580
1581 /* Send ACK now, if this read freed lots of space
1582 * in our buffer. Certainly, new_window is new window.
1583 * We can advertise it now, if it is not less than current one.
1584 * "Lots" means "at least twice" here.
1585 */
1586 if (new_window && new_window >= 2 * rcv_window_now)
1587 time_to_ack = true;
1588 }
1589 }
1590 if (time_to_ack)
1591 tcp_send_ack(sk);
1592 }
1593
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1594 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1595 {
1596 struct sk_buff *skb;
1597 u32 offset;
1598
1599 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1600 offset = seq - TCP_SKB_CB(skb)->seq;
1601 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1602 pr_err_once("%s: found a SYN, please report !\n", __func__);
1603 offset--;
1604 }
1605 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1606 *off = offset;
1607 return skb;
1608 }
1609 /* This looks weird, but this can happen if TCP collapsing
1610 * splitted a fat GRO packet, while we released socket lock
1611 * in skb_splice_bits()
1612 */
1613 sk_eat_skb(sk, skb);
1614 }
1615 return NULL;
1616 }
1617
1618 /*
1619 * This routine provides an alternative to tcp_recvmsg() for routines
1620 * that would like to handle copying from skbuffs directly in 'sendfile'
1621 * fashion.
1622 * Note:
1623 * - It is assumed that the socket was locked by the caller.
1624 * - The routine does not block.
1625 * - At present, there is no support for reading OOB data
1626 * or for 'peeking' the socket using this routine
1627 * (although both would be easy to implement).
1628 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1629 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1630 sk_read_actor_t recv_actor)
1631 {
1632 struct sk_buff *skb;
1633 struct tcp_sock *tp = tcp_sk(sk);
1634 u32 seq = tp->copied_seq;
1635 u32 offset;
1636 int copied = 0;
1637
1638 if (sk->sk_state == TCP_LISTEN)
1639 return -ENOTCONN;
1640 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1641 if (offset < skb->len) {
1642 int used;
1643 size_t len;
1644
1645 len = skb->len - offset;
1646 /* Stop reading if we hit a patch of urgent data */
1647 if (tp->urg_data) {
1648 u32 urg_offset = tp->urg_seq - seq;
1649 if (urg_offset < len)
1650 len = urg_offset;
1651 if (!len)
1652 break;
1653 }
1654 used = recv_actor(desc, skb, offset, len);
1655 if (used <= 0) {
1656 if (!copied)
1657 copied = used;
1658 break;
1659 }
1660 if (WARN_ON_ONCE(used > len))
1661 used = len;
1662 seq += used;
1663 copied += used;
1664 offset += used;
1665
1666 /* If recv_actor drops the lock (e.g. TCP splice
1667 * receive) the skb pointer might be invalid when
1668 * getting here: tcp_collapse might have deleted it
1669 * while aggregating skbs from the socket queue.
1670 */
1671 skb = tcp_recv_skb(sk, seq - 1, &offset);
1672 if (!skb)
1673 break;
1674 /* TCP coalescing might have appended data to the skb.
1675 * Try to splice more frags
1676 */
1677 if (offset + 1 != skb->len)
1678 continue;
1679 }
1680 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1681 sk_eat_skb(sk, skb);
1682 ++seq;
1683 break;
1684 }
1685 sk_eat_skb(sk, skb);
1686 if (!desc->count)
1687 break;
1688 WRITE_ONCE(tp->copied_seq, seq);
1689 }
1690 WRITE_ONCE(tp->copied_seq, seq);
1691
1692 tcp_rcv_space_adjust(sk);
1693
1694 /* Clean up data we have read: This will do ACK frames. */
1695 if (copied > 0) {
1696 tcp_recv_skb(sk, seq, &offset);
1697 tcp_cleanup_rbuf(sk, copied);
1698 }
1699 return copied;
1700 }
1701 EXPORT_SYMBOL(tcp_read_sock);
1702
tcp_peek_len(struct socket * sock)1703 int tcp_peek_len(struct socket *sock)
1704 {
1705 return tcp_inq(sock->sk);
1706 }
1707 EXPORT_SYMBOL(tcp_peek_len);
1708
1709 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1710 int tcp_set_rcvlowat(struct sock *sk, int val)
1711 {
1712 int cap;
1713
1714 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1715 cap = sk->sk_rcvbuf >> 1;
1716 else
1717 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1718 val = min(val, cap);
1719 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1720
1721 /* Check if we need to signal EPOLLIN right now */
1722 tcp_data_ready(sk);
1723
1724 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1725 return 0;
1726
1727 val <<= 1;
1728 if (val > sk->sk_rcvbuf) {
1729 WRITE_ONCE(sk->sk_rcvbuf, val);
1730 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1731 }
1732 return 0;
1733 }
1734 EXPORT_SYMBOL(tcp_set_rcvlowat);
1735
1736 #ifdef CONFIG_MMU
1737 static const struct vm_operations_struct tcp_vm_ops = {
1738 };
1739
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1740 int tcp_mmap(struct file *file, struct socket *sock,
1741 struct vm_area_struct *vma)
1742 {
1743 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1744 return -EPERM;
1745 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1746
1747 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1748 vma->vm_flags |= VM_MIXEDMAP;
1749
1750 vma->vm_ops = &tcp_vm_ops;
1751 return 0;
1752 }
1753 EXPORT_SYMBOL(tcp_mmap);
1754
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1755 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1756 u32 *offset_frag)
1757 {
1758 skb_frag_t *frag;
1759
1760 if (unlikely(offset_skb >= skb->len))
1761 return NULL;
1762
1763 offset_skb -= skb_headlen(skb);
1764 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1765 return NULL;
1766
1767 frag = skb_shinfo(skb)->frags;
1768 while (offset_skb) {
1769 if (skb_frag_size(frag) > offset_skb) {
1770 *offset_frag = offset_skb;
1771 return frag;
1772 }
1773 offset_skb -= skb_frag_size(frag);
1774 ++frag;
1775 }
1776 *offset_frag = 0;
1777 return frag;
1778 }
1779
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1780 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1781 struct sk_buff *skb, u32 copylen,
1782 u32 *offset, u32 *seq)
1783 {
1784 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1785 struct msghdr msg = {};
1786 struct iovec iov;
1787 int err;
1788
1789 if (copy_address != zc->copybuf_address)
1790 return -EINVAL;
1791
1792 err = import_single_range(READ, (void __user *)copy_address,
1793 copylen, &iov, &msg.msg_iter);
1794 if (err)
1795 return err;
1796 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1797 if (err)
1798 return err;
1799 zc->recv_skip_hint -= copylen;
1800 *offset += copylen;
1801 *seq += copylen;
1802 return (__s32)copylen;
1803 }
1804
tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len)1805 static int tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive *zc,
1806 struct sock *sk,
1807 struct sk_buff *skb,
1808 u32 *seq,
1809 s32 copybuf_len)
1810 {
1811 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1812
1813 if (!copylen)
1814 return 0;
1815 /* skb is null if inq < PAGE_SIZE. */
1816 if (skb)
1817 offset = *seq - TCP_SKB_CB(skb)->seq;
1818 else
1819 skb = tcp_recv_skb(sk, *seq, &offset);
1820
1821 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1822 seq);
1823 return zc->copybuf_len < 0 ? 0 : copylen;
1824 }
1825
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned long pages_to_map,unsigned long * insert_addr,u32 * length_with_pending,u32 * seq,struct tcp_zerocopy_receive * zc)1826 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1827 struct page **pages,
1828 unsigned long pages_to_map,
1829 unsigned long *insert_addr,
1830 u32 *length_with_pending,
1831 u32 *seq,
1832 struct tcp_zerocopy_receive *zc)
1833 {
1834 unsigned long pages_remaining = pages_to_map;
1835 int bytes_mapped;
1836 int ret;
1837
1838 ret = vm_insert_pages(vma, *insert_addr, pages, &pages_remaining);
1839 bytes_mapped = PAGE_SIZE * (pages_to_map - pages_remaining);
1840 /* Even if vm_insert_pages fails, it may have partially succeeded in
1841 * mapping (some but not all of the pages).
1842 */
1843 *seq += bytes_mapped;
1844 *insert_addr += bytes_mapped;
1845 if (ret) {
1846 /* But if vm_insert_pages did fail, we have to unroll some state
1847 * we speculatively touched before.
1848 */
1849 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1850 *length_with_pending -= bytes_not_mapped;
1851 zc->recv_skip_hint += bytes_not_mapped;
1852 }
1853 return ret;
1854 }
1855
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc)1856 static int tcp_zerocopy_receive(struct sock *sk,
1857 struct tcp_zerocopy_receive *zc)
1858 {
1859 u32 length = 0, offset, vma_len, avail_len, aligned_len, copylen = 0;
1860 unsigned long address = (unsigned long)zc->address;
1861 s32 copybuf_len = zc->copybuf_len;
1862 struct tcp_sock *tp = tcp_sk(sk);
1863 #define PAGE_BATCH_SIZE 8
1864 struct page *pages[PAGE_BATCH_SIZE];
1865 const skb_frag_t *frags = NULL;
1866 struct vm_area_struct *vma;
1867 struct sk_buff *skb = NULL;
1868 unsigned long pg_idx = 0;
1869 unsigned long curr_addr;
1870 u32 seq = tp->copied_seq;
1871 int inq = tcp_inq(sk);
1872 int ret;
1873
1874 zc->copybuf_len = 0;
1875
1876 if (address & (PAGE_SIZE - 1) || address != zc->address)
1877 return -EINVAL;
1878
1879 if (sk->sk_state == TCP_LISTEN)
1880 return -ENOTCONN;
1881
1882 sock_rps_record_flow(sk);
1883
1884 mmap_read_lock(current->mm);
1885
1886 vma = find_vma(current->mm, address);
1887 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) {
1888 mmap_read_unlock(current->mm);
1889 return -EINVAL;
1890 }
1891 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
1892 avail_len = min_t(u32, vma_len, inq);
1893 aligned_len = avail_len & ~(PAGE_SIZE - 1);
1894 if (aligned_len) {
1895 zap_page_range(vma, address, aligned_len);
1896 zc->length = aligned_len;
1897 zc->recv_skip_hint = 0;
1898 } else {
1899 zc->length = avail_len;
1900 zc->recv_skip_hint = avail_len;
1901 }
1902 ret = 0;
1903 curr_addr = address;
1904 while (length + PAGE_SIZE <= zc->length) {
1905 if (zc->recv_skip_hint < PAGE_SIZE) {
1906 u32 offset_frag;
1907
1908 /* If we're here, finish the current batch. */
1909 if (pg_idx) {
1910 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
1911 pg_idx,
1912 &curr_addr,
1913 &length,
1914 &seq, zc);
1915 if (ret)
1916 goto out;
1917 pg_idx = 0;
1918 }
1919 if (skb) {
1920 if (zc->recv_skip_hint > 0)
1921 break;
1922 skb = skb->next;
1923 offset = seq - TCP_SKB_CB(skb)->seq;
1924 } else {
1925 skb = tcp_recv_skb(sk, seq, &offset);
1926 }
1927 zc->recv_skip_hint = skb->len - offset;
1928 frags = skb_advance_to_frag(skb, offset, &offset_frag);
1929 if (!frags || offset_frag)
1930 break;
1931 }
1932 if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) {
1933 int remaining = zc->recv_skip_hint;
1934
1935 while (remaining && (skb_frag_size(frags) != PAGE_SIZE ||
1936 skb_frag_off(frags))) {
1937 remaining -= skb_frag_size(frags);
1938 frags++;
1939 }
1940 zc->recv_skip_hint -= remaining;
1941 break;
1942 }
1943 pages[pg_idx] = skb_frag_page(frags);
1944 pg_idx++;
1945 length += PAGE_SIZE;
1946 zc->recv_skip_hint -= PAGE_SIZE;
1947 frags++;
1948 if (pg_idx == PAGE_BATCH_SIZE) {
1949 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1950 &curr_addr, &length,
1951 &seq, zc);
1952 if (ret)
1953 goto out;
1954 pg_idx = 0;
1955 }
1956 }
1957 if (pg_idx) {
1958 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1959 &curr_addr, &length, &seq,
1960 zc);
1961 }
1962 out:
1963 mmap_read_unlock(current->mm);
1964 /* Try to copy straggler data. */
1965 if (!ret)
1966 copylen = tcp_zerocopy_handle_leftover_data(zc, sk, skb, &seq,
1967 copybuf_len);
1968
1969 if (length + copylen) {
1970 WRITE_ONCE(tp->copied_seq, seq);
1971 tcp_rcv_space_adjust(sk);
1972
1973 /* Clean up data we have read: This will do ACK frames. */
1974 tcp_recv_skb(sk, seq, &offset);
1975 tcp_cleanup_rbuf(sk, length + copylen);
1976 ret = 0;
1977 if (length == zc->length)
1978 zc->recv_skip_hint = 0;
1979 } else {
1980 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1981 ret = -EIO;
1982 }
1983 zc->length = length;
1984 return ret;
1985 }
1986 #endif
1987
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1988 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1989 struct scm_timestamping_internal *tss)
1990 {
1991 if (skb->tstamp)
1992 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1993 else
1994 tss->ts[0] = (struct timespec64) {0};
1995
1996 if (skb_hwtstamps(skb)->hwtstamp)
1997 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1998 else
1999 tss->ts[2] = (struct timespec64) {0};
2000 }
2001
2002 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2003 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2004 struct scm_timestamping_internal *tss)
2005 {
2006 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2007 bool has_timestamping = false;
2008
2009 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2010 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2011 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2012 if (new_tstamp) {
2013 struct __kernel_timespec kts = {
2014 .tv_sec = tss->ts[0].tv_sec,
2015 .tv_nsec = tss->ts[0].tv_nsec,
2016 };
2017 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2018 sizeof(kts), &kts);
2019 } else {
2020 struct __kernel_old_timespec ts_old = {
2021 .tv_sec = tss->ts[0].tv_sec,
2022 .tv_nsec = tss->ts[0].tv_nsec,
2023 };
2024 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2025 sizeof(ts_old), &ts_old);
2026 }
2027 } else {
2028 if (new_tstamp) {
2029 struct __kernel_sock_timeval stv = {
2030 .tv_sec = tss->ts[0].tv_sec,
2031 .tv_usec = tss->ts[0].tv_nsec / 1000,
2032 };
2033 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2034 sizeof(stv), &stv);
2035 } else {
2036 struct __kernel_old_timeval tv = {
2037 .tv_sec = tss->ts[0].tv_sec,
2038 .tv_usec = tss->ts[0].tv_nsec / 1000,
2039 };
2040 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2041 sizeof(tv), &tv);
2042 }
2043 }
2044 }
2045
2046 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2047 has_timestamping = true;
2048 else
2049 tss->ts[0] = (struct timespec64) {0};
2050 }
2051
2052 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2053 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2054 has_timestamping = true;
2055 else
2056 tss->ts[2] = (struct timespec64) {0};
2057 }
2058
2059 if (has_timestamping) {
2060 tss->ts[1] = (struct timespec64) {0};
2061 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2062 put_cmsg_scm_timestamping64(msg, tss);
2063 else
2064 put_cmsg_scm_timestamping(msg, tss);
2065 }
2066 }
2067
tcp_inq_hint(struct sock * sk)2068 static int tcp_inq_hint(struct sock *sk)
2069 {
2070 const struct tcp_sock *tp = tcp_sk(sk);
2071 u32 copied_seq = READ_ONCE(tp->copied_seq);
2072 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2073 int inq;
2074
2075 inq = rcv_nxt - copied_seq;
2076 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2077 lock_sock(sk);
2078 inq = tp->rcv_nxt - tp->copied_seq;
2079 release_sock(sk);
2080 }
2081 /* After receiving a FIN, tell the user-space to continue reading
2082 * by returning a non-zero inq.
2083 */
2084 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2085 inq = 1;
2086 return inq;
2087 }
2088
2089 /*
2090 * This routine copies from a sock struct into the user buffer.
2091 *
2092 * Technical note: in 2.3 we work on _locked_ socket, so that
2093 * tricks with *seq access order and skb->users are not required.
2094 * Probably, code can be easily improved even more.
2095 */
2096
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)2097 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2098 int flags, int *addr_len)
2099 {
2100 struct tcp_sock *tp = tcp_sk(sk);
2101 int copied = 0;
2102 u32 peek_seq;
2103 u32 *seq;
2104 unsigned long used;
2105 int err, inq;
2106 int target; /* Read at least this many bytes */
2107 long timeo;
2108 struct sk_buff *skb, *last;
2109 u32 urg_hole = 0;
2110 struct scm_timestamping_internal tss;
2111 int cmsg_flags;
2112
2113 if (unlikely(flags & MSG_ERRQUEUE))
2114 return inet_recv_error(sk, msg, len, addr_len);
2115 trace_android_rvh_tcp_recvmsg(sk);
2116
2117 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2118 (sk->sk_state == TCP_ESTABLISHED))
2119 sk_busy_loop(sk, nonblock);
2120
2121 lock_sock(sk);
2122
2123 err = -ENOTCONN;
2124 if (sk->sk_state == TCP_LISTEN)
2125 goto out;
2126
2127 cmsg_flags = tp->recvmsg_inq ? 1 : 0;
2128 timeo = sock_rcvtimeo(sk, nonblock);
2129
2130 /* Urgent data needs to be handled specially. */
2131 if (flags & MSG_OOB)
2132 goto recv_urg;
2133
2134 if (unlikely(tp->repair)) {
2135 err = -EPERM;
2136 if (!(flags & MSG_PEEK))
2137 goto out;
2138
2139 if (tp->repair_queue == TCP_SEND_QUEUE)
2140 goto recv_sndq;
2141
2142 err = -EINVAL;
2143 if (tp->repair_queue == TCP_NO_QUEUE)
2144 goto out;
2145
2146 /* 'common' recv queue MSG_PEEK-ing */
2147 }
2148
2149 seq = &tp->copied_seq;
2150 if (flags & MSG_PEEK) {
2151 peek_seq = tp->copied_seq;
2152 seq = &peek_seq;
2153 }
2154
2155 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2156
2157 do {
2158 u32 offset;
2159
2160 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2161 if (tp->urg_data && tp->urg_seq == *seq) {
2162 if (copied)
2163 break;
2164 if (signal_pending(current)) {
2165 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2166 break;
2167 }
2168 }
2169
2170 /* Next get a buffer. */
2171
2172 last = skb_peek_tail(&sk->sk_receive_queue);
2173 skb_queue_walk(&sk->sk_receive_queue, skb) {
2174 last = skb;
2175 /* Now that we have two receive queues this
2176 * shouldn't happen.
2177 */
2178 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2179 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2180 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2181 flags))
2182 break;
2183
2184 offset = *seq - TCP_SKB_CB(skb)->seq;
2185 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2186 pr_err_once("%s: found a SYN, please report !\n", __func__);
2187 offset--;
2188 }
2189 if (offset < skb->len)
2190 goto found_ok_skb;
2191 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2192 goto found_fin_ok;
2193 WARN(!(flags & MSG_PEEK),
2194 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2195 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2196 }
2197
2198 /* Well, if we have backlog, try to process it now yet. */
2199
2200 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2201 break;
2202
2203 if (copied) {
2204 if (sk->sk_err ||
2205 sk->sk_state == TCP_CLOSE ||
2206 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2207 !timeo ||
2208 signal_pending(current))
2209 break;
2210 } else {
2211 if (sock_flag(sk, SOCK_DONE))
2212 break;
2213
2214 if (sk->sk_err) {
2215 copied = sock_error(sk);
2216 break;
2217 }
2218
2219 if (sk->sk_shutdown & RCV_SHUTDOWN)
2220 break;
2221
2222 if (sk->sk_state == TCP_CLOSE) {
2223 /* This occurs when user tries to read
2224 * from never connected socket.
2225 */
2226 copied = -ENOTCONN;
2227 break;
2228 }
2229
2230 if (!timeo) {
2231 copied = -EAGAIN;
2232 break;
2233 }
2234
2235 if (signal_pending(current)) {
2236 copied = sock_intr_errno(timeo);
2237 break;
2238 }
2239 }
2240
2241 tcp_cleanup_rbuf(sk, copied);
2242
2243 if (copied >= target) {
2244 /* Do not sleep, just process backlog. */
2245 release_sock(sk);
2246 lock_sock(sk);
2247 } else {
2248 sk_wait_data(sk, &timeo, last);
2249 }
2250
2251 if ((flags & MSG_PEEK) &&
2252 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2253 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2254 current->comm,
2255 task_pid_nr(current));
2256 peek_seq = tp->copied_seq;
2257 }
2258 continue;
2259
2260 found_ok_skb:
2261 /* Ok so how much can we use? */
2262 used = skb->len - offset;
2263 if (len < used)
2264 used = len;
2265
2266 /* Do we have urgent data here? */
2267 if (tp->urg_data) {
2268 u32 urg_offset = tp->urg_seq - *seq;
2269 if (urg_offset < used) {
2270 if (!urg_offset) {
2271 if (!sock_flag(sk, SOCK_URGINLINE)) {
2272 WRITE_ONCE(*seq, *seq + 1);
2273 urg_hole++;
2274 offset++;
2275 used--;
2276 if (!used)
2277 goto skip_copy;
2278 }
2279 } else
2280 used = urg_offset;
2281 }
2282 }
2283
2284 if (!(flags & MSG_TRUNC)) {
2285 err = skb_copy_datagram_msg(skb, offset, msg, used);
2286 if (err) {
2287 /* Exception. Bailout! */
2288 if (!copied)
2289 copied = -EFAULT;
2290 break;
2291 }
2292 }
2293
2294 WRITE_ONCE(*seq, *seq + used);
2295 copied += used;
2296 len -= used;
2297
2298 tcp_rcv_space_adjust(sk);
2299
2300 skip_copy:
2301 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2302 tp->urg_data = 0;
2303 tcp_fast_path_check(sk);
2304 }
2305
2306 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2307 tcp_update_recv_tstamps(skb, &tss);
2308 cmsg_flags |= 2;
2309 }
2310
2311 if (used + offset < skb->len)
2312 continue;
2313
2314 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2315 goto found_fin_ok;
2316 if (!(flags & MSG_PEEK))
2317 sk_eat_skb(sk, skb);
2318 continue;
2319
2320 found_fin_ok:
2321 /* Process the FIN. */
2322 WRITE_ONCE(*seq, *seq + 1);
2323 if (!(flags & MSG_PEEK))
2324 sk_eat_skb(sk, skb);
2325 break;
2326 } while (len > 0);
2327
2328 trace_android_rvh_tcp_recvmsg_stat(sk, copied);
2329 /* According to UNIX98, msg_name/msg_namelen are ignored
2330 * on connected socket. I was just happy when found this 8) --ANK
2331 */
2332
2333 /* Clean up data we have read: This will do ACK frames. */
2334 tcp_cleanup_rbuf(sk, copied);
2335
2336 release_sock(sk);
2337
2338 if (cmsg_flags) {
2339 if (cmsg_flags & 2)
2340 tcp_recv_timestamp(msg, sk, &tss);
2341 if (cmsg_flags & 1) {
2342 inq = tcp_inq_hint(sk);
2343 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2344 }
2345 }
2346
2347 return copied;
2348
2349 out:
2350 release_sock(sk);
2351 return err;
2352
2353 recv_urg:
2354 err = tcp_recv_urg(sk, msg, len, flags);
2355 goto out;
2356
2357 recv_sndq:
2358 err = tcp_peek_sndq(sk, msg, len);
2359 goto out;
2360 }
2361 EXPORT_SYMBOL(tcp_recvmsg);
2362
tcp_set_state(struct sock * sk,int state)2363 void tcp_set_state(struct sock *sk, int state)
2364 {
2365 int oldstate = sk->sk_state;
2366
2367 /* We defined a new enum for TCP states that are exported in BPF
2368 * so as not force the internal TCP states to be frozen. The
2369 * following checks will detect if an internal state value ever
2370 * differs from the BPF value. If this ever happens, then we will
2371 * need to remap the internal value to the BPF value before calling
2372 * tcp_call_bpf_2arg.
2373 */
2374 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2375 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2376 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2377 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2378 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2379 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2380 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2381 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2382 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2383 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2384 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2385 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2386 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2387
2388 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2389 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2390
2391 switch (state) {
2392 case TCP_ESTABLISHED:
2393 if (oldstate != TCP_ESTABLISHED)
2394 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2395 break;
2396
2397 case TCP_CLOSE:
2398 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2399 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2400
2401 sk->sk_prot->unhash(sk);
2402 if (inet_csk(sk)->icsk_bind_hash &&
2403 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2404 inet_put_port(sk);
2405 fallthrough;
2406 default:
2407 if (oldstate == TCP_ESTABLISHED)
2408 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2409 }
2410
2411 /* Change state AFTER socket is unhashed to avoid closed
2412 * socket sitting in hash tables.
2413 */
2414 inet_sk_state_store(sk, state);
2415 }
2416 EXPORT_SYMBOL_GPL(tcp_set_state);
2417
2418 /*
2419 * State processing on a close. This implements the state shift for
2420 * sending our FIN frame. Note that we only send a FIN for some
2421 * states. A shutdown() may have already sent the FIN, or we may be
2422 * closed.
2423 */
2424
2425 static const unsigned char new_state[16] = {
2426 /* current state: new state: action: */
2427 [0 /* (Invalid) */] = TCP_CLOSE,
2428 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2429 [TCP_SYN_SENT] = TCP_CLOSE,
2430 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2431 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2432 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2433 [TCP_TIME_WAIT] = TCP_CLOSE,
2434 [TCP_CLOSE] = TCP_CLOSE,
2435 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2436 [TCP_LAST_ACK] = TCP_LAST_ACK,
2437 [TCP_LISTEN] = TCP_CLOSE,
2438 [TCP_CLOSING] = TCP_CLOSING,
2439 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2440 };
2441
tcp_close_state(struct sock * sk)2442 static int tcp_close_state(struct sock *sk)
2443 {
2444 int next = (int)new_state[sk->sk_state];
2445 int ns = next & TCP_STATE_MASK;
2446
2447 tcp_set_state(sk, ns);
2448
2449 return next & TCP_ACTION_FIN;
2450 }
2451
2452 /*
2453 * Shutdown the sending side of a connection. Much like close except
2454 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2455 */
2456
tcp_shutdown(struct sock * sk,int how)2457 void tcp_shutdown(struct sock *sk, int how)
2458 {
2459 /* We need to grab some memory, and put together a FIN,
2460 * and then put it into the queue to be sent.
2461 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2462 */
2463 if (!(how & SEND_SHUTDOWN))
2464 return;
2465
2466 /* If we've already sent a FIN, or it's a closed state, skip this. */
2467 if ((1 << sk->sk_state) &
2468 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2469 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2470 /* Clear out any half completed packets. FIN if needed. */
2471 if (tcp_close_state(sk))
2472 tcp_send_fin(sk);
2473 }
2474 }
2475 EXPORT_SYMBOL(tcp_shutdown);
2476
tcp_check_oom(struct sock * sk,int shift)2477 bool tcp_check_oom(struct sock *sk, int shift)
2478 {
2479 bool too_many_orphans, out_of_socket_memory;
2480
2481 too_many_orphans = tcp_too_many_orphans(sk, shift);
2482 out_of_socket_memory = tcp_out_of_memory(sk);
2483
2484 if (too_many_orphans)
2485 net_info_ratelimited("too many orphaned sockets\n");
2486 if (out_of_socket_memory)
2487 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2488 return too_many_orphans || out_of_socket_memory;
2489 }
2490
tcp_close(struct sock * sk,long timeout)2491 void tcp_close(struct sock *sk, long timeout)
2492 {
2493 struct sk_buff *skb;
2494 int data_was_unread = 0;
2495 int state;
2496
2497 lock_sock(sk);
2498 sk->sk_shutdown = SHUTDOWN_MASK;
2499
2500 if (sk->sk_state == TCP_LISTEN) {
2501 tcp_set_state(sk, TCP_CLOSE);
2502
2503 /* Special case. */
2504 inet_csk_listen_stop(sk);
2505
2506 goto adjudge_to_death;
2507 }
2508
2509 /* We need to flush the recv. buffs. We do this only on the
2510 * descriptor close, not protocol-sourced closes, because the
2511 * reader process may not have drained the data yet!
2512 */
2513 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2514 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2515
2516 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2517 len--;
2518 data_was_unread += len;
2519 __kfree_skb(skb);
2520 }
2521
2522 sk_mem_reclaim(sk);
2523
2524 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2525 if (sk->sk_state == TCP_CLOSE)
2526 goto adjudge_to_death;
2527
2528 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2529 * data was lost. To witness the awful effects of the old behavior of
2530 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2531 * GET in an FTP client, suspend the process, wait for the client to
2532 * advertise a zero window, then kill -9 the FTP client, wheee...
2533 * Note: timeout is always zero in such a case.
2534 */
2535 if (unlikely(tcp_sk(sk)->repair)) {
2536 sk->sk_prot->disconnect(sk, 0);
2537 } else if (data_was_unread) {
2538 /* Unread data was tossed, zap the connection. */
2539 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2540 tcp_set_state(sk, TCP_CLOSE);
2541 tcp_send_active_reset(sk, sk->sk_allocation);
2542 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2543 /* Check zero linger _after_ checking for unread data. */
2544 sk->sk_prot->disconnect(sk, 0);
2545 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2546 } else if (tcp_close_state(sk)) {
2547 /* We FIN if the application ate all the data before
2548 * zapping the connection.
2549 */
2550
2551 /* RED-PEN. Formally speaking, we have broken TCP state
2552 * machine. State transitions:
2553 *
2554 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2555 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2556 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2557 *
2558 * are legal only when FIN has been sent (i.e. in window),
2559 * rather than queued out of window. Purists blame.
2560 *
2561 * F.e. "RFC state" is ESTABLISHED,
2562 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2563 *
2564 * The visible declinations are that sometimes
2565 * we enter time-wait state, when it is not required really
2566 * (harmless), do not send active resets, when they are
2567 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2568 * they look as CLOSING or LAST_ACK for Linux)
2569 * Probably, I missed some more holelets.
2570 * --ANK
2571 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2572 * in a single packet! (May consider it later but will
2573 * probably need API support or TCP_CORK SYN-ACK until
2574 * data is written and socket is closed.)
2575 */
2576 tcp_send_fin(sk);
2577 }
2578
2579 sk_stream_wait_close(sk, timeout);
2580
2581 adjudge_to_death:
2582 state = sk->sk_state;
2583 sock_hold(sk);
2584 sock_orphan(sk);
2585
2586 local_bh_disable();
2587 bh_lock_sock(sk);
2588 /* remove backlog if any, without releasing ownership. */
2589 __release_sock(sk);
2590
2591 percpu_counter_inc(sk->sk_prot->orphan_count);
2592
2593 /* Have we already been destroyed by a softirq or backlog? */
2594 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2595 goto out;
2596
2597 /* This is a (useful) BSD violating of the RFC. There is a
2598 * problem with TCP as specified in that the other end could
2599 * keep a socket open forever with no application left this end.
2600 * We use a 1 minute timeout (about the same as BSD) then kill
2601 * our end. If they send after that then tough - BUT: long enough
2602 * that we won't make the old 4*rto = almost no time - whoops
2603 * reset mistake.
2604 *
2605 * Nope, it was not mistake. It is really desired behaviour
2606 * f.e. on http servers, when such sockets are useless, but
2607 * consume significant resources. Let's do it with special
2608 * linger2 option. --ANK
2609 */
2610
2611 if (sk->sk_state == TCP_FIN_WAIT2) {
2612 struct tcp_sock *tp = tcp_sk(sk);
2613 if (tp->linger2 < 0) {
2614 tcp_set_state(sk, TCP_CLOSE);
2615 tcp_send_active_reset(sk, GFP_ATOMIC);
2616 __NET_INC_STATS(sock_net(sk),
2617 LINUX_MIB_TCPABORTONLINGER);
2618 } else {
2619 const int tmo = tcp_fin_time(sk);
2620
2621 if (tmo > TCP_TIMEWAIT_LEN) {
2622 inet_csk_reset_keepalive_timer(sk,
2623 tmo - TCP_TIMEWAIT_LEN);
2624 } else {
2625 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2626 goto out;
2627 }
2628 }
2629 }
2630 if (sk->sk_state != TCP_CLOSE) {
2631 sk_mem_reclaim(sk);
2632 if (tcp_check_oom(sk, 0)) {
2633 tcp_set_state(sk, TCP_CLOSE);
2634 tcp_send_active_reset(sk, GFP_ATOMIC);
2635 __NET_INC_STATS(sock_net(sk),
2636 LINUX_MIB_TCPABORTONMEMORY);
2637 } else if (!check_net(sock_net(sk))) {
2638 /* Not possible to send reset; just close */
2639 tcp_set_state(sk, TCP_CLOSE);
2640 }
2641 }
2642
2643 if (sk->sk_state == TCP_CLOSE) {
2644 struct request_sock *req;
2645
2646 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2647 lockdep_sock_is_held(sk));
2648 /* We could get here with a non-NULL req if the socket is
2649 * aborted (e.g., closed with unread data) before 3WHS
2650 * finishes.
2651 */
2652 if (req)
2653 reqsk_fastopen_remove(sk, req, false);
2654 inet_csk_destroy_sock(sk);
2655 }
2656 /* Otherwise, socket is reprieved until protocol close. */
2657
2658 out:
2659 bh_unlock_sock(sk);
2660 local_bh_enable();
2661 release_sock(sk);
2662 sock_put(sk);
2663 }
2664 EXPORT_SYMBOL(tcp_close);
2665
2666 /* These states need RST on ABORT according to RFC793 */
2667
tcp_need_reset(int state)2668 static inline bool tcp_need_reset(int state)
2669 {
2670 return (1 << state) &
2671 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2672 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2673 }
2674
tcp_rtx_queue_purge(struct sock * sk)2675 static void tcp_rtx_queue_purge(struct sock *sk)
2676 {
2677 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2678
2679 tcp_sk(sk)->highest_sack = NULL;
2680 while (p) {
2681 struct sk_buff *skb = rb_to_skb(p);
2682
2683 p = rb_next(p);
2684 /* Since we are deleting whole queue, no need to
2685 * list_del(&skb->tcp_tsorted_anchor)
2686 */
2687 tcp_rtx_queue_unlink(skb, sk);
2688 sk_wmem_free_skb(sk, skb);
2689 }
2690 }
2691
tcp_write_queue_purge(struct sock * sk)2692 void tcp_write_queue_purge(struct sock *sk)
2693 {
2694 struct sk_buff *skb;
2695
2696 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2697 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2698 tcp_skb_tsorted_anchor_cleanup(skb);
2699 sk_wmem_free_skb(sk, skb);
2700 }
2701 tcp_rtx_queue_purge(sk);
2702 skb = sk->sk_tx_skb_cache;
2703 if (skb) {
2704 __kfree_skb(skb);
2705 sk->sk_tx_skb_cache = NULL;
2706 }
2707 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2708 sk_mem_reclaim(sk);
2709 tcp_clear_all_retrans_hints(tcp_sk(sk));
2710 tcp_sk(sk)->packets_out = 0;
2711 inet_csk(sk)->icsk_backoff = 0;
2712 }
2713
tcp_disconnect(struct sock * sk,int flags)2714 int tcp_disconnect(struct sock *sk, int flags)
2715 {
2716 struct inet_sock *inet = inet_sk(sk);
2717 struct inet_connection_sock *icsk = inet_csk(sk);
2718 struct tcp_sock *tp = tcp_sk(sk);
2719 int old_state = sk->sk_state;
2720 u32 seq;
2721
2722 if (old_state != TCP_CLOSE)
2723 tcp_set_state(sk, TCP_CLOSE);
2724
2725 /* ABORT function of RFC793 */
2726 if (old_state == TCP_LISTEN) {
2727 inet_csk_listen_stop(sk);
2728 } else if (unlikely(tp->repair)) {
2729 sk->sk_err = ECONNABORTED;
2730 } else if (tcp_need_reset(old_state) ||
2731 (tp->snd_nxt != tp->write_seq &&
2732 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2733 /* The last check adjusts for discrepancy of Linux wrt. RFC
2734 * states
2735 */
2736 tcp_send_active_reset(sk, gfp_any());
2737 sk->sk_err = ECONNRESET;
2738 } else if (old_state == TCP_SYN_SENT)
2739 sk->sk_err = ECONNRESET;
2740
2741 tcp_clear_xmit_timers(sk);
2742 __skb_queue_purge(&sk->sk_receive_queue);
2743 if (sk->sk_rx_skb_cache) {
2744 __kfree_skb(sk->sk_rx_skb_cache);
2745 sk->sk_rx_skb_cache = NULL;
2746 }
2747 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2748 tp->urg_data = 0;
2749 tcp_write_queue_purge(sk);
2750 tcp_fastopen_active_disable_ofo_check(sk);
2751 skb_rbtree_purge(&tp->out_of_order_queue);
2752
2753 inet->inet_dport = 0;
2754
2755 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2756 inet_reset_saddr(sk);
2757
2758 sk->sk_shutdown = 0;
2759 sock_reset_flag(sk, SOCK_DONE);
2760 tp->srtt_us = 0;
2761 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2762 tp->rcv_rtt_last_tsecr = 0;
2763
2764 seq = tp->write_seq + tp->max_window + 2;
2765 if (!seq)
2766 seq = 1;
2767 WRITE_ONCE(tp->write_seq, seq);
2768
2769 icsk->icsk_backoff = 0;
2770 icsk->icsk_probes_out = 0;
2771 icsk->icsk_probes_tstamp = 0;
2772 icsk->icsk_rto = TCP_TIMEOUT_INIT;
2773 icsk->icsk_rto_min = TCP_RTO_MIN;
2774 icsk->icsk_delack_max = TCP_DELACK_MAX;
2775 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2776 tp->snd_cwnd = TCP_INIT_CWND;
2777 tp->snd_cwnd_cnt = 0;
2778 tp->is_cwnd_limited = 0;
2779 tp->max_packets_out = 0;
2780 tp->window_clamp = 0;
2781 tp->delivered = 0;
2782 tp->delivered_ce = 0;
2783 if (icsk->icsk_ca_ops->release)
2784 icsk->icsk_ca_ops->release(sk);
2785 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
2786 icsk->icsk_ca_initialized = 0;
2787 tcp_set_ca_state(sk, TCP_CA_Open);
2788 tp->is_sack_reneg = 0;
2789 tcp_clear_retrans(tp);
2790 tp->total_retrans = 0;
2791 inet_csk_delack_init(sk);
2792 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2793 * issue in __tcp_select_window()
2794 */
2795 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2796 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2797 __sk_dst_reset(sk);
2798 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
2799 tcp_saved_syn_free(tp);
2800 tp->compressed_ack = 0;
2801 tp->segs_in = 0;
2802 tp->segs_out = 0;
2803 tp->bytes_sent = 0;
2804 tp->bytes_acked = 0;
2805 tp->bytes_received = 0;
2806 tp->bytes_retrans = 0;
2807 tp->data_segs_in = 0;
2808 tp->data_segs_out = 0;
2809 tp->duplicate_sack[0].start_seq = 0;
2810 tp->duplicate_sack[0].end_seq = 0;
2811 tp->dsack_dups = 0;
2812 tp->reord_seen = 0;
2813 tp->retrans_out = 0;
2814 tp->sacked_out = 0;
2815 tp->tlp_high_seq = 0;
2816 tp->last_oow_ack_time = 0;
2817 /* There's a bubble in the pipe until at least the first ACK. */
2818 tp->app_limited = ~0U;
2819 tp->rack.mstamp = 0;
2820 tp->rack.advanced = 0;
2821 tp->rack.reo_wnd_steps = 1;
2822 tp->rack.last_delivered = 0;
2823 tp->rack.reo_wnd_persist = 0;
2824 tp->rack.dsack_seen = 0;
2825 tp->syn_data_acked = 0;
2826 tp->rx_opt.saw_tstamp = 0;
2827 tp->rx_opt.dsack = 0;
2828 tp->rx_opt.num_sacks = 0;
2829 tp->rcv_ooopack = 0;
2830
2831
2832 /* Clean up fastopen related fields */
2833 tcp_free_fastopen_req(tp);
2834 inet->defer_connect = 0;
2835 tp->fastopen_client_fail = 0;
2836
2837 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2838
2839 if (sk->sk_frag.page) {
2840 put_page(sk->sk_frag.page);
2841 sk->sk_frag.page = NULL;
2842 sk->sk_frag.offset = 0;
2843 }
2844
2845 sk->sk_error_report(sk);
2846 return 0;
2847 }
2848 EXPORT_SYMBOL(tcp_disconnect);
2849
tcp_can_repair_sock(const struct sock * sk)2850 static inline bool tcp_can_repair_sock(const struct sock *sk)
2851 {
2852 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2853 (sk->sk_state != TCP_LISTEN);
2854 }
2855
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)2856 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
2857 {
2858 struct tcp_repair_window opt;
2859
2860 if (!tp->repair)
2861 return -EPERM;
2862
2863 if (len != sizeof(opt))
2864 return -EINVAL;
2865
2866 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
2867 return -EFAULT;
2868
2869 if (opt.max_window < opt.snd_wnd)
2870 return -EINVAL;
2871
2872 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2873 return -EINVAL;
2874
2875 if (after(opt.rcv_wup, tp->rcv_nxt))
2876 return -EINVAL;
2877
2878 tp->snd_wl1 = opt.snd_wl1;
2879 tp->snd_wnd = opt.snd_wnd;
2880 tp->max_window = opt.max_window;
2881
2882 tp->rcv_wnd = opt.rcv_wnd;
2883 tp->rcv_wup = opt.rcv_wup;
2884
2885 return 0;
2886 }
2887
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)2888 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
2889 unsigned int len)
2890 {
2891 struct tcp_sock *tp = tcp_sk(sk);
2892 struct tcp_repair_opt opt;
2893 size_t offset = 0;
2894
2895 while (len >= sizeof(opt)) {
2896 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
2897 return -EFAULT;
2898
2899 offset += sizeof(opt);
2900 len -= sizeof(opt);
2901
2902 switch (opt.opt_code) {
2903 case TCPOPT_MSS:
2904 tp->rx_opt.mss_clamp = opt.opt_val;
2905 tcp_mtup_init(sk);
2906 break;
2907 case TCPOPT_WINDOW:
2908 {
2909 u16 snd_wscale = opt.opt_val & 0xFFFF;
2910 u16 rcv_wscale = opt.opt_val >> 16;
2911
2912 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2913 return -EFBIG;
2914
2915 tp->rx_opt.snd_wscale = snd_wscale;
2916 tp->rx_opt.rcv_wscale = rcv_wscale;
2917 tp->rx_opt.wscale_ok = 1;
2918 }
2919 break;
2920 case TCPOPT_SACK_PERM:
2921 if (opt.opt_val != 0)
2922 return -EINVAL;
2923
2924 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2925 break;
2926 case TCPOPT_TIMESTAMP:
2927 if (opt.opt_val != 0)
2928 return -EINVAL;
2929
2930 tp->rx_opt.tstamp_ok = 1;
2931 break;
2932 }
2933 }
2934
2935 return 0;
2936 }
2937
2938 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2939 EXPORT_SYMBOL(tcp_tx_delay_enabled);
2940
tcp_enable_tx_delay(void)2941 static void tcp_enable_tx_delay(void)
2942 {
2943 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
2944 static int __tcp_tx_delay_enabled = 0;
2945
2946 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
2947 static_branch_enable(&tcp_tx_delay_enabled);
2948 pr_info("TCP_TX_DELAY enabled\n");
2949 }
2950 }
2951 }
2952
2953 /* When set indicates to always queue non-full frames. Later the user clears
2954 * this option and we transmit any pending partial frames in the queue. This is
2955 * meant to be used alongside sendfile() to get properly filled frames when the
2956 * user (for example) must write out headers with a write() call first and then
2957 * use sendfile to send out the data parts.
2958 *
2959 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
2960 * TCP_NODELAY.
2961 */
__tcp_sock_set_cork(struct sock * sk,bool on)2962 static void __tcp_sock_set_cork(struct sock *sk, bool on)
2963 {
2964 struct tcp_sock *tp = tcp_sk(sk);
2965
2966 if (on) {
2967 tp->nonagle |= TCP_NAGLE_CORK;
2968 } else {
2969 tp->nonagle &= ~TCP_NAGLE_CORK;
2970 if (tp->nonagle & TCP_NAGLE_OFF)
2971 tp->nonagle |= TCP_NAGLE_PUSH;
2972 tcp_push_pending_frames(sk);
2973 }
2974 }
2975
tcp_sock_set_cork(struct sock * sk,bool on)2976 void tcp_sock_set_cork(struct sock *sk, bool on)
2977 {
2978 lock_sock(sk);
2979 __tcp_sock_set_cork(sk, on);
2980 release_sock(sk);
2981 }
2982 EXPORT_SYMBOL(tcp_sock_set_cork);
2983
2984 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
2985 * remembered, but it is not activated until cork is cleared.
2986 *
2987 * However, when TCP_NODELAY is set we make an explicit push, which overrides
2988 * even TCP_CORK for currently queued segments.
2989 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)2990 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
2991 {
2992 if (on) {
2993 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2994 tcp_push_pending_frames(sk);
2995 } else {
2996 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
2997 }
2998 }
2999
tcp_sock_set_nodelay(struct sock * sk)3000 void tcp_sock_set_nodelay(struct sock *sk)
3001 {
3002 lock_sock(sk);
3003 __tcp_sock_set_nodelay(sk, true);
3004 release_sock(sk);
3005 }
3006 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3007
__tcp_sock_set_quickack(struct sock * sk,int val)3008 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3009 {
3010 if (!val) {
3011 inet_csk_enter_pingpong_mode(sk);
3012 return;
3013 }
3014
3015 inet_csk_exit_pingpong_mode(sk);
3016 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3017 inet_csk_ack_scheduled(sk)) {
3018 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3019 tcp_cleanup_rbuf(sk, 1);
3020 if (!(val & 1))
3021 inet_csk_enter_pingpong_mode(sk);
3022 }
3023 }
3024
tcp_sock_set_quickack(struct sock * sk,int val)3025 void tcp_sock_set_quickack(struct sock *sk, int val)
3026 {
3027 lock_sock(sk);
3028 __tcp_sock_set_quickack(sk, val);
3029 release_sock(sk);
3030 }
3031 EXPORT_SYMBOL(tcp_sock_set_quickack);
3032
tcp_sock_set_syncnt(struct sock * sk,int val)3033 int tcp_sock_set_syncnt(struct sock *sk, int val)
3034 {
3035 if (val < 1 || val > MAX_TCP_SYNCNT)
3036 return -EINVAL;
3037
3038 lock_sock(sk);
3039 inet_csk(sk)->icsk_syn_retries = val;
3040 release_sock(sk);
3041 return 0;
3042 }
3043 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3044
tcp_sock_set_user_timeout(struct sock * sk,u32 val)3045 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3046 {
3047 lock_sock(sk);
3048 inet_csk(sk)->icsk_user_timeout = val;
3049 release_sock(sk);
3050 }
3051 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3052
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3053 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3054 {
3055 struct tcp_sock *tp = tcp_sk(sk);
3056
3057 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3058 return -EINVAL;
3059
3060 tp->keepalive_time = val * HZ;
3061 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3062 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3063 u32 elapsed = keepalive_time_elapsed(tp);
3064
3065 if (tp->keepalive_time > elapsed)
3066 elapsed = tp->keepalive_time - elapsed;
3067 else
3068 elapsed = 0;
3069 inet_csk_reset_keepalive_timer(sk, elapsed);
3070 }
3071
3072 return 0;
3073 }
3074
tcp_sock_set_keepidle(struct sock * sk,int val)3075 int tcp_sock_set_keepidle(struct sock *sk, int val)
3076 {
3077 int err;
3078
3079 lock_sock(sk);
3080 err = tcp_sock_set_keepidle_locked(sk, val);
3081 release_sock(sk);
3082 return err;
3083 }
3084 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3085
tcp_sock_set_keepintvl(struct sock * sk,int val)3086 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3087 {
3088 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3089 return -EINVAL;
3090
3091 lock_sock(sk);
3092 tcp_sk(sk)->keepalive_intvl = val * HZ;
3093 release_sock(sk);
3094 return 0;
3095 }
3096 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3097
tcp_sock_set_keepcnt(struct sock * sk,int val)3098 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3099 {
3100 if (val < 1 || val > MAX_TCP_KEEPCNT)
3101 return -EINVAL;
3102
3103 lock_sock(sk);
3104 tcp_sk(sk)->keepalive_probes = val;
3105 release_sock(sk);
3106 return 0;
3107 }
3108 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3109
3110 /*
3111 * Socket option code for TCP.
3112 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3113 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3114 sockptr_t optval, unsigned int optlen)
3115 {
3116 struct tcp_sock *tp = tcp_sk(sk);
3117 struct inet_connection_sock *icsk = inet_csk(sk);
3118 struct net *net = sock_net(sk);
3119 int val;
3120 int err = 0;
3121
3122 /* These are data/string values, all the others are ints */
3123 switch (optname) {
3124 case TCP_CONGESTION: {
3125 char name[TCP_CA_NAME_MAX];
3126
3127 if (optlen < 1)
3128 return -EINVAL;
3129
3130 val = strncpy_from_sockptr(name, optval,
3131 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3132 if (val < 0)
3133 return -EFAULT;
3134 name[val] = 0;
3135
3136 lock_sock(sk);
3137 err = tcp_set_congestion_control(sk, name, true,
3138 ns_capable(sock_net(sk)->user_ns,
3139 CAP_NET_ADMIN));
3140 release_sock(sk);
3141 return err;
3142 }
3143 case TCP_ULP: {
3144 char name[TCP_ULP_NAME_MAX];
3145
3146 if (optlen < 1)
3147 return -EINVAL;
3148
3149 val = strncpy_from_sockptr(name, optval,
3150 min_t(long, TCP_ULP_NAME_MAX - 1,
3151 optlen));
3152 if (val < 0)
3153 return -EFAULT;
3154 name[val] = 0;
3155
3156 lock_sock(sk);
3157 err = tcp_set_ulp(sk, name);
3158 release_sock(sk);
3159 return err;
3160 }
3161 case TCP_FASTOPEN_KEY: {
3162 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3163 __u8 *backup_key = NULL;
3164
3165 /* Allow a backup key as well to facilitate key rotation
3166 * First key is the active one.
3167 */
3168 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3169 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3170 return -EINVAL;
3171
3172 if (copy_from_sockptr(key, optval, optlen))
3173 return -EFAULT;
3174
3175 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3176 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3177
3178 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3179 }
3180 default:
3181 /* fallthru */
3182 break;
3183 }
3184
3185 if (optlen < sizeof(int))
3186 return -EINVAL;
3187
3188 if (copy_from_sockptr(&val, optval, sizeof(val)))
3189 return -EFAULT;
3190
3191 lock_sock(sk);
3192
3193 switch (optname) {
3194 case TCP_MAXSEG:
3195 /* Values greater than interface MTU won't take effect. However
3196 * at the point when this call is done we typically don't yet
3197 * know which interface is going to be used
3198 */
3199 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3200 err = -EINVAL;
3201 break;
3202 }
3203 tp->rx_opt.user_mss = val;
3204 break;
3205
3206 case TCP_NODELAY:
3207 __tcp_sock_set_nodelay(sk, val);
3208 break;
3209
3210 case TCP_THIN_LINEAR_TIMEOUTS:
3211 if (val < 0 || val > 1)
3212 err = -EINVAL;
3213 else
3214 tp->thin_lto = val;
3215 break;
3216
3217 case TCP_THIN_DUPACK:
3218 if (val < 0 || val > 1)
3219 err = -EINVAL;
3220 break;
3221
3222 case TCP_REPAIR:
3223 if (!tcp_can_repair_sock(sk))
3224 err = -EPERM;
3225 else if (val == TCP_REPAIR_ON) {
3226 tp->repair = 1;
3227 sk->sk_reuse = SK_FORCE_REUSE;
3228 tp->repair_queue = TCP_NO_QUEUE;
3229 } else if (val == TCP_REPAIR_OFF) {
3230 tp->repair = 0;
3231 sk->sk_reuse = SK_NO_REUSE;
3232 tcp_send_window_probe(sk);
3233 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3234 tp->repair = 0;
3235 sk->sk_reuse = SK_NO_REUSE;
3236 } else
3237 err = -EINVAL;
3238
3239 break;
3240
3241 case TCP_REPAIR_QUEUE:
3242 if (!tp->repair)
3243 err = -EPERM;
3244 else if ((unsigned int)val < TCP_QUEUES_NR)
3245 tp->repair_queue = val;
3246 else
3247 err = -EINVAL;
3248 break;
3249
3250 case TCP_QUEUE_SEQ:
3251 if (sk->sk_state != TCP_CLOSE) {
3252 err = -EPERM;
3253 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3254 if (!tcp_rtx_queue_empty(sk))
3255 err = -EPERM;
3256 else
3257 WRITE_ONCE(tp->write_seq, val);
3258 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3259 if (tp->rcv_nxt != tp->copied_seq) {
3260 err = -EPERM;
3261 } else {
3262 WRITE_ONCE(tp->rcv_nxt, val);
3263 WRITE_ONCE(tp->copied_seq, val);
3264 }
3265 } else {
3266 err = -EINVAL;
3267 }
3268 break;
3269
3270 case TCP_REPAIR_OPTIONS:
3271 if (!tp->repair)
3272 err = -EINVAL;
3273 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3274 err = tcp_repair_options_est(sk, optval, optlen);
3275 else
3276 err = -EPERM;
3277 break;
3278
3279 case TCP_CORK:
3280 __tcp_sock_set_cork(sk, val);
3281 break;
3282
3283 case TCP_KEEPIDLE:
3284 err = tcp_sock_set_keepidle_locked(sk, val);
3285 break;
3286 case TCP_KEEPINTVL:
3287 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3288 err = -EINVAL;
3289 else
3290 tp->keepalive_intvl = val * HZ;
3291 break;
3292 case TCP_KEEPCNT:
3293 if (val < 1 || val > MAX_TCP_KEEPCNT)
3294 err = -EINVAL;
3295 else
3296 tp->keepalive_probes = val;
3297 break;
3298 case TCP_SYNCNT:
3299 if (val < 1 || val > MAX_TCP_SYNCNT)
3300 err = -EINVAL;
3301 else
3302 icsk->icsk_syn_retries = val;
3303 break;
3304
3305 case TCP_SAVE_SYN:
3306 /* 0: disable, 1: enable, 2: start from ether_header */
3307 if (val < 0 || val > 2)
3308 err = -EINVAL;
3309 else
3310 tp->save_syn = val;
3311 break;
3312
3313 case TCP_LINGER2:
3314 if (val < 0)
3315 tp->linger2 = -1;
3316 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3317 tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3318 else
3319 tp->linger2 = val * HZ;
3320 break;
3321
3322 case TCP_DEFER_ACCEPT:
3323 /* Translate value in seconds to number of retransmits */
3324 icsk->icsk_accept_queue.rskq_defer_accept =
3325 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3326 TCP_RTO_MAX / HZ);
3327 break;
3328
3329 case TCP_WINDOW_CLAMP:
3330 if (!val) {
3331 if (sk->sk_state != TCP_CLOSE) {
3332 err = -EINVAL;
3333 break;
3334 }
3335 tp->window_clamp = 0;
3336 } else
3337 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3338 SOCK_MIN_RCVBUF / 2 : val;
3339 break;
3340
3341 case TCP_QUICKACK:
3342 __tcp_sock_set_quickack(sk, val);
3343 break;
3344
3345 #ifdef CONFIG_TCP_MD5SIG
3346 case TCP_MD5SIG:
3347 case TCP_MD5SIG_EXT:
3348 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3349 break;
3350 #endif
3351 case TCP_USER_TIMEOUT:
3352 /* Cap the max time in ms TCP will retry or probe the window
3353 * before giving up and aborting (ETIMEDOUT) a connection.
3354 */
3355 if (val < 0)
3356 err = -EINVAL;
3357 else
3358 icsk->icsk_user_timeout = val;
3359 break;
3360
3361 case TCP_FASTOPEN:
3362 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3363 TCPF_LISTEN))) {
3364 tcp_fastopen_init_key_once(net);
3365
3366 fastopen_queue_tune(sk, val);
3367 } else {
3368 err = -EINVAL;
3369 }
3370 break;
3371 case TCP_FASTOPEN_CONNECT:
3372 if (val > 1 || val < 0) {
3373 err = -EINVAL;
3374 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3375 TFO_CLIENT_ENABLE) {
3376 if (sk->sk_state == TCP_CLOSE)
3377 tp->fastopen_connect = val;
3378 else
3379 err = -EINVAL;
3380 } else {
3381 err = -EOPNOTSUPP;
3382 }
3383 break;
3384 case TCP_FASTOPEN_NO_COOKIE:
3385 if (val > 1 || val < 0)
3386 err = -EINVAL;
3387 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3388 err = -EINVAL;
3389 else
3390 tp->fastopen_no_cookie = val;
3391 break;
3392 case TCP_TIMESTAMP:
3393 if (!tp->repair)
3394 err = -EPERM;
3395 else
3396 tp->tsoffset = val - tcp_time_stamp_raw();
3397 break;
3398 case TCP_REPAIR_WINDOW:
3399 err = tcp_repair_set_window(tp, optval, optlen);
3400 break;
3401 case TCP_NOTSENT_LOWAT:
3402 tp->notsent_lowat = val;
3403 sk->sk_write_space(sk);
3404 break;
3405 case TCP_INQ:
3406 if (val > 1 || val < 0)
3407 err = -EINVAL;
3408 else
3409 tp->recvmsg_inq = val;
3410 break;
3411 case TCP_TX_DELAY:
3412 if (val)
3413 tcp_enable_tx_delay();
3414 tp->tcp_tx_delay = val;
3415 break;
3416 default:
3417 err = -ENOPROTOOPT;
3418 break;
3419 }
3420
3421 release_sock(sk);
3422 return err;
3423 }
3424
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3425 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3426 unsigned int optlen)
3427 {
3428 const struct inet_connection_sock *icsk = inet_csk(sk);
3429
3430 if (level != SOL_TCP)
3431 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3432 optval, optlen);
3433 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3434 }
3435 EXPORT_SYMBOL(tcp_setsockopt);
3436
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3437 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3438 struct tcp_info *info)
3439 {
3440 u64 stats[__TCP_CHRONO_MAX], total = 0;
3441 enum tcp_chrono i;
3442
3443 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3444 stats[i] = tp->chrono_stat[i - 1];
3445 if (i == tp->chrono_type)
3446 stats[i] += tcp_jiffies32 - tp->chrono_start;
3447 stats[i] *= USEC_PER_SEC / HZ;
3448 total += stats[i];
3449 }
3450
3451 info->tcpi_busy_time = total;
3452 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3453 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3454 }
3455
3456 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3457 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3458 {
3459 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3460 const struct inet_connection_sock *icsk = inet_csk(sk);
3461 unsigned long rate;
3462 u32 now;
3463 u64 rate64;
3464 bool slow;
3465
3466 memset(info, 0, sizeof(*info));
3467 if (sk->sk_type != SOCK_STREAM)
3468 return;
3469
3470 info->tcpi_state = inet_sk_state_load(sk);
3471
3472 /* Report meaningful fields for all TCP states, including listeners */
3473 rate = READ_ONCE(sk->sk_pacing_rate);
3474 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3475 info->tcpi_pacing_rate = rate64;
3476
3477 rate = READ_ONCE(sk->sk_max_pacing_rate);
3478 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3479 info->tcpi_max_pacing_rate = rate64;
3480
3481 info->tcpi_reordering = tp->reordering;
3482 info->tcpi_snd_cwnd = tp->snd_cwnd;
3483
3484 if (info->tcpi_state == TCP_LISTEN) {
3485 /* listeners aliased fields :
3486 * tcpi_unacked -> Number of children ready for accept()
3487 * tcpi_sacked -> max backlog
3488 */
3489 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3490 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3491 return;
3492 }
3493
3494 slow = lock_sock_fast(sk);
3495
3496 info->tcpi_ca_state = icsk->icsk_ca_state;
3497 info->tcpi_retransmits = icsk->icsk_retransmits;
3498 info->tcpi_probes = icsk->icsk_probes_out;
3499 info->tcpi_backoff = icsk->icsk_backoff;
3500
3501 if (tp->rx_opt.tstamp_ok)
3502 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3503 if (tcp_is_sack(tp))
3504 info->tcpi_options |= TCPI_OPT_SACK;
3505 if (tp->rx_opt.wscale_ok) {
3506 info->tcpi_options |= TCPI_OPT_WSCALE;
3507 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3508 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3509 }
3510
3511 if (tp->ecn_flags & TCP_ECN_OK)
3512 info->tcpi_options |= TCPI_OPT_ECN;
3513 if (tp->ecn_flags & TCP_ECN_SEEN)
3514 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3515 if (tp->syn_data_acked)
3516 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3517
3518 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3519 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3520 info->tcpi_snd_mss = tp->mss_cache;
3521 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3522
3523 info->tcpi_unacked = tp->packets_out;
3524 info->tcpi_sacked = tp->sacked_out;
3525
3526 info->tcpi_lost = tp->lost_out;
3527 info->tcpi_retrans = tp->retrans_out;
3528
3529 now = tcp_jiffies32;
3530 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3531 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3532 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3533
3534 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3535 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3536 info->tcpi_rtt = tp->srtt_us >> 3;
3537 info->tcpi_rttvar = tp->mdev_us >> 2;
3538 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3539 info->tcpi_advmss = tp->advmss;
3540
3541 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3542 info->tcpi_rcv_space = tp->rcvq_space.space;
3543
3544 info->tcpi_total_retrans = tp->total_retrans;
3545
3546 info->tcpi_bytes_acked = tp->bytes_acked;
3547 info->tcpi_bytes_received = tp->bytes_received;
3548 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3549 tcp_get_info_chrono_stats(tp, info);
3550
3551 info->tcpi_segs_out = tp->segs_out;
3552 info->tcpi_segs_in = tp->segs_in;
3553
3554 info->tcpi_min_rtt = tcp_min_rtt(tp);
3555 info->tcpi_data_segs_in = tp->data_segs_in;
3556 info->tcpi_data_segs_out = tp->data_segs_out;
3557
3558 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3559 rate64 = tcp_compute_delivery_rate(tp);
3560 if (rate64)
3561 info->tcpi_delivery_rate = rate64;
3562 info->tcpi_delivered = tp->delivered;
3563 info->tcpi_delivered_ce = tp->delivered_ce;
3564 info->tcpi_bytes_sent = tp->bytes_sent;
3565 info->tcpi_bytes_retrans = tp->bytes_retrans;
3566 info->tcpi_dsack_dups = tp->dsack_dups;
3567 info->tcpi_reord_seen = tp->reord_seen;
3568 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3569 info->tcpi_snd_wnd = tp->snd_wnd;
3570 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3571 unlock_sock_fast(sk, slow);
3572 }
3573 EXPORT_SYMBOL_GPL(tcp_get_info);
3574
tcp_opt_stats_get_size(void)3575 static size_t tcp_opt_stats_get_size(void)
3576 {
3577 return
3578 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3579 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3580 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3581 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3582 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3583 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3584 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3585 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3586 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3587 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3588 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3589 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3590 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3591 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3592 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3593 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3594 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3595 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3596 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3597 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3598 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3599 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3600 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3601 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3602 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3603 0;
3604 }
3605
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb)3606 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3607 const struct sk_buff *orig_skb)
3608 {
3609 const struct tcp_sock *tp = tcp_sk(sk);
3610 struct sk_buff *stats;
3611 struct tcp_info info;
3612 unsigned long rate;
3613 u64 rate64;
3614
3615 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3616 if (!stats)
3617 return NULL;
3618
3619 tcp_get_info_chrono_stats(tp, &info);
3620 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3621 info.tcpi_busy_time, TCP_NLA_PAD);
3622 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3623 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3624 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3625 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3626 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3627 tp->data_segs_out, TCP_NLA_PAD);
3628 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3629 tp->total_retrans, TCP_NLA_PAD);
3630
3631 rate = READ_ONCE(sk->sk_pacing_rate);
3632 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3633 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3634
3635 rate64 = tcp_compute_delivery_rate(tp);
3636 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3637
3638 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3639 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3640 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3641
3642 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3643 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3644 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3645 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3646 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3647
3648 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3649 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3650
3651 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3652 TCP_NLA_PAD);
3653 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3654 TCP_NLA_PAD);
3655 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3656 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3657 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3658 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3659 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3660 max_t(int, 0, tp->write_seq - tp->snd_nxt));
3661 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3662 TCP_NLA_PAD);
3663
3664 return stats;
3665 }
3666
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3667 static int do_tcp_getsockopt(struct sock *sk, int level,
3668 int optname, char __user *optval, int __user *optlen)
3669 {
3670 struct inet_connection_sock *icsk = inet_csk(sk);
3671 struct tcp_sock *tp = tcp_sk(sk);
3672 struct net *net = sock_net(sk);
3673 int val, len;
3674
3675 if (get_user(len, optlen))
3676 return -EFAULT;
3677
3678 len = min_t(unsigned int, len, sizeof(int));
3679
3680 if (len < 0)
3681 return -EINVAL;
3682
3683 switch (optname) {
3684 case TCP_MAXSEG:
3685 val = tp->mss_cache;
3686 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3687 val = tp->rx_opt.user_mss;
3688 if (tp->repair)
3689 val = tp->rx_opt.mss_clamp;
3690 break;
3691 case TCP_NODELAY:
3692 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3693 break;
3694 case TCP_CORK:
3695 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3696 break;
3697 case TCP_KEEPIDLE:
3698 val = keepalive_time_when(tp) / HZ;
3699 break;
3700 case TCP_KEEPINTVL:
3701 val = keepalive_intvl_when(tp) / HZ;
3702 break;
3703 case TCP_KEEPCNT:
3704 val = keepalive_probes(tp);
3705 break;
3706 case TCP_SYNCNT:
3707 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3708 break;
3709 case TCP_LINGER2:
3710 val = tp->linger2;
3711 if (val >= 0)
3712 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
3713 break;
3714 case TCP_DEFER_ACCEPT:
3715 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3716 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3717 break;
3718 case TCP_WINDOW_CLAMP:
3719 val = tp->window_clamp;
3720 break;
3721 case TCP_INFO: {
3722 struct tcp_info info;
3723
3724 if (get_user(len, optlen))
3725 return -EFAULT;
3726
3727 tcp_get_info(sk, &info);
3728
3729 len = min_t(unsigned int, len, sizeof(info));
3730 if (put_user(len, optlen))
3731 return -EFAULT;
3732 if (copy_to_user(optval, &info, len))
3733 return -EFAULT;
3734 return 0;
3735 }
3736 case TCP_CC_INFO: {
3737 const struct tcp_congestion_ops *ca_ops;
3738 union tcp_cc_info info;
3739 size_t sz = 0;
3740 int attr;
3741
3742 if (get_user(len, optlen))
3743 return -EFAULT;
3744
3745 ca_ops = icsk->icsk_ca_ops;
3746 if (ca_ops && ca_ops->get_info)
3747 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3748
3749 len = min_t(unsigned int, len, sz);
3750 if (put_user(len, optlen))
3751 return -EFAULT;
3752 if (copy_to_user(optval, &info, len))
3753 return -EFAULT;
3754 return 0;
3755 }
3756 case TCP_QUICKACK:
3757 val = !inet_csk_in_pingpong_mode(sk);
3758 break;
3759
3760 case TCP_CONGESTION:
3761 if (get_user(len, optlen))
3762 return -EFAULT;
3763 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3764 if (put_user(len, optlen))
3765 return -EFAULT;
3766 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3767 return -EFAULT;
3768 return 0;
3769
3770 case TCP_ULP:
3771 if (get_user(len, optlen))
3772 return -EFAULT;
3773 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3774 if (!icsk->icsk_ulp_ops) {
3775 if (put_user(0, optlen))
3776 return -EFAULT;
3777 return 0;
3778 }
3779 if (put_user(len, optlen))
3780 return -EFAULT;
3781 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3782 return -EFAULT;
3783 return 0;
3784
3785 case TCP_FASTOPEN_KEY: {
3786 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
3787 unsigned int key_len;
3788
3789 if (get_user(len, optlen))
3790 return -EFAULT;
3791
3792 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
3793 TCP_FASTOPEN_KEY_LENGTH;
3794 len = min_t(unsigned int, len, key_len);
3795 if (put_user(len, optlen))
3796 return -EFAULT;
3797 if (copy_to_user(optval, key, len))
3798 return -EFAULT;
3799 return 0;
3800 }
3801 case TCP_THIN_LINEAR_TIMEOUTS:
3802 val = tp->thin_lto;
3803 break;
3804
3805 case TCP_THIN_DUPACK:
3806 val = 0;
3807 break;
3808
3809 case TCP_REPAIR:
3810 val = tp->repair;
3811 break;
3812
3813 case TCP_REPAIR_QUEUE:
3814 if (tp->repair)
3815 val = tp->repair_queue;
3816 else
3817 return -EINVAL;
3818 break;
3819
3820 case TCP_REPAIR_WINDOW: {
3821 struct tcp_repair_window opt;
3822
3823 if (get_user(len, optlen))
3824 return -EFAULT;
3825
3826 if (len != sizeof(opt))
3827 return -EINVAL;
3828
3829 if (!tp->repair)
3830 return -EPERM;
3831
3832 opt.snd_wl1 = tp->snd_wl1;
3833 opt.snd_wnd = tp->snd_wnd;
3834 opt.max_window = tp->max_window;
3835 opt.rcv_wnd = tp->rcv_wnd;
3836 opt.rcv_wup = tp->rcv_wup;
3837
3838 if (copy_to_user(optval, &opt, len))
3839 return -EFAULT;
3840 return 0;
3841 }
3842 case TCP_QUEUE_SEQ:
3843 if (tp->repair_queue == TCP_SEND_QUEUE)
3844 val = tp->write_seq;
3845 else if (tp->repair_queue == TCP_RECV_QUEUE)
3846 val = tp->rcv_nxt;
3847 else
3848 return -EINVAL;
3849 break;
3850
3851 case TCP_USER_TIMEOUT:
3852 val = icsk->icsk_user_timeout;
3853 break;
3854
3855 case TCP_FASTOPEN:
3856 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3857 break;
3858
3859 case TCP_FASTOPEN_CONNECT:
3860 val = tp->fastopen_connect;
3861 break;
3862
3863 case TCP_FASTOPEN_NO_COOKIE:
3864 val = tp->fastopen_no_cookie;
3865 break;
3866
3867 case TCP_TX_DELAY:
3868 val = tp->tcp_tx_delay;
3869 break;
3870
3871 case TCP_TIMESTAMP:
3872 val = tcp_time_stamp_raw() + tp->tsoffset;
3873 break;
3874 case TCP_NOTSENT_LOWAT:
3875 val = tp->notsent_lowat;
3876 break;
3877 case TCP_INQ:
3878 val = tp->recvmsg_inq;
3879 break;
3880 case TCP_SAVE_SYN:
3881 val = tp->save_syn;
3882 break;
3883 case TCP_SAVED_SYN: {
3884 if (get_user(len, optlen))
3885 return -EFAULT;
3886
3887 lock_sock(sk);
3888 if (tp->saved_syn) {
3889 if (len < tcp_saved_syn_len(tp->saved_syn)) {
3890 if (put_user(tcp_saved_syn_len(tp->saved_syn),
3891 optlen)) {
3892 release_sock(sk);
3893 return -EFAULT;
3894 }
3895 release_sock(sk);
3896 return -EINVAL;
3897 }
3898 len = tcp_saved_syn_len(tp->saved_syn);
3899 if (put_user(len, optlen)) {
3900 release_sock(sk);
3901 return -EFAULT;
3902 }
3903 if (copy_to_user(optval, tp->saved_syn->data, len)) {
3904 release_sock(sk);
3905 return -EFAULT;
3906 }
3907 tcp_saved_syn_free(tp);
3908 release_sock(sk);
3909 } else {
3910 release_sock(sk);
3911 len = 0;
3912 if (put_user(len, optlen))
3913 return -EFAULT;
3914 }
3915 return 0;
3916 }
3917 #ifdef CONFIG_MMU
3918 case TCP_ZEROCOPY_RECEIVE: {
3919 struct tcp_zerocopy_receive zc = {};
3920 int err;
3921
3922 if (get_user(len, optlen))
3923 return -EFAULT;
3924 if (len < 0 ||
3925 len < offsetofend(struct tcp_zerocopy_receive, length))
3926 return -EINVAL;
3927 if (len > sizeof(zc)) {
3928 len = sizeof(zc);
3929 if (put_user(len, optlen))
3930 return -EFAULT;
3931 }
3932 if (copy_from_user(&zc, optval, len))
3933 return -EFAULT;
3934 lock_sock(sk);
3935 err = tcp_zerocopy_receive(sk, &zc);
3936 release_sock(sk);
3937 if (len >= offsetofend(struct tcp_zerocopy_receive, err))
3938 goto zerocopy_rcv_sk_err;
3939 switch (len) {
3940 case offsetofend(struct tcp_zerocopy_receive, err):
3941 goto zerocopy_rcv_sk_err;
3942 case offsetofend(struct tcp_zerocopy_receive, inq):
3943 goto zerocopy_rcv_inq;
3944 case offsetofend(struct tcp_zerocopy_receive, length):
3945 default:
3946 goto zerocopy_rcv_out;
3947 }
3948 zerocopy_rcv_sk_err:
3949 if (!err)
3950 zc.err = sock_error(sk);
3951 zerocopy_rcv_inq:
3952 zc.inq = tcp_inq_hint(sk);
3953 zerocopy_rcv_out:
3954 if (!err && copy_to_user(optval, &zc, len))
3955 err = -EFAULT;
3956 return err;
3957 }
3958 #endif
3959 default:
3960 return -ENOPROTOOPT;
3961 }
3962
3963 if (put_user(len, optlen))
3964 return -EFAULT;
3965 if (copy_to_user(optval, &val, len))
3966 return -EFAULT;
3967 return 0;
3968 }
3969
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3970 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3971 int __user *optlen)
3972 {
3973 struct inet_connection_sock *icsk = inet_csk(sk);
3974
3975 if (level != SOL_TCP)
3976 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3977 optval, optlen);
3978 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3979 }
3980 EXPORT_SYMBOL(tcp_getsockopt);
3981
3982 #ifdef CONFIG_TCP_MD5SIG
3983 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3984 static DEFINE_MUTEX(tcp_md5sig_mutex);
3985 static bool tcp_md5sig_pool_populated = false;
3986
__tcp_alloc_md5sig_pool(void)3987 static void __tcp_alloc_md5sig_pool(void)
3988 {
3989 struct crypto_ahash *hash;
3990 int cpu;
3991
3992 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3993 if (IS_ERR(hash))
3994 return;
3995
3996 for_each_possible_cpu(cpu) {
3997 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3998 struct ahash_request *req;
3999
4000 if (!scratch) {
4001 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4002 sizeof(struct tcphdr),
4003 GFP_KERNEL,
4004 cpu_to_node(cpu));
4005 if (!scratch)
4006 return;
4007 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4008 }
4009 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4010 continue;
4011
4012 req = ahash_request_alloc(hash, GFP_KERNEL);
4013 if (!req)
4014 return;
4015
4016 ahash_request_set_callback(req, 0, NULL, NULL);
4017
4018 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4019 }
4020 /* before setting tcp_md5sig_pool_populated, we must commit all writes
4021 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4022 */
4023 smp_wmb();
4024 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4025 * and tcp_get_md5sig_pool().
4026 */
4027 WRITE_ONCE(tcp_md5sig_pool_populated, true);
4028 }
4029
tcp_alloc_md5sig_pool(void)4030 bool tcp_alloc_md5sig_pool(void)
4031 {
4032 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4033 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4034 mutex_lock(&tcp_md5sig_mutex);
4035
4036 if (!tcp_md5sig_pool_populated) {
4037 __tcp_alloc_md5sig_pool();
4038 if (tcp_md5sig_pool_populated)
4039 static_branch_inc(&tcp_md5_needed);
4040 }
4041
4042 mutex_unlock(&tcp_md5sig_mutex);
4043 }
4044 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4045 return READ_ONCE(tcp_md5sig_pool_populated);
4046 }
4047 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4048
4049
4050 /**
4051 * tcp_get_md5sig_pool - get md5sig_pool for this user
4052 *
4053 * We use percpu structure, so if we succeed, we exit with preemption
4054 * and BH disabled, to make sure another thread or softirq handling
4055 * wont try to get same context.
4056 */
tcp_get_md5sig_pool(void)4057 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4058 {
4059 local_bh_disable();
4060
4061 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4062 if (READ_ONCE(tcp_md5sig_pool_populated)) {
4063 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4064 smp_rmb();
4065 return this_cpu_ptr(&tcp_md5sig_pool);
4066 }
4067 local_bh_enable();
4068 return NULL;
4069 }
4070 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4071
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4072 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4073 const struct sk_buff *skb, unsigned int header_len)
4074 {
4075 struct scatterlist sg;
4076 const struct tcphdr *tp = tcp_hdr(skb);
4077 struct ahash_request *req = hp->md5_req;
4078 unsigned int i;
4079 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4080 skb_headlen(skb) - header_len : 0;
4081 const struct skb_shared_info *shi = skb_shinfo(skb);
4082 struct sk_buff *frag_iter;
4083
4084 sg_init_table(&sg, 1);
4085
4086 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4087 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4088 if (crypto_ahash_update(req))
4089 return 1;
4090
4091 for (i = 0; i < shi->nr_frags; ++i) {
4092 const skb_frag_t *f = &shi->frags[i];
4093 unsigned int offset = skb_frag_off(f);
4094 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4095
4096 sg_set_page(&sg, page, skb_frag_size(f),
4097 offset_in_page(offset));
4098 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4099 if (crypto_ahash_update(req))
4100 return 1;
4101 }
4102
4103 skb_walk_frags(skb, frag_iter)
4104 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4105 return 1;
4106
4107 return 0;
4108 }
4109 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4110
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4111 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4112 {
4113 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4114 struct scatterlist sg;
4115
4116 sg_init_one(&sg, key->key, keylen);
4117 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4118
4119 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4120 return data_race(crypto_ahash_update(hp->md5_req));
4121 }
4122 EXPORT_SYMBOL(tcp_md5_hash_key);
4123
4124 #endif
4125
tcp_done(struct sock * sk)4126 void tcp_done(struct sock *sk)
4127 {
4128 struct request_sock *req;
4129
4130 /* We might be called with a new socket, after
4131 * inet_csk_prepare_forced_close() has been called
4132 * so we can not use lockdep_sock_is_held(sk)
4133 */
4134 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4135
4136 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4137 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4138
4139 tcp_set_state(sk, TCP_CLOSE);
4140 tcp_clear_xmit_timers(sk);
4141 if (req)
4142 reqsk_fastopen_remove(sk, req, false);
4143
4144 sk->sk_shutdown = SHUTDOWN_MASK;
4145
4146 if (!sock_flag(sk, SOCK_DEAD))
4147 sk->sk_state_change(sk);
4148 else
4149 inet_csk_destroy_sock(sk);
4150 }
4151 EXPORT_SYMBOL_GPL(tcp_done);
4152
tcp_abort(struct sock * sk,int err)4153 int tcp_abort(struct sock *sk, int err)
4154 {
4155 if (!sk_fullsock(sk)) {
4156 if (sk->sk_state == TCP_NEW_SYN_RECV) {
4157 struct request_sock *req = inet_reqsk(sk);
4158
4159 local_bh_disable();
4160 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4161 local_bh_enable();
4162 return 0;
4163 }
4164 return -EOPNOTSUPP;
4165 }
4166
4167 /* Don't race with userspace socket closes such as tcp_close. */
4168 lock_sock(sk);
4169
4170 if (sk->sk_state == TCP_LISTEN) {
4171 tcp_set_state(sk, TCP_CLOSE);
4172 inet_csk_listen_stop(sk);
4173 }
4174
4175 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4176 local_bh_disable();
4177 bh_lock_sock(sk);
4178
4179 if (!sock_flag(sk, SOCK_DEAD)) {
4180 sk->sk_err = err;
4181 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4182 smp_wmb();
4183 sk->sk_error_report(sk);
4184 if (tcp_need_reset(sk->sk_state))
4185 tcp_send_active_reset(sk, GFP_ATOMIC);
4186 tcp_done(sk);
4187 }
4188
4189 bh_unlock_sock(sk);
4190 local_bh_enable();
4191 tcp_write_queue_purge(sk);
4192 release_sock(sk);
4193 return 0;
4194 }
4195 EXPORT_SYMBOL_GPL(tcp_abort);
4196
4197 extern struct tcp_congestion_ops tcp_reno;
4198
4199 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4200 static int __init set_thash_entries(char *str)
4201 {
4202 ssize_t ret;
4203
4204 if (!str)
4205 return 0;
4206
4207 ret = kstrtoul(str, 0, &thash_entries);
4208 if (ret)
4209 return 0;
4210
4211 return 1;
4212 }
4213 __setup("thash_entries=", set_thash_entries);
4214
tcp_init_mem(void)4215 static void __init tcp_init_mem(void)
4216 {
4217 unsigned long limit = nr_free_buffer_pages() / 16;
4218
4219 limit = max(limit, 128UL);
4220 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4221 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4222 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4223 }
4224
tcp_init(void)4225 void __init tcp_init(void)
4226 {
4227 int max_rshare, max_wshare, cnt;
4228 unsigned long limit;
4229 unsigned int i;
4230
4231 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4232 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4233 sizeof_field(struct sk_buff, cb));
4234
4235 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4236 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
4237 inet_hashinfo_init(&tcp_hashinfo);
4238 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4239 thash_entries, 21, /* one slot per 2 MB*/
4240 0, 64 * 1024);
4241 tcp_hashinfo.bind_bucket_cachep =
4242 kmem_cache_create("tcp_bind_bucket",
4243 sizeof(struct inet_bind_bucket), 0,
4244 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
4245
4246 /* Size and allocate the main established and bind bucket
4247 * hash tables.
4248 *
4249 * The methodology is similar to that of the buffer cache.
4250 */
4251 tcp_hashinfo.ehash =
4252 alloc_large_system_hash("TCP established",
4253 sizeof(struct inet_ehash_bucket),
4254 thash_entries,
4255 17, /* one slot per 128 KB of memory */
4256 0,
4257 NULL,
4258 &tcp_hashinfo.ehash_mask,
4259 0,
4260 thash_entries ? 0 : 512 * 1024);
4261 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4262 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4263
4264 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4265 panic("TCP: failed to alloc ehash_locks");
4266 tcp_hashinfo.bhash =
4267 alloc_large_system_hash("TCP bind",
4268 sizeof(struct inet_bind_hashbucket),
4269 tcp_hashinfo.ehash_mask + 1,
4270 17, /* one slot per 128 KB of memory */
4271 0,
4272 &tcp_hashinfo.bhash_size,
4273 NULL,
4274 0,
4275 64 * 1024);
4276 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4277 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4278 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4279 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4280 }
4281
4282
4283 cnt = tcp_hashinfo.ehash_mask + 1;
4284 sysctl_tcp_max_orphans = cnt / 2;
4285
4286 tcp_init_mem();
4287 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4288 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4289 max_wshare = min(4UL*1024*1024, limit);
4290 max_rshare = min(6UL*1024*1024, limit);
4291
4292 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4293 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4294 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4295
4296 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4297 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4298 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4299
4300 pr_info("Hash tables configured (established %u bind %u)\n",
4301 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4302
4303 tcp_v4_init();
4304 tcp_metrics_init();
4305 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4306 tcp_tasklet_init();
4307 mptcp_init();
4308 }
4309