1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 #include <trace/hooks/net.h>
84
85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
86
87 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
88 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
89 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
90 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
91 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
92 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
93 #define FLAG_ECE 0x40 /* ECE in this ACK */
94 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
95 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
96 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
97 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
98 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
99 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
100 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
101 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
102 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
103 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
104
105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
109
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112
113 #define REXMIT_NONE 0 /* no loss recovery to do */
114 #define REXMIT_LOST 1 /* retransmit packets marked lost */
115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
116
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 icsk->icsk_clean_acked = cad;
124 static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127
clean_acked_data_disable(struct inet_connection_sock * icsk)128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134
clean_acked_data_flush(void)135 void clean_acked_data_flush(void)
136 {
137 static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141
142 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 struct bpf_sock_ops_kern sock_ops;
151
152 if (likely(!unknown_opt && !parse_all_opt))
153 return;
154
155 /* The skb will be handled in the
156 * bpf_skops_established() or
157 * bpf_skops_write_hdr_opt().
158 */
159 switch (sk->sk_state) {
160 case TCP_SYN_RECV:
161 case TCP_SYN_SENT:
162 case TCP_LISTEN:
163 return;
164 }
165
166 sock_owned_by_me(sk);
167
168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 sock_ops.is_fullsock = 1;
171 sock_ops.sk = sk;
172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173
174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 struct sk_buff *skb)
179 {
180 struct bpf_sock_ops_kern sock_ops;
181
182 sock_owned_by_me(sk);
183
184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 sock_ops.op = bpf_op;
186 sock_ops.is_fullsock = 1;
187 sock_ops.sk = sk;
188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 if (skb)
190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191
192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 struct sk_buff *skb)
201 {
202 }
203 #endif
204
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 unsigned int len)
207 {
208 static bool __once __read_mostly;
209
210 if (!__once) {
211 struct net_device *dev;
212
213 __once = true;
214
215 rcu_read_lock();
216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 if (!dev || len >= dev->mtu)
218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 dev ? dev->name : "Unknown driver");
220 rcu_read_unlock();
221 }
222 }
223
224 /* Adapt the MSS value used to make delayed ack decision to the
225 * real world.
226 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 struct inet_connection_sock *icsk = inet_csk(sk);
230 const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 unsigned int len;
232
233 icsk->icsk_ack.last_seg_size = 0;
234
235 /* skb->len may jitter because of SACKs, even if peer
236 * sends good full-sized frames.
237 */
238 len = skb_shinfo(skb)->gso_size ? : skb->len;
239 if (len >= icsk->icsk_ack.rcv_mss) {
240 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
241 tcp_sk(sk)->advmss);
242 /* Account for possibly-removed options */
243 if (unlikely(len > icsk->icsk_ack.rcv_mss +
244 MAX_TCP_OPTION_SPACE))
245 tcp_gro_dev_warn(sk, skb, len);
246 } else {
247 /* Otherwise, we make more careful check taking into account,
248 * that SACKs block is variable.
249 *
250 * "len" is invariant segment length, including TCP header.
251 */
252 len += skb->data - skb_transport_header(skb);
253 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
254 /* If PSH is not set, packet should be
255 * full sized, provided peer TCP is not badly broken.
256 * This observation (if it is correct 8)) allows
257 * to handle super-low mtu links fairly.
258 */
259 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
260 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
261 /* Subtract also invariant (if peer is RFC compliant),
262 * tcp header plus fixed timestamp option length.
263 * Resulting "len" is MSS free of SACK jitter.
264 */
265 len -= tcp_sk(sk)->tcp_header_len;
266 icsk->icsk_ack.last_seg_size = len;
267 if (len == lss) {
268 icsk->icsk_ack.rcv_mss = len;
269 return;
270 }
271 }
272 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
273 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
274 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
275 }
276 }
277
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)278 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
279 {
280 struct inet_connection_sock *icsk = inet_csk(sk);
281 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
282
283 if (quickacks == 0)
284 quickacks = 2;
285 quickacks = min(quickacks, max_quickacks);
286 if (quickacks > icsk->icsk_ack.quick)
287 icsk->icsk_ack.quick = quickacks;
288 }
289
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)290 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
291 {
292 struct inet_connection_sock *icsk = inet_csk(sk);
293
294 tcp_incr_quickack(sk, max_quickacks);
295 inet_csk_exit_pingpong_mode(sk);
296 icsk->icsk_ack.ato = TCP_ATO_MIN;
297 }
298 EXPORT_SYMBOL(tcp_enter_quickack_mode);
299
300 /* Send ACKs quickly, if "quick" count is not exhausted
301 * and the session is not interactive.
302 */
303
tcp_in_quickack_mode(struct sock * sk)304 static bool tcp_in_quickack_mode(struct sock *sk)
305 {
306 const struct inet_connection_sock *icsk = inet_csk(sk);
307 const struct dst_entry *dst = __sk_dst_get(sk);
308
309 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
310 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
311 }
312
tcp_ecn_queue_cwr(struct tcp_sock * tp)313 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
314 {
315 if (tp->ecn_flags & TCP_ECN_OK)
316 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
317 }
318
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)319 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
320 {
321 if (tcp_hdr(skb)->cwr) {
322 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
323
324 /* If the sender is telling us it has entered CWR, then its
325 * cwnd may be very low (even just 1 packet), so we should ACK
326 * immediately.
327 */
328 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
329 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
330 }
331 }
332
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)333 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
334 {
335 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
336 }
337
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)338 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
339 {
340 struct tcp_sock *tp = tcp_sk(sk);
341
342 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
343 case INET_ECN_NOT_ECT:
344 /* Funny extension: if ECT is not set on a segment,
345 * and we already seen ECT on a previous segment,
346 * it is probably a retransmit.
347 */
348 if (tp->ecn_flags & TCP_ECN_SEEN)
349 tcp_enter_quickack_mode(sk, 2);
350 break;
351 case INET_ECN_CE:
352 if (tcp_ca_needs_ecn(sk))
353 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
354
355 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
356 /* Better not delay acks, sender can have a very low cwnd */
357 tcp_enter_quickack_mode(sk, 2);
358 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
359 }
360 tp->ecn_flags |= TCP_ECN_SEEN;
361 break;
362 default:
363 if (tcp_ca_needs_ecn(sk))
364 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
365 tp->ecn_flags |= TCP_ECN_SEEN;
366 break;
367 }
368 }
369
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)370 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
371 {
372 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
373 __tcp_ecn_check_ce(sk, skb);
374 }
375
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)376 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
377 {
378 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
379 tp->ecn_flags &= ~TCP_ECN_OK;
380 }
381
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)382 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
383 {
384 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
385 tp->ecn_flags &= ~TCP_ECN_OK;
386 }
387
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)388 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
389 {
390 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
391 return true;
392 return false;
393 }
394
395 /* Buffer size and advertised window tuning.
396 *
397 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
398 */
399
tcp_sndbuf_expand(struct sock * sk)400 static void tcp_sndbuf_expand(struct sock *sk)
401 {
402 const struct tcp_sock *tp = tcp_sk(sk);
403 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
404 int sndmem, per_mss;
405 u32 nr_segs;
406
407 /* Worst case is non GSO/TSO : each frame consumes one skb
408 * and skb->head is kmalloced using power of two area of memory
409 */
410 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
411 MAX_TCP_HEADER +
412 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
413
414 per_mss = roundup_pow_of_two(per_mss) +
415 SKB_DATA_ALIGN(sizeof(struct sk_buff));
416
417 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
418 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
419
420 /* Fast Recovery (RFC 5681 3.2) :
421 * Cubic needs 1.7 factor, rounded to 2 to include
422 * extra cushion (application might react slowly to EPOLLOUT)
423 */
424 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
425 sndmem *= nr_segs * per_mss;
426
427 if (sk->sk_sndbuf < sndmem)
428 WRITE_ONCE(sk->sk_sndbuf,
429 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
430 }
431
432 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
433 *
434 * All tcp_full_space() is split to two parts: "network" buffer, allocated
435 * forward and advertised in receiver window (tp->rcv_wnd) and
436 * "application buffer", required to isolate scheduling/application
437 * latencies from network.
438 * window_clamp is maximal advertised window. It can be less than
439 * tcp_full_space(), in this case tcp_full_space() - window_clamp
440 * is reserved for "application" buffer. The less window_clamp is
441 * the smoother our behaviour from viewpoint of network, but the lower
442 * throughput and the higher sensitivity of the connection to losses. 8)
443 *
444 * rcv_ssthresh is more strict window_clamp used at "slow start"
445 * phase to predict further behaviour of this connection.
446 * It is used for two goals:
447 * - to enforce header prediction at sender, even when application
448 * requires some significant "application buffer". It is check #1.
449 * - to prevent pruning of receive queue because of misprediction
450 * of receiver window. Check #2.
451 *
452 * The scheme does not work when sender sends good segments opening
453 * window and then starts to feed us spaghetti. But it should work
454 * in common situations. Otherwise, we have to rely on queue collapsing.
455 */
456
457 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)458 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
459 unsigned int skbtruesize)
460 {
461 struct tcp_sock *tp = tcp_sk(sk);
462 /* Optimize this! */
463 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
464 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
465
466 while (tp->rcv_ssthresh <= window) {
467 if (truesize <= skb->len)
468 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
469
470 truesize >>= 1;
471 window >>= 1;
472 }
473 return 0;
474 }
475
476 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
477 * can play nice with us, as sk_buff and skb->head might be either
478 * freed or shared with up to MAX_SKB_FRAGS segments.
479 * Only give a boost to drivers using page frag(s) to hold the frame(s),
480 * and if no payload was pulled in skb->head before reaching us.
481 */
truesize_adjust(bool adjust,const struct sk_buff * skb)482 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
483 {
484 u32 truesize = skb->truesize;
485
486 if (adjust && !skb_headlen(skb)) {
487 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
488 /* paranoid check, some drivers might be buggy */
489 if (unlikely((int)truesize < (int)skb->len))
490 truesize = skb->truesize;
491 }
492 return truesize;
493 }
494
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)495 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
496 bool adjust)
497 {
498 struct tcp_sock *tp = tcp_sk(sk);
499 int room;
500
501 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
502
503 /* Check #1 */
504 if (room > 0 && !tcp_under_memory_pressure(sk)) {
505 unsigned int truesize = truesize_adjust(adjust, skb);
506 int incr;
507
508 /* Check #2. Increase window, if skb with such overhead
509 * will fit to rcvbuf in future.
510 */
511 if (tcp_win_from_space(sk, truesize) <= skb->len)
512 incr = 2 * tp->advmss;
513 else
514 incr = __tcp_grow_window(sk, skb, truesize);
515
516 if (incr) {
517 incr = max_t(int, incr, 2 * skb->len);
518 tp->rcv_ssthresh += min(room, incr);
519 inet_csk(sk)->icsk_ack.quick |= 1;
520 }
521 }
522 }
523
524 /* 3. Try to fixup all. It is made immediately after connection enters
525 * established state.
526 */
tcp_init_buffer_space(struct sock * sk)527 static void tcp_init_buffer_space(struct sock *sk)
528 {
529 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
530 struct tcp_sock *tp = tcp_sk(sk);
531 int maxwin;
532
533 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
534 tcp_sndbuf_expand(sk);
535
536 tcp_mstamp_refresh(tp);
537 tp->rcvq_space.time = tp->tcp_mstamp;
538 tp->rcvq_space.seq = tp->copied_seq;
539
540 maxwin = tcp_full_space(sk);
541
542 if (tp->window_clamp >= maxwin) {
543 tp->window_clamp = maxwin;
544
545 if (tcp_app_win && maxwin > 4 * tp->advmss)
546 tp->window_clamp = max(maxwin -
547 (maxwin >> tcp_app_win),
548 4 * tp->advmss);
549 }
550
551 /* Force reservation of one segment. */
552 if (tcp_app_win &&
553 tp->window_clamp > 2 * tp->advmss &&
554 tp->window_clamp + tp->advmss > maxwin)
555 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
556
557 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
558 tp->snd_cwnd_stamp = tcp_jiffies32;
559 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
560 (u32)TCP_INIT_CWND * tp->advmss);
561 }
562
563 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)564 static void tcp_clamp_window(struct sock *sk)
565 {
566 struct tcp_sock *tp = tcp_sk(sk);
567 struct inet_connection_sock *icsk = inet_csk(sk);
568 struct net *net = sock_net(sk);
569 int rmem2;
570
571 icsk->icsk_ack.quick = 0;
572 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
573
574 if (sk->sk_rcvbuf < rmem2 &&
575 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
576 !tcp_under_memory_pressure(sk) &&
577 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
578 WRITE_ONCE(sk->sk_rcvbuf,
579 min(atomic_read(&sk->sk_rmem_alloc), rmem2));
580 }
581 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
582 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
583 }
584
585 /* Initialize RCV_MSS value.
586 * RCV_MSS is an our guess about MSS used by the peer.
587 * We haven't any direct information about the MSS.
588 * It's better to underestimate the RCV_MSS rather than overestimate.
589 * Overestimations make us ACKing less frequently than needed.
590 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
591 */
tcp_initialize_rcv_mss(struct sock * sk)592 void tcp_initialize_rcv_mss(struct sock *sk)
593 {
594 const struct tcp_sock *tp = tcp_sk(sk);
595 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
596
597 hint = min(hint, tp->rcv_wnd / 2);
598 hint = min(hint, TCP_MSS_DEFAULT);
599 hint = max(hint, TCP_MIN_MSS);
600
601 inet_csk(sk)->icsk_ack.rcv_mss = hint;
602 }
603 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
604
605 /* Receiver "autotuning" code.
606 *
607 * The algorithm for RTT estimation w/o timestamps is based on
608 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
609 * <https://public.lanl.gov/radiant/pubs.html#DRS>
610 *
611 * More detail on this code can be found at
612 * <http://staff.psc.edu/jheffner/>,
613 * though this reference is out of date. A new paper
614 * is pending.
615 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)616 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
617 {
618 u32 new_sample = tp->rcv_rtt_est.rtt_us;
619 long m = sample;
620
621 if (new_sample != 0) {
622 /* If we sample in larger samples in the non-timestamp
623 * case, we could grossly overestimate the RTT especially
624 * with chatty applications or bulk transfer apps which
625 * are stalled on filesystem I/O.
626 *
627 * Also, since we are only going for a minimum in the
628 * non-timestamp case, we do not smooth things out
629 * else with timestamps disabled convergence takes too
630 * long.
631 */
632 if (!win_dep) {
633 m -= (new_sample >> 3);
634 new_sample += m;
635 } else {
636 m <<= 3;
637 if (m < new_sample)
638 new_sample = m;
639 }
640 } else {
641 /* No previous measure. */
642 new_sample = m << 3;
643 }
644
645 tp->rcv_rtt_est.rtt_us = new_sample;
646 }
647
tcp_rcv_rtt_measure(struct tcp_sock * tp)648 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
649 {
650 u32 delta_us;
651
652 if (tp->rcv_rtt_est.time == 0)
653 goto new_measure;
654 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
655 return;
656 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
657 if (!delta_us)
658 delta_us = 1;
659 tcp_rcv_rtt_update(tp, delta_us, 1);
660
661 new_measure:
662 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
663 tp->rcv_rtt_est.time = tp->tcp_mstamp;
664 }
665
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)666 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
667 const struct sk_buff *skb)
668 {
669 struct tcp_sock *tp = tcp_sk(sk);
670
671 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
672 return;
673 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
674
675 if (TCP_SKB_CB(skb)->end_seq -
676 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
677 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
678 u32 delta_us;
679
680 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
681 if (!delta)
682 delta = 1;
683 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
684 tcp_rcv_rtt_update(tp, delta_us, 0);
685 }
686 }
687 }
688
689 /*
690 * This function should be called every time data is copied to user space.
691 * It calculates the appropriate TCP receive buffer space.
692 */
tcp_rcv_space_adjust(struct sock * sk)693 void tcp_rcv_space_adjust(struct sock *sk)
694 {
695 struct tcp_sock *tp = tcp_sk(sk);
696 u32 copied;
697 int time;
698
699 trace_tcp_rcv_space_adjust(sk);
700
701 tcp_mstamp_refresh(tp);
702 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
703 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
704 return;
705
706 /* Number of bytes copied to user in last RTT */
707 copied = tp->copied_seq - tp->rcvq_space.seq;
708 if (copied <= tp->rcvq_space.space)
709 goto new_measure;
710
711 /* A bit of theory :
712 * copied = bytes received in previous RTT, our base window
713 * To cope with packet losses, we need a 2x factor
714 * To cope with slow start, and sender growing its cwin by 100 %
715 * every RTT, we need a 4x factor, because the ACK we are sending
716 * now is for the next RTT, not the current one :
717 * <prev RTT . ><current RTT .. ><next RTT .... >
718 */
719
720 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
721 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
722 int rcvmem, rcvbuf;
723 u64 rcvwin, grow;
724
725 /* minimal window to cope with packet losses, assuming
726 * steady state. Add some cushion because of small variations.
727 */
728 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
729
730 /* Accommodate for sender rate increase (eg. slow start) */
731 grow = rcvwin * (copied - tp->rcvq_space.space);
732 do_div(grow, tp->rcvq_space.space);
733 rcvwin += (grow << 1);
734
735 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
736 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
737 rcvmem += 128;
738
739 do_div(rcvwin, tp->advmss);
740 rcvbuf = min_t(u64, rcvwin * rcvmem,
741 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
742 if (rcvbuf > sk->sk_rcvbuf) {
743 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
744
745 /* Make the window clamp follow along. */
746 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
747 }
748 }
749 tp->rcvq_space.space = copied;
750
751 new_measure:
752 tp->rcvq_space.seq = tp->copied_seq;
753 tp->rcvq_space.time = tp->tcp_mstamp;
754 }
755
756 /* There is something which you must keep in mind when you analyze the
757 * behavior of the tp->ato delayed ack timeout interval. When a
758 * connection starts up, we want to ack as quickly as possible. The
759 * problem is that "good" TCP's do slow start at the beginning of data
760 * transmission. The means that until we send the first few ACK's the
761 * sender will sit on his end and only queue most of his data, because
762 * he can only send snd_cwnd unacked packets at any given time. For
763 * each ACK we send, he increments snd_cwnd and transmits more of his
764 * queue. -DaveM
765 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)766 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
767 {
768 struct tcp_sock *tp = tcp_sk(sk);
769 struct inet_connection_sock *icsk = inet_csk(sk);
770 u32 now;
771
772 inet_csk_schedule_ack(sk);
773
774 tcp_measure_rcv_mss(sk, skb);
775
776 tcp_rcv_rtt_measure(tp);
777
778 now = tcp_jiffies32;
779
780 if (!icsk->icsk_ack.ato) {
781 /* The _first_ data packet received, initialize
782 * delayed ACK engine.
783 */
784 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
785 icsk->icsk_ack.ato = TCP_ATO_MIN;
786 } else {
787 int m = now - icsk->icsk_ack.lrcvtime;
788
789 if (m <= TCP_ATO_MIN / 2) {
790 /* The fastest case is the first. */
791 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
792 } else if (m < icsk->icsk_ack.ato) {
793 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
794 if (icsk->icsk_ack.ato > icsk->icsk_rto)
795 icsk->icsk_ack.ato = icsk->icsk_rto;
796 } else if (m > icsk->icsk_rto) {
797 /* Too long gap. Apparently sender failed to
798 * restart window, so that we send ACKs quickly.
799 */
800 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
801 sk_mem_reclaim(sk);
802 }
803 }
804 icsk->icsk_ack.lrcvtime = now;
805
806 tcp_ecn_check_ce(sk, skb);
807
808 if (skb->len >= 128)
809 tcp_grow_window(sk, skb, true);
810 }
811
812 /* Called to compute a smoothed rtt estimate. The data fed to this
813 * routine either comes from timestamps, or from segments that were
814 * known _not_ to have been retransmitted [see Karn/Partridge
815 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
816 * piece by Van Jacobson.
817 * NOTE: the next three routines used to be one big routine.
818 * To save cycles in the RFC 1323 implementation it was better to break
819 * it up into three procedures. -- erics
820 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)821 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
822 {
823 struct tcp_sock *tp = tcp_sk(sk);
824 long m = mrtt_us; /* RTT */
825 u32 srtt = tp->srtt_us;
826
827 /* The following amusing code comes from Jacobson's
828 * article in SIGCOMM '88. Note that rtt and mdev
829 * are scaled versions of rtt and mean deviation.
830 * This is designed to be as fast as possible
831 * m stands for "measurement".
832 *
833 * On a 1990 paper the rto value is changed to:
834 * RTO = rtt + 4 * mdev
835 *
836 * Funny. This algorithm seems to be very broken.
837 * These formulae increase RTO, when it should be decreased, increase
838 * too slowly, when it should be increased quickly, decrease too quickly
839 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
840 * does not matter how to _calculate_ it. Seems, it was trap
841 * that VJ failed to avoid. 8)
842 */
843 if (srtt != 0) {
844 m -= (srtt >> 3); /* m is now error in rtt est */
845 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
846 if (m < 0) {
847 m = -m; /* m is now abs(error) */
848 m -= (tp->mdev_us >> 2); /* similar update on mdev */
849 /* This is similar to one of Eifel findings.
850 * Eifel blocks mdev updates when rtt decreases.
851 * This solution is a bit different: we use finer gain
852 * for mdev in this case (alpha*beta).
853 * Like Eifel it also prevents growth of rto,
854 * but also it limits too fast rto decreases,
855 * happening in pure Eifel.
856 */
857 if (m > 0)
858 m >>= 3;
859 } else {
860 m -= (tp->mdev_us >> 2); /* similar update on mdev */
861 }
862 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
863 if (tp->mdev_us > tp->mdev_max_us) {
864 tp->mdev_max_us = tp->mdev_us;
865 if (tp->mdev_max_us > tp->rttvar_us)
866 tp->rttvar_us = tp->mdev_max_us;
867 }
868 if (after(tp->snd_una, tp->rtt_seq)) {
869 if (tp->mdev_max_us < tp->rttvar_us)
870 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
871 tp->rtt_seq = tp->snd_nxt;
872 tp->mdev_max_us = tcp_rto_min_us(sk);
873
874 tcp_bpf_rtt(sk);
875 }
876 } else {
877 /* no previous measure. */
878 srtt = m << 3; /* take the measured time to be rtt */
879 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
880 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
881 tp->mdev_max_us = tp->rttvar_us;
882 tp->rtt_seq = tp->snd_nxt;
883
884 tcp_bpf_rtt(sk);
885 }
886 tp->srtt_us = max(1U, srtt);
887 }
888
tcp_update_pacing_rate(struct sock * sk)889 static void tcp_update_pacing_rate(struct sock *sk)
890 {
891 const struct tcp_sock *tp = tcp_sk(sk);
892 u64 rate;
893
894 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
895 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
896
897 /* current rate is (cwnd * mss) / srtt
898 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
899 * In Congestion Avoidance phase, set it to 120 % the current rate.
900 *
901 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
902 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
903 * end of slow start and should slow down.
904 */
905 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
906 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
907 else
908 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
909
910 rate *= max(tp->snd_cwnd, tp->packets_out);
911
912 if (likely(tp->srtt_us))
913 do_div(rate, tp->srtt_us);
914
915 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
916 * without any lock. We want to make sure compiler wont store
917 * intermediate values in this location.
918 */
919 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
920 sk->sk_max_pacing_rate));
921 }
922
923 /* Calculate rto without backoff. This is the second half of Van Jacobson's
924 * routine referred to above.
925 */
tcp_set_rto(struct sock * sk)926 static void tcp_set_rto(struct sock *sk)
927 {
928 const struct tcp_sock *tp = tcp_sk(sk);
929 /* Old crap is replaced with new one. 8)
930 *
931 * More seriously:
932 * 1. If rtt variance happened to be less 50msec, it is hallucination.
933 * It cannot be less due to utterly erratic ACK generation made
934 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
935 * to do with delayed acks, because at cwnd>2 true delack timeout
936 * is invisible. Actually, Linux-2.4 also generates erratic
937 * ACKs in some circumstances.
938 */
939 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
940
941 /* 2. Fixups made earlier cannot be right.
942 * If we do not estimate RTO correctly without them,
943 * all the algo is pure shit and should be replaced
944 * with correct one. It is exactly, which we pretend to do.
945 */
946
947 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
948 * guarantees that rto is higher.
949 */
950 tcp_bound_rto(sk);
951 }
952
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)953 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
954 {
955 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
956
957 if (!cwnd)
958 cwnd = TCP_INIT_CWND;
959 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
960 }
961
962 struct tcp_sacktag_state {
963 /* Timestamps for earliest and latest never-retransmitted segment
964 * that was SACKed. RTO needs the earliest RTT to stay conservative,
965 * but congestion control should still get an accurate delay signal.
966 */
967 u64 first_sackt;
968 u64 last_sackt;
969 u32 reord;
970 u32 sack_delivered;
971 int flag;
972 unsigned int mss_now;
973 struct rate_sample *rate;
974 };
975
976 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
977 * and spurious retransmission information if this DSACK is unlikely caused by
978 * sender's action:
979 * - DSACKed sequence range is larger than maximum receiver's window.
980 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
981 */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)982 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
983 u32 end_seq, struct tcp_sacktag_state *state)
984 {
985 u32 seq_len, dup_segs = 1;
986
987 if (!before(start_seq, end_seq))
988 return 0;
989
990 seq_len = end_seq - start_seq;
991 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
992 if (seq_len > tp->max_window)
993 return 0;
994 if (seq_len > tp->mss_cache)
995 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
996
997 tp->dsack_dups += dup_segs;
998 /* Skip the DSACK if dup segs weren't retransmitted by sender */
999 if (tp->dsack_dups > tp->total_retrans)
1000 return 0;
1001
1002 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1003 tp->rack.dsack_seen = 1;
1004
1005 state->flag |= FLAG_DSACKING_ACK;
1006 /* A spurious retransmission is delivered */
1007 state->sack_delivered += dup_segs;
1008
1009 return dup_segs;
1010 }
1011
1012 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1013 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1014 * distance is approximated in full-mss packet distance ("reordering").
1015 */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1016 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1017 const int ts)
1018 {
1019 struct tcp_sock *tp = tcp_sk(sk);
1020 const u32 mss = tp->mss_cache;
1021 u32 fack, metric;
1022
1023 fack = tcp_highest_sack_seq(tp);
1024 if (!before(low_seq, fack))
1025 return;
1026
1027 metric = fack - low_seq;
1028 if ((metric > tp->reordering * mss) && mss) {
1029 #if FASTRETRANS_DEBUG > 1
1030 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1031 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1032 tp->reordering,
1033 0,
1034 tp->sacked_out,
1035 tp->undo_marker ? tp->undo_retrans : 0);
1036 #endif
1037 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1038 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1039 }
1040
1041 /* This exciting event is worth to be remembered. 8) */
1042 tp->reord_seen++;
1043 NET_INC_STATS(sock_net(sk),
1044 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1045 }
1046
1047 /* This must be called before lost_out or retrans_out are updated
1048 * on a new loss, because we want to know if all skbs previously
1049 * known to be lost have already been retransmitted, indicating
1050 * that this newly lost skb is our next skb to retransmit.
1051 */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1052 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1053 {
1054 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1055 (tp->retransmit_skb_hint &&
1056 before(TCP_SKB_CB(skb)->seq,
1057 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1058 tp->retransmit_skb_hint = skb;
1059 }
1060
1061 /* Sum the number of packets on the wire we have marked as lost, and
1062 * notify the congestion control module that the given skb was marked lost.
1063 */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1064 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1065 {
1066 tp->lost += tcp_skb_pcount(skb);
1067 }
1068
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1069 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1070 {
1071 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1072 struct tcp_sock *tp = tcp_sk(sk);
1073
1074 if (sacked & TCPCB_SACKED_ACKED)
1075 return;
1076
1077 tcp_verify_retransmit_hint(tp, skb);
1078 if (sacked & TCPCB_LOST) {
1079 if (sacked & TCPCB_SACKED_RETRANS) {
1080 /* Account for retransmits that are lost again */
1081 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1082 tp->retrans_out -= tcp_skb_pcount(skb);
1083 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1084 tcp_skb_pcount(skb));
1085 tcp_notify_skb_loss_event(tp, skb);
1086 }
1087 } else {
1088 tp->lost_out += tcp_skb_pcount(skb);
1089 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1090 tcp_notify_skb_loss_event(tp, skb);
1091 }
1092 }
1093
1094 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1095 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1096 bool ece_ack)
1097 {
1098 tp->delivered += delivered;
1099 if (ece_ack)
1100 tp->delivered_ce += delivered;
1101 }
1102
1103 /* This procedure tags the retransmission queue when SACKs arrive.
1104 *
1105 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1106 * Packets in queue with these bits set are counted in variables
1107 * sacked_out, retrans_out and lost_out, correspondingly.
1108 *
1109 * Valid combinations are:
1110 * Tag InFlight Description
1111 * 0 1 - orig segment is in flight.
1112 * S 0 - nothing flies, orig reached receiver.
1113 * L 0 - nothing flies, orig lost by net.
1114 * R 2 - both orig and retransmit are in flight.
1115 * L|R 1 - orig is lost, retransmit is in flight.
1116 * S|R 1 - orig reached receiver, retrans is still in flight.
1117 * (L|S|R is logically valid, it could occur when L|R is sacked,
1118 * but it is equivalent to plain S and code short-curcuits it to S.
1119 * L|S is logically invalid, it would mean -1 packet in flight 8))
1120 *
1121 * These 6 states form finite state machine, controlled by the following events:
1122 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1123 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1124 * 3. Loss detection event of two flavors:
1125 * A. Scoreboard estimator decided the packet is lost.
1126 * A'. Reno "three dupacks" marks head of queue lost.
1127 * B. SACK arrives sacking SND.NXT at the moment, when the
1128 * segment was retransmitted.
1129 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1130 *
1131 * It is pleasant to note, that state diagram turns out to be commutative,
1132 * so that we are allowed not to be bothered by order of our actions,
1133 * when multiple events arrive simultaneously. (see the function below).
1134 *
1135 * Reordering detection.
1136 * --------------------
1137 * Reordering metric is maximal distance, which a packet can be displaced
1138 * in packet stream. With SACKs we can estimate it:
1139 *
1140 * 1. SACK fills old hole and the corresponding segment was not
1141 * ever retransmitted -> reordering. Alas, we cannot use it
1142 * when segment was retransmitted.
1143 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1144 * for retransmitted and already SACKed segment -> reordering..
1145 * Both of these heuristics are not used in Loss state, when we cannot
1146 * account for retransmits accurately.
1147 *
1148 * SACK block validation.
1149 * ----------------------
1150 *
1151 * SACK block range validation checks that the received SACK block fits to
1152 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1153 * Note that SND.UNA is not included to the range though being valid because
1154 * it means that the receiver is rather inconsistent with itself reporting
1155 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1156 * perfectly valid, however, in light of RFC2018 which explicitly states
1157 * that "SACK block MUST reflect the newest segment. Even if the newest
1158 * segment is going to be discarded ...", not that it looks very clever
1159 * in case of head skb. Due to potentional receiver driven attacks, we
1160 * choose to avoid immediate execution of a walk in write queue due to
1161 * reneging and defer head skb's loss recovery to standard loss recovery
1162 * procedure that will eventually trigger (nothing forbids us doing this).
1163 *
1164 * Implements also blockage to start_seq wrap-around. Problem lies in the
1165 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1166 * there's no guarantee that it will be before snd_nxt (n). The problem
1167 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1168 * wrap (s_w):
1169 *
1170 * <- outs wnd -> <- wrapzone ->
1171 * u e n u_w e_w s n_w
1172 * | | | | | | |
1173 * |<------------+------+----- TCP seqno space --------------+---------->|
1174 * ...-- <2^31 ->| |<--------...
1175 * ...---- >2^31 ------>| |<--------...
1176 *
1177 * Current code wouldn't be vulnerable but it's better still to discard such
1178 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1179 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1180 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1181 * equal to the ideal case (infinite seqno space without wrap caused issues).
1182 *
1183 * With D-SACK the lower bound is extended to cover sequence space below
1184 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1185 * again, D-SACK block must not to go across snd_una (for the same reason as
1186 * for the normal SACK blocks, explained above). But there all simplicity
1187 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1188 * fully below undo_marker they do not affect behavior in anyway and can
1189 * therefore be safely ignored. In rare cases (which are more or less
1190 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1191 * fragmentation and packet reordering past skb's retransmission. To consider
1192 * them correctly, the acceptable range must be extended even more though
1193 * the exact amount is rather hard to quantify. However, tp->max_window can
1194 * be used as an exaggerated estimate.
1195 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1196 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1197 u32 start_seq, u32 end_seq)
1198 {
1199 /* Too far in future, or reversed (interpretation is ambiguous) */
1200 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1201 return false;
1202
1203 /* Nasty start_seq wrap-around check (see comments above) */
1204 if (!before(start_seq, tp->snd_nxt))
1205 return false;
1206
1207 /* In outstanding window? ...This is valid exit for D-SACKs too.
1208 * start_seq == snd_una is non-sensical (see comments above)
1209 */
1210 if (after(start_seq, tp->snd_una))
1211 return true;
1212
1213 if (!is_dsack || !tp->undo_marker)
1214 return false;
1215
1216 /* ...Then it's D-SACK, and must reside below snd_una completely */
1217 if (after(end_seq, tp->snd_una))
1218 return false;
1219
1220 if (!before(start_seq, tp->undo_marker))
1221 return true;
1222
1223 /* Too old */
1224 if (!after(end_seq, tp->undo_marker))
1225 return false;
1226
1227 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1228 * start_seq < undo_marker and end_seq >= undo_marker.
1229 */
1230 return !before(start_seq, end_seq - tp->max_window);
1231 }
1232
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1233 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1234 struct tcp_sack_block_wire *sp, int num_sacks,
1235 u32 prior_snd_una, struct tcp_sacktag_state *state)
1236 {
1237 struct tcp_sock *tp = tcp_sk(sk);
1238 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1239 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1240 u32 dup_segs;
1241
1242 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1243 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1244 } else if (num_sacks > 1) {
1245 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1246 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1247
1248 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1249 return false;
1250 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1251 } else {
1252 return false;
1253 }
1254
1255 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1256 if (!dup_segs) { /* Skip dubious DSACK */
1257 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1258 return false;
1259 }
1260
1261 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1262
1263 /* D-SACK for already forgotten data... Do dumb counting. */
1264 if (tp->undo_marker && tp->undo_retrans > 0 &&
1265 !after(end_seq_0, prior_snd_una) &&
1266 after(end_seq_0, tp->undo_marker))
1267 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1268
1269 return true;
1270 }
1271
1272 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1273 * the incoming SACK may not exactly match but we can find smaller MSS
1274 * aligned portion of it that matches. Therefore we might need to fragment
1275 * which may fail and creates some hassle (caller must handle error case
1276 * returns).
1277 *
1278 * FIXME: this could be merged to shift decision code
1279 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1280 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1281 u32 start_seq, u32 end_seq)
1282 {
1283 int err;
1284 bool in_sack;
1285 unsigned int pkt_len;
1286 unsigned int mss;
1287
1288 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1289 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1290
1291 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1292 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1293 mss = tcp_skb_mss(skb);
1294 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1295
1296 if (!in_sack) {
1297 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1298 if (pkt_len < mss)
1299 pkt_len = mss;
1300 } else {
1301 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1302 if (pkt_len < mss)
1303 return -EINVAL;
1304 }
1305
1306 /* Round if necessary so that SACKs cover only full MSSes
1307 * and/or the remaining small portion (if present)
1308 */
1309 if (pkt_len > mss) {
1310 unsigned int new_len = (pkt_len / mss) * mss;
1311 if (!in_sack && new_len < pkt_len)
1312 new_len += mss;
1313 pkt_len = new_len;
1314 }
1315
1316 if (pkt_len >= skb->len && !in_sack)
1317 return 0;
1318
1319 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1320 pkt_len, mss, GFP_ATOMIC);
1321 if (err < 0)
1322 return err;
1323 }
1324
1325 return in_sack;
1326 }
1327
1328 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1329 static u8 tcp_sacktag_one(struct sock *sk,
1330 struct tcp_sacktag_state *state, u8 sacked,
1331 u32 start_seq, u32 end_seq,
1332 int dup_sack, int pcount,
1333 u64 xmit_time)
1334 {
1335 struct tcp_sock *tp = tcp_sk(sk);
1336
1337 /* Account D-SACK for retransmitted packet. */
1338 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1339 if (tp->undo_marker && tp->undo_retrans > 0 &&
1340 after(end_seq, tp->undo_marker))
1341 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1342 if ((sacked & TCPCB_SACKED_ACKED) &&
1343 before(start_seq, state->reord))
1344 state->reord = start_seq;
1345 }
1346
1347 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1348 if (!after(end_seq, tp->snd_una))
1349 return sacked;
1350
1351 if (!(sacked & TCPCB_SACKED_ACKED)) {
1352 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1353
1354 if (sacked & TCPCB_SACKED_RETRANS) {
1355 /* If the segment is not tagged as lost,
1356 * we do not clear RETRANS, believing
1357 * that retransmission is still in flight.
1358 */
1359 if (sacked & TCPCB_LOST) {
1360 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1361 tp->lost_out -= pcount;
1362 tp->retrans_out -= pcount;
1363 }
1364 } else {
1365 if (!(sacked & TCPCB_RETRANS)) {
1366 /* New sack for not retransmitted frame,
1367 * which was in hole. It is reordering.
1368 */
1369 if (before(start_seq,
1370 tcp_highest_sack_seq(tp)) &&
1371 before(start_seq, state->reord))
1372 state->reord = start_seq;
1373
1374 if (!after(end_seq, tp->high_seq))
1375 state->flag |= FLAG_ORIG_SACK_ACKED;
1376 if (state->first_sackt == 0)
1377 state->first_sackt = xmit_time;
1378 state->last_sackt = xmit_time;
1379 }
1380
1381 if (sacked & TCPCB_LOST) {
1382 sacked &= ~TCPCB_LOST;
1383 tp->lost_out -= pcount;
1384 }
1385 }
1386
1387 sacked |= TCPCB_SACKED_ACKED;
1388 state->flag |= FLAG_DATA_SACKED;
1389 tp->sacked_out += pcount;
1390 /* Out-of-order packets delivered */
1391 state->sack_delivered += pcount;
1392
1393 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1394 if (tp->lost_skb_hint &&
1395 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1396 tp->lost_cnt_hint += pcount;
1397 }
1398
1399 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1400 * frames and clear it. undo_retrans is decreased above, L|R frames
1401 * are accounted above as well.
1402 */
1403 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1404 sacked &= ~TCPCB_SACKED_RETRANS;
1405 tp->retrans_out -= pcount;
1406 }
1407
1408 return sacked;
1409 }
1410
1411 /* Shift newly-SACKed bytes from this skb to the immediately previous
1412 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1413 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1414 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1415 struct sk_buff *skb,
1416 struct tcp_sacktag_state *state,
1417 unsigned int pcount, int shifted, int mss,
1418 bool dup_sack)
1419 {
1420 struct tcp_sock *tp = tcp_sk(sk);
1421 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1422 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1423
1424 BUG_ON(!pcount);
1425
1426 /* Adjust counters and hints for the newly sacked sequence
1427 * range but discard the return value since prev is already
1428 * marked. We must tag the range first because the seq
1429 * advancement below implicitly advances
1430 * tcp_highest_sack_seq() when skb is highest_sack.
1431 */
1432 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1433 start_seq, end_seq, dup_sack, pcount,
1434 tcp_skb_timestamp_us(skb));
1435 tcp_rate_skb_delivered(sk, skb, state->rate);
1436
1437 if (skb == tp->lost_skb_hint)
1438 tp->lost_cnt_hint += pcount;
1439
1440 TCP_SKB_CB(prev)->end_seq += shifted;
1441 TCP_SKB_CB(skb)->seq += shifted;
1442
1443 tcp_skb_pcount_add(prev, pcount);
1444 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1445 tcp_skb_pcount_add(skb, -pcount);
1446
1447 /* When we're adding to gso_segs == 1, gso_size will be zero,
1448 * in theory this shouldn't be necessary but as long as DSACK
1449 * code can come after this skb later on it's better to keep
1450 * setting gso_size to something.
1451 */
1452 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1453 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1454
1455 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1456 if (tcp_skb_pcount(skb) <= 1)
1457 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1458
1459 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1460 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1461
1462 if (skb->len > 0) {
1463 BUG_ON(!tcp_skb_pcount(skb));
1464 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1465 return false;
1466 }
1467
1468 /* Whole SKB was eaten :-) */
1469
1470 if (skb == tp->retransmit_skb_hint)
1471 tp->retransmit_skb_hint = prev;
1472 if (skb == tp->lost_skb_hint) {
1473 tp->lost_skb_hint = prev;
1474 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1475 }
1476
1477 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1478 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1479 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1480 TCP_SKB_CB(prev)->end_seq++;
1481
1482 if (skb == tcp_highest_sack(sk))
1483 tcp_advance_highest_sack(sk, skb);
1484
1485 tcp_skb_collapse_tstamp(prev, skb);
1486 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1487 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1488
1489 tcp_rtx_queue_unlink_and_free(skb, sk);
1490
1491 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1492
1493 return true;
1494 }
1495
1496 /* I wish gso_size would have a bit more sane initialization than
1497 * something-or-zero which complicates things
1498 */
tcp_skb_seglen(const struct sk_buff * skb)1499 static int tcp_skb_seglen(const struct sk_buff *skb)
1500 {
1501 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1502 }
1503
1504 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1505 static int skb_can_shift(const struct sk_buff *skb)
1506 {
1507 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1508 }
1509
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1510 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1511 int pcount, int shiftlen)
1512 {
1513 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1514 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1515 * to make sure not storing more than 65535 * 8 bytes per skb,
1516 * even if current MSS is bigger.
1517 */
1518 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1519 return 0;
1520 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1521 return 0;
1522 return skb_shift(to, from, shiftlen);
1523 }
1524
1525 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1526 * skb.
1527 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1528 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1529 struct tcp_sacktag_state *state,
1530 u32 start_seq, u32 end_seq,
1531 bool dup_sack)
1532 {
1533 struct tcp_sock *tp = tcp_sk(sk);
1534 struct sk_buff *prev;
1535 int mss;
1536 int pcount = 0;
1537 int len;
1538 int in_sack;
1539
1540 /* Normally R but no L won't result in plain S */
1541 if (!dup_sack &&
1542 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1543 goto fallback;
1544 if (!skb_can_shift(skb))
1545 goto fallback;
1546 /* This frame is about to be dropped (was ACKed). */
1547 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1548 goto fallback;
1549
1550 /* Can only happen with delayed DSACK + discard craziness */
1551 prev = skb_rb_prev(skb);
1552 if (!prev)
1553 goto fallback;
1554
1555 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1556 goto fallback;
1557
1558 if (!tcp_skb_can_collapse(prev, skb))
1559 goto fallback;
1560
1561 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1562 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1563
1564 if (in_sack) {
1565 len = skb->len;
1566 pcount = tcp_skb_pcount(skb);
1567 mss = tcp_skb_seglen(skb);
1568
1569 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1570 * drop this restriction as unnecessary
1571 */
1572 if (mss != tcp_skb_seglen(prev))
1573 goto fallback;
1574 } else {
1575 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1576 goto noop;
1577 /* CHECKME: This is non-MSS split case only?, this will
1578 * cause skipped skbs due to advancing loop btw, original
1579 * has that feature too
1580 */
1581 if (tcp_skb_pcount(skb) <= 1)
1582 goto noop;
1583
1584 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1585 if (!in_sack) {
1586 /* TODO: head merge to next could be attempted here
1587 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1588 * though it might not be worth of the additional hassle
1589 *
1590 * ...we can probably just fallback to what was done
1591 * previously. We could try merging non-SACKed ones
1592 * as well but it probably isn't going to buy off
1593 * because later SACKs might again split them, and
1594 * it would make skb timestamp tracking considerably
1595 * harder problem.
1596 */
1597 goto fallback;
1598 }
1599
1600 len = end_seq - TCP_SKB_CB(skb)->seq;
1601 BUG_ON(len < 0);
1602 BUG_ON(len > skb->len);
1603
1604 /* MSS boundaries should be honoured or else pcount will
1605 * severely break even though it makes things bit trickier.
1606 * Optimize common case to avoid most of the divides
1607 */
1608 mss = tcp_skb_mss(skb);
1609
1610 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1611 * drop this restriction as unnecessary
1612 */
1613 if (mss != tcp_skb_seglen(prev))
1614 goto fallback;
1615
1616 if (len == mss) {
1617 pcount = 1;
1618 } else if (len < mss) {
1619 goto noop;
1620 } else {
1621 pcount = len / mss;
1622 len = pcount * mss;
1623 }
1624 }
1625
1626 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1627 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1628 goto fallback;
1629
1630 if (!tcp_skb_shift(prev, skb, pcount, len))
1631 goto fallback;
1632 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1633 goto out;
1634
1635 /* Hole filled allows collapsing with the next as well, this is very
1636 * useful when hole on every nth skb pattern happens
1637 */
1638 skb = skb_rb_next(prev);
1639 if (!skb)
1640 goto out;
1641
1642 if (!skb_can_shift(skb) ||
1643 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1644 (mss != tcp_skb_seglen(skb)))
1645 goto out;
1646
1647 if (!tcp_skb_can_collapse(prev, skb))
1648 goto out;
1649 len = skb->len;
1650 pcount = tcp_skb_pcount(skb);
1651 if (tcp_skb_shift(prev, skb, pcount, len))
1652 tcp_shifted_skb(sk, prev, skb, state, pcount,
1653 len, mss, 0);
1654
1655 out:
1656 return prev;
1657
1658 noop:
1659 return skb;
1660
1661 fallback:
1662 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1663 return NULL;
1664 }
1665
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1666 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1667 struct tcp_sack_block *next_dup,
1668 struct tcp_sacktag_state *state,
1669 u32 start_seq, u32 end_seq,
1670 bool dup_sack_in)
1671 {
1672 struct tcp_sock *tp = tcp_sk(sk);
1673 struct sk_buff *tmp;
1674
1675 skb_rbtree_walk_from(skb) {
1676 int in_sack = 0;
1677 bool dup_sack = dup_sack_in;
1678
1679 /* queue is in-order => we can short-circuit the walk early */
1680 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1681 break;
1682
1683 if (next_dup &&
1684 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1685 in_sack = tcp_match_skb_to_sack(sk, skb,
1686 next_dup->start_seq,
1687 next_dup->end_seq);
1688 if (in_sack > 0)
1689 dup_sack = true;
1690 }
1691
1692 /* skb reference here is a bit tricky to get right, since
1693 * shifting can eat and free both this skb and the next,
1694 * so not even _safe variant of the loop is enough.
1695 */
1696 if (in_sack <= 0) {
1697 tmp = tcp_shift_skb_data(sk, skb, state,
1698 start_seq, end_seq, dup_sack);
1699 if (tmp) {
1700 if (tmp != skb) {
1701 skb = tmp;
1702 continue;
1703 }
1704
1705 in_sack = 0;
1706 } else {
1707 in_sack = tcp_match_skb_to_sack(sk, skb,
1708 start_seq,
1709 end_seq);
1710 }
1711 }
1712
1713 if (unlikely(in_sack < 0))
1714 break;
1715
1716 if (in_sack) {
1717 TCP_SKB_CB(skb)->sacked =
1718 tcp_sacktag_one(sk,
1719 state,
1720 TCP_SKB_CB(skb)->sacked,
1721 TCP_SKB_CB(skb)->seq,
1722 TCP_SKB_CB(skb)->end_seq,
1723 dup_sack,
1724 tcp_skb_pcount(skb),
1725 tcp_skb_timestamp_us(skb));
1726 tcp_rate_skb_delivered(sk, skb, state->rate);
1727 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1728 list_del_init(&skb->tcp_tsorted_anchor);
1729
1730 if (!before(TCP_SKB_CB(skb)->seq,
1731 tcp_highest_sack_seq(tp)))
1732 tcp_advance_highest_sack(sk, skb);
1733 }
1734 }
1735 return skb;
1736 }
1737
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1738 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1739 {
1740 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1741 struct sk_buff *skb;
1742
1743 while (*p) {
1744 parent = *p;
1745 skb = rb_to_skb(parent);
1746 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1747 p = &parent->rb_left;
1748 continue;
1749 }
1750 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1751 p = &parent->rb_right;
1752 continue;
1753 }
1754 return skb;
1755 }
1756 return NULL;
1757 }
1758
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1759 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1760 u32 skip_to_seq)
1761 {
1762 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1763 return skb;
1764
1765 return tcp_sacktag_bsearch(sk, skip_to_seq);
1766 }
1767
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1768 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1769 struct sock *sk,
1770 struct tcp_sack_block *next_dup,
1771 struct tcp_sacktag_state *state,
1772 u32 skip_to_seq)
1773 {
1774 if (!next_dup)
1775 return skb;
1776
1777 if (before(next_dup->start_seq, skip_to_seq)) {
1778 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1779 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1780 next_dup->start_seq, next_dup->end_seq,
1781 1);
1782 }
1783
1784 return skb;
1785 }
1786
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1787 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1788 {
1789 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1790 }
1791
1792 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1793 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1794 u32 prior_snd_una, struct tcp_sacktag_state *state)
1795 {
1796 struct tcp_sock *tp = tcp_sk(sk);
1797 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1798 TCP_SKB_CB(ack_skb)->sacked);
1799 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1800 struct tcp_sack_block sp[TCP_NUM_SACKS];
1801 struct tcp_sack_block *cache;
1802 struct sk_buff *skb;
1803 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1804 int used_sacks;
1805 bool found_dup_sack = false;
1806 int i, j;
1807 int first_sack_index;
1808
1809 state->flag = 0;
1810 state->reord = tp->snd_nxt;
1811
1812 if (!tp->sacked_out)
1813 tcp_highest_sack_reset(sk);
1814
1815 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1816 num_sacks, prior_snd_una, state);
1817
1818 /* Eliminate too old ACKs, but take into
1819 * account more or less fresh ones, they can
1820 * contain valid SACK info.
1821 */
1822 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1823 return 0;
1824
1825 if (!tp->packets_out)
1826 goto out;
1827
1828 used_sacks = 0;
1829 first_sack_index = 0;
1830 for (i = 0; i < num_sacks; i++) {
1831 bool dup_sack = !i && found_dup_sack;
1832
1833 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1834 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1835
1836 if (!tcp_is_sackblock_valid(tp, dup_sack,
1837 sp[used_sacks].start_seq,
1838 sp[used_sacks].end_seq)) {
1839 int mib_idx;
1840
1841 if (dup_sack) {
1842 if (!tp->undo_marker)
1843 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1844 else
1845 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1846 } else {
1847 /* Don't count olds caused by ACK reordering */
1848 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1849 !after(sp[used_sacks].end_seq, tp->snd_una))
1850 continue;
1851 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1852 }
1853
1854 NET_INC_STATS(sock_net(sk), mib_idx);
1855 if (i == 0)
1856 first_sack_index = -1;
1857 continue;
1858 }
1859
1860 /* Ignore very old stuff early */
1861 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1862 if (i == 0)
1863 first_sack_index = -1;
1864 continue;
1865 }
1866
1867 used_sacks++;
1868 }
1869
1870 /* order SACK blocks to allow in order walk of the retrans queue */
1871 for (i = used_sacks - 1; i > 0; i--) {
1872 for (j = 0; j < i; j++) {
1873 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1874 swap(sp[j], sp[j + 1]);
1875
1876 /* Track where the first SACK block goes to */
1877 if (j == first_sack_index)
1878 first_sack_index = j + 1;
1879 }
1880 }
1881 }
1882
1883 state->mss_now = tcp_current_mss(sk);
1884 skb = NULL;
1885 i = 0;
1886
1887 if (!tp->sacked_out) {
1888 /* It's already past, so skip checking against it */
1889 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1890 } else {
1891 cache = tp->recv_sack_cache;
1892 /* Skip empty blocks in at head of the cache */
1893 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1894 !cache->end_seq)
1895 cache++;
1896 }
1897
1898 while (i < used_sacks) {
1899 u32 start_seq = sp[i].start_seq;
1900 u32 end_seq = sp[i].end_seq;
1901 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1902 struct tcp_sack_block *next_dup = NULL;
1903
1904 if (found_dup_sack && ((i + 1) == first_sack_index))
1905 next_dup = &sp[i + 1];
1906
1907 /* Skip too early cached blocks */
1908 while (tcp_sack_cache_ok(tp, cache) &&
1909 !before(start_seq, cache->end_seq))
1910 cache++;
1911
1912 /* Can skip some work by looking recv_sack_cache? */
1913 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1914 after(end_seq, cache->start_seq)) {
1915
1916 /* Head todo? */
1917 if (before(start_seq, cache->start_seq)) {
1918 skb = tcp_sacktag_skip(skb, sk, start_seq);
1919 skb = tcp_sacktag_walk(skb, sk, next_dup,
1920 state,
1921 start_seq,
1922 cache->start_seq,
1923 dup_sack);
1924 }
1925
1926 /* Rest of the block already fully processed? */
1927 if (!after(end_seq, cache->end_seq))
1928 goto advance_sp;
1929
1930 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1931 state,
1932 cache->end_seq);
1933
1934 /* ...tail remains todo... */
1935 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1936 /* ...but better entrypoint exists! */
1937 skb = tcp_highest_sack(sk);
1938 if (!skb)
1939 break;
1940 cache++;
1941 goto walk;
1942 }
1943
1944 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1945 /* Check overlap against next cached too (past this one already) */
1946 cache++;
1947 continue;
1948 }
1949
1950 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1951 skb = tcp_highest_sack(sk);
1952 if (!skb)
1953 break;
1954 }
1955 skb = tcp_sacktag_skip(skb, sk, start_seq);
1956
1957 walk:
1958 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1959 start_seq, end_seq, dup_sack);
1960
1961 advance_sp:
1962 i++;
1963 }
1964
1965 /* Clear the head of the cache sack blocks so we can skip it next time */
1966 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1967 tp->recv_sack_cache[i].start_seq = 0;
1968 tp->recv_sack_cache[i].end_seq = 0;
1969 }
1970 for (j = 0; j < used_sacks; j++)
1971 tp->recv_sack_cache[i++] = sp[j];
1972
1973 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1974 tcp_check_sack_reordering(sk, state->reord, 0);
1975
1976 tcp_verify_left_out(tp);
1977 out:
1978
1979 #if FASTRETRANS_DEBUG > 0
1980 WARN_ON((int)tp->sacked_out < 0);
1981 WARN_ON((int)tp->lost_out < 0);
1982 WARN_ON((int)tp->retrans_out < 0);
1983 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1984 #endif
1985 return state->flag;
1986 }
1987
1988 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1989 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1990 */
tcp_limit_reno_sacked(struct tcp_sock * tp)1991 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1992 {
1993 u32 holes;
1994
1995 holes = max(tp->lost_out, 1U);
1996 holes = min(holes, tp->packets_out);
1997
1998 if ((tp->sacked_out + holes) > tp->packets_out) {
1999 tp->sacked_out = tp->packets_out - holes;
2000 return true;
2001 }
2002 return false;
2003 }
2004
2005 /* If we receive more dupacks than we expected counting segments
2006 * in assumption of absent reordering, interpret this as reordering.
2007 * The only another reason could be bug in receiver TCP.
2008 */
tcp_check_reno_reordering(struct sock * sk,const int addend)2009 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2010 {
2011 struct tcp_sock *tp = tcp_sk(sk);
2012
2013 if (!tcp_limit_reno_sacked(tp))
2014 return;
2015
2016 tp->reordering = min_t(u32, tp->packets_out + addend,
2017 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2018 tp->reord_seen++;
2019 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2020 }
2021
2022 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2023
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2024 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2025 {
2026 if (num_dupack) {
2027 struct tcp_sock *tp = tcp_sk(sk);
2028 u32 prior_sacked = tp->sacked_out;
2029 s32 delivered;
2030
2031 tp->sacked_out += num_dupack;
2032 tcp_check_reno_reordering(sk, 0);
2033 delivered = tp->sacked_out - prior_sacked;
2034 if (delivered > 0)
2035 tcp_count_delivered(tp, delivered, ece_ack);
2036 tcp_verify_left_out(tp);
2037 }
2038 }
2039
2040 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2041
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2042 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2043 {
2044 struct tcp_sock *tp = tcp_sk(sk);
2045
2046 if (acked > 0) {
2047 /* One ACK acked hole. The rest eat duplicate ACKs. */
2048 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2049 ece_ack);
2050 if (acked - 1 >= tp->sacked_out)
2051 tp->sacked_out = 0;
2052 else
2053 tp->sacked_out -= acked - 1;
2054 }
2055 tcp_check_reno_reordering(sk, acked);
2056 tcp_verify_left_out(tp);
2057 }
2058
tcp_reset_reno_sack(struct tcp_sock * tp)2059 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2060 {
2061 tp->sacked_out = 0;
2062 }
2063
tcp_clear_retrans(struct tcp_sock * tp)2064 void tcp_clear_retrans(struct tcp_sock *tp)
2065 {
2066 tp->retrans_out = 0;
2067 tp->lost_out = 0;
2068 tp->undo_marker = 0;
2069 tp->undo_retrans = -1;
2070 tp->sacked_out = 0;
2071 }
2072
tcp_init_undo(struct tcp_sock * tp)2073 static inline void tcp_init_undo(struct tcp_sock *tp)
2074 {
2075 tp->undo_marker = tp->snd_una;
2076 /* Retransmission still in flight may cause DSACKs later. */
2077 tp->undo_retrans = tp->retrans_out ? : -1;
2078 }
2079
tcp_is_rack(const struct sock * sk)2080 static bool tcp_is_rack(const struct sock *sk)
2081 {
2082 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2083 TCP_RACK_LOSS_DETECTION;
2084 }
2085
2086 /* If we detect SACK reneging, forget all SACK information
2087 * and reset tags completely, otherwise preserve SACKs. If receiver
2088 * dropped its ofo queue, we will know this due to reneging detection.
2089 */
tcp_timeout_mark_lost(struct sock * sk)2090 static void tcp_timeout_mark_lost(struct sock *sk)
2091 {
2092 struct tcp_sock *tp = tcp_sk(sk);
2093 struct sk_buff *skb, *head;
2094 bool is_reneg; /* is receiver reneging on SACKs? */
2095
2096 head = tcp_rtx_queue_head(sk);
2097 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2098 if (is_reneg) {
2099 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2100 tp->sacked_out = 0;
2101 /* Mark SACK reneging until we recover from this loss event. */
2102 tp->is_sack_reneg = 1;
2103 } else if (tcp_is_reno(tp)) {
2104 tcp_reset_reno_sack(tp);
2105 }
2106
2107 skb = head;
2108 skb_rbtree_walk_from(skb) {
2109 if (is_reneg)
2110 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2111 else if (tcp_is_rack(sk) && skb != head &&
2112 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2113 continue; /* Don't mark recently sent ones lost yet */
2114 tcp_mark_skb_lost(sk, skb);
2115 }
2116 tcp_verify_left_out(tp);
2117 tcp_clear_all_retrans_hints(tp);
2118 }
2119
2120 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2121 void tcp_enter_loss(struct sock *sk)
2122 {
2123 const struct inet_connection_sock *icsk = inet_csk(sk);
2124 struct tcp_sock *tp = tcp_sk(sk);
2125 struct net *net = sock_net(sk);
2126 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2127 u8 reordering;
2128
2129 tcp_timeout_mark_lost(sk);
2130
2131 /* Reduce ssthresh if it has not yet been made inside this window. */
2132 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2133 !after(tp->high_seq, tp->snd_una) ||
2134 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2135 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2136 tp->prior_cwnd = tp->snd_cwnd;
2137 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2138 tcp_ca_event(sk, CA_EVENT_LOSS);
2139 tcp_init_undo(tp);
2140 }
2141 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1;
2142 tp->snd_cwnd_cnt = 0;
2143 tp->snd_cwnd_stamp = tcp_jiffies32;
2144
2145 /* Timeout in disordered state after receiving substantial DUPACKs
2146 * suggests that the degree of reordering is over-estimated.
2147 */
2148 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2149 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2150 tp->sacked_out >= reordering)
2151 tp->reordering = min_t(unsigned int, tp->reordering,
2152 reordering);
2153
2154 tcp_set_ca_state(sk, TCP_CA_Loss);
2155 tp->high_seq = tp->snd_nxt;
2156 tcp_ecn_queue_cwr(tp);
2157
2158 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2159 * loss recovery is underway except recurring timeout(s) on
2160 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2161 */
2162 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2163 (new_recovery || icsk->icsk_retransmits) &&
2164 !inet_csk(sk)->icsk_mtup.probe_size;
2165 }
2166
2167 /* If ACK arrived pointing to a remembered SACK, it means that our
2168 * remembered SACKs do not reflect real state of receiver i.e.
2169 * receiver _host_ is heavily congested (or buggy).
2170 *
2171 * To avoid big spurious retransmission bursts due to transient SACK
2172 * scoreboard oddities that look like reneging, we give the receiver a
2173 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2174 * restore sanity to the SACK scoreboard. If the apparent reneging
2175 * persists until this RTO then we'll clear the SACK scoreboard.
2176 */
tcp_check_sack_reneging(struct sock * sk,int flag)2177 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2178 {
2179 if (flag & FLAG_SACK_RENEGING &&
2180 flag & FLAG_SND_UNA_ADVANCED) {
2181 struct tcp_sock *tp = tcp_sk(sk);
2182 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2183 msecs_to_jiffies(10));
2184
2185 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2186 delay, TCP_RTO_MAX);
2187 return true;
2188 }
2189 return false;
2190 }
2191
2192 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2193 * counter when SACK is enabled (without SACK, sacked_out is used for
2194 * that purpose).
2195 *
2196 * With reordering, holes may still be in flight, so RFC3517 recovery
2197 * uses pure sacked_out (total number of SACKed segments) even though
2198 * it violates the RFC that uses duplicate ACKs, often these are equal
2199 * but when e.g. out-of-window ACKs or packet duplication occurs,
2200 * they differ. Since neither occurs due to loss, TCP should really
2201 * ignore them.
2202 */
tcp_dupack_heuristics(const struct tcp_sock * tp)2203 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2204 {
2205 return tp->sacked_out + 1;
2206 }
2207
2208 /* Linux NewReno/SACK/ECN state machine.
2209 * --------------------------------------
2210 *
2211 * "Open" Normal state, no dubious events, fast path.
2212 * "Disorder" In all the respects it is "Open",
2213 * but requires a bit more attention. It is entered when
2214 * we see some SACKs or dupacks. It is split of "Open"
2215 * mainly to move some processing from fast path to slow one.
2216 * "CWR" CWND was reduced due to some Congestion Notification event.
2217 * It can be ECN, ICMP source quench, local device congestion.
2218 * "Recovery" CWND was reduced, we are fast-retransmitting.
2219 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2220 *
2221 * tcp_fastretrans_alert() is entered:
2222 * - each incoming ACK, if state is not "Open"
2223 * - when arrived ACK is unusual, namely:
2224 * * SACK
2225 * * Duplicate ACK.
2226 * * ECN ECE.
2227 *
2228 * Counting packets in flight is pretty simple.
2229 *
2230 * in_flight = packets_out - left_out + retrans_out
2231 *
2232 * packets_out is SND.NXT-SND.UNA counted in packets.
2233 *
2234 * retrans_out is number of retransmitted segments.
2235 *
2236 * left_out is number of segments left network, but not ACKed yet.
2237 *
2238 * left_out = sacked_out + lost_out
2239 *
2240 * sacked_out: Packets, which arrived to receiver out of order
2241 * and hence not ACKed. With SACKs this number is simply
2242 * amount of SACKed data. Even without SACKs
2243 * it is easy to give pretty reliable estimate of this number,
2244 * counting duplicate ACKs.
2245 *
2246 * lost_out: Packets lost by network. TCP has no explicit
2247 * "loss notification" feedback from network (for now).
2248 * It means that this number can be only _guessed_.
2249 * Actually, it is the heuristics to predict lossage that
2250 * distinguishes different algorithms.
2251 *
2252 * F.e. after RTO, when all the queue is considered as lost,
2253 * lost_out = packets_out and in_flight = retrans_out.
2254 *
2255 * Essentially, we have now a few algorithms detecting
2256 * lost packets.
2257 *
2258 * If the receiver supports SACK:
2259 *
2260 * RFC6675/3517: It is the conventional algorithm. A packet is
2261 * considered lost if the number of higher sequence packets
2262 * SACKed is greater than or equal the DUPACK thoreshold
2263 * (reordering). This is implemented in tcp_mark_head_lost and
2264 * tcp_update_scoreboard.
2265 *
2266 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2267 * (2017-) that checks timing instead of counting DUPACKs.
2268 * Essentially a packet is considered lost if it's not S/ACKed
2269 * after RTT + reordering_window, where both metrics are
2270 * dynamically measured and adjusted. This is implemented in
2271 * tcp_rack_mark_lost.
2272 *
2273 * If the receiver does not support SACK:
2274 *
2275 * NewReno (RFC6582): in Recovery we assume that one segment
2276 * is lost (classic Reno). While we are in Recovery and
2277 * a partial ACK arrives, we assume that one more packet
2278 * is lost (NewReno). This heuristics are the same in NewReno
2279 * and SACK.
2280 *
2281 * Really tricky (and requiring careful tuning) part of algorithm
2282 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2283 * The first determines the moment _when_ we should reduce CWND and,
2284 * hence, slow down forward transmission. In fact, it determines the moment
2285 * when we decide that hole is caused by loss, rather than by a reorder.
2286 *
2287 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2288 * holes, caused by lost packets.
2289 *
2290 * And the most logically complicated part of algorithm is undo
2291 * heuristics. We detect false retransmits due to both too early
2292 * fast retransmit (reordering) and underestimated RTO, analyzing
2293 * timestamps and D-SACKs. When we detect that some segments were
2294 * retransmitted by mistake and CWND reduction was wrong, we undo
2295 * window reduction and abort recovery phase. This logic is hidden
2296 * inside several functions named tcp_try_undo_<something>.
2297 */
2298
2299 /* This function decides, when we should leave Disordered state
2300 * and enter Recovery phase, reducing congestion window.
2301 *
2302 * Main question: may we further continue forward transmission
2303 * with the same cwnd?
2304 */
tcp_time_to_recover(struct sock * sk,int flag)2305 static bool tcp_time_to_recover(struct sock *sk, int flag)
2306 {
2307 struct tcp_sock *tp = tcp_sk(sk);
2308
2309 /* Trick#1: The loss is proven. */
2310 if (tp->lost_out)
2311 return true;
2312
2313 /* Not-A-Trick#2 : Classic rule... */
2314 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2315 return true;
2316
2317 return false;
2318 }
2319
2320 /* Detect loss in event "A" above by marking head of queue up as lost.
2321 * For RFC3517 SACK, a segment is considered lost if it
2322 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2323 * the maximum SACKed segments to pass before reaching this limit.
2324 */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2325 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2326 {
2327 struct tcp_sock *tp = tcp_sk(sk);
2328 struct sk_buff *skb;
2329 int cnt;
2330 /* Use SACK to deduce losses of new sequences sent during recovery */
2331 const u32 loss_high = tp->snd_nxt;
2332
2333 WARN_ON(packets > tp->packets_out);
2334 skb = tp->lost_skb_hint;
2335 if (skb) {
2336 /* Head already handled? */
2337 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2338 return;
2339 cnt = tp->lost_cnt_hint;
2340 } else {
2341 skb = tcp_rtx_queue_head(sk);
2342 cnt = 0;
2343 }
2344
2345 skb_rbtree_walk_from(skb) {
2346 /* TODO: do this better */
2347 /* this is not the most efficient way to do this... */
2348 tp->lost_skb_hint = skb;
2349 tp->lost_cnt_hint = cnt;
2350
2351 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2352 break;
2353
2354 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2355 cnt += tcp_skb_pcount(skb);
2356
2357 if (cnt > packets)
2358 break;
2359
2360 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2361 tcp_mark_skb_lost(sk, skb);
2362
2363 if (mark_head)
2364 break;
2365 }
2366 tcp_verify_left_out(tp);
2367 }
2368
2369 /* Account newly detected lost packet(s) */
2370
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2371 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2372 {
2373 struct tcp_sock *tp = tcp_sk(sk);
2374
2375 if (tcp_is_sack(tp)) {
2376 int sacked_upto = tp->sacked_out - tp->reordering;
2377 if (sacked_upto >= 0)
2378 tcp_mark_head_lost(sk, sacked_upto, 0);
2379 else if (fast_rexmit)
2380 tcp_mark_head_lost(sk, 1, 1);
2381 }
2382 }
2383
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2384 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2385 {
2386 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2387 before(tp->rx_opt.rcv_tsecr, when);
2388 }
2389
2390 /* skb is spurious retransmitted if the returned timestamp echo
2391 * reply is prior to the skb transmission time
2392 */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2393 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2394 const struct sk_buff *skb)
2395 {
2396 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2397 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2398 }
2399
2400 /* Nothing was retransmitted or returned timestamp is less
2401 * than timestamp of the first retransmission.
2402 */
tcp_packet_delayed(const struct tcp_sock * tp)2403 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2404 {
2405 return tp->retrans_stamp &&
2406 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2407 }
2408
2409 /* Undo procedures. */
2410
2411 /* We can clear retrans_stamp when there are no retransmissions in the
2412 * window. It would seem that it is trivially available for us in
2413 * tp->retrans_out, however, that kind of assumptions doesn't consider
2414 * what will happen if errors occur when sending retransmission for the
2415 * second time. ...It could the that such segment has only
2416 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2417 * the head skb is enough except for some reneging corner cases that
2418 * are not worth the effort.
2419 *
2420 * Main reason for all this complexity is the fact that connection dying
2421 * time now depends on the validity of the retrans_stamp, in particular,
2422 * that successive retransmissions of a segment must not advance
2423 * retrans_stamp under any conditions.
2424 */
tcp_any_retrans_done(const struct sock * sk)2425 static bool tcp_any_retrans_done(const struct sock *sk)
2426 {
2427 const struct tcp_sock *tp = tcp_sk(sk);
2428 struct sk_buff *skb;
2429
2430 if (tp->retrans_out)
2431 return true;
2432
2433 skb = tcp_rtx_queue_head(sk);
2434 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2435 return true;
2436
2437 return false;
2438 }
2439
DBGUNDO(struct sock * sk,const char * msg)2440 static void DBGUNDO(struct sock *sk, const char *msg)
2441 {
2442 #if FASTRETRANS_DEBUG > 1
2443 struct tcp_sock *tp = tcp_sk(sk);
2444 struct inet_sock *inet = inet_sk(sk);
2445
2446 if (sk->sk_family == AF_INET) {
2447 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2448 msg,
2449 &inet->inet_daddr, ntohs(inet->inet_dport),
2450 tp->snd_cwnd, tcp_left_out(tp),
2451 tp->snd_ssthresh, tp->prior_ssthresh,
2452 tp->packets_out);
2453 }
2454 #if IS_ENABLED(CONFIG_IPV6)
2455 else if (sk->sk_family == AF_INET6) {
2456 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2457 msg,
2458 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2459 tp->snd_cwnd, tcp_left_out(tp),
2460 tp->snd_ssthresh, tp->prior_ssthresh,
2461 tp->packets_out);
2462 }
2463 #endif
2464 #endif
2465 }
2466
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2467 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2468 {
2469 struct tcp_sock *tp = tcp_sk(sk);
2470
2471 if (unmark_loss) {
2472 struct sk_buff *skb;
2473
2474 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2475 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2476 }
2477 tp->lost_out = 0;
2478 tcp_clear_all_retrans_hints(tp);
2479 }
2480
2481 if (tp->prior_ssthresh) {
2482 const struct inet_connection_sock *icsk = inet_csk(sk);
2483
2484 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2485
2486 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2487 tp->snd_ssthresh = tp->prior_ssthresh;
2488 tcp_ecn_withdraw_cwr(tp);
2489 }
2490 }
2491 tp->snd_cwnd_stamp = tcp_jiffies32;
2492 tp->undo_marker = 0;
2493 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2494 }
2495
tcp_may_undo(const struct tcp_sock * tp)2496 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2497 {
2498 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2499 }
2500
tcp_is_non_sack_preventing_reopen(struct sock * sk)2501 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2502 {
2503 struct tcp_sock *tp = tcp_sk(sk);
2504
2505 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2506 /* Hold old state until something *above* high_seq
2507 * is ACKed. For Reno it is MUST to prevent false
2508 * fast retransmits (RFC2582). SACK TCP is safe. */
2509 if (!tcp_any_retrans_done(sk))
2510 tp->retrans_stamp = 0;
2511 return true;
2512 }
2513 return false;
2514 }
2515
2516 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2517 static bool tcp_try_undo_recovery(struct sock *sk)
2518 {
2519 struct tcp_sock *tp = tcp_sk(sk);
2520
2521 if (tcp_may_undo(tp)) {
2522 int mib_idx;
2523
2524 /* Happy end! We did not retransmit anything
2525 * or our original transmission succeeded.
2526 */
2527 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2528 tcp_undo_cwnd_reduction(sk, false);
2529 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2530 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2531 else
2532 mib_idx = LINUX_MIB_TCPFULLUNDO;
2533
2534 NET_INC_STATS(sock_net(sk), mib_idx);
2535 } else if (tp->rack.reo_wnd_persist) {
2536 tp->rack.reo_wnd_persist--;
2537 }
2538 if (tcp_is_non_sack_preventing_reopen(sk))
2539 return true;
2540 tcp_set_ca_state(sk, TCP_CA_Open);
2541 tp->is_sack_reneg = 0;
2542 return false;
2543 }
2544
2545 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2546 static bool tcp_try_undo_dsack(struct sock *sk)
2547 {
2548 struct tcp_sock *tp = tcp_sk(sk);
2549
2550 if (tp->undo_marker && !tp->undo_retrans) {
2551 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2552 tp->rack.reo_wnd_persist + 1);
2553 DBGUNDO(sk, "D-SACK");
2554 tcp_undo_cwnd_reduction(sk, false);
2555 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2556 return true;
2557 }
2558 return false;
2559 }
2560
2561 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2562 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2563 {
2564 struct tcp_sock *tp = tcp_sk(sk);
2565
2566 if (frto_undo || tcp_may_undo(tp)) {
2567 tcp_undo_cwnd_reduction(sk, true);
2568
2569 DBGUNDO(sk, "partial loss");
2570 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2571 if (frto_undo)
2572 NET_INC_STATS(sock_net(sk),
2573 LINUX_MIB_TCPSPURIOUSRTOS);
2574 inet_csk(sk)->icsk_retransmits = 0;
2575 if (tcp_is_non_sack_preventing_reopen(sk))
2576 return true;
2577 if (frto_undo || tcp_is_sack(tp)) {
2578 tcp_set_ca_state(sk, TCP_CA_Open);
2579 tp->is_sack_reneg = 0;
2580 }
2581 return true;
2582 }
2583 return false;
2584 }
2585
2586 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2587 * It computes the number of packets to send (sndcnt) based on packets newly
2588 * delivered:
2589 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2590 * cwnd reductions across a full RTT.
2591 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2592 * But when the retransmits are acked without further losses, PRR
2593 * slow starts cwnd up to ssthresh to speed up the recovery.
2594 */
tcp_init_cwnd_reduction(struct sock * sk)2595 static void tcp_init_cwnd_reduction(struct sock *sk)
2596 {
2597 struct tcp_sock *tp = tcp_sk(sk);
2598
2599 tp->high_seq = tp->snd_nxt;
2600 tp->tlp_high_seq = 0;
2601 tp->snd_cwnd_cnt = 0;
2602 tp->prior_cwnd = tp->snd_cwnd;
2603 tp->prr_delivered = 0;
2604 tp->prr_out = 0;
2605 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2606 tcp_ecn_queue_cwr(tp);
2607 }
2608
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int flag)2609 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2610 {
2611 struct tcp_sock *tp = tcp_sk(sk);
2612 int sndcnt = 0;
2613 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2614
2615 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2616 return;
2617
2618 tp->prr_delivered += newly_acked_sacked;
2619 if (delta < 0) {
2620 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2621 tp->prior_cwnd - 1;
2622 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2623 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2624 FLAG_RETRANS_DATA_ACKED) {
2625 sndcnt = min_t(int, delta,
2626 max_t(int, tp->prr_delivered - tp->prr_out,
2627 newly_acked_sacked) + 1);
2628 } else {
2629 sndcnt = min(delta, newly_acked_sacked);
2630 }
2631 /* Force a fast retransmit upon entering fast recovery */
2632 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2633 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2634 }
2635
tcp_end_cwnd_reduction(struct sock * sk)2636 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2637 {
2638 struct tcp_sock *tp = tcp_sk(sk);
2639
2640 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2641 return;
2642
2643 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2644 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2645 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2646 tp->snd_cwnd = tp->snd_ssthresh;
2647 tp->snd_cwnd_stamp = tcp_jiffies32;
2648 }
2649 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2650 }
2651
2652 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2653 void tcp_enter_cwr(struct sock *sk)
2654 {
2655 struct tcp_sock *tp = tcp_sk(sk);
2656
2657 tp->prior_ssthresh = 0;
2658 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2659 tp->undo_marker = 0;
2660 tcp_init_cwnd_reduction(sk);
2661 tcp_set_ca_state(sk, TCP_CA_CWR);
2662 }
2663 }
2664 EXPORT_SYMBOL(tcp_enter_cwr);
2665
tcp_try_keep_open(struct sock * sk)2666 static void tcp_try_keep_open(struct sock *sk)
2667 {
2668 struct tcp_sock *tp = tcp_sk(sk);
2669 int state = TCP_CA_Open;
2670
2671 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2672 state = TCP_CA_Disorder;
2673
2674 if (inet_csk(sk)->icsk_ca_state != state) {
2675 tcp_set_ca_state(sk, state);
2676 tp->high_seq = tp->snd_nxt;
2677 }
2678 }
2679
tcp_try_to_open(struct sock * sk,int flag)2680 static void tcp_try_to_open(struct sock *sk, int flag)
2681 {
2682 struct tcp_sock *tp = tcp_sk(sk);
2683
2684 tcp_verify_left_out(tp);
2685
2686 if (!tcp_any_retrans_done(sk))
2687 tp->retrans_stamp = 0;
2688
2689 if (flag & FLAG_ECE)
2690 tcp_enter_cwr(sk);
2691
2692 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2693 tcp_try_keep_open(sk);
2694 }
2695 }
2696
tcp_mtup_probe_failed(struct sock * sk)2697 static void tcp_mtup_probe_failed(struct sock *sk)
2698 {
2699 struct inet_connection_sock *icsk = inet_csk(sk);
2700
2701 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2702 icsk->icsk_mtup.probe_size = 0;
2703 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2704 }
2705
tcp_mtup_probe_success(struct sock * sk)2706 static void tcp_mtup_probe_success(struct sock *sk)
2707 {
2708 struct tcp_sock *tp = tcp_sk(sk);
2709 struct inet_connection_sock *icsk = inet_csk(sk);
2710 u64 val;
2711
2712 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2713
2714 val = (u64)tp->snd_cwnd * tcp_mss_to_mtu(sk, tp->mss_cache);
2715 do_div(val, icsk->icsk_mtup.probe_size);
2716 WARN_ON_ONCE((u32)val != val);
2717 tp->snd_cwnd = max_t(u32, 1U, val);
2718
2719 tp->snd_cwnd_cnt = 0;
2720 tp->snd_cwnd_stamp = tcp_jiffies32;
2721 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2722
2723 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2724 icsk->icsk_mtup.probe_size = 0;
2725 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2726 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2727 }
2728
2729 /* Do a simple retransmit without using the backoff mechanisms in
2730 * tcp_timer. This is used for path mtu discovery.
2731 * The socket is already locked here.
2732 */
tcp_simple_retransmit(struct sock * sk)2733 void tcp_simple_retransmit(struct sock *sk)
2734 {
2735 const struct inet_connection_sock *icsk = inet_csk(sk);
2736 struct tcp_sock *tp = tcp_sk(sk);
2737 struct sk_buff *skb;
2738 unsigned int mss = tcp_current_mss(sk);
2739
2740 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2741 if (tcp_skb_seglen(skb) > mss)
2742 tcp_mark_skb_lost(sk, skb);
2743 }
2744
2745 tcp_clear_retrans_hints_partial(tp);
2746
2747 if (!tp->lost_out)
2748 return;
2749
2750 if (tcp_is_reno(tp))
2751 tcp_limit_reno_sacked(tp);
2752
2753 tcp_verify_left_out(tp);
2754
2755 /* Don't muck with the congestion window here.
2756 * Reason is that we do not increase amount of _data_
2757 * in network, but units changed and effective
2758 * cwnd/ssthresh really reduced now.
2759 */
2760 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2761 tp->high_seq = tp->snd_nxt;
2762 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2763 tp->prior_ssthresh = 0;
2764 tp->undo_marker = 0;
2765 tcp_set_ca_state(sk, TCP_CA_Loss);
2766 }
2767 tcp_xmit_retransmit_queue(sk);
2768 }
2769 EXPORT_SYMBOL(tcp_simple_retransmit);
2770
tcp_enter_recovery(struct sock * sk,bool ece_ack)2771 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2772 {
2773 struct tcp_sock *tp = tcp_sk(sk);
2774 int mib_idx;
2775
2776 if (tcp_is_reno(tp))
2777 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2778 else
2779 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2780
2781 NET_INC_STATS(sock_net(sk), mib_idx);
2782
2783 tp->prior_ssthresh = 0;
2784 tcp_init_undo(tp);
2785
2786 if (!tcp_in_cwnd_reduction(sk)) {
2787 if (!ece_ack)
2788 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2789 tcp_init_cwnd_reduction(sk);
2790 }
2791 tcp_set_ca_state(sk, TCP_CA_Recovery);
2792 }
2793
2794 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2795 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2796 */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2797 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2798 int *rexmit)
2799 {
2800 struct tcp_sock *tp = tcp_sk(sk);
2801 bool recovered = !before(tp->snd_una, tp->high_seq);
2802
2803 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2804 tcp_try_undo_loss(sk, false))
2805 return;
2806
2807 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2808 /* Step 3.b. A timeout is spurious if not all data are
2809 * lost, i.e., never-retransmitted data are (s)acked.
2810 */
2811 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2812 tcp_try_undo_loss(sk, true))
2813 return;
2814
2815 if (after(tp->snd_nxt, tp->high_seq)) {
2816 if (flag & FLAG_DATA_SACKED || num_dupack)
2817 tp->frto = 0; /* Step 3.a. loss was real */
2818 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2819 tp->high_seq = tp->snd_nxt;
2820 /* Step 2.b. Try send new data (but deferred until cwnd
2821 * is updated in tcp_ack()). Otherwise fall back to
2822 * the conventional recovery.
2823 */
2824 if (!tcp_write_queue_empty(sk) &&
2825 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2826 *rexmit = REXMIT_NEW;
2827 return;
2828 }
2829 tp->frto = 0;
2830 }
2831 }
2832
2833 if (recovered) {
2834 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2835 tcp_try_undo_recovery(sk);
2836 return;
2837 }
2838 if (tcp_is_reno(tp)) {
2839 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2840 * delivered. Lower inflight to clock out (re)tranmissions.
2841 */
2842 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2843 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2844 else if (flag & FLAG_SND_UNA_ADVANCED)
2845 tcp_reset_reno_sack(tp);
2846 }
2847 *rexmit = REXMIT_LOST;
2848 }
2849
tcp_force_fast_retransmit(struct sock * sk)2850 static bool tcp_force_fast_retransmit(struct sock *sk)
2851 {
2852 struct tcp_sock *tp = tcp_sk(sk);
2853
2854 return after(tcp_highest_sack_seq(tp),
2855 tp->snd_una + tp->reordering * tp->mss_cache);
2856 }
2857
2858 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2859 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2860 bool *do_lost)
2861 {
2862 struct tcp_sock *tp = tcp_sk(sk);
2863
2864 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2865 /* Plain luck! Hole if filled with delayed
2866 * packet, rather than with a retransmit. Check reordering.
2867 */
2868 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2869
2870 /* We are getting evidence that the reordering degree is higher
2871 * than we realized. If there are no retransmits out then we
2872 * can undo. Otherwise we clock out new packets but do not
2873 * mark more packets lost or retransmit more.
2874 */
2875 if (tp->retrans_out)
2876 return true;
2877
2878 if (!tcp_any_retrans_done(sk))
2879 tp->retrans_stamp = 0;
2880
2881 DBGUNDO(sk, "partial recovery");
2882 tcp_undo_cwnd_reduction(sk, true);
2883 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2884 tcp_try_keep_open(sk);
2885 } else {
2886 /* Partial ACK arrived. Force fast retransmit. */
2887 *do_lost = tcp_force_fast_retransmit(sk);
2888 }
2889 return false;
2890 }
2891
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2892 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2893 {
2894 struct tcp_sock *tp = tcp_sk(sk);
2895
2896 if (tcp_rtx_queue_empty(sk))
2897 return;
2898
2899 if (unlikely(tcp_is_reno(tp))) {
2900 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2901 } else if (tcp_is_rack(sk)) {
2902 u32 prior_retrans = tp->retrans_out;
2903
2904 if (tcp_rack_mark_lost(sk))
2905 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2906 if (prior_retrans > tp->retrans_out)
2907 *ack_flag |= FLAG_LOST_RETRANS;
2908 }
2909 }
2910
2911 /* Process an event, which can update packets-in-flight not trivially.
2912 * Main goal of this function is to calculate new estimate for left_out,
2913 * taking into account both packets sitting in receiver's buffer and
2914 * packets lost by network.
2915 *
2916 * Besides that it updates the congestion state when packet loss or ECN
2917 * is detected. But it does not reduce the cwnd, it is done by the
2918 * congestion control later.
2919 *
2920 * It does _not_ decide what to send, it is made in function
2921 * tcp_xmit_retransmit_queue().
2922 */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)2923 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2924 int num_dupack, int *ack_flag, int *rexmit)
2925 {
2926 struct inet_connection_sock *icsk = inet_csk(sk);
2927 struct tcp_sock *tp = tcp_sk(sk);
2928 int fast_rexmit = 0, flag = *ack_flag;
2929 bool ece_ack = flag & FLAG_ECE;
2930 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2931 tcp_force_fast_retransmit(sk));
2932
2933 if (!tp->packets_out && tp->sacked_out)
2934 tp->sacked_out = 0;
2935
2936 /* Now state machine starts.
2937 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2938 if (ece_ack)
2939 tp->prior_ssthresh = 0;
2940
2941 /* B. In all the states check for reneging SACKs. */
2942 if (tcp_check_sack_reneging(sk, flag))
2943 return;
2944
2945 /* C. Check consistency of the current state. */
2946 tcp_verify_left_out(tp);
2947
2948 /* D. Check state exit conditions. State can be terminated
2949 * when high_seq is ACKed. */
2950 if (icsk->icsk_ca_state == TCP_CA_Open) {
2951 WARN_ON(tp->retrans_out != 0);
2952 tp->retrans_stamp = 0;
2953 } else if (!before(tp->snd_una, tp->high_seq)) {
2954 switch (icsk->icsk_ca_state) {
2955 case TCP_CA_CWR:
2956 /* CWR is to be held something *above* high_seq
2957 * is ACKed for CWR bit to reach receiver. */
2958 if (tp->snd_una != tp->high_seq) {
2959 tcp_end_cwnd_reduction(sk);
2960 tcp_set_ca_state(sk, TCP_CA_Open);
2961 }
2962 break;
2963
2964 case TCP_CA_Recovery:
2965 if (tcp_is_reno(tp))
2966 tcp_reset_reno_sack(tp);
2967 if (tcp_try_undo_recovery(sk))
2968 return;
2969 tcp_end_cwnd_reduction(sk);
2970 break;
2971 }
2972 }
2973
2974 /* E. Process state. */
2975 switch (icsk->icsk_ca_state) {
2976 case TCP_CA_Recovery:
2977 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2978 if (tcp_is_reno(tp))
2979 tcp_add_reno_sack(sk, num_dupack, ece_ack);
2980 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2981 return;
2982
2983 if (tcp_try_undo_dsack(sk))
2984 tcp_try_keep_open(sk);
2985
2986 tcp_identify_packet_loss(sk, ack_flag);
2987 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
2988 if (!tcp_time_to_recover(sk, flag))
2989 return;
2990 /* Undo reverts the recovery state. If loss is evident,
2991 * starts a new recovery (e.g. reordering then loss);
2992 */
2993 tcp_enter_recovery(sk, ece_ack);
2994 }
2995 break;
2996 case TCP_CA_Loss:
2997 tcp_process_loss(sk, flag, num_dupack, rexmit);
2998 tcp_identify_packet_loss(sk, ack_flag);
2999 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3000 (*ack_flag & FLAG_LOST_RETRANS)))
3001 return;
3002 /* Change state if cwnd is undone or retransmits are lost */
3003 fallthrough;
3004 default:
3005 if (tcp_is_reno(tp)) {
3006 if (flag & FLAG_SND_UNA_ADVANCED)
3007 tcp_reset_reno_sack(tp);
3008 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3009 }
3010
3011 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3012 tcp_try_undo_dsack(sk);
3013
3014 tcp_identify_packet_loss(sk, ack_flag);
3015 if (!tcp_time_to_recover(sk, flag)) {
3016 tcp_try_to_open(sk, flag);
3017 return;
3018 }
3019
3020 /* MTU probe failure: don't reduce cwnd */
3021 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3022 icsk->icsk_mtup.probe_size &&
3023 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3024 tcp_mtup_probe_failed(sk);
3025 /* Restores the reduction we did in tcp_mtup_probe() */
3026 tp->snd_cwnd++;
3027 tcp_simple_retransmit(sk);
3028 return;
3029 }
3030
3031 /* Otherwise enter Recovery state */
3032 tcp_enter_recovery(sk, ece_ack);
3033 fast_rexmit = 1;
3034 }
3035
3036 if (!tcp_is_rack(sk) && do_lost)
3037 tcp_update_scoreboard(sk, fast_rexmit);
3038 *rexmit = REXMIT_LOST;
3039 }
3040
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3041 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3042 {
3043 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3044 struct tcp_sock *tp = tcp_sk(sk);
3045
3046 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3047 /* If the remote keeps returning delayed ACKs, eventually
3048 * the min filter would pick it up and overestimate the
3049 * prop. delay when it expires. Skip suspected delayed ACKs.
3050 */
3051 return;
3052 }
3053 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3054 rtt_us ? : jiffies_to_usecs(1));
3055 }
3056
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3057 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3058 long seq_rtt_us, long sack_rtt_us,
3059 long ca_rtt_us, struct rate_sample *rs)
3060 {
3061 const struct tcp_sock *tp = tcp_sk(sk);
3062
3063 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3064 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3065 * Karn's algorithm forbids taking RTT if some retransmitted data
3066 * is acked (RFC6298).
3067 */
3068 if (seq_rtt_us < 0)
3069 seq_rtt_us = sack_rtt_us;
3070
3071 /* RTTM Rule: A TSecr value received in a segment is used to
3072 * update the averaged RTT measurement only if the segment
3073 * acknowledges some new data, i.e., only if it advances the
3074 * left edge of the send window.
3075 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3076 */
3077 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3078 flag & FLAG_ACKED) {
3079 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3080
3081 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3082 if (!delta)
3083 delta = 1;
3084 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3085 ca_rtt_us = seq_rtt_us;
3086 }
3087 }
3088 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3089 if (seq_rtt_us < 0)
3090 return false;
3091
3092 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3093 * always taken together with ACK, SACK, or TS-opts. Any negative
3094 * values will be skipped with the seq_rtt_us < 0 check above.
3095 */
3096 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3097 tcp_rtt_estimator(sk, seq_rtt_us);
3098 tcp_set_rto(sk);
3099
3100 /* RFC6298: only reset backoff on valid RTT measurement. */
3101 inet_csk(sk)->icsk_backoff = 0;
3102 return true;
3103 }
3104
3105 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3106 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3107 {
3108 struct rate_sample rs;
3109 long rtt_us = -1L;
3110
3111 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3112 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3113
3114 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3115 }
3116
3117
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3118 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3119 {
3120 const struct inet_connection_sock *icsk = inet_csk(sk);
3121
3122 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3123 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3124 }
3125
3126 /* Restart timer after forward progress on connection.
3127 * RFC2988 recommends to restart timer to now+rto.
3128 */
tcp_rearm_rto(struct sock * sk)3129 void tcp_rearm_rto(struct sock *sk)
3130 {
3131 const struct inet_connection_sock *icsk = inet_csk(sk);
3132 struct tcp_sock *tp = tcp_sk(sk);
3133
3134 /* If the retrans timer is currently being used by Fast Open
3135 * for SYN-ACK retrans purpose, stay put.
3136 */
3137 if (rcu_access_pointer(tp->fastopen_rsk))
3138 return;
3139
3140 if (!tp->packets_out) {
3141 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3142 } else {
3143 u32 rto = inet_csk(sk)->icsk_rto;
3144 /* Offset the time elapsed after installing regular RTO */
3145 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3146 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3147 s64 delta_us = tcp_rto_delta_us(sk);
3148 /* delta_us may not be positive if the socket is locked
3149 * when the retrans timer fires and is rescheduled.
3150 */
3151 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3152 }
3153 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3154 TCP_RTO_MAX);
3155 }
3156 }
3157
3158 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3159 static void tcp_set_xmit_timer(struct sock *sk)
3160 {
3161 if (!tcp_schedule_loss_probe(sk, true))
3162 tcp_rearm_rto(sk);
3163 }
3164
3165 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3166 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3167 {
3168 struct tcp_sock *tp = tcp_sk(sk);
3169 u32 packets_acked;
3170
3171 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3172
3173 packets_acked = tcp_skb_pcount(skb);
3174 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3175 return 0;
3176 packets_acked -= tcp_skb_pcount(skb);
3177
3178 if (packets_acked) {
3179 BUG_ON(tcp_skb_pcount(skb) == 0);
3180 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3181 }
3182
3183 return packets_acked;
3184 }
3185
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,u32 prior_snd_una)3186 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3187 u32 prior_snd_una)
3188 {
3189 const struct skb_shared_info *shinfo;
3190
3191 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3192 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3193 return;
3194
3195 shinfo = skb_shinfo(skb);
3196 if (!before(shinfo->tskey, prior_snd_una) &&
3197 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3198 tcp_skb_tsorted_save(skb) {
3199 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3200 } tcp_skb_tsorted_restore(skb);
3201 }
3202 }
3203
3204 /* Remove acknowledged frames from the retransmission queue. If our packet
3205 * is before the ack sequence we can discard it as it's confirmed to have
3206 * arrived at the other end.
3207 */
tcp_clean_rtx_queue(struct sock * sk,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3208 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3209 u32 prior_snd_una,
3210 struct tcp_sacktag_state *sack, bool ece_ack)
3211 {
3212 const struct inet_connection_sock *icsk = inet_csk(sk);
3213 u64 first_ackt, last_ackt;
3214 struct tcp_sock *tp = tcp_sk(sk);
3215 u32 prior_sacked = tp->sacked_out;
3216 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3217 struct sk_buff *skb, *next;
3218 bool fully_acked = true;
3219 long sack_rtt_us = -1L;
3220 long seq_rtt_us = -1L;
3221 long ca_rtt_us = -1L;
3222 u32 pkts_acked = 0;
3223 u32 last_in_flight = 0;
3224 bool rtt_update;
3225 int flag = 0;
3226
3227 first_ackt = 0;
3228
3229 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3230 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3231 const u32 start_seq = scb->seq;
3232 u8 sacked = scb->sacked;
3233 u32 acked_pcount;
3234
3235 /* Determine how many packets and what bytes were acked, tso and else */
3236 if (after(scb->end_seq, tp->snd_una)) {
3237 if (tcp_skb_pcount(skb) == 1 ||
3238 !after(tp->snd_una, scb->seq))
3239 break;
3240
3241 acked_pcount = tcp_tso_acked(sk, skb);
3242 if (!acked_pcount)
3243 break;
3244 fully_acked = false;
3245 } else {
3246 acked_pcount = tcp_skb_pcount(skb);
3247 }
3248
3249 if (unlikely(sacked & TCPCB_RETRANS)) {
3250 if (sacked & TCPCB_SACKED_RETRANS)
3251 tp->retrans_out -= acked_pcount;
3252 flag |= FLAG_RETRANS_DATA_ACKED;
3253 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3254 last_ackt = tcp_skb_timestamp_us(skb);
3255 WARN_ON_ONCE(last_ackt == 0);
3256 if (!first_ackt)
3257 first_ackt = last_ackt;
3258
3259 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3260 if (before(start_seq, reord))
3261 reord = start_seq;
3262 if (!after(scb->end_seq, tp->high_seq))
3263 flag |= FLAG_ORIG_SACK_ACKED;
3264 }
3265
3266 if (sacked & TCPCB_SACKED_ACKED) {
3267 tp->sacked_out -= acked_pcount;
3268 } else if (tcp_is_sack(tp)) {
3269 tcp_count_delivered(tp, acked_pcount, ece_ack);
3270 if (!tcp_skb_spurious_retrans(tp, skb))
3271 tcp_rack_advance(tp, sacked, scb->end_seq,
3272 tcp_skb_timestamp_us(skb));
3273 }
3274 if (sacked & TCPCB_LOST)
3275 tp->lost_out -= acked_pcount;
3276
3277 tp->packets_out -= acked_pcount;
3278 pkts_acked += acked_pcount;
3279 tcp_rate_skb_delivered(sk, skb, sack->rate);
3280
3281 /* Initial outgoing SYN's get put onto the write_queue
3282 * just like anything else we transmit. It is not
3283 * true data, and if we misinform our callers that
3284 * this ACK acks real data, we will erroneously exit
3285 * connection startup slow start one packet too
3286 * quickly. This is severely frowned upon behavior.
3287 */
3288 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3289 flag |= FLAG_DATA_ACKED;
3290 } else {
3291 flag |= FLAG_SYN_ACKED;
3292 tp->retrans_stamp = 0;
3293 }
3294
3295 if (!fully_acked)
3296 break;
3297
3298 tcp_ack_tstamp(sk, skb, prior_snd_una);
3299
3300 next = skb_rb_next(skb);
3301 if (unlikely(skb == tp->retransmit_skb_hint))
3302 tp->retransmit_skb_hint = NULL;
3303 if (unlikely(skb == tp->lost_skb_hint))
3304 tp->lost_skb_hint = NULL;
3305 tcp_highest_sack_replace(sk, skb, next);
3306 tcp_rtx_queue_unlink_and_free(skb, sk);
3307 }
3308
3309 if (!skb)
3310 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3311
3312 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3313 tp->snd_up = tp->snd_una;
3314
3315 if (skb) {
3316 tcp_ack_tstamp(sk, skb, prior_snd_una);
3317 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3318 flag |= FLAG_SACK_RENEGING;
3319 }
3320
3321 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3322 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3323 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3324
3325 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3326 last_in_flight && !prior_sacked && fully_acked &&
3327 sack->rate->prior_delivered + 1 == tp->delivered &&
3328 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3329 /* Conservatively mark a delayed ACK. It's typically
3330 * from a lone runt packet over the round trip to
3331 * a receiver w/o out-of-order or CE events.
3332 */
3333 flag |= FLAG_ACK_MAYBE_DELAYED;
3334 }
3335 }
3336 if (sack->first_sackt) {
3337 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3338 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3339 }
3340 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3341 ca_rtt_us, sack->rate);
3342
3343 if (flag & FLAG_ACKED) {
3344 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3345 if (unlikely(icsk->icsk_mtup.probe_size &&
3346 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3347 tcp_mtup_probe_success(sk);
3348 }
3349
3350 if (tcp_is_reno(tp)) {
3351 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3352
3353 /* If any of the cumulatively ACKed segments was
3354 * retransmitted, non-SACK case cannot confirm that
3355 * progress was due to original transmission due to
3356 * lack of TCPCB_SACKED_ACKED bits even if some of
3357 * the packets may have been never retransmitted.
3358 */
3359 if (flag & FLAG_RETRANS_DATA_ACKED)
3360 flag &= ~FLAG_ORIG_SACK_ACKED;
3361 } else {
3362 int delta;
3363
3364 /* Non-retransmitted hole got filled? That's reordering */
3365 if (before(reord, prior_fack))
3366 tcp_check_sack_reordering(sk, reord, 0);
3367
3368 delta = prior_sacked - tp->sacked_out;
3369 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3370 }
3371 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3372 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3373 tcp_skb_timestamp_us(skb))) {
3374 /* Do not re-arm RTO if the sack RTT is measured from data sent
3375 * after when the head was last (re)transmitted. Otherwise the
3376 * timeout may continue to extend in loss recovery.
3377 */
3378 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3379 }
3380
3381 if (icsk->icsk_ca_ops->pkts_acked) {
3382 struct ack_sample sample = { .pkts_acked = pkts_acked,
3383 .rtt_us = sack->rate->rtt_us,
3384 .in_flight = last_in_flight };
3385
3386 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3387 }
3388
3389 #if FASTRETRANS_DEBUG > 0
3390 WARN_ON((int)tp->sacked_out < 0);
3391 WARN_ON((int)tp->lost_out < 0);
3392 WARN_ON((int)tp->retrans_out < 0);
3393 if (!tp->packets_out && tcp_is_sack(tp)) {
3394 icsk = inet_csk(sk);
3395 if (tp->lost_out) {
3396 pr_debug("Leak l=%u %d\n",
3397 tp->lost_out, icsk->icsk_ca_state);
3398 tp->lost_out = 0;
3399 }
3400 if (tp->sacked_out) {
3401 pr_debug("Leak s=%u %d\n",
3402 tp->sacked_out, icsk->icsk_ca_state);
3403 tp->sacked_out = 0;
3404 }
3405 if (tp->retrans_out) {
3406 pr_debug("Leak r=%u %d\n",
3407 tp->retrans_out, icsk->icsk_ca_state);
3408 tp->retrans_out = 0;
3409 }
3410 }
3411 #endif
3412 return flag;
3413 }
3414
tcp_ack_probe(struct sock * sk)3415 static void tcp_ack_probe(struct sock *sk)
3416 {
3417 struct inet_connection_sock *icsk = inet_csk(sk);
3418 struct sk_buff *head = tcp_send_head(sk);
3419 const struct tcp_sock *tp = tcp_sk(sk);
3420
3421 /* Was it a usable window open? */
3422 if (!head)
3423 return;
3424 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3425 icsk->icsk_backoff = 0;
3426 icsk->icsk_probes_tstamp = 0;
3427 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3428 /* Socket must be waked up by subsequent tcp_data_snd_check().
3429 * This function is not for random using!
3430 */
3431 } else {
3432 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3433
3434 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3435 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3436 }
3437 }
3438
tcp_ack_is_dubious(const struct sock * sk,const int flag)3439 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3440 {
3441 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3442 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3443 }
3444
3445 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3446 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3447 {
3448 /* If reordering is high then always grow cwnd whenever data is
3449 * delivered regardless of its ordering. Otherwise stay conservative
3450 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3451 * new SACK or ECE mark may first advance cwnd here and later reduce
3452 * cwnd in tcp_fastretrans_alert() based on more states.
3453 */
3454 if (tcp_sk(sk)->reordering >
3455 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3456 return flag & FLAG_FORWARD_PROGRESS;
3457
3458 return flag & FLAG_DATA_ACKED;
3459 }
3460
3461 /* The "ultimate" congestion control function that aims to replace the rigid
3462 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3463 * It's called toward the end of processing an ACK with precise rate
3464 * information. All transmission or retransmission are delayed afterwards.
3465 */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3466 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3467 int flag, const struct rate_sample *rs)
3468 {
3469 const struct inet_connection_sock *icsk = inet_csk(sk);
3470
3471 if (icsk->icsk_ca_ops->cong_control) {
3472 icsk->icsk_ca_ops->cong_control(sk, rs);
3473 return;
3474 }
3475
3476 if (tcp_in_cwnd_reduction(sk)) {
3477 /* Reduce cwnd if state mandates */
3478 tcp_cwnd_reduction(sk, acked_sacked, flag);
3479 } else if (tcp_may_raise_cwnd(sk, flag)) {
3480 /* Advance cwnd if state allows */
3481 tcp_cong_avoid(sk, ack, acked_sacked);
3482 }
3483 tcp_update_pacing_rate(sk);
3484 }
3485
3486 /* Check that window update is acceptable.
3487 * The function assumes that snd_una<=ack<=snd_next.
3488 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3489 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3490 const u32 ack, const u32 ack_seq,
3491 const u32 nwin)
3492 {
3493 return after(ack, tp->snd_una) ||
3494 after(ack_seq, tp->snd_wl1) ||
3495 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3496 }
3497
3498 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3499 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3500 {
3501 u32 delta = ack - tp->snd_una;
3502
3503 sock_owned_by_me((struct sock *)tp);
3504 tp->bytes_acked += delta;
3505 tp->snd_una = ack;
3506 }
3507
3508 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3509 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3510 {
3511 u32 delta = seq - tp->rcv_nxt;
3512
3513 sock_owned_by_me((struct sock *)tp);
3514 tp->bytes_received += delta;
3515 WRITE_ONCE(tp->rcv_nxt, seq);
3516 }
3517
3518 /* Update our send window.
3519 *
3520 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3521 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3522 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3523 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3524 u32 ack_seq)
3525 {
3526 struct tcp_sock *tp = tcp_sk(sk);
3527 int flag = 0;
3528 u32 nwin = ntohs(tcp_hdr(skb)->window);
3529
3530 if (likely(!tcp_hdr(skb)->syn))
3531 nwin <<= tp->rx_opt.snd_wscale;
3532
3533 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3534 flag |= FLAG_WIN_UPDATE;
3535 tcp_update_wl(tp, ack_seq);
3536
3537 if (tp->snd_wnd != nwin) {
3538 tp->snd_wnd = nwin;
3539
3540 /* Note, it is the only place, where
3541 * fast path is recovered for sending TCP.
3542 */
3543 tp->pred_flags = 0;
3544 tcp_fast_path_check(sk);
3545
3546 if (!tcp_write_queue_empty(sk))
3547 tcp_slow_start_after_idle_check(sk);
3548
3549 if (nwin > tp->max_window) {
3550 tp->max_window = nwin;
3551 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3552 }
3553 }
3554 }
3555
3556 tcp_snd_una_update(tp, ack);
3557
3558 return flag;
3559 }
3560
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3561 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3562 u32 *last_oow_ack_time)
3563 {
3564 if (*last_oow_ack_time) {
3565 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3566
3567 if (0 <= elapsed &&
3568 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3569 NET_INC_STATS(net, mib_idx);
3570 return true; /* rate-limited: don't send yet! */
3571 }
3572 }
3573
3574 *last_oow_ack_time = tcp_jiffies32;
3575
3576 return false; /* not rate-limited: go ahead, send dupack now! */
3577 }
3578
3579 /* Return true if we're currently rate-limiting out-of-window ACKs and
3580 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3581 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3582 * attacks that send repeated SYNs or ACKs for the same connection. To
3583 * do this, we do not send a duplicate SYNACK or ACK if the remote
3584 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3585 */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3586 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3587 int mib_idx, u32 *last_oow_ack_time)
3588 {
3589 /* Data packets without SYNs are not likely part of an ACK loop. */
3590 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3591 !tcp_hdr(skb)->syn)
3592 return false;
3593
3594 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3595 }
3596
3597 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3598 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3599 {
3600 /* unprotected vars, we dont care of overwrites */
3601 static u32 challenge_timestamp;
3602 static unsigned int challenge_count;
3603 struct tcp_sock *tp = tcp_sk(sk);
3604 struct net *net = sock_net(sk);
3605 u32 count, now;
3606
3607 /* First check our per-socket dupack rate limit. */
3608 if (__tcp_oow_rate_limited(net,
3609 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3610 &tp->last_oow_ack_time))
3611 return;
3612
3613 /* Then check host-wide RFC 5961 rate limit. */
3614 now = jiffies / HZ;
3615 if (now != READ_ONCE(challenge_timestamp)) {
3616 u32 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3617 u32 half = (ack_limit + 1) >> 1;
3618
3619 WRITE_ONCE(challenge_timestamp, now);
3620 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3621 }
3622 count = READ_ONCE(challenge_count);
3623 if (count > 0) {
3624 WRITE_ONCE(challenge_count, count - 1);
3625 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3626 tcp_send_ack(sk);
3627 }
3628 }
3629
tcp_store_ts_recent(struct tcp_sock * tp)3630 static void tcp_store_ts_recent(struct tcp_sock *tp)
3631 {
3632 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3633 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3634 }
3635
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3636 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3637 {
3638 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3639 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3640 * extra check below makes sure this can only happen
3641 * for pure ACK frames. -DaveM
3642 *
3643 * Not only, also it occurs for expired timestamps.
3644 */
3645
3646 if (tcp_paws_check(&tp->rx_opt, 0))
3647 tcp_store_ts_recent(tp);
3648 }
3649 }
3650
3651 /* This routine deals with acks during a TLP episode and ends an episode by
3652 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3653 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3654 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3655 {
3656 struct tcp_sock *tp = tcp_sk(sk);
3657
3658 if (before(ack, tp->tlp_high_seq))
3659 return;
3660
3661 if (!tp->tlp_retrans) {
3662 /* TLP of new data has been acknowledged */
3663 tp->tlp_high_seq = 0;
3664 } else if (flag & FLAG_DSACKING_ACK) {
3665 /* This DSACK means original and TLP probe arrived; no loss */
3666 tp->tlp_high_seq = 0;
3667 } else if (after(ack, tp->tlp_high_seq)) {
3668 /* ACK advances: there was a loss, so reduce cwnd. Reset
3669 * tlp_high_seq in tcp_init_cwnd_reduction()
3670 */
3671 tcp_init_cwnd_reduction(sk);
3672 tcp_set_ca_state(sk, TCP_CA_CWR);
3673 tcp_end_cwnd_reduction(sk);
3674 tcp_try_keep_open(sk);
3675 NET_INC_STATS(sock_net(sk),
3676 LINUX_MIB_TCPLOSSPROBERECOVERY);
3677 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3678 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3679 /* Pure dupack: original and TLP probe arrived; no loss */
3680 tp->tlp_high_seq = 0;
3681 }
3682 }
3683
tcp_in_ack_event(struct sock * sk,u32 flags)3684 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3685 {
3686 const struct inet_connection_sock *icsk = inet_csk(sk);
3687
3688 if (icsk->icsk_ca_ops->in_ack_event)
3689 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3690 }
3691
3692 /* Congestion control has updated the cwnd already. So if we're in
3693 * loss recovery then now we do any new sends (for FRTO) or
3694 * retransmits (for CA_Loss or CA_recovery) that make sense.
3695 */
tcp_xmit_recovery(struct sock * sk,int rexmit)3696 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3697 {
3698 struct tcp_sock *tp = tcp_sk(sk);
3699
3700 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3701 return;
3702
3703 if (unlikely(rexmit == REXMIT_NEW)) {
3704 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3705 TCP_NAGLE_OFF);
3706 if (after(tp->snd_nxt, tp->high_seq))
3707 return;
3708 tp->frto = 0;
3709 }
3710 tcp_xmit_retransmit_queue(sk);
3711 }
3712
3713 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3714 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3715 {
3716 const struct net *net = sock_net(sk);
3717 struct tcp_sock *tp = tcp_sk(sk);
3718 u32 delivered;
3719
3720 delivered = tp->delivered - prior_delivered;
3721 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3722 if (flag & FLAG_ECE)
3723 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3724
3725 return delivered;
3726 }
3727
3728 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3729 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3730 {
3731 struct inet_connection_sock *icsk = inet_csk(sk);
3732 struct tcp_sock *tp = tcp_sk(sk);
3733 struct tcp_sacktag_state sack_state;
3734 struct rate_sample rs = { .prior_delivered = 0 };
3735 u32 prior_snd_una = tp->snd_una;
3736 bool is_sack_reneg = tp->is_sack_reneg;
3737 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3738 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3739 int num_dupack = 0;
3740 int prior_packets = tp->packets_out;
3741 u32 delivered = tp->delivered;
3742 u32 lost = tp->lost;
3743 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3744 u32 prior_fack;
3745
3746 sack_state.first_sackt = 0;
3747 sack_state.rate = &rs;
3748 sack_state.sack_delivered = 0;
3749
3750 /* We very likely will need to access rtx queue. */
3751 prefetch(sk->tcp_rtx_queue.rb_node);
3752
3753 /* If the ack is older than previous acks
3754 * then we can probably ignore it.
3755 */
3756 if (before(ack, prior_snd_una)) {
3757 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3758 if (before(ack, prior_snd_una - tp->max_window)) {
3759 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3760 tcp_send_challenge_ack(sk, skb);
3761 return -1;
3762 }
3763 goto old_ack;
3764 }
3765
3766 /* If the ack includes data we haven't sent yet, discard
3767 * this segment (RFC793 Section 3.9).
3768 */
3769 if (after(ack, tp->snd_nxt))
3770 return -1;
3771
3772 if (after(ack, prior_snd_una)) {
3773 flag |= FLAG_SND_UNA_ADVANCED;
3774 icsk->icsk_retransmits = 0;
3775
3776 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3777 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3778 if (icsk->icsk_clean_acked)
3779 icsk->icsk_clean_acked(sk, ack);
3780 #endif
3781 }
3782
3783 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3784 rs.prior_in_flight = tcp_packets_in_flight(tp);
3785
3786 /* ts_recent update must be made after we are sure that the packet
3787 * is in window.
3788 */
3789 if (flag & FLAG_UPDATE_TS_RECENT)
3790 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3791
3792 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3793 FLAG_SND_UNA_ADVANCED) {
3794 /* Window is constant, pure forward advance.
3795 * No more checks are required.
3796 * Note, we use the fact that SND.UNA>=SND.WL2.
3797 */
3798 tcp_update_wl(tp, ack_seq);
3799 tcp_snd_una_update(tp, ack);
3800 flag |= FLAG_WIN_UPDATE;
3801
3802 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3803
3804 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3805 } else {
3806 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3807
3808 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3809 flag |= FLAG_DATA;
3810 else
3811 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3812
3813 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3814
3815 if (TCP_SKB_CB(skb)->sacked)
3816 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3817 &sack_state);
3818
3819 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3820 flag |= FLAG_ECE;
3821 ack_ev_flags |= CA_ACK_ECE;
3822 }
3823
3824 if (sack_state.sack_delivered)
3825 tcp_count_delivered(tp, sack_state.sack_delivered,
3826 flag & FLAG_ECE);
3827
3828 if (flag & FLAG_WIN_UPDATE)
3829 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3830
3831 tcp_in_ack_event(sk, ack_ev_flags);
3832 }
3833
3834 /* This is a deviation from RFC3168 since it states that:
3835 * "When the TCP data sender is ready to set the CWR bit after reducing
3836 * the congestion window, it SHOULD set the CWR bit only on the first
3837 * new data packet that it transmits."
3838 * We accept CWR on pure ACKs to be more robust
3839 * with widely-deployed TCP implementations that do this.
3840 */
3841 tcp_ecn_accept_cwr(sk, skb);
3842
3843 /* We passed data and got it acked, remove any soft error
3844 * log. Something worked...
3845 */
3846 sk->sk_err_soft = 0;
3847 icsk->icsk_probes_out = 0;
3848 tp->rcv_tstamp = tcp_jiffies32;
3849 if (!prior_packets)
3850 goto no_queue;
3851
3852 /* See if we can take anything off of the retransmit queue. */
3853 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state,
3854 flag & FLAG_ECE);
3855
3856 tcp_rack_update_reo_wnd(sk, &rs);
3857
3858 if (tp->tlp_high_seq)
3859 tcp_process_tlp_ack(sk, ack, flag);
3860
3861 if (tcp_ack_is_dubious(sk, flag)) {
3862 if (!(flag & (FLAG_SND_UNA_ADVANCED |
3863 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3864 num_dupack = 1;
3865 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3866 if (!(flag & FLAG_DATA))
3867 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3868 }
3869 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3870 &rexmit);
3871 }
3872
3873 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
3874 if (flag & FLAG_SET_XMIT_TIMER)
3875 tcp_set_xmit_timer(sk);
3876
3877 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3878 sk_dst_confirm(sk);
3879
3880 delivered = tcp_newly_delivered(sk, delivered, flag);
3881 lost = tp->lost - lost; /* freshly marked lost */
3882 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3883 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3884 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3885 tcp_xmit_recovery(sk, rexmit);
3886 return 1;
3887
3888 no_queue:
3889 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3890 if (flag & FLAG_DSACKING_ACK) {
3891 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3892 &rexmit);
3893 tcp_newly_delivered(sk, delivered, flag);
3894 }
3895 /* If this ack opens up a zero window, clear backoff. It was
3896 * being used to time the probes, and is probably far higher than
3897 * it needs to be for normal retransmission.
3898 */
3899 tcp_ack_probe(sk);
3900
3901 if (tp->tlp_high_seq)
3902 tcp_process_tlp_ack(sk, ack, flag);
3903 return 1;
3904
3905 old_ack:
3906 /* If data was SACKed, tag it and see if we should send more data.
3907 * If data was DSACKed, see if we can undo a cwnd reduction.
3908 */
3909 if (TCP_SKB_CB(skb)->sacked) {
3910 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3911 &sack_state);
3912 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3913 &rexmit);
3914 tcp_newly_delivered(sk, delivered, flag);
3915 tcp_xmit_recovery(sk, rexmit);
3916 }
3917
3918 return 0;
3919 }
3920
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3921 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3922 bool syn, struct tcp_fastopen_cookie *foc,
3923 bool exp_opt)
3924 {
3925 /* Valid only in SYN or SYN-ACK with an even length. */
3926 if (!foc || !syn || len < 0 || (len & 1))
3927 return;
3928
3929 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3930 len <= TCP_FASTOPEN_COOKIE_MAX)
3931 memcpy(foc->val, cookie, len);
3932 else if (len != 0)
3933 len = -1;
3934 foc->len = len;
3935 foc->exp = exp_opt;
3936 }
3937
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)3938 static bool smc_parse_options(const struct tcphdr *th,
3939 struct tcp_options_received *opt_rx,
3940 const unsigned char *ptr,
3941 int opsize)
3942 {
3943 #if IS_ENABLED(CONFIG_SMC)
3944 if (static_branch_unlikely(&tcp_have_smc)) {
3945 if (th->syn && !(opsize & 1) &&
3946 opsize >= TCPOLEN_EXP_SMC_BASE &&
3947 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3948 opt_rx->smc_ok = 1;
3949 return true;
3950 }
3951 }
3952 #endif
3953 return false;
3954 }
3955
3956 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3957 * value on success.
3958 */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)3959 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3960 {
3961 const unsigned char *ptr = (const unsigned char *)(th + 1);
3962 int length = (th->doff * 4) - sizeof(struct tcphdr);
3963 u16 mss = 0;
3964
3965 while (length > 0) {
3966 int opcode = *ptr++;
3967 int opsize;
3968
3969 switch (opcode) {
3970 case TCPOPT_EOL:
3971 return mss;
3972 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3973 length--;
3974 continue;
3975 default:
3976 if (length < 2)
3977 return mss;
3978 opsize = *ptr++;
3979 if (opsize < 2) /* "silly options" */
3980 return mss;
3981 if (opsize > length)
3982 return mss; /* fail on partial options */
3983 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3984 u16 in_mss = get_unaligned_be16(ptr);
3985
3986 if (in_mss) {
3987 if (user_mss && user_mss < in_mss)
3988 in_mss = user_mss;
3989 mss = in_mss;
3990 }
3991 }
3992 ptr += opsize - 2;
3993 length -= opsize;
3994 }
3995 }
3996 return mss;
3997 }
3998
3999 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4000 * But, this can also be called on packets in the established flow when
4001 * the fast version below fails.
4002 */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4003 void tcp_parse_options(const struct net *net,
4004 const struct sk_buff *skb,
4005 struct tcp_options_received *opt_rx, int estab,
4006 struct tcp_fastopen_cookie *foc)
4007 {
4008 const unsigned char *ptr;
4009 const struct tcphdr *th = tcp_hdr(skb);
4010 int length = (th->doff * 4) - sizeof(struct tcphdr);
4011
4012 ptr = (const unsigned char *)(th + 1);
4013 opt_rx->saw_tstamp = 0;
4014 opt_rx->saw_unknown = 0;
4015
4016 while (length > 0) {
4017 int opcode = *ptr++;
4018 int opsize;
4019
4020 switch (opcode) {
4021 case TCPOPT_EOL:
4022 return;
4023 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4024 length--;
4025 continue;
4026 default:
4027 if (length < 2)
4028 return;
4029 opsize = *ptr++;
4030 if (opsize < 2) /* "silly options" */
4031 return;
4032 if (opsize > length)
4033 return; /* don't parse partial options */
4034 switch (opcode) {
4035 case TCPOPT_MSS:
4036 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4037 u16 in_mss = get_unaligned_be16(ptr);
4038 if (in_mss) {
4039 if (opt_rx->user_mss &&
4040 opt_rx->user_mss < in_mss)
4041 in_mss = opt_rx->user_mss;
4042 opt_rx->mss_clamp = in_mss;
4043 }
4044 }
4045 break;
4046 case TCPOPT_WINDOW:
4047 if (opsize == TCPOLEN_WINDOW && th->syn &&
4048 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4049 __u8 snd_wscale = *(__u8 *)ptr;
4050 opt_rx->wscale_ok = 1;
4051 if (snd_wscale > TCP_MAX_WSCALE) {
4052 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4053 __func__,
4054 snd_wscale,
4055 TCP_MAX_WSCALE);
4056 snd_wscale = TCP_MAX_WSCALE;
4057 }
4058 opt_rx->snd_wscale = snd_wscale;
4059 }
4060 break;
4061 case TCPOPT_TIMESTAMP:
4062 if ((opsize == TCPOLEN_TIMESTAMP) &&
4063 ((estab && opt_rx->tstamp_ok) ||
4064 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4065 opt_rx->saw_tstamp = 1;
4066 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4067 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4068 }
4069 break;
4070 case TCPOPT_SACK_PERM:
4071 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4072 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4073 opt_rx->sack_ok = TCP_SACK_SEEN;
4074 tcp_sack_reset(opt_rx);
4075 }
4076 break;
4077
4078 case TCPOPT_SACK:
4079 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4080 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4081 opt_rx->sack_ok) {
4082 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4083 }
4084 break;
4085 #ifdef CONFIG_TCP_MD5SIG
4086 case TCPOPT_MD5SIG:
4087 /*
4088 * The MD5 Hash has already been
4089 * checked (see tcp_v{4,6}_do_rcv()).
4090 */
4091 break;
4092 #endif
4093 case TCPOPT_FASTOPEN:
4094 tcp_parse_fastopen_option(
4095 opsize - TCPOLEN_FASTOPEN_BASE,
4096 ptr, th->syn, foc, false);
4097 break;
4098
4099 case TCPOPT_EXP:
4100 /* Fast Open option shares code 254 using a
4101 * 16 bits magic number.
4102 */
4103 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4104 get_unaligned_be16(ptr) ==
4105 TCPOPT_FASTOPEN_MAGIC) {
4106 tcp_parse_fastopen_option(opsize -
4107 TCPOLEN_EXP_FASTOPEN_BASE,
4108 ptr + 2, th->syn, foc, true);
4109 break;
4110 }
4111
4112 if (smc_parse_options(th, opt_rx, ptr, opsize))
4113 break;
4114
4115 opt_rx->saw_unknown = 1;
4116 break;
4117
4118 default:
4119 opt_rx->saw_unknown = 1;
4120 }
4121 ptr += opsize-2;
4122 length -= opsize;
4123 }
4124 }
4125 }
4126 EXPORT_SYMBOL(tcp_parse_options);
4127
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4128 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4129 {
4130 const __be32 *ptr = (const __be32 *)(th + 1);
4131
4132 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4133 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4134 tp->rx_opt.saw_tstamp = 1;
4135 ++ptr;
4136 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4137 ++ptr;
4138 if (*ptr)
4139 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4140 else
4141 tp->rx_opt.rcv_tsecr = 0;
4142 return true;
4143 }
4144 return false;
4145 }
4146
4147 /* Fast parse options. This hopes to only see timestamps.
4148 * If it is wrong it falls back on tcp_parse_options().
4149 */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4150 static bool tcp_fast_parse_options(const struct net *net,
4151 const struct sk_buff *skb,
4152 const struct tcphdr *th, struct tcp_sock *tp)
4153 {
4154 /* In the spirit of fast parsing, compare doff directly to constant
4155 * values. Because equality is used, short doff can be ignored here.
4156 */
4157 if (th->doff == (sizeof(*th) / 4)) {
4158 tp->rx_opt.saw_tstamp = 0;
4159 return false;
4160 } else if (tp->rx_opt.tstamp_ok &&
4161 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4162 if (tcp_parse_aligned_timestamp(tp, th))
4163 return true;
4164 }
4165
4166 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4167 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4168 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4169
4170 return true;
4171 }
4172
4173 #ifdef CONFIG_TCP_MD5SIG
4174 /*
4175 * Parse MD5 Signature option
4176 */
tcp_parse_md5sig_option(const struct tcphdr * th)4177 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4178 {
4179 int length = (th->doff << 2) - sizeof(*th);
4180 const u8 *ptr = (const u8 *)(th + 1);
4181
4182 /* If not enough data remaining, we can short cut */
4183 while (length >= TCPOLEN_MD5SIG) {
4184 int opcode = *ptr++;
4185 int opsize;
4186
4187 switch (opcode) {
4188 case TCPOPT_EOL:
4189 return NULL;
4190 case TCPOPT_NOP:
4191 length--;
4192 continue;
4193 default:
4194 opsize = *ptr++;
4195 if (opsize < 2 || opsize > length)
4196 return NULL;
4197 if (opcode == TCPOPT_MD5SIG)
4198 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4199 }
4200 ptr += opsize - 2;
4201 length -= opsize;
4202 }
4203 return NULL;
4204 }
4205 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4206 #endif
4207
4208 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4209 *
4210 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4211 * it can pass through stack. So, the following predicate verifies that
4212 * this segment is not used for anything but congestion avoidance or
4213 * fast retransmit. Moreover, we even are able to eliminate most of such
4214 * second order effects, if we apply some small "replay" window (~RTO)
4215 * to timestamp space.
4216 *
4217 * All these measures still do not guarantee that we reject wrapped ACKs
4218 * on networks with high bandwidth, when sequence space is recycled fastly,
4219 * but it guarantees that such events will be very rare and do not affect
4220 * connection seriously. This doesn't look nice, but alas, PAWS is really
4221 * buggy extension.
4222 *
4223 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4224 * states that events when retransmit arrives after original data are rare.
4225 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4226 * the biggest problem on large power networks even with minor reordering.
4227 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4228 * up to bandwidth of 18Gigabit/sec. 8) ]
4229 */
4230
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4231 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4232 {
4233 const struct tcp_sock *tp = tcp_sk(sk);
4234 const struct tcphdr *th = tcp_hdr(skb);
4235 u32 seq = TCP_SKB_CB(skb)->seq;
4236 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4237
4238 return (/* 1. Pure ACK with correct sequence number. */
4239 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4240
4241 /* 2. ... and duplicate ACK. */
4242 ack == tp->snd_una &&
4243
4244 /* 3. ... and does not update window. */
4245 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4246
4247 /* 4. ... and sits in replay window. */
4248 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4249 }
4250
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4251 static inline bool tcp_paws_discard(const struct sock *sk,
4252 const struct sk_buff *skb)
4253 {
4254 const struct tcp_sock *tp = tcp_sk(sk);
4255
4256 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4257 !tcp_disordered_ack(sk, skb);
4258 }
4259
4260 /* Check segment sequence number for validity.
4261 *
4262 * Segment controls are considered valid, if the segment
4263 * fits to the window after truncation to the window. Acceptability
4264 * of data (and SYN, FIN, of course) is checked separately.
4265 * See tcp_data_queue(), for example.
4266 *
4267 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4268 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4269 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4270 * (borrowed from freebsd)
4271 */
4272
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4273 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4274 {
4275 return !before(end_seq, tp->rcv_wup) &&
4276 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4277 }
4278
4279 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)4280 void tcp_reset(struct sock *sk)
4281 {
4282 trace_tcp_receive_reset(sk);
4283
4284 /* We want the right error as BSD sees it (and indeed as we do). */
4285 switch (sk->sk_state) {
4286 case TCP_SYN_SENT:
4287 sk->sk_err = ECONNREFUSED;
4288 break;
4289 case TCP_CLOSE_WAIT:
4290 sk->sk_err = EPIPE;
4291 break;
4292 case TCP_CLOSE:
4293 return;
4294 default:
4295 sk->sk_err = ECONNRESET;
4296 }
4297 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4298 smp_wmb();
4299
4300 tcp_write_queue_purge(sk);
4301 tcp_done(sk);
4302
4303 if (!sock_flag(sk, SOCK_DEAD))
4304 sk->sk_error_report(sk);
4305 }
4306
4307 /*
4308 * Process the FIN bit. This now behaves as it is supposed to work
4309 * and the FIN takes effect when it is validly part of sequence
4310 * space. Not before when we get holes.
4311 *
4312 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4313 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4314 * TIME-WAIT)
4315 *
4316 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4317 * close and we go into CLOSING (and later onto TIME-WAIT)
4318 *
4319 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4320 */
tcp_fin(struct sock * sk)4321 void tcp_fin(struct sock *sk)
4322 {
4323 struct tcp_sock *tp = tcp_sk(sk);
4324
4325 inet_csk_schedule_ack(sk);
4326
4327 sk->sk_shutdown |= RCV_SHUTDOWN;
4328 sock_set_flag(sk, SOCK_DONE);
4329
4330 switch (sk->sk_state) {
4331 case TCP_SYN_RECV:
4332 case TCP_ESTABLISHED:
4333 /* Move to CLOSE_WAIT */
4334 tcp_set_state(sk, TCP_CLOSE_WAIT);
4335 inet_csk_enter_pingpong_mode(sk);
4336 break;
4337
4338 case TCP_CLOSE_WAIT:
4339 case TCP_CLOSING:
4340 /* Received a retransmission of the FIN, do
4341 * nothing.
4342 */
4343 break;
4344 case TCP_LAST_ACK:
4345 /* RFC793: Remain in the LAST-ACK state. */
4346 break;
4347
4348 case TCP_FIN_WAIT1:
4349 /* This case occurs when a simultaneous close
4350 * happens, we must ack the received FIN and
4351 * enter the CLOSING state.
4352 */
4353 tcp_send_ack(sk);
4354 tcp_set_state(sk, TCP_CLOSING);
4355 break;
4356 case TCP_FIN_WAIT2:
4357 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4358 tcp_send_ack(sk);
4359 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4360 break;
4361 default:
4362 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4363 * cases we should never reach this piece of code.
4364 */
4365 pr_err("%s: Impossible, sk->sk_state=%d\n",
4366 __func__, sk->sk_state);
4367 break;
4368 }
4369
4370 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4371 * Probably, we should reset in this case. For now drop them.
4372 */
4373 skb_rbtree_purge(&tp->out_of_order_queue);
4374 if (tcp_is_sack(tp))
4375 tcp_sack_reset(&tp->rx_opt);
4376 sk_mem_reclaim(sk);
4377
4378 if (!sock_flag(sk, SOCK_DEAD)) {
4379 sk->sk_state_change(sk);
4380
4381 /* Do not send POLL_HUP for half duplex close. */
4382 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4383 sk->sk_state == TCP_CLOSE)
4384 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4385 else
4386 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4387 }
4388 }
4389
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4390 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4391 u32 end_seq)
4392 {
4393 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4394 if (before(seq, sp->start_seq))
4395 sp->start_seq = seq;
4396 if (after(end_seq, sp->end_seq))
4397 sp->end_seq = end_seq;
4398 return true;
4399 }
4400 return false;
4401 }
4402
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4403 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4404 {
4405 struct tcp_sock *tp = tcp_sk(sk);
4406
4407 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4408 int mib_idx;
4409
4410 if (before(seq, tp->rcv_nxt))
4411 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4412 else
4413 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4414
4415 NET_INC_STATS(sock_net(sk), mib_idx);
4416
4417 tp->rx_opt.dsack = 1;
4418 tp->duplicate_sack[0].start_seq = seq;
4419 tp->duplicate_sack[0].end_seq = end_seq;
4420 }
4421 }
4422
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4423 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4424 {
4425 struct tcp_sock *tp = tcp_sk(sk);
4426
4427 if (!tp->rx_opt.dsack)
4428 tcp_dsack_set(sk, seq, end_seq);
4429 else
4430 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4431 }
4432
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4433 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4434 {
4435 /* When the ACK path fails or drops most ACKs, the sender would
4436 * timeout and spuriously retransmit the same segment repeatedly.
4437 * The receiver remembers and reflects via DSACKs. Leverage the
4438 * DSACK state and change the txhash to re-route speculatively.
4439 */
4440 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4441 sk_rethink_txhash(sk))
4442 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4443 }
4444
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4445 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4446 {
4447 struct tcp_sock *tp = tcp_sk(sk);
4448
4449 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4450 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4451 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4452 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4453
4454 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4455 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4456
4457 tcp_rcv_spurious_retrans(sk, skb);
4458 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4459 end_seq = tp->rcv_nxt;
4460 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4461 }
4462 }
4463
4464 tcp_send_ack(sk);
4465 }
4466
4467 /* These routines update the SACK block as out-of-order packets arrive or
4468 * in-order packets close up the sequence space.
4469 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4470 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4471 {
4472 int this_sack;
4473 struct tcp_sack_block *sp = &tp->selective_acks[0];
4474 struct tcp_sack_block *swalk = sp + 1;
4475
4476 /* See if the recent change to the first SACK eats into
4477 * or hits the sequence space of other SACK blocks, if so coalesce.
4478 */
4479 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4480 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4481 int i;
4482
4483 /* Zap SWALK, by moving every further SACK up by one slot.
4484 * Decrease num_sacks.
4485 */
4486 tp->rx_opt.num_sacks--;
4487 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4488 sp[i] = sp[i + 1];
4489 continue;
4490 }
4491 this_sack++;
4492 swalk++;
4493 }
4494 }
4495
tcp_sack_compress_send_ack(struct sock * sk)4496 static void tcp_sack_compress_send_ack(struct sock *sk)
4497 {
4498 struct tcp_sock *tp = tcp_sk(sk);
4499
4500 if (!tp->compressed_ack)
4501 return;
4502
4503 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4504 __sock_put(sk);
4505
4506 /* Since we have to send one ack finally,
4507 * substract one from tp->compressed_ack to keep
4508 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4509 */
4510 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4511 tp->compressed_ack - 1);
4512
4513 tp->compressed_ack = 0;
4514 tcp_send_ack(sk);
4515 }
4516
4517 /* Reasonable amount of sack blocks included in TCP SACK option
4518 * The max is 4, but this becomes 3 if TCP timestamps are there.
4519 * Given that SACK packets might be lost, be conservative and use 2.
4520 */
4521 #define TCP_SACK_BLOCKS_EXPECTED 2
4522
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4523 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4524 {
4525 struct tcp_sock *tp = tcp_sk(sk);
4526 struct tcp_sack_block *sp = &tp->selective_acks[0];
4527 int cur_sacks = tp->rx_opt.num_sacks;
4528 int this_sack;
4529
4530 if (!cur_sacks)
4531 goto new_sack;
4532
4533 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4534 if (tcp_sack_extend(sp, seq, end_seq)) {
4535 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4536 tcp_sack_compress_send_ack(sk);
4537 /* Rotate this_sack to the first one. */
4538 for (; this_sack > 0; this_sack--, sp--)
4539 swap(*sp, *(sp - 1));
4540 if (cur_sacks > 1)
4541 tcp_sack_maybe_coalesce(tp);
4542 return;
4543 }
4544 }
4545
4546 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4547 tcp_sack_compress_send_ack(sk);
4548
4549 /* Could not find an adjacent existing SACK, build a new one,
4550 * put it at the front, and shift everyone else down. We
4551 * always know there is at least one SACK present already here.
4552 *
4553 * If the sack array is full, forget about the last one.
4554 */
4555 if (this_sack >= TCP_NUM_SACKS) {
4556 this_sack--;
4557 tp->rx_opt.num_sacks--;
4558 sp--;
4559 }
4560 for (; this_sack > 0; this_sack--, sp--)
4561 *sp = *(sp - 1);
4562
4563 new_sack:
4564 /* Build the new head SACK, and we're done. */
4565 sp->start_seq = seq;
4566 sp->end_seq = end_seq;
4567 tp->rx_opt.num_sacks++;
4568 }
4569
4570 /* RCV.NXT advances, some SACKs should be eaten. */
4571
tcp_sack_remove(struct tcp_sock * tp)4572 static void tcp_sack_remove(struct tcp_sock *tp)
4573 {
4574 struct tcp_sack_block *sp = &tp->selective_acks[0];
4575 int num_sacks = tp->rx_opt.num_sacks;
4576 int this_sack;
4577
4578 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4579 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4580 tp->rx_opt.num_sacks = 0;
4581 return;
4582 }
4583
4584 for (this_sack = 0; this_sack < num_sacks;) {
4585 /* Check if the start of the sack is covered by RCV.NXT. */
4586 if (!before(tp->rcv_nxt, sp->start_seq)) {
4587 int i;
4588
4589 /* RCV.NXT must cover all the block! */
4590 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4591
4592 /* Zap this SACK, by moving forward any other SACKS. */
4593 for (i = this_sack+1; i < num_sacks; i++)
4594 tp->selective_acks[i-1] = tp->selective_acks[i];
4595 num_sacks--;
4596 continue;
4597 }
4598 this_sack++;
4599 sp++;
4600 }
4601 tp->rx_opt.num_sacks = num_sacks;
4602 }
4603
4604 /**
4605 * tcp_try_coalesce - try to merge skb to prior one
4606 * @sk: socket
4607 * @to: prior buffer
4608 * @from: buffer to add in queue
4609 * @fragstolen: pointer to boolean
4610 *
4611 * Before queueing skb @from after @to, try to merge them
4612 * to reduce overall memory use and queue lengths, if cost is small.
4613 * Packets in ofo or receive queues can stay a long time.
4614 * Better try to coalesce them right now to avoid future collapses.
4615 * Returns true if caller should free @from instead of queueing it
4616 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4617 static bool tcp_try_coalesce(struct sock *sk,
4618 struct sk_buff *to,
4619 struct sk_buff *from,
4620 bool *fragstolen)
4621 {
4622 int delta;
4623
4624 *fragstolen = false;
4625
4626 /* Its possible this segment overlaps with prior segment in queue */
4627 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4628 return false;
4629
4630 if (!mptcp_skb_can_collapse(to, from))
4631 return false;
4632
4633 #ifdef CONFIG_TLS_DEVICE
4634 if (from->decrypted != to->decrypted)
4635 return false;
4636 #endif
4637
4638 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4639 return false;
4640
4641 atomic_add(delta, &sk->sk_rmem_alloc);
4642 sk_mem_charge(sk, delta);
4643 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4644 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4645 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4646 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4647
4648 if (TCP_SKB_CB(from)->has_rxtstamp) {
4649 TCP_SKB_CB(to)->has_rxtstamp = true;
4650 to->tstamp = from->tstamp;
4651 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4652 }
4653
4654 return true;
4655 }
4656
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4657 static bool tcp_ooo_try_coalesce(struct sock *sk,
4658 struct sk_buff *to,
4659 struct sk_buff *from,
4660 bool *fragstolen)
4661 {
4662 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4663
4664 /* In case tcp_drop() is called later, update to->gso_segs */
4665 if (res) {
4666 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4667 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4668
4669 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4670 }
4671 return res;
4672 }
4673
tcp_drop(struct sock * sk,struct sk_buff * skb)4674 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4675 {
4676 trace_android_vh_kfree_skb(skb);
4677 sk_drops_add(sk, skb);
4678 __kfree_skb(skb);
4679 }
4680
4681 /* This one checks to see if we can put data from the
4682 * out_of_order queue into the receive_queue.
4683 */
tcp_ofo_queue(struct sock * sk)4684 static void tcp_ofo_queue(struct sock *sk)
4685 {
4686 struct tcp_sock *tp = tcp_sk(sk);
4687 __u32 dsack_high = tp->rcv_nxt;
4688 bool fin, fragstolen, eaten;
4689 struct sk_buff *skb, *tail;
4690 struct rb_node *p;
4691
4692 p = rb_first(&tp->out_of_order_queue);
4693 while (p) {
4694 skb = rb_to_skb(p);
4695 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4696 break;
4697
4698 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4699 __u32 dsack = dsack_high;
4700 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4701 dsack_high = TCP_SKB_CB(skb)->end_seq;
4702 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4703 }
4704 p = rb_next(p);
4705 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4706
4707 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4708 tcp_drop(sk, skb);
4709 continue;
4710 }
4711
4712 tail = skb_peek_tail(&sk->sk_receive_queue);
4713 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4714 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4715 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4716 if (!eaten)
4717 __skb_queue_tail(&sk->sk_receive_queue, skb);
4718 else
4719 kfree_skb_partial(skb, fragstolen);
4720
4721 if (unlikely(fin)) {
4722 tcp_fin(sk);
4723 /* tcp_fin() purges tp->out_of_order_queue,
4724 * so we must end this loop right now.
4725 */
4726 break;
4727 }
4728 }
4729 }
4730
4731 static bool tcp_prune_ofo_queue(struct sock *sk);
4732 static int tcp_prune_queue(struct sock *sk);
4733
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4734 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4735 unsigned int size)
4736 {
4737 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4738 !sk_rmem_schedule(sk, skb, size)) {
4739
4740 if (tcp_prune_queue(sk) < 0)
4741 return -1;
4742
4743 while (!sk_rmem_schedule(sk, skb, size)) {
4744 if (!tcp_prune_ofo_queue(sk))
4745 return -1;
4746 }
4747 }
4748 return 0;
4749 }
4750
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4751 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4752 {
4753 struct tcp_sock *tp = tcp_sk(sk);
4754 struct rb_node **p, *parent;
4755 struct sk_buff *skb1;
4756 u32 seq, end_seq;
4757 bool fragstolen;
4758
4759 tcp_ecn_check_ce(sk, skb);
4760
4761 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4762 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4763 sk->sk_data_ready(sk);
4764 tcp_drop(sk, skb);
4765 return;
4766 }
4767
4768 /* Disable header prediction. */
4769 tp->pred_flags = 0;
4770 inet_csk_schedule_ack(sk);
4771
4772 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4773 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4774 seq = TCP_SKB_CB(skb)->seq;
4775 end_seq = TCP_SKB_CB(skb)->end_seq;
4776
4777 p = &tp->out_of_order_queue.rb_node;
4778 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4779 /* Initial out of order segment, build 1 SACK. */
4780 if (tcp_is_sack(tp)) {
4781 tp->rx_opt.num_sacks = 1;
4782 tp->selective_acks[0].start_seq = seq;
4783 tp->selective_acks[0].end_seq = end_seq;
4784 }
4785 rb_link_node(&skb->rbnode, NULL, p);
4786 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4787 tp->ooo_last_skb = skb;
4788 goto end;
4789 }
4790
4791 /* In the typical case, we are adding an skb to the end of the list.
4792 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4793 */
4794 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4795 skb, &fragstolen)) {
4796 coalesce_done:
4797 /* For non sack flows, do not grow window to force DUPACK
4798 * and trigger fast retransmit.
4799 */
4800 if (tcp_is_sack(tp))
4801 tcp_grow_window(sk, skb, true);
4802 kfree_skb_partial(skb, fragstolen);
4803 skb = NULL;
4804 goto add_sack;
4805 }
4806 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4807 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4808 parent = &tp->ooo_last_skb->rbnode;
4809 p = &parent->rb_right;
4810 goto insert;
4811 }
4812
4813 /* Find place to insert this segment. Handle overlaps on the way. */
4814 parent = NULL;
4815 while (*p) {
4816 parent = *p;
4817 skb1 = rb_to_skb(parent);
4818 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4819 p = &parent->rb_left;
4820 continue;
4821 }
4822 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4823 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4824 /* All the bits are present. Drop. */
4825 NET_INC_STATS(sock_net(sk),
4826 LINUX_MIB_TCPOFOMERGE);
4827 tcp_drop(sk, skb);
4828 skb = NULL;
4829 tcp_dsack_set(sk, seq, end_seq);
4830 goto add_sack;
4831 }
4832 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4833 /* Partial overlap. */
4834 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4835 } else {
4836 /* skb's seq == skb1's seq and skb covers skb1.
4837 * Replace skb1 with skb.
4838 */
4839 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4840 &tp->out_of_order_queue);
4841 tcp_dsack_extend(sk,
4842 TCP_SKB_CB(skb1)->seq,
4843 TCP_SKB_CB(skb1)->end_seq);
4844 NET_INC_STATS(sock_net(sk),
4845 LINUX_MIB_TCPOFOMERGE);
4846 tcp_drop(sk, skb1);
4847 goto merge_right;
4848 }
4849 } else if (tcp_ooo_try_coalesce(sk, skb1,
4850 skb, &fragstolen)) {
4851 goto coalesce_done;
4852 }
4853 p = &parent->rb_right;
4854 }
4855 insert:
4856 /* Insert segment into RB tree. */
4857 rb_link_node(&skb->rbnode, parent, p);
4858 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4859
4860 merge_right:
4861 /* Remove other segments covered by skb. */
4862 while ((skb1 = skb_rb_next(skb)) != NULL) {
4863 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4864 break;
4865 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4866 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4867 end_seq);
4868 break;
4869 }
4870 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4871 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4872 TCP_SKB_CB(skb1)->end_seq);
4873 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4874 tcp_drop(sk, skb1);
4875 }
4876 /* If there is no skb after us, we are the last_skb ! */
4877 if (!skb1)
4878 tp->ooo_last_skb = skb;
4879
4880 add_sack:
4881 if (tcp_is_sack(tp))
4882 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4883 end:
4884 if (skb) {
4885 /* For non sack flows, do not grow window to force DUPACK
4886 * and trigger fast retransmit.
4887 */
4888 if (tcp_is_sack(tp))
4889 tcp_grow_window(sk, skb, false);
4890 skb_condense(skb);
4891 skb_set_owner_r(skb, sk);
4892 }
4893 }
4894
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)4895 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4896 bool *fragstolen)
4897 {
4898 int eaten;
4899 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4900
4901 eaten = (tail &&
4902 tcp_try_coalesce(sk, tail,
4903 skb, fragstolen)) ? 1 : 0;
4904 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4905 if (!eaten) {
4906 __skb_queue_tail(&sk->sk_receive_queue, skb);
4907 skb_set_owner_r(skb, sk);
4908 }
4909 return eaten;
4910 }
4911
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4912 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4913 {
4914 struct sk_buff *skb;
4915 int err = -ENOMEM;
4916 int data_len = 0;
4917 bool fragstolen;
4918
4919 if (size == 0)
4920 return 0;
4921
4922 if (size > PAGE_SIZE) {
4923 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4924
4925 data_len = npages << PAGE_SHIFT;
4926 size = data_len + (size & ~PAGE_MASK);
4927 }
4928 skb = alloc_skb_with_frags(size - data_len, data_len,
4929 PAGE_ALLOC_COSTLY_ORDER,
4930 &err, sk->sk_allocation);
4931 if (!skb)
4932 goto err;
4933
4934 skb_put(skb, size - data_len);
4935 skb->data_len = data_len;
4936 skb->len = size;
4937
4938 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4939 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4940 goto err_free;
4941 }
4942
4943 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4944 if (err)
4945 goto err_free;
4946
4947 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4948 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4949 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4950
4951 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4952 WARN_ON_ONCE(fragstolen); /* should not happen */
4953 __kfree_skb(skb);
4954 }
4955 return size;
4956
4957 err_free:
4958 kfree_skb(skb);
4959 err:
4960 return err;
4961
4962 }
4963
tcp_data_ready(struct sock * sk)4964 void tcp_data_ready(struct sock *sk)
4965 {
4966 const struct tcp_sock *tp = tcp_sk(sk);
4967 int avail = tp->rcv_nxt - tp->copied_seq;
4968
4969 if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4970 !sock_flag(sk, SOCK_DONE) &&
4971 tcp_receive_window(tp) > inet_csk(sk)->icsk_ack.rcv_mss)
4972 return;
4973
4974 sk->sk_data_ready(sk);
4975 }
4976
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4977 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4978 {
4979 struct tcp_sock *tp = tcp_sk(sk);
4980 bool fragstolen;
4981 int eaten;
4982
4983 if (sk_is_mptcp(sk))
4984 mptcp_incoming_options(sk, skb);
4985
4986 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4987 __kfree_skb(skb);
4988 return;
4989 }
4990 skb_dst_drop(skb);
4991 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4992
4993 tp->rx_opt.dsack = 0;
4994
4995 /* Queue data for delivery to the user.
4996 * Packets in sequence go to the receive queue.
4997 * Out of sequence packets to the out_of_order_queue.
4998 */
4999 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5000 if (tcp_receive_window(tp) == 0) {
5001 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5002 goto out_of_window;
5003 }
5004
5005 /* Ok. In sequence. In window. */
5006 queue_and_out:
5007 if (skb_queue_len(&sk->sk_receive_queue) == 0)
5008 sk_forced_mem_schedule(sk, skb->truesize);
5009 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5010 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5011 sk->sk_data_ready(sk);
5012 goto drop;
5013 }
5014
5015 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5016 if (skb->len)
5017 tcp_event_data_recv(sk, skb);
5018 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5019 tcp_fin(sk);
5020
5021 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5022 tcp_ofo_queue(sk);
5023
5024 /* RFC5681. 4.2. SHOULD send immediate ACK, when
5025 * gap in queue is filled.
5026 */
5027 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5028 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5029 }
5030
5031 if (tp->rx_opt.num_sacks)
5032 tcp_sack_remove(tp);
5033
5034 tcp_fast_path_check(sk);
5035
5036 if (eaten > 0)
5037 kfree_skb_partial(skb, fragstolen);
5038 if (!sock_flag(sk, SOCK_DEAD))
5039 tcp_data_ready(sk);
5040 return;
5041 }
5042
5043 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5044 tcp_rcv_spurious_retrans(sk, skb);
5045 /* A retransmit, 2nd most common case. Force an immediate ack. */
5046 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5047 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5048
5049 out_of_window:
5050 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5051 inet_csk_schedule_ack(sk);
5052 drop:
5053 tcp_drop(sk, skb);
5054 return;
5055 }
5056
5057 /* Out of window. F.e. zero window probe. */
5058 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
5059 goto out_of_window;
5060
5061 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5062 /* Partial packet, seq < rcv_next < end_seq */
5063 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5064
5065 /* If window is closed, drop tail of packet. But after
5066 * remembering D-SACK for its head made in previous line.
5067 */
5068 if (!tcp_receive_window(tp)) {
5069 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5070 goto out_of_window;
5071 }
5072 goto queue_and_out;
5073 }
5074
5075 tcp_data_queue_ofo(sk, skb);
5076 }
5077
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5078 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5079 {
5080 if (list)
5081 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5082
5083 return skb_rb_next(skb);
5084 }
5085
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5086 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5087 struct sk_buff_head *list,
5088 struct rb_root *root)
5089 {
5090 struct sk_buff *next = tcp_skb_next(skb, list);
5091
5092 if (list)
5093 __skb_unlink(skb, list);
5094 else
5095 rb_erase(&skb->rbnode, root);
5096
5097 __kfree_skb(skb);
5098 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5099
5100 return next;
5101 }
5102
5103 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5104 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5105 {
5106 struct rb_node **p = &root->rb_node;
5107 struct rb_node *parent = NULL;
5108 struct sk_buff *skb1;
5109
5110 while (*p) {
5111 parent = *p;
5112 skb1 = rb_to_skb(parent);
5113 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5114 p = &parent->rb_left;
5115 else
5116 p = &parent->rb_right;
5117 }
5118 rb_link_node(&skb->rbnode, parent, p);
5119 rb_insert_color(&skb->rbnode, root);
5120 }
5121
5122 /* Collapse contiguous sequence of skbs head..tail with
5123 * sequence numbers start..end.
5124 *
5125 * If tail is NULL, this means until the end of the queue.
5126 *
5127 * Segments with FIN/SYN are not collapsed (only because this
5128 * simplifies code)
5129 */
5130 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5131 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5132 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5133 {
5134 struct sk_buff *skb = head, *n;
5135 struct sk_buff_head tmp;
5136 bool end_of_skbs;
5137
5138 /* First, check that queue is collapsible and find
5139 * the point where collapsing can be useful.
5140 */
5141 restart:
5142 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5143 n = tcp_skb_next(skb, list);
5144
5145 /* No new bits? It is possible on ofo queue. */
5146 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5147 skb = tcp_collapse_one(sk, skb, list, root);
5148 if (!skb)
5149 break;
5150 goto restart;
5151 }
5152
5153 /* The first skb to collapse is:
5154 * - not SYN/FIN and
5155 * - bloated or contains data before "start" or
5156 * overlaps to the next one and mptcp allow collapsing.
5157 */
5158 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5159 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5160 before(TCP_SKB_CB(skb)->seq, start))) {
5161 end_of_skbs = false;
5162 break;
5163 }
5164
5165 if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5166 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5167 end_of_skbs = false;
5168 break;
5169 }
5170
5171 /* Decided to skip this, advance start seq. */
5172 start = TCP_SKB_CB(skb)->end_seq;
5173 }
5174 if (end_of_skbs ||
5175 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5176 return;
5177
5178 __skb_queue_head_init(&tmp);
5179
5180 while (before(start, end)) {
5181 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5182 struct sk_buff *nskb;
5183
5184 nskb = alloc_skb(copy, GFP_ATOMIC);
5185 if (!nskb)
5186 break;
5187
5188 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5189 #ifdef CONFIG_TLS_DEVICE
5190 nskb->decrypted = skb->decrypted;
5191 #endif
5192 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5193 if (list)
5194 __skb_queue_before(list, skb, nskb);
5195 else
5196 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5197 skb_set_owner_r(nskb, sk);
5198 mptcp_skb_ext_move(nskb, skb);
5199
5200 /* Copy data, releasing collapsed skbs. */
5201 while (copy > 0) {
5202 int offset = start - TCP_SKB_CB(skb)->seq;
5203 int size = TCP_SKB_CB(skb)->end_seq - start;
5204
5205 BUG_ON(offset < 0);
5206 if (size > 0) {
5207 size = min(copy, size);
5208 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5209 BUG();
5210 TCP_SKB_CB(nskb)->end_seq += size;
5211 copy -= size;
5212 start += size;
5213 }
5214 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5215 skb = tcp_collapse_one(sk, skb, list, root);
5216 if (!skb ||
5217 skb == tail ||
5218 !mptcp_skb_can_collapse(nskb, skb) ||
5219 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5220 goto end;
5221 #ifdef CONFIG_TLS_DEVICE
5222 if (skb->decrypted != nskb->decrypted)
5223 goto end;
5224 #endif
5225 }
5226 }
5227 }
5228 end:
5229 skb_queue_walk_safe(&tmp, skb, n)
5230 tcp_rbtree_insert(root, skb);
5231 }
5232
5233 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5234 * and tcp_collapse() them until all the queue is collapsed.
5235 */
tcp_collapse_ofo_queue(struct sock * sk)5236 static void tcp_collapse_ofo_queue(struct sock *sk)
5237 {
5238 struct tcp_sock *tp = tcp_sk(sk);
5239 u32 range_truesize, sum_tiny = 0;
5240 struct sk_buff *skb, *head;
5241 u32 start, end;
5242
5243 skb = skb_rb_first(&tp->out_of_order_queue);
5244 new_range:
5245 if (!skb) {
5246 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5247 return;
5248 }
5249 start = TCP_SKB_CB(skb)->seq;
5250 end = TCP_SKB_CB(skb)->end_seq;
5251 range_truesize = skb->truesize;
5252
5253 for (head = skb;;) {
5254 skb = skb_rb_next(skb);
5255
5256 /* Range is terminated when we see a gap or when
5257 * we are at the queue end.
5258 */
5259 if (!skb ||
5260 after(TCP_SKB_CB(skb)->seq, end) ||
5261 before(TCP_SKB_CB(skb)->end_seq, start)) {
5262 /* Do not attempt collapsing tiny skbs */
5263 if (range_truesize != head->truesize ||
5264 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5265 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5266 head, skb, start, end);
5267 } else {
5268 sum_tiny += range_truesize;
5269 if (sum_tiny > sk->sk_rcvbuf >> 3)
5270 return;
5271 }
5272 goto new_range;
5273 }
5274
5275 range_truesize += skb->truesize;
5276 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5277 start = TCP_SKB_CB(skb)->seq;
5278 if (after(TCP_SKB_CB(skb)->end_seq, end))
5279 end = TCP_SKB_CB(skb)->end_seq;
5280 }
5281 }
5282
5283 /*
5284 * Clean the out-of-order queue to make room.
5285 * We drop high sequences packets to :
5286 * 1) Let a chance for holes to be filled.
5287 * 2) not add too big latencies if thousands of packets sit there.
5288 * (But if application shrinks SO_RCVBUF, we could still end up
5289 * freeing whole queue here)
5290 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5291 *
5292 * Return true if queue has shrunk.
5293 */
tcp_prune_ofo_queue(struct sock * sk)5294 static bool tcp_prune_ofo_queue(struct sock *sk)
5295 {
5296 struct tcp_sock *tp = tcp_sk(sk);
5297 struct rb_node *node, *prev;
5298 int goal;
5299
5300 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5301 return false;
5302
5303 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5304 goal = sk->sk_rcvbuf >> 3;
5305 node = &tp->ooo_last_skb->rbnode;
5306 do {
5307 prev = rb_prev(node);
5308 rb_erase(node, &tp->out_of_order_queue);
5309 goal -= rb_to_skb(node)->truesize;
5310 tcp_drop(sk, rb_to_skb(node));
5311 if (!prev || goal <= 0) {
5312 sk_mem_reclaim(sk);
5313 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5314 !tcp_under_memory_pressure(sk))
5315 break;
5316 goal = sk->sk_rcvbuf >> 3;
5317 }
5318 node = prev;
5319 } while (node);
5320 tp->ooo_last_skb = rb_to_skb(prev);
5321
5322 /* Reset SACK state. A conforming SACK implementation will
5323 * do the same at a timeout based retransmit. When a connection
5324 * is in a sad state like this, we care only about integrity
5325 * of the connection not performance.
5326 */
5327 if (tp->rx_opt.sack_ok)
5328 tcp_sack_reset(&tp->rx_opt);
5329 return true;
5330 }
5331
5332 /* Reduce allocated memory if we can, trying to get
5333 * the socket within its memory limits again.
5334 *
5335 * Return less than zero if we should start dropping frames
5336 * until the socket owning process reads some of the data
5337 * to stabilize the situation.
5338 */
tcp_prune_queue(struct sock * sk)5339 static int tcp_prune_queue(struct sock *sk)
5340 {
5341 struct tcp_sock *tp = tcp_sk(sk);
5342
5343 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5344
5345 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5346 tcp_clamp_window(sk);
5347 else if (tcp_under_memory_pressure(sk))
5348 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5349
5350 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5351 return 0;
5352
5353 tcp_collapse_ofo_queue(sk);
5354 if (!skb_queue_empty(&sk->sk_receive_queue))
5355 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5356 skb_peek(&sk->sk_receive_queue),
5357 NULL,
5358 tp->copied_seq, tp->rcv_nxt);
5359 sk_mem_reclaim(sk);
5360
5361 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5362 return 0;
5363
5364 /* Collapsing did not help, destructive actions follow.
5365 * This must not ever occur. */
5366
5367 tcp_prune_ofo_queue(sk);
5368
5369 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5370 return 0;
5371
5372 /* If we are really being abused, tell the caller to silently
5373 * drop receive data on the floor. It will get retransmitted
5374 * and hopefully then we'll have sufficient space.
5375 */
5376 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5377
5378 /* Massive buffer overcommit. */
5379 tp->pred_flags = 0;
5380 return -1;
5381 }
5382
tcp_should_expand_sndbuf(const struct sock * sk)5383 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5384 {
5385 const struct tcp_sock *tp = tcp_sk(sk);
5386
5387 /* If the user specified a specific send buffer setting, do
5388 * not modify it.
5389 */
5390 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5391 return false;
5392
5393 /* If we are under global TCP memory pressure, do not expand. */
5394 if (tcp_under_memory_pressure(sk))
5395 return false;
5396
5397 /* If we are under soft global TCP memory pressure, do not expand. */
5398 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5399 return false;
5400
5401 /* If we filled the congestion window, do not expand. */
5402 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5403 return false;
5404
5405 return true;
5406 }
5407
tcp_new_space(struct sock * sk)5408 static void tcp_new_space(struct sock *sk)
5409 {
5410 struct tcp_sock *tp = tcp_sk(sk);
5411
5412 if (tcp_should_expand_sndbuf(sk)) {
5413 tcp_sndbuf_expand(sk);
5414 tp->snd_cwnd_stamp = tcp_jiffies32;
5415 }
5416
5417 sk->sk_write_space(sk);
5418 }
5419
5420 /* Caller made space either from:
5421 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5422 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5423 *
5424 * We might be able to generate EPOLLOUT to the application if:
5425 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5426 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5427 * small enough that tcp_stream_memory_free() decides it
5428 * is time to generate EPOLLOUT.
5429 */
tcp_check_space(struct sock * sk)5430 void tcp_check_space(struct sock *sk)
5431 {
5432 /* pairs with tcp_poll() */
5433 smp_mb();
5434 if (sk->sk_socket &&
5435 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5436 tcp_new_space(sk);
5437 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5438 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5439 }
5440 }
5441
tcp_data_snd_check(struct sock * sk)5442 static inline void tcp_data_snd_check(struct sock *sk)
5443 {
5444 tcp_push_pending_frames(sk);
5445 tcp_check_space(sk);
5446 }
5447
5448 /*
5449 * Check if sending an ack is needed.
5450 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5451 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5452 {
5453 struct tcp_sock *tp = tcp_sk(sk);
5454 unsigned long rtt, delay;
5455
5456 /* More than one full frame received... */
5457 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5458 /* ... and right edge of window advances far enough.
5459 * (tcp_recvmsg() will send ACK otherwise).
5460 * If application uses SO_RCVLOWAT, we want send ack now if
5461 * we have not received enough bytes to satisfy the condition.
5462 */
5463 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5464 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5465 /* We ACK each frame or... */
5466 tcp_in_quickack_mode(sk) ||
5467 /* Protocol state mandates a one-time immediate ACK */
5468 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5469 send_now:
5470 tcp_send_ack(sk);
5471 return;
5472 }
5473
5474 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5475 tcp_send_delayed_ack(sk);
5476 return;
5477 }
5478
5479 if (!tcp_is_sack(tp) ||
5480 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5481 goto send_now;
5482
5483 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5484 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5485 tp->dup_ack_counter = 0;
5486 }
5487 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5488 tp->dup_ack_counter++;
5489 goto send_now;
5490 }
5491 tp->compressed_ack++;
5492 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5493 return;
5494
5495 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5496
5497 rtt = tp->rcv_rtt_est.rtt_us;
5498 if (tp->srtt_us && tp->srtt_us < rtt)
5499 rtt = tp->srtt_us;
5500
5501 delay = min_t(unsigned long,
5502 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5503 rtt * (NSEC_PER_USEC >> 3)/20);
5504 sock_hold(sk);
5505 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5506 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5507 HRTIMER_MODE_REL_PINNED_SOFT);
5508 }
5509
tcp_ack_snd_check(struct sock * sk)5510 static inline void tcp_ack_snd_check(struct sock *sk)
5511 {
5512 if (!inet_csk_ack_scheduled(sk)) {
5513 /* We sent a data segment already. */
5514 return;
5515 }
5516 __tcp_ack_snd_check(sk, 1);
5517 }
5518
5519 /*
5520 * This routine is only called when we have urgent data
5521 * signaled. Its the 'slow' part of tcp_urg. It could be
5522 * moved inline now as tcp_urg is only called from one
5523 * place. We handle URGent data wrong. We have to - as
5524 * BSD still doesn't use the correction from RFC961.
5525 * For 1003.1g we should support a new option TCP_STDURG to permit
5526 * either form (or just set the sysctl tcp_stdurg).
5527 */
5528
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5529 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5530 {
5531 struct tcp_sock *tp = tcp_sk(sk);
5532 u32 ptr = ntohs(th->urg_ptr);
5533
5534 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5535 ptr--;
5536 ptr += ntohl(th->seq);
5537
5538 /* Ignore urgent data that we've already seen and read. */
5539 if (after(tp->copied_seq, ptr))
5540 return;
5541
5542 /* Do not replay urg ptr.
5543 *
5544 * NOTE: interesting situation not covered by specs.
5545 * Misbehaving sender may send urg ptr, pointing to segment,
5546 * which we already have in ofo queue. We are not able to fetch
5547 * such data and will stay in TCP_URG_NOTYET until will be eaten
5548 * by recvmsg(). Seems, we are not obliged to handle such wicked
5549 * situations. But it is worth to think about possibility of some
5550 * DoSes using some hypothetical application level deadlock.
5551 */
5552 if (before(ptr, tp->rcv_nxt))
5553 return;
5554
5555 /* Do we already have a newer (or duplicate) urgent pointer? */
5556 if (tp->urg_data && !after(ptr, tp->urg_seq))
5557 return;
5558
5559 /* Tell the world about our new urgent pointer. */
5560 sk_send_sigurg(sk);
5561
5562 /* We may be adding urgent data when the last byte read was
5563 * urgent. To do this requires some care. We cannot just ignore
5564 * tp->copied_seq since we would read the last urgent byte again
5565 * as data, nor can we alter copied_seq until this data arrives
5566 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5567 *
5568 * NOTE. Double Dutch. Rendering to plain English: author of comment
5569 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5570 * and expect that both A and B disappear from stream. This is _wrong_.
5571 * Though this happens in BSD with high probability, this is occasional.
5572 * Any application relying on this is buggy. Note also, that fix "works"
5573 * only in this artificial test. Insert some normal data between A and B and we will
5574 * decline of BSD again. Verdict: it is better to remove to trap
5575 * buggy users.
5576 */
5577 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5578 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5579 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5580 tp->copied_seq++;
5581 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5582 __skb_unlink(skb, &sk->sk_receive_queue);
5583 __kfree_skb(skb);
5584 }
5585 }
5586
5587 tp->urg_data = TCP_URG_NOTYET;
5588 WRITE_ONCE(tp->urg_seq, ptr);
5589
5590 /* Disable header prediction. */
5591 tp->pred_flags = 0;
5592 }
5593
5594 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5595 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5596 {
5597 struct tcp_sock *tp = tcp_sk(sk);
5598
5599 /* Check if we get a new urgent pointer - normally not. */
5600 if (th->urg)
5601 tcp_check_urg(sk, th);
5602
5603 /* Do we wait for any urgent data? - normally not... */
5604 if (tp->urg_data == TCP_URG_NOTYET) {
5605 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5606 th->syn;
5607
5608 /* Is the urgent pointer pointing into this packet? */
5609 if (ptr < skb->len) {
5610 u8 tmp;
5611 if (skb_copy_bits(skb, ptr, &tmp, 1))
5612 BUG();
5613 tp->urg_data = TCP_URG_VALID | tmp;
5614 if (!sock_flag(sk, SOCK_DEAD))
5615 sk->sk_data_ready(sk);
5616 }
5617 }
5618 }
5619
5620 /* Accept RST for rcv_nxt - 1 after a FIN.
5621 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5622 * FIN is sent followed by a RST packet. The RST is sent with the same
5623 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5624 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5625 * ACKs on the closed socket. In addition middleboxes can drop either the
5626 * challenge ACK or a subsequent RST.
5627 */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5628 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5629 {
5630 struct tcp_sock *tp = tcp_sk(sk);
5631
5632 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5633 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5634 TCPF_CLOSING));
5635 }
5636
5637 /* Does PAWS and seqno based validation of an incoming segment, flags will
5638 * play significant role here.
5639 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5640 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5641 const struct tcphdr *th, int syn_inerr)
5642 {
5643 struct tcp_sock *tp = tcp_sk(sk);
5644 bool rst_seq_match = false;
5645
5646 /* RFC1323: H1. Apply PAWS check first. */
5647 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5648 tp->rx_opt.saw_tstamp &&
5649 tcp_paws_discard(sk, skb)) {
5650 if (!th->rst) {
5651 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5652 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5653 LINUX_MIB_TCPACKSKIPPEDPAWS,
5654 &tp->last_oow_ack_time))
5655 tcp_send_dupack(sk, skb);
5656 goto discard;
5657 }
5658 /* Reset is accepted even if it did not pass PAWS. */
5659 }
5660
5661 /* Step 1: check sequence number */
5662 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5663 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5664 * (RST) segments are validated by checking their SEQ-fields."
5665 * And page 69: "If an incoming segment is not acceptable,
5666 * an acknowledgment should be sent in reply (unless the RST
5667 * bit is set, if so drop the segment and return)".
5668 */
5669 if (!th->rst) {
5670 if (th->syn)
5671 goto syn_challenge;
5672 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5673 LINUX_MIB_TCPACKSKIPPEDSEQ,
5674 &tp->last_oow_ack_time))
5675 tcp_send_dupack(sk, skb);
5676 } else if (tcp_reset_check(sk, skb)) {
5677 tcp_reset(sk);
5678 }
5679 goto discard;
5680 }
5681
5682 /* Step 2: check RST bit */
5683 if (th->rst) {
5684 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5685 * FIN and SACK too if available):
5686 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5687 * the right-most SACK block,
5688 * then
5689 * RESET the connection
5690 * else
5691 * Send a challenge ACK
5692 */
5693 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5694 tcp_reset_check(sk, skb)) {
5695 rst_seq_match = true;
5696 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5697 struct tcp_sack_block *sp = &tp->selective_acks[0];
5698 int max_sack = sp[0].end_seq;
5699 int this_sack;
5700
5701 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5702 ++this_sack) {
5703 max_sack = after(sp[this_sack].end_seq,
5704 max_sack) ?
5705 sp[this_sack].end_seq : max_sack;
5706 }
5707
5708 if (TCP_SKB_CB(skb)->seq == max_sack)
5709 rst_seq_match = true;
5710 }
5711
5712 if (rst_seq_match)
5713 tcp_reset(sk);
5714 else {
5715 /* Disable TFO if RST is out-of-order
5716 * and no data has been received
5717 * for current active TFO socket
5718 */
5719 if (tp->syn_fastopen && !tp->data_segs_in &&
5720 sk->sk_state == TCP_ESTABLISHED)
5721 tcp_fastopen_active_disable(sk);
5722 tcp_send_challenge_ack(sk, skb);
5723 }
5724 goto discard;
5725 }
5726
5727 /* step 3: check security and precedence [ignored] */
5728
5729 /* step 4: Check for a SYN
5730 * RFC 5961 4.2 : Send a challenge ack
5731 */
5732 if (th->syn) {
5733 syn_challenge:
5734 if (syn_inerr)
5735 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5736 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5737 tcp_send_challenge_ack(sk, skb);
5738 goto discard;
5739 }
5740
5741 bpf_skops_parse_hdr(sk, skb);
5742
5743 return true;
5744
5745 discard:
5746 tcp_drop(sk, skb);
5747 return false;
5748 }
5749
5750 /*
5751 * TCP receive function for the ESTABLISHED state.
5752 *
5753 * It is split into a fast path and a slow path. The fast path is
5754 * disabled when:
5755 * - A zero window was announced from us - zero window probing
5756 * is only handled properly in the slow path.
5757 * - Out of order segments arrived.
5758 * - Urgent data is expected.
5759 * - There is no buffer space left
5760 * - Unexpected TCP flags/window values/header lengths are received
5761 * (detected by checking the TCP header against pred_flags)
5762 * - Data is sent in both directions. Fast path only supports pure senders
5763 * or pure receivers (this means either the sequence number or the ack
5764 * value must stay constant)
5765 * - Unexpected TCP option.
5766 *
5767 * When these conditions are not satisfied it drops into a standard
5768 * receive procedure patterned after RFC793 to handle all cases.
5769 * The first three cases are guaranteed by proper pred_flags setting,
5770 * the rest is checked inline. Fast processing is turned on in
5771 * tcp_data_queue when everything is OK.
5772 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5773 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5774 {
5775 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5776 struct tcp_sock *tp = tcp_sk(sk);
5777 unsigned int len = skb->len;
5778
5779 /* TCP congestion window tracking */
5780 trace_tcp_probe(sk, skb);
5781
5782 tcp_mstamp_refresh(tp);
5783 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5784 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5785 /*
5786 * Header prediction.
5787 * The code loosely follows the one in the famous
5788 * "30 instruction TCP receive" Van Jacobson mail.
5789 *
5790 * Van's trick is to deposit buffers into socket queue
5791 * on a device interrupt, to call tcp_recv function
5792 * on the receive process context and checksum and copy
5793 * the buffer to user space. smart...
5794 *
5795 * Our current scheme is not silly either but we take the
5796 * extra cost of the net_bh soft interrupt processing...
5797 * We do checksum and copy also but from device to kernel.
5798 */
5799
5800 tp->rx_opt.saw_tstamp = 0;
5801
5802 /* pred_flags is 0xS?10 << 16 + snd_wnd
5803 * if header_prediction is to be made
5804 * 'S' will always be tp->tcp_header_len >> 2
5805 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5806 * turn it off (when there are holes in the receive
5807 * space for instance)
5808 * PSH flag is ignored.
5809 */
5810
5811 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5812 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5813 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5814 int tcp_header_len = tp->tcp_header_len;
5815
5816 /* Timestamp header prediction: tcp_header_len
5817 * is automatically equal to th->doff*4 due to pred_flags
5818 * match.
5819 */
5820
5821 /* Check timestamp */
5822 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5823 /* No? Slow path! */
5824 if (!tcp_parse_aligned_timestamp(tp, th))
5825 goto slow_path;
5826
5827 /* If PAWS failed, check it more carefully in slow path */
5828 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5829 goto slow_path;
5830
5831 /* DO NOT update ts_recent here, if checksum fails
5832 * and timestamp was corrupted part, it will result
5833 * in a hung connection since we will drop all
5834 * future packets due to the PAWS test.
5835 */
5836 }
5837
5838 if (len <= tcp_header_len) {
5839 /* Bulk data transfer: sender */
5840 if (len == tcp_header_len) {
5841 /* Predicted packet is in window by definition.
5842 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5843 * Hence, check seq<=rcv_wup reduces to:
5844 */
5845 if (tcp_header_len ==
5846 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5847 tp->rcv_nxt == tp->rcv_wup)
5848 tcp_store_ts_recent(tp);
5849
5850 /* We know that such packets are checksummed
5851 * on entry.
5852 */
5853 tcp_ack(sk, skb, 0);
5854 __kfree_skb(skb);
5855 tcp_data_snd_check(sk);
5856 /* When receiving pure ack in fast path, update
5857 * last ts ecr directly instead of calling
5858 * tcp_rcv_rtt_measure_ts()
5859 */
5860 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5861 return;
5862 } else { /* Header too small */
5863 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5864 goto discard;
5865 }
5866 } else {
5867 int eaten = 0;
5868 bool fragstolen = false;
5869
5870 if (tcp_checksum_complete(skb))
5871 goto csum_error;
5872
5873 if ((int)skb->truesize > sk->sk_forward_alloc)
5874 goto step5;
5875
5876 /* Predicted packet is in window by definition.
5877 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5878 * Hence, check seq<=rcv_wup reduces to:
5879 */
5880 if (tcp_header_len ==
5881 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5882 tp->rcv_nxt == tp->rcv_wup)
5883 tcp_store_ts_recent(tp);
5884
5885 tcp_rcv_rtt_measure_ts(sk, skb);
5886
5887 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5888
5889 /* Bulk data transfer: receiver */
5890 __skb_pull(skb, tcp_header_len);
5891 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5892
5893 tcp_event_data_recv(sk, skb);
5894
5895 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5896 /* Well, only one small jumplet in fast path... */
5897 tcp_ack(sk, skb, FLAG_DATA);
5898 tcp_data_snd_check(sk);
5899 if (!inet_csk_ack_scheduled(sk))
5900 goto no_ack;
5901 } else {
5902 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5903 }
5904
5905 __tcp_ack_snd_check(sk, 0);
5906 no_ack:
5907 if (eaten)
5908 kfree_skb_partial(skb, fragstolen);
5909 tcp_data_ready(sk);
5910 return;
5911 }
5912 }
5913
5914 slow_path:
5915 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5916 goto csum_error;
5917
5918 if (!th->ack && !th->rst && !th->syn)
5919 goto discard;
5920
5921 /*
5922 * Standard slow path.
5923 */
5924
5925 if (!tcp_validate_incoming(sk, skb, th, 1))
5926 return;
5927
5928 step5:
5929 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5930 goto discard;
5931
5932 tcp_rcv_rtt_measure_ts(sk, skb);
5933
5934 /* Process urgent data. */
5935 tcp_urg(sk, skb, th);
5936
5937 /* step 7: process the segment text */
5938 tcp_data_queue(sk, skb);
5939
5940 tcp_data_snd_check(sk);
5941 tcp_ack_snd_check(sk);
5942 return;
5943
5944 csum_error:
5945 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5946 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5947
5948 discard:
5949 tcp_drop(sk, skb);
5950 }
5951 EXPORT_SYMBOL(tcp_rcv_established);
5952
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)5953 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5954 {
5955 struct inet_connection_sock *icsk = inet_csk(sk);
5956 struct tcp_sock *tp = tcp_sk(sk);
5957
5958 tcp_mtup_init(sk);
5959 icsk->icsk_af_ops->rebuild_header(sk);
5960 tcp_init_metrics(sk);
5961
5962 /* Initialize the congestion window to start the transfer.
5963 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5964 * retransmitted. In light of RFC6298 more aggressive 1sec
5965 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5966 * retransmission has occurred.
5967 */
5968 if (tp->total_retrans > 1 && tp->undo_marker)
5969 tp->snd_cwnd = 1;
5970 else
5971 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5972 tp->snd_cwnd_stamp = tcp_jiffies32;
5973
5974 bpf_skops_established(sk, bpf_op, skb);
5975 /* Initialize congestion control unless BPF initialized it already: */
5976 if (!icsk->icsk_ca_initialized)
5977 tcp_init_congestion_control(sk);
5978 tcp_init_buffer_space(sk);
5979 }
5980
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)5981 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5982 {
5983 struct tcp_sock *tp = tcp_sk(sk);
5984 struct inet_connection_sock *icsk = inet_csk(sk);
5985
5986 tcp_set_state(sk, TCP_ESTABLISHED);
5987 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5988
5989 if (skb) {
5990 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5991 security_inet_conn_established(sk, skb);
5992 sk_mark_napi_id(sk, skb);
5993 }
5994
5995 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
5996
5997 /* Prevent spurious tcp_cwnd_restart() on first data
5998 * packet.
5999 */
6000 tp->lsndtime = tcp_jiffies32;
6001
6002 if (sock_flag(sk, SOCK_KEEPOPEN))
6003 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6004
6005 if (!tp->rx_opt.snd_wscale)
6006 __tcp_fast_path_on(tp, tp->snd_wnd);
6007 else
6008 tp->pred_flags = 0;
6009 }
6010
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6011 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6012 struct tcp_fastopen_cookie *cookie)
6013 {
6014 struct tcp_sock *tp = tcp_sk(sk);
6015 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6016 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6017 bool syn_drop = false;
6018
6019 if (mss == tp->rx_opt.user_mss) {
6020 struct tcp_options_received opt;
6021
6022 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6023 tcp_clear_options(&opt);
6024 opt.user_mss = opt.mss_clamp = 0;
6025 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6026 mss = opt.mss_clamp;
6027 }
6028
6029 if (!tp->syn_fastopen) {
6030 /* Ignore an unsolicited cookie */
6031 cookie->len = -1;
6032 } else if (tp->total_retrans) {
6033 /* SYN timed out and the SYN-ACK neither has a cookie nor
6034 * acknowledges data. Presumably the remote received only
6035 * the retransmitted (regular) SYNs: either the original
6036 * SYN-data or the corresponding SYN-ACK was dropped.
6037 */
6038 syn_drop = (cookie->len < 0 && data);
6039 } else if (cookie->len < 0 && !tp->syn_data) {
6040 /* We requested a cookie but didn't get it. If we did not use
6041 * the (old) exp opt format then try so next time (try_exp=1).
6042 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6043 */
6044 try_exp = tp->syn_fastopen_exp ? 2 : 1;
6045 }
6046
6047 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6048
6049 if (data) { /* Retransmit unacked data in SYN */
6050 if (tp->total_retrans)
6051 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6052 else
6053 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6054 skb_rbtree_walk_from(data) {
6055 if (__tcp_retransmit_skb(sk, data, 1))
6056 break;
6057 }
6058 tcp_rearm_rto(sk);
6059 NET_INC_STATS(sock_net(sk),
6060 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6061 return true;
6062 }
6063 tp->syn_data_acked = tp->syn_data;
6064 if (tp->syn_data_acked) {
6065 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6066 /* SYN-data is counted as two separate packets in tcp_ack() */
6067 if (tp->delivered > 1)
6068 --tp->delivered;
6069 }
6070
6071 tcp_fastopen_add_skb(sk, synack);
6072
6073 return false;
6074 }
6075
smc_check_reset_syn(struct tcp_sock * tp)6076 static void smc_check_reset_syn(struct tcp_sock *tp)
6077 {
6078 #if IS_ENABLED(CONFIG_SMC)
6079 if (static_branch_unlikely(&tcp_have_smc)) {
6080 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6081 tp->syn_smc = 0;
6082 }
6083 #endif
6084 }
6085
tcp_try_undo_spurious_syn(struct sock * sk)6086 static void tcp_try_undo_spurious_syn(struct sock *sk)
6087 {
6088 struct tcp_sock *tp = tcp_sk(sk);
6089 u32 syn_stamp;
6090
6091 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6092 * spurious if the ACK's timestamp option echo value matches the
6093 * original SYN timestamp.
6094 */
6095 syn_stamp = tp->retrans_stamp;
6096 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6097 syn_stamp == tp->rx_opt.rcv_tsecr)
6098 tp->undo_marker = 0;
6099 }
6100
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6101 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6102 const struct tcphdr *th)
6103 {
6104 struct inet_connection_sock *icsk = inet_csk(sk);
6105 struct tcp_sock *tp = tcp_sk(sk);
6106 struct tcp_fastopen_cookie foc = { .len = -1 };
6107 int saved_clamp = tp->rx_opt.mss_clamp;
6108 bool fastopen_fail;
6109
6110 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6111 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6112 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6113
6114 if (th->ack) {
6115 /* rfc793:
6116 * "If the state is SYN-SENT then
6117 * first check the ACK bit
6118 * If the ACK bit is set
6119 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6120 * a reset (unless the RST bit is set, if so drop
6121 * the segment and return)"
6122 */
6123 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6124 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6125 /* Previous FIN/ACK or RST/ACK might be ignored. */
6126 if (icsk->icsk_retransmits == 0)
6127 inet_csk_reset_xmit_timer(sk,
6128 ICSK_TIME_RETRANS,
6129 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6130 goto reset_and_undo;
6131 }
6132
6133 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6134 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6135 tcp_time_stamp(tp))) {
6136 NET_INC_STATS(sock_net(sk),
6137 LINUX_MIB_PAWSACTIVEREJECTED);
6138 goto reset_and_undo;
6139 }
6140
6141 /* Now ACK is acceptable.
6142 *
6143 * "If the RST bit is set
6144 * If the ACK was acceptable then signal the user "error:
6145 * connection reset", drop the segment, enter CLOSED state,
6146 * delete TCB, and return."
6147 */
6148
6149 if (th->rst) {
6150 tcp_reset(sk);
6151 goto discard;
6152 }
6153
6154 /* rfc793:
6155 * "fifth, if neither of the SYN or RST bits is set then
6156 * drop the segment and return."
6157 *
6158 * See note below!
6159 * --ANK(990513)
6160 */
6161 if (!th->syn)
6162 goto discard_and_undo;
6163
6164 /* rfc793:
6165 * "If the SYN bit is on ...
6166 * are acceptable then ...
6167 * (our SYN has been ACKed), change the connection
6168 * state to ESTABLISHED..."
6169 */
6170
6171 tcp_ecn_rcv_synack(tp, th);
6172
6173 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6174 tcp_try_undo_spurious_syn(sk);
6175 tcp_ack(sk, skb, FLAG_SLOWPATH);
6176
6177 /* Ok.. it's good. Set up sequence numbers and
6178 * move to established.
6179 */
6180 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6181 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6182
6183 /* RFC1323: The window in SYN & SYN/ACK segments is
6184 * never scaled.
6185 */
6186 tp->snd_wnd = ntohs(th->window);
6187
6188 if (!tp->rx_opt.wscale_ok) {
6189 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6190 tp->window_clamp = min(tp->window_clamp, 65535U);
6191 }
6192
6193 if (tp->rx_opt.saw_tstamp) {
6194 tp->rx_opt.tstamp_ok = 1;
6195 tp->tcp_header_len =
6196 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6197 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6198 tcp_store_ts_recent(tp);
6199 } else {
6200 tp->tcp_header_len = sizeof(struct tcphdr);
6201 }
6202
6203 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6204 tcp_initialize_rcv_mss(sk);
6205
6206 /* Remember, tcp_poll() does not lock socket!
6207 * Change state from SYN-SENT only after copied_seq
6208 * is initialized. */
6209 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6210
6211 smc_check_reset_syn(tp);
6212
6213 smp_mb();
6214
6215 tcp_finish_connect(sk, skb);
6216
6217 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6218 tcp_rcv_fastopen_synack(sk, skb, &foc);
6219
6220 if (!sock_flag(sk, SOCK_DEAD)) {
6221 sk->sk_state_change(sk);
6222 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6223 }
6224 if (fastopen_fail)
6225 return -1;
6226 if (sk->sk_write_pending ||
6227 icsk->icsk_accept_queue.rskq_defer_accept ||
6228 inet_csk_in_pingpong_mode(sk)) {
6229 /* Save one ACK. Data will be ready after
6230 * several ticks, if write_pending is set.
6231 *
6232 * It may be deleted, but with this feature tcpdumps
6233 * look so _wonderfully_ clever, that I was not able
6234 * to stand against the temptation 8) --ANK
6235 */
6236 inet_csk_schedule_ack(sk);
6237 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6238 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6239 TCP_DELACK_MAX, TCP_RTO_MAX);
6240
6241 discard:
6242 tcp_drop(sk, skb);
6243 return 0;
6244 } else {
6245 tcp_send_ack(sk);
6246 }
6247 return -1;
6248 }
6249
6250 /* No ACK in the segment */
6251
6252 if (th->rst) {
6253 /* rfc793:
6254 * "If the RST bit is set
6255 *
6256 * Otherwise (no ACK) drop the segment and return."
6257 */
6258
6259 goto discard_and_undo;
6260 }
6261
6262 /* PAWS check. */
6263 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6264 tcp_paws_reject(&tp->rx_opt, 0))
6265 goto discard_and_undo;
6266
6267 if (th->syn) {
6268 /* We see SYN without ACK. It is attempt of
6269 * simultaneous connect with crossed SYNs.
6270 * Particularly, it can be connect to self.
6271 */
6272 tcp_set_state(sk, TCP_SYN_RECV);
6273
6274 if (tp->rx_opt.saw_tstamp) {
6275 tp->rx_opt.tstamp_ok = 1;
6276 tcp_store_ts_recent(tp);
6277 tp->tcp_header_len =
6278 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6279 } else {
6280 tp->tcp_header_len = sizeof(struct tcphdr);
6281 }
6282
6283 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6284 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6285 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6286
6287 /* RFC1323: The window in SYN & SYN/ACK segments is
6288 * never scaled.
6289 */
6290 tp->snd_wnd = ntohs(th->window);
6291 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6292 tp->max_window = tp->snd_wnd;
6293
6294 tcp_ecn_rcv_syn(tp, th);
6295
6296 tcp_mtup_init(sk);
6297 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6298 tcp_initialize_rcv_mss(sk);
6299
6300 tcp_send_synack(sk);
6301 #if 0
6302 /* Note, we could accept data and URG from this segment.
6303 * There are no obstacles to make this (except that we must
6304 * either change tcp_recvmsg() to prevent it from returning data
6305 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6306 *
6307 * However, if we ignore data in ACKless segments sometimes,
6308 * we have no reasons to accept it sometimes.
6309 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6310 * is not flawless. So, discard packet for sanity.
6311 * Uncomment this return to process the data.
6312 */
6313 return -1;
6314 #else
6315 goto discard;
6316 #endif
6317 }
6318 /* "fifth, if neither of the SYN or RST bits is set then
6319 * drop the segment and return."
6320 */
6321
6322 discard_and_undo:
6323 tcp_clear_options(&tp->rx_opt);
6324 tp->rx_opt.mss_clamp = saved_clamp;
6325 goto discard;
6326
6327 reset_and_undo:
6328 tcp_clear_options(&tp->rx_opt);
6329 tp->rx_opt.mss_clamp = saved_clamp;
6330 return 1;
6331 }
6332
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6333 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6334 {
6335 struct request_sock *req;
6336
6337 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6338 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6339 */
6340 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6341 tcp_try_undo_loss(sk, false);
6342
6343 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6344 tcp_sk(sk)->retrans_stamp = 0;
6345 inet_csk(sk)->icsk_retransmits = 0;
6346
6347 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6348 * we no longer need req so release it.
6349 */
6350 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6351 lockdep_sock_is_held(sk));
6352 reqsk_fastopen_remove(sk, req, false);
6353
6354 /* Re-arm the timer because data may have been sent out.
6355 * This is similar to the regular data transmission case
6356 * when new data has just been ack'ed.
6357 *
6358 * (TFO) - we could try to be more aggressive and
6359 * retransmitting any data sooner based on when they
6360 * are sent out.
6361 */
6362 tcp_rearm_rto(sk);
6363 }
6364
6365 /*
6366 * This function implements the receiving procedure of RFC 793 for
6367 * all states except ESTABLISHED and TIME_WAIT.
6368 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6369 * address independent.
6370 */
6371
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6372 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6373 {
6374 struct tcp_sock *tp = tcp_sk(sk);
6375 struct inet_connection_sock *icsk = inet_csk(sk);
6376 const struct tcphdr *th = tcp_hdr(skb);
6377 struct request_sock *req;
6378 int queued = 0;
6379 bool acceptable;
6380
6381 switch (sk->sk_state) {
6382 case TCP_CLOSE:
6383 goto discard;
6384
6385 case TCP_LISTEN:
6386 if (th->ack)
6387 return 1;
6388
6389 if (th->rst)
6390 goto discard;
6391
6392 if (th->syn) {
6393 if (th->fin)
6394 goto discard;
6395 /* It is possible that we process SYN packets from backlog,
6396 * so we need to make sure to disable BH and RCU right there.
6397 */
6398 rcu_read_lock();
6399 local_bh_disable();
6400 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6401 local_bh_enable();
6402 rcu_read_unlock();
6403
6404 if (!acceptable)
6405 return 1;
6406 consume_skb(skb);
6407 return 0;
6408 }
6409 goto discard;
6410
6411 case TCP_SYN_SENT:
6412 tp->rx_opt.saw_tstamp = 0;
6413 tcp_mstamp_refresh(tp);
6414 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6415 if (queued >= 0)
6416 return queued;
6417
6418 /* Do step6 onward by hand. */
6419 tcp_urg(sk, skb, th);
6420 __kfree_skb(skb);
6421 tcp_data_snd_check(sk);
6422 return 0;
6423 }
6424
6425 tcp_mstamp_refresh(tp);
6426 tp->rx_opt.saw_tstamp = 0;
6427 req = rcu_dereference_protected(tp->fastopen_rsk,
6428 lockdep_sock_is_held(sk));
6429 if (req) {
6430 bool req_stolen;
6431
6432 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6433 sk->sk_state != TCP_FIN_WAIT1);
6434
6435 if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6436 goto discard;
6437 }
6438
6439 if (!th->ack && !th->rst && !th->syn)
6440 goto discard;
6441
6442 if (!tcp_validate_incoming(sk, skb, th, 0))
6443 return 0;
6444
6445 /* step 5: check the ACK field */
6446 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6447 FLAG_UPDATE_TS_RECENT |
6448 FLAG_NO_CHALLENGE_ACK) > 0;
6449
6450 if (!acceptable) {
6451 if (sk->sk_state == TCP_SYN_RECV)
6452 return 1; /* send one RST */
6453 tcp_send_challenge_ack(sk, skb);
6454 goto discard;
6455 }
6456 switch (sk->sk_state) {
6457 case TCP_SYN_RECV:
6458 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6459 if (!tp->srtt_us)
6460 tcp_synack_rtt_meas(sk, req);
6461
6462 if (req) {
6463 tcp_rcv_synrecv_state_fastopen(sk);
6464 } else {
6465 tcp_try_undo_spurious_syn(sk);
6466 tp->retrans_stamp = 0;
6467 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6468 skb);
6469 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6470 }
6471 smp_mb();
6472 tcp_set_state(sk, TCP_ESTABLISHED);
6473 sk->sk_state_change(sk);
6474
6475 /* Note, that this wakeup is only for marginal crossed SYN case.
6476 * Passively open sockets are not waked up, because
6477 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6478 */
6479 if (sk->sk_socket)
6480 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6481
6482 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6483 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6484 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6485
6486 if (tp->rx_opt.tstamp_ok)
6487 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6488
6489 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6490 tcp_update_pacing_rate(sk);
6491
6492 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6493 tp->lsndtime = tcp_jiffies32;
6494
6495 tcp_initialize_rcv_mss(sk);
6496 tcp_fast_path_on(tp);
6497 break;
6498
6499 case TCP_FIN_WAIT1: {
6500 int tmo;
6501
6502 if (req)
6503 tcp_rcv_synrecv_state_fastopen(sk);
6504
6505 if (tp->snd_una != tp->write_seq)
6506 break;
6507
6508 tcp_set_state(sk, TCP_FIN_WAIT2);
6509 sk->sk_shutdown |= SEND_SHUTDOWN;
6510
6511 sk_dst_confirm(sk);
6512
6513 if (!sock_flag(sk, SOCK_DEAD)) {
6514 /* Wake up lingering close() */
6515 sk->sk_state_change(sk);
6516 break;
6517 }
6518
6519 if (tp->linger2 < 0) {
6520 tcp_done(sk);
6521 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6522 return 1;
6523 }
6524 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6525 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6526 /* Receive out of order FIN after close() */
6527 if (tp->syn_fastopen && th->fin)
6528 tcp_fastopen_active_disable(sk);
6529 tcp_done(sk);
6530 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6531 return 1;
6532 }
6533
6534 tmo = tcp_fin_time(sk);
6535 if (tmo > TCP_TIMEWAIT_LEN) {
6536 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6537 } else if (th->fin || sock_owned_by_user(sk)) {
6538 /* Bad case. We could lose such FIN otherwise.
6539 * It is not a big problem, but it looks confusing
6540 * and not so rare event. We still can lose it now,
6541 * if it spins in bh_lock_sock(), but it is really
6542 * marginal case.
6543 */
6544 inet_csk_reset_keepalive_timer(sk, tmo);
6545 } else {
6546 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6547 goto discard;
6548 }
6549 break;
6550 }
6551
6552 case TCP_CLOSING:
6553 if (tp->snd_una == tp->write_seq) {
6554 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6555 goto discard;
6556 }
6557 break;
6558
6559 case TCP_LAST_ACK:
6560 if (tp->snd_una == tp->write_seq) {
6561 tcp_update_metrics(sk);
6562 tcp_done(sk);
6563 goto discard;
6564 }
6565 break;
6566 }
6567
6568 /* step 6: check the URG bit */
6569 tcp_urg(sk, skb, th);
6570
6571 /* step 7: process the segment text */
6572 switch (sk->sk_state) {
6573 case TCP_CLOSE_WAIT:
6574 case TCP_CLOSING:
6575 case TCP_LAST_ACK:
6576 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6577 if (sk_is_mptcp(sk))
6578 mptcp_incoming_options(sk, skb);
6579 break;
6580 }
6581 fallthrough;
6582 case TCP_FIN_WAIT1:
6583 case TCP_FIN_WAIT2:
6584 /* RFC 793 says to queue data in these states,
6585 * RFC 1122 says we MUST send a reset.
6586 * BSD 4.4 also does reset.
6587 */
6588 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6589 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6590 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6591 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6592 tcp_reset(sk);
6593 return 1;
6594 }
6595 }
6596 fallthrough;
6597 case TCP_ESTABLISHED:
6598 tcp_data_queue(sk, skb);
6599 queued = 1;
6600 break;
6601 }
6602
6603 /* tcp_data could move socket to TIME-WAIT */
6604 if (sk->sk_state != TCP_CLOSE) {
6605 tcp_data_snd_check(sk);
6606 tcp_ack_snd_check(sk);
6607 }
6608
6609 if (!queued) {
6610 discard:
6611 tcp_drop(sk, skb);
6612 }
6613 return 0;
6614 }
6615 EXPORT_SYMBOL(tcp_rcv_state_process);
6616
pr_drop_req(struct request_sock * req,__u16 port,int family)6617 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6618 {
6619 struct inet_request_sock *ireq = inet_rsk(req);
6620
6621 if (family == AF_INET)
6622 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6623 &ireq->ir_rmt_addr, port);
6624 #if IS_ENABLED(CONFIG_IPV6)
6625 else if (family == AF_INET6)
6626 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6627 &ireq->ir_v6_rmt_addr, port);
6628 #endif
6629 }
6630
6631 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6632 *
6633 * If we receive a SYN packet with these bits set, it means a
6634 * network is playing bad games with TOS bits. In order to
6635 * avoid possible false congestion notifications, we disable
6636 * TCP ECN negotiation.
6637 *
6638 * Exception: tcp_ca wants ECN. This is required for DCTCP
6639 * congestion control: Linux DCTCP asserts ECT on all packets,
6640 * including SYN, which is most optimal solution; however,
6641 * others, such as FreeBSD do not.
6642 *
6643 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6644 * set, indicating the use of a future TCP extension (such as AccECN). See
6645 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6646 * extensions.
6647 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6648 static void tcp_ecn_create_request(struct request_sock *req,
6649 const struct sk_buff *skb,
6650 const struct sock *listen_sk,
6651 const struct dst_entry *dst)
6652 {
6653 const struct tcphdr *th = tcp_hdr(skb);
6654 const struct net *net = sock_net(listen_sk);
6655 bool th_ecn = th->ece && th->cwr;
6656 bool ect, ecn_ok;
6657 u32 ecn_ok_dst;
6658
6659 if (!th_ecn)
6660 return;
6661
6662 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6663 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6664 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6665
6666 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6667 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6668 tcp_bpf_ca_needs_ecn((struct sock *)req))
6669 inet_rsk(req)->ecn_ok = 1;
6670 }
6671
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6672 static void tcp_openreq_init(struct request_sock *req,
6673 const struct tcp_options_received *rx_opt,
6674 struct sk_buff *skb, const struct sock *sk)
6675 {
6676 struct inet_request_sock *ireq = inet_rsk(req);
6677
6678 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6679 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6680 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6681 tcp_rsk(req)->snt_synack = 0;
6682 tcp_rsk(req)->last_oow_ack_time = 0;
6683 req->mss = rx_opt->mss_clamp;
6684 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6685 ireq->tstamp_ok = rx_opt->tstamp_ok;
6686 ireq->sack_ok = rx_opt->sack_ok;
6687 ireq->snd_wscale = rx_opt->snd_wscale;
6688 ireq->wscale_ok = rx_opt->wscale_ok;
6689 ireq->acked = 0;
6690 ireq->ecn_ok = 0;
6691 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6692 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6693 ireq->ir_mark = inet_request_mark(sk, skb);
6694 #if IS_ENABLED(CONFIG_SMC)
6695 ireq->smc_ok = rx_opt->smc_ok;
6696 #endif
6697 }
6698
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6699 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6700 struct sock *sk_listener,
6701 bool attach_listener)
6702 {
6703 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6704 attach_listener);
6705
6706 if (req) {
6707 struct inet_request_sock *ireq = inet_rsk(req);
6708
6709 ireq->ireq_opt = NULL;
6710 #if IS_ENABLED(CONFIG_IPV6)
6711 ireq->pktopts = NULL;
6712 #endif
6713 atomic64_set(&ireq->ir_cookie, 0);
6714 ireq->ireq_state = TCP_NEW_SYN_RECV;
6715 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6716 ireq->ireq_family = sk_listener->sk_family;
6717 }
6718
6719 return req;
6720 }
6721 EXPORT_SYMBOL(inet_reqsk_alloc);
6722
6723 /*
6724 * Return true if a syncookie should be sent
6725 */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6726 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6727 {
6728 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6729 const char *msg = "Dropping request";
6730 struct net *net = sock_net(sk);
6731 bool want_cookie = false;
6732 u8 syncookies;
6733
6734 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6735
6736 #ifdef CONFIG_SYN_COOKIES
6737 if (syncookies) {
6738 msg = "Sending cookies";
6739 want_cookie = true;
6740 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6741 } else
6742 #endif
6743 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6744
6745 if (!queue->synflood_warned && syncookies != 2 &&
6746 xchg(&queue->synflood_warned, 1) == 0)
6747 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6748 proto, sk->sk_num, msg);
6749
6750 return want_cookie;
6751 }
6752
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6753 static void tcp_reqsk_record_syn(const struct sock *sk,
6754 struct request_sock *req,
6755 const struct sk_buff *skb)
6756 {
6757 if (tcp_sk(sk)->save_syn) {
6758 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6759 struct saved_syn *saved_syn;
6760 u32 mac_hdrlen;
6761 void *base;
6762
6763 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
6764 base = skb_mac_header(skb);
6765 mac_hdrlen = skb_mac_header_len(skb);
6766 len += mac_hdrlen;
6767 } else {
6768 base = skb_network_header(skb);
6769 mac_hdrlen = 0;
6770 }
6771
6772 saved_syn = kmalloc(struct_size(saved_syn, data, len),
6773 GFP_ATOMIC);
6774 if (saved_syn) {
6775 saved_syn->mac_hdrlen = mac_hdrlen;
6776 saved_syn->network_hdrlen = skb_network_header_len(skb);
6777 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6778 memcpy(saved_syn->data, base, len);
6779 req->saved_syn = saved_syn;
6780 }
6781 }
6782 }
6783
6784 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6785 * used for SYN cookie generation.
6786 */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)6787 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6788 const struct tcp_request_sock_ops *af_ops,
6789 struct sock *sk, struct tcphdr *th)
6790 {
6791 struct tcp_sock *tp = tcp_sk(sk);
6792 u16 mss;
6793
6794 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6795 !inet_csk_reqsk_queue_is_full(sk))
6796 return 0;
6797
6798 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6799 return 0;
6800
6801 if (sk_acceptq_is_full(sk)) {
6802 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6803 return 0;
6804 }
6805
6806 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6807 if (!mss)
6808 mss = af_ops->mss_clamp;
6809
6810 return mss;
6811 }
6812 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6813
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6814 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6815 const struct tcp_request_sock_ops *af_ops,
6816 struct sock *sk, struct sk_buff *skb)
6817 {
6818 struct tcp_fastopen_cookie foc = { .len = -1 };
6819 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6820 struct tcp_options_received tmp_opt;
6821 struct tcp_sock *tp = tcp_sk(sk);
6822 struct net *net = sock_net(sk);
6823 struct sock *fastopen_sk = NULL;
6824 struct request_sock *req;
6825 bool want_cookie = false;
6826 struct dst_entry *dst;
6827 struct flowi fl;
6828 u8 syncookies;
6829
6830 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6831
6832 /* TW buckets are converted to open requests without
6833 * limitations, they conserve resources and peer is
6834 * evidently real one.
6835 */
6836 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6837 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6838 if (!want_cookie)
6839 goto drop;
6840 }
6841
6842 if (sk_acceptq_is_full(sk)) {
6843 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6844 goto drop;
6845 }
6846
6847 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6848 if (!req)
6849 goto drop;
6850
6851 req->syncookie = want_cookie;
6852 tcp_rsk(req)->af_specific = af_ops;
6853 tcp_rsk(req)->ts_off = 0;
6854 #if IS_ENABLED(CONFIG_MPTCP)
6855 tcp_rsk(req)->is_mptcp = 0;
6856 #endif
6857
6858 tcp_clear_options(&tmp_opt);
6859 tmp_opt.mss_clamp = af_ops->mss_clamp;
6860 tmp_opt.user_mss = tp->rx_opt.user_mss;
6861 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6862 want_cookie ? NULL : &foc);
6863
6864 if (want_cookie && !tmp_opt.saw_tstamp)
6865 tcp_clear_options(&tmp_opt);
6866
6867 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6868 tmp_opt.smc_ok = 0;
6869
6870 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6871 tcp_openreq_init(req, &tmp_opt, skb, sk);
6872 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6873
6874 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6875 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6876
6877 af_ops->init_req(req, sk, skb);
6878
6879 if (security_inet_conn_request(sk, skb, req))
6880 goto drop_and_free;
6881
6882 if (tmp_opt.tstamp_ok)
6883 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6884
6885 dst = af_ops->route_req(sk, &fl, req);
6886 if (!dst)
6887 goto drop_and_free;
6888
6889 if (!want_cookie && !isn) {
6890 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
6891
6892 /* Kill the following clause, if you dislike this way. */
6893 if (!syncookies &&
6894 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6895 (max_syn_backlog >> 2)) &&
6896 !tcp_peer_is_proven(req, dst)) {
6897 /* Without syncookies last quarter of
6898 * backlog is filled with destinations,
6899 * proven to be alive.
6900 * It means that we continue to communicate
6901 * to destinations, already remembered
6902 * to the moment of synflood.
6903 */
6904 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6905 rsk_ops->family);
6906 goto drop_and_release;
6907 }
6908
6909 isn = af_ops->init_seq(skb);
6910 }
6911
6912 tcp_ecn_create_request(req, skb, sk, dst);
6913
6914 if (want_cookie) {
6915 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6916 if (!tmp_opt.tstamp_ok)
6917 inet_rsk(req)->ecn_ok = 0;
6918 }
6919
6920 tcp_rsk(req)->snt_isn = isn;
6921 tcp_rsk(req)->txhash = net_tx_rndhash();
6922 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6923 tcp_openreq_init_rwin(req, sk, dst);
6924 sk_rx_queue_set(req_to_sk(req), skb);
6925 if (!want_cookie) {
6926 tcp_reqsk_record_syn(sk, req, skb);
6927 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6928 }
6929 if (fastopen_sk) {
6930 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6931 &foc, TCP_SYNACK_FASTOPEN, skb);
6932 /* Add the child socket directly into the accept queue */
6933 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6934 reqsk_fastopen_remove(fastopen_sk, req, false);
6935 bh_unlock_sock(fastopen_sk);
6936 sock_put(fastopen_sk);
6937 goto drop_and_free;
6938 }
6939 sk->sk_data_ready(sk);
6940 bh_unlock_sock(fastopen_sk);
6941 sock_put(fastopen_sk);
6942 } else {
6943 tcp_rsk(req)->tfo_listener = false;
6944 if (!want_cookie)
6945 inet_csk_reqsk_queue_hash_add(sk, req,
6946 tcp_timeout_init((struct sock *)req));
6947 af_ops->send_synack(sk, dst, &fl, req, &foc,
6948 !want_cookie ? TCP_SYNACK_NORMAL :
6949 TCP_SYNACK_COOKIE,
6950 skb);
6951 if (want_cookie) {
6952 reqsk_free(req);
6953 return 0;
6954 }
6955 }
6956 reqsk_put(req);
6957 return 0;
6958
6959 drop_and_release:
6960 dst_release(dst);
6961 drop_and_free:
6962 __reqsk_free(req);
6963 drop:
6964 tcp_listendrop(sk);
6965 return 0;
6966 }
6967 EXPORT_SYMBOL(tcp_conn_request);
6968