xref: /OK3568_Linux_fs/kernel/include/net/tcp.h (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 #define TCP_MIN_SND_MSS		48
57 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
58 
59 /*
60  * Never offer a window over 32767 without using window scaling. Some
61  * poor stacks do signed 16bit maths!
62  */
63 #define MAX_TCP_WINDOW		32767U
64 
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS		88U
67 
68 /* The initial MTU to use for probing */
69 #define TCP_BASE_MSS		1024
70 
71 /* probing interval, default to 10 minutes as per RFC4821 */
72 #define TCP_PROBE_INTERVAL	600
73 
74 /* Specify interval when tcp mtu probing will stop */
75 #define TCP_PROBE_THRESHOLD	8
76 
77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
78 #define TCP_FASTRETRANS_THRESH 3
79 
80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
81 #define TCP_MAX_QUICKACKS	16U
82 
83 /* Maximal number of window scale according to RFC1323 */
84 #define TCP_MAX_WSCALE		14U
85 
86 /* urg_data states */
87 #define TCP_URG_VALID	0x0100
88 #define TCP_URG_NOTYET	0x0200
89 #define TCP_URG_READ	0x0400
90 
91 #define TCP_RETR1	3	/*
92 				 * This is how many retries it does before it
93 				 * tries to figure out if the gateway is
94 				 * down. Minimal RFC value is 3; it corresponds
95 				 * to ~3sec-8min depending on RTO.
96 				 */
97 
98 #define TCP_RETR2	15	/*
99 				 * This should take at least
100 				 * 90 minutes to time out.
101 				 * RFC1122 says that the limit is 100 sec.
102 				 * 15 is ~13-30min depending on RTO.
103 				 */
104 
105 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
106 				 * when active opening a connection.
107 				 * RFC1122 says the minimum retry MUST
108 				 * be at least 180secs.  Nevertheless
109 				 * this value is corresponding to
110 				 * 63secs of retransmission with the
111 				 * current initial RTO.
112 				 */
113 
114 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
115 				 * when passive opening a connection.
116 				 * This is corresponding to 31secs of
117 				 * retransmission with the current
118 				 * initial RTO.
119 				 */
120 
121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 				  * state, about 60 seconds	*/
123 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
124                                  /* BSD style FIN_WAIT2 deadlock breaker.
125 				  * It used to be 3min, new value is 60sec,
126 				  * to combine FIN-WAIT-2 timeout with
127 				  * TIME-WAIT timer.
128 				  */
129 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
130 
131 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
132 #if HZ >= 100
133 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
134 #define TCP_ATO_MIN	((unsigned)(HZ/25))
135 #else
136 #define TCP_DELACK_MIN	4U
137 #define TCP_ATO_MIN	4U
138 #endif
139 #define TCP_RTO_MAX	((unsigned)(120*HZ))
140 #define TCP_RTO_MIN	((unsigned)(HZ/5))
141 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
144 						 * used as a fallback RTO for the
145 						 * initial data transmission if no
146 						 * valid RTT sample has been acquired,
147 						 * most likely due to retrans in 3WHS.
148 						 */
149 
150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
151 					                 * for local resources.
152 					                 */
153 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
154 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
155 #define TCP_KEEPALIVE_INTVL	(75*HZ)
156 
157 #define MAX_TCP_KEEPIDLE	32767
158 #define MAX_TCP_KEEPINTVL	32767
159 #define MAX_TCP_KEEPCNT		127
160 #define MAX_TCP_SYNCNT		127
161 
162 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
163 
164 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
165 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
166 					 * after this time. It should be equal
167 					 * (or greater than) TCP_TIMEWAIT_LEN
168 					 * to provide reliability equal to one
169 					 * provided by timewait state.
170 					 */
171 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
172 					 * timestamps. It must be less than
173 					 * minimal timewait lifetime.
174 					 */
175 /*
176  *	TCP option
177  */
178 
179 #define TCPOPT_NOP		1	/* Padding */
180 #define TCPOPT_EOL		0	/* End of options */
181 #define TCPOPT_MSS		2	/* Segment size negotiating */
182 #define TCPOPT_WINDOW		3	/* Window scaling */
183 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
184 #define TCPOPT_SACK             5       /* SACK Block */
185 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
186 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
187 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
188 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
189 #define TCPOPT_EXP		254	/* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192  */
193 #define TCPOPT_FASTOPEN_MAGIC	0xF989
194 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
195 
196 /*
197  *     TCP option lengths
198  */
199 
200 #define TCPOLEN_MSS            4
201 #define TCPOLEN_WINDOW         3
202 #define TCPOLEN_SACK_PERM      2
203 #define TCPOLEN_TIMESTAMP      10
204 #define TCPOLEN_MD5SIG         18
205 #define TCPOLEN_FASTOPEN_BASE  2
206 #define TCPOLEN_EXP_FASTOPEN_BASE  4
207 #define TCPOLEN_EXP_SMC_BASE   6
208 
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED		12
211 #define TCPOLEN_WSCALE_ALIGNED		4
212 #define TCPOLEN_SACKPERM_ALIGNED	4
213 #define TCPOLEN_SACK_BASE		2
214 #define TCPOLEN_SACK_BASE_ALIGNED	4
215 #define TCPOLEN_SACK_PERBLOCK		8
216 #define TCPOLEN_MD5SIG_ALIGNED		20
217 #define TCPOLEN_MSS_ALIGNED		4
218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
219 
220 /* Flags in tp->nonagle */
221 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
222 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
223 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
224 
225 /* TCP thin-stream limits */
226 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
227 
228 /* TCP initial congestion window as per rfc6928 */
229 #define TCP_INIT_CWND		10
230 
231 /* Bit Flags for sysctl_tcp_fastopen */
232 #define	TFO_CLIENT_ENABLE	1
233 #define	TFO_SERVER_ENABLE	2
234 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
235 
236 /* Accept SYN data w/o any cookie option */
237 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
238 
239 /* Force enable TFO on all listeners, i.e., not requiring the
240  * TCP_FASTOPEN socket option.
241  */
242 #define	TFO_SERVER_WO_SOCKOPT1	0x400
243 
244 
245 /* sysctl variables for tcp */
246 extern int sysctl_tcp_max_orphans;
247 extern long sysctl_tcp_mem[3];
248 
249 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
250 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
251 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
252 
253 extern atomic_long_t tcp_memory_allocated;
254 extern struct percpu_counter tcp_sockets_allocated;
255 extern unsigned long tcp_memory_pressure;
256 
257 /* optimized version of sk_under_memory_pressure() for TCP sockets */
tcp_under_memory_pressure(const struct sock * sk)258 static inline bool tcp_under_memory_pressure(const struct sock *sk)
259 {
260 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
261 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
262 		return true;
263 
264 	return READ_ONCE(tcp_memory_pressure);
265 }
266 /*
267  * The next routines deal with comparing 32 bit unsigned ints
268  * and worry about wraparound (automatic with unsigned arithmetic).
269  */
270 
before(__u32 seq1,__u32 seq2)271 static inline bool before(__u32 seq1, __u32 seq2)
272 {
273         return (__s32)(seq1-seq2) < 0;
274 }
275 #define after(seq2, seq1) 	before(seq1, seq2)
276 
277 /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
279 {
280 	return seq3 - seq2 >= seq1 - seq2;
281 }
282 
tcp_out_of_memory(struct sock * sk)283 static inline bool tcp_out_of_memory(struct sock *sk)
284 {
285 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
286 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
287 		return true;
288 	return false;
289 }
290 
291 void sk_forced_mem_schedule(struct sock *sk, int size);
292 
tcp_too_many_orphans(struct sock * sk,int shift)293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
294 {
295 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
296 	int orphans = percpu_counter_read_positive(ocp);
297 
298 	if (orphans << shift > sysctl_tcp_max_orphans) {
299 		orphans = percpu_counter_sum_positive(ocp);
300 		if (orphans << shift > sysctl_tcp_max_orphans)
301 			return true;
302 	}
303 	return false;
304 }
305 
306 bool tcp_check_oom(struct sock *sk, int shift);
307 
308 
309 extern struct proto tcp_prot;
310 
311 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
315 
316 void tcp_tasklet_init(void);
317 
318 int tcp_v4_err(struct sk_buff *skb, u32);
319 
320 void tcp_shutdown(struct sock *sk, int how);
321 
322 int tcp_v4_early_demux(struct sk_buff *skb);
323 int tcp_v4_rcv(struct sk_buff *skb);
324 
325 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
326 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
327 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
329 		 int flags);
330 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
331 			size_t size, int flags);
332 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
333 		 size_t size, int flags);
334 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
335 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
336 	      int size_goal);
337 void tcp_release_cb(struct sock *sk);
338 void tcp_wfree(struct sk_buff *skb);
339 void tcp_write_timer_handler(struct sock *sk);
340 void tcp_delack_timer_handler(struct sock *sk);
341 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
342 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
343 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
344 void tcp_rcv_space_adjust(struct sock *sk);
345 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
346 void tcp_twsk_destructor(struct sock *sk);
347 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
348 			struct pipe_inode_info *pipe, size_t len,
349 			unsigned int flags);
350 
351 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
tcp_dec_quickack_mode(struct sock * sk,const unsigned int pkts)352 static inline void tcp_dec_quickack_mode(struct sock *sk,
353 					 const unsigned int pkts)
354 {
355 	struct inet_connection_sock *icsk = inet_csk(sk);
356 
357 	if (icsk->icsk_ack.quick) {
358 		if (pkts >= icsk->icsk_ack.quick) {
359 			icsk->icsk_ack.quick = 0;
360 			/* Leaving quickack mode we deflate ATO. */
361 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
362 		} else
363 			icsk->icsk_ack.quick -= pkts;
364 	}
365 }
366 
367 #define	TCP_ECN_OK		1
368 #define	TCP_ECN_QUEUE_CWR	2
369 #define	TCP_ECN_DEMAND_CWR	4
370 #define	TCP_ECN_SEEN		8
371 
372 enum tcp_tw_status {
373 	TCP_TW_SUCCESS = 0,
374 	TCP_TW_RST = 1,
375 	TCP_TW_ACK = 2,
376 	TCP_TW_SYN = 3
377 };
378 
379 
380 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
381 					      struct sk_buff *skb,
382 					      const struct tcphdr *th);
383 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
384 			   struct request_sock *req, bool fastopen,
385 			   bool *lost_race);
386 int tcp_child_process(struct sock *parent, struct sock *child,
387 		      struct sk_buff *skb);
388 void tcp_enter_loss(struct sock *sk);
389 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
390 void tcp_clear_retrans(struct tcp_sock *tp);
391 void tcp_update_metrics(struct sock *sk);
392 void tcp_init_metrics(struct sock *sk);
393 void tcp_metrics_init(void);
394 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
395 void tcp_close(struct sock *sk, long timeout);
396 void tcp_init_sock(struct sock *sk);
397 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
398 __poll_t tcp_poll(struct file *file, struct socket *sock,
399 		      struct poll_table_struct *wait);
400 int tcp_getsockopt(struct sock *sk, int level, int optname,
401 		   char __user *optval, int __user *optlen);
402 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
403 		   unsigned int optlen);
404 void tcp_set_keepalive(struct sock *sk, int val);
405 void tcp_syn_ack_timeout(const struct request_sock *req);
406 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
407 		int flags, int *addr_len);
408 int tcp_set_rcvlowat(struct sock *sk, int val);
409 void tcp_data_ready(struct sock *sk);
410 #ifdef CONFIG_MMU
411 int tcp_mmap(struct file *file, struct socket *sock,
412 	     struct vm_area_struct *vma);
413 #endif
414 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
415 		       struct tcp_options_received *opt_rx,
416 		       int estab, struct tcp_fastopen_cookie *foc);
417 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
418 
419 /*
420  *	BPF SKB-less helpers
421  */
422 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
423 			 struct tcphdr *th, u32 *cookie);
424 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
425 			 struct tcphdr *th, u32 *cookie);
426 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
427 			  const struct tcp_request_sock_ops *af_ops,
428 			  struct sock *sk, struct tcphdr *th);
429 /*
430  *	TCP v4 functions exported for the inet6 API
431  */
432 
433 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
434 void tcp_v4_mtu_reduced(struct sock *sk);
435 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
436 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
437 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
438 struct sock *tcp_create_openreq_child(const struct sock *sk,
439 				      struct request_sock *req,
440 				      struct sk_buff *skb);
441 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
442 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
443 				  struct request_sock *req,
444 				  struct dst_entry *dst,
445 				  struct request_sock *req_unhash,
446 				  bool *own_req);
447 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
448 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
449 int tcp_connect(struct sock *sk);
450 enum tcp_synack_type {
451 	TCP_SYNACK_NORMAL,
452 	TCP_SYNACK_FASTOPEN,
453 	TCP_SYNACK_COOKIE,
454 };
455 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
456 				struct request_sock *req,
457 				struct tcp_fastopen_cookie *foc,
458 				enum tcp_synack_type synack_type,
459 				struct sk_buff *syn_skb);
460 int tcp_disconnect(struct sock *sk, int flags);
461 
462 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
463 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
464 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
465 
466 /* From syncookies.c */
467 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
468 				 struct request_sock *req,
469 				 struct dst_entry *dst, u32 tsoff);
470 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
471 		      u32 cookie);
472 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
473 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
474 					    const struct tcp_request_sock_ops *af_ops,
475 					    struct sock *sk, struct sk_buff *skb);
476 #ifdef CONFIG_SYN_COOKIES
477 
478 /* Syncookies use a monotonic timer which increments every 60 seconds.
479  * This counter is used both as a hash input and partially encoded into
480  * the cookie value.  A cookie is only validated further if the delta
481  * between the current counter value and the encoded one is less than this,
482  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
483  * the counter advances immediately after a cookie is generated).
484  */
485 #define MAX_SYNCOOKIE_AGE	2
486 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
487 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
488 
489 /* syncookies: remember time of last synqueue overflow
490  * But do not dirty this field too often (once per second is enough)
491  * It is racy as we do not hold a lock, but race is very minor.
492  */
tcp_synq_overflow(const struct sock * sk)493 static inline void tcp_synq_overflow(const struct sock *sk)
494 {
495 	unsigned int last_overflow;
496 	unsigned int now = jiffies;
497 
498 	if (sk->sk_reuseport) {
499 		struct sock_reuseport *reuse;
500 
501 		reuse = rcu_dereference(sk->sk_reuseport_cb);
502 		if (likely(reuse)) {
503 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
504 			if (!time_between32(now, last_overflow,
505 					    last_overflow + HZ))
506 				WRITE_ONCE(reuse->synq_overflow_ts, now);
507 			return;
508 		}
509 	}
510 
511 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
512 	if (!time_between32(now, last_overflow, last_overflow + HZ))
513 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
514 }
515 
516 /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)517 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
518 {
519 	unsigned int last_overflow;
520 	unsigned int now = jiffies;
521 
522 	if (sk->sk_reuseport) {
523 		struct sock_reuseport *reuse;
524 
525 		reuse = rcu_dereference(sk->sk_reuseport_cb);
526 		if (likely(reuse)) {
527 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
528 			return !time_between32(now, last_overflow - HZ,
529 					       last_overflow +
530 					       TCP_SYNCOOKIE_VALID);
531 		}
532 	}
533 
534 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
535 
536 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
537 	 * then we're under synflood. However, we have to use
538 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
539 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
540 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
541 	 * which could lead to rejecting a valid syncookie.
542 	 */
543 	return !time_between32(now, last_overflow - HZ,
544 			       last_overflow + TCP_SYNCOOKIE_VALID);
545 }
546 
tcp_cookie_time(void)547 static inline u32 tcp_cookie_time(void)
548 {
549 	u64 val = get_jiffies_64();
550 
551 	do_div(val, TCP_SYNCOOKIE_PERIOD);
552 	return val;
553 }
554 
555 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
556 			      u16 *mssp);
557 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
558 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
559 bool cookie_timestamp_decode(const struct net *net,
560 			     struct tcp_options_received *opt);
561 bool cookie_ecn_ok(const struct tcp_options_received *opt,
562 		   const struct net *net, const struct dst_entry *dst);
563 
564 /* From net/ipv6/syncookies.c */
565 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
566 		      u32 cookie);
567 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
568 
569 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
570 			      const struct tcphdr *th, u16 *mssp);
571 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
572 #endif
573 /* tcp_output.c */
574 
575 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
576 			       int nonagle);
577 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
578 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
579 void tcp_retransmit_timer(struct sock *sk);
580 void tcp_xmit_retransmit_queue(struct sock *);
581 void tcp_simple_retransmit(struct sock *);
582 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
583 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
584 enum tcp_queue {
585 	TCP_FRAG_IN_WRITE_QUEUE,
586 	TCP_FRAG_IN_RTX_QUEUE,
587 };
588 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
589 		 struct sk_buff *skb, u32 len,
590 		 unsigned int mss_now, gfp_t gfp);
591 
592 void tcp_send_probe0(struct sock *);
593 void tcp_send_partial(struct sock *);
594 int tcp_write_wakeup(struct sock *, int mib);
595 void tcp_send_fin(struct sock *sk);
596 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
597 int tcp_send_synack(struct sock *);
598 void tcp_push_one(struct sock *, unsigned int mss_now);
599 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
600 void tcp_send_ack(struct sock *sk);
601 void tcp_send_delayed_ack(struct sock *sk);
602 void tcp_send_loss_probe(struct sock *sk);
603 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
604 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
605 			     const struct sk_buff *next_skb);
606 
607 /* tcp_input.c */
608 void tcp_rearm_rto(struct sock *sk);
609 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
610 void tcp_reset(struct sock *sk);
611 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
612 void tcp_fin(struct sock *sk);
613 void tcp_check_space(struct sock *sk);
614 
615 /* tcp_timer.c */
616 void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)617 static inline void tcp_clear_xmit_timers(struct sock *sk)
618 {
619 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
620 		__sock_put(sk);
621 
622 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
623 		__sock_put(sk);
624 
625 	inet_csk_clear_xmit_timers(sk);
626 }
627 
628 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
629 unsigned int tcp_current_mss(struct sock *sk);
630 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
631 
632 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)633 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
634 {
635 	int cutoff;
636 
637 	/* When peer uses tiny windows, there is no use in packetizing
638 	 * to sub-MSS pieces for the sake of SWS or making sure there
639 	 * are enough packets in the pipe for fast recovery.
640 	 *
641 	 * On the other hand, for extremely large MSS devices, handling
642 	 * smaller than MSS windows in this way does make sense.
643 	 */
644 	if (tp->max_window > TCP_MSS_DEFAULT)
645 		cutoff = (tp->max_window >> 1);
646 	else
647 		cutoff = tp->max_window;
648 
649 	if (cutoff && pktsize > cutoff)
650 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
651 	else
652 		return pktsize;
653 }
654 
655 /* tcp.c */
656 void tcp_get_info(struct sock *, struct tcp_info *);
657 
658 /* Read 'sendfile()'-style from a TCP socket */
659 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
660 		  sk_read_actor_t recv_actor);
661 
662 void tcp_initialize_rcv_mss(struct sock *sk);
663 
664 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
665 int tcp_mss_to_mtu(struct sock *sk, int mss);
666 void tcp_mtup_init(struct sock *sk);
667 
tcp_bound_rto(const struct sock * sk)668 static inline void tcp_bound_rto(const struct sock *sk)
669 {
670 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
671 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
672 }
673 
__tcp_set_rto(const struct tcp_sock * tp)674 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
675 {
676 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
677 }
678 
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)679 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
680 {
681 	/* mptcp hooks are only on the slow path */
682 	if (sk_is_mptcp((struct sock *)tp))
683 		return;
684 
685 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
686 			       ntohl(TCP_FLAG_ACK) |
687 			       snd_wnd);
688 }
689 
tcp_fast_path_on(struct tcp_sock * tp)690 static inline void tcp_fast_path_on(struct tcp_sock *tp)
691 {
692 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
693 }
694 
tcp_fast_path_check(struct sock * sk)695 static inline void tcp_fast_path_check(struct sock *sk)
696 {
697 	struct tcp_sock *tp = tcp_sk(sk);
698 
699 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
700 	    tp->rcv_wnd &&
701 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
702 	    !tp->urg_data)
703 		tcp_fast_path_on(tp);
704 }
705 
706 /* Compute the actual rto_min value */
tcp_rto_min(struct sock * sk)707 static inline u32 tcp_rto_min(struct sock *sk)
708 {
709 	const struct dst_entry *dst = __sk_dst_get(sk);
710 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
711 
712 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
713 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
714 	return rto_min;
715 }
716 
tcp_rto_min_us(struct sock * sk)717 static inline u32 tcp_rto_min_us(struct sock *sk)
718 {
719 	return jiffies_to_usecs(tcp_rto_min(sk));
720 }
721 
tcp_ca_dst_locked(const struct dst_entry * dst)722 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
723 {
724 	return dst_metric_locked(dst, RTAX_CC_ALGO);
725 }
726 
727 /* Minimum RTT in usec. ~0 means not available. */
tcp_min_rtt(const struct tcp_sock * tp)728 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
729 {
730 	return minmax_get(&tp->rtt_min);
731 }
732 
733 /* Compute the actual receive window we are currently advertising.
734  * Rcv_nxt can be after the window if our peer push more data
735  * than the offered window.
736  */
tcp_receive_window(const struct tcp_sock * tp)737 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
738 {
739 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
740 
741 	if (win < 0)
742 		win = 0;
743 	return (u32) win;
744 }
745 
746 /* Choose a new window, without checks for shrinking, and without
747  * scaling applied to the result.  The caller does these things
748  * if necessary.  This is a "raw" window selection.
749  */
750 u32 __tcp_select_window(struct sock *sk);
751 
752 void tcp_send_window_probe(struct sock *sk);
753 
754 /* TCP uses 32bit jiffies to save some space.
755  * Note that this is different from tcp_time_stamp, which
756  * historically has been the same until linux-4.13.
757  */
758 #define tcp_jiffies32 ((u32)jiffies)
759 
760 /*
761  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
762  * It is no longer tied to jiffies, but to 1 ms clock.
763  * Note: double check if you want to use tcp_jiffies32 instead of this.
764  */
765 #define TCP_TS_HZ	1000
766 
tcp_clock_ns(void)767 static inline u64 tcp_clock_ns(void)
768 {
769 	return ktime_get_ns();
770 }
771 
tcp_clock_us(void)772 static inline u64 tcp_clock_us(void)
773 {
774 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
775 }
776 
777 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
tcp_time_stamp(const struct tcp_sock * tp)778 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
779 {
780 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
781 }
782 
783 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
tcp_ns_to_ts(u64 ns)784 static inline u32 tcp_ns_to_ts(u64 ns)
785 {
786 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
787 }
788 
789 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
tcp_time_stamp_raw(void)790 static inline u32 tcp_time_stamp_raw(void)
791 {
792 	return tcp_ns_to_ts(tcp_clock_ns());
793 }
794 
795 void tcp_mstamp_refresh(struct tcp_sock *tp);
796 
tcp_stamp_us_delta(u64 t1,u64 t0)797 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
798 {
799 	return max_t(s64, t1 - t0, 0);
800 }
801 
tcp_skb_timestamp(const struct sk_buff * skb)802 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
803 {
804 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
805 }
806 
807 /* provide the departure time in us unit */
tcp_skb_timestamp_us(const struct sk_buff * skb)808 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
809 {
810 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
811 }
812 
813 
814 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
815 
816 #define TCPHDR_FIN 0x01
817 #define TCPHDR_SYN 0x02
818 #define TCPHDR_RST 0x04
819 #define TCPHDR_PSH 0x08
820 #define TCPHDR_ACK 0x10
821 #define TCPHDR_URG 0x20
822 #define TCPHDR_ECE 0x40
823 #define TCPHDR_CWR 0x80
824 
825 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
826 
827 /* This is what the send packet queuing engine uses to pass
828  * TCP per-packet control information to the transmission code.
829  * We also store the host-order sequence numbers in here too.
830  * This is 44 bytes if IPV6 is enabled.
831  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
832  */
833 struct tcp_skb_cb {
834 	__u32		seq;		/* Starting sequence number	*/
835 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
836 	union {
837 		/* Note : tcp_tw_isn is used in input path only
838 		 *	  (isn chosen by tcp_timewait_state_process())
839 		 *
840 		 * 	  tcp_gso_segs/size are used in write queue only,
841 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
842 		 */
843 		__u32		tcp_tw_isn;
844 		struct {
845 			u16	tcp_gso_segs;
846 			u16	tcp_gso_size;
847 		};
848 	};
849 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
850 
851 	__u8		sacked;		/* State flags for SACK.	*/
852 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
853 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
854 #define TCPCB_LOST		0x04	/* SKB is lost			*/
855 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
856 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
857 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
858 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
859 				TCPCB_REPAIRED)
860 
861 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
862 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
863 			eor:1,		/* Is skb MSG_EOR marked? */
864 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
865 			unused:5;
866 	__u32		ack_seq;	/* Sequence number ACK'd	*/
867 	union {
868 		struct {
869 			/* There is space for up to 24 bytes */
870 			__u32 in_flight:30,/* Bytes in flight at transmit */
871 			      is_app_limited:1, /* cwnd not fully used? */
872 			      unused:1;
873 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
874 			__u32 delivered;
875 			/* start of send pipeline phase */
876 			u64 first_tx_mstamp;
877 			/* when we reached the "delivered" count */
878 			u64 delivered_mstamp;
879 		} tx;   /* only used for outgoing skbs */
880 		union {
881 			struct inet_skb_parm	h4;
882 #if IS_ENABLED(CONFIG_IPV6)
883 			struct inet6_skb_parm	h6;
884 #endif
885 		} header;	/* For incoming skbs */
886 		struct {
887 			__u32 flags;
888 			struct sock *sk_redir;
889 			void *data_end;
890 		} bpf;
891 	};
892 };
893 
894 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
895 
bpf_compute_data_end_sk_skb(struct sk_buff * skb)896 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
897 {
898 	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
899 }
900 
tcp_skb_bpf_ingress(const struct sk_buff * skb)901 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
902 {
903 	return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
904 }
905 
tcp_skb_bpf_redirect_fetch(struct sk_buff * skb)906 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
907 {
908 	return TCP_SKB_CB(skb)->bpf.sk_redir;
909 }
910 
tcp_skb_bpf_redirect_clear(struct sk_buff * skb)911 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
912 {
913 	TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
914 }
915 
916 extern const struct inet_connection_sock_af_ops ipv4_specific;
917 
918 #if IS_ENABLED(CONFIG_IPV6)
919 /* This is the variant of inet6_iif() that must be used by TCP,
920  * as TCP moves IP6CB into a different location in skb->cb[]
921  */
tcp_v6_iif(const struct sk_buff * skb)922 static inline int tcp_v6_iif(const struct sk_buff *skb)
923 {
924 	return TCP_SKB_CB(skb)->header.h6.iif;
925 }
926 
tcp_v6_iif_l3_slave(const struct sk_buff * skb)927 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
928 {
929 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
930 
931 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
932 }
933 
934 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v6_sdif(const struct sk_buff * skb)935 static inline int tcp_v6_sdif(const struct sk_buff *skb)
936 {
937 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
938 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
939 		return TCP_SKB_CB(skb)->header.h6.iif;
940 #endif
941 	return 0;
942 }
943 
944 extern const struct inet_connection_sock_af_ops ipv6_specific;
945 
946 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
947 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
948 void tcp_v6_early_demux(struct sk_buff *skb);
949 
950 #endif
951 
952 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v4_sdif(struct sk_buff * skb)953 static inline int tcp_v4_sdif(struct sk_buff *skb)
954 {
955 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
956 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
957 		return TCP_SKB_CB(skb)->header.h4.iif;
958 #endif
959 	return 0;
960 }
961 
962 /* Due to TSO, an SKB can be composed of multiple actual
963  * packets.  To keep these tracked properly, we use this.
964  */
tcp_skb_pcount(const struct sk_buff * skb)965 static inline int tcp_skb_pcount(const struct sk_buff *skb)
966 {
967 	return TCP_SKB_CB(skb)->tcp_gso_segs;
968 }
969 
tcp_skb_pcount_set(struct sk_buff * skb,int segs)970 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
971 {
972 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
973 }
974 
tcp_skb_pcount_add(struct sk_buff * skb,int segs)975 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
976 {
977 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
978 }
979 
980 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)981 static inline int tcp_skb_mss(const struct sk_buff *skb)
982 {
983 	return TCP_SKB_CB(skb)->tcp_gso_size;
984 }
985 
tcp_skb_can_collapse_to(const struct sk_buff * skb)986 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
987 {
988 	return likely(!TCP_SKB_CB(skb)->eor);
989 }
990 
tcp_skb_can_collapse(const struct sk_buff * to,const struct sk_buff * from)991 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
992 					const struct sk_buff *from)
993 {
994 	return likely(tcp_skb_can_collapse_to(to) &&
995 		      mptcp_skb_can_collapse(to, from));
996 }
997 
998 /* Events passed to congestion control interface */
999 enum tcp_ca_event {
1000 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1001 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1002 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1003 	CA_EVENT_LOSS,		/* loss timeout */
1004 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1005 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1006 };
1007 
1008 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1009 enum tcp_ca_ack_event_flags {
1010 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1011 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1012 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1013 };
1014 
1015 /*
1016  * Interface for adding new TCP congestion control handlers
1017  */
1018 #define TCP_CA_NAME_MAX	16
1019 #define TCP_CA_MAX	128
1020 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1021 
1022 #define TCP_CA_UNSPEC	0
1023 
1024 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1025 #define TCP_CONG_NON_RESTRICTED 0x1
1026 /* Requires ECN/ECT set on all packets */
1027 #define TCP_CONG_NEEDS_ECN	0x2
1028 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1029 
1030 union tcp_cc_info;
1031 
1032 struct ack_sample {
1033 	u32 pkts_acked;
1034 	s32 rtt_us;
1035 	u32 in_flight;
1036 };
1037 
1038 /* A rate sample measures the number of (original/retransmitted) data
1039  * packets delivered "delivered" over an interval of time "interval_us".
1040  * The tcp_rate.c code fills in the rate sample, and congestion
1041  * control modules that define a cong_control function to run at the end
1042  * of ACK processing can optionally chose to consult this sample when
1043  * setting cwnd and pacing rate.
1044  * A sample is invalid if "delivered" or "interval_us" is negative.
1045  */
1046 struct rate_sample {
1047 	u64  prior_mstamp; /* starting timestamp for interval */
1048 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1049 	s32  delivered;		/* number of packets delivered over interval */
1050 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1051 	u32 snd_interval_us;	/* snd interval for delivered packets */
1052 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1053 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1054 	int  losses;		/* number of packets marked lost upon ACK */
1055 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1056 	u32  prior_in_flight;	/* in flight before this ACK */
1057 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1058 	bool is_retrans;	/* is sample from retransmission? */
1059 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1060 };
1061 
1062 struct tcp_congestion_ops {
1063 	struct list_head	list;
1064 	u32 key;
1065 	u32 flags;
1066 
1067 	/* initialize private data (optional) */
1068 	void (*init)(struct sock *sk);
1069 	/* cleanup private data  (optional) */
1070 	void (*release)(struct sock *sk);
1071 
1072 	/* return slow start threshold (required) */
1073 	u32 (*ssthresh)(struct sock *sk);
1074 	/* do new cwnd calculation (required) */
1075 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1076 	/* call before changing ca_state (optional) */
1077 	void (*set_state)(struct sock *sk, u8 new_state);
1078 	/* call when cwnd event occurs (optional) */
1079 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1080 	/* call when ack arrives (optional) */
1081 	void (*in_ack_event)(struct sock *sk, u32 flags);
1082 	/* new value of cwnd after loss (required) */
1083 	u32  (*undo_cwnd)(struct sock *sk);
1084 	/* hook for packet ack accounting (optional) */
1085 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1086 	/* override sysctl_tcp_min_tso_segs */
1087 	u32 (*min_tso_segs)(struct sock *sk);
1088 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1089 	u32 (*sndbuf_expand)(struct sock *sk);
1090 	/* call when packets are delivered to update cwnd and pacing rate,
1091 	 * after all the ca_state processing. (optional)
1092 	 */
1093 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1094 	/* get info for inet_diag (optional) */
1095 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1096 			   union tcp_cc_info *info);
1097 
1098 	char 		name[TCP_CA_NAME_MAX];
1099 	struct module 	*owner;
1100 };
1101 
1102 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1103 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1104 
1105 void tcp_assign_congestion_control(struct sock *sk);
1106 void tcp_init_congestion_control(struct sock *sk);
1107 void tcp_cleanup_congestion_control(struct sock *sk);
1108 int tcp_set_default_congestion_control(struct net *net, const char *name);
1109 void tcp_get_default_congestion_control(struct net *net, char *name);
1110 void tcp_get_available_congestion_control(char *buf, size_t len);
1111 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1112 int tcp_set_allowed_congestion_control(char *allowed);
1113 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1114 			       bool cap_net_admin);
1115 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1116 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1117 
1118 u32 tcp_reno_ssthresh(struct sock *sk);
1119 u32 tcp_reno_undo_cwnd(struct sock *sk);
1120 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1121 extern struct tcp_congestion_ops tcp_reno;
1122 
1123 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1124 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1125 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1126 #ifdef CONFIG_INET
1127 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1128 #else
tcp_ca_get_name_by_key(u32 key,char * buffer)1129 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1130 {
1131 	return NULL;
1132 }
1133 #endif
1134 
tcp_ca_needs_ecn(const struct sock * sk)1135 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1136 {
1137 	const struct inet_connection_sock *icsk = inet_csk(sk);
1138 
1139 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1140 }
1141 
tcp_set_ca_state(struct sock * sk,const u8 ca_state)1142 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1143 {
1144 	struct inet_connection_sock *icsk = inet_csk(sk);
1145 
1146 	if (icsk->icsk_ca_ops->set_state)
1147 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1148 	icsk->icsk_ca_state = ca_state;
1149 }
1150 
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)1151 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1152 {
1153 	const struct inet_connection_sock *icsk = inet_csk(sk);
1154 
1155 	if (icsk->icsk_ca_ops->cwnd_event)
1156 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1157 }
1158 
1159 /* From tcp_rate.c */
1160 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1161 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1162 			    struct rate_sample *rs);
1163 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1164 		  bool is_sack_reneg, struct rate_sample *rs);
1165 void tcp_rate_check_app_limited(struct sock *sk);
1166 
1167 /* These functions determine how the current flow behaves in respect of SACK
1168  * handling. SACK is negotiated with the peer, and therefore it can vary
1169  * between different flows.
1170  *
1171  * tcp_is_sack - SACK enabled
1172  * tcp_is_reno - No SACK
1173  */
tcp_is_sack(const struct tcp_sock * tp)1174 static inline int tcp_is_sack(const struct tcp_sock *tp)
1175 {
1176 	return likely(tp->rx_opt.sack_ok);
1177 }
1178 
tcp_is_reno(const struct tcp_sock * tp)1179 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1180 {
1181 	return !tcp_is_sack(tp);
1182 }
1183 
tcp_left_out(const struct tcp_sock * tp)1184 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1185 {
1186 	return tp->sacked_out + tp->lost_out;
1187 }
1188 
1189 /* This determines how many packets are "in the network" to the best
1190  * of our knowledge.  In many cases it is conservative, but where
1191  * detailed information is available from the receiver (via SACK
1192  * blocks etc.) we can make more aggressive calculations.
1193  *
1194  * Use this for decisions involving congestion control, use just
1195  * tp->packets_out to determine if the send queue is empty or not.
1196  *
1197  * Read this equation as:
1198  *
1199  *	"Packets sent once on transmission queue" MINUS
1200  *	"Packets left network, but not honestly ACKed yet" PLUS
1201  *	"Packets fast retransmitted"
1202  */
tcp_packets_in_flight(const struct tcp_sock * tp)1203 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1204 {
1205 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1206 }
1207 
1208 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1209 
tcp_in_slow_start(const struct tcp_sock * tp)1210 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1211 {
1212 	return tp->snd_cwnd < tp->snd_ssthresh;
1213 }
1214 
tcp_in_initial_slowstart(const struct tcp_sock * tp)1215 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1216 {
1217 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1218 }
1219 
tcp_in_cwnd_reduction(const struct sock * sk)1220 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1221 {
1222 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1223 	       (1 << inet_csk(sk)->icsk_ca_state);
1224 }
1225 
1226 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1227  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1228  * ssthresh.
1229  */
tcp_current_ssthresh(const struct sock * sk)1230 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1231 {
1232 	const struct tcp_sock *tp = tcp_sk(sk);
1233 
1234 	if (tcp_in_cwnd_reduction(sk))
1235 		return tp->snd_ssthresh;
1236 	else
1237 		return max(tp->snd_ssthresh,
1238 			   ((tp->snd_cwnd >> 1) +
1239 			    (tp->snd_cwnd >> 2)));
1240 }
1241 
1242 /* Use define here intentionally to get WARN_ON location shown at the caller */
1243 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1244 
1245 void tcp_enter_cwr(struct sock *sk);
1246 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1247 
1248 /* The maximum number of MSS of available cwnd for which TSO defers
1249  * sending if not using sysctl_tcp_tso_win_divisor.
1250  */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)1251 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1252 {
1253 	return 3;
1254 }
1255 
1256 /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)1257 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1258 {
1259 	return tp->snd_una + tp->snd_wnd;
1260 }
1261 
1262 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1263  * flexible approach. The RFC suggests cwnd should not be raised unless
1264  * it was fully used previously. And that's exactly what we do in
1265  * congestion avoidance mode. But in slow start we allow cwnd to grow
1266  * as long as the application has used half the cwnd.
1267  * Example :
1268  *    cwnd is 10 (IW10), but application sends 9 frames.
1269  *    We allow cwnd to reach 18 when all frames are ACKed.
1270  * This check is safe because it's as aggressive as slow start which already
1271  * risks 100% overshoot. The advantage is that we discourage application to
1272  * either send more filler packets or data to artificially blow up the cwnd
1273  * usage, and allow application-limited process to probe bw more aggressively.
1274  */
tcp_is_cwnd_limited(const struct sock * sk)1275 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1276 {
1277 	const struct tcp_sock *tp = tcp_sk(sk);
1278 
1279 	if (tp->is_cwnd_limited)
1280 		return true;
1281 
1282 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1283 	if (tcp_in_slow_start(tp))
1284 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1285 
1286 	return false;
1287 }
1288 
1289 /* BBR congestion control needs pacing.
1290  * Same remark for SO_MAX_PACING_RATE.
1291  * sch_fq packet scheduler is efficiently handling pacing,
1292  * but is not always installed/used.
1293  * Return true if TCP stack should pace packets itself.
1294  */
tcp_needs_internal_pacing(const struct sock * sk)1295 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1296 {
1297 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1298 }
1299 
1300 /* Estimates in how many jiffies next packet for this flow can be sent.
1301  * Scheduling a retransmit timer too early would be silly.
1302  */
tcp_pacing_delay(const struct sock * sk)1303 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1304 {
1305 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1306 
1307 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1308 }
1309 
tcp_reset_xmit_timer(struct sock * sk,const int what,unsigned long when,const unsigned long max_when)1310 static inline void tcp_reset_xmit_timer(struct sock *sk,
1311 					const int what,
1312 					unsigned long when,
1313 					const unsigned long max_when)
1314 {
1315 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1316 				  max_when);
1317 }
1318 
1319 /* Something is really bad, we could not queue an additional packet,
1320  * because qdisc is full or receiver sent a 0 window, or we are paced.
1321  * We do not want to add fuel to the fire, or abort too early,
1322  * so make sure the timer we arm now is at least 200ms in the future,
1323  * regardless of current icsk_rto value (as it could be ~2ms)
1324  */
tcp_probe0_base(const struct sock * sk)1325 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1326 {
1327 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1328 }
1329 
1330 /* Variant of inet_csk_rto_backoff() used for zero window probes */
tcp_probe0_when(const struct sock * sk,unsigned long max_when)1331 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1332 					    unsigned long max_when)
1333 {
1334 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1335 
1336 	return (unsigned long)min_t(u64, when, max_when);
1337 }
1338 
tcp_check_probe_timer(struct sock * sk)1339 static inline void tcp_check_probe_timer(struct sock *sk)
1340 {
1341 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1342 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1343 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1344 }
1345 
tcp_init_wl(struct tcp_sock * tp,u32 seq)1346 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1347 {
1348 	tp->snd_wl1 = seq;
1349 }
1350 
tcp_update_wl(struct tcp_sock * tp,u32 seq)1351 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1352 {
1353 	tp->snd_wl1 = seq;
1354 }
1355 
1356 /*
1357  * Calculate(/check) TCP checksum
1358  */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)1359 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1360 				   __be32 daddr, __wsum base)
1361 {
1362 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1363 }
1364 
tcp_checksum_complete(struct sk_buff * skb)1365 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1366 {
1367 	return !skb_csum_unnecessary(skb) &&
1368 		__skb_checksum_complete(skb);
1369 }
1370 
1371 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1372 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1373 void tcp_set_state(struct sock *sk, int state);
1374 void tcp_done(struct sock *sk);
1375 int tcp_abort(struct sock *sk, int err);
1376 
tcp_sack_reset(struct tcp_options_received * rx_opt)1377 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1378 {
1379 	rx_opt->dsack = 0;
1380 	rx_opt->num_sacks = 0;
1381 }
1382 
1383 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1384 
tcp_slow_start_after_idle_check(struct sock * sk)1385 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1386 {
1387 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1388 	struct tcp_sock *tp = tcp_sk(sk);
1389 	s32 delta;
1390 
1391 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1392 	    tp->packets_out || ca_ops->cong_control)
1393 		return;
1394 	delta = tcp_jiffies32 - tp->lsndtime;
1395 	if (delta > inet_csk(sk)->icsk_rto)
1396 		tcp_cwnd_restart(sk, delta);
1397 }
1398 
1399 /* Determine a window scaling and initial window to offer. */
1400 void tcp_select_initial_window(const struct sock *sk, int __space,
1401 			       __u32 mss, __u32 *rcv_wnd,
1402 			       __u32 *window_clamp, int wscale_ok,
1403 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1404 
tcp_win_from_space(const struct sock * sk,int space)1405 static inline int tcp_win_from_space(const struct sock *sk, int space)
1406 {
1407 	int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale);
1408 
1409 	return tcp_adv_win_scale <= 0 ?
1410 		(space>>(-tcp_adv_win_scale)) :
1411 		space - (space>>tcp_adv_win_scale);
1412 }
1413 
1414 /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1415 static inline int tcp_space(const struct sock *sk)
1416 {
1417 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1418 				  READ_ONCE(sk->sk_backlog.len) -
1419 				  atomic_read(&sk->sk_rmem_alloc));
1420 }
1421 
tcp_full_space(const struct sock * sk)1422 static inline int tcp_full_space(const struct sock *sk)
1423 {
1424 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1425 }
1426 
1427 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1428 
1429 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1430  * If 87.5 % (7/8) of the space has been consumed, we want to override
1431  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1432  * len/truesize ratio.
1433  */
tcp_rmem_pressure(const struct sock * sk)1434 static inline bool tcp_rmem_pressure(const struct sock *sk)
1435 {
1436 	int rcvbuf, threshold;
1437 
1438 	if (tcp_under_memory_pressure(sk))
1439 		return true;
1440 
1441 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1442 	threshold = rcvbuf - (rcvbuf >> 3);
1443 
1444 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1445 }
1446 
1447 extern void tcp_openreq_init_rwin(struct request_sock *req,
1448 				  const struct sock *sk_listener,
1449 				  const struct dst_entry *dst);
1450 
1451 void tcp_enter_memory_pressure(struct sock *sk);
1452 void tcp_leave_memory_pressure(struct sock *sk);
1453 
keepalive_intvl_when(const struct tcp_sock * tp)1454 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1455 {
1456 	struct net *net = sock_net((struct sock *)tp);
1457 
1458 	return tp->keepalive_intvl ? :
1459 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1460 }
1461 
keepalive_time_when(const struct tcp_sock * tp)1462 static inline int keepalive_time_when(const struct tcp_sock *tp)
1463 {
1464 	struct net *net = sock_net((struct sock *)tp);
1465 
1466 	return tp->keepalive_time ? :
1467 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1468 }
1469 
keepalive_probes(const struct tcp_sock * tp)1470 static inline int keepalive_probes(const struct tcp_sock *tp)
1471 {
1472 	struct net *net = sock_net((struct sock *)tp);
1473 
1474 	return tp->keepalive_probes ? :
1475 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1476 }
1477 
keepalive_time_elapsed(const struct tcp_sock * tp)1478 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1479 {
1480 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1481 
1482 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1483 			  tcp_jiffies32 - tp->rcv_tstamp);
1484 }
1485 
tcp_fin_time(const struct sock * sk)1486 static inline int tcp_fin_time(const struct sock *sk)
1487 {
1488 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1489 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1490 	const int rto = inet_csk(sk)->icsk_rto;
1491 
1492 	if (fin_timeout < (rto << 2) - (rto >> 1))
1493 		fin_timeout = (rto << 2) - (rto >> 1);
1494 
1495 	return fin_timeout;
1496 }
1497 
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1498 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1499 				  int paws_win)
1500 {
1501 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1502 		return true;
1503 	if (unlikely(!time_before32(ktime_get_seconds(),
1504 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1505 		return true;
1506 	/*
1507 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1508 	 * then following tcp messages have valid values. Ignore 0 value,
1509 	 * or else 'negative' tsval might forbid us to accept their packets.
1510 	 */
1511 	if (!rx_opt->ts_recent)
1512 		return true;
1513 	return false;
1514 }
1515 
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1516 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1517 				   int rst)
1518 {
1519 	if (tcp_paws_check(rx_opt, 0))
1520 		return false;
1521 
1522 	/* RST segments are not recommended to carry timestamp,
1523 	   and, if they do, it is recommended to ignore PAWS because
1524 	   "their cleanup function should take precedence over timestamps."
1525 	   Certainly, it is mistake. It is necessary to understand the reasons
1526 	   of this constraint to relax it: if peer reboots, clock may go
1527 	   out-of-sync and half-open connections will not be reset.
1528 	   Actually, the problem would be not existing if all
1529 	   the implementations followed draft about maintaining clock
1530 	   via reboots. Linux-2.2 DOES NOT!
1531 
1532 	   However, we can relax time bounds for RST segments to MSL.
1533 	 */
1534 	if (rst && !time_before32(ktime_get_seconds(),
1535 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1536 		return false;
1537 	return true;
1538 }
1539 
1540 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1541 			  int mib_idx, u32 *last_oow_ack_time);
1542 
tcp_mib_init(struct net * net)1543 static inline void tcp_mib_init(struct net *net)
1544 {
1545 	/* See RFC 2012 */
1546 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1547 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1548 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1549 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1550 }
1551 
1552 /* from STCP */
tcp_clear_retrans_hints_partial(struct tcp_sock * tp)1553 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1554 {
1555 	tp->lost_skb_hint = NULL;
1556 }
1557 
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1558 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1559 {
1560 	tcp_clear_retrans_hints_partial(tp);
1561 	tp->retransmit_skb_hint = NULL;
1562 }
1563 
1564 union tcp_md5_addr {
1565 	struct in_addr  a4;
1566 #if IS_ENABLED(CONFIG_IPV6)
1567 	struct in6_addr	a6;
1568 #endif
1569 };
1570 
1571 /* - key database */
1572 struct tcp_md5sig_key {
1573 	struct hlist_node	node;
1574 	u8			keylen;
1575 	u8			family; /* AF_INET or AF_INET6 */
1576 	u8			prefixlen;
1577 	union tcp_md5_addr	addr;
1578 	int			l3index; /* set if key added with L3 scope */
1579 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1580 	struct rcu_head		rcu;
1581 };
1582 
1583 /* - sock block */
1584 struct tcp_md5sig_info {
1585 	struct hlist_head	head;
1586 	struct rcu_head		rcu;
1587 };
1588 
1589 /* - pseudo header */
1590 struct tcp4_pseudohdr {
1591 	__be32		saddr;
1592 	__be32		daddr;
1593 	__u8		pad;
1594 	__u8		protocol;
1595 	__be16		len;
1596 };
1597 
1598 struct tcp6_pseudohdr {
1599 	struct in6_addr	saddr;
1600 	struct in6_addr daddr;
1601 	__be32		len;
1602 	__be32		protocol;	/* including padding */
1603 };
1604 
1605 union tcp_md5sum_block {
1606 	struct tcp4_pseudohdr ip4;
1607 #if IS_ENABLED(CONFIG_IPV6)
1608 	struct tcp6_pseudohdr ip6;
1609 #endif
1610 };
1611 
1612 /* - pool: digest algorithm, hash description and scratch buffer */
1613 struct tcp_md5sig_pool {
1614 	struct ahash_request	*md5_req;
1615 	void			*scratch;
1616 };
1617 
1618 /* - functions */
1619 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1620 			const struct sock *sk, const struct sk_buff *skb);
1621 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1622 		   int family, u8 prefixlen, int l3index,
1623 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1624 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1625 		   int family, u8 prefixlen, int l3index);
1626 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1627 					 const struct sock *addr_sk);
1628 
1629 #ifdef CONFIG_TCP_MD5SIG
1630 #include <linux/jump_label.h>
1631 extern struct static_key_false tcp_md5_needed;
1632 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1633 					   const union tcp_md5_addr *addr,
1634 					   int family);
1635 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1636 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1637 		  const union tcp_md5_addr *addr, int family)
1638 {
1639 	if (!static_branch_unlikely(&tcp_md5_needed))
1640 		return NULL;
1641 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1642 }
1643 
1644 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1645 #else
1646 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1647 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1648 		  const union tcp_md5_addr *addr, int family)
1649 {
1650 	return NULL;
1651 }
1652 #define tcp_twsk_md5_key(twsk)	NULL
1653 #endif
1654 
1655 bool tcp_alloc_md5sig_pool(void);
1656 
1657 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
tcp_put_md5sig_pool(void)1658 static inline void tcp_put_md5sig_pool(void)
1659 {
1660 	local_bh_enable();
1661 }
1662 
1663 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1664 			  unsigned int header_len);
1665 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1666 		     const struct tcp_md5sig_key *key);
1667 
1668 /* From tcp_fastopen.c */
1669 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1670 			    struct tcp_fastopen_cookie *cookie);
1671 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1672 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1673 			    u16 try_exp);
1674 struct tcp_fastopen_request {
1675 	/* Fast Open cookie. Size 0 means a cookie request */
1676 	struct tcp_fastopen_cookie	cookie;
1677 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1678 	size_t				size;
1679 	int				copied;	/* queued in tcp_connect() */
1680 	struct ubuf_info		*uarg;
1681 };
1682 void tcp_free_fastopen_req(struct tcp_sock *tp);
1683 void tcp_fastopen_destroy_cipher(struct sock *sk);
1684 void tcp_fastopen_ctx_destroy(struct net *net);
1685 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1686 			      void *primary_key, void *backup_key);
1687 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1688 			    u64 *key);
1689 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1690 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1691 			      struct request_sock *req,
1692 			      struct tcp_fastopen_cookie *foc,
1693 			      const struct dst_entry *dst);
1694 void tcp_fastopen_init_key_once(struct net *net);
1695 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1696 			     struct tcp_fastopen_cookie *cookie);
1697 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1698 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1699 #define TCP_FASTOPEN_KEY_MAX 2
1700 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1701 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1702 
1703 /* Fastopen key context */
1704 struct tcp_fastopen_context {
1705 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1706 	int		num;
1707 	struct rcu_head	rcu;
1708 };
1709 
1710 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1711 void tcp_fastopen_active_disable(struct sock *sk);
1712 bool tcp_fastopen_active_should_disable(struct sock *sk);
1713 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1714 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1715 
1716 /* Caller needs to wrap with rcu_read_(un)lock() */
1717 static inline
tcp_fastopen_get_ctx(const struct sock * sk)1718 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1719 {
1720 	struct tcp_fastopen_context *ctx;
1721 
1722 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1723 	if (!ctx)
1724 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1725 	return ctx;
1726 }
1727 
1728 static inline
tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie * foc,const struct tcp_fastopen_cookie * orig)1729 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1730 			       const struct tcp_fastopen_cookie *orig)
1731 {
1732 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1733 	    orig->len == foc->len &&
1734 	    !memcmp(orig->val, foc->val, foc->len))
1735 		return true;
1736 	return false;
1737 }
1738 
1739 static inline
tcp_fastopen_context_len(const struct tcp_fastopen_context * ctx)1740 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1741 {
1742 	return ctx->num;
1743 }
1744 
1745 /* Latencies incurred by various limits for a sender. They are
1746  * chronograph-like stats that are mutually exclusive.
1747  */
1748 enum tcp_chrono {
1749 	TCP_CHRONO_UNSPEC,
1750 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1751 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1752 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1753 	__TCP_CHRONO_MAX,
1754 };
1755 
1756 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1757 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1758 
1759 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1760  * the same memory storage than skb->destructor/_skb_refdst
1761  */
tcp_skb_tsorted_anchor_cleanup(struct sk_buff * skb)1762 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1763 {
1764 	skb->destructor = NULL;
1765 	skb->_skb_refdst = 0UL;
1766 }
1767 
1768 #define tcp_skb_tsorted_save(skb) {		\
1769 	unsigned long _save = skb->_skb_refdst;	\
1770 	skb->_skb_refdst = 0UL;
1771 
1772 #define tcp_skb_tsorted_restore(skb)		\
1773 	skb->_skb_refdst = _save;		\
1774 }
1775 
1776 void tcp_write_queue_purge(struct sock *sk);
1777 
tcp_rtx_queue_head(const struct sock * sk)1778 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1779 {
1780 	return skb_rb_first(&sk->tcp_rtx_queue);
1781 }
1782 
tcp_rtx_queue_tail(const struct sock * sk)1783 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1784 {
1785 	return skb_rb_last(&sk->tcp_rtx_queue);
1786 }
1787 
tcp_write_queue_head(const struct sock * sk)1788 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1789 {
1790 	return skb_peek(&sk->sk_write_queue);
1791 }
1792 
tcp_write_queue_tail(const struct sock * sk)1793 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1794 {
1795 	return skb_peek_tail(&sk->sk_write_queue);
1796 }
1797 
1798 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1799 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1800 
tcp_send_head(const struct sock * sk)1801 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1802 {
1803 	return skb_peek(&sk->sk_write_queue);
1804 }
1805 
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)1806 static inline bool tcp_skb_is_last(const struct sock *sk,
1807 				   const struct sk_buff *skb)
1808 {
1809 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1810 }
1811 
1812 /**
1813  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1814  * @sk: socket
1815  *
1816  * Since the write queue can have a temporary empty skb in it,
1817  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1818  */
tcp_write_queue_empty(const struct sock * sk)1819 static inline bool tcp_write_queue_empty(const struct sock *sk)
1820 {
1821 	const struct tcp_sock *tp = tcp_sk(sk);
1822 
1823 	return tp->write_seq == tp->snd_nxt;
1824 }
1825 
tcp_rtx_queue_empty(const struct sock * sk)1826 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1827 {
1828 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1829 }
1830 
tcp_rtx_and_write_queues_empty(const struct sock * sk)1831 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1832 {
1833 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1834 }
1835 
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1836 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1837 {
1838 	__skb_queue_tail(&sk->sk_write_queue, skb);
1839 
1840 	/* Queue it, remembering where we must start sending. */
1841 	if (sk->sk_write_queue.next == skb)
1842 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1843 }
1844 
1845 /* Insert new before skb on the write queue of sk.  */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)1846 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1847 						  struct sk_buff *skb,
1848 						  struct sock *sk)
1849 {
1850 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1851 }
1852 
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)1853 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1854 {
1855 	tcp_skb_tsorted_anchor_cleanup(skb);
1856 	__skb_unlink(skb, &sk->sk_write_queue);
1857 }
1858 
1859 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1860 
tcp_rtx_queue_unlink(struct sk_buff * skb,struct sock * sk)1861 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1862 {
1863 	tcp_skb_tsorted_anchor_cleanup(skb);
1864 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1865 }
1866 
tcp_rtx_queue_unlink_and_free(struct sk_buff * skb,struct sock * sk)1867 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1868 {
1869 	list_del(&skb->tcp_tsorted_anchor);
1870 	tcp_rtx_queue_unlink(skb, sk);
1871 	sk_wmem_free_skb(sk, skb);
1872 }
1873 
tcp_push_pending_frames(struct sock * sk)1874 static inline void tcp_push_pending_frames(struct sock *sk)
1875 {
1876 	if (tcp_send_head(sk)) {
1877 		struct tcp_sock *tp = tcp_sk(sk);
1878 
1879 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1880 	}
1881 }
1882 
1883 /* Start sequence of the skb just after the highest skb with SACKed
1884  * bit, valid only if sacked_out > 0 or when the caller has ensured
1885  * validity by itself.
1886  */
tcp_highest_sack_seq(struct tcp_sock * tp)1887 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1888 {
1889 	if (!tp->sacked_out)
1890 		return tp->snd_una;
1891 
1892 	if (tp->highest_sack == NULL)
1893 		return tp->snd_nxt;
1894 
1895 	return TCP_SKB_CB(tp->highest_sack)->seq;
1896 }
1897 
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)1898 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1899 {
1900 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1901 }
1902 
tcp_highest_sack(struct sock * sk)1903 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1904 {
1905 	return tcp_sk(sk)->highest_sack;
1906 }
1907 
tcp_highest_sack_reset(struct sock * sk)1908 static inline void tcp_highest_sack_reset(struct sock *sk)
1909 {
1910 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1911 }
1912 
1913 /* Called when old skb is about to be deleted and replaced by new skb */
tcp_highest_sack_replace(struct sock * sk,struct sk_buff * old,struct sk_buff * new)1914 static inline void tcp_highest_sack_replace(struct sock *sk,
1915 					    struct sk_buff *old,
1916 					    struct sk_buff *new)
1917 {
1918 	if (old == tcp_highest_sack(sk))
1919 		tcp_sk(sk)->highest_sack = new;
1920 }
1921 
1922 /* This helper checks if socket has IP_TRANSPARENT set */
inet_sk_transparent(const struct sock * sk)1923 static inline bool inet_sk_transparent(const struct sock *sk)
1924 {
1925 	switch (sk->sk_state) {
1926 	case TCP_TIME_WAIT:
1927 		return inet_twsk(sk)->tw_transparent;
1928 	case TCP_NEW_SYN_RECV:
1929 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1930 	}
1931 	return inet_sk(sk)->transparent;
1932 }
1933 
1934 /* Determines whether this is a thin stream (which may suffer from
1935  * increased latency). Used to trigger latency-reducing mechanisms.
1936  */
tcp_stream_is_thin(struct tcp_sock * tp)1937 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1938 {
1939 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1940 }
1941 
1942 /* /proc */
1943 enum tcp_seq_states {
1944 	TCP_SEQ_STATE_LISTENING,
1945 	TCP_SEQ_STATE_ESTABLISHED,
1946 };
1947 
1948 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1949 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1950 void tcp_seq_stop(struct seq_file *seq, void *v);
1951 
1952 struct tcp_seq_afinfo {
1953 	sa_family_t			family;
1954 };
1955 
1956 struct tcp_iter_state {
1957 	struct seq_net_private	p;
1958 	enum tcp_seq_states	state;
1959 	struct sock		*syn_wait_sk;
1960 	struct tcp_seq_afinfo	*bpf_seq_afinfo;
1961 	int			bucket, offset, sbucket, num;
1962 	loff_t			last_pos;
1963 };
1964 
1965 extern struct request_sock_ops tcp_request_sock_ops;
1966 extern struct request_sock_ops tcp6_request_sock_ops;
1967 
1968 void tcp_v4_destroy_sock(struct sock *sk);
1969 
1970 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1971 				netdev_features_t features);
1972 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1973 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1974 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1975 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1976 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1977 int tcp_gro_complete(struct sk_buff *skb);
1978 
1979 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1980 
tcp_notsent_lowat(const struct tcp_sock * tp)1981 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1982 {
1983 	struct net *net = sock_net((struct sock *)tp);
1984 	return tp->notsent_lowat ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
1985 }
1986 
1987 /* @wake is one when sk_stream_write_space() calls us.
1988  * This sends EPOLLOUT only if notsent_bytes is half the limit.
1989  * This mimics the strategy used in sock_def_write_space().
1990  */
tcp_stream_memory_free(const struct sock * sk,int wake)1991 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1992 {
1993 	const struct tcp_sock *tp = tcp_sk(sk);
1994 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1995 			    READ_ONCE(tp->snd_nxt);
1996 
1997 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1998 }
1999 
2000 #ifdef CONFIG_PROC_FS
2001 int tcp4_proc_init(void);
2002 void tcp4_proc_exit(void);
2003 #endif
2004 
2005 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2006 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2007 		     const struct tcp_request_sock_ops *af_ops,
2008 		     struct sock *sk, struct sk_buff *skb);
2009 
2010 /* TCP af-specific functions */
2011 struct tcp_sock_af_ops {
2012 #ifdef CONFIG_TCP_MD5SIG
2013 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2014 						const struct sock *addr_sk);
2015 	int		(*calc_md5_hash)(char *location,
2016 					 const struct tcp_md5sig_key *md5,
2017 					 const struct sock *sk,
2018 					 const struct sk_buff *skb);
2019 	int		(*md5_parse)(struct sock *sk,
2020 				     int optname,
2021 				     sockptr_t optval,
2022 				     int optlen);
2023 #endif
2024 };
2025 
2026 struct tcp_request_sock_ops {
2027 	u16 mss_clamp;
2028 #ifdef CONFIG_TCP_MD5SIG
2029 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2030 						 const struct sock *addr_sk);
2031 	int		(*calc_md5_hash) (char *location,
2032 					  const struct tcp_md5sig_key *md5,
2033 					  const struct sock *sk,
2034 					  const struct sk_buff *skb);
2035 #endif
2036 	void (*init_req)(struct request_sock *req,
2037 			 const struct sock *sk_listener,
2038 			 struct sk_buff *skb);
2039 #ifdef CONFIG_SYN_COOKIES
2040 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2041 				 __u16 *mss);
2042 #endif
2043 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
2044 				       const struct request_sock *req);
2045 	u32 (*init_seq)(const struct sk_buff *skb);
2046 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2047 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2048 			   struct flowi *fl, struct request_sock *req,
2049 			   struct tcp_fastopen_cookie *foc,
2050 			   enum tcp_synack_type synack_type,
2051 			   struct sk_buff *syn_skb);
2052 };
2053 
2054 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2055 #if IS_ENABLED(CONFIG_IPV6)
2056 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2057 #endif
2058 
2059 #ifdef CONFIG_SYN_COOKIES
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2060 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2061 					 const struct sock *sk, struct sk_buff *skb,
2062 					 __u16 *mss)
2063 {
2064 	tcp_synq_overflow(sk);
2065 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2066 	return ops->cookie_init_seq(skb, mss);
2067 }
2068 #else
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2069 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2070 					 const struct sock *sk, struct sk_buff *skb,
2071 					 __u16 *mss)
2072 {
2073 	return 0;
2074 }
2075 #endif
2076 
2077 int tcpv4_offload_init(void);
2078 
2079 void tcp_v4_init(void);
2080 void tcp_init(void);
2081 
2082 /* tcp_recovery.c */
2083 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2084 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2085 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2086 				u32 reo_wnd);
2087 extern bool tcp_rack_mark_lost(struct sock *sk);
2088 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2089 			     u64 xmit_time);
2090 extern void tcp_rack_reo_timeout(struct sock *sk);
2091 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2092 
2093 /* At how many usecs into the future should the RTO fire? */
tcp_rto_delta_us(const struct sock * sk)2094 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2095 {
2096 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2097 	u32 rto = inet_csk(sk)->icsk_rto;
2098 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2099 
2100 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2101 }
2102 
2103 /*
2104  * Save and compile IPv4 options, return a pointer to it
2105  */
tcp_v4_save_options(struct net * net,struct sk_buff * skb)2106 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2107 							 struct sk_buff *skb)
2108 {
2109 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2110 	struct ip_options_rcu *dopt = NULL;
2111 
2112 	if (opt->optlen) {
2113 		int opt_size = sizeof(*dopt) + opt->optlen;
2114 
2115 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2116 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2117 			kfree(dopt);
2118 			dopt = NULL;
2119 		}
2120 	}
2121 	return dopt;
2122 }
2123 
2124 /* locally generated TCP pure ACKs have skb->truesize == 2
2125  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2126  * This is much faster than dissecting the packet to find out.
2127  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2128  */
skb_is_tcp_pure_ack(const struct sk_buff * skb)2129 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2130 {
2131 	return skb->truesize == 2;
2132 }
2133 
skb_set_tcp_pure_ack(struct sk_buff * skb)2134 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2135 {
2136 	skb->truesize = 2;
2137 }
2138 
tcp_inq(struct sock * sk)2139 static inline int tcp_inq(struct sock *sk)
2140 {
2141 	struct tcp_sock *tp = tcp_sk(sk);
2142 	int answ;
2143 
2144 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2145 		answ = 0;
2146 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2147 		   !tp->urg_data ||
2148 		   before(tp->urg_seq, tp->copied_seq) ||
2149 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2150 
2151 		answ = tp->rcv_nxt - tp->copied_seq;
2152 
2153 		/* Subtract 1, if FIN was received */
2154 		if (answ && sock_flag(sk, SOCK_DONE))
2155 			answ--;
2156 	} else {
2157 		answ = tp->urg_seq - tp->copied_seq;
2158 	}
2159 
2160 	return answ;
2161 }
2162 
2163 int tcp_peek_len(struct socket *sock);
2164 
tcp_segs_in(struct tcp_sock * tp,const struct sk_buff * skb)2165 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2166 {
2167 	u16 segs_in;
2168 
2169 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2170 	tp->segs_in += segs_in;
2171 	if (skb->len > tcp_hdrlen(skb))
2172 		tp->data_segs_in += segs_in;
2173 }
2174 
2175 /*
2176  * TCP listen path runs lockless.
2177  * We forced "struct sock" to be const qualified to make sure
2178  * we don't modify one of its field by mistake.
2179  * Here, we increment sk_drops which is an atomic_t, so we can safely
2180  * make sock writable again.
2181  */
tcp_listendrop(const struct sock * sk)2182 static inline void tcp_listendrop(const struct sock *sk)
2183 {
2184 	atomic_inc(&((struct sock *)sk)->sk_drops);
2185 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2186 }
2187 
2188 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2189 
2190 /*
2191  * Interface for adding Upper Level Protocols over TCP
2192  */
2193 
2194 #define TCP_ULP_NAME_MAX	16
2195 #define TCP_ULP_MAX		128
2196 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2197 
2198 struct tcp_ulp_ops {
2199 	struct list_head	list;
2200 
2201 	/* initialize ulp */
2202 	int (*init)(struct sock *sk);
2203 	/* update ulp */
2204 	void (*update)(struct sock *sk, struct proto *p,
2205 		       void (*write_space)(struct sock *sk));
2206 	/* cleanup ulp */
2207 	void (*release)(struct sock *sk);
2208 	/* diagnostic */
2209 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2210 	size_t (*get_info_size)(const struct sock *sk);
2211 	/* clone ulp */
2212 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2213 		      const gfp_t priority);
2214 
2215 	char		name[TCP_ULP_NAME_MAX];
2216 	struct module	*owner;
2217 };
2218 int tcp_register_ulp(struct tcp_ulp_ops *type);
2219 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2220 int tcp_set_ulp(struct sock *sk, const char *name);
2221 void tcp_get_available_ulp(char *buf, size_t len);
2222 void tcp_cleanup_ulp(struct sock *sk);
2223 void tcp_update_ulp(struct sock *sk, struct proto *p,
2224 		    void (*write_space)(struct sock *sk));
2225 
2226 #define MODULE_ALIAS_TCP_ULP(name)				\
2227 	__MODULE_INFO(alias, alias_userspace, name);		\
2228 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2229 
2230 struct sk_msg;
2231 struct sk_psock;
2232 
2233 #ifdef CONFIG_BPF_STREAM_PARSER
2234 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2235 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2236 #else
tcp_bpf_clone(const struct sock * sk,struct sock * newsk)2237 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2238 {
2239 }
2240 #endif /* CONFIG_BPF_STREAM_PARSER */
2241 
2242 #ifdef CONFIG_NET_SOCK_MSG
2243 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2244 			  int flags);
2245 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2246 		      struct msghdr *msg, int len, int flags);
2247 #endif /* CONFIG_NET_SOCK_MSG */
2248 
2249 #ifdef CONFIG_CGROUP_BPF
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2250 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2251 				      struct sk_buff *skb,
2252 				      unsigned int end_offset)
2253 {
2254 	skops->skb = skb;
2255 	skops->skb_data_end = skb->data + end_offset;
2256 }
2257 #else
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2258 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2259 				      struct sk_buff *skb,
2260 				      unsigned int end_offset)
2261 {
2262 }
2263 #endif
2264 
2265 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2266  * is < 0, then the BPF op failed (for example if the loaded BPF
2267  * program does not support the chosen operation or there is no BPF
2268  * program loaded).
2269  */
2270 #ifdef CONFIG_BPF
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2271 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2272 {
2273 	struct bpf_sock_ops_kern sock_ops;
2274 	int ret;
2275 
2276 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2277 	if (sk_fullsock(sk)) {
2278 		sock_ops.is_fullsock = 1;
2279 		sock_owned_by_me(sk);
2280 	}
2281 
2282 	sock_ops.sk = sk;
2283 	sock_ops.op = op;
2284 	if (nargs > 0)
2285 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2286 
2287 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2288 	if (ret == 0)
2289 		ret = sock_ops.reply;
2290 	else
2291 		ret = -1;
2292 	return ret;
2293 }
2294 
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2295 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2296 {
2297 	u32 args[2] = {arg1, arg2};
2298 
2299 	return tcp_call_bpf(sk, op, 2, args);
2300 }
2301 
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2302 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2303 				    u32 arg3)
2304 {
2305 	u32 args[3] = {arg1, arg2, arg3};
2306 
2307 	return tcp_call_bpf(sk, op, 3, args);
2308 }
2309 
2310 #else
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2311 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2312 {
2313 	return -EPERM;
2314 }
2315 
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2316 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2317 {
2318 	return -EPERM;
2319 }
2320 
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2321 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2322 				    u32 arg3)
2323 {
2324 	return -EPERM;
2325 }
2326 
2327 #endif
2328 
tcp_timeout_init(struct sock * sk)2329 static inline u32 tcp_timeout_init(struct sock *sk)
2330 {
2331 	int timeout;
2332 
2333 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2334 
2335 	if (timeout <= 0)
2336 		timeout = TCP_TIMEOUT_INIT;
2337 	return timeout;
2338 }
2339 
tcp_rwnd_init_bpf(struct sock * sk)2340 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2341 {
2342 	int rwnd;
2343 
2344 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2345 
2346 	if (rwnd < 0)
2347 		rwnd = 0;
2348 	return rwnd;
2349 }
2350 
tcp_bpf_ca_needs_ecn(struct sock * sk)2351 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2352 {
2353 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2354 }
2355 
tcp_bpf_rtt(struct sock * sk)2356 static inline void tcp_bpf_rtt(struct sock *sk)
2357 {
2358 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2359 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2360 }
2361 
2362 #if IS_ENABLED(CONFIG_SMC)
2363 extern struct static_key_false tcp_have_smc;
2364 #endif
2365 
2366 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2367 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2368 			     void (*cad)(struct sock *sk, u32 ack_seq));
2369 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2370 void clean_acked_data_flush(void);
2371 #endif
2372 
2373 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
tcp_add_tx_delay(struct sk_buff * skb,const struct tcp_sock * tp)2374 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2375 				    const struct tcp_sock *tp)
2376 {
2377 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2378 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2379 }
2380 
2381 /* Compute Earliest Departure Time for some control packets
2382  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2383  */
tcp_transmit_time(const struct sock * sk)2384 static inline u64 tcp_transmit_time(const struct sock *sk)
2385 {
2386 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2387 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2388 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2389 
2390 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2391 	}
2392 	return 0;
2393 }
2394 
2395 #endif	/* _TCP_H */
2396