1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12
13 #include "sched.h"
14
15 #include <linux/nospec.h>
16
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22
23 #include "../workqueue_internal.h"
24 #include "../../io_uring/io-wq.h"
25 #include "../smpboot.h"
26
27 #include "pelt.h"
28 #include "smp.h"
29
30 #include <trace/hooks/sched.h>
31 #include <trace/hooks/dtask.h>
32
33 /*
34 * Export tracepoints that act as a bare tracehook (ie: have no trace event
35 * associated with them) to allow external modules to probe them.
36 */
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
48 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_switch);
49 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_waking);
50 #ifdef CONFIG_SCHEDSTATS
51 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_sleep);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_wait);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_iowait);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_blocked);
55 #endif
56
57 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
58 EXPORT_SYMBOL_GPL(runqueues);
59
60 #ifdef CONFIG_SCHED_DEBUG
61 /*
62 * Debugging: various feature bits
63 *
64 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
65 * sysctl_sched_features, defined in sched.h, to allow constants propagation
66 * at compile time and compiler optimization based on features default.
67 */
68 #define SCHED_FEAT(name, enabled) \
69 (1UL << __SCHED_FEAT_##name) * enabled |
70 const_debug unsigned int sysctl_sched_features =
71 #include "features.h"
72 0;
73 EXPORT_SYMBOL_GPL(sysctl_sched_features);
74 #undef SCHED_FEAT
75 #endif
76
77 /*
78 * Number of tasks to iterate in a single balance run.
79 * Limited because this is done with IRQs disabled.
80 */
81 const_debug unsigned int sysctl_sched_nr_migrate = 32;
82
83 /*
84 * period over which we measure -rt task CPU usage in us.
85 * default: 1s
86 */
87 unsigned int sysctl_sched_rt_period = 1000000;
88
89 __read_mostly int scheduler_running;
90
91 /*
92 * part of the period that we allow rt tasks to run in us.
93 * default: 0.95s
94 */
95 int sysctl_sched_rt_runtime = 950000;
96
97
98 /*
99 * Serialization rules:
100 *
101 * Lock order:
102 *
103 * p->pi_lock
104 * rq->lock
105 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
106 *
107 * rq1->lock
108 * rq2->lock where: rq1 < rq2
109 *
110 * Regular state:
111 *
112 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
113 * local CPU's rq->lock, it optionally removes the task from the runqueue and
114 * always looks at the local rq data structures to find the most elegible task
115 * to run next.
116 *
117 * Task enqueue is also under rq->lock, possibly taken from another CPU.
118 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
119 * the local CPU to avoid bouncing the runqueue state around [ see
120 * ttwu_queue_wakelist() ]
121 *
122 * Task wakeup, specifically wakeups that involve migration, are horribly
123 * complicated to avoid having to take two rq->locks.
124 *
125 * Special state:
126 *
127 * System-calls and anything external will use task_rq_lock() which acquires
128 * both p->pi_lock and rq->lock. As a consequence the state they change is
129 * stable while holding either lock:
130 *
131 * - sched_setaffinity()/
132 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
133 * - set_user_nice(): p->se.load, p->*prio
134 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
135 * p->se.load, p->rt_priority,
136 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
137 * - sched_setnuma(): p->numa_preferred_nid
138 * - sched_move_task()/
139 * cpu_cgroup_fork(): p->sched_task_group
140 * - uclamp_update_active() p->uclamp*
141 *
142 * p->state <- TASK_*:
143 *
144 * is changed locklessly using set_current_state(), __set_current_state() or
145 * set_special_state(), see their respective comments, or by
146 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
147 * concurrent self.
148 *
149 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
150 *
151 * is set by activate_task() and cleared by deactivate_task(), under
152 * rq->lock. Non-zero indicates the task is runnable, the special
153 * ON_RQ_MIGRATING state is used for migration without holding both
154 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
155 *
156 * p->on_cpu <- { 0, 1 }:
157 *
158 * is set by prepare_task() and cleared by finish_task() such that it will be
159 * set before p is scheduled-in and cleared after p is scheduled-out, both
160 * under rq->lock. Non-zero indicates the task is running on its CPU.
161 *
162 * [ The astute reader will observe that it is possible for two tasks on one
163 * CPU to have ->on_cpu = 1 at the same time. ]
164 *
165 * task_cpu(p): is changed by set_task_cpu(), the rules are:
166 *
167 * - Don't call set_task_cpu() on a blocked task:
168 *
169 * We don't care what CPU we're not running on, this simplifies hotplug,
170 * the CPU assignment of blocked tasks isn't required to be valid.
171 *
172 * - for try_to_wake_up(), called under p->pi_lock:
173 *
174 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
175 *
176 * - for migration called under rq->lock:
177 * [ see task_on_rq_migrating() in task_rq_lock() ]
178 *
179 * o move_queued_task()
180 * o detach_task()
181 *
182 * - for migration called under double_rq_lock():
183 *
184 * o __migrate_swap_task()
185 * o push_rt_task() / pull_rt_task()
186 * o push_dl_task() / pull_dl_task()
187 * o dl_task_offline_migration()
188 *
189 */
190
191 /*
192 * __task_rq_lock - lock the rq @p resides on.
193 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)194 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
195 __acquires(rq->lock)
196 {
197 struct rq *rq;
198
199 lockdep_assert_held(&p->pi_lock);
200
201 for (;;) {
202 rq = task_rq(p);
203 raw_spin_lock(&rq->lock);
204 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
205 rq_pin_lock(rq, rf);
206 return rq;
207 }
208 raw_spin_unlock(&rq->lock);
209
210 while (unlikely(task_on_rq_migrating(p)))
211 cpu_relax();
212 }
213 }
214 EXPORT_SYMBOL_GPL(__task_rq_lock);
215
216 /*
217 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
218 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)219 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
220 __acquires(p->pi_lock)
221 __acquires(rq->lock)
222 {
223 struct rq *rq;
224
225 for (;;) {
226 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
227 rq = task_rq(p);
228 raw_spin_lock(&rq->lock);
229 /*
230 * move_queued_task() task_rq_lock()
231 *
232 * ACQUIRE (rq->lock)
233 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
234 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
235 * [S] ->cpu = new_cpu [L] task_rq()
236 * [L] ->on_rq
237 * RELEASE (rq->lock)
238 *
239 * If we observe the old CPU in task_rq_lock(), the acquire of
240 * the old rq->lock will fully serialize against the stores.
241 *
242 * If we observe the new CPU in task_rq_lock(), the address
243 * dependency headed by '[L] rq = task_rq()' and the acquire
244 * will pair with the WMB to ensure we then also see migrating.
245 */
246 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
247 rq_pin_lock(rq, rf);
248 return rq;
249 }
250 raw_spin_unlock(&rq->lock);
251 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
252
253 while (unlikely(task_on_rq_migrating(p)))
254 cpu_relax();
255 }
256 }
257 EXPORT_SYMBOL_GPL(task_rq_lock);
258
259 /*
260 * RQ-clock updating methods:
261 */
262
update_rq_clock_task(struct rq * rq,s64 delta)263 static void update_rq_clock_task(struct rq *rq, s64 delta)
264 {
265 /*
266 * In theory, the compile should just see 0 here, and optimize out the call
267 * to sched_rt_avg_update. But I don't trust it...
268 */
269 s64 __maybe_unused steal = 0, irq_delta = 0;
270
271 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
272 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
273
274 /*
275 * Since irq_time is only updated on {soft,}irq_exit, we might run into
276 * this case when a previous update_rq_clock() happened inside a
277 * {soft,}irq region.
278 *
279 * When this happens, we stop ->clock_task and only update the
280 * prev_irq_time stamp to account for the part that fit, so that a next
281 * update will consume the rest. This ensures ->clock_task is
282 * monotonic.
283 *
284 * It does however cause some slight miss-attribution of {soft,}irq
285 * time, a more accurate solution would be to update the irq_time using
286 * the current rq->clock timestamp, except that would require using
287 * atomic ops.
288 */
289 if (irq_delta > delta)
290 irq_delta = delta;
291
292 rq->prev_irq_time += irq_delta;
293 delta -= irq_delta;
294 #endif
295 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
296 if (static_key_false((¶virt_steal_rq_enabled))) {
297 steal = paravirt_steal_clock(cpu_of(rq));
298 steal -= rq->prev_steal_time_rq;
299
300 if (unlikely(steal > delta))
301 steal = delta;
302
303 rq->prev_steal_time_rq += steal;
304 delta -= steal;
305 }
306 #endif
307
308 rq->clock_task += delta;
309
310 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
311 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
312 update_irq_load_avg(rq, irq_delta + steal);
313 #endif
314 update_rq_clock_pelt(rq, delta);
315 }
316
update_rq_clock(struct rq * rq)317 void update_rq_clock(struct rq *rq)
318 {
319 s64 delta;
320
321 lockdep_assert_held(&rq->lock);
322
323 if (rq->clock_update_flags & RQCF_ACT_SKIP)
324 return;
325
326 #ifdef CONFIG_SCHED_DEBUG
327 if (sched_feat(WARN_DOUBLE_CLOCK))
328 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
329 rq->clock_update_flags |= RQCF_UPDATED;
330 #endif
331
332 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
333 if (delta < 0)
334 return;
335 rq->clock += delta;
336 update_rq_clock_task(rq, delta);
337 }
338 EXPORT_SYMBOL_GPL(update_rq_clock);
339
340 static inline void
rq_csd_init(struct rq * rq,struct __call_single_data * csd,smp_call_func_t func)341 rq_csd_init(struct rq *rq, struct __call_single_data *csd, smp_call_func_t func)
342 {
343 csd->flags = 0;
344 csd->func = func;
345 csd->info = rq;
346 }
347
348 #ifdef CONFIG_SCHED_HRTICK
349 /*
350 * Use HR-timers to deliver accurate preemption points.
351 */
352
hrtick_clear(struct rq * rq)353 static void hrtick_clear(struct rq *rq)
354 {
355 if (hrtimer_active(&rq->hrtick_timer))
356 hrtimer_cancel(&rq->hrtick_timer);
357 }
358
359 /*
360 * High-resolution timer tick.
361 * Runs from hardirq context with interrupts disabled.
362 */
hrtick(struct hrtimer * timer)363 static enum hrtimer_restart hrtick(struct hrtimer *timer)
364 {
365 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
366 struct rq_flags rf;
367
368 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
369
370 rq_lock(rq, &rf);
371 update_rq_clock(rq);
372 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
373 rq_unlock(rq, &rf);
374
375 return HRTIMER_NORESTART;
376 }
377
378 #ifdef CONFIG_SMP
379
__hrtick_restart(struct rq * rq)380 static void __hrtick_restart(struct rq *rq)
381 {
382 struct hrtimer *timer = &rq->hrtick_timer;
383 ktime_t time = rq->hrtick_time;
384
385 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
386 }
387
388 /*
389 * called from hardirq (IPI) context
390 */
__hrtick_start(void * arg)391 static void __hrtick_start(void *arg)
392 {
393 struct rq *rq = arg;
394 struct rq_flags rf;
395
396 rq_lock(rq, &rf);
397 __hrtick_restart(rq);
398 rq_unlock(rq, &rf);
399 }
400
401 /*
402 * Called to set the hrtick timer state.
403 *
404 * called with rq->lock held and irqs disabled
405 */
hrtick_start(struct rq * rq,u64 delay)406 void hrtick_start(struct rq *rq, u64 delay)
407 {
408 struct hrtimer *timer = &rq->hrtick_timer;
409 s64 delta;
410
411 /*
412 * Don't schedule slices shorter than 10000ns, that just
413 * doesn't make sense and can cause timer DoS.
414 */
415 delta = max_t(s64, delay, 10000LL);
416 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
417
418 if (rq == this_rq())
419 __hrtick_restart(rq);
420 else
421 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
422 }
423
424 #else
425 /*
426 * Called to set the hrtick timer state.
427 *
428 * called with rq->lock held and irqs disabled
429 */
hrtick_start(struct rq * rq,u64 delay)430 void hrtick_start(struct rq *rq, u64 delay)
431 {
432 /*
433 * Don't schedule slices shorter than 10000ns, that just
434 * doesn't make sense. Rely on vruntime for fairness.
435 */
436 delay = max_t(u64, delay, 10000LL);
437 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
438 HRTIMER_MODE_REL_PINNED_HARD);
439 }
440
441 #endif /* CONFIG_SMP */
442
hrtick_rq_init(struct rq * rq)443 static void hrtick_rq_init(struct rq *rq)
444 {
445 #ifdef CONFIG_SMP
446 rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
447 #endif
448 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
449 rq->hrtick_timer.function = hrtick;
450 }
451 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)452 static inline void hrtick_clear(struct rq *rq)
453 {
454 }
455
hrtick_rq_init(struct rq * rq)456 static inline void hrtick_rq_init(struct rq *rq)
457 {
458 }
459 #endif /* CONFIG_SCHED_HRTICK */
460
461 /*
462 * cmpxchg based fetch_or, macro so it works for different integer types
463 */
464 #define fetch_or(ptr, mask) \
465 ({ \
466 typeof(ptr) _ptr = (ptr); \
467 typeof(mask) _mask = (mask); \
468 typeof(*_ptr) _old, _val = *_ptr; \
469 \
470 for (;;) { \
471 _old = cmpxchg(_ptr, _val, _val | _mask); \
472 if (_old == _val) \
473 break; \
474 _val = _old; \
475 } \
476 _old; \
477 })
478
479 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
480 /*
481 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
482 * this avoids any races wrt polling state changes and thereby avoids
483 * spurious IPIs.
484 */
set_nr_and_not_polling(struct task_struct * p)485 static bool set_nr_and_not_polling(struct task_struct *p)
486 {
487 struct thread_info *ti = task_thread_info(p);
488 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
489 }
490
491 /*
492 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
493 *
494 * If this returns true, then the idle task promises to call
495 * sched_ttwu_pending() and reschedule soon.
496 */
set_nr_if_polling(struct task_struct * p)497 static bool set_nr_if_polling(struct task_struct *p)
498 {
499 struct thread_info *ti = task_thread_info(p);
500 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
501
502 for (;;) {
503 if (!(val & _TIF_POLLING_NRFLAG))
504 return false;
505 if (val & _TIF_NEED_RESCHED)
506 return true;
507 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
508 if (old == val)
509 break;
510 val = old;
511 }
512 return true;
513 }
514
515 #else
set_nr_and_not_polling(struct task_struct * p)516 static bool set_nr_and_not_polling(struct task_struct *p)
517 {
518 set_tsk_need_resched(p);
519 return true;
520 }
521
522 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)523 static bool set_nr_if_polling(struct task_struct *p)
524 {
525 return false;
526 }
527 #endif
528 #endif
529
__wake_q_add(struct wake_q_head * head,struct task_struct * task)530 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
531 {
532 struct wake_q_node *node = &task->wake_q;
533
534 /*
535 * Atomically grab the task, if ->wake_q is !nil already it means
536 * its already queued (either by us or someone else) and will get the
537 * wakeup due to that.
538 *
539 * In order to ensure that a pending wakeup will observe our pending
540 * state, even in the failed case, an explicit smp_mb() must be used.
541 */
542 smp_mb__before_atomic();
543 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
544 return false;
545
546 /*
547 * The head is context local, there can be no concurrency.
548 */
549 *head->lastp = node;
550 head->lastp = &node->next;
551 head->count++;
552 return true;
553 }
554
555 /**
556 * wake_q_add() - queue a wakeup for 'later' waking.
557 * @head: the wake_q_head to add @task to
558 * @task: the task to queue for 'later' wakeup
559 *
560 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
561 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
562 * instantly.
563 *
564 * This function must be used as-if it were wake_up_process(); IOW the task
565 * must be ready to be woken at this location.
566 */
wake_q_add(struct wake_q_head * head,struct task_struct * task)567 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
568 {
569 if (__wake_q_add(head, task))
570 get_task_struct(task);
571 }
572
573 /**
574 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
575 * @head: the wake_q_head to add @task to
576 * @task: the task to queue for 'later' wakeup
577 *
578 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
579 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
580 * instantly.
581 *
582 * This function must be used as-if it were wake_up_process(); IOW the task
583 * must be ready to be woken at this location.
584 *
585 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
586 * that already hold reference to @task can call the 'safe' version and trust
587 * wake_q to do the right thing depending whether or not the @task is already
588 * queued for wakeup.
589 */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)590 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
591 {
592 if (!__wake_q_add(head, task))
593 put_task_struct(task);
594 }
595
wake_up_q(struct wake_q_head * head)596 void wake_up_q(struct wake_q_head *head)
597 {
598 struct wake_q_node *node = head->first;
599
600 while (node != WAKE_Q_TAIL) {
601 struct task_struct *task;
602
603 task = container_of(node, struct task_struct, wake_q);
604 BUG_ON(!task);
605 /* Task can safely be re-inserted now: */
606 node = node->next;
607 task->wake_q.next = NULL;
608 task->wake_q_count = head->count;
609
610 /*
611 * wake_up_process() executes a full barrier, which pairs with
612 * the queueing in wake_q_add() so as not to miss wakeups.
613 */
614 wake_up_process(task);
615 task->wake_q_count = 0;
616 put_task_struct(task);
617 }
618 }
619
620 /*
621 * resched_curr - mark rq's current task 'to be rescheduled now'.
622 *
623 * On UP this means the setting of the need_resched flag, on SMP it
624 * might also involve a cross-CPU call to trigger the scheduler on
625 * the target CPU.
626 */
resched_curr(struct rq * rq)627 void resched_curr(struct rq *rq)
628 {
629 struct task_struct *curr = rq->curr;
630 int cpu;
631
632 lockdep_assert_held(&rq->lock);
633
634 if (test_tsk_need_resched(curr))
635 return;
636
637 cpu = cpu_of(rq);
638
639 if (cpu == smp_processor_id()) {
640 set_tsk_need_resched(curr);
641 set_preempt_need_resched();
642 return;
643 }
644
645 if (set_nr_and_not_polling(curr))
646 smp_send_reschedule(cpu);
647 else
648 trace_sched_wake_idle_without_ipi(cpu);
649 }
650 EXPORT_SYMBOL_GPL(resched_curr);
651
resched_cpu(int cpu)652 void resched_cpu(int cpu)
653 {
654 struct rq *rq = cpu_rq(cpu);
655 unsigned long flags;
656
657 raw_spin_lock_irqsave(&rq->lock, flags);
658 if (cpu_online(cpu) || cpu == smp_processor_id())
659 resched_curr(rq);
660 raw_spin_unlock_irqrestore(&rq->lock, flags);
661 }
662
663 #ifdef CONFIG_SMP
664 #ifdef CONFIG_NO_HZ_COMMON
665 /*
666 * In the semi idle case, use the nearest busy CPU for migrating timers
667 * from an idle CPU. This is good for power-savings.
668 *
669 * We don't do similar optimization for completely idle system, as
670 * selecting an idle CPU will add more delays to the timers than intended
671 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
672 */
get_nohz_timer_target(void)673 int get_nohz_timer_target(void)
674 {
675 int i, cpu = smp_processor_id(), default_cpu = -1;
676 struct sched_domain *sd;
677
678 if (housekeeping_cpu(cpu, HK_FLAG_TIMER) && cpu_active(cpu)) {
679 if (!idle_cpu(cpu))
680 return cpu;
681 default_cpu = cpu;
682 }
683
684 rcu_read_lock();
685 for_each_domain(cpu, sd) {
686 for_each_cpu_and(i, sched_domain_span(sd),
687 housekeeping_cpumask(HK_FLAG_TIMER)) {
688 if (cpu == i)
689 continue;
690
691 if (!idle_cpu(i)) {
692 cpu = i;
693 goto unlock;
694 }
695 }
696 }
697
698 if (default_cpu == -1) {
699 for_each_cpu_and(i, cpu_active_mask,
700 housekeeping_cpumask(HK_FLAG_TIMER)) {
701 if (cpu == i)
702 continue;
703
704 if (!idle_cpu(i)) {
705 cpu = i;
706 goto unlock;
707 }
708 }
709
710 /* no active, not-idle, housekpeeing CPU found. */
711 default_cpu = cpumask_any(cpu_active_mask);
712
713 if (unlikely(default_cpu >= nr_cpu_ids))
714 goto unlock;
715 }
716
717 cpu = default_cpu;
718 unlock:
719 rcu_read_unlock();
720 return cpu;
721 }
722
723 /*
724 * When add_timer_on() enqueues a timer into the timer wheel of an
725 * idle CPU then this timer might expire before the next timer event
726 * which is scheduled to wake up that CPU. In case of a completely
727 * idle system the next event might even be infinite time into the
728 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
729 * leaves the inner idle loop so the newly added timer is taken into
730 * account when the CPU goes back to idle and evaluates the timer
731 * wheel for the next timer event.
732 */
wake_up_idle_cpu(int cpu)733 static void wake_up_idle_cpu(int cpu)
734 {
735 struct rq *rq = cpu_rq(cpu);
736
737 if (cpu == smp_processor_id())
738 return;
739
740 if (set_nr_and_not_polling(rq->idle))
741 smp_send_reschedule(cpu);
742 else
743 trace_sched_wake_idle_without_ipi(cpu);
744 }
745
wake_up_full_nohz_cpu(int cpu)746 static bool wake_up_full_nohz_cpu(int cpu)
747 {
748 /*
749 * We just need the target to call irq_exit() and re-evaluate
750 * the next tick. The nohz full kick at least implies that.
751 * If needed we can still optimize that later with an
752 * empty IRQ.
753 */
754 if (cpu_is_offline(cpu))
755 return true; /* Don't try to wake offline CPUs. */
756 if (tick_nohz_full_cpu(cpu)) {
757 if (cpu != smp_processor_id() ||
758 tick_nohz_tick_stopped())
759 tick_nohz_full_kick_cpu(cpu);
760 return true;
761 }
762
763 return false;
764 }
765
766 /*
767 * Wake up the specified CPU. If the CPU is going offline, it is the
768 * caller's responsibility to deal with the lost wakeup, for example,
769 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
770 */
wake_up_nohz_cpu(int cpu)771 void wake_up_nohz_cpu(int cpu)
772 {
773 if (!wake_up_full_nohz_cpu(cpu))
774 wake_up_idle_cpu(cpu);
775 }
776
nohz_csd_func(void * info)777 static void nohz_csd_func(void *info)
778 {
779 struct rq *rq = info;
780 int cpu = cpu_of(rq);
781 unsigned int flags;
782
783 /*
784 * Release the rq::nohz_csd.
785 */
786 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
787 WARN_ON(!(flags & NOHZ_KICK_MASK));
788
789 rq->idle_balance = idle_cpu(cpu);
790 if (rq->idle_balance && !need_resched()) {
791 rq->nohz_idle_balance = flags;
792 raise_softirq_irqoff(SCHED_SOFTIRQ);
793 }
794 }
795
796 #endif /* CONFIG_NO_HZ_COMMON */
797
798 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(struct rq * rq)799 bool sched_can_stop_tick(struct rq *rq)
800 {
801 int fifo_nr_running;
802
803 /* Deadline tasks, even if single, need the tick */
804 if (rq->dl.dl_nr_running)
805 return false;
806
807 /*
808 * If there are more than one RR tasks, we need the tick to effect the
809 * actual RR behaviour.
810 */
811 if (rq->rt.rr_nr_running) {
812 if (rq->rt.rr_nr_running == 1)
813 return true;
814 else
815 return false;
816 }
817
818 /*
819 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
820 * forced preemption between FIFO tasks.
821 */
822 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
823 if (fifo_nr_running)
824 return true;
825
826 /*
827 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
828 * if there's more than one we need the tick for involuntary
829 * preemption.
830 */
831 if (rq->nr_running > 1)
832 return false;
833
834 return true;
835 }
836 #endif /* CONFIG_NO_HZ_FULL */
837 #endif /* CONFIG_SMP */
838
839 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
840 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
841 /*
842 * Iterate task_group tree rooted at *from, calling @down when first entering a
843 * node and @up when leaving it for the final time.
844 *
845 * Caller must hold rcu_lock or sufficient equivalent.
846 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)847 int walk_tg_tree_from(struct task_group *from,
848 tg_visitor down, tg_visitor up, void *data)
849 {
850 struct task_group *parent, *child;
851 int ret;
852
853 parent = from;
854
855 down:
856 ret = (*down)(parent, data);
857 if (ret)
858 goto out;
859 list_for_each_entry_rcu(child, &parent->children, siblings) {
860 parent = child;
861 goto down;
862
863 up:
864 continue;
865 }
866 ret = (*up)(parent, data);
867 if (ret || parent == from)
868 goto out;
869
870 child = parent;
871 parent = parent->parent;
872 if (parent)
873 goto up;
874 out:
875 return ret;
876 }
877
tg_nop(struct task_group * tg,void * data)878 int tg_nop(struct task_group *tg, void *data)
879 {
880 return 0;
881 }
882 #endif
883
set_load_weight(struct task_struct * p)884 static void set_load_weight(struct task_struct *p)
885 {
886 bool update_load = !(READ_ONCE(p->state) & TASK_NEW);
887 int prio = p->static_prio - MAX_RT_PRIO;
888 struct load_weight *load = &p->se.load;
889
890 /*
891 * SCHED_IDLE tasks get minimal weight:
892 */
893 if (task_has_idle_policy(p)) {
894 load->weight = scale_load(WEIGHT_IDLEPRIO);
895 load->inv_weight = WMULT_IDLEPRIO;
896 return;
897 }
898
899 /*
900 * SCHED_OTHER tasks have to update their load when changing their
901 * weight
902 */
903 if (update_load && p->sched_class == &fair_sched_class) {
904 reweight_task(p, prio);
905 } else {
906 load->weight = scale_load(sched_prio_to_weight[prio]);
907 load->inv_weight = sched_prio_to_wmult[prio];
908 }
909 }
910
911 #ifdef CONFIG_UCLAMP_TASK
912 /*
913 * Serializes updates of utilization clamp values
914 *
915 * The (slow-path) user-space triggers utilization clamp value updates which
916 * can require updates on (fast-path) scheduler's data structures used to
917 * support enqueue/dequeue operations.
918 * While the per-CPU rq lock protects fast-path update operations, user-space
919 * requests are serialized using a mutex to reduce the risk of conflicting
920 * updates or API abuses.
921 */
922 static DEFINE_MUTEX(uclamp_mutex);
923
924 /* Max allowed minimum utilization */
925 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
926
927 /* Max allowed maximum utilization */
928 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
929
930 /*
931 * By default RT tasks run at the maximum performance point/capacity of the
932 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
933 * SCHED_CAPACITY_SCALE.
934 *
935 * This knob allows admins to change the default behavior when uclamp is being
936 * used. In battery powered devices, particularly, running at the maximum
937 * capacity and frequency will increase energy consumption and shorten the
938 * battery life.
939 *
940 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
941 *
942 * This knob will not override the system default sched_util_clamp_min defined
943 * above.
944 */
945 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
946
947 /* All clamps are required to be less or equal than these values */
948 static struct uclamp_se uclamp_default[UCLAMP_CNT];
949
950 /*
951 * This static key is used to reduce the uclamp overhead in the fast path. It
952 * primarily disables the call to uclamp_rq_{inc, dec}() in
953 * enqueue/dequeue_task().
954 *
955 * This allows users to continue to enable uclamp in their kernel config with
956 * minimum uclamp overhead in the fast path.
957 *
958 * As soon as userspace modifies any of the uclamp knobs, the static key is
959 * enabled, since we have an actual users that make use of uclamp
960 * functionality.
961 *
962 * The knobs that would enable this static key are:
963 *
964 * * A task modifying its uclamp value with sched_setattr().
965 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
966 * * An admin modifying the cgroup cpu.uclamp.{min, max}
967 */
968 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
969 EXPORT_SYMBOL_GPL(sched_uclamp_used);
970
971 /* Integer rounded range for each bucket */
972 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
973
974 #define for_each_clamp_id(clamp_id) \
975 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
976
uclamp_bucket_id(unsigned int clamp_value)977 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
978 {
979 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
980 }
981
uclamp_none(enum uclamp_id clamp_id)982 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
983 {
984 if (clamp_id == UCLAMP_MIN)
985 return 0;
986 return SCHED_CAPACITY_SCALE;
987 }
988
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)989 static inline void uclamp_se_set(struct uclamp_se *uc_se,
990 unsigned int value, bool user_defined)
991 {
992 uc_se->value = value;
993 uc_se->bucket_id = uclamp_bucket_id(value);
994 uc_se->user_defined = user_defined;
995 }
996
997 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)998 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
999 unsigned int clamp_value)
1000 {
1001 /*
1002 * Avoid blocked utilization pushing up the frequency when we go
1003 * idle (which drops the max-clamp) by retaining the last known
1004 * max-clamp.
1005 */
1006 if (clamp_id == UCLAMP_MAX) {
1007 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1008 return clamp_value;
1009 }
1010
1011 return uclamp_none(UCLAMP_MIN);
1012 }
1013
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1014 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1015 unsigned int clamp_value)
1016 {
1017 /* Reset max-clamp retention only on idle exit */
1018 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1019 return;
1020
1021 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1022 }
1023
1024 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1025 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1026 unsigned int clamp_value)
1027 {
1028 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1029 int bucket_id = UCLAMP_BUCKETS - 1;
1030
1031 /*
1032 * Since both min and max clamps are max aggregated, find the
1033 * top most bucket with tasks in.
1034 */
1035 for ( ; bucket_id >= 0; bucket_id--) {
1036 if (!bucket[bucket_id].tasks)
1037 continue;
1038 return bucket[bucket_id].value;
1039 }
1040
1041 /* No tasks -- default clamp values */
1042 return uclamp_idle_value(rq, clamp_id, clamp_value);
1043 }
1044
__uclamp_update_util_min_rt_default(struct task_struct * p)1045 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1046 {
1047 unsigned int default_util_min;
1048 struct uclamp_se *uc_se;
1049
1050 lockdep_assert_held(&p->pi_lock);
1051
1052 uc_se = &p->uclamp_req[UCLAMP_MIN];
1053
1054 /* Only sync if user didn't override the default */
1055 if (uc_se->user_defined)
1056 return;
1057
1058 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1059 uclamp_se_set(uc_se, default_util_min, false);
1060 }
1061
uclamp_update_util_min_rt_default(struct task_struct * p)1062 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1063 {
1064 struct rq_flags rf;
1065 struct rq *rq;
1066
1067 if (!rt_task(p))
1068 return;
1069
1070 /* Protect updates to p->uclamp_* */
1071 rq = task_rq_lock(p, &rf);
1072 __uclamp_update_util_min_rt_default(p);
1073 task_rq_unlock(rq, p, &rf);
1074 }
1075
uclamp_sync_util_min_rt_default(void)1076 static void uclamp_sync_util_min_rt_default(void)
1077 {
1078 struct task_struct *g, *p;
1079
1080 /*
1081 * copy_process() sysctl_uclamp
1082 * uclamp_min_rt = X;
1083 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1084 * // link thread smp_mb__after_spinlock()
1085 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1086 * sched_post_fork() for_each_process_thread()
1087 * __uclamp_sync_rt() __uclamp_sync_rt()
1088 *
1089 * Ensures that either sched_post_fork() will observe the new
1090 * uclamp_min_rt or for_each_process_thread() will observe the new
1091 * task.
1092 */
1093 read_lock(&tasklist_lock);
1094 smp_mb__after_spinlock();
1095 read_unlock(&tasklist_lock);
1096
1097 rcu_read_lock();
1098 for_each_process_thread(g, p)
1099 uclamp_update_util_min_rt_default(p);
1100 rcu_read_unlock();
1101 }
1102
1103 #if IS_ENABLED(CONFIG_ROCKCHIP_PERFORMANCE)
rockchip_perf_uclamp_sync_util_min_rt_default(void)1104 void rockchip_perf_uclamp_sync_util_min_rt_default(void)
1105 {
1106 uclamp_sync_util_min_rt_default();
1107 }
1108 EXPORT_SYMBOL(rockchip_perf_uclamp_sync_util_min_rt_default);
1109 #endif
1110
1111 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1112 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1113 {
1114 /* Copy by value as we could modify it */
1115 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1116 #ifdef CONFIG_UCLAMP_TASK_GROUP
1117 unsigned int tg_min, tg_max, value;
1118
1119 /*
1120 * Tasks in autogroups or root task group will be
1121 * restricted by system defaults.
1122 */
1123 if (task_group_is_autogroup(task_group(p)))
1124 return uc_req;
1125 if (task_group(p) == &root_task_group)
1126 return uc_req;
1127
1128 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1129 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1130 value = uc_req.value;
1131 value = clamp(value, tg_min, tg_max);
1132 uclamp_se_set(&uc_req, value, false);
1133 #endif
1134
1135 return uc_req;
1136 }
1137
1138 /*
1139 * The effective clamp bucket index of a task depends on, by increasing
1140 * priority:
1141 * - the task specific clamp value, when explicitly requested from userspace
1142 * - the task group effective clamp value, for tasks not either in the root
1143 * group or in an autogroup
1144 * - the system default clamp value, defined by the sysadmin
1145 */
1146 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1147 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1148 {
1149 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1150 struct uclamp_se uc_max = uclamp_default[clamp_id];
1151 struct uclamp_se uc_eff;
1152 int ret = 0;
1153
1154 trace_android_rvh_uclamp_eff_get(p, clamp_id, &uc_max, &uc_eff, &ret);
1155 if (ret)
1156 return uc_eff;
1157
1158 /* System default restrictions always apply */
1159 if (unlikely(uc_req.value > uc_max.value))
1160 return uc_max;
1161
1162 return uc_req;
1163 }
1164
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1165 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1166 {
1167 struct uclamp_se uc_eff;
1168
1169 /* Task currently refcounted: use back-annotated (effective) value */
1170 if (p->uclamp[clamp_id].active)
1171 return (unsigned long)p->uclamp[clamp_id].value;
1172
1173 uc_eff = uclamp_eff_get(p, clamp_id);
1174
1175 return (unsigned long)uc_eff.value;
1176 }
1177 EXPORT_SYMBOL_GPL(uclamp_eff_value);
1178
1179 /*
1180 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1181 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1182 * updates the rq's clamp value if required.
1183 *
1184 * Tasks can have a task-specific value requested from user-space, track
1185 * within each bucket the maximum value for tasks refcounted in it.
1186 * This "local max aggregation" allows to track the exact "requested" value
1187 * for each bucket when all its RUNNABLE tasks require the same clamp.
1188 */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1189 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1190 enum uclamp_id clamp_id)
1191 {
1192 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1193 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1194 struct uclamp_bucket *bucket;
1195
1196 lockdep_assert_held(&rq->lock);
1197
1198 /* Update task effective clamp */
1199 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1200
1201 bucket = &uc_rq->bucket[uc_se->bucket_id];
1202 bucket->tasks++;
1203 uc_se->active = true;
1204
1205 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1206
1207 /*
1208 * Local max aggregation: rq buckets always track the max
1209 * "requested" clamp value of its RUNNABLE tasks.
1210 */
1211 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1212 bucket->value = uc_se->value;
1213
1214 if (uc_se->value > READ_ONCE(uc_rq->value))
1215 WRITE_ONCE(uc_rq->value, uc_se->value);
1216 }
1217
1218 /*
1219 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1220 * is released. If this is the last task reference counting the rq's max
1221 * active clamp value, then the rq's clamp value is updated.
1222 *
1223 * Both refcounted tasks and rq's cached clamp values are expected to be
1224 * always valid. If it's detected they are not, as defensive programming,
1225 * enforce the expected state and warn.
1226 */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1227 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1228 enum uclamp_id clamp_id)
1229 {
1230 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1231 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1232 struct uclamp_bucket *bucket;
1233 unsigned int bkt_clamp;
1234 unsigned int rq_clamp;
1235
1236 lockdep_assert_held(&rq->lock);
1237
1238 /*
1239 * If sched_uclamp_used was enabled after task @p was enqueued,
1240 * we could end up with unbalanced call to uclamp_rq_dec_id().
1241 *
1242 * In this case the uc_se->active flag should be false since no uclamp
1243 * accounting was performed at enqueue time and we can just return
1244 * here.
1245 *
1246 * Need to be careful of the following enqeueue/dequeue ordering
1247 * problem too
1248 *
1249 * enqueue(taskA)
1250 * // sched_uclamp_used gets enabled
1251 * enqueue(taskB)
1252 * dequeue(taskA)
1253 * // Must not decrement bukcet->tasks here
1254 * dequeue(taskB)
1255 *
1256 * where we could end up with stale data in uc_se and
1257 * bucket[uc_se->bucket_id].
1258 *
1259 * The following check here eliminates the possibility of such race.
1260 */
1261 if (unlikely(!uc_se->active))
1262 return;
1263
1264 bucket = &uc_rq->bucket[uc_se->bucket_id];
1265
1266 SCHED_WARN_ON(!bucket->tasks);
1267 if (likely(bucket->tasks))
1268 bucket->tasks--;
1269
1270 uc_se->active = false;
1271
1272 /*
1273 * Keep "local max aggregation" simple and accept to (possibly)
1274 * overboost some RUNNABLE tasks in the same bucket.
1275 * The rq clamp bucket value is reset to its base value whenever
1276 * there are no more RUNNABLE tasks refcounting it.
1277 */
1278 if (likely(bucket->tasks))
1279 return;
1280
1281 rq_clamp = READ_ONCE(uc_rq->value);
1282 /*
1283 * Defensive programming: this should never happen. If it happens,
1284 * e.g. due to future modification, warn and fixup the expected value.
1285 */
1286 SCHED_WARN_ON(bucket->value > rq_clamp);
1287 if (bucket->value >= rq_clamp) {
1288 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1289 WRITE_ONCE(uc_rq->value, bkt_clamp);
1290 }
1291 }
1292
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1293 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1294 {
1295 enum uclamp_id clamp_id;
1296
1297 /*
1298 * Avoid any overhead until uclamp is actually used by the userspace.
1299 *
1300 * The condition is constructed such that a NOP is generated when
1301 * sched_uclamp_used is disabled.
1302 */
1303 if (!static_branch_unlikely(&sched_uclamp_used))
1304 return;
1305
1306 if (unlikely(!p->sched_class->uclamp_enabled))
1307 return;
1308
1309 for_each_clamp_id(clamp_id)
1310 uclamp_rq_inc_id(rq, p, clamp_id);
1311
1312 /* Reset clamp idle holding when there is one RUNNABLE task */
1313 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1314 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1315 }
1316
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1317 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1318 {
1319 enum uclamp_id clamp_id;
1320
1321 /*
1322 * Avoid any overhead until uclamp is actually used by the userspace.
1323 *
1324 * The condition is constructed such that a NOP is generated when
1325 * sched_uclamp_used is disabled.
1326 */
1327 if (!static_branch_unlikely(&sched_uclamp_used))
1328 return;
1329
1330 if (unlikely(!p->sched_class->uclamp_enabled))
1331 return;
1332
1333 for_each_clamp_id(clamp_id)
1334 uclamp_rq_dec_id(rq, p, clamp_id);
1335 }
1336
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1337 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1338 enum uclamp_id clamp_id)
1339 {
1340 if (!p->uclamp[clamp_id].active)
1341 return;
1342
1343 uclamp_rq_dec_id(rq, p, clamp_id);
1344 uclamp_rq_inc_id(rq, p, clamp_id);
1345
1346 /*
1347 * Make sure to clear the idle flag if we've transiently reached 0
1348 * active tasks on rq.
1349 */
1350 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1351 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1352 }
1353
1354 static inline void
uclamp_update_active(struct task_struct * p)1355 uclamp_update_active(struct task_struct *p)
1356 {
1357 enum uclamp_id clamp_id;
1358 struct rq_flags rf;
1359 struct rq *rq;
1360
1361 /*
1362 * Lock the task and the rq where the task is (or was) queued.
1363 *
1364 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1365 * price to pay to safely serialize util_{min,max} updates with
1366 * enqueues, dequeues and migration operations.
1367 * This is the same locking schema used by __set_cpus_allowed_ptr().
1368 */
1369 rq = task_rq_lock(p, &rf);
1370
1371 /*
1372 * Setting the clamp bucket is serialized by task_rq_lock().
1373 * If the task is not yet RUNNABLE and its task_struct is not
1374 * affecting a valid clamp bucket, the next time it's enqueued,
1375 * it will already see the updated clamp bucket value.
1376 */
1377 for_each_clamp_id(clamp_id)
1378 uclamp_rq_reinc_id(rq, p, clamp_id);
1379
1380 task_rq_unlock(rq, p, &rf);
1381 }
1382
1383 #ifdef CONFIG_UCLAMP_TASK_GROUP
1384 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1385 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1386 {
1387 struct css_task_iter it;
1388 struct task_struct *p;
1389
1390 css_task_iter_start(css, 0, &it);
1391 while ((p = css_task_iter_next(&it)))
1392 uclamp_update_active(p);
1393 css_task_iter_end(&it);
1394 }
1395
1396 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
uclamp_update_root_tg(void)1397 static void uclamp_update_root_tg(void)
1398 {
1399 struct task_group *tg = &root_task_group;
1400
1401 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1402 sysctl_sched_uclamp_util_min, false);
1403 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1404 sysctl_sched_uclamp_util_max, false);
1405
1406 rcu_read_lock();
1407 cpu_util_update_eff(&root_task_group.css);
1408 rcu_read_unlock();
1409 }
1410 #else
uclamp_update_root_tg(void)1411 static void uclamp_update_root_tg(void) { }
1412 #endif
1413
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1414 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1415 void *buffer, size_t *lenp, loff_t *ppos)
1416 {
1417 bool update_root_tg = false;
1418 int old_min, old_max, old_min_rt;
1419 int result;
1420
1421 mutex_lock(&uclamp_mutex);
1422 old_min = sysctl_sched_uclamp_util_min;
1423 old_max = sysctl_sched_uclamp_util_max;
1424 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1425
1426 result = proc_dointvec(table, write, buffer, lenp, ppos);
1427 if (result)
1428 goto undo;
1429 if (!write)
1430 goto done;
1431
1432 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1433 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1434 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1435
1436 result = -EINVAL;
1437 goto undo;
1438 }
1439
1440 if (old_min != sysctl_sched_uclamp_util_min) {
1441 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1442 sysctl_sched_uclamp_util_min, false);
1443 update_root_tg = true;
1444 }
1445 if (old_max != sysctl_sched_uclamp_util_max) {
1446 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1447 sysctl_sched_uclamp_util_max, false);
1448 update_root_tg = true;
1449 }
1450
1451 if (update_root_tg) {
1452 static_branch_enable(&sched_uclamp_used);
1453 uclamp_update_root_tg();
1454 }
1455
1456 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1457 static_branch_enable(&sched_uclamp_used);
1458 uclamp_sync_util_min_rt_default();
1459 }
1460
1461 /*
1462 * We update all RUNNABLE tasks only when task groups are in use.
1463 * Otherwise, keep it simple and do just a lazy update at each next
1464 * task enqueue time.
1465 */
1466
1467 goto done;
1468
1469 undo:
1470 sysctl_sched_uclamp_util_min = old_min;
1471 sysctl_sched_uclamp_util_max = old_max;
1472 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1473 done:
1474 mutex_unlock(&uclamp_mutex);
1475
1476 return result;
1477 }
1478
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1479 static int uclamp_validate(struct task_struct *p,
1480 const struct sched_attr *attr)
1481 {
1482 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1483 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1484
1485 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1486 util_min = attr->sched_util_min;
1487
1488 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1489 return -EINVAL;
1490 }
1491
1492 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1493 util_max = attr->sched_util_max;
1494
1495 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1496 return -EINVAL;
1497 }
1498
1499 if (util_min != -1 && util_max != -1 && util_min > util_max)
1500 return -EINVAL;
1501
1502 /*
1503 * We have valid uclamp attributes; make sure uclamp is enabled.
1504 *
1505 * We need to do that here, because enabling static branches is a
1506 * blocking operation which obviously cannot be done while holding
1507 * scheduler locks.
1508 */
1509 static_branch_enable(&sched_uclamp_used);
1510
1511 return 0;
1512 }
1513
uclamp_reset(const struct sched_attr * attr,enum uclamp_id clamp_id,struct uclamp_se * uc_se)1514 static bool uclamp_reset(const struct sched_attr *attr,
1515 enum uclamp_id clamp_id,
1516 struct uclamp_se *uc_se)
1517 {
1518 /* Reset on sched class change for a non user-defined clamp value. */
1519 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1520 !uc_se->user_defined)
1521 return true;
1522
1523 /* Reset on sched_util_{min,max} == -1. */
1524 if (clamp_id == UCLAMP_MIN &&
1525 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1526 attr->sched_util_min == -1) {
1527 return true;
1528 }
1529
1530 if (clamp_id == UCLAMP_MAX &&
1531 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1532 attr->sched_util_max == -1) {
1533 return true;
1534 }
1535
1536 return false;
1537 }
1538
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1539 static void __setscheduler_uclamp(struct task_struct *p,
1540 const struct sched_attr *attr)
1541 {
1542 enum uclamp_id clamp_id;
1543
1544 for_each_clamp_id(clamp_id) {
1545 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1546 unsigned int value;
1547
1548 if (!uclamp_reset(attr, clamp_id, uc_se))
1549 continue;
1550
1551 /*
1552 * RT by default have a 100% boost value that could be modified
1553 * at runtime.
1554 */
1555 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1556 value = sysctl_sched_uclamp_util_min_rt_default;
1557 else
1558 value = uclamp_none(clamp_id);
1559
1560 uclamp_se_set(uc_se, value, false);
1561
1562 }
1563
1564 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1565 return;
1566
1567 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1568 attr->sched_util_min != -1) {
1569 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1570 attr->sched_util_min, true);
1571 trace_android_vh_setscheduler_uclamp(p, UCLAMP_MIN, attr->sched_util_min);
1572 }
1573
1574 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1575 attr->sched_util_max != -1) {
1576 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1577 attr->sched_util_max, true);
1578 trace_android_vh_setscheduler_uclamp(p, UCLAMP_MAX, attr->sched_util_max);
1579 }
1580 }
1581
uclamp_fork(struct task_struct * p)1582 static void uclamp_fork(struct task_struct *p)
1583 {
1584 enum uclamp_id clamp_id;
1585
1586 /*
1587 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1588 * as the task is still at its early fork stages.
1589 */
1590 for_each_clamp_id(clamp_id)
1591 p->uclamp[clamp_id].active = false;
1592
1593 if (likely(!p->sched_reset_on_fork))
1594 return;
1595
1596 for_each_clamp_id(clamp_id) {
1597 uclamp_se_set(&p->uclamp_req[clamp_id],
1598 uclamp_none(clamp_id), false);
1599 }
1600 }
1601
uclamp_post_fork(struct task_struct * p)1602 static void uclamp_post_fork(struct task_struct *p)
1603 {
1604 uclamp_update_util_min_rt_default(p);
1605 }
1606
init_uclamp_rq(struct rq * rq)1607 static void __init init_uclamp_rq(struct rq *rq)
1608 {
1609 enum uclamp_id clamp_id;
1610 struct uclamp_rq *uc_rq = rq->uclamp;
1611
1612 for_each_clamp_id(clamp_id) {
1613 uc_rq[clamp_id] = (struct uclamp_rq) {
1614 .value = uclamp_none(clamp_id)
1615 };
1616 }
1617
1618 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1619 }
1620
init_uclamp(void)1621 static void __init init_uclamp(void)
1622 {
1623 struct uclamp_se uc_max = {};
1624 enum uclamp_id clamp_id;
1625 int cpu;
1626
1627 for_each_possible_cpu(cpu)
1628 init_uclamp_rq(cpu_rq(cpu));
1629
1630 for_each_clamp_id(clamp_id) {
1631 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1632 uclamp_none(clamp_id), false);
1633 }
1634
1635 /* System defaults allow max clamp values for both indexes */
1636 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1637 for_each_clamp_id(clamp_id) {
1638 uclamp_default[clamp_id] = uc_max;
1639 #ifdef CONFIG_UCLAMP_TASK_GROUP
1640 root_task_group.uclamp_req[clamp_id] = uc_max;
1641 root_task_group.uclamp[clamp_id] = uc_max;
1642 #endif
1643 }
1644 }
1645
1646 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1647 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1648 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1649 static inline int uclamp_validate(struct task_struct *p,
1650 const struct sched_attr *attr)
1651 {
1652 return -EOPNOTSUPP;
1653 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1654 static void __setscheduler_uclamp(struct task_struct *p,
1655 const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)1656 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)1657 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)1658 static inline void init_uclamp(void) { }
1659 #endif /* CONFIG_UCLAMP_TASK */
1660
enqueue_task(struct rq * rq,struct task_struct * p,int flags)1661 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1662 {
1663 if (!(flags & ENQUEUE_NOCLOCK))
1664 update_rq_clock(rq);
1665
1666 if (!(flags & ENQUEUE_RESTORE)) {
1667 sched_info_queued(rq, p);
1668 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1669 }
1670
1671 uclamp_rq_inc(rq, p);
1672 trace_android_rvh_enqueue_task(rq, p, flags);
1673 p->sched_class->enqueue_task(rq, p, flags);
1674 trace_android_rvh_after_enqueue_task(rq, p);
1675 }
1676
dequeue_task(struct rq * rq,struct task_struct * p,int flags)1677 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1678 {
1679 if (!(flags & DEQUEUE_NOCLOCK))
1680 update_rq_clock(rq);
1681
1682 if (!(flags & DEQUEUE_SAVE)) {
1683 sched_info_dequeued(rq, p);
1684 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1685 }
1686
1687 uclamp_rq_dec(rq, p);
1688 trace_android_rvh_dequeue_task(rq, p, flags);
1689 p->sched_class->dequeue_task(rq, p, flags);
1690 trace_android_rvh_after_dequeue_task(rq, p);
1691 }
1692
activate_task(struct rq * rq,struct task_struct * p,int flags)1693 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1694 {
1695 enqueue_task(rq, p, flags);
1696
1697 p->on_rq = TASK_ON_RQ_QUEUED;
1698 }
1699 EXPORT_SYMBOL_GPL(activate_task);
1700
deactivate_task(struct rq * rq,struct task_struct * p,int flags)1701 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1702 {
1703 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1704
1705 dequeue_task(rq, p, flags);
1706 }
1707 EXPORT_SYMBOL_GPL(deactivate_task);
1708
__normal_prio(int policy,int rt_prio,int nice)1709 static inline int __normal_prio(int policy, int rt_prio, int nice)
1710 {
1711 int prio;
1712
1713 if (dl_policy(policy))
1714 prio = MAX_DL_PRIO - 1;
1715 else if (rt_policy(policy))
1716 prio = MAX_RT_PRIO - 1 - rt_prio;
1717 else
1718 prio = NICE_TO_PRIO(nice);
1719
1720 return prio;
1721 }
1722
1723 /*
1724 * Calculate the expected normal priority: i.e. priority
1725 * without taking RT-inheritance into account. Might be
1726 * boosted by interactivity modifiers. Changes upon fork,
1727 * setprio syscalls, and whenever the interactivity
1728 * estimator recalculates.
1729 */
normal_prio(struct task_struct * p)1730 static inline int normal_prio(struct task_struct *p)
1731 {
1732 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
1733 }
1734
1735 /*
1736 * Calculate the current priority, i.e. the priority
1737 * taken into account by the scheduler. This value might
1738 * be boosted by RT tasks, or might be boosted by
1739 * interactivity modifiers. Will be RT if the task got
1740 * RT-boosted. If not then it returns p->normal_prio.
1741 */
effective_prio(struct task_struct * p)1742 static int effective_prio(struct task_struct *p)
1743 {
1744 p->normal_prio = normal_prio(p);
1745 /*
1746 * If we are RT tasks or we were boosted to RT priority,
1747 * keep the priority unchanged. Otherwise, update priority
1748 * to the normal priority:
1749 */
1750 if (!rt_prio(p->prio))
1751 return p->normal_prio;
1752 return p->prio;
1753 }
1754
1755 /**
1756 * task_curr - is this task currently executing on a CPU?
1757 * @p: the task in question.
1758 *
1759 * Return: 1 if the task is currently executing. 0 otherwise.
1760 */
task_curr(const struct task_struct * p)1761 inline int task_curr(const struct task_struct *p)
1762 {
1763 return cpu_curr(task_cpu(p)) == p;
1764 }
1765
1766 /*
1767 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1768 * use the balance_callback list if you want balancing.
1769 *
1770 * this means any call to check_class_changed() must be followed by a call to
1771 * balance_callback().
1772 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)1773 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1774 const struct sched_class *prev_class,
1775 int oldprio)
1776 {
1777 if (prev_class != p->sched_class) {
1778 if (prev_class->switched_from)
1779 prev_class->switched_from(rq, p);
1780
1781 p->sched_class->switched_to(rq, p);
1782 } else if (oldprio != p->prio || dl_task(p))
1783 p->sched_class->prio_changed(rq, p, oldprio);
1784 }
1785
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)1786 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1787 {
1788 if (p->sched_class == rq->curr->sched_class)
1789 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1790 else if (p->sched_class > rq->curr->sched_class)
1791 resched_curr(rq);
1792
1793 /*
1794 * A queue event has occurred, and we're going to schedule. In
1795 * this case, we can save a useless back to back clock update.
1796 */
1797 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1798 rq_clock_skip_update(rq);
1799 }
1800 EXPORT_SYMBOL_GPL(check_preempt_curr);
1801
1802 #ifdef CONFIG_SMP
1803
1804 /*
1805 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1806 * __set_cpus_allowed_ptr() and select_fallback_rq().
1807 */
is_cpu_allowed(struct task_struct * p,int cpu)1808 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1809 {
1810 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1811 return false;
1812
1813 if (is_per_cpu_kthread(p))
1814 return cpu_online(cpu);
1815
1816 if (!cpu_active(cpu))
1817 return false;
1818
1819 return cpumask_test_cpu(cpu, task_cpu_possible_mask(p));
1820 }
1821
1822 /*
1823 * This is how migration works:
1824 *
1825 * 1) we invoke migration_cpu_stop() on the target CPU using
1826 * stop_one_cpu().
1827 * 2) stopper starts to run (implicitly forcing the migrated thread
1828 * off the CPU)
1829 * 3) it checks whether the migrated task is still in the wrong runqueue.
1830 * 4) if it's in the wrong runqueue then the migration thread removes
1831 * it and puts it into the right queue.
1832 * 5) stopper completes and stop_one_cpu() returns and the migration
1833 * is done.
1834 */
1835
1836 /*
1837 * move_queued_task - move a queued task to new rq.
1838 *
1839 * Returns (locked) new rq. Old rq's lock is released.
1840 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)1841 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1842 struct task_struct *p, int new_cpu)
1843 {
1844 int detached = 0;
1845
1846 lockdep_assert_held(&rq->lock);
1847
1848 /*
1849 * The vendor hook may drop the lock temporarily, so
1850 * pass the rq flags to unpin lock. We expect the
1851 * rq lock to be held after return.
1852 */
1853 trace_android_rvh_migrate_queued_task(rq, rf, p, new_cpu, &detached);
1854 if (detached)
1855 goto attach;
1856
1857 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1858 set_task_cpu(p, new_cpu);
1859
1860 attach:
1861 rq_unlock(rq, rf);
1862 rq = cpu_rq(new_cpu);
1863
1864 rq_lock(rq, rf);
1865 BUG_ON(task_cpu(p) != new_cpu);
1866 activate_task(rq, p, 0);
1867 check_preempt_curr(rq, p, 0);
1868
1869 return rq;
1870 }
1871
1872 struct migration_arg {
1873 struct task_struct *task;
1874 int dest_cpu;
1875 };
1876
1877 /*
1878 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1879 * this because either it can't run here any more (set_cpus_allowed()
1880 * away from this CPU, or CPU going down), or because we're
1881 * attempting to rebalance this task on exec (sched_exec).
1882 *
1883 * So we race with normal scheduler movements, but that's OK, as long
1884 * as the task is no longer on this CPU.
1885 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)1886 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1887 struct task_struct *p, int dest_cpu)
1888 {
1889 /* Affinity changed (again). */
1890 if (!is_cpu_allowed(p, dest_cpu))
1891 return rq;
1892
1893 update_rq_clock(rq);
1894 rq = move_queued_task(rq, rf, p, dest_cpu);
1895
1896 return rq;
1897 }
1898
1899 /*
1900 * migration_cpu_stop - this will be executed by a highprio stopper thread
1901 * and performs thread migration by bumping thread off CPU then
1902 * 'pushing' onto another runqueue.
1903 */
migration_cpu_stop(void * data)1904 static int migration_cpu_stop(void *data)
1905 {
1906 struct migration_arg *arg = data;
1907 struct task_struct *p = arg->task;
1908 struct rq *rq = this_rq();
1909 struct rq_flags rf;
1910
1911 /*
1912 * The original target CPU might have gone down and we might
1913 * be on another CPU but it doesn't matter.
1914 */
1915 local_irq_disable();
1916 /*
1917 * We need to explicitly wake pending tasks before running
1918 * __migrate_task() such that we will not miss enforcing cpus_ptr
1919 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1920 */
1921 flush_smp_call_function_from_idle();
1922
1923 raw_spin_lock(&p->pi_lock);
1924 rq_lock(rq, &rf);
1925 /*
1926 * If task_rq(p) != rq, it cannot be migrated here, because we're
1927 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1928 * we're holding p->pi_lock.
1929 */
1930 if (task_rq(p) == rq) {
1931 if (task_on_rq_queued(p))
1932 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1933 else
1934 p->wake_cpu = arg->dest_cpu;
1935 }
1936 rq_unlock(rq, &rf);
1937 raw_spin_unlock(&p->pi_lock);
1938
1939 local_irq_enable();
1940 return 0;
1941 }
1942
1943 /*
1944 * sched_class::set_cpus_allowed must do the below, but is not required to
1945 * actually call this function.
1946 */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask)1947 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1948 {
1949 cpumask_copy(&p->cpus_mask, new_mask);
1950 p->nr_cpus_allowed = cpumask_weight(new_mask);
1951 trace_android_rvh_set_cpus_allowed_comm(p, new_mask);
1952 }
1953
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1954 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1955 {
1956 struct rq *rq = task_rq(p);
1957 bool queued, running;
1958
1959 lockdep_assert_held(&p->pi_lock);
1960
1961 queued = task_on_rq_queued(p);
1962 running = task_current(rq, p);
1963
1964 if (queued) {
1965 /*
1966 * Because __kthread_bind() calls this on blocked tasks without
1967 * holding rq->lock.
1968 */
1969 lockdep_assert_held(&rq->lock);
1970 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1971 }
1972 if (running)
1973 put_prev_task(rq, p);
1974
1975 p->sched_class->set_cpus_allowed(p, new_mask);
1976
1977 if (queued)
1978 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1979 if (running)
1980 set_next_task(rq, p);
1981 }
1982
1983 /*
1984 * Called with both p->pi_lock and rq->lock held; drops both before returning.
1985 */
__set_cpus_allowed_ptr_locked(struct task_struct * p,const struct cpumask * new_mask,bool check,struct rq * rq,struct rq_flags * rf)1986 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
1987 const struct cpumask *new_mask,
1988 bool check,
1989 struct rq *rq,
1990 struct rq_flags *rf)
1991 {
1992 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1993 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
1994 unsigned int dest_cpu;
1995 int ret = 0;
1996
1997 update_rq_clock(rq);
1998
1999 if (p->flags & PF_KTHREAD) {
2000 /*
2001 * Kernel threads are allowed on online && !active CPUs
2002 */
2003 cpu_valid_mask = cpu_online_mask;
2004 } else if (!cpumask_subset(new_mask, cpu_allowed_mask)) {
2005 ret = -EINVAL;
2006 goto out;
2007 }
2008
2009 /*
2010 * Must re-check here, to close a race against __kthread_bind(),
2011 * sched_setaffinity() is not guaranteed to observe the flag.
2012 */
2013 if (check && (p->flags & PF_NO_SETAFFINITY)) {
2014 ret = -EINVAL;
2015 goto out;
2016 }
2017
2018 if (cpumask_equal(&p->cpus_mask, new_mask))
2019 goto out;
2020
2021 /*
2022 * Picking a ~random cpu helps in cases where we are changing affinity
2023 * for groups of tasks (ie. cpuset), so that load balancing is not
2024 * immediately required to distribute the tasks within their new mask.
2025 */
2026 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2027 if (dest_cpu >= nr_cpu_ids) {
2028 ret = -EINVAL;
2029 goto out;
2030 }
2031
2032 do_set_cpus_allowed(p, new_mask);
2033
2034 if (p->flags & PF_KTHREAD) {
2035 /*
2036 * For kernel threads that do indeed end up on online &&
2037 * !active we want to ensure they are strict per-CPU threads.
2038 */
2039 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
2040 !cpumask_intersects(new_mask, cpu_active_mask) &&
2041 p->nr_cpus_allowed != 1);
2042 }
2043
2044 /* Can the task run on the task's current CPU? If so, we're done */
2045 if (cpumask_test_cpu(task_cpu(p), new_mask))
2046 goto out;
2047
2048 if (task_running(rq, p) || p->state == TASK_WAKING) {
2049 struct migration_arg arg = { p, dest_cpu };
2050 /* Need help from migration thread: drop lock and wait. */
2051 task_rq_unlock(rq, p, rf);
2052 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
2053 return 0;
2054 } else if (task_on_rq_queued(p)) {
2055 /*
2056 * OK, since we're going to drop the lock immediately
2057 * afterwards anyway.
2058 */
2059 rq = move_queued_task(rq, rf, p, dest_cpu);
2060 }
2061 out:
2062 task_rq_unlock(rq, p, rf);
2063
2064 return ret;
2065 }
2066
2067 /*
2068 * Change a given task's CPU affinity. Migrate the thread to a
2069 * proper CPU and schedule it away if the CPU it's executing on
2070 * is removed from the allowed bitmask.
2071 *
2072 * NOTE: the caller must have a valid reference to the task, the
2073 * task must not exit() & deallocate itself prematurely. The
2074 * call is not atomic; no spinlocks may be held.
2075 */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)2076 static int __set_cpus_allowed_ptr(struct task_struct *p,
2077 const struct cpumask *new_mask, bool check)
2078 {
2079 struct rq_flags rf;
2080 struct rq *rq;
2081
2082 rq = task_rq_lock(p, &rf);
2083 return __set_cpus_allowed_ptr_locked(p, new_mask, check, rq, &rf);
2084 }
2085
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)2086 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2087 {
2088 return __set_cpus_allowed_ptr(p, new_mask, false);
2089 }
2090 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2091
2092 /*
2093 * Change a given task's CPU affinity to the intersection of its current
2094 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
2095 * If the resulting mask is empty, leave the affinity unchanged and return
2096 * -EINVAL.
2097 */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)2098 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2099 struct cpumask *new_mask,
2100 const struct cpumask *subset_mask)
2101 {
2102 struct rq_flags rf;
2103 struct rq *rq;
2104
2105 rq = task_rq_lock(p, &rf);
2106 if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2107 task_rq_unlock(rq, p, &rf);
2108 return -EINVAL;
2109 }
2110
2111 return __set_cpus_allowed_ptr_locked(p, new_mask, false, rq, &rf);
2112 }
2113
2114 /*
2115 * Restrict a given task's CPU affinity so that it is a subset of
2116 * task_cpu_possible_mask(). If the resulting mask is empty, we warn and
2117 * walk up the cpuset hierarchy until we find a suitable mask.
2118 */
force_compatible_cpus_allowed_ptr(struct task_struct * p)2119 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
2120 {
2121 cpumask_var_t new_mask;
2122 const struct cpumask *override_mask = task_cpu_possible_mask(p);
2123
2124 alloc_cpumask_var(&new_mask, GFP_KERNEL);
2125
2126 /*
2127 * __migrate_task() can fail silently in the face of concurrent
2128 * offlining of the chosen destination CPU, so take the hotplug
2129 * lock to ensure that the migration succeeds.
2130 */
2131 trace_android_rvh_force_compatible_pre(NULL);
2132 cpus_read_lock();
2133 if (!cpumask_available(new_mask))
2134 goto out_set_mask;
2135
2136 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
2137 goto out_free_mask;
2138
2139 /*
2140 * We failed to find a valid subset of the affinity mask for the
2141 * task, so override it based on its cpuset hierarchy.
2142 */
2143 cpuset_cpus_allowed(p, new_mask);
2144 override_mask = new_mask;
2145
2146 out_set_mask:
2147 if (printk_ratelimit()) {
2148 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
2149 task_pid_nr(p), p->comm,
2150 cpumask_pr_args(override_mask));
2151 }
2152
2153 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
2154 out_free_mask:
2155 cpus_read_unlock();
2156 trace_android_rvh_force_compatible_post(NULL);
2157 free_cpumask_var(new_mask);
2158 }
2159
set_task_cpu(struct task_struct * p,unsigned int new_cpu)2160 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2161 {
2162 #ifdef CONFIG_SCHED_DEBUG
2163 /*
2164 * We should never call set_task_cpu() on a blocked task,
2165 * ttwu() will sort out the placement.
2166 */
2167 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2168 !p->on_rq);
2169
2170 /*
2171 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2172 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2173 * time relying on p->on_rq.
2174 */
2175 WARN_ON_ONCE(p->state == TASK_RUNNING &&
2176 p->sched_class == &fair_sched_class &&
2177 (p->on_rq && !task_on_rq_migrating(p)));
2178
2179 #ifdef CONFIG_LOCKDEP
2180 /*
2181 * The caller should hold either p->pi_lock or rq->lock, when changing
2182 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2183 *
2184 * sched_move_task() holds both and thus holding either pins the cgroup,
2185 * see task_group().
2186 *
2187 * Furthermore, all task_rq users should acquire both locks, see
2188 * task_rq_lock().
2189 */
2190 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2191 lockdep_is_held(&task_rq(p)->lock)));
2192 #endif
2193 /*
2194 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2195 */
2196 WARN_ON_ONCE(!cpu_online(new_cpu));
2197 #endif
2198
2199 trace_sched_migrate_task(p, new_cpu);
2200
2201 if (task_cpu(p) != new_cpu) {
2202 if (p->sched_class->migrate_task_rq)
2203 p->sched_class->migrate_task_rq(p, new_cpu);
2204 p->se.nr_migrations++;
2205 rseq_migrate(p);
2206 perf_event_task_migrate(p);
2207 trace_android_rvh_set_task_cpu(p, new_cpu);
2208 }
2209
2210 __set_task_cpu(p, new_cpu);
2211 }
2212 EXPORT_SYMBOL_GPL(set_task_cpu);
2213
__migrate_swap_task(struct task_struct * p,int cpu)2214 static void __migrate_swap_task(struct task_struct *p, int cpu)
2215 {
2216 if (task_on_rq_queued(p)) {
2217 struct rq *src_rq, *dst_rq;
2218 struct rq_flags srf, drf;
2219
2220 src_rq = task_rq(p);
2221 dst_rq = cpu_rq(cpu);
2222
2223 rq_pin_lock(src_rq, &srf);
2224 rq_pin_lock(dst_rq, &drf);
2225
2226 deactivate_task(src_rq, p, 0);
2227 set_task_cpu(p, cpu);
2228 activate_task(dst_rq, p, 0);
2229 check_preempt_curr(dst_rq, p, 0);
2230
2231 rq_unpin_lock(dst_rq, &drf);
2232 rq_unpin_lock(src_rq, &srf);
2233
2234 } else {
2235 /*
2236 * Task isn't running anymore; make it appear like we migrated
2237 * it before it went to sleep. This means on wakeup we make the
2238 * previous CPU our target instead of where it really is.
2239 */
2240 p->wake_cpu = cpu;
2241 }
2242 }
2243
2244 struct migration_swap_arg {
2245 struct task_struct *src_task, *dst_task;
2246 int src_cpu, dst_cpu;
2247 };
2248
migrate_swap_stop(void * data)2249 static int migrate_swap_stop(void *data)
2250 {
2251 struct migration_swap_arg *arg = data;
2252 struct rq *src_rq, *dst_rq;
2253 int ret = -EAGAIN;
2254
2255 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2256 return -EAGAIN;
2257
2258 src_rq = cpu_rq(arg->src_cpu);
2259 dst_rq = cpu_rq(arg->dst_cpu);
2260
2261 double_raw_lock(&arg->src_task->pi_lock,
2262 &arg->dst_task->pi_lock);
2263 double_rq_lock(src_rq, dst_rq);
2264
2265 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2266 goto unlock;
2267
2268 if (task_cpu(arg->src_task) != arg->src_cpu)
2269 goto unlock;
2270
2271 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2272 goto unlock;
2273
2274 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2275 goto unlock;
2276
2277 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2278 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2279
2280 ret = 0;
2281
2282 unlock:
2283 double_rq_unlock(src_rq, dst_rq);
2284 raw_spin_unlock(&arg->dst_task->pi_lock);
2285 raw_spin_unlock(&arg->src_task->pi_lock);
2286
2287 return ret;
2288 }
2289
2290 /*
2291 * Cross migrate two tasks
2292 */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)2293 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2294 int target_cpu, int curr_cpu)
2295 {
2296 struct migration_swap_arg arg;
2297 int ret = -EINVAL;
2298
2299 arg = (struct migration_swap_arg){
2300 .src_task = cur,
2301 .src_cpu = curr_cpu,
2302 .dst_task = p,
2303 .dst_cpu = target_cpu,
2304 };
2305
2306 if (arg.src_cpu == arg.dst_cpu)
2307 goto out;
2308
2309 /*
2310 * These three tests are all lockless; this is OK since all of them
2311 * will be re-checked with proper locks held further down the line.
2312 */
2313 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2314 goto out;
2315
2316 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2317 goto out;
2318
2319 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2320 goto out;
2321
2322 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2323 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2324
2325 out:
2326 return ret;
2327 }
2328 EXPORT_SYMBOL_GPL(migrate_swap);
2329
2330 /*
2331 * wait_task_inactive - wait for a thread to unschedule.
2332 *
2333 * If @match_state is nonzero, it's the @p->state value just checked and
2334 * not expected to change. If it changes, i.e. @p might have woken up,
2335 * then return zero. When we succeed in waiting for @p to be off its CPU,
2336 * we return a positive number (its total switch count). If a second call
2337 * a short while later returns the same number, the caller can be sure that
2338 * @p has remained unscheduled the whole time.
2339 *
2340 * The caller must ensure that the task *will* unschedule sometime soon,
2341 * else this function might spin for a *long* time. This function can't
2342 * be called with interrupts off, or it may introduce deadlock with
2343 * smp_call_function() if an IPI is sent by the same process we are
2344 * waiting to become inactive.
2345 */
wait_task_inactive(struct task_struct * p,long match_state)2346 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2347 {
2348 int running, queued;
2349 struct rq_flags rf;
2350 unsigned long ncsw;
2351 struct rq *rq;
2352
2353 for (;;) {
2354 /*
2355 * We do the initial early heuristics without holding
2356 * any task-queue locks at all. We'll only try to get
2357 * the runqueue lock when things look like they will
2358 * work out!
2359 */
2360 rq = task_rq(p);
2361
2362 /*
2363 * If the task is actively running on another CPU
2364 * still, just relax and busy-wait without holding
2365 * any locks.
2366 *
2367 * NOTE! Since we don't hold any locks, it's not
2368 * even sure that "rq" stays as the right runqueue!
2369 * But we don't care, since "task_running()" will
2370 * return false if the runqueue has changed and p
2371 * is actually now running somewhere else!
2372 */
2373 while (task_running(rq, p)) {
2374 if (match_state && unlikely(p->state != match_state))
2375 return 0;
2376 cpu_relax();
2377 }
2378
2379 /*
2380 * Ok, time to look more closely! We need the rq
2381 * lock now, to be *sure*. If we're wrong, we'll
2382 * just go back and repeat.
2383 */
2384 rq = task_rq_lock(p, &rf);
2385 trace_sched_wait_task(p);
2386 running = task_running(rq, p);
2387 queued = task_on_rq_queued(p);
2388 ncsw = 0;
2389 if (!match_state || p->state == match_state)
2390 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2391 task_rq_unlock(rq, p, &rf);
2392
2393 /*
2394 * If it changed from the expected state, bail out now.
2395 */
2396 if (unlikely(!ncsw))
2397 break;
2398
2399 /*
2400 * Was it really running after all now that we
2401 * checked with the proper locks actually held?
2402 *
2403 * Oops. Go back and try again..
2404 */
2405 if (unlikely(running)) {
2406 cpu_relax();
2407 continue;
2408 }
2409
2410 /*
2411 * It's not enough that it's not actively running,
2412 * it must be off the runqueue _entirely_, and not
2413 * preempted!
2414 *
2415 * So if it was still runnable (but just not actively
2416 * running right now), it's preempted, and we should
2417 * yield - it could be a while.
2418 */
2419 if (unlikely(queued)) {
2420 ktime_t to = NSEC_PER_SEC / HZ;
2421
2422 set_current_state(TASK_UNINTERRUPTIBLE);
2423 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2424 continue;
2425 }
2426
2427 /*
2428 * Ahh, all good. It wasn't running, and it wasn't
2429 * runnable, which means that it will never become
2430 * running in the future either. We're all done!
2431 */
2432 break;
2433 }
2434
2435 return ncsw;
2436 }
2437
2438 /***
2439 * kick_process - kick a running thread to enter/exit the kernel
2440 * @p: the to-be-kicked thread
2441 *
2442 * Cause a process which is running on another CPU to enter
2443 * kernel-mode, without any delay. (to get signals handled.)
2444 *
2445 * NOTE: this function doesn't have to take the runqueue lock,
2446 * because all it wants to ensure is that the remote task enters
2447 * the kernel. If the IPI races and the task has been migrated
2448 * to another CPU then no harm is done and the purpose has been
2449 * achieved as well.
2450 */
kick_process(struct task_struct * p)2451 void kick_process(struct task_struct *p)
2452 {
2453 int cpu;
2454
2455 preempt_disable();
2456 cpu = task_cpu(p);
2457 if ((cpu != smp_processor_id()) && task_curr(p))
2458 smp_send_reschedule(cpu);
2459 preempt_enable();
2460 }
2461 EXPORT_SYMBOL_GPL(kick_process);
2462
2463 /*
2464 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2465 *
2466 * A few notes on cpu_active vs cpu_online:
2467 *
2468 * - cpu_active must be a subset of cpu_online
2469 *
2470 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2471 * see __set_cpus_allowed_ptr(). At this point the newly online
2472 * CPU isn't yet part of the sched domains, and balancing will not
2473 * see it.
2474 *
2475 * - on CPU-down we clear cpu_active() to mask the sched domains and
2476 * avoid the load balancer to place new tasks on the to be removed
2477 * CPU. Existing tasks will remain running there and will be taken
2478 * off.
2479 *
2480 * This means that fallback selection must not select !active CPUs.
2481 * And can assume that any active CPU must be online. Conversely
2482 * select_task_rq() below may allow selection of !active CPUs in order
2483 * to satisfy the above rules.
2484 */
select_fallback_rq(int cpu,struct task_struct * p)2485 static int select_fallback_rq(int cpu, struct task_struct *p)
2486 {
2487 int nid = cpu_to_node(cpu);
2488 const struct cpumask *nodemask = NULL;
2489 enum { cpuset, possible, fail } state = cpuset;
2490 int dest_cpu = -1;
2491
2492 trace_android_rvh_select_fallback_rq(cpu, p, &dest_cpu);
2493 if (dest_cpu >= 0)
2494 return dest_cpu;
2495
2496 /*
2497 * If the node that the CPU is on has been offlined, cpu_to_node()
2498 * will return -1. There is no CPU on the node, and we should
2499 * select the CPU on the other node.
2500 */
2501 if (nid != -1) {
2502 nodemask = cpumask_of_node(nid);
2503
2504 /* Look for allowed, online CPU in same node. */
2505 for_each_cpu(dest_cpu, nodemask) {
2506 if (is_cpu_allowed(p, dest_cpu))
2507 return dest_cpu;
2508 }
2509 }
2510
2511 for (;;) {
2512 /* Any allowed, online CPU? */
2513 for_each_cpu(dest_cpu, p->cpus_ptr) {
2514 if (!is_cpu_allowed(p, dest_cpu))
2515 continue;
2516
2517 goto out;
2518 }
2519
2520 /* No more Mr. Nice Guy. */
2521 switch (state) {
2522 case cpuset:
2523 if (IS_ENABLED(CONFIG_CPUSETS)) {
2524 cpuset_cpus_allowed_fallback(p);
2525 state = possible;
2526 break;
2527 }
2528 fallthrough;
2529 case possible:
2530 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
2531 state = fail;
2532 break;
2533 case fail:
2534 BUG();
2535 break;
2536 }
2537 }
2538
2539 out:
2540 if (state != cpuset) {
2541 /*
2542 * Don't tell them about moving exiting tasks or
2543 * kernel threads (both mm NULL), since they never
2544 * leave kernel.
2545 */
2546 if (p->mm && printk_ratelimit()) {
2547 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2548 task_pid_nr(p), p->comm, cpu);
2549 }
2550 }
2551
2552 return dest_cpu;
2553 }
2554
2555 /*
2556 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2557 */
2558 static inline
select_task_rq(struct task_struct * p,int cpu,int sd_flags,int wake_flags)2559 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2560 {
2561 lockdep_assert_held(&p->pi_lock);
2562
2563 if (p->nr_cpus_allowed > 1)
2564 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2565 else
2566 cpu = cpumask_any(p->cpus_ptr);
2567
2568 /*
2569 * In order not to call set_task_cpu() on a blocking task we need
2570 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2571 * CPU.
2572 *
2573 * Since this is common to all placement strategies, this lives here.
2574 *
2575 * [ this allows ->select_task() to simply return task_cpu(p) and
2576 * not worry about this generic constraint ]
2577 */
2578 if (unlikely(!is_cpu_allowed(p, cpu)))
2579 cpu = select_fallback_rq(task_cpu(p), p);
2580
2581 return cpu;
2582 }
2583
sched_set_stop_task(int cpu,struct task_struct * stop)2584 void sched_set_stop_task(int cpu, struct task_struct *stop)
2585 {
2586 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2587 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2588
2589 if (stop) {
2590 /*
2591 * Make it appear like a SCHED_FIFO task, its something
2592 * userspace knows about and won't get confused about.
2593 *
2594 * Also, it will make PI more or less work without too
2595 * much confusion -- but then, stop work should not
2596 * rely on PI working anyway.
2597 */
2598 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
2599
2600 stop->sched_class = &stop_sched_class;
2601 }
2602
2603 cpu_rq(cpu)->stop = stop;
2604
2605 if (old_stop) {
2606 /*
2607 * Reset it back to a normal scheduling class so that
2608 * it can die in pieces.
2609 */
2610 old_stop->sched_class = &rt_sched_class;
2611 }
2612 }
2613
2614 #else
2615
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)2616 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2617 const struct cpumask *new_mask, bool check)
2618 {
2619 return set_cpus_allowed_ptr(p, new_mask);
2620 }
2621
2622 #endif /* CONFIG_SMP */
2623
2624 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)2625 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2626 {
2627 struct rq *rq;
2628
2629 if (!schedstat_enabled())
2630 return;
2631
2632 rq = this_rq();
2633
2634 #ifdef CONFIG_SMP
2635 if (cpu == rq->cpu) {
2636 __schedstat_inc(rq->ttwu_local);
2637 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2638 } else {
2639 struct sched_domain *sd;
2640
2641 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2642 rcu_read_lock();
2643 for_each_domain(rq->cpu, sd) {
2644 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2645 __schedstat_inc(sd->ttwu_wake_remote);
2646 break;
2647 }
2648 }
2649 rcu_read_unlock();
2650 }
2651
2652 if (wake_flags & WF_MIGRATED)
2653 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2654 #endif /* CONFIG_SMP */
2655
2656 __schedstat_inc(rq->ttwu_count);
2657 __schedstat_inc(p->se.statistics.nr_wakeups);
2658
2659 if (wake_flags & WF_SYNC)
2660 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2661 }
2662
2663 /*
2664 * Mark the task runnable and perform wakeup-preemption.
2665 */
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)2666 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2667 struct rq_flags *rf)
2668 {
2669 check_preempt_curr(rq, p, wake_flags);
2670 p->state = TASK_RUNNING;
2671 trace_sched_wakeup(p);
2672
2673 #ifdef CONFIG_SMP
2674 if (p->sched_class->task_woken) {
2675 /*
2676 * Our task @p is fully woken up and running; so its safe to
2677 * drop the rq->lock, hereafter rq is only used for statistics.
2678 */
2679 rq_unpin_lock(rq, rf);
2680 p->sched_class->task_woken(rq, p);
2681 rq_repin_lock(rq, rf);
2682 }
2683
2684 if (rq->idle_stamp) {
2685 u64 delta = rq_clock(rq) - rq->idle_stamp;
2686 u64 max = 2*rq->max_idle_balance_cost;
2687
2688 update_avg(&rq->avg_idle, delta);
2689
2690 if (rq->avg_idle > max)
2691 rq->avg_idle = max;
2692
2693 rq->idle_stamp = 0;
2694 }
2695 #endif
2696 }
2697
2698 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)2699 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2700 struct rq_flags *rf)
2701 {
2702 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2703
2704 if (wake_flags & WF_SYNC)
2705 en_flags |= ENQUEUE_WAKEUP_SYNC;
2706
2707 lockdep_assert_held(&rq->lock);
2708
2709 if (p->sched_contributes_to_load)
2710 rq->nr_uninterruptible--;
2711
2712 #ifdef CONFIG_SMP
2713 if (wake_flags & WF_MIGRATED)
2714 en_flags |= ENQUEUE_MIGRATED;
2715 else
2716 #endif
2717 if (p->in_iowait) {
2718 delayacct_blkio_end(p);
2719 atomic_dec(&task_rq(p)->nr_iowait);
2720 }
2721
2722 activate_task(rq, p, en_flags);
2723 ttwu_do_wakeup(rq, p, wake_flags, rf);
2724 }
2725
2726 /*
2727 * Consider @p being inside a wait loop:
2728 *
2729 * for (;;) {
2730 * set_current_state(TASK_UNINTERRUPTIBLE);
2731 *
2732 * if (CONDITION)
2733 * break;
2734 *
2735 * schedule();
2736 * }
2737 * __set_current_state(TASK_RUNNING);
2738 *
2739 * between set_current_state() and schedule(). In this case @p is still
2740 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
2741 * an atomic manner.
2742 *
2743 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
2744 * then schedule() must still happen and p->state can be changed to
2745 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
2746 * need to do a full wakeup with enqueue.
2747 *
2748 * Returns: %true when the wakeup is done,
2749 * %false otherwise.
2750 */
ttwu_runnable(struct task_struct * p,int wake_flags)2751 static int ttwu_runnable(struct task_struct *p, int wake_flags)
2752 {
2753 struct rq_flags rf;
2754 struct rq *rq;
2755 int ret = 0;
2756
2757 rq = __task_rq_lock(p, &rf);
2758 if (task_on_rq_queued(p)) {
2759 /* check_preempt_curr() may use rq clock */
2760 update_rq_clock(rq);
2761 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2762 ret = 1;
2763 }
2764 __task_rq_unlock(rq, &rf);
2765
2766 return ret;
2767 }
2768
2769 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)2770 void sched_ttwu_pending(void *arg)
2771 {
2772 struct llist_node *llist = arg;
2773 struct rq *rq = this_rq();
2774 struct task_struct *p, *t;
2775 struct rq_flags rf;
2776
2777 if (!llist)
2778 return;
2779
2780 /*
2781 * rq::ttwu_pending racy indication of out-standing wakeups.
2782 * Races such that false-negatives are possible, since they
2783 * are shorter lived that false-positives would be.
2784 */
2785 WRITE_ONCE(rq->ttwu_pending, 0);
2786
2787 rq_lock_irqsave(rq, &rf);
2788 update_rq_clock(rq);
2789
2790 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
2791 if (WARN_ON_ONCE(p->on_cpu))
2792 smp_cond_load_acquire(&p->on_cpu, !VAL);
2793
2794 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
2795 set_task_cpu(p, cpu_of(rq));
2796
2797 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2798 }
2799
2800 rq_unlock_irqrestore(rq, &rf);
2801 }
2802
send_call_function_single_ipi(int cpu)2803 void send_call_function_single_ipi(int cpu)
2804 {
2805 struct rq *rq = cpu_rq(cpu);
2806
2807 if (!set_nr_if_polling(rq->idle))
2808 arch_send_call_function_single_ipi(cpu);
2809 else
2810 trace_sched_wake_idle_without_ipi(cpu);
2811 }
2812
2813 /*
2814 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2815 * necessary. The wakee CPU on receipt of the IPI will queue the task
2816 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2817 * of the wakeup instead of the waker.
2818 */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)2819 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2820 {
2821 struct rq *rq = cpu_rq(cpu);
2822
2823 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2824
2825 WRITE_ONCE(rq->ttwu_pending, 1);
2826 __smp_call_single_queue(cpu, &p->wake_entry.llist);
2827 }
2828
wake_up_if_idle(int cpu)2829 void wake_up_if_idle(int cpu)
2830 {
2831 struct rq *rq = cpu_rq(cpu);
2832 struct rq_flags rf;
2833
2834 rcu_read_lock();
2835
2836 if (!is_idle_task(rcu_dereference(rq->curr)))
2837 goto out;
2838
2839 if (set_nr_if_polling(rq->idle)) {
2840 trace_sched_wake_idle_without_ipi(cpu);
2841 } else {
2842 rq_lock_irqsave(rq, &rf);
2843 if (is_idle_task(rq->curr))
2844 smp_send_reschedule(cpu);
2845 /* Else CPU is not idle, do nothing here: */
2846 rq_unlock_irqrestore(rq, &rf);
2847 }
2848
2849 out:
2850 rcu_read_unlock();
2851 }
2852 EXPORT_SYMBOL_GPL(wake_up_if_idle);
2853
cpus_share_cache(int this_cpu,int that_cpu)2854 bool cpus_share_cache(int this_cpu, int that_cpu)
2855 {
2856 if (this_cpu == that_cpu)
2857 return true;
2858
2859 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2860 }
2861
ttwu_queue_cond(int cpu,int wake_flags)2862 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2863 {
2864 /*
2865 * If the CPU does not share cache, then queue the task on the
2866 * remote rqs wakelist to avoid accessing remote data.
2867 */
2868 if (!cpus_share_cache(smp_processor_id(), cpu))
2869 return true;
2870
2871 /*
2872 * If the task is descheduling and the only running task on the
2873 * CPU then use the wakelist to offload the task activation to
2874 * the soon-to-be-idle CPU as the current CPU is likely busy.
2875 * nr_running is checked to avoid unnecessary task stacking.
2876 *
2877 * Note that we can only get here with (wakee) p->on_rq=0,
2878 * p->on_cpu can be whatever, we've done the dequeue, so
2879 * the wakee has been accounted out of ->nr_running.
2880 */
2881 if ((wake_flags & WF_ON_CPU) && !cpu_rq(cpu)->nr_running)
2882 return true;
2883
2884 return false;
2885 }
2886
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)2887 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2888 {
2889 bool cond = false;
2890
2891 trace_android_rvh_ttwu_cond(&cond);
2892
2893 if ((sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) ||
2894 cond) {
2895 if (WARN_ON_ONCE(cpu == smp_processor_id()))
2896 return false;
2897
2898 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2899 __ttwu_queue_wakelist(p, cpu, wake_flags);
2900 return true;
2901 }
2902
2903 return false;
2904 }
2905
2906 #else /* !CONFIG_SMP */
2907
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)2908 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2909 {
2910 return false;
2911 }
2912
2913 #endif /* CONFIG_SMP */
2914
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)2915 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2916 {
2917 struct rq *rq = cpu_rq(cpu);
2918 struct rq_flags rf;
2919
2920 if (ttwu_queue_wakelist(p, cpu, wake_flags))
2921 return;
2922
2923 rq_lock(rq, &rf);
2924 update_rq_clock(rq);
2925 ttwu_do_activate(rq, p, wake_flags, &rf);
2926 rq_unlock(rq, &rf);
2927 }
2928
2929 /*
2930 * Notes on Program-Order guarantees on SMP systems.
2931 *
2932 * MIGRATION
2933 *
2934 * The basic program-order guarantee on SMP systems is that when a task [t]
2935 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2936 * execution on its new CPU [c1].
2937 *
2938 * For migration (of runnable tasks) this is provided by the following means:
2939 *
2940 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2941 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2942 * rq(c1)->lock (if not at the same time, then in that order).
2943 * C) LOCK of the rq(c1)->lock scheduling in task
2944 *
2945 * Release/acquire chaining guarantees that B happens after A and C after B.
2946 * Note: the CPU doing B need not be c0 or c1
2947 *
2948 * Example:
2949 *
2950 * CPU0 CPU1 CPU2
2951 *
2952 * LOCK rq(0)->lock
2953 * sched-out X
2954 * sched-in Y
2955 * UNLOCK rq(0)->lock
2956 *
2957 * LOCK rq(0)->lock // orders against CPU0
2958 * dequeue X
2959 * UNLOCK rq(0)->lock
2960 *
2961 * LOCK rq(1)->lock
2962 * enqueue X
2963 * UNLOCK rq(1)->lock
2964 *
2965 * LOCK rq(1)->lock // orders against CPU2
2966 * sched-out Z
2967 * sched-in X
2968 * UNLOCK rq(1)->lock
2969 *
2970 *
2971 * BLOCKING -- aka. SLEEP + WAKEUP
2972 *
2973 * For blocking we (obviously) need to provide the same guarantee as for
2974 * migration. However the means are completely different as there is no lock
2975 * chain to provide order. Instead we do:
2976 *
2977 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
2978 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
2979 *
2980 * Example:
2981 *
2982 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2983 *
2984 * LOCK rq(0)->lock LOCK X->pi_lock
2985 * dequeue X
2986 * sched-out X
2987 * smp_store_release(X->on_cpu, 0);
2988 *
2989 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2990 * X->state = WAKING
2991 * set_task_cpu(X,2)
2992 *
2993 * LOCK rq(2)->lock
2994 * enqueue X
2995 * X->state = RUNNING
2996 * UNLOCK rq(2)->lock
2997 *
2998 * LOCK rq(2)->lock // orders against CPU1
2999 * sched-out Z
3000 * sched-in X
3001 * UNLOCK rq(2)->lock
3002 *
3003 * UNLOCK X->pi_lock
3004 * UNLOCK rq(0)->lock
3005 *
3006 *
3007 * However, for wakeups there is a second guarantee we must provide, namely we
3008 * must ensure that CONDITION=1 done by the caller can not be reordered with
3009 * accesses to the task state; see try_to_wake_up() and set_current_state().
3010 */
3011
3012 /**
3013 * try_to_wake_up - wake up a thread
3014 * @p: the thread to be awakened
3015 * @state: the mask of task states that can be woken
3016 * @wake_flags: wake modifier flags (WF_*)
3017 *
3018 * Conceptually does:
3019 *
3020 * If (@state & @p->state) @p->state = TASK_RUNNING.
3021 *
3022 * If the task was not queued/runnable, also place it back on a runqueue.
3023 *
3024 * This function is atomic against schedule() which would dequeue the task.
3025 *
3026 * It issues a full memory barrier before accessing @p->state, see the comment
3027 * with set_current_state().
3028 *
3029 * Uses p->pi_lock to serialize against concurrent wake-ups.
3030 *
3031 * Relies on p->pi_lock stabilizing:
3032 * - p->sched_class
3033 * - p->cpus_ptr
3034 * - p->sched_task_group
3035 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3036 *
3037 * Tries really hard to only take one task_rq(p)->lock for performance.
3038 * Takes rq->lock in:
3039 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
3040 * - ttwu_queue() -- new rq, for enqueue of the task;
3041 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3042 *
3043 * As a consequence we race really badly with just about everything. See the
3044 * many memory barriers and their comments for details.
3045 *
3046 * Return: %true if @p->state changes (an actual wakeup was done),
3047 * %false otherwise.
3048 */
3049 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)3050 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3051 {
3052 unsigned long flags;
3053 int cpu, success = 0;
3054
3055 preempt_disable();
3056 if (p == current) {
3057 /*
3058 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3059 * == smp_processor_id()'. Together this means we can special
3060 * case the whole 'p->on_rq && ttwu_runnable()' case below
3061 * without taking any locks.
3062 *
3063 * In particular:
3064 * - we rely on Program-Order guarantees for all the ordering,
3065 * - we're serialized against set_special_state() by virtue of
3066 * it disabling IRQs (this allows not taking ->pi_lock).
3067 */
3068 if (!(p->state & state))
3069 goto out;
3070
3071 success = 1;
3072 trace_sched_waking(p);
3073 p->state = TASK_RUNNING;
3074 trace_sched_wakeup(p);
3075 goto out;
3076 }
3077
3078 /*
3079 * If we are going to wake up a thread waiting for CONDITION we
3080 * need to ensure that CONDITION=1 done by the caller can not be
3081 * reordered with p->state check below. This pairs with smp_store_mb()
3082 * in set_current_state() that the waiting thread does.
3083 */
3084 raw_spin_lock_irqsave(&p->pi_lock, flags);
3085 smp_mb__after_spinlock();
3086 if (!(p->state & state))
3087 goto unlock;
3088
3089 #ifdef CONFIG_FREEZER
3090 /*
3091 * If we're going to wake up a thread which may be frozen, then
3092 * we can only do so if we have an active CPU which is capable of
3093 * running it. This may not be the case when resuming from suspend,
3094 * as the secondary CPUs may not yet be back online. See __thaw_task()
3095 * for the actual wakeup.
3096 */
3097 if (unlikely(frozen_or_skipped(p)) &&
3098 !cpumask_intersects(cpu_active_mask, task_cpu_possible_mask(p)))
3099 goto unlock;
3100 #endif
3101
3102 trace_sched_waking(p);
3103
3104 /* We're going to change ->state: */
3105 success = 1;
3106
3107 /*
3108 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3109 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3110 * in smp_cond_load_acquire() below.
3111 *
3112 * sched_ttwu_pending() try_to_wake_up()
3113 * STORE p->on_rq = 1 LOAD p->state
3114 * UNLOCK rq->lock
3115 *
3116 * __schedule() (switch to task 'p')
3117 * LOCK rq->lock smp_rmb();
3118 * smp_mb__after_spinlock();
3119 * UNLOCK rq->lock
3120 *
3121 * [task p]
3122 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
3123 *
3124 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3125 * __schedule(). See the comment for smp_mb__after_spinlock().
3126 *
3127 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3128 */
3129 smp_rmb();
3130 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3131 goto unlock;
3132
3133 if (p->state & TASK_UNINTERRUPTIBLE)
3134 trace_sched_blocked_reason(p);
3135
3136 #ifdef CONFIG_SMP
3137 /*
3138 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3139 * possible to, falsely, observe p->on_cpu == 0.
3140 *
3141 * One must be running (->on_cpu == 1) in order to remove oneself
3142 * from the runqueue.
3143 *
3144 * __schedule() (switch to task 'p') try_to_wake_up()
3145 * STORE p->on_cpu = 1 LOAD p->on_rq
3146 * UNLOCK rq->lock
3147 *
3148 * __schedule() (put 'p' to sleep)
3149 * LOCK rq->lock smp_rmb();
3150 * smp_mb__after_spinlock();
3151 * STORE p->on_rq = 0 LOAD p->on_cpu
3152 *
3153 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3154 * __schedule(). See the comment for smp_mb__after_spinlock().
3155 *
3156 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3157 * schedule()'s deactivate_task() has 'happened' and p will no longer
3158 * care about it's own p->state. See the comment in __schedule().
3159 */
3160 smp_acquire__after_ctrl_dep();
3161
3162 /*
3163 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3164 * == 0), which means we need to do an enqueue, change p->state to
3165 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3166 * enqueue, such as ttwu_queue_wakelist().
3167 */
3168 p->state = TASK_WAKING;
3169
3170 /*
3171 * If the owning (remote) CPU is still in the middle of schedule() with
3172 * this task as prev, considering queueing p on the remote CPUs wake_list
3173 * which potentially sends an IPI instead of spinning on p->on_cpu to
3174 * let the waker make forward progress. This is safe because IRQs are
3175 * disabled and the IPI will deliver after on_cpu is cleared.
3176 *
3177 * Ensure we load task_cpu(p) after p->on_cpu:
3178 *
3179 * set_task_cpu(p, cpu);
3180 * STORE p->cpu = @cpu
3181 * __schedule() (switch to task 'p')
3182 * LOCK rq->lock
3183 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
3184 * STORE p->on_cpu = 1 LOAD p->cpu
3185 *
3186 * to ensure we observe the correct CPU on which the task is currently
3187 * scheduling.
3188 */
3189 if (smp_load_acquire(&p->on_cpu) &&
3190 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3191 goto unlock;
3192
3193 /*
3194 * If the owning (remote) CPU is still in the middle of schedule() with
3195 * this task as prev, wait until its done referencing the task.
3196 *
3197 * Pairs with the smp_store_release() in finish_task().
3198 *
3199 * This ensures that tasks getting woken will be fully ordered against
3200 * their previous state and preserve Program Order.
3201 */
3202 smp_cond_load_acquire(&p->on_cpu, !VAL);
3203
3204 trace_android_rvh_try_to_wake_up(p);
3205
3206 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
3207 if (task_cpu(p) != cpu) {
3208 if (p->in_iowait) {
3209 delayacct_blkio_end(p);
3210 atomic_dec(&task_rq(p)->nr_iowait);
3211 }
3212
3213 wake_flags |= WF_MIGRATED;
3214 psi_ttwu_dequeue(p);
3215 set_task_cpu(p, cpu);
3216 }
3217 #else
3218 cpu = task_cpu(p);
3219 #endif /* CONFIG_SMP */
3220
3221 ttwu_queue(p, cpu, wake_flags);
3222 unlock:
3223 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3224 out:
3225 if (success) {
3226 trace_android_rvh_try_to_wake_up_success(p);
3227 ttwu_stat(p, task_cpu(p), wake_flags);
3228 }
3229 preempt_enable();
3230
3231 return success;
3232 }
3233
3234 /**
3235 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3236 * @p: Process for which the function is to be invoked, can be @current.
3237 * @func: Function to invoke.
3238 * @arg: Argument to function.
3239 *
3240 * If the specified task can be quickly locked into a definite state
3241 * (either sleeping or on a given runqueue), arrange to keep it in that
3242 * state while invoking @func(@arg). This function can use ->on_rq and
3243 * task_curr() to work out what the state is, if required. Given that
3244 * @func can be invoked with a runqueue lock held, it had better be quite
3245 * lightweight.
3246 *
3247 * Returns:
3248 * @false if the task slipped out from under the locks.
3249 * @true if the task was locked onto a runqueue or is sleeping.
3250 * However, @func can override this by returning @false.
3251 */
try_invoke_on_locked_down_task(struct task_struct * p,bool (* func)(struct task_struct * t,void * arg),void * arg)3252 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3253 {
3254 struct rq_flags rf;
3255 bool ret = false;
3256 struct rq *rq;
3257
3258 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3259 if (p->on_rq) {
3260 rq = __task_rq_lock(p, &rf);
3261 if (task_rq(p) == rq)
3262 ret = func(p, arg);
3263 rq_unlock(rq, &rf);
3264 } else {
3265 switch (p->state) {
3266 case TASK_RUNNING:
3267 case TASK_WAKING:
3268 break;
3269 default:
3270 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3271 if (!p->on_rq)
3272 ret = func(p, arg);
3273 }
3274 }
3275 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3276 return ret;
3277 }
3278
3279 /**
3280 * wake_up_process - Wake up a specific process
3281 * @p: The process to be woken up.
3282 *
3283 * Attempt to wake up the nominated process and move it to the set of runnable
3284 * processes.
3285 *
3286 * Return: 1 if the process was woken up, 0 if it was already running.
3287 *
3288 * This function executes a full memory barrier before accessing the task state.
3289 */
wake_up_process(struct task_struct * p)3290 int wake_up_process(struct task_struct *p)
3291 {
3292 return try_to_wake_up(p, TASK_NORMAL, 0);
3293 }
3294 EXPORT_SYMBOL(wake_up_process);
3295
wake_up_state(struct task_struct * p,unsigned int state)3296 int wake_up_state(struct task_struct *p, unsigned int state)
3297 {
3298 return try_to_wake_up(p, state, 0);
3299 }
3300
3301 /*
3302 * Perform scheduler related setup for a newly forked process p.
3303 * p is forked by current.
3304 *
3305 * __sched_fork() is basic setup used by init_idle() too:
3306 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)3307 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3308 {
3309 p->on_rq = 0;
3310
3311 p->se.on_rq = 0;
3312 p->se.exec_start = 0;
3313 p->se.sum_exec_runtime = 0;
3314 p->se.prev_sum_exec_runtime = 0;
3315 p->se.nr_migrations = 0;
3316 p->se.vruntime = 0;
3317 INIT_LIST_HEAD(&p->se.group_node);
3318
3319 #ifdef CONFIG_FAIR_GROUP_SCHED
3320 p->se.cfs_rq = NULL;
3321 #endif
3322
3323 trace_android_rvh_sched_fork_init(p);
3324
3325 #ifdef CONFIG_SCHEDSTATS
3326 /* Even if schedstat is disabled, there should not be garbage */
3327 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3328 #endif
3329
3330 RB_CLEAR_NODE(&p->dl.rb_node);
3331 init_dl_task_timer(&p->dl);
3332 init_dl_inactive_task_timer(&p->dl);
3333 __dl_clear_params(p);
3334
3335 INIT_LIST_HEAD(&p->rt.run_list);
3336 p->rt.timeout = 0;
3337 p->rt.time_slice = sched_rr_timeslice;
3338 p->rt.on_rq = 0;
3339 p->rt.on_list = 0;
3340
3341 #ifdef CONFIG_PREEMPT_NOTIFIERS
3342 INIT_HLIST_HEAD(&p->preempt_notifiers);
3343 #endif
3344
3345 #ifdef CONFIG_COMPACTION
3346 p->capture_control = NULL;
3347 #endif
3348 init_numa_balancing(clone_flags, p);
3349 #ifdef CONFIG_SMP
3350 p->wake_entry.u_flags = CSD_TYPE_TTWU;
3351 #endif
3352 }
3353
3354 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3355
3356 #ifdef CONFIG_NUMA_BALANCING
3357
set_numabalancing_state(bool enabled)3358 void set_numabalancing_state(bool enabled)
3359 {
3360 if (enabled)
3361 static_branch_enable(&sched_numa_balancing);
3362 else
3363 static_branch_disable(&sched_numa_balancing);
3364 }
3365
3366 #ifdef CONFIG_PROC_SYSCTL
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3367 int sysctl_numa_balancing(struct ctl_table *table, int write,
3368 void *buffer, size_t *lenp, loff_t *ppos)
3369 {
3370 struct ctl_table t;
3371 int err;
3372 int state = static_branch_likely(&sched_numa_balancing);
3373
3374 if (write && !capable(CAP_SYS_ADMIN))
3375 return -EPERM;
3376
3377 t = *table;
3378 t.data = &state;
3379 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3380 if (err < 0)
3381 return err;
3382 if (write)
3383 set_numabalancing_state(state);
3384 return err;
3385 }
3386 #endif
3387 #endif
3388
3389 #ifdef CONFIG_SCHEDSTATS
3390
3391 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3392 static bool __initdata __sched_schedstats = false;
3393
set_schedstats(bool enabled)3394 static void set_schedstats(bool enabled)
3395 {
3396 if (enabled)
3397 static_branch_enable(&sched_schedstats);
3398 else
3399 static_branch_disable(&sched_schedstats);
3400 }
3401
force_schedstat_enabled(void)3402 void force_schedstat_enabled(void)
3403 {
3404 if (!schedstat_enabled()) {
3405 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3406 static_branch_enable(&sched_schedstats);
3407 }
3408 }
3409
setup_schedstats(char * str)3410 static int __init setup_schedstats(char *str)
3411 {
3412 int ret = 0;
3413 if (!str)
3414 goto out;
3415
3416 /*
3417 * This code is called before jump labels have been set up, so we can't
3418 * change the static branch directly just yet. Instead set a temporary
3419 * variable so init_schedstats() can do it later.
3420 */
3421 if (!strcmp(str, "enable")) {
3422 __sched_schedstats = true;
3423 ret = 1;
3424 } else if (!strcmp(str, "disable")) {
3425 __sched_schedstats = false;
3426 ret = 1;
3427 }
3428 out:
3429 if (!ret)
3430 pr_warn("Unable to parse schedstats=\n");
3431
3432 return ret;
3433 }
3434 __setup("schedstats=", setup_schedstats);
3435
init_schedstats(void)3436 static void __init init_schedstats(void)
3437 {
3438 set_schedstats(__sched_schedstats);
3439 }
3440
3441 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3442 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3443 size_t *lenp, loff_t *ppos)
3444 {
3445 struct ctl_table t;
3446 int err;
3447 int state = static_branch_likely(&sched_schedstats);
3448
3449 if (write && !capable(CAP_SYS_ADMIN))
3450 return -EPERM;
3451
3452 t = *table;
3453 t.data = &state;
3454 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3455 if (err < 0)
3456 return err;
3457 if (write)
3458 set_schedstats(state);
3459 return err;
3460 }
3461 #endif /* CONFIG_PROC_SYSCTL */
3462 #else /* !CONFIG_SCHEDSTATS */
init_schedstats(void)3463 static inline void init_schedstats(void) {}
3464 #endif /* CONFIG_SCHEDSTATS */
3465
3466 /*
3467 * fork()/clone()-time setup:
3468 */
sched_fork(unsigned long clone_flags,struct task_struct * p)3469 int sched_fork(unsigned long clone_flags, struct task_struct *p)
3470 {
3471 trace_android_rvh_sched_fork(p);
3472
3473 __sched_fork(clone_flags, p);
3474 /*
3475 * We mark the process as NEW here. This guarantees that
3476 * nobody will actually run it, and a signal or other external
3477 * event cannot wake it up and insert it on the runqueue either.
3478 */
3479 p->state = TASK_NEW;
3480
3481 /*
3482 * Make sure we do not leak PI boosting priority to the child.
3483 */
3484 p->prio = current->normal_prio;
3485 trace_android_rvh_prepare_prio_fork(p);
3486
3487 uclamp_fork(p);
3488
3489 /*
3490 * Revert to default priority/policy on fork if requested.
3491 */
3492 if (unlikely(p->sched_reset_on_fork)) {
3493 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3494 p->policy = SCHED_NORMAL;
3495 p->static_prio = NICE_TO_PRIO(0);
3496 p->rt_priority = 0;
3497 } else if (PRIO_TO_NICE(p->static_prio) < 0)
3498 p->static_prio = NICE_TO_PRIO(0);
3499
3500 p->prio = p->normal_prio = p->static_prio;
3501 set_load_weight(p);
3502
3503 /*
3504 * We don't need the reset flag anymore after the fork. It has
3505 * fulfilled its duty:
3506 */
3507 p->sched_reset_on_fork = 0;
3508 }
3509
3510 if (dl_prio(p->prio))
3511 return -EAGAIN;
3512 else if (rt_prio(p->prio))
3513 p->sched_class = &rt_sched_class;
3514 else
3515 p->sched_class = &fair_sched_class;
3516
3517 init_entity_runnable_average(&p->se);
3518 trace_android_rvh_finish_prio_fork(p);
3519
3520
3521 #ifdef CONFIG_SCHED_INFO
3522 if (likely(sched_info_on()))
3523 memset(&p->sched_info, 0, sizeof(p->sched_info));
3524 #endif
3525 #if defined(CONFIG_SMP)
3526 p->on_cpu = 0;
3527 #endif
3528 init_task_preempt_count(p);
3529 #ifdef CONFIG_SMP
3530 plist_node_init(&p->pushable_tasks, MAX_PRIO);
3531 RB_CLEAR_NODE(&p->pushable_dl_tasks);
3532 #endif
3533 return 0;
3534 }
3535
sched_cgroup_fork(struct task_struct * p,struct kernel_clone_args * kargs)3536 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
3537 {
3538 unsigned long flags;
3539
3540 /*
3541 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
3542 * required yet, but lockdep gets upset if rules are violated.
3543 */
3544 raw_spin_lock_irqsave(&p->pi_lock, flags);
3545 #ifdef CONFIG_CGROUP_SCHED
3546 if (1) {
3547 struct task_group *tg;
3548
3549 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
3550 struct task_group, css);
3551 tg = autogroup_task_group(p, tg);
3552 p->sched_task_group = tg;
3553 }
3554 #endif
3555 rseq_migrate(p);
3556 /*
3557 * We're setting the CPU for the first time, we don't migrate,
3558 * so use __set_task_cpu().
3559 */
3560 __set_task_cpu(p, smp_processor_id());
3561 if (p->sched_class->task_fork)
3562 p->sched_class->task_fork(p);
3563 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3564 }
3565
sched_post_fork(struct task_struct * p)3566 void sched_post_fork(struct task_struct *p)
3567 {
3568 uclamp_post_fork(p);
3569 }
3570
to_ratio(u64 period,u64 runtime)3571 unsigned long to_ratio(u64 period, u64 runtime)
3572 {
3573 if (runtime == RUNTIME_INF)
3574 return BW_UNIT;
3575
3576 /*
3577 * Doing this here saves a lot of checks in all
3578 * the calling paths, and returning zero seems
3579 * safe for them anyway.
3580 */
3581 if (period == 0)
3582 return 0;
3583
3584 return div64_u64(runtime << BW_SHIFT, period);
3585 }
3586
3587 /*
3588 * wake_up_new_task - wake up a newly created task for the first time.
3589 *
3590 * This function will do some initial scheduler statistics housekeeping
3591 * that must be done for every newly created context, then puts the task
3592 * on the runqueue and wakes it.
3593 */
wake_up_new_task(struct task_struct * p)3594 void wake_up_new_task(struct task_struct *p)
3595 {
3596 struct rq_flags rf;
3597 struct rq *rq;
3598
3599 trace_android_rvh_wake_up_new_task(p);
3600
3601 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3602 p->state = TASK_RUNNING;
3603 #ifdef CONFIG_SMP
3604 /*
3605 * Fork balancing, do it here and not earlier because:
3606 * - cpus_ptr can change in the fork path
3607 * - any previously selected CPU might disappear through hotplug
3608 *
3609 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3610 * as we're not fully set-up yet.
3611 */
3612 p->recent_used_cpu = task_cpu(p);
3613 rseq_migrate(p);
3614 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3615 #endif
3616 rq = __task_rq_lock(p, &rf);
3617 update_rq_clock(rq);
3618 post_init_entity_util_avg(p);
3619 trace_android_rvh_new_task_stats(p);
3620
3621 activate_task(rq, p, ENQUEUE_NOCLOCK);
3622 trace_sched_wakeup_new(p);
3623 check_preempt_curr(rq, p, WF_FORK);
3624 #ifdef CONFIG_SMP
3625 if (p->sched_class->task_woken) {
3626 /*
3627 * Nothing relies on rq->lock after this, so its fine to
3628 * drop it.
3629 */
3630 rq_unpin_lock(rq, &rf);
3631 p->sched_class->task_woken(rq, p);
3632 rq_repin_lock(rq, &rf);
3633 }
3634 #endif
3635 task_rq_unlock(rq, p, &rf);
3636 }
3637
3638 #ifdef CONFIG_PREEMPT_NOTIFIERS
3639
3640 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3641
preempt_notifier_inc(void)3642 void preempt_notifier_inc(void)
3643 {
3644 static_branch_inc(&preempt_notifier_key);
3645 }
3646 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3647
preempt_notifier_dec(void)3648 void preempt_notifier_dec(void)
3649 {
3650 static_branch_dec(&preempt_notifier_key);
3651 }
3652 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3653
3654 /**
3655 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3656 * @notifier: notifier struct to register
3657 */
preempt_notifier_register(struct preempt_notifier * notifier)3658 void preempt_notifier_register(struct preempt_notifier *notifier)
3659 {
3660 if (!static_branch_unlikely(&preempt_notifier_key))
3661 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3662
3663 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
3664 }
3665 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3666
3667 /**
3668 * preempt_notifier_unregister - no longer interested in preemption notifications
3669 * @notifier: notifier struct to unregister
3670 *
3671 * This is *not* safe to call from within a preemption notifier.
3672 */
preempt_notifier_unregister(struct preempt_notifier * notifier)3673 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3674 {
3675 hlist_del(¬ifier->link);
3676 }
3677 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3678
__fire_sched_in_preempt_notifiers(struct task_struct * curr)3679 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3680 {
3681 struct preempt_notifier *notifier;
3682
3683 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3684 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3685 }
3686
fire_sched_in_preempt_notifiers(struct task_struct * curr)3687 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3688 {
3689 if (static_branch_unlikely(&preempt_notifier_key))
3690 __fire_sched_in_preempt_notifiers(curr);
3691 }
3692
3693 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3694 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3695 struct task_struct *next)
3696 {
3697 struct preempt_notifier *notifier;
3698
3699 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3700 notifier->ops->sched_out(notifier, next);
3701 }
3702
3703 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3704 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3705 struct task_struct *next)
3706 {
3707 if (static_branch_unlikely(&preempt_notifier_key))
3708 __fire_sched_out_preempt_notifiers(curr, next);
3709 }
3710
3711 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3712
fire_sched_in_preempt_notifiers(struct task_struct * curr)3713 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3714 {
3715 }
3716
3717 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3718 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3719 struct task_struct *next)
3720 {
3721 }
3722
3723 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3724
prepare_task(struct task_struct * next)3725 static inline void prepare_task(struct task_struct *next)
3726 {
3727 #ifdef CONFIG_SMP
3728 /*
3729 * Claim the task as running, we do this before switching to it
3730 * such that any running task will have this set.
3731 *
3732 * See the ttwu() WF_ON_CPU case and its ordering comment.
3733 */
3734 WRITE_ONCE(next->on_cpu, 1);
3735 #endif
3736 }
3737
finish_task(struct task_struct * prev)3738 static inline void finish_task(struct task_struct *prev)
3739 {
3740 #ifdef CONFIG_SMP
3741 /*
3742 * This must be the very last reference to @prev from this CPU. After
3743 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3744 * must ensure this doesn't happen until the switch is completely
3745 * finished.
3746 *
3747 * In particular, the load of prev->state in finish_task_switch() must
3748 * happen before this.
3749 *
3750 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3751 */
3752 smp_store_release(&prev->on_cpu, 0);
3753 #endif
3754 }
3755
3756 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)3757 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3758 {
3759 /*
3760 * Since the runqueue lock will be released by the next
3761 * task (which is an invalid locking op but in the case
3762 * of the scheduler it's an obvious special-case), so we
3763 * do an early lockdep release here:
3764 */
3765 rq_unpin_lock(rq, rf);
3766 spin_release(&rq->lock.dep_map, _THIS_IP_);
3767 #ifdef CONFIG_DEBUG_SPINLOCK
3768 /* this is a valid case when another task releases the spinlock */
3769 rq->lock.owner = next;
3770 #endif
3771 }
3772
finish_lock_switch(struct rq * rq)3773 static inline void finish_lock_switch(struct rq *rq)
3774 {
3775 /*
3776 * If we are tracking spinlock dependencies then we have to
3777 * fix up the runqueue lock - which gets 'carried over' from
3778 * prev into current:
3779 */
3780 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3781 raw_spin_unlock_irq(&rq->lock);
3782 }
3783
3784 /*
3785 * NOP if the arch has not defined these:
3786 */
3787
3788 #ifndef prepare_arch_switch
3789 # define prepare_arch_switch(next) do { } while (0)
3790 #endif
3791
3792 #ifndef finish_arch_post_lock_switch
3793 # define finish_arch_post_lock_switch() do { } while (0)
3794 #endif
3795
3796 /**
3797 * prepare_task_switch - prepare to switch tasks
3798 * @rq: the runqueue preparing to switch
3799 * @prev: the current task that is being switched out
3800 * @next: the task we are going to switch to.
3801 *
3802 * This is called with the rq lock held and interrupts off. It must
3803 * be paired with a subsequent finish_task_switch after the context
3804 * switch.
3805 *
3806 * prepare_task_switch sets up locking and calls architecture specific
3807 * hooks.
3808 */
3809 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)3810 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3811 struct task_struct *next)
3812 {
3813 kcov_prepare_switch(prev);
3814 sched_info_switch(rq, prev, next);
3815 perf_event_task_sched_out(prev, next);
3816 rseq_preempt(prev);
3817 fire_sched_out_preempt_notifiers(prev, next);
3818 prepare_task(next);
3819 prepare_arch_switch(next);
3820 }
3821
3822 /**
3823 * finish_task_switch - clean up after a task-switch
3824 * @prev: the thread we just switched away from.
3825 *
3826 * finish_task_switch must be called after the context switch, paired
3827 * with a prepare_task_switch call before the context switch.
3828 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3829 * and do any other architecture-specific cleanup actions.
3830 *
3831 * Note that we may have delayed dropping an mm in context_switch(). If
3832 * so, we finish that here outside of the runqueue lock. (Doing it
3833 * with the lock held can cause deadlocks; see schedule() for
3834 * details.)
3835 *
3836 * The context switch have flipped the stack from under us and restored the
3837 * local variables which were saved when this task called schedule() in the
3838 * past. prev == current is still correct but we need to recalculate this_rq
3839 * because prev may have moved to another CPU.
3840 */
finish_task_switch(struct task_struct * prev)3841 static struct rq *finish_task_switch(struct task_struct *prev)
3842 __releases(rq->lock)
3843 {
3844 struct rq *rq = this_rq();
3845 struct mm_struct *mm = rq->prev_mm;
3846 long prev_state;
3847
3848 /*
3849 * The previous task will have left us with a preempt_count of 2
3850 * because it left us after:
3851 *
3852 * schedule()
3853 * preempt_disable(); // 1
3854 * __schedule()
3855 * raw_spin_lock_irq(&rq->lock) // 2
3856 *
3857 * Also, see FORK_PREEMPT_COUNT.
3858 */
3859 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3860 "corrupted preempt_count: %s/%d/0x%x\n",
3861 current->comm, current->pid, preempt_count()))
3862 preempt_count_set(FORK_PREEMPT_COUNT);
3863
3864 rq->prev_mm = NULL;
3865
3866 /*
3867 * A task struct has one reference for the use as "current".
3868 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3869 * schedule one last time. The schedule call will never return, and
3870 * the scheduled task must drop that reference.
3871 *
3872 * We must observe prev->state before clearing prev->on_cpu (in
3873 * finish_task), otherwise a concurrent wakeup can get prev
3874 * running on another CPU and we could rave with its RUNNING -> DEAD
3875 * transition, resulting in a double drop.
3876 */
3877 prev_state = prev->state;
3878 vtime_task_switch(prev);
3879 perf_event_task_sched_in(prev, current);
3880 finish_task(prev);
3881 finish_lock_switch(rq);
3882 finish_arch_post_lock_switch();
3883 kcov_finish_switch(current);
3884
3885 fire_sched_in_preempt_notifiers(current);
3886 /*
3887 * When switching through a kernel thread, the loop in
3888 * membarrier_{private,global}_expedited() may have observed that
3889 * kernel thread and not issued an IPI. It is therefore possible to
3890 * schedule between user->kernel->user threads without passing though
3891 * switch_mm(). Membarrier requires a barrier after storing to
3892 * rq->curr, before returning to userspace, so provide them here:
3893 *
3894 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3895 * provided by mmdrop(),
3896 * - a sync_core for SYNC_CORE.
3897 */
3898 if (mm) {
3899 membarrier_mm_sync_core_before_usermode(mm);
3900 mmdrop(mm);
3901 }
3902 if (unlikely(prev_state == TASK_DEAD)) {
3903 if (prev->sched_class->task_dead)
3904 prev->sched_class->task_dead(prev);
3905
3906 /*
3907 * Remove function-return probe instances associated with this
3908 * task and put them back on the free list.
3909 */
3910 kprobe_flush_task(prev);
3911 trace_android_rvh_flush_task(prev);
3912
3913 /* Task is done with its stack. */
3914 put_task_stack(prev);
3915
3916 put_task_struct_rcu_user(prev);
3917 }
3918
3919 tick_nohz_task_switch();
3920 return rq;
3921 }
3922
3923 #ifdef CONFIG_SMP
3924
3925 /* rq->lock is NOT held, but preemption is disabled */
__balance_callback(struct rq * rq)3926 static void __balance_callback(struct rq *rq)
3927 {
3928 struct callback_head *head, *next;
3929 void (*func)(struct rq *rq);
3930 unsigned long flags;
3931
3932 raw_spin_lock_irqsave(&rq->lock, flags);
3933 head = rq->balance_callback;
3934 rq->balance_callback = NULL;
3935 while (head) {
3936 func = (void (*)(struct rq *))head->func;
3937 next = head->next;
3938 head->next = NULL;
3939 head = next;
3940
3941 func(rq);
3942 }
3943 raw_spin_unlock_irqrestore(&rq->lock, flags);
3944 }
3945
balance_callback(struct rq * rq)3946 static inline void balance_callback(struct rq *rq)
3947 {
3948 if (unlikely(rq->balance_callback))
3949 __balance_callback(rq);
3950 }
3951
3952 #else
3953
balance_callback(struct rq * rq)3954 static inline void balance_callback(struct rq *rq)
3955 {
3956 }
3957
3958 #endif
3959
3960 /**
3961 * schedule_tail - first thing a freshly forked thread must call.
3962 * @prev: the thread we just switched away from.
3963 */
schedule_tail(struct task_struct * prev)3964 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3965 __releases(rq->lock)
3966 {
3967 struct rq *rq;
3968
3969 /*
3970 * New tasks start with FORK_PREEMPT_COUNT, see there and
3971 * finish_task_switch() for details.
3972 *
3973 * finish_task_switch() will drop rq->lock() and lower preempt_count
3974 * and the preempt_enable() will end up enabling preemption (on
3975 * PREEMPT_COUNT kernels).
3976 */
3977
3978 rq = finish_task_switch(prev);
3979 balance_callback(rq);
3980 preempt_enable();
3981
3982 if (current->set_child_tid)
3983 put_user(task_pid_vnr(current), current->set_child_tid);
3984
3985 calculate_sigpending();
3986 }
3987
3988 /*
3989 * context_switch - switch to the new MM and the new thread's register state.
3990 */
3991 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)3992 context_switch(struct rq *rq, struct task_struct *prev,
3993 struct task_struct *next, struct rq_flags *rf)
3994 {
3995 prepare_task_switch(rq, prev, next);
3996
3997 /*
3998 * For paravirt, this is coupled with an exit in switch_to to
3999 * combine the page table reload and the switch backend into
4000 * one hypercall.
4001 */
4002 arch_start_context_switch(prev);
4003
4004 /*
4005 * kernel -> kernel lazy + transfer active
4006 * user -> kernel lazy + mmgrab() active
4007 *
4008 * kernel -> user switch + mmdrop() active
4009 * user -> user switch
4010 */
4011 if (!next->mm) { // to kernel
4012 enter_lazy_tlb(prev->active_mm, next);
4013
4014 next->active_mm = prev->active_mm;
4015 if (prev->mm) // from user
4016 mmgrab(prev->active_mm);
4017 else
4018 prev->active_mm = NULL;
4019 } else { // to user
4020 membarrier_switch_mm(rq, prev->active_mm, next->mm);
4021 /*
4022 * sys_membarrier() requires an smp_mb() between setting
4023 * rq->curr / membarrier_switch_mm() and returning to userspace.
4024 *
4025 * The below provides this either through switch_mm(), or in
4026 * case 'prev->active_mm == next->mm' through
4027 * finish_task_switch()'s mmdrop().
4028 */
4029 switch_mm_irqs_off(prev->active_mm, next->mm, next);
4030
4031 if (!prev->mm) { // from kernel
4032 /* will mmdrop() in finish_task_switch(). */
4033 rq->prev_mm = prev->active_mm;
4034 prev->active_mm = NULL;
4035 }
4036 }
4037
4038 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4039
4040 prepare_lock_switch(rq, next, rf);
4041
4042 /* Here we just switch the register state and the stack. */
4043 switch_to(prev, next, prev);
4044 barrier();
4045
4046 return finish_task_switch(prev);
4047 }
4048
4049 /*
4050 * nr_running and nr_context_switches:
4051 *
4052 * externally visible scheduler statistics: current number of runnable
4053 * threads, total number of context switches performed since bootup.
4054 */
nr_running(void)4055 unsigned long nr_running(void)
4056 {
4057 unsigned long i, sum = 0;
4058
4059 for_each_online_cpu(i)
4060 sum += cpu_rq(i)->nr_running;
4061
4062 return sum;
4063 }
4064
4065 /*
4066 * Check if only the current task is running on the CPU.
4067 *
4068 * Caution: this function does not check that the caller has disabled
4069 * preemption, thus the result might have a time-of-check-to-time-of-use
4070 * race. The caller is responsible to use it correctly, for example:
4071 *
4072 * - from a non-preemptible section (of course)
4073 *
4074 * - from a thread that is bound to a single CPU
4075 *
4076 * - in a loop with very short iterations (e.g. a polling loop)
4077 */
single_task_running(void)4078 bool single_task_running(void)
4079 {
4080 return raw_rq()->nr_running == 1;
4081 }
4082 EXPORT_SYMBOL(single_task_running);
4083
nr_context_switches(void)4084 unsigned long long nr_context_switches(void)
4085 {
4086 int i;
4087 unsigned long long sum = 0;
4088
4089 for_each_possible_cpu(i)
4090 sum += cpu_rq(i)->nr_switches;
4091
4092 return sum;
4093 }
4094
4095 /*
4096 * Consumers of these two interfaces, like for example the cpuidle menu
4097 * governor, are using nonsensical data. Preferring shallow idle state selection
4098 * for a CPU that has IO-wait which might not even end up running the task when
4099 * it does become runnable.
4100 */
4101
nr_iowait_cpu(int cpu)4102 unsigned long nr_iowait_cpu(int cpu)
4103 {
4104 return atomic_read(&cpu_rq(cpu)->nr_iowait);
4105 }
4106
4107 /*
4108 * IO-wait accounting, and how its mostly bollocks (on SMP).
4109 *
4110 * The idea behind IO-wait account is to account the idle time that we could
4111 * have spend running if it were not for IO. That is, if we were to improve the
4112 * storage performance, we'd have a proportional reduction in IO-wait time.
4113 *
4114 * This all works nicely on UP, where, when a task blocks on IO, we account
4115 * idle time as IO-wait, because if the storage were faster, it could've been
4116 * running and we'd not be idle.
4117 *
4118 * This has been extended to SMP, by doing the same for each CPU. This however
4119 * is broken.
4120 *
4121 * Imagine for instance the case where two tasks block on one CPU, only the one
4122 * CPU will have IO-wait accounted, while the other has regular idle. Even
4123 * though, if the storage were faster, both could've ran at the same time,
4124 * utilising both CPUs.
4125 *
4126 * This means, that when looking globally, the current IO-wait accounting on
4127 * SMP is a lower bound, by reason of under accounting.
4128 *
4129 * Worse, since the numbers are provided per CPU, they are sometimes
4130 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4131 * associated with any one particular CPU, it can wake to another CPU than it
4132 * blocked on. This means the per CPU IO-wait number is meaningless.
4133 *
4134 * Task CPU affinities can make all that even more 'interesting'.
4135 */
4136
nr_iowait(void)4137 unsigned long nr_iowait(void)
4138 {
4139 unsigned long i, sum = 0;
4140
4141 for_each_possible_cpu(i)
4142 sum += nr_iowait_cpu(i);
4143
4144 return sum;
4145 }
4146
4147 #ifdef CONFIG_SMP
4148
4149 /*
4150 * sched_exec - execve() is a valuable balancing opportunity, because at
4151 * this point the task has the smallest effective memory and cache footprint.
4152 */
sched_exec(void)4153 void sched_exec(void)
4154 {
4155 struct task_struct *p = current;
4156 unsigned long flags;
4157 int dest_cpu;
4158 bool cond = false;
4159
4160 trace_android_rvh_sched_exec(&cond);
4161 if (cond)
4162 return;
4163
4164 raw_spin_lock_irqsave(&p->pi_lock, flags);
4165 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
4166 if (dest_cpu == smp_processor_id())
4167 goto unlock;
4168
4169 if (likely(cpu_active(dest_cpu))) {
4170 struct migration_arg arg = { p, dest_cpu };
4171
4172 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4173 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4174 return;
4175 }
4176 unlock:
4177 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4178 }
4179
4180 #endif
4181
4182 DEFINE_PER_CPU(struct kernel_stat, kstat);
4183 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4184
4185 EXPORT_PER_CPU_SYMBOL(kstat);
4186 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4187
4188 /*
4189 * The function fair_sched_class.update_curr accesses the struct curr
4190 * and its field curr->exec_start; when called from task_sched_runtime(),
4191 * we observe a high rate of cache misses in practice.
4192 * Prefetching this data results in improved performance.
4193 */
prefetch_curr_exec_start(struct task_struct * p)4194 static inline void prefetch_curr_exec_start(struct task_struct *p)
4195 {
4196 #ifdef CONFIG_FAIR_GROUP_SCHED
4197 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4198 #else
4199 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4200 #endif
4201 prefetch(curr);
4202 prefetch(&curr->exec_start);
4203 }
4204
4205 /*
4206 * Return accounted runtime for the task.
4207 * In case the task is currently running, return the runtime plus current's
4208 * pending runtime that have not been accounted yet.
4209 */
task_sched_runtime(struct task_struct * p)4210 unsigned long long task_sched_runtime(struct task_struct *p)
4211 {
4212 struct rq_flags rf;
4213 struct rq *rq;
4214 u64 ns;
4215
4216 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4217 /*
4218 * 64-bit doesn't need locks to atomically read a 64-bit value.
4219 * So we have a optimization chance when the task's delta_exec is 0.
4220 * Reading ->on_cpu is racy, but this is ok.
4221 *
4222 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4223 * If we race with it entering CPU, unaccounted time is 0. This is
4224 * indistinguishable from the read occurring a few cycles earlier.
4225 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4226 * been accounted, so we're correct here as well.
4227 */
4228 if (!p->on_cpu || !task_on_rq_queued(p))
4229 return p->se.sum_exec_runtime;
4230 #endif
4231
4232 rq = task_rq_lock(p, &rf);
4233 /*
4234 * Must be ->curr _and_ ->on_rq. If dequeued, we would
4235 * project cycles that may never be accounted to this
4236 * thread, breaking clock_gettime().
4237 */
4238 if (task_current(rq, p) && task_on_rq_queued(p)) {
4239 prefetch_curr_exec_start(p);
4240 update_rq_clock(rq);
4241 p->sched_class->update_curr(rq);
4242 }
4243 ns = p->se.sum_exec_runtime;
4244 task_rq_unlock(rq, p, &rf);
4245
4246 return ns;
4247 }
4248 EXPORT_SYMBOL_GPL(task_sched_runtime);
4249
4250 /*
4251 * This function gets called by the timer code, with HZ frequency.
4252 * We call it with interrupts disabled.
4253 */
scheduler_tick(void)4254 void scheduler_tick(void)
4255 {
4256 int cpu = smp_processor_id();
4257 struct rq *rq = cpu_rq(cpu);
4258 struct task_struct *curr = rq->curr;
4259 struct rq_flags rf;
4260 unsigned long thermal_pressure;
4261
4262 arch_scale_freq_tick();
4263 sched_clock_tick();
4264
4265 rq_lock(rq, &rf);
4266
4267 trace_android_rvh_tick_entry(rq);
4268 update_rq_clock(rq);
4269 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4270 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4271 curr->sched_class->task_tick(rq, curr, 0);
4272 calc_global_load_tick(rq);
4273 psi_task_tick(rq);
4274
4275 rq_unlock(rq, &rf);
4276
4277 perf_event_task_tick();
4278
4279 #ifdef CONFIG_SMP
4280 rq->idle_balance = idle_cpu(cpu);
4281 trigger_load_balance(rq);
4282 #endif
4283
4284 trace_android_vh_scheduler_tick(rq);
4285 }
4286
4287 #ifdef CONFIG_NO_HZ_FULL
4288
4289 struct tick_work {
4290 int cpu;
4291 atomic_t state;
4292 struct delayed_work work;
4293 };
4294 /* Values for ->state, see diagram below. */
4295 #define TICK_SCHED_REMOTE_OFFLINE 0
4296 #define TICK_SCHED_REMOTE_OFFLINING 1
4297 #define TICK_SCHED_REMOTE_RUNNING 2
4298
4299 /*
4300 * State diagram for ->state:
4301 *
4302 *
4303 * TICK_SCHED_REMOTE_OFFLINE
4304 * | ^
4305 * | |
4306 * | | sched_tick_remote()
4307 * | |
4308 * | |
4309 * +--TICK_SCHED_REMOTE_OFFLINING
4310 * | ^
4311 * | |
4312 * sched_tick_start() | | sched_tick_stop()
4313 * | |
4314 * V |
4315 * TICK_SCHED_REMOTE_RUNNING
4316 *
4317 *
4318 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4319 * and sched_tick_start() are happy to leave the state in RUNNING.
4320 */
4321
4322 static struct tick_work __percpu *tick_work_cpu;
4323
sched_tick_remote(struct work_struct * work)4324 static void sched_tick_remote(struct work_struct *work)
4325 {
4326 struct delayed_work *dwork = to_delayed_work(work);
4327 struct tick_work *twork = container_of(dwork, struct tick_work, work);
4328 int cpu = twork->cpu;
4329 struct rq *rq = cpu_rq(cpu);
4330 struct task_struct *curr;
4331 struct rq_flags rf;
4332 u64 delta;
4333 int os;
4334
4335 /*
4336 * Handle the tick only if it appears the remote CPU is running in full
4337 * dynticks mode. The check is racy by nature, but missing a tick or
4338 * having one too much is no big deal because the scheduler tick updates
4339 * statistics and checks timeslices in a time-independent way, regardless
4340 * of when exactly it is running.
4341 */
4342 if (!tick_nohz_tick_stopped_cpu(cpu))
4343 goto out_requeue;
4344
4345 rq_lock_irq(rq, &rf);
4346 curr = rq->curr;
4347 if (cpu_is_offline(cpu))
4348 goto out_unlock;
4349
4350 update_rq_clock(rq);
4351
4352 if (!is_idle_task(curr)) {
4353 /*
4354 * Make sure the next tick runs within a reasonable
4355 * amount of time.
4356 */
4357 delta = rq_clock_task(rq) - curr->se.exec_start;
4358 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4359 }
4360 curr->sched_class->task_tick(rq, curr, 0);
4361
4362 calc_load_nohz_remote(rq);
4363 out_unlock:
4364 rq_unlock_irq(rq, &rf);
4365 out_requeue:
4366
4367 /*
4368 * Run the remote tick once per second (1Hz). This arbitrary
4369 * frequency is large enough to avoid overload but short enough
4370 * to keep scheduler internal stats reasonably up to date. But
4371 * first update state to reflect hotplug activity if required.
4372 */
4373 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4374 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4375 if (os == TICK_SCHED_REMOTE_RUNNING)
4376 queue_delayed_work(system_unbound_wq, dwork, HZ);
4377 }
4378
sched_tick_start(int cpu)4379 static void sched_tick_start(int cpu)
4380 {
4381 int os;
4382 struct tick_work *twork;
4383
4384 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4385 return;
4386
4387 WARN_ON_ONCE(!tick_work_cpu);
4388
4389 twork = per_cpu_ptr(tick_work_cpu, cpu);
4390 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4391 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4392 if (os == TICK_SCHED_REMOTE_OFFLINE) {
4393 twork->cpu = cpu;
4394 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4395 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4396 }
4397 }
4398
4399 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)4400 static void sched_tick_stop(int cpu)
4401 {
4402 struct tick_work *twork;
4403 int os;
4404
4405 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4406 return;
4407
4408 WARN_ON_ONCE(!tick_work_cpu);
4409
4410 twork = per_cpu_ptr(tick_work_cpu, cpu);
4411 /* There cannot be competing actions, but don't rely on stop-machine. */
4412 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4413 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4414 /* Don't cancel, as this would mess up the state machine. */
4415 }
4416 #endif /* CONFIG_HOTPLUG_CPU */
4417
sched_tick_offload_init(void)4418 int __init sched_tick_offload_init(void)
4419 {
4420 tick_work_cpu = alloc_percpu(struct tick_work);
4421 BUG_ON(!tick_work_cpu);
4422 return 0;
4423 }
4424
4425 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)4426 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)4427 static inline void sched_tick_stop(int cpu) { }
4428 #endif
4429
4430 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4431 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4432 /*
4433 * If the value passed in is equal to the current preempt count
4434 * then we just disabled preemption. Start timing the latency.
4435 */
preempt_latency_start(int val)4436 static inline void preempt_latency_start(int val)
4437 {
4438 if (preempt_count() == val) {
4439 unsigned long ip = get_lock_parent_ip();
4440 #ifdef CONFIG_DEBUG_PREEMPT
4441 current->preempt_disable_ip = ip;
4442 #endif
4443 trace_preempt_off(CALLER_ADDR0, ip);
4444 }
4445 }
4446
preempt_count_add(int val)4447 void preempt_count_add(int val)
4448 {
4449 #ifdef CONFIG_DEBUG_PREEMPT
4450 /*
4451 * Underflow?
4452 */
4453 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4454 return;
4455 #endif
4456 __preempt_count_add(val);
4457 #ifdef CONFIG_DEBUG_PREEMPT
4458 /*
4459 * Spinlock count overflowing soon?
4460 */
4461 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4462 PREEMPT_MASK - 10);
4463 #endif
4464 preempt_latency_start(val);
4465 }
4466 EXPORT_SYMBOL(preempt_count_add);
4467 NOKPROBE_SYMBOL(preempt_count_add);
4468
4469 /*
4470 * If the value passed in equals to the current preempt count
4471 * then we just enabled preemption. Stop timing the latency.
4472 */
preempt_latency_stop(int val)4473 static inline void preempt_latency_stop(int val)
4474 {
4475 if (preempt_count() == val)
4476 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4477 }
4478
preempt_count_sub(int val)4479 void preempt_count_sub(int val)
4480 {
4481 #ifdef CONFIG_DEBUG_PREEMPT
4482 /*
4483 * Underflow?
4484 */
4485 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4486 return;
4487 /*
4488 * Is the spinlock portion underflowing?
4489 */
4490 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4491 !(preempt_count() & PREEMPT_MASK)))
4492 return;
4493 #endif
4494
4495 preempt_latency_stop(val);
4496 __preempt_count_sub(val);
4497 }
4498 EXPORT_SYMBOL(preempt_count_sub);
4499 NOKPROBE_SYMBOL(preempt_count_sub);
4500
4501 #else
preempt_latency_start(int val)4502 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)4503 static inline void preempt_latency_stop(int val) { }
4504 #endif
4505
get_preempt_disable_ip(struct task_struct * p)4506 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4507 {
4508 #ifdef CONFIG_DEBUG_PREEMPT
4509 return p->preempt_disable_ip;
4510 #else
4511 return 0;
4512 #endif
4513 }
4514
4515 /*
4516 * Print scheduling while atomic bug:
4517 */
__schedule_bug(struct task_struct * prev)4518 static noinline void __schedule_bug(struct task_struct *prev)
4519 {
4520 /* Save this before calling printk(), since that will clobber it */
4521 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4522
4523 if (oops_in_progress)
4524 return;
4525
4526 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4527 prev->comm, prev->pid, preempt_count());
4528
4529 debug_show_held_locks(prev);
4530 print_modules();
4531 if (irqs_disabled())
4532 print_irqtrace_events(prev);
4533 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4534 && in_atomic_preempt_off()) {
4535 pr_err("Preemption disabled at:");
4536 print_ip_sym(KERN_ERR, preempt_disable_ip);
4537 }
4538 if (panic_on_warn)
4539 panic("scheduling while atomic\n");
4540
4541 trace_android_rvh_schedule_bug(prev);
4542
4543 dump_stack();
4544 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4545 }
4546
4547 /*
4548 * Various schedule()-time debugging checks and statistics:
4549 */
schedule_debug(struct task_struct * prev,bool preempt)4550 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4551 {
4552 #ifdef CONFIG_SCHED_STACK_END_CHECK
4553 if (task_stack_end_corrupted(prev))
4554 panic("corrupted stack end detected inside scheduler\n");
4555
4556 if (task_scs_end_corrupted(prev))
4557 panic("corrupted shadow stack detected inside scheduler\n");
4558 #endif
4559
4560 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4561 if (!preempt && prev->state && prev->non_block_count) {
4562 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4563 prev->comm, prev->pid, prev->non_block_count);
4564 dump_stack();
4565 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4566 }
4567 #endif
4568
4569 if (unlikely(in_atomic_preempt_off())) {
4570 __schedule_bug(prev);
4571 preempt_count_set(PREEMPT_DISABLED);
4572 }
4573 rcu_sleep_check();
4574
4575 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4576
4577 schedstat_inc(this_rq()->sched_count);
4578 }
4579
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)4580 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4581 struct rq_flags *rf)
4582 {
4583 #ifdef CONFIG_SMP
4584 const struct sched_class *class;
4585 /*
4586 * We must do the balancing pass before put_prev_task(), such
4587 * that when we release the rq->lock the task is in the same
4588 * state as before we took rq->lock.
4589 *
4590 * We can terminate the balance pass as soon as we know there is
4591 * a runnable task of @class priority or higher.
4592 */
4593 for_class_range(class, prev->sched_class, &idle_sched_class) {
4594 if (class->balance(rq, prev, rf))
4595 break;
4596 }
4597 #endif
4598
4599 put_prev_task(rq, prev);
4600 }
4601
4602 /*
4603 * Pick up the highest-prio task:
4604 */
4605 static inline struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)4606 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4607 {
4608 const struct sched_class *class;
4609 struct task_struct *p;
4610
4611 /*
4612 * Optimization: we know that if all tasks are in the fair class we can
4613 * call that function directly, but only if the @prev task wasn't of a
4614 * higher scheduling class, because otherwise those loose the
4615 * opportunity to pull in more work from other CPUs.
4616 */
4617 if (likely(prev->sched_class <= &fair_sched_class &&
4618 rq->nr_running == rq->cfs.h_nr_running)) {
4619
4620 p = pick_next_task_fair(rq, prev, rf);
4621 if (unlikely(p == RETRY_TASK))
4622 goto restart;
4623
4624 /* Assumes fair_sched_class->next == idle_sched_class */
4625 if (!p) {
4626 put_prev_task(rq, prev);
4627 p = pick_next_task_idle(rq);
4628 }
4629
4630 return p;
4631 }
4632
4633 restart:
4634 put_prev_task_balance(rq, prev, rf);
4635
4636 for_each_class(class) {
4637 p = class->pick_next_task(rq);
4638 if (p)
4639 return p;
4640 }
4641
4642 /* The idle class should always have a runnable task: */
4643 BUG();
4644 }
4645
4646 /*
4647 * __schedule() is the main scheduler function.
4648 *
4649 * The main means of driving the scheduler and thus entering this function are:
4650 *
4651 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4652 *
4653 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4654 * paths. For example, see arch/x86/entry_64.S.
4655 *
4656 * To drive preemption between tasks, the scheduler sets the flag in timer
4657 * interrupt handler scheduler_tick().
4658 *
4659 * 3. Wakeups don't really cause entry into schedule(). They add a
4660 * task to the run-queue and that's it.
4661 *
4662 * Now, if the new task added to the run-queue preempts the current
4663 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4664 * called on the nearest possible occasion:
4665 *
4666 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4667 *
4668 * - in syscall or exception context, at the next outmost
4669 * preempt_enable(). (this might be as soon as the wake_up()'s
4670 * spin_unlock()!)
4671 *
4672 * - in IRQ context, return from interrupt-handler to
4673 * preemptible context
4674 *
4675 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4676 * then at the next:
4677 *
4678 * - cond_resched() call
4679 * - explicit schedule() call
4680 * - return from syscall or exception to user-space
4681 * - return from interrupt-handler to user-space
4682 *
4683 * WARNING: must be called with preemption disabled!
4684 */
__schedule(bool preempt)4685 static void __sched notrace __schedule(bool preempt)
4686 {
4687 struct task_struct *prev, *next;
4688 unsigned long *switch_count;
4689 unsigned long prev_state;
4690 struct rq_flags rf;
4691 struct rq *rq;
4692 int cpu;
4693
4694 cpu = smp_processor_id();
4695 rq = cpu_rq(cpu);
4696 prev = rq->curr;
4697
4698 schedule_debug(prev, preempt);
4699
4700 if (sched_feat(HRTICK))
4701 hrtick_clear(rq);
4702
4703 local_irq_disable();
4704 rcu_note_context_switch(preempt);
4705
4706 /*
4707 * Make sure that signal_pending_state()->signal_pending() below
4708 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4709 * done by the caller to avoid the race with signal_wake_up():
4710 *
4711 * __set_current_state(@state) signal_wake_up()
4712 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
4713 * wake_up_state(p, state)
4714 * LOCK rq->lock LOCK p->pi_state
4715 * smp_mb__after_spinlock() smp_mb__after_spinlock()
4716 * if (signal_pending_state()) if (p->state & @state)
4717 *
4718 * Also, the membarrier system call requires a full memory barrier
4719 * after coming from user-space, before storing to rq->curr.
4720 */
4721 rq_lock(rq, &rf);
4722 smp_mb__after_spinlock();
4723
4724 /* Promote REQ to ACT */
4725 rq->clock_update_flags <<= 1;
4726 update_rq_clock(rq);
4727
4728 switch_count = &prev->nivcsw;
4729
4730 /*
4731 * We must load prev->state once (task_struct::state is volatile), such
4732 * that:
4733 *
4734 * - we form a control dependency vs deactivate_task() below.
4735 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
4736 */
4737 prev_state = prev->state;
4738 if (!preempt && prev_state) {
4739 if (signal_pending_state(prev_state, prev)) {
4740 prev->state = TASK_RUNNING;
4741 } else {
4742 prev->sched_contributes_to_load =
4743 (prev_state & TASK_UNINTERRUPTIBLE) &&
4744 !(prev_state & TASK_NOLOAD) &&
4745 !(prev->flags & PF_FROZEN);
4746
4747 if (prev->sched_contributes_to_load)
4748 rq->nr_uninterruptible++;
4749
4750 /*
4751 * __schedule() ttwu()
4752 * prev_state = prev->state; if (p->on_rq && ...)
4753 * if (prev_state) goto out;
4754 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
4755 * p->state = TASK_WAKING
4756 *
4757 * Where __schedule() and ttwu() have matching control dependencies.
4758 *
4759 * After this, schedule() must not care about p->state any more.
4760 */
4761 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4762
4763 if (prev->in_iowait) {
4764 atomic_inc(&rq->nr_iowait);
4765 delayacct_blkio_start();
4766 }
4767 }
4768 switch_count = &prev->nvcsw;
4769 }
4770
4771 next = pick_next_task(rq, prev, &rf);
4772 clear_tsk_need_resched(prev);
4773 clear_preempt_need_resched();
4774
4775 trace_android_rvh_schedule(prev, next, rq);
4776 if (likely(prev != next)) {
4777 rq->nr_switches++;
4778 /*
4779 * RCU users of rcu_dereference(rq->curr) may not see
4780 * changes to task_struct made by pick_next_task().
4781 */
4782 RCU_INIT_POINTER(rq->curr, next);
4783 /*
4784 * The membarrier system call requires each architecture
4785 * to have a full memory barrier after updating
4786 * rq->curr, before returning to user-space.
4787 *
4788 * Here are the schemes providing that barrier on the
4789 * various architectures:
4790 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4791 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4792 * - finish_lock_switch() for weakly-ordered
4793 * architectures where spin_unlock is a full barrier,
4794 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4795 * is a RELEASE barrier),
4796 */
4797 ++*switch_count;
4798
4799 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4800
4801 trace_sched_switch(preempt, prev, next);
4802
4803 /* Also unlocks the rq: */
4804 rq = context_switch(rq, prev, next, &rf);
4805 } else {
4806 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4807 rq_unlock_irq(rq, &rf);
4808 }
4809
4810 balance_callback(rq);
4811 }
4812
do_task_dead(void)4813 void __noreturn do_task_dead(void)
4814 {
4815 /* Causes final put_task_struct in finish_task_switch(): */
4816 set_special_state(TASK_DEAD);
4817
4818 /* Tell freezer to ignore us: */
4819 current->flags |= PF_NOFREEZE;
4820
4821 __schedule(false);
4822 BUG();
4823
4824 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4825 for (;;)
4826 cpu_relax();
4827 }
4828
sched_submit_work(struct task_struct * tsk)4829 static inline void sched_submit_work(struct task_struct *tsk)
4830 {
4831 unsigned int task_flags;
4832
4833 if (!tsk->state)
4834 return;
4835
4836 task_flags = tsk->flags;
4837 /*
4838 * If a worker went to sleep, notify and ask workqueue whether
4839 * it wants to wake up a task to maintain concurrency.
4840 * As this function is called inside the schedule() context,
4841 * we disable preemption to avoid it calling schedule() again
4842 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4843 * requires it.
4844 */
4845 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4846 preempt_disable();
4847 if (task_flags & PF_WQ_WORKER)
4848 wq_worker_sleeping(tsk);
4849 else
4850 io_wq_worker_sleeping(tsk);
4851 preempt_enable_no_resched();
4852 }
4853
4854 if (tsk_is_pi_blocked(tsk))
4855 return;
4856
4857 /*
4858 * If we are going to sleep and we have plugged IO queued,
4859 * make sure to submit it to avoid deadlocks.
4860 */
4861 if (blk_needs_flush_plug(tsk))
4862 blk_schedule_flush_plug(tsk);
4863 }
4864
sched_update_worker(struct task_struct * tsk)4865 static void sched_update_worker(struct task_struct *tsk)
4866 {
4867 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4868 if (tsk->flags & PF_WQ_WORKER)
4869 wq_worker_running(tsk);
4870 else
4871 io_wq_worker_running(tsk);
4872 }
4873 }
4874
schedule(void)4875 asmlinkage __visible void __sched schedule(void)
4876 {
4877 struct task_struct *tsk = current;
4878
4879 sched_submit_work(tsk);
4880 do {
4881 preempt_disable();
4882 __schedule(false);
4883 sched_preempt_enable_no_resched();
4884 } while (need_resched());
4885 sched_update_worker(tsk);
4886 }
4887 EXPORT_SYMBOL(schedule);
4888
4889 /*
4890 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4891 * state (have scheduled out non-voluntarily) by making sure that all
4892 * tasks have either left the run queue or have gone into user space.
4893 * As idle tasks do not do either, they must not ever be preempted
4894 * (schedule out non-voluntarily).
4895 *
4896 * schedule_idle() is similar to schedule_preempt_disable() except that it
4897 * never enables preemption because it does not call sched_submit_work().
4898 */
schedule_idle(void)4899 void __sched schedule_idle(void)
4900 {
4901 /*
4902 * As this skips calling sched_submit_work(), which the idle task does
4903 * regardless because that function is a nop when the task is in a
4904 * TASK_RUNNING state, make sure this isn't used someplace that the
4905 * current task can be in any other state. Note, idle is always in the
4906 * TASK_RUNNING state.
4907 */
4908 WARN_ON_ONCE(current->state);
4909 do {
4910 __schedule(false);
4911 } while (need_resched());
4912 }
4913
4914 #ifdef CONFIG_CONTEXT_TRACKING
schedule_user(void)4915 asmlinkage __visible void __sched schedule_user(void)
4916 {
4917 /*
4918 * If we come here after a random call to set_need_resched(),
4919 * or we have been woken up remotely but the IPI has not yet arrived,
4920 * we haven't yet exited the RCU idle mode. Do it here manually until
4921 * we find a better solution.
4922 *
4923 * NB: There are buggy callers of this function. Ideally we
4924 * should warn if prev_state != CONTEXT_USER, but that will trigger
4925 * too frequently to make sense yet.
4926 */
4927 enum ctx_state prev_state = exception_enter();
4928 schedule();
4929 exception_exit(prev_state);
4930 }
4931 #endif
4932
4933 /**
4934 * schedule_preempt_disabled - called with preemption disabled
4935 *
4936 * Returns with preemption disabled. Note: preempt_count must be 1
4937 */
schedule_preempt_disabled(void)4938 void __sched schedule_preempt_disabled(void)
4939 {
4940 sched_preempt_enable_no_resched();
4941 schedule();
4942 preempt_disable();
4943 }
4944
preempt_schedule_common(void)4945 static void __sched notrace preempt_schedule_common(void)
4946 {
4947 do {
4948 /*
4949 * Because the function tracer can trace preempt_count_sub()
4950 * and it also uses preempt_enable/disable_notrace(), if
4951 * NEED_RESCHED is set, the preempt_enable_notrace() called
4952 * by the function tracer will call this function again and
4953 * cause infinite recursion.
4954 *
4955 * Preemption must be disabled here before the function
4956 * tracer can trace. Break up preempt_disable() into two
4957 * calls. One to disable preemption without fear of being
4958 * traced. The other to still record the preemption latency,
4959 * which can also be traced by the function tracer.
4960 */
4961 preempt_disable_notrace();
4962 preempt_latency_start(1);
4963 __schedule(true);
4964 preempt_latency_stop(1);
4965 preempt_enable_no_resched_notrace();
4966
4967 /*
4968 * Check again in case we missed a preemption opportunity
4969 * between schedule and now.
4970 */
4971 } while (need_resched());
4972 }
4973
4974 #ifdef CONFIG_PREEMPTION
4975 /*
4976 * This is the entry point to schedule() from in-kernel preemption
4977 * off of preempt_enable.
4978 */
preempt_schedule(void)4979 asmlinkage __visible void __sched notrace preempt_schedule(void)
4980 {
4981 /*
4982 * If there is a non-zero preempt_count or interrupts are disabled,
4983 * we do not want to preempt the current task. Just return..
4984 */
4985 if (likely(!preemptible()))
4986 return;
4987
4988 preempt_schedule_common();
4989 }
4990 NOKPROBE_SYMBOL(preempt_schedule);
4991 EXPORT_SYMBOL(preempt_schedule);
4992
4993 /**
4994 * preempt_schedule_notrace - preempt_schedule called by tracing
4995 *
4996 * The tracing infrastructure uses preempt_enable_notrace to prevent
4997 * recursion and tracing preempt enabling caused by the tracing
4998 * infrastructure itself. But as tracing can happen in areas coming
4999 * from userspace or just about to enter userspace, a preempt enable
5000 * can occur before user_exit() is called. This will cause the scheduler
5001 * to be called when the system is still in usermode.
5002 *
5003 * To prevent this, the preempt_enable_notrace will use this function
5004 * instead of preempt_schedule() to exit user context if needed before
5005 * calling the scheduler.
5006 */
preempt_schedule_notrace(void)5007 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
5008 {
5009 enum ctx_state prev_ctx;
5010
5011 if (likely(!preemptible()))
5012 return;
5013
5014 do {
5015 /*
5016 * Because the function tracer can trace preempt_count_sub()
5017 * and it also uses preempt_enable/disable_notrace(), if
5018 * NEED_RESCHED is set, the preempt_enable_notrace() called
5019 * by the function tracer will call this function again and
5020 * cause infinite recursion.
5021 *
5022 * Preemption must be disabled here before the function
5023 * tracer can trace. Break up preempt_disable() into two
5024 * calls. One to disable preemption without fear of being
5025 * traced. The other to still record the preemption latency,
5026 * which can also be traced by the function tracer.
5027 */
5028 preempt_disable_notrace();
5029 preempt_latency_start(1);
5030 /*
5031 * Needs preempt disabled in case user_exit() is traced
5032 * and the tracer calls preempt_enable_notrace() causing
5033 * an infinite recursion.
5034 */
5035 prev_ctx = exception_enter();
5036 __schedule(true);
5037 exception_exit(prev_ctx);
5038
5039 preempt_latency_stop(1);
5040 preempt_enable_no_resched_notrace();
5041 } while (need_resched());
5042 }
5043 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
5044
5045 #endif /* CONFIG_PREEMPTION */
5046
5047 /*
5048 * This is the entry point to schedule() from kernel preemption
5049 * off of irq context.
5050 * Note, that this is called and return with irqs disabled. This will
5051 * protect us against recursive calling from irq.
5052 */
preempt_schedule_irq(void)5053 asmlinkage __visible void __sched preempt_schedule_irq(void)
5054 {
5055 enum ctx_state prev_state;
5056
5057 /* Catch callers which need to be fixed */
5058 BUG_ON(preempt_count() || !irqs_disabled());
5059
5060 prev_state = exception_enter();
5061
5062 do {
5063 preempt_disable();
5064 local_irq_enable();
5065 __schedule(true);
5066 local_irq_disable();
5067 sched_preempt_enable_no_resched();
5068 } while (need_resched());
5069
5070 exception_exit(prev_state);
5071 }
5072
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)5073 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
5074 void *key)
5075 {
5076 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC | WF_ANDROID_VENDOR));
5077 return try_to_wake_up(curr->private, mode, wake_flags);
5078 }
5079 EXPORT_SYMBOL(default_wake_function);
5080
__setscheduler_prio(struct task_struct * p,int prio)5081 static void __setscheduler_prio(struct task_struct *p, int prio)
5082 {
5083 if (dl_prio(prio))
5084 p->sched_class = &dl_sched_class;
5085 else if (rt_prio(prio))
5086 p->sched_class = &rt_sched_class;
5087 else
5088 p->sched_class = &fair_sched_class;
5089
5090 p->prio = prio;
5091 }
5092
5093 #ifdef CONFIG_RT_MUTEXES
5094
__rt_effective_prio(struct task_struct * pi_task,int prio)5095 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5096 {
5097 if (pi_task)
5098 prio = min(prio, pi_task->prio);
5099
5100 return prio;
5101 }
5102
rt_effective_prio(struct task_struct * p,int prio)5103 static inline int rt_effective_prio(struct task_struct *p, int prio)
5104 {
5105 struct task_struct *pi_task = rt_mutex_get_top_task(p);
5106
5107 return __rt_effective_prio(pi_task, prio);
5108 }
5109
5110 /*
5111 * rt_mutex_setprio - set the current priority of a task
5112 * @p: task to boost
5113 * @pi_task: donor task
5114 *
5115 * This function changes the 'effective' priority of a task. It does
5116 * not touch ->normal_prio like __setscheduler().
5117 *
5118 * Used by the rt_mutex code to implement priority inheritance
5119 * logic. Call site only calls if the priority of the task changed.
5120 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)5121 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
5122 {
5123 int prio, oldprio, queued, running, queue_flag =
5124 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5125 const struct sched_class *prev_class;
5126 struct rq_flags rf;
5127 struct rq *rq;
5128
5129 trace_android_rvh_rtmutex_prepare_setprio(p, pi_task);
5130 /* XXX used to be waiter->prio, not waiter->task->prio */
5131 prio = __rt_effective_prio(pi_task, p->normal_prio);
5132
5133 /*
5134 * If nothing changed; bail early.
5135 */
5136 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5137 return;
5138
5139 rq = __task_rq_lock(p, &rf);
5140 update_rq_clock(rq);
5141 /*
5142 * Set under pi_lock && rq->lock, such that the value can be used under
5143 * either lock.
5144 *
5145 * Note that there is loads of tricky to make this pointer cache work
5146 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5147 * ensure a task is de-boosted (pi_task is set to NULL) before the
5148 * task is allowed to run again (and can exit). This ensures the pointer
5149 * points to a blocked task -- which guaratees the task is present.
5150 */
5151 p->pi_top_task = pi_task;
5152
5153 /*
5154 * For FIFO/RR we only need to set prio, if that matches we're done.
5155 */
5156 if (prio == p->prio && !dl_prio(prio))
5157 goto out_unlock;
5158
5159 /*
5160 * Idle task boosting is a nono in general. There is one
5161 * exception, when PREEMPT_RT and NOHZ is active:
5162 *
5163 * The idle task calls get_next_timer_interrupt() and holds
5164 * the timer wheel base->lock on the CPU and another CPU wants
5165 * to access the timer (probably to cancel it). We can safely
5166 * ignore the boosting request, as the idle CPU runs this code
5167 * with interrupts disabled and will complete the lock
5168 * protected section without being interrupted. So there is no
5169 * real need to boost.
5170 */
5171 if (unlikely(p == rq->idle)) {
5172 WARN_ON(p != rq->curr);
5173 WARN_ON(p->pi_blocked_on);
5174 goto out_unlock;
5175 }
5176
5177 trace_sched_pi_setprio(p, pi_task);
5178 oldprio = p->prio;
5179
5180 if (oldprio == prio)
5181 queue_flag &= ~DEQUEUE_MOVE;
5182
5183 prev_class = p->sched_class;
5184 queued = task_on_rq_queued(p);
5185 running = task_current(rq, p);
5186 if (queued)
5187 dequeue_task(rq, p, queue_flag);
5188 if (running)
5189 put_prev_task(rq, p);
5190
5191 /*
5192 * Boosting condition are:
5193 * 1. -rt task is running and holds mutex A
5194 * --> -dl task blocks on mutex A
5195 *
5196 * 2. -dl task is running and holds mutex A
5197 * --> -dl task blocks on mutex A and could preempt the
5198 * running task
5199 */
5200 if (dl_prio(prio)) {
5201 if (!dl_prio(p->normal_prio) ||
5202 (pi_task && dl_prio(pi_task->prio) &&
5203 dl_entity_preempt(&pi_task->dl, &p->dl))) {
5204 p->dl.pi_se = pi_task->dl.pi_se;
5205 queue_flag |= ENQUEUE_REPLENISH;
5206 } else {
5207 p->dl.pi_se = &p->dl;
5208 }
5209 } else if (rt_prio(prio)) {
5210 if (dl_prio(oldprio))
5211 p->dl.pi_se = &p->dl;
5212 if (oldprio < prio)
5213 queue_flag |= ENQUEUE_HEAD;
5214 } else {
5215 if (dl_prio(oldprio))
5216 p->dl.pi_se = &p->dl;
5217 if (rt_prio(oldprio))
5218 p->rt.timeout = 0;
5219 }
5220
5221 __setscheduler_prio(p, prio);
5222
5223 if (queued)
5224 enqueue_task(rq, p, queue_flag);
5225 if (running)
5226 set_next_task(rq, p);
5227
5228 check_class_changed(rq, p, prev_class, oldprio);
5229 out_unlock:
5230 /* Avoid rq from going away on us: */
5231 preempt_disable();
5232 __task_rq_unlock(rq, &rf);
5233
5234 balance_callback(rq);
5235 preempt_enable();
5236 }
5237 #else
rt_effective_prio(struct task_struct * p,int prio)5238 static inline int rt_effective_prio(struct task_struct *p, int prio)
5239 {
5240 return prio;
5241 }
5242 #endif
5243
set_user_nice(struct task_struct * p,long nice)5244 void set_user_nice(struct task_struct *p, long nice)
5245 {
5246 bool queued, running, allowed = false;
5247 int old_prio;
5248 struct rq_flags rf;
5249 struct rq *rq;
5250
5251 trace_android_rvh_set_user_nice(p, &nice, &allowed);
5252 if ((task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) && !allowed)
5253 return;
5254 /*
5255 * We have to be careful, if called from sys_setpriority(),
5256 * the task might be in the middle of scheduling on another CPU.
5257 */
5258 rq = task_rq_lock(p, &rf);
5259 update_rq_clock(rq);
5260
5261 /*
5262 * The RT priorities are set via sched_setscheduler(), but we still
5263 * allow the 'normal' nice value to be set - but as expected
5264 * it wont have any effect on scheduling until the task is
5265 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
5266 */
5267 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
5268 p->static_prio = NICE_TO_PRIO(nice);
5269 goto out_unlock;
5270 }
5271 queued = task_on_rq_queued(p);
5272 running = task_current(rq, p);
5273 if (queued)
5274 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
5275 if (running)
5276 put_prev_task(rq, p);
5277
5278 p->static_prio = NICE_TO_PRIO(nice);
5279 set_load_weight(p);
5280 old_prio = p->prio;
5281 p->prio = effective_prio(p);
5282
5283 if (queued)
5284 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5285 if (running)
5286 set_next_task(rq, p);
5287
5288 /*
5289 * If the task increased its priority or is running and
5290 * lowered its priority, then reschedule its CPU:
5291 */
5292 p->sched_class->prio_changed(rq, p, old_prio);
5293
5294 out_unlock:
5295 task_rq_unlock(rq, p, &rf);
5296 }
5297 EXPORT_SYMBOL(set_user_nice);
5298
5299 /*
5300 * can_nice - check if a task can reduce its nice value
5301 * @p: task
5302 * @nice: nice value
5303 */
can_nice(const struct task_struct * p,const int nice)5304 int can_nice(const struct task_struct *p, const int nice)
5305 {
5306 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
5307 int nice_rlim = nice_to_rlimit(nice);
5308
5309 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5310 capable(CAP_SYS_NICE));
5311 }
5312
5313 #ifdef __ARCH_WANT_SYS_NICE
5314
5315 /*
5316 * sys_nice - change the priority of the current process.
5317 * @increment: priority increment
5318 *
5319 * sys_setpriority is a more generic, but much slower function that
5320 * does similar things.
5321 */
SYSCALL_DEFINE1(nice,int,increment)5322 SYSCALL_DEFINE1(nice, int, increment)
5323 {
5324 long nice, retval;
5325
5326 /*
5327 * Setpriority might change our priority at the same moment.
5328 * We don't have to worry. Conceptually one call occurs first
5329 * and we have a single winner.
5330 */
5331 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5332 nice = task_nice(current) + increment;
5333
5334 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5335 if (increment < 0 && !can_nice(current, nice))
5336 return -EPERM;
5337
5338 retval = security_task_setnice(current, nice);
5339 if (retval)
5340 return retval;
5341
5342 set_user_nice(current, nice);
5343 return 0;
5344 }
5345
5346 #endif
5347
5348 /**
5349 * task_prio - return the priority value of a given task.
5350 * @p: the task in question.
5351 *
5352 * Return: The priority value as seen by users in /proc.
5353 * RT tasks are offset by -200. Normal tasks are centered
5354 * around 0, value goes from -16 to +15.
5355 */
task_prio(const struct task_struct * p)5356 int task_prio(const struct task_struct *p)
5357 {
5358 return p->prio - MAX_RT_PRIO;
5359 }
5360
5361 /**
5362 * idle_cpu - is a given CPU idle currently?
5363 * @cpu: the processor in question.
5364 *
5365 * Return: 1 if the CPU is currently idle. 0 otherwise.
5366 */
idle_cpu(int cpu)5367 int idle_cpu(int cpu)
5368 {
5369 struct rq *rq = cpu_rq(cpu);
5370
5371 if (rq->curr != rq->idle)
5372 return 0;
5373
5374 if (rq->nr_running)
5375 return 0;
5376
5377 #ifdef CONFIG_SMP
5378 if (rq->ttwu_pending)
5379 return 0;
5380 #endif
5381
5382 return 1;
5383 }
5384
5385 /**
5386 * available_idle_cpu - is a given CPU idle for enqueuing work.
5387 * @cpu: the CPU in question.
5388 *
5389 * Return: 1 if the CPU is currently idle. 0 otherwise.
5390 */
available_idle_cpu(int cpu)5391 int available_idle_cpu(int cpu)
5392 {
5393 if (!idle_cpu(cpu))
5394 return 0;
5395
5396 if (vcpu_is_preempted(cpu))
5397 return 0;
5398
5399 return 1;
5400 }
5401 EXPORT_SYMBOL_GPL(available_idle_cpu);
5402
5403 /**
5404 * idle_task - return the idle task for a given CPU.
5405 * @cpu: the processor in question.
5406 *
5407 * Return: The idle task for the CPU @cpu.
5408 */
idle_task(int cpu)5409 struct task_struct *idle_task(int cpu)
5410 {
5411 return cpu_rq(cpu)->idle;
5412 }
5413
5414 /**
5415 * find_process_by_pid - find a process with a matching PID value.
5416 * @pid: the pid in question.
5417 *
5418 * The task of @pid, if found. %NULL otherwise.
5419 */
find_process_by_pid(pid_t pid)5420 static struct task_struct *find_process_by_pid(pid_t pid)
5421 {
5422 return pid ? find_task_by_vpid(pid) : current;
5423 }
5424
5425 /*
5426 * sched_setparam() passes in -1 for its policy, to let the functions
5427 * it calls know not to change it.
5428 */
5429 #define SETPARAM_POLICY -1
5430
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)5431 static void __setscheduler_params(struct task_struct *p,
5432 const struct sched_attr *attr)
5433 {
5434 int policy = attr->sched_policy;
5435
5436 if (policy == SETPARAM_POLICY)
5437 policy = p->policy;
5438
5439 p->policy = policy;
5440
5441 if (dl_policy(policy))
5442 __setparam_dl(p, attr);
5443 else if (fair_policy(policy))
5444 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5445
5446 /*
5447 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5448 * !rt_policy. Always setting this ensures that things like
5449 * getparam()/getattr() don't report silly values for !rt tasks.
5450 */
5451 p->rt_priority = attr->sched_priority;
5452 p->normal_prio = normal_prio(p);
5453 set_load_weight(p);
5454 }
5455
5456 /*
5457 * Check the target process has a UID that matches the current process's:
5458 */
check_same_owner(struct task_struct * p)5459 static bool check_same_owner(struct task_struct *p)
5460 {
5461 const struct cred *cred = current_cred(), *pcred;
5462 bool match;
5463
5464 rcu_read_lock();
5465 pcred = __task_cred(p);
5466 match = (uid_eq(cred->euid, pcred->euid) ||
5467 uid_eq(cred->euid, pcred->uid));
5468 rcu_read_unlock();
5469 return match;
5470 }
5471
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)5472 static int __sched_setscheduler(struct task_struct *p,
5473 const struct sched_attr *attr,
5474 bool user, bool pi)
5475 {
5476 int oldpolicy = -1, policy = attr->sched_policy;
5477 int retval, oldprio, newprio, queued, running;
5478 const struct sched_class *prev_class;
5479 struct rq_flags rf;
5480 int reset_on_fork;
5481 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5482 struct rq *rq;
5483
5484 /* The pi code expects interrupts enabled */
5485 BUG_ON(pi && in_interrupt());
5486 recheck:
5487 /* Double check policy once rq lock held: */
5488 if (policy < 0) {
5489 reset_on_fork = p->sched_reset_on_fork;
5490 policy = oldpolicy = p->policy;
5491 } else {
5492 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5493
5494 if (!valid_policy(policy))
5495 return -EINVAL;
5496 }
5497
5498 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5499 return -EINVAL;
5500
5501 /*
5502 * Valid priorities for SCHED_FIFO and SCHED_RR are
5503 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5504 * SCHED_BATCH and SCHED_IDLE is 0.
5505 */
5506 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5507 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5508 return -EINVAL;
5509 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5510 (rt_policy(policy) != (attr->sched_priority != 0)))
5511 return -EINVAL;
5512
5513 /*
5514 * Allow unprivileged RT tasks to decrease priority:
5515 */
5516 if (user && !capable(CAP_SYS_NICE)) {
5517 if (fair_policy(policy)) {
5518 if (attr->sched_nice < task_nice(p) &&
5519 !can_nice(p, attr->sched_nice))
5520 return -EPERM;
5521 }
5522
5523 if (rt_policy(policy)) {
5524 unsigned long rlim_rtprio =
5525 task_rlimit(p, RLIMIT_RTPRIO);
5526
5527 /* Can't set/change the rt policy: */
5528 if (policy != p->policy && !rlim_rtprio)
5529 return -EPERM;
5530
5531 /* Can't increase priority: */
5532 if (attr->sched_priority > p->rt_priority &&
5533 attr->sched_priority > rlim_rtprio)
5534 return -EPERM;
5535 }
5536
5537 /*
5538 * Can't set/change SCHED_DEADLINE policy at all for now
5539 * (safest behavior); in the future we would like to allow
5540 * unprivileged DL tasks to increase their relative deadline
5541 * or reduce their runtime (both ways reducing utilization)
5542 */
5543 if (dl_policy(policy))
5544 return -EPERM;
5545
5546 /*
5547 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5548 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5549 */
5550 if (task_has_idle_policy(p) && !idle_policy(policy)) {
5551 if (!can_nice(p, task_nice(p)))
5552 return -EPERM;
5553 }
5554
5555 /* Can't change other user's priorities: */
5556 if (!check_same_owner(p))
5557 return -EPERM;
5558
5559 /* Normal users shall not reset the sched_reset_on_fork flag: */
5560 if (p->sched_reset_on_fork && !reset_on_fork)
5561 return -EPERM;
5562
5563 /* Can't change util-clamps */
5564 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5565 return -EPERM;
5566 }
5567
5568 if (user) {
5569 if (attr->sched_flags & SCHED_FLAG_SUGOV)
5570 return -EINVAL;
5571
5572 retval = security_task_setscheduler(p);
5573 if (retval)
5574 return retval;
5575 }
5576
5577 /* Update task specific "requested" clamps */
5578 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5579 retval = uclamp_validate(p, attr);
5580 if (retval)
5581 return retval;
5582 }
5583
5584 /*
5585 * Make sure no PI-waiters arrive (or leave) while we are
5586 * changing the priority of the task:
5587 *
5588 * To be able to change p->policy safely, the appropriate
5589 * runqueue lock must be held.
5590 */
5591 rq = task_rq_lock(p, &rf);
5592 update_rq_clock(rq);
5593
5594 /*
5595 * Changing the policy of the stop threads its a very bad idea:
5596 */
5597 if (p == rq->stop) {
5598 retval = -EINVAL;
5599 goto unlock;
5600 }
5601
5602 /*
5603 * If not changing anything there's no need to proceed further,
5604 * but store a possible modification of reset_on_fork.
5605 */
5606 if (unlikely(policy == p->policy)) {
5607 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5608 goto change;
5609 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5610 goto change;
5611 if (dl_policy(policy) && dl_param_changed(p, attr))
5612 goto change;
5613 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5614 goto change;
5615
5616 p->sched_reset_on_fork = reset_on_fork;
5617 retval = 0;
5618 goto unlock;
5619 }
5620 change:
5621
5622 if (user) {
5623 #ifdef CONFIG_RT_GROUP_SCHED
5624 /*
5625 * Do not allow realtime tasks into groups that have no runtime
5626 * assigned.
5627 */
5628 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5629 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5630 !task_group_is_autogroup(task_group(p))) {
5631 retval = -EPERM;
5632 goto unlock;
5633 }
5634 #endif
5635 #ifdef CONFIG_SMP
5636 if (dl_bandwidth_enabled() && dl_policy(policy) &&
5637 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5638 cpumask_t *span = rq->rd->span;
5639
5640 /*
5641 * Don't allow tasks with an affinity mask smaller than
5642 * the entire root_domain to become SCHED_DEADLINE. We
5643 * will also fail if there's no bandwidth available.
5644 */
5645 if (!cpumask_subset(span, p->cpus_ptr) ||
5646 rq->rd->dl_bw.bw == 0) {
5647 retval = -EPERM;
5648 goto unlock;
5649 }
5650 }
5651 #endif
5652 }
5653
5654 /* Re-check policy now with rq lock held: */
5655 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5656 policy = oldpolicy = -1;
5657 task_rq_unlock(rq, p, &rf);
5658 goto recheck;
5659 }
5660
5661 /*
5662 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5663 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5664 * is available.
5665 */
5666 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5667 retval = -EBUSY;
5668 goto unlock;
5669 }
5670
5671 p->sched_reset_on_fork = reset_on_fork;
5672 oldprio = p->prio;
5673
5674 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
5675 if (pi) {
5676 /*
5677 * Take priority boosted tasks into account. If the new
5678 * effective priority is unchanged, we just store the new
5679 * normal parameters and do not touch the scheduler class and
5680 * the runqueue. This will be done when the task deboost
5681 * itself.
5682 */
5683 newprio = rt_effective_prio(p, newprio);
5684 if (newprio == oldprio)
5685 queue_flags &= ~DEQUEUE_MOVE;
5686 }
5687
5688 queued = task_on_rq_queued(p);
5689 running = task_current(rq, p);
5690 if (queued)
5691 dequeue_task(rq, p, queue_flags);
5692 if (running)
5693 put_prev_task(rq, p);
5694
5695 prev_class = p->sched_class;
5696
5697 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
5698 __setscheduler_params(p, attr);
5699 __setscheduler_prio(p, newprio);
5700 trace_android_rvh_setscheduler(p);
5701 }
5702 __setscheduler_uclamp(p, attr);
5703
5704 if (queued) {
5705 /*
5706 * We enqueue to tail when the priority of a task is
5707 * increased (user space view).
5708 */
5709 if (oldprio < p->prio)
5710 queue_flags |= ENQUEUE_HEAD;
5711
5712 enqueue_task(rq, p, queue_flags);
5713 }
5714 if (running)
5715 set_next_task(rq, p);
5716
5717 check_class_changed(rq, p, prev_class, oldprio);
5718
5719 /* Avoid rq from going away on us: */
5720 preempt_disable();
5721 task_rq_unlock(rq, p, &rf);
5722
5723 if (pi)
5724 rt_mutex_adjust_pi(p);
5725
5726 /* Run balance callbacks after we've adjusted the PI chain: */
5727 balance_callback(rq);
5728 preempt_enable();
5729
5730 return 0;
5731
5732 unlock:
5733 task_rq_unlock(rq, p, &rf);
5734 return retval;
5735 }
5736
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)5737 static int _sched_setscheduler(struct task_struct *p, int policy,
5738 const struct sched_param *param, bool check)
5739 {
5740 struct sched_attr attr = {
5741 .sched_policy = policy,
5742 .sched_priority = param->sched_priority,
5743 .sched_nice = PRIO_TO_NICE(p->static_prio),
5744 };
5745
5746 if (IS_ENABLED(CONFIG_ROCKCHIP_OPTIMIZE_RT_PRIO) &&
5747 ((policy == SCHED_FIFO) || (policy == SCHED_RR))) {
5748 attr.sched_priority /= 2;
5749 if (!check)
5750 attr.sched_priority += MAX_RT_PRIO / 2;
5751 if (!attr.sched_priority)
5752 attr.sched_priority = 1;
5753 }
5754 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5755 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5756 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5757 policy &= ~SCHED_RESET_ON_FORK;
5758 attr.sched_policy = policy;
5759 }
5760
5761 return __sched_setscheduler(p, &attr, check, true);
5762 }
5763 /**
5764 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5765 * @p: the task in question.
5766 * @policy: new policy.
5767 * @param: structure containing the new RT priority.
5768 *
5769 * Use sched_set_fifo(), read its comment.
5770 *
5771 * Return: 0 on success. An error code otherwise.
5772 *
5773 * NOTE that the task may be already dead.
5774 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)5775 int sched_setscheduler(struct task_struct *p, int policy,
5776 const struct sched_param *param)
5777 {
5778 return _sched_setscheduler(p, policy, param, true);
5779 }
5780 EXPORT_SYMBOL_GPL(sched_setscheduler);
5781
sched_setattr(struct task_struct * p,const struct sched_attr * attr)5782 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5783 {
5784 return __sched_setscheduler(p, attr, true, true);
5785 }
5786 EXPORT_SYMBOL_GPL(sched_setattr);
5787
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)5788 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5789 {
5790 return __sched_setscheduler(p, attr, false, true);
5791 }
5792 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
5793
5794 /**
5795 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5796 * @p: the task in question.
5797 * @policy: new policy.
5798 * @param: structure containing the new RT priority.
5799 *
5800 * Just like sched_setscheduler, only don't bother checking if the
5801 * current context has permission. For example, this is needed in
5802 * stop_machine(): we create temporary high priority worker threads,
5803 * but our caller might not have that capability.
5804 *
5805 * Return: 0 on success. An error code otherwise.
5806 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)5807 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5808 const struct sched_param *param)
5809 {
5810 return _sched_setscheduler(p, policy, param, false);
5811 }
5812 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5813
5814 /*
5815 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
5816 * incapable of resource management, which is the one thing an OS really should
5817 * be doing.
5818 *
5819 * This is of course the reason it is limited to privileged users only.
5820 *
5821 * Worse still; it is fundamentally impossible to compose static priority
5822 * workloads. You cannot take two correctly working static prio workloads
5823 * and smash them together and still expect them to work.
5824 *
5825 * For this reason 'all' FIFO tasks the kernel creates are basically at:
5826 *
5827 * MAX_RT_PRIO / 2
5828 *
5829 * The administrator _MUST_ configure the system, the kernel simply doesn't
5830 * know enough information to make a sensible choice.
5831 */
sched_set_fifo(struct task_struct * p)5832 void sched_set_fifo(struct task_struct *p)
5833 {
5834 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
5835 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5836 }
5837 EXPORT_SYMBOL_GPL(sched_set_fifo);
5838
5839 /*
5840 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
5841 */
sched_set_fifo_low(struct task_struct * p)5842 void sched_set_fifo_low(struct task_struct *p)
5843 {
5844 struct sched_param sp = { .sched_priority = 1 };
5845 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5846 }
5847 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
5848
sched_set_normal(struct task_struct * p,int nice)5849 void sched_set_normal(struct task_struct *p, int nice)
5850 {
5851 struct sched_attr attr = {
5852 .sched_policy = SCHED_NORMAL,
5853 .sched_nice = nice,
5854 };
5855 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
5856 }
5857 EXPORT_SYMBOL_GPL(sched_set_normal);
5858
5859 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)5860 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5861 {
5862 struct sched_param lparam;
5863 struct task_struct *p;
5864 int retval;
5865
5866 if (!param || pid < 0)
5867 return -EINVAL;
5868 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5869 return -EFAULT;
5870
5871 rcu_read_lock();
5872 retval = -ESRCH;
5873 p = find_process_by_pid(pid);
5874 if (p != NULL)
5875 retval = sched_setscheduler(p, policy, &lparam);
5876 rcu_read_unlock();
5877
5878 return retval;
5879 }
5880
5881 /*
5882 * Mimics kernel/events/core.c perf_copy_attr().
5883 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)5884 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5885 {
5886 u32 size;
5887 int ret;
5888
5889 /* Zero the full structure, so that a short copy will be nice: */
5890 memset(attr, 0, sizeof(*attr));
5891
5892 ret = get_user(size, &uattr->size);
5893 if (ret)
5894 return ret;
5895
5896 /* ABI compatibility quirk: */
5897 if (!size)
5898 size = SCHED_ATTR_SIZE_VER0;
5899 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5900 goto err_size;
5901
5902 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5903 if (ret) {
5904 if (ret == -E2BIG)
5905 goto err_size;
5906 return ret;
5907 }
5908
5909 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5910 size < SCHED_ATTR_SIZE_VER1)
5911 return -EINVAL;
5912
5913 /*
5914 * XXX: Do we want to be lenient like existing syscalls; or do we want
5915 * to be strict and return an error on out-of-bounds values?
5916 */
5917 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5918
5919 return 0;
5920
5921 err_size:
5922 put_user(sizeof(*attr), &uattr->size);
5923 return -E2BIG;
5924 }
5925
get_params(struct task_struct * p,struct sched_attr * attr)5926 static void get_params(struct task_struct *p, struct sched_attr *attr)
5927 {
5928 if (task_has_dl_policy(p))
5929 __getparam_dl(p, attr);
5930 else if (task_has_rt_policy(p))
5931 attr->sched_priority = p->rt_priority;
5932 else
5933 attr->sched_nice = task_nice(p);
5934 }
5935
5936 /**
5937 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5938 * @pid: the pid in question.
5939 * @policy: new policy.
5940 * @param: structure containing the new RT priority.
5941 *
5942 * Return: 0 on success. An error code otherwise.
5943 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)5944 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5945 {
5946 if (policy < 0)
5947 return -EINVAL;
5948
5949 return do_sched_setscheduler(pid, policy, param);
5950 }
5951
5952 /**
5953 * sys_sched_setparam - set/change the RT priority of a thread
5954 * @pid: the pid in question.
5955 * @param: structure containing the new RT priority.
5956 *
5957 * Return: 0 on success. An error code otherwise.
5958 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)5959 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5960 {
5961 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5962 }
5963
5964 /**
5965 * sys_sched_setattr - same as above, but with extended sched_attr
5966 * @pid: the pid in question.
5967 * @uattr: structure containing the extended parameters.
5968 * @flags: for future extension.
5969 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)5970 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5971 unsigned int, flags)
5972 {
5973 struct sched_attr attr;
5974 struct task_struct *p;
5975 int retval;
5976
5977 if (!uattr || pid < 0 || flags)
5978 return -EINVAL;
5979
5980 retval = sched_copy_attr(uattr, &attr);
5981 if (retval)
5982 return retval;
5983
5984 if ((int)attr.sched_policy < 0)
5985 return -EINVAL;
5986 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5987 attr.sched_policy = SETPARAM_POLICY;
5988
5989 rcu_read_lock();
5990 retval = -ESRCH;
5991 p = find_process_by_pid(pid);
5992 if (likely(p))
5993 get_task_struct(p);
5994 rcu_read_unlock();
5995
5996 if (likely(p)) {
5997 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
5998 get_params(p, &attr);
5999 retval = sched_setattr(p, &attr);
6000 put_task_struct(p);
6001 }
6002
6003 return retval;
6004 }
6005
6006 /**
6007 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6008 * @pid: the pid in question.
6009 *
6010 * Return: On success, the policy of the thread. Otherwise, a negative error
6011 * code.
6012 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)6013 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6014 {
6015 struct task_struct *p;
6016 int retval;
6017
6018 if (pid < 0)
6019 return -EINVAL;
6020
6021 retval = -ESRCH;
6022 rcu_read_lock();
6023 p = find_process_by_pid(pid);
6024 if (p) {
6025 retval = security_task_getscheduler(p);
6026 if (!retval)
6027 retval = p->policy
6028 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6029 }
6030 rcu_read_unlock();
6031 return retval;
6032 }
6033
6034 /**
6035 * sys_sched_getparam - get the RT priority of a thread
6036 * @pid: the pid in question.
6037 * @param: structure containing the RT priority.
6038 *
6039 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
6040 * code.
6041 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)6042 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6043 {
6044 struct sched_param lp = { .sched_priority = 0 };
6045 struct task_struct *p;
6046 int retval;
6047
6048 if (!param || pid < 0)
6049 return -EINVAL;
6050
6051 rcu_read_lock();
6052 p = find_process_by_pid(pid);
6053 retval = -ESRCH;
6054 if (!p)
6055 goto out_unlock;
6056
6057 retval = security_task_getscheduler(p);
6058 if (retval)
6059 goto out_unlock;
6060
6061 if (task_has_rt_policy(p))
6062 lp.sched_priority = p->rt_priority;
6063 rcu_read_unlock();
6064
6065 /*
6066 * This one might sleep, we cannot do it with a spinlock held ...
6067 */
6068 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6069
6070 return retval;
6071
6072 out_unlock:
6073 rcu_read_unlock();
6074 return retval;
6075 }
6076
6077 /*
6078 * Copy the kernel size attribute structure (which might be larger
6079 * than what user-space knows about) to user-space.
6080 *
6081 * Note that all cases are valid: user-space buffer can be larger or
6082 * smaller than the kernel-space buffer. The usual case is that both
6083 * have the same size.
6084 */
6085 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)6086 sched_attr_copy_to_user(struct sched_attr __user *uattr,
6087 struct sched_attr *kattr,
6088 unsigned int usize)
6089 {
6090 unsigned int ksize = sizeof(*kattr);
6091
6092 if (!access_ok(uattr, usize))
6093 return -EFAULT;
6094
6095 /*
6096 * sched_getattr() ABI forwards and backwards compatibility:
6097 *
6098 * If usize == ksize then we just copy everything to user-space and all is good.
6099 *
6100 * If usize < ksize then we only copy as much as user-space has space for,
6101 * this keeps ABI compatibility as well. We skip the rest.
6102 *
6103 * If usize > ksize then user-space is using a newer version of the ABI,
6104 * which part the kernel doesn't know about. Just ignore it - tooling can
6105 * detect the kernel's knowledge of attributes from the attr->size value
6106 * which is set to ksize in this case.
6107 */
6108 kattr->size = min(usize, ksize);
6109
6110 if (copy_to_user(uattr, kattr, kattr->size))
6111 return -EFAULT;
6112
6113 return 0;
6114 }
6115
6116 /**
6117 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
6118 * @pid: the pid in question.
6119 * @uattr: structure containing the extended parameters.
6120 * @usize: sizeof(attr) for fwd/bwd comp.
6121 * @flags: for future extension.
6122 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)6123 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
6124 unsigned int, usize, unsigned int, flags)
6125 {
6126 struct sched_attr kattr = { };
6127 struct task_struct *p;
6128 int retval;
6129
6130 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6131 usize < SCHED_ATTR_SIZE_VER0 || flags)
6132 return -EINVAL;
6133
6134 rcu_read_lock();
6135 p = find_process_by_pid(pid);
6136 retval = -ESRCH;
6137 if (!p)
6138 goto out_unlock;
6139
6140 retval = security_task_getscheduler(p);
6141 if (retval)
6142 goto out_unlock;
6143
6144 kattr.sched_policy = p->policy;
6145 if (p->sched_reset_on_fork)
6146 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6147 get_params(p, &kattr);
6148 kattr.sched_flags &= SCHED_FLAG_ALL;
6149
6150 #ifdef CONFIG_UCLAMP_TASK
6151 /*
6152 * This could race with another potential updater, but this is fine
6153 * because it'll correctly read the old or the new value. We don't need
6154 * to guarantee who wins the race as long as it doesn't return garbage.
6155 */
6156 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6157 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
6158 #endif
6159
6160 rcu_read_unlock();
6161
6162 return sched_attr_copy_to_user(uattr, &kattr, usize);
6163
6164 out_unlock:
6165 rcu_read_unlock();
6166 return retval;
6167 }
6168
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)6169 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6170 {
6171 cpumask_var_t cpus_allowed, new_mask;
6172 struct task_struct *p;
6173 int retval;
6174 int skip = 0;
6175
6176 rcu_read_lock();
6177
6178 p = find_process_by_pid(pid);
6179 if (!p) {
6180 rcu_read_unlock();
6181 return -ESRCH;
6182 }
6183
6184 /* Prevent p going away */
6185 get_task_struct(p);
6186 rcu_read_unlock();
6187
6188 if (p->flags & PF_NO_SETAFFINITY) {
6189 retval = -EINVAL;
6190 goto out_put_task;
6191 }
6192 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6193 retval = -ENOMEM;
6194 goto out_put_task;
6195 }
6196 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6197 retval = -ENOMEM;
6198 goto out_free_cpus_allowed;
6199 }
6200 retval = -EPERM;
6201 if (!check_same_owner(p)) {
6202 rcu_read_lock();
6203 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6204 rcu_read_unlock();
6205 goto out_free_new_mask;
6206 }
6207 rcu_read_unlock();
6208 }
6209
6210 trace_android_vh_sched_setaffinity_early(p, in_mask, &skip);
6211 if (skip)
6212 goto out_free_new_mask;
6213 retval = security_task_setscheduler(p);
6214 if (retval)
6215 goto out_free_new_mask;
6216
6217
6218 cpuset_cpus_allowed(p, cpus_allowed);
6219 cpumask_and(new_mask, in_mask, cpus_allowed);
6220
6221 /*
6222 * Since bandwidth control happens on root_domain basis,
6223 * if admission test is enabled, we only admit -deadline
6224 * tasks allowed to run on all the CPUs in the task's
6225 * root_domain.
6226 */
6227 #ifdef CONFIG_SMP
6228 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6229 rcu_read_lock();
6230 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
6231 retval = -EBUSY;
6232 rcu_read_unlock();
6233 goto out_free_new_mask;
6234 }
6235 rcu_read_unlock();
6236 }
6237 #endif
6238 again:
6239 retval = __set_cpus_allowed_ptr(p, new_mask, true);
6240
6241 if (!retval) {
6242 cpuset_cpus_allowed(p, cpus_allowed);
6243 if (!cpumask_subset(new_mask, cpus_allowed)) {
6244 /*
6245 * We must have raced with a concurrent cpuset
6246 * update. Just reset the cpus_allowed to the
6247 * cpuset's cpus_allowed
6248 */
6249 cpumask_copy(new_mask, cpus_allowed);
6250 goto again;
6251 }
6252 }
6253
6254 trace_android_rvh_sched_setaffinity(p, in_mask, &retval);
6255
6256 out_free_new_mask:
6257 free_cpumask_var(new_mask);
6258 out_free_cpus_allowed:
6259 free_cpumask_var(cpus_allowed);
6260 out_put_task:
6261 put_task_struct(p);
6262 return retval;
6263 }
6264
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)6265 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6266 struct cpumask *new_mask)
6267 {
6268 if (len < cpumask_size())
6269 cpumask_clear(new_mask);
6270 else if (len > cpumask_size())
6271 len = cpumask_size();
6272
6273 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6274 }
6275
6276 /**
6277 * sys_sched_setaffinity - set the CPU affinity of a process
6278 * @pid: pid of the process
6279 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6280 * @user_mask_ptr: user-space pointer to the new CPU mask
6281 *
6282 * Return: 0 on success. An error code otherwise.
6283 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)6284 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6285 unsigned long __user *, user_mask_ptr)
6286 {
6287 cpumask_var_t new_mask;
6288 int retval;
6289
6290 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6291 return -ENOMEM;
6292
6293 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6294 if (retval == 0)
6295 retval = sched_setaffinity(pid, new_mask);
6296 free_cpumask_var(new_mask);
6297 return retval;
6298 }
6299
sched_getaffinity(pid_t pid,struct cpumask * mask)6300 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6301 {
6302 struct task_struct *p;
6303 unsigned long flags;
6304 int retval;
6305
6306 rcu_read_lock();
6307
6308 retval = -ESRCH;
6309 p = find_process_by_pid(pid);
6310 if (!p)
6311 goto out_unlock;
6312
6313 retval = security_task_getscheduler(p);
6314 if (retval)
6315 goto out_unlock;
6316
6317 raw_spin_lock_irqsave(&p->pi_lock, flags);
6318 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6319 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6320
6321 out_unlock:
6322 rcu_read_unlock();
6323
6324 return retval;
6325 }
6326
6327 /**
6328 * sys_sched_getaffinity - get the CPU affinity of a process
6329 * @pid: pid of the process
6330 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6331 * @user_mask_ptr: user-space pointer to hold the current CPU mask
6332 *
6333 * Return: size of CPU mask copied to user_mask_ptr on success. An
6334 * error code otherwise.
6335 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)6336 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6337 unsigned long __user *, user_mask_ptr)
6338 {
6339 int ret;
6340 cpumask_var_t mask;
6341
6342 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6343 return -EINVAL;
6344 if (len & (sizeof(unsigned long)-1))
6345 return -EINVAL;
6346
6347 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6348 return -ENOMEM;
6349
6350 ret = sched_getaffinity(pid, mask);
6351 if (ret == 0) {
6352 unsigned int retlen = min(len, cpumask_size());
6353
6354 if (copy_to_user(user_mask_ptr, mask, retlen))
6355 ret = -EFAULT;
6356 else
6357 ret = retlen;
6358 }
6359 free_cpumask_var(mask);
6360
6361 return ret;
6362 }
6363
6364 /**
6365 * sys_sched_yield - yield the current processor to other threads.
6366 *
6367 * This function yields the current CPU to other tasks. If there are no
6368 * other threads running on this CPU then this function will return.
6369 *
6370 * Return: 0.
6371 */
do_sched_yield(void)6372 static void do_sched_yield(void)
6373 {
6374 struct rq_flags rf;
6375 struct rq *rq;
6376
6377 rq = this_rq_lock_irq(&rf);
6378
6379 schedstat_inc(rq->yld_count);
6380 current->sched_class->yield_task(rq);
6381
6382 trace_android_rvh_do_sched_yield(rq);
6383
6384 preempt_disable();
6385 rq_unlock_irq(rq, &rf);
6386 sched_preempt_enable_no_resched();
6387
6388 schedule();
6389 }
6390
SYSCALL_DEFINE0(sched_yield)6391 SYSCALL_DEFINE0(sched_yield)
6392 {
6393 do_sched_yield();
6394 return 0;
6395 }
6396
6397 #ifndef CONFIG_PREEMPTION
_cond_resched(void)6398 int __sched _cond_resched(void)
6399 {
6400 if (should_resched(0)) {
6401 preempt_schedule_common();
6402 return 1;
6403 }
6404 rcu_all_qs();
6405 return 0;
6406 }
6407 EXPORT_SYMBOL(_cond_resched);
6408 #endif
6409
6410 /*
6411 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6412 * call schedule, and on return reacquire the lock.
6413 *
6414 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6415 * operations here to prevent schedule() from being called twice (once via
6416 * spin_unlock(), once by hand).
6417 */
__cond_resched_lock(spinlock_t * lock)6418 int __cond_resched_lock(spinlock_t *lock)
6419 {
6420 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6421 int ret = 0;
6422
6423 lockdep_assert_held(lock);
6424
6425 if (spin_needbreak(lock) || resched) {
6426 spin_unlock(lock);
6427 if (resched)
6428 preempt_schedule_common();
6429 else
6430 cpu_relax();
6431 ret = 1;
6432 spin_lock(lock);
6433 }
6434 return ret;
6435 }
6436 EXPORT_SYMBOL(__cond_resched_lock);
6437
6438 /**
6439 * yield - yield the current processor to other threads.
6440 *
6441 * Do not ever use this function, there's a 99% chance you're doing it wrong.
6442 *
6443 * The scheduler is at all times free to pick the calling task as the most
6444 * eligible task to run, if removing the yield() call from your code breaks
6445 * it, its already broken.
6446 *
6447 * Typical broken usage is:
6448 *
6449 * while (!event)
6450 * yield();
6451 *
6452 * where one assumes that yield() will let 'the other' process run that will
6453 * make event true. If the current task is a SCHED_FIFO task that will never
6454 * happen. Never use yield() as a progress guarantee!!
6455 *
6456 * If you want to use yield() to wait for something, use wait_event().
6457 * If you want to use yield() to be 'nice' for others, use cond_resched().
6458 * If you still want to use yield(), do not!
6459 */
yield(void)6460 void __sched yield(void)
6461 {
6462 set_current_state(TASK_RUNNING);
6463 do_sched_yield();
6464 }
6465 EXPORT_SYMBOL(yield);
6466
6467 /**
6468 * yield_to - yield the current processor to another thread in
6469 * your thread group, or accelerate that thread toward the
6470 * processor it's on.
6471 * @p: target task
6472 * @preempt: whether task preemption is allowed or not
6473 *
6474 * It's the caller's job to ensure that the target task struct
6475 * can't go away on us before we can do any checks.
6476 *
6477 * Return:
6478 * true (>0) if we indeed boosted the target task.
6479 * false (0) if we failed to boost the target.
6480 * -ESRCH if there's no task to yield to.
6481 */
yield_to(struct task_struct * p,bool preempt)6482 int __sched yield_to(struct task_struct *p, bool preempt)
6483 {
6484 struct task_struct *curr = current;
6485 struct rq *rq, *p_rq;
6486 unsigned long flags;
6487 int yielded = 0;
6488
6489 local_irq_save(flags);
6490 rq = this_rq();
6491
6492 again:
6493 p_rq = task_rq(p);
6494 /*
6495 * If we're the only runnable task on the rq and target rq also
6496 * has only one task, there's absolutely no point in yielding.
6497 */
6498 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6499 yielded = -ESRCH;
6500 goto out_irq;
6501 }
6502
6503 double_rq_lock(rq, p_rq);
6504 if (task_rq(p) != p_rq) {
6505 double_rq_unlock(rq, p_rq);
6506 goto again;
6507 }
6508
6509 if (!curr->sched_class->yield_to_task)
6510 goto out_unlock;
6511
6512 if (curr->sched_class != p->sched_class)
6513 goto out_unlock;
6514
6515 if (task_running(p_rq, p) || p->state)
6516 goto out_unlock;
6517
6518 yielded = curr->sched_class->yield_to_task(rq, p);
6519 if (yielded) {
6520 schedstat_inc(rq->yld_count);
6521 /*
6522 * Make p's CPU reschedule; pick_next_entity takes care of
6523 * fairness.
6524 */
6525 if (preempt && rq != p_rq)
6526 resched_curr(p_rq);
6527 }
6528
6529 out_unlock:
6530 double_rq_unlock(rq, p_rq);
6531 out_irq:
6532 local_irq_restore(flags);
6533
6534 if (yielded > 0)
6535 schedule();
6536
6537 return yielded;
6538 }
6539 EXPORT_SYMBOL_GPL(yield_to);
6540
io_schedule_prepare(void)6541 int io_schedule_prepare(void)
6542 {
6543 int old_iowait = current->in_iowait;
6544
6545 current->in_iowait = 1;
6546 blk_schedule_flush_plug(current);
6547
6548 return old_iowait;
6549 }
6550
io_schedule_finish(int token)6551 void io_schedule_finish(int token)
6552 {
6553 current->in_iowait = token;
6554 }
6555
6556 /*
6557 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6558 * that process accounting knows that this is a task in IO wait state.
6559 */
io_schedule_timeout(long timeout)6560 long __sched io_schedule_timeout(long timeout)
6561 {
6562 int token;
6563 long ret;
6564
6565 token = io_schedule_prepare();
6566 ret = schedule_timeout(timeout);
6567 io_schedule_finish(token);
6568
6569 return ret;
6570 }
6571 EXPORT_SYMBOL(io_schedule_timeout);
6572
io_schedule(void)6573 void __sched io_schedule(void)
6574 {
6575 int token;
6576
6577 token = io_schedule_prepare();
6578 schedule();
6579 io_schedule_finish(token);
6580 }
6581 EXPORT_SYMBOL(io_schedule);
6582
6583 /**
6584 * sys_sched_get_priority_max - return maximum RT priority.
6585 * @policy: scheduling class.
6586 *
6587 * Return: On success, this syscall returns the maximum
6588 * rt_priority that can be used by a given scheduling class.
6589 * On failure, a negative error code is returned.
6590 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)6591 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6592 {
6593 int ret = -EINVAL;
6594
6595 switch (policy) {
6596 case SCHED_FIFO:
6597 case SCHED_RR:
6598 ret = MAX_USER_RT_PRIO-1;
6599 break;
6600 case SCHED_DEADLINE:
6601 case SCHED_NORMAL:
6602 case SCHED_BATCH:
6603 case SCHED_IDLE:
6604 ret = 0;
6605 break;
6606 }
6607 return ret;
6608 }
6609
6610 /**
6611 * sys_sched_get_priority_min - return minimum RT priority.
6612 * @policy: scheduling class.
6613 *
6614 * Return: On success, this syscall returns the minimum
6615 * rt_priority that can be used by a given scheduling class.
6616 * On failure, a negative error code is returned.
6617 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)6618 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6619 {
6620 int ret = -EINVAL;
6621
6622 switch (policy) {
6623 case SCHED_FIFO:
6624 case SCHED_RR:
6625 ret = 1;
6626 break;
6627 case SCHED_DEADLINE:
6628 case SCHED_NORMAL:
6629 case SCHED_BATCH:
6630 case SCHED_IDLE:
6631 ret = 0;
6632 }
6633 return ret;
6634 }
6635
sched_rr_get_interval(pid_t pid,struct timespec64 * t)6636 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
6637 {
6638 struct task_struct *p;
6639 unsigned int time_slice;
6640 struct rq_flags rf;
6641 struct rq *rq;
6642 int retval;
6643
6644 if (pid < 0)
6645 return -EINVAL;
6646
6647 retval = -ESRCH;
6648 rcu_read_lock();
6649 p = find_process_by_pid(pid);
6650 if (!p)
6651 goto out_unlock;
6652
6653 retval = security_task_getscheduler(p);
6654 if (retval)
6655 goto out_unlock;
6656
6657 rq = task_rq_lock(p, &rf);
6658 time_slice = 0;
6659 if (p->sched_class->get_rr_interval)
6660 time_slice = p->sched_class->get_rr_interval(rq, p);
6661 task_rq_unlock(rq, p, &rf);
6662
6663 rcu_read_unlock();
6664 jiffies_to_timespec64(time_slice, t);
6665 return 0;
6666
6667 out_unlock:
6668 rcu_read_unlock();
6669 return retval;
6670 }
6671
6672 /**
6673 * sys_sched_rr_get_interval - return the default timeslice of a process.
6674 * @pid: pid of the process.
6675 * @interval: userspace pointer to the timeslice value.
6676 *
6677 * this syscall writes the default timeslice value of a given process
6678 * into the user-space timespec buffer. A value of '0' means infinity.
6679 *
6680 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6681 * an error code.
6682 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)6683 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6684 struct __kernel_timespec __user *, interval)
6685 {
6686 struct timespec64 t;
6687 int retval = sched_rr_get_interval(pid, &t);
6688
6689 if (retval == 0)
6690 retval = put_timespec64(&t, interval);
6691
6692 return retval;
6693 }
6694
6695 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)6696 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6697 struct old_timespec32 __user *, interval)
6698 {
6699 struct timespec64 t;
6700 int retval = sched_rr_get_interval(pid, &t);
6701
6702 if (retval == 0)
6703 retval = put_old_timespec32(&t, interval);
6704 return retval;
6705 }
6706 #endif
6707
sched_show_task(struct task_struct * p)6708 void sched_show_task(struct task_struct *p)
6709 {
6710 unsigned long free = 0;
6711 int ppid;
6712
6713 if (!try_get_task_stack(p))
6714 return;
6715
6716 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
6717
6718 if (p->state == TASK_RUNNING)
6719 pr_cont(" running task ");
6720 #ifdef CONFIG_DEBUG_STACK_USAGE
6721 free = stack_not_used(p);
6722 #endif
6723 ppid = 0;
6724 rcu_read_lock();
6725 if (pid_alive(p))
6726 ppid = task_pid_nr(rcu_dereference(p->real_parent));
6727 rcu_read_unlock();
6728 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6729 free, task_pid_nr(p), ppid,
6730 (unsigned long)task_thread_info(p)->flags);
6731
6732 print_worker_info(KERN_INFO, p);
6733 trace_android_vh_sched_show_task(p);
6734 show_stack(p, NULL, KERN_INFO);
6735 put_task_stack(p);
6736 }
6737 EXPORT_SYMBOL_GPL(sched_show_task);
6738
6739 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)6740 state_filter_match(unsigned long state_filter, struct task_struct *p)
6741 {
6742 /* no filter, everything matches */
6743 if (!state_filter)
6744 return true;
6745
6746 /* filter, but doesn't match */
6747 if (!(p->state & state_filter))
6748 return false;
6749
6750 /*
6751 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6752 * TASK_KILLABLE).
6753 */
6754 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6755 return false;
6756
6757 return true;
6758 }
6759
6760
show_state_filter(unsigned long state_filter)6761 void show_state_filter(unsigned long state_filter)
6762 {
6763 struct task_struct *g, *p;
6764
6765 rcu_read_lock();
6766 for_each_process_thread(g, p) {
6767 /*
6768 * reset the NMI-timeout, listing all files on a slow
6769 * console might take a lot of time:
6770 * Also, reset softlockup watchdogs on all CPUs, because
6771 * another CPU might be blocked waiting for us to process
6772 * an IPI.
6773 */
6774 touch_nmi_watchdog();
6775 touch_all_softlockup_watchdogs();
6776 if (state_filter_match(state_filter, p))
6777 sched_show_task(p);
6778 }
6779
6780 #ifdef CONFIG_SCHED_DEBUG
6781 if (!state_filter)
6782 sysrq_sched_debug_show();
6783 #endif
6784 rcu_read_unlock();
6785 /*
6786 * Only show locks if all tasks are dumped:
6787 */
6788 if (!state_filter)
6789 debug_show_all_locks();
6790 }
6791
6792 /**
6793 * init_idle - set up an idle thread for a given CPU
6794 * @idle: task in question
6795 * @cpu: CPU the idle task belongs to
6796 *
6797 * NOTE: this function does not set the idle thread's NEED_RESCHED
6798 * flag, to make booting more robust.
6799 */
init_idle(struct task_struct * idle,int cpu)6800 void __init init_idle(struct task_struct *idle, int cpu)
6801 {
6802 struct rq *rq = cpu_rq(cpu);
6803 unsigned long flags;
6804
6805 __sched_fork(0, idle);
6806
6807 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6808 raw_spin_lock(&rq->lock);
6809
6810 idle->state = TASK_RUNNING;
6811 idle->se.exec_start = sched_clock();
6812 idle->flags |= PF_IDLE;
6813
6814 #ifdef CONFIG_SMP
6815 /*
6816 * Its possible that init_idle() gets called multiple times on a task,
6817 * in that case do_set_cpus_allowed() will not do the right thing.
6818 *
6819 * And since this is boot we can forgo the serialization.
6820 */
6821 set_cpus_allowed_common(idle, cpumask_of(cpu));
6822 #endif
6823 /*
6824 * We're having a chicken and egg problem, even though we are
6825 * holding rq->lock, the CPU isn't yet set to this CPU so the
6826 * lockdep check in task_group() will fail.
6827 *
6828 * Similar case to sched_fork(). / Alternatively we could
6829 * use task_rq_lock() here and obtain the other rq->lock.
6830 *
6831 * Silence PROVE_RCU
6832 */
6833 rcu_read_lock();
6834 __set_task_cpu(idle, cpu);
6835 rcu_read_unlock();
6836
6837 rq->idle = idle;
6838 rcu_assign_pointer(rq->curr, idle);
6839 idle->on_rq = TASK_ON_RQ_QUEUED;
6840 #ifdef CONFIG_SMP
6841 idle->on_cpu = 1;
6842 #endif
6843 raw_spin_unlock(&rq->lock);
6844 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6845
6846 /* Set the preempt count _outside_ the spinlocks! */
6847 init_idle_preempt_count(idle, cpu);
6848
6849 /*
6850 * The idle tasks have their own, simple scheduling class:
6851 */
6852 idle->sched_class = &idle_sched_class;
6853 ftrace_graph_init_idle_task(idle, cpu);
6854 vtime_init_idle(idle, cpu);
6855 #ifdef CONFIG_SMP
6856 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6857 #endif
6858 }
6859
6860 #ifdef CONFIG_SMP
6861
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)6862 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6863 const struct cpumask *trial)
6864 {
6865 int ret = 1;
6866
6867 if (!cpumask_weight(cur))
6868 return ret;
6869
6870 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6871
6872 return ret;
6873 }
6874
task_can_attach(struct task_struct * p,const struct cpumask * cs_effective_cpus)6875 int task_can_attach(struct task_struct *p,
6876 const struct cpumask *cs_effective_cpus)
6877 {
6878 int ret = 0;
6879
6880 /*
6881 * Kthreads which disallow setaffinity shouldn't be moved
6882 * to a new cpuset; we don't want to change their CPU
6883 * affinity and isolating such threads by their set of
6884 * allowed nodes is unnecessary. Thus, cpusets are not
6885 * applicable for such threads. This prevents checking for
6886 * success of set_cpus_allowed_ptr() on all attached tasks
6887 * before cpus_mask may be changed.
6888 */
6889 if (p->flags & PF_NO_SETAFFINITY) {
6890 ret = -EINVAL;
6891 goto out;
6892 }
6893
6894 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6895 cs_effective_cpus)) {
6896 int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus);
6897
6898 if (unlikely(cpu >= nr_cpu_ids))
6899 return -EINVAL;
6900 ret = dl_cpu_busy(cpu, p);
6901 }
6902
6903 out:
6904 return ret;
6905 }
6906
6907 bool sched_smp_initialized __read_mostly;
6908
6909 #ifdef CONFIG_NUMA_BALANCING
6910 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)6911 int migrate_task_to(struct task_struct *p, int target_cpu)
6912 {
6913 struct migration_arg arg = { p, target_cpu };
6914 int curr_cpu = task_cpu(p);
6915
6916 if (curr_cpu == target_cpu)
6917 return 0;
6918
6919 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6920 return -EINVAL;
6921
6922 /* TODO: This is not properly updating schedstats */
6923
6924 trace_sched_move_numa(p, curr_cpu, target_cpu);
6925 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6926 }
6927
6928 /*
6929 * Requeue a task on a given node and accurately track the number of NUMA
6930 * tasks on the runqueues
6931 */
sched_setnuma(struct task_struct * p,int nid)6932 void sched_setnuma(struct task_struct *p, int nid)
6933 {
6934 bool queued, running;
6935 struct rq_flags rf;
6936 struct rq *rq;
6937
6938 rq = task_rq_lock(p, &rf);
6939 queued = task_on_rq_queued(p);
6940 running = task_current(rq, p);
6941
6942 if (queued)
6943 dequeue_task(rq, p, DEQUEUE_SAVE);
6944 if (running)
6945 put_prev_task(rq, p);
6946
6947 p->numa_preferred_nid = nid;
6948
6949 if (queued)
6950 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6951 if (running)
6952 set_next_task(rq, p);
6953 task_rq_unlock(rq, p, &rf);
6954 }
6955 #endif /* CONFIG_NUMA_BALANCING */
6956
6957 #ifdef CONFIG_HOTPLUG_CPU
6958 /*
6959 * Ensure that the idle task is using init_mm right before its CPU goes
6960 * offline.
6961 */
idle_task_exit(void)6962 void idle_task_exit(void)
6963 {
6964 struct mm_struct *mm = current->active_mm;
6965
6966 BUG_ON(cpu_online(smp_processor_id()));
6967 BUG_ON(current != this_rq()->idle);
6968
6969 if (mm != &init_mm) {
6970 switch_mm(mm, &init_mm, current);
6971 finish_arch_post_lock_switch();
6972 }
6973
6974 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6975 }
6976
6977 /*
6978 * Since this CPU is going 'away' for a while, fold any nr_active delta
6979 * we might have. Assumes we're called after migrate_tasks() so that the
6980 * nr_active count is stable. We need to take the teardown thread which
6981 * is calling this into account, so we hand in adjust = 1 to the load
6982 * calculation.
6983 *
6984 * Also see the comment "Global load-average calculations".
6985 */
calc_load_migrate(struct rq * rq)6986 static void calc_load_migrate(struct rq *rq)
6987 {
6988 long delta = calc_load_fold_active(rq, 1);
6989 if (delta)
6990 atomic_long_add(delta, &calc_load_tasks);
6991 }
6992
__pick_migrate_task(struct rq * rq)6993 static struct task_struct *__pick_migrate_task(struct rq *rq)
6994 {
6995 const struct sched_class *class;
6996 struct task_struct *next;
6997
6998 for_each_class(class) {
6999 next = class->pick_next_task(rq);
7000 if (next) {
7001 next->sched_class->put_prev_task(rq, next);
7002 return next;
7003 }
7004 }
7005
7006 /* The idle class should always have a runnable task */
7007 BUG();
7008 }
7009
7010 /*
7011 * Migrate all tasks from the rq, sleeping tasks will be migrated by
7012 * try_to_wake_up()->select_task_rq().
7013 *
7014 * Called with rq->lock held even though we'er in stop_machine() and
7015 * there's no concurrency possible, we hold the required locks anyway
7016 * because of lock validation efforts.
7017 *
7018 * force: if false, the function will skip CPU pinned kthreads.
7019 */
migrate_tasks(struct rq * dead_rq,struct rq_flags * rf,bool force)7020 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf, bool force)
7021 {
7022 struct rq *rq = dead_rq;
7023 struct task_struct *next, *tmp, *stop = rq->stop;
7024 LIST_HEAD(percpu_kthreads);
7025 struct rq_flags orf = *rf;
7026 int dest_cpu;
7027
7028 /*
7029 * Fudge the rq selection such that the below task selection loop
7030 * doesn't get stuck on the currently eligible stop task.
7031 *
7032 * We're currently inside stop_machine() and the rq is either stuck
7033 * in the stop_machine_cpu_stop() loop, or we're executing this code,
7034 * either way we should never end up calling schedule() until we're
7035 * done here.
7036 */
7037 rq->stop = NULL;
7038
7039 /*
7040 * put_prev_task() and pick_next_task() sched
7041 * class method both need to have an up-to-date
7042 * value of rq->clock[_task]
7043 */
7044 update_rq_clock(rq);
7045
7046 #ifdef CONFIG_SCHED_DEBUG
7047 /* note the clock update in orf */
7048 orf.clock_update_flags |= RQCF_UPDATED;
7049 #endif
7050
7051 for (;;) {
7052 /*
7053 * There's this thread running, bail when that's the only
7054 * remaining thread:
7055 */
7056 if (rq->nr_running == 1)
7057 break;
7058
7059 next = __pick_migrate_task(rq);
7060
7061 /*
7062 * Argh ... no iterator for tasks, we need to remove the
7063 * kthread from the run-queue to continue.
7064 */
7065 if (!force && is_per_cpu_kthread(next)) {
7066 INIT_LIST_HEAD(&next->percpu_kthread_node);
7067 list_add(&next->percpu_kthread_node, &percpu_kthreads);
7068
7069 /* DEQUEUE_SAVE not used due to move_entity in rt */
7070 deactivate_task(rq, next,
7071 DEQUEUE_NOCLOCK);
7072 continue;
7073 }
7074
7075 /*
7076 * Rules for changing task_struct::cpus_mask are holding
7077 * both pi_lock and rq->lock, such that holding either
7078 * stabilizes the mask.
7079 *
7080 * Drop rq->lock is not quite as disastrous as it usually is
7081 * because !cpu_active at this point, which means load-balance
7082 * will not interfere. Also, stop-machine.
7083 */
7084 rq_unlock(rq, rf);
7085 raw_spin_lock(&next->pi_lock);
7086 rq_relock(rq, rf);
7087
7088 /*
7089 * Since we're inside stop-machine, _nothing_ should have
7090 * changed the task, WARN if weird stuff happened, because in
7091 * that case the above rq->lock drop is a fail too.
7092 */
7093 if (task_rq(next) != rq || !task_on_rq_queued(next)) {
7094 /*
7095 * In the !force case, there is a hole between
7096 * rq_unlock() and rq_relock(), where another CPU might
7097 * not observe an up to date cpu_active_mask and try to
7098 * move tasks around.
7099 */
7100 WARN_ON(force);
7101 raw_spin_unlock(&next->pi_lock);
7102 continue;
7103 }
7104
7105 /* Find suitable destination for @next, with force if needed. */
7106 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
7107 rq = __migrate_task(rq, rf, next, dest_cpu);
7108 if (rq != dead_rq) {
7109 rq_unlock(rq, rf);
7110 rq = dead_rq;
7111 *rf = orf;
7112 rq_relock(rq, rf);
7113 }
7114 raw_spin_unlock(&next->pi_lock);
7115 }
7116
7117 list_for_each_entry_safe(next, tmp, &percpu_kthreads,
7118 percpu_kthread_node) {
7119
7120 /* ENQUEUE_RESTORE not used due to move_entity in rt */
7121 activate_task(rq, next, ENQUEUE_NOCLOCK);
7122 list_del(&next->percpu_kthread_node);
7123 }
7124
7125 rq->stop = stop;
7126 }
7127
drain_rq_cpu_stop(void * data)7128 static int drain_rq_cpu_stop(void *data)
7129 {
7130 struct rq *rq = this_rq();
7131 struct rq_flags rf;
7132
7133 rq_lock_irqsave(rq, &rf);
7134 migrate_tasks(rq, &rf, false);
7135 rq_unlock_irqrestore(rq, &rf);
7136
7137 return 0;
7138 }
7139
sched_cpu_drain_rq(unsigned int cpu)7140 int sched_cpu_drain_rq(unsigned int cpu)
7141 {
7142 struct cpu_stop_work *rq_drain = &(cpu_rq(cpu)->drain);
7143 struct cpu_stop_done *rq_drain_done = &(cpu_rq(cpu)->drain_done);
7144
7145 if (idle_cpu(cpu)) {
7146 rq_drain->done = NULL;
7147 return 0;
7148 }
7149
7150 return stop_one_cpu_async(cpu, drain_rq_cpu_stop, NULL, rq_drain,
7151 rq_drain_done);
7152 }
7153
sched_cpu_drain_rq_wait(unsigned int cpu)7154 void sched_cpu_drain_rq_wait(unsigned int cpu)
7155 {
7156 struct cpu_stop_work *rq_drain = &(cpu_rq(cpu)->drain);
7157
7158 if (rq_drain->done)
7159 cpu_stop_work_wait(rq_drain);
7160 }
7161 #endif /* CONFIG_HOTPLUG_CPU */
7162
set_rq_online(struct rq * rq)7163 void set_rq_online(struct rq *rq)
7164 {
7165 if (!rq->online) {
7166 const struct sched_class *class;
7167
7168 cpumask_set_cpu(rq->cpu, rq->rd->online);
7169 rq->online = 1;
7170
7171 for_each_class(class) {
7172 if (class->rq_online)
7173 class->rq_online(rq);
7174 }
7175 }
7176 }
7177
set_rq_offline(struct rq * rq)7178 void set_rq_offline(struct rq *rq)
7179 {
7180 if (rq->online) {
7181 const struct sched_class *class;
7182
7183 for_each_class(class) {
7184 if (class->rq_offline)
7185 class->rq_offline(rq);
7186 }
7187
7188 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7189 rq->online = 0;
7190 }
7191 }
7192
7193 /*
7194 * used to mark begin/end of suspend/resume:
7195 */
7196 static int num_cpus_frozen;
7197
7198 /*
7199 * Update cpusets according to cpu_active mask. If cpusets are
7200 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7201 * around partition_sched_domains().
7202 *
7203 * If we come here as part of a suspend/resume, don't touch cpusets because we
7204 * want to restore it back to its original state upon resume anyway.
7205 */
cpuset_cpu_active(void)7206 static void cpuset_cpu_active(void)
7207 {
7208 if (cpuhp_tasks_frozen) {
7209 /*
7210 * num_cpus_frozen tracks how many CPUs are involved in suspend
7211 * resume sequence. As long as this is not the last online
7212 * operation in the resume sequence, just build a single sched
7213 * domain, ignoring cpusets.
7214 */
7215 partition_sched_domains(1, NULL, NULL);
7216 if (--num_cpus_frozen)
7217 return;
7218 /*
7219 * This is the last CPU online operation. So fall through and
7220 * restore the original sched domains by considering the
7221 * cpuset configurations.
7222 */
7223 cpuset_force_rebuild();
7224 }
7225 cpuset_update_active_cpus();
7226 }
7227
cpuset_cpu_inactive(unsigned int cpu)7228 static int cpuset_cpu_inactive(unsigned int cpu)
7229 {
7230 if (!cpuhp_tasks_frozen) {
7231 int ret = dl_cpu_busy(cpu, NULL);
7232
7233 if (ret)
7234 return ret;
7235 cpuset_update_active_cpus();
7236 } else {
7237 num_cpus_frozen++;
7238 partition_sched_domains(1, NULL, NULL);
7239 }
7240 return 0;
7241 }
7242
sched_cpu_activate(unsigned int cpu)7243 int sched_cpu_activate(unsigned int cpu)
7244 {
7245 struct rq *rq = cpu_rq(cpu);
7246 struct rq_flags rf;
7247
7248 #ifdef CONFIG_SCHED_SMT
7249 /*
7250 * When going up, increment the number of cores with SMT present.
7251 */
7252 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7253 static_branch_inc_cpuslocked(&sched_smt_present);
7254 #endif
7255 set_cpu_active(cpu, true);
7256
7257 if (sched_smp_initialized) {
7258 sched_domains_numa_masks_set(cpu);
7259 cpuset_cpu_active();
7260 }
7261
7262 /*
7263 * Put the rq online, if not already. This happens:
7264 *
7265 * 1) In the early boot process, because we build the real domains
7266 * after all CPUs have been brought up.
7267 *
7268 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7269 * domains.
7270 */
7271 rq_lock_irqsave(rq, &rf);
7272 if (rq->rd) {
7273 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7274 set_rq_online(rq);
7275 }
7276 rq_unlock_irqrestore(rq, &rf);
7277
7278 update_max_interval();
7279
7280 return 0;
7281 }
7282
sched_cpus_activate(struct cpumask * cpus)7283 int sched_cpus_activate(struct cpumask *cpus)
7284 {
7285 unsigned int cpu;
7286
7287 for_each_cpu(cpu, cpus) {
7288 if (sched_cpu_activate(cpu)) {
7289 for_each_cpu_and(cpu, cpus, cpu_active_mask)
7290 sched_cpu_deactivate(cpu);
7291
7292 return -EBUSY;
7293 }
7294 }
7295
7296 return 0;
7297 }
7298
_sched_cpu_deactivate(unsigned int cpu)7299 int _sched_cpu_deactivate(unsigned int cpu)
7300 {
7301 int ret;
7302
7303 set_cpu_active(cpu, false);
7304
7305 #ifdef CONFIG_SCHED_SMT
7306 /*
7307 * When going down, decrement the number of cores with SMT present.
7308 */
7309 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7310 static_branch_dec_cpuslocked(&sched_smt_present);
7311 #endif
7312
7313 if (!sched_smp_initialized)
7314 return 0;
7315
7316 ret = cpuset_cpu_inactive(cpu);
7317 if (ret) {
7318 set_cpu_active(cpu, true);
7319 return ret;
7320 }
7321 sched_domains_numa_masks_clear(cpu);
7322
7323 update_max_interval();
7324
7325 return 0;
7326 }
7327
sched_cpu_deactivate(unsigned int cpu)7328 int sched_cpu_deactivate(unsigned int cpu)
7329 {
7330 int ret = _sched_cpu_deactivate(cpu);
7331
7332 if (ret)
7333 return ret;
7334
7335 /*
7336 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7337 * users of this state to go away such that all new such users will
7338 * observe it.
7339 *
7340 * Do sync before park smpboot threads to take care the rcu boost case.
7341 */
7342 synchronize_rcu();
7343
7344 return 0;
7345 }
7346
sched_cpus_deactivate_nosync(struct cpumask * cpus)7347 int sched_cpus_deactivate_nosync(struct cpumask *cpus)
7348 {
7349 unsigned int cpu;
7350
7351 for_each_cpu(cpu, cpus) {
7352 if (_sched_cpu_deactivate(cpu)) {
7353 for_each_cpu(cpu, cpus) {
7354 if (!cpu_active(cpu))
7355 sched_cpu_activate(cpu);
7356 }
7357
7358 return -EBUSY;
7359 }
7360 }
7361
7362 return 0;
7363 }
7364
sched_rq_cpu_starting(unsigned int cpu)7365 static void sched_rq_cpu_starting(unsigned int cpu)
7366 {
7367 struct rq *rq = cpu_rq(cpu);
7368
7369 rq->calc_load_update = calc_load_update;
7370 }
7371
sched_cpu_starting(unsigned int cpu)7372 int sched_cpu_starting(unsigned int cpu)
7373 {
7374 sched_rq_cpu_starting(cpu);
7375 sched_tick_start(cpu);
7376 trace_android_rvh_sched_cpu_starting(cpu);
7377 return 0;
7378 }
7379
7380 #ifdef CONFIG_HOTPLUG_CPU
sched_cpu_dying(unsigned int cpu)7381 int sched_cpu_dying(unsigned int cpu)
7382 {
7383 struct rq *rq = cpu_rq(cpu);
7384 struct rq_flags rf;
7385
7386 /* Handle pending wakeups and then migrate everything off */
7387 sched_tick_stop(cpu);
7388
7389 rq_lock_irqsave(rq, &rf);
7390 if (rq->rd) {
7391 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7392 set_rq_offline(rq);
7393 }
7394 migrate_tasks(rq, &rf, true);
7395 BUG_ON(rq->nr_running != 1);
7396 rq_unlock_irqrestore(rq, &rf);
7397
7398 trace_android_rvh_sched_cpu_dying(cpu);
7399
7400 calc_load_migrate(rq);
7401 nohz_balance_exit_idle(rq);
7402 hrtick_clear(rq);
7403 return 0;
7404 }
7405 #endif
7406
sched_init_smp(void)7407 void __init sched_init_smp(void)
7408 {
7409 sched_init_numa();
7410
7411 /*
7412 * There's no userspace yet to cause hotplug operations; hence all the
7413 * CPU masks are stable and all blatant races in the below code cannot
7414 * happen.
7415 */
7416 mutex_lock(&sched_domains_mutex);
7417 sched_init_domains(cpu_active_mask);
7418 mutex_unlock(&sched_domains_mutex);
7419
7420 /* Move init over to a non-isolated CPU */
7421 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7422 BUG();
7423
7424 sched_init_granularity();
7425
7426 init_sched_rt_class();
7427 init_sched_dl_class();
7428
7429 sched_smp_initialized = true;
7430 }
7431
migration_init(void)7432 static int __init migration_init(void)
7433 {
7434 sched_cpu_starting(smp_processor_id());
7435 return 0;
7436 }
7437 early_initcall(migration_init);
7438
7439 #else
sched_init_smp(void)7440 void __init sched_init_smp(void)
7441 {
7442 sched_init_granularity();
7443 }
7444 #endif /* CONFIG_SMP */
7445
in_sched_functions(unsigned long addr)7446 int in_sched_functions(unsigned long addr)
7447 {
7448 return in_lock_functions(addr) ||
7449 (addr >= (unsigned long)__sched_text_start
7450 && addr < (unsigned long)__sched_text_end);
7451 }
7452
7453 #ifdef CONFIG_CGROUP_SCHED
7454 /*
7455 * Default task group.
7456 * Every task in system belongs to this group at bootup.
7457 */
7458 struct task_group root_task_group;
7459 EXPORT_SYMBOL_GPL(root_task_group);
7460 LIST_HEAD(task_groups);
7461 EXPORT_SYMBOL_GPL(task_groups);
7462
7463 /* Cacheline aligned slab cache for task_group */
7464 static struct kmem_cache *task_group_cache __read_mostly;
7465 #endif
7466
7467 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7468 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7469
sched_init(void)7470 void __init sched_init(void)
7471 {
7472 unsigned long ptr = 0;
7473 int i;
7474
7475 /* Make sure the linker didn't screw up */
7476 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7477 &fair_sched_class + 1 != &rt_sched_class ||
7478 &rt_sched_class + 1 != &dl_sched_class);
7479 #ifdef CONFIG_SMP
7480 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7481 #endif
7482
7483 wait_bit_init();
7484
7485 #ifdef CONFIG_FAIR_GROUP_SCHED
7486 ptr += 2 * nr_cpu_ids * sizeof(void **);
7487 #endif
7488 #ifdef CONFIG_RT_GROUP_SCHED
7489 ptr += 2 * nr_cpu_ids * sizeof(void **);
7490 #endif
7491 if (ptr) {
7492 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7493
7494 #ifdef CONFIG_FAIR_GROUP_SCHED
7495 root_task_group.se = (struct sched_entity **)ptr;
7496 ptr += nr_cpu_ids * sizeof(void **);
7497
7498 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7499 ptr += nr_cpu_ids * sizeof(void **);
7500
7501 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7502 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7503 #endif /* CONFIG_FAIR_GROUP_SCHED */
7504 #ifdef CONFIG_RT_GROUP_SCHED
7505 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7506 ptr += nr_cpu_ids * sizeof(void **);
7507
7508 root_task_group.rt_rq = (struct rt_rq **)ptr;
7509 ptr += nr_cpu_ids * sizeof(void **);
7510
7511 #endif /* CONFIG_RT_GROUP_SCHED */
7512 }
7513 #ifdef CONFIG_CPUMASK_OFFSTACK
7514 for_each_possible_cpu(i) {
7515 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7516 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7517 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7518 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7519 }
7520 #endif /* CONFIG_CPUMASK_OFFSTACK */
7521
7522 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7523 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
7524
7525 #ifdef CONFIG_SMP
7526 init_defrootdomain();
7527 #endif
7528
7529 #ifdef CONFIG_RT_GROUP_SCHED
7530 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7531 global_rt_period(), global_rt_runtime());
7532 #endif /* CONFIG_RT_GROUP_SCHED */
7533
7534 #ifdef CONFIG_CGROUP_SCHED
7535 task_group_cache = KMEM_CACHE(task_group, 0);
7536
7537 list_add(&root_task_group.list, &task_groups);
7538 INIT_LIST_HEAD(&root_task_group.children);
7539 INIT_LIST_HEAD(&root_task_group.siblings);
7540 autogroup_init(&init_task);
7541 #endif /* CONFIG_CGROUP_SCHED */
7542
7543 for_each_possible_cpu(i) {
7544 struct rq *rq;
7545
7546 rq = cpu_rq(i);
7547 raw_spin_lock_init(&rq->lock);
7548 rq->nr_running = 0;
7549 rq->calc_load_active = 0;
7550 rq->calc_load_update = jiffies + LOAD_FREQ;
7551 init_cfs_rq(&rq->cfs);
7552 init_rt_rq(&rq->rt);
7553 init_dl_rq(&rq->dl);
7554 #ifdef CONFIG_FAIR_GROUP_SCHED
7555 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7556 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7557 /*
7558 * How much CPU bandwidth does root_task_group get?
7559 *
7560 * In case of task-groups formed thr' the cgroup filesystem, it
7561 * gets 100% of the CPU resources in the system. This overall
7562 * system CPU resource is divided among the tasks of
7563 * root_task_group and its child task-groups in a fair manner,
7564 * based on each entity's (task or task-group's) weight
7565 * (se->load.weight).
7566 *
7567 * In other words, if root_task_group has 10 tasks of weight
7568 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7569 * then A0's share of the CPU resource is:
7570 *
7571 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7572 *
7573 * We achieve this by letting root_task_group's tasks sit
7574 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7575 */
7576 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7577 #endif /* CONFIG_FAIR_GROUP_SCHED */
7578
7579 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7580 #ifdef CONFIG_RT_GROUP_SCHED
7581 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7582 #endif
7583 #ifdef CONFIG_SMP
7584 rq->sd = NULL;
7585 rq->rd = NULL;
7586 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7587 rq->balance_callback = NULL;
7588 rq->active_balance = 0;
7589 rq->next_balance = jiffies;
7590 rq->push_cpu = 0;
7591 rq->cpu = i;
7592 rq->online = 0;
7593 rq->idle_stamp = 0;
7594 rq->avg_idle = 2*sysctl_sched_migration_cost;
7595 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7596
7597 INIT_LIST_HEAD(&rq->cfs_tasks);
7598
7599 rq_attach_root(rq, &def_root_domain);
7600 #ifdef CONFIG_NO_HZ_COMMON
7601 rq->last_blocked_load_update_tick = jiffies;
7602 atomic_set(&rq->nohz_flags, 0);
7603
7604 rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
7605 #endif
7606 #endif /* CONFIG_SMP */
7607 hrtick_rq_init(rq);
7608 atomic_set(&rq->nr_iowait, 0);
7609 }
7610
7611 set_load_weight(&init_task);
7612
7613 /*
7614 * The boot idle thread does lazy MMU switching as well:
7615 */
7616 mmgrab(&init_mm);
7617 enter_lazy_tlb(&init_mm, current);
7618
7619 /*
7620 * Make us the idle thread. Technically, schedule() should not be
7621 * called from this thread, however somewhere below it might be,
7622 * but because we are the idle thread, we just pick up running again
7623 * when this runqueue becomes "idle".
7624 */
7625 init_idle(current, smp_processor_id());
7626
7627 calc_load_update = jiffies + LOAD_FREQ;
7628
7629 #ifdef CONFIG_SMP
7630 idle_thread_set_boot_cpu();
7631 #endif
7632 init_sched_fair_class();
7633
7634 init_schedstats();
7635
7636 psi_init();
7637
7638 init_uclamp();
7639
7640 scheduler_running = 1;
7641 }
7642
7643 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
preempt_count_equals(int preempt_offset)7644 static inline int preempt_count_equals(int preempt_offset)
7645 {
7646 int nested = preempt_count() + rcu_preempt_depth();
7647
7648 return (nested == preempt_offset);
7649 }
7650
__might_sleep(const char * file,int line,int preempt_offset)7651 void __might_sleep(const char *file, int line, int preempt_offset)
7652 {
7653 /*
7654 * Blocking primitives will set (and therefore destroy) current->state,
7655 * since we will exit with TASK_RUNNING make sure we enter with it,
7656 * otherwise we will destroy state.
7657 */
7658 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7659 "do not call blocking ops when !TASK_RUNNING; "
7660 "state=%lx set at [<%p>] %pS\n",
7661 current->state,
7662 (void *)current->task_state_change,
7663 (void *)current->task_state_change);
7664
7665 ___might_sleep(file, line, preempt_offset);
7666 }
7667 EXPORT_SYMBOL(__might_sleep);
7668
___might_sleep(const char * file,int line,int preempt_offset)7669 void ___might_sleep(const char *file, int line, int preempt_offset)
7670 {
7671 /* Ratelimiting timestamp: */
7672 static unsigned long prev_jiffy;
7673
7674 unsigned long preempt_disable_ip;
7675
7676 /* WARN_ON_ONCE() by default, no rate limit required: */
7677 rcu_sleep_check();
7678
7679 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7680 !is_idle_task(current) && !current->non_block_count) ||
7681 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7682 oops_in_progress)
7683 return;
7684
7685 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7686 return;
7687 prev_jiffy = jiffies;
7688
7689 /* Save this before calling printk(), since that will clobber it: */
7690 preempt_disable_ip = get_preempt_disable_ip(current);
7691
7692 printk(KERN_ERR
7693 "BUG: sleeping function called from invalid context at %s:%d\n",
7694 file, line);
7695 printk(KERN_ERR
7696 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7697 in_atomic(), irqs_disabled(), current->non_block_count,
7698 current->pid, current->comm);
7699
7700 if (task_stack_end_corrupted(current))
7701 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7702
7703 debug_show_held_locks(current);
7704 if (irqs_disabled())
7705 print_irqtrace_events(current);
7706 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7707 && !preempt_count_equals(preempt_offset)) {
7708 pr_err("Preemption disabled at:");
7709 print_ip_sym(KERN_ERR, preempt_disable_ip);
7710 }
7711
7712 trace_android_rvh_schedule_bug(NULL);
7713
7714 dump_stack();
7715 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7716 }
7717 EXPORT_SYMBOL(___might_sleep);
7718
__cant_sleep(const char * file,int line,int preempt_offset)7719 void __cant_sleep(const char *file, int line, int preempt_offset)
7720 {
7721 static unsigned long prev_jiffy;
7722
7723 if (irqs_disabled())
7724 return;
7725
7726 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7727 return;
7728
7729 if (preempt_count() > preempt_offset)
7730 return;
7731
7732 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7733 return;
7734 prev_jiffy = jiffies;
7735
7736 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7737 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7738 in_atomic(), irqs_disabled(),
7739 current->pid, current->comm);
7740
7741 debug_show_held_locks(current);
7742 dump_stack();
7743 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7744 }
7745 EXPORT_SYMBOL_GPL(__cant_sleep);
7746 #endif
7747
7748 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)7749 void normalize_rt_tasks(void)
7750 {
7751 struct task_struct *g, *p;
7752 struct sched_attr attr = {
7753 .sched_policy = SCHED_NORMAL,
7754 };
7755
7756 read_lock(&tasklist_lock);
7757 for_each_process_thread(g, p) {
7758 /*
7759 * Only normalize user tasks:
7760 */
7761 if (p->flags & PF_KTHREAD)
7762 continue;
7763
7764 p->se.exec_start = 0;
7765 schedstat_set(p->se.statistics.wait_start, 0);
7766 schedstat_set(p->se.statistics.sleep_start, 0);
7767 schedstat_set(p->se.statistics.block_start, 0);
7768
7769 if (!dl_task(p) && !rt_task(p)) {
7770 /*
7771 * Renice negative nice level userspace
7772 * tasks back to 0:
7773 */
7774 if (task_nice(p) < 0)
7775 set_user_nice(p, 0);
7776 continue;
7777 }
7778
7779 __sched_setscheduler(p, &attr, false, false);
7780 }
7781 read_unlock(&tasklist_lock);
7782 }
7783
7784 #endif /* CONFIG_MAGIC_SYSRQ */
7785
7786 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7787 /*
7788 * These functions are only useful for the IA64 MCA handling, or kdb.
7789 *
7790 * They can only be called when the whole system has been
7791 * stopped - every CPU needs to be quiescent, and no scheduling
7792 * activity can take place. Using them for anything else would
7793 * be a serious bug, and as a result, they aren't even visible
7794 * under any other configuration.
7795 */
7796
7797 /**
7798 * curr_task - return the current task for a given CPU.
7799 * @cpu: the processor in question.
7800 *
7801 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7802 *
7803 * Return: The current task for @cpu.
7804 */
curr_task(int cpu)7805 struct task_struct *curr_task(int cpu)
7806 {
7807 return cpu_curr(cpu);
7808 }
7809
7810 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7811
7812 #ifdef CONFIG_IA64
7813 /**
7814 * ia64_set_curr_task - set the current task for a given CPU.
7815 * @cpu: the processor in question.
7816 * @p: the task pointer to set.
7817 *
7818 * Description: This function must only be used when non-maskable interrupts
7819 * are serviced on a separate stack. It allows the architecture to switch the
7820 * notion of the current task on a CPU in a non-blocking manner. This function
7821 * must be called with all CPU's synchronized, and interrupts disabled, the
7822 * and caller must save the original value of the current task (see
7823 * curr_task() above) and restore that value before reenabling interrupts and
7824 * re-starting the system.
7825 *
7826 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7827 */
ia64_set_curr_task(int cpu,struct task_struct * p)7828 void ia64_set_curr_task(int cpu, struct task_struct *p)
7829 {
7830 cpu_curr(cpu) = p;
7831 }
7832
7833 #endif
7834
7835 #ifdef CONFIG_CGROUP_SCHED
7836 /* task_group_lock serializes the addition/removal of task groups */
7837 static DEFINE_SPINLOCK(task_group_lock);
7838
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)7839 static inline void alloc_uclamp_sched_group(struct task_group *tg,
7840 struct task_group *parent)
7841 {
7842 #ifdef CONFIG_UCLAMP_TASK_GROUP
7843 enum uclamp_id clamp_id;
7844
7845 for_each_clamp_id(clamp_id) {
7846 uclamp_se_set(&tg->uclamp_req[clamp_id],
7847 uclamp_none(clamp_id), false);
7848 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
7849 }
7850 #endif
7851 }
7852
sched_free_group(struct task_group * tg)7853 static void sched_free_group(struct task_group *tg)
7854 {
7855 free_fair_sched_group(tg);
7856 free_rt_sched_group(tg);
7857 autogroup_free(tg);
7858 kmem_cache_free(task_group_cache, tg);
7859 }
7860
7861 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)7862 struct task_group *sched_create_group(struct task_group *parent)
7863 {
7864 struct task_group *tg;
7865
7866 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7867 if (!tg)
7868 return ERR_PTR(-ENOMEM);
7869
7870 if (!alloc_fair_sched_group(tg, parent))
7871 goto err;
7872
7873 if (!alloc_rt_sched_group(tg, parent))
7874 goto err;
7875
7876 alloc_uclamp_sched_group(tg, parent);
7877
7878 return tg;
7879
7880 err:
7881 sched_free_group(tg);
7882 return ERR_PTR(-ENOMEM);
7883 }
7884
sched_online_group(struct task_group * tg,struct task_group * parent)7885 void sched_online_group(struct task_group *tg, struct task_group *parent)
7886 {
7887 unsigned long flags;
7888
7889 spin_lock_irqsave(&task_group_lock, flags);
7890 list_add_rcu(&tg->list, &task_groups);
7891
7892 /* Root should already exist: */
7893 WARN_ON(!parent);
7894
7895 tg->parent = parent;
7896 INIT_LIST_HEAD(&tg->children);
7897 list_add_rcu(&tg->siblings, &parent->children);
7898 spin_unlock_irqrestore(&task_group_lock, flags);
7899
7900 online_fair_sched_group(tg);
7901 }
7902
7903 /* rcu callback to free various structures associated with a task group */
sched_free_group_rcu(struct rcu_head * rhp)7904 static void sched_free_group_rcu(struct rcu_head *rhp)
7905 {
7906 /* Now it should be safe to free those cfs_rqs: */
7907 sched_free_group(container_of(rhp, struct task_group, rcu));
7908 }
7909
sched_destroy_group(struct task_group * tg)7910 void sched_destroy_group(struct task_group *tg)
7911 {
7912 /* Wait for possible concurrent references to cfs_rqs complete: */
7913 call_rcu(&tg->rcu, sched_free_group_rcu);
7914 }
7915
sched_offline_group(struct task_group * tg)7916 void sched_offline_group(struct task_group *tg)
7917 {
7918 unsigned long flags;
7919
7920 /* End participation in shares distribution: */
7921 unregister_fair_sched_group(tg);
7922
7923 spin_lock_irqsave(&task_group_lock, flags);
7924 list_del_rcu(&tg->list);
7925 list_del_rcu(&tg->siblings);
7926 spin_unlock_irqrestore(&task_group_lock, flags);
7927 }
7928
sched_change_group(struct task_struct * tsk,int type)7929 static void sched_change_group(struct task_struct *tsk, int type)
7930 {
7931 struct task_group *tg;
7932
7933 /*
7934 * All callers are synchronized by task_rq_lock(); we do not use RCU
7935 * which is pointless here. Thus, we pass "true" to task_css_check()
7936 * to prevent lockdep warnings.
7937 */
7938 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7939 struct task_group, css);
7940 tg = autogroup_task_group(tsk, tg);
7941 tsk->sched_task_group = tg;
7942
7943 #ifdef CONFIG_FAIR_GROUP_SCHED
7944 if (tsk->sched_class->task_change_group)
7945 tsk->sched_class->task_change_group(tsk, type);
7946 else
7947 #endif
7948 set_task_rq(tsk, task_cpu(tsk));
7949 }
7950
7951 /*
7952 * Change task's runqueue when it moves between groups.
7953 *
7954 * The caller of this function should have put the task in its new group by
7955 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7956 * its new group.
7957 */
sched_move_task(struct task_struct * tsk)7958 void sched_move_task(struct task_struct *tsk)
7959 {
7960 int queued, running, queue_flags =
7961 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7962 struct rq_flags rf;
7963 struct rq *rq;
7964
7965 rq = task_rq_lock(tsk, &rf);
7966 update_rq_clock(rq);
7967
7968 running = task_current(rq, tsk);
7969 queued = task_on_rq_queued(tsk);
7970
7971 if (queued)
7972 dequeue_task(rq, tsk, queue_flags);
7973 if (running)
7974 put_prev_task(rq, tsk);
7975
7976 sched_change_group(tsk, TASK_MOVE_GROUP);
7977
7978 if (queued)
7979 enqueue_task(rq, tsk, queue_flags);
7980 if (running) {
7981 set_next_task(rq, tsk);
7982 /*
7983 * After changing group, the running task may have joined a
7984 * throttled one but it's still the running task. Trigger a
7985 * resched to make sure that task can still run.
7986 */
7987 resched_curr(rq);
7988 }
7989
7990 task_rq_unlock(rq, tsk, &rf);
7991 }
7992
css_tg(struct cgroup_subsys_state * css)7993 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7994 {
7995 return css ? container_of(css, struct task_group, css) : NULL;
7996 }
7997
7998 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)7999 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8000 {
8001 struct task_group *parent = css_tg(parent_css);
8002 struct task_group *tg;
8003
8004 if (!parent) {
8005 /* This is early initialization for the top cgroup */
8006 return &root_task_group.css;
8007 }
8008
8009 tg = sched_create_group(parent);
8010 if (IS_ERR(tg))
8011 return ERR_PTR(-ENOMEM);
8012
8013 return &tg->css;
8014 }
8015
8016 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)8017 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8018 {
8019 struct task_group *tg = css_tg(css);
8020 struct task_group *parent = css_tg(css->parent);
8021
8022 if (parent)
8023 sched_online_group(tg, parent);
8024
8025 #ifdef CONFIG_UCLAMP_TASK_GROUP
8026 /* Propagate the effective uclamp value for the new group */
8027 mutex_lock(&uclamp_mutex);
8028 rcu_read_lock();
8029 cpu_util_update_eff(css);
8030 rcu_read_unlock();
8031 mutex_unlock(&uclamp_mutex);
8032 #endif
8033
8034 trace_android_rvh_cpu_cgroup_online(css);
8035 return 0;
8036 }
8037
cpu_cgroup_css_released(struct cgroup_subsys_state * css)8038 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8039 {
8040 struct task_group *tg = css_tg(css);
8041
8042 sched_offline_group(tg);
8043 }
8044
cpu_cgroup_css_free(struct cgroup_subsys_state * css)8045 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8046 {
8047 struct task_group *tg = css_tg(css);
8048
8049 /*
8050 * Relies on the RCU grace period between css_released() and this.
8051 */
8052 sched_free_group(tg);
8053 }
8054
8055 /*
8056 * This is called before wake_up_new_task(), therefore we really only
8057 * have to set its group bits, all the other stuff does not apply.
8058 */
cpu_cgroup_fork(struct task_struct * task)8059 static void cpu_cgroup_fork(struct task_struct *task)
8060 {
8061 struct rq_flags rf;
8062 struct rq *rq;
8063
8064 rq = task_rq_lock(task, &rf);
8065
8066 update_rq_clock(rq);
8067 sched_change_group(task, TASK_SET_GROUP);
8068
8069 task_rq_unlock(rq, task, &rf);
8070 }
8071
cpu_cgroup_can_attach(struct cgroup_taskset * tset)8072 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8073 {
8074 struct task_struct *task;
8075 struct cgroup_subsys_state *css;
8076 int ret = 0;
8077
8078 cgroup_taskset_for_each(task, css, tset) {
8079 #ifdef CONFIG_RT_GROUP_SCHED
8080 if (!sched_rt_can_attach(css_tg(css), task))
8081 return -EINVAL;
8082 #endif
8083 /*
8084 * Serialize against wake_up_new_task() such that if its
8085 * running, we're sure to observe its full state.
8086 */
8087 raw_spin_lock_irq(&task->pi_lock);
8088 /*
8089 * Avoid calling sched_move_task() before wake_up_new_task()
8090 * has happened. This would lead to problems with PELT, due to
8091 * move wanting to detach+attach while we're not attached yet.
8092 */
8093 if (task->state == TASK_NEW)
8094 ret = -EINVAL;
8095 raw_spin_unlock_irq(&task->pi_lock);
8096
8097 if (ret)
8098 break;
8099 }
8100
8101 trace_android_rvh_cpu_cgroup_can_attach(tset, &ret);
8102
8103 return ret;
8104 }
8105
cpu_cgroup_attach(struct cgroup_taskset * tset)8106 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8107 {
8108 struct task_struct *task;
8109 struct cgroup_subsys_state *css;
8110
8111 cgroup_taskset_for_each(task, css, tset)
8112 sched_move_task(task);
8113
8114 trace_android_rvh_cpu_cgroup_attach(tset);
8115 }
8116
8117 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)8118 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8119 {
8120 struct cgroup_subsys_state *top_css = css;
8121 struct uclamp_se *uc_parent = NULL;
8122 struct uclamp_se *uc_se = NULL;
8123 unsigned int eff[UCLAMP_CNT];
8124 enum uclamp_id clamp_id;
8125 unsigned int clamps;
8126
8127 lockdep_assert_held(&uclamp_mutex);
8128 SCHED_WARN_ON(!rcu_read_lock_held());
8129
8130 css_for_each_descendant_pre(css, top_css) {
8131 uc_parent = css_tg(css)->parent
8132 ? css_tg(css)->parent->uclamp : NULL;
8133
8134 for_each_clamp_id(clamp_id) {
8135 /* Assume effective clamps matches requested clamps */
8136 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8137 /* Cap effective clamps with parent's effective clamps */
8138 if (uc_parent &&
8139 eff[clamp_id] > uc_parent[clamp_id].value) {
8140 eff[clamp_id] = uc_parent[clamp_id].value;
8141 }
8142 }
8143 /* Ensure protection is always capped by limit */
8144 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8145
8146 /* Propagate most restrictive effective clamps */
8147 clamps = 0x0;
8148 uc_se = css_tg(css)->uclamp;
8149 for_each_clamp_id(clamp_id) {
8150 if (eff[clamp_id] == uc_se[clamp_id].value)
8151 continue;
8152 uc_se[clamp_id].value = eff[clamp_id];
8153 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8154 clamps |= (0x1 << clamp_id);
8155 }
8156 if (!clamps) {
8157 css = css_rightmost_descendant(css);
8158 continue;
8159 }
8160
8161 /* Immediately update descendants RUNNABLE tasks */
8162 uclamp_update_active_tasks(css);
8163 }
8164 }
8165
8166 /*
8167 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8168 * C expression. Since there is no way to convert a macro argument (N) into a
8169 * character constant, use two levels of macros.
8170 */
8171 #define _POW10(exp) ((unsigned int)1e##exp)
8172 #define POW10(exp) _POW10(exp)
8173
8174 struct uclamp_request {
8175 #define UCLAMP_PERCENT_SHIFT 2
8176 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
8177 s64 percent;
8178 u64 util;
8179 int ret;
8180 };
8181
8182 static inline struct uclamp_request
capacity_from_percent(char * buf)8183 capacity_from_percent(char *buf)
8184 {
8185 struct uclamp_request req = {
8186 .percent = UCLAMP_PERCENT_SCALE,
8187 .util = SCHED_CAPACITY_SCALE,
8188 .ret = 0,
8189 };
8190
8191 buf = strim(buf);
8192 if (strcmp(buf, "max")) {
8193 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8194 &req.percent);
8195 if (req.ret)
8196 return req;
8197 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
8198 req.ret = -ERANGE;
8199 return req;
8200 }
8201
8202 req.util = req.percent << SCHED_CAPACITY_SHIFT;
8203 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8204 }
8205
8206 return req;
8207 }
8208
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)8209 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8210 size_t nbytes, loff_t off,
8211 enum uclamp_id clamp_id)
8212 {
8213 struct uclamp_request req;
8214 struct task_group *tg;
8215
8216 req = capacity_from_percent(buf);
8217 if (req.ret)
8218 return req.ret;
8219
8220 static_branch_enable(&sched_uclamp_used);
8221
8222 mutex_lock(&uclamp_mutex);
8223 rcu_read_lock();
8224
8225 tg = css_tg(of_css(of));
8226 if (tg->uclamp_req[clamp_id].value != req.util)
8227 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8228
8229 /*
8230 * Because of not recoverable conversion rounding we keep track of the
8231 * exact requested value
8232 */
8233 tg->uclamp_pct[clamp_id] = req.percent;
8234
8235 /* Update effective clamps to track the most restrictive value */
8236 cpu_util_update_eff(of_css(of));
8237
8238 rcu_read_unlock();
8239 mutex_unlock(&uclamp_mutex);
8240
8241 return nbytes;
8242 }
8243
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)8244 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8245 char *buf, size_t nbytes,
8246 loff_t off)
8247 {
8248 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8249 }
8250
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)8251 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8252 char *buf, size_t nbytes,
8253 loff_t off)
8254 {
8255 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8256 }
8257
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)8258 static inline void cpu_uclamp_print(struct seq_file *sf,
8259 enum uclamp_id clamp_id)
8260 {
8261 struct task_group *tg;
8262 u64 util_clamp;
8263 u64 percent;
8264 u32 rem;
8265
8266 rcu_read_lock();
8267 tg = css_tg(seq_css(sf));
8268 util_clamp = tg->uclamp_req[clamp_id].value;
8269 rcu_read_unlock();
8270
8271 if (util_clamp == SCHED_CAPACITY_SCALE) {
8272 seq_puts(sf, "max\n");
8273 return;
8274 }
8275
8276 percent = tg->uclamp_pct[clamp_id];
8277 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8278 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8279 }
8280
cpu_uclamp_min_show(struct seq_file * sf,void * v)8281 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8282 {
8283 cpu_uclamp_print(sf, UCLAMP_MIN);
8284 return 0;
8285 }
8286
cpu_uclamp_max_show(struct seq_file * sf,void * v)8287 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8288 {
8289 cpu_uclamp_print(sf, UCLAMP_MAX);
8290 return 0;
8291 }
8292
cpu_uclamp_ls_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 ls)8293 static int cpu_uclamp_ls_write_u64(struct cgroup_subsys_state *css,
8294 struct cftype *cftype, u64 ls)
8295 {
8296 struct task_group *tg;
8297
8298 if (ls > 1)
8299 return -EINVAL;
8300 tg = css_tg(css);
8301 tg->latency_sensitive = (unsigned int) ls;
8302
8303 return 0;
8304 }
8305
cpu_uclamp_ls_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8306 static u64 cpu_uclamp_ls_read_u64(struct cgroup_subsys_state *css,
8307 struct cftype *cft)
8308 {
8309 struct task_group *tg = css_tg(css);
8310
8311 return (u64) tg->latency_sensitive;
8312 }
8313 #endif /* CONFIG_UCLAMP_TASK_GROUP */
8314
8315 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)8316 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8317 struct cftype *cftype, u64 shareval)
8318 {
8319 if (shareval > scale_load_down(ULONG_MAX))
8320 shareval = MAX_SHARES;
8321 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8322 }
8323
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8324 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8325 struct cftype *cft)
8326 {
8327 struct task_group *tg = css_tg(css);
8328
8329 return (u64) scale_load_down(tg->shares);
8330 }
8331
8332 #ifdef CONFIG_CFS_BANDWIDTH
8333 static DEFINE_MUTEX(cfs_constraints_mutex);
8334
8335 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8336 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8337 /* More than 203 days if BW_SHIFT equals 20. */
8338 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
8339
8340 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8341
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota)8342 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8343 {
8344 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8345 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8346
8347 if (tg == &root_task_group)
8348 return -EINVAL;
8349
8350 /*
8351 * Ensure we have at some amount of bandwidth every period. This is
8352 * to prevent reaching a state of large arrears when throttled via
8353 * entity_tick() resulting in prolonged exit starvation.
8354 */
8355 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8356 return -EINVAL;
8357
8358 /*
8359 * Likewise, bound things on the otherside by preventing insane quota
8360 * periods. This also allows us to normalize in computing quota
8361 * feasibility.
8362 */
8363 if (period > max_cfs_quota_period)
8364 return -EINVAL;
8365
8366 /*
8367 * Bound quota to defend quota against overflow during bandwidth shift.
8368 */
8369 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8370 return -EINVAL;
8371
8372 /*
8373 * Prevent race between setting of cfs_rq->runtime_enabled and
8374 * unthrottle_offline_cfs_rqs().
8375 */
8376 get_online_cpus();
8377 mutex_lock(&cfs_constraints_mutex);
8378 ret = __cfs_schedulable(tg, period, quota);
8379 if (ret)
8380 goto out_unlock;
8381
8382 runtime_enabled = quota != RUNTIME_INF;
8383 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8384 /*
8385 * If we need to toggle cfs_bandwidth_used, off->on must occur
8386 * before making related changes, and on->off must occur afterwards
8387 */
8388 if (runtime_enabled && !runtime_was_enabled)
8389 cfs_bandwidth_usage_inc();
8390 raw_spin_lock_irq(&cfs_b->lock);
8391 cfs_b->period = ns_to_ktime(period);
8392 cfs_b->quota = quota;
8393
8394 __refill_cfs_bandwidth_runtime(cfs_b);
8395
8396 /* Restart the period timer (if active) to handle new period expiry: */
8397 if (runtime_enabled)
8398 start_cfs_bandwidth(cfs_b);
8399
8400 raw_spin_unlock_irq(&cfs_b->lock);
8401
8402 for_each_online_cpu(i) {
8403 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8404 struct rq *rq = cfs_rq->rq;
8405 struct rq_flags rf;
8406
8407 rq_lock_irq(rq, &rf);
8408 cfs_rq->runtime_enabled = runtime_enabled;
8409 cfs_rq->runtime_remaining = 0;
8410
8411 if (cfs_rq->throttled)
8412 unthrottle_cfs_rq(cfs_rq);
8413 rq_unlock_irq(rq, &rf);
8414 }
8415 if (runtime_was_enabled && !runtime_enabled)
8416 cfs_bandwidth_usage_dec();
8417 out_unlock:
8418 mutex_unlock(&cfs_constraints_mutex);
8419 put_online_cpus();
8420
8421 return ret;
8422 }
8423
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)8424 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8425 {
8426 u64 quota, period;
8427
8428 period = ktime_to_ns(tg->cfs_bandwidth.period);
8429 if (cfs_quota_us < 0)
8430 quota = RUNTIME_INF;
8431 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
8432 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8433 else
8434 return -EINVAL;
8435
8436 return tg_set_cfs_bandwidth(tg, period, quota);
8437 }
8438
tg_get_cfs_quota(struct task_group * tg)8439 static long tg_get_cfs_quota(struct task_group *tg)
8440 {
8441 u64 quota_us;
8442
8443 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8444 return -1;
8445
8446 quota_us = tg->cfs_bandwidth.quota;
8447 do_div(quota_us, NSEC_PER_USEC);
8448
8449 return quota_us;
8450 }
8451
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)8452 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8453 {
8454 u64 quota, period;
8455
8456 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8457 return -EINVAL;
8458
8459 period = (u64)cfs_period_us * NSEC_PER_USEC;
8460 quota = tg->cfs_bandwidth.quota;
8461
8462 return tg_set_cfs_bandwidth(tg, period, quota);
8463 }
8464
tg_get_cfs_period(struct task_group * tg)8465 static long tg_get_cfs_period(struct task_group *tg)
8466 {
8467 u64 cfs_period_us;
8468
8469 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8470 do_div(cfs_period_us, NSEC_PER_USEC);
8471
8472 return cfs_period_us;
8473 }
8474
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)8475 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8476 struct cftype *cft)
8477 {
8478 return tg_get_cfs_quota(css_tg(css));
8479 }
8480
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)8481 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8482 struct cftype *cftype, s64 cfs_quota_us)
8483 {
8484 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8485 }
8486
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8487 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8488 struct cftype *cft)
8489 {
8490 return tg_get_cfs_period(css_tg(css));
8491 }
8492
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)8493 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8494 struct cftype *cftype, u64 cfs_period_us)
8495 {
8496 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8497 }
8498
8499 struct cfs_schedulable_data {
8500 struct task_group *tg;
8501 u64 period, quota;
8502 };
8503
8504 /*
8505 * normalize group quota/period to be quota/max_period
8506 * note: units are usecs
8507 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)8508 static u64 normalize_cfs_quota(struct task_group *tg,
8509 struct cfs_schedulable_data *d)
8510 {
8511 u64 quota, period;
8512
8513 if (tg == d->tg) {
8514 period = d->period;
8515 quota = d->quota;
8516 } else {
8517 period = tg_get_cfs_period(tg);
8518 quota = tg_get_cfs_quota(tg);
8519 }
8520
8521 /* note: these should typically be equivalent */
8522 if (quota == RUNTIME_INF || quota == -1)
8523 return RUNTIME_INF;
8524
8525 return to_ratio(period, quota);
8526 }
8527
tg_cfs_schedulable_down(struct task_group * tg,void * data)8528 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8529 {
8530 struct cfs_schedulable_data *d = data;
8531 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8532 s64 quota = 0, parent_quota = -1;
8533
8534 if (!tg->parent) {
8535 quota = RUNTIME_INF;
8536 } else {
8537 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8538
8539 quota = normalize_cfs_quota(tg, d);
8540 parent_quota = parent_b->hierarchical_quota;
8541
8542 /*
8543 * Ensure max(child_quota) <= parent_quota. On cgroup2,
8544 * always take the min. On cgroup1, only inherit when no
8545 * limit is set:
8546 */
8547 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8548 quota = min(quota, parent_quota);
8549 } else {
8550 if (quota == RUNTIME_INF)
8551 quota = parent_quota;
8552 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8553 return -EINVAL;
8554 }
8555 }
8556 cfs_b->hierarchical_quota = quota;
8557
8558 return 0;
8559 }
8560
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)8561 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8562 {
8563 int ret;
8564 struct cfs_schedulable_data data = {
8565 .tg = tg,
8566 .period = period,
8567 .quota = quota,
8568 };
8569
8570 if (quota != RUNTIME_INF) {
8571 do_div(data.period, NSEC_PER_USEC);
8572 do_div(data.quota, NSEC_PER_USEC);
8573 }
8574
8575 rcu_read_lock();
8576 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8577 rcu_read_unlock();
8578
8579 return ret;
8580 }
8581
cpu_cfs_stat_show(struct seq_file * sf,void * v)8582 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8583 {
8584 struct task_group *tg = css_tg(seq_css(sf));
8585 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8586
8587 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8588 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8589 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8590
8591 if (schedstat_enabled() && tg != &root_task_group) {
8592 u64 ws = 0;
8593 int i;
8594
8595 for_each_possible_cpu(i)
8596 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8597
8598 seq_printf(sf, "wait_sum %llu\n", ws);
8599 }
8600
8601 return 0;
8602 }
8603 #endif /* CONFIG_CFS_BANDWIDTH */
8604 #endif /* CONFIG_FAIR_GROUP_SCHED */
8605
8606 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)8607 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8608 struct cftype *cft, s64 val)
8609 {
8610 return sched_group_set_rt_runtime(css_tg(css), val);
8611 }
8612
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)8613 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8614 struct cftype *cft)
8615 {
8616 return sched_group_rt_runtime(css_tg(css));
8617 }
8618
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)8619 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8620 struct cftype *cftype, u64 rt_period_us)
8621 {
8622 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8623 }
8624
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)8625 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8626 struct cftype *cft)
8627 {
8628 return sched_group_rt_period(css_tg(css));
8629 }
8630 #endif /* CONFIG_RT_GROUP_SCHED */
8631
8632 static struct cftype cpu_legacy_files[] = {
8633 #ifdef CONFIG_FAIR_GROUP_SCHED
8634 {
8635 .name = "shares",
8636 .read_u64 = cpu_shares_read_u64,
8637 .write_u64 = cpu_shares_write_u64,
8638 },
8639 #endif
8640 #ifdef CONFIG_CFS_BANDWIDTH
8641 {
8642 .name = "cfs_quota_us",
8643 .read_s64 = cpu_cfs_quota_read_s64,
8644 .write_s64 = cpu_cfs_quota_write_s64,
8645 },
8646 {
8647 .name = "cfs_period_us",
8648 .read_u64 = cpu_cfs_period_read_u64,
8649 .write_u64 = cpu_cfs_period_write_u64,
8650 },
8651 {
8652 .name = "stat",
8653 .seq_show = cpu_cfs_stat_show,
8654 },
8655 #endif
8656 #ifdef CONFIG_RT_GROUP_SCHED
8657 {
8658 .name = "rt_runtime_us",
8659 .read_s64 = cpu_rt_runtime_read,
8660 .write_s64 = cpu_rt_runtime_write,
8661 },
8662 {
8663 .name = "rt_period_us",
8664 .read_u64 = cpu_rt_period_read_uint,
8665 .write_u64 = cpu_rt_period_write_uint,
8666 },
8667 #endif
8668 #ifdef CONFIG_UCLAMP_TASK_GROUP
8669 {
8670 .name = "uclamp.min",
8671 .flags = CFTYPE_NOT_ON_ROOT,
8672 .seq_show = cpu_uclamp_min_show,
8673 .write = cpu_uclamp_min_write,
8674 },
8675 {
8676 .name = "uclamp.max",
8677 .flags = CFTYPE_NOT_ON_ROOT,
8678 .seq_show = cpu_uclamp_max_show,
8679 .write = cpu_uclamp_max_write,
8680 },
8681 {
8682 .name = "uclamp.latency_sensitive",
8683 .flags = CFTYPE_NOT_ON_ROOT,
8684 .read_u64 = cpu_uclamp_ls_read_u64,
8685 .write_u64 = cpu_uclamp_ls_write_u64,
8686 },
8687 #endif
8688 { } /* Terminate */
8689 };
8690
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)8691 static int cpu_extra_stat_show(struct seq_file *sf,
8692 struct cgroup_subsys_state *css)
8693 {
8694 #ifdef CONFIG_CFS_BANDWIDTH
8695 {
8696 struct task_group *tg = css_tg(css);
8697 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8698 u64 throttled_usec;
8699
8700 throttled_usec = cfs_b->throttled_time;
8701 do_div(throttled_usec, NSEC_PER_USEC);
8702
8703 seq_printf(sf, "nr_periods %d\n"
8704 "nr_throttled %d\n"
8705 "throttled_usec %llu\n",
8706 cfs_b->nr_periods, cfs_b->nr_throttled,
8707 throttled_usec);
8708 }
8709 #endif
8710 return 0;
8711 }
8712
8713 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8714 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8715 struct cftype *cft)
8716 {
8717 struct task_group *tg = css_tg(css);
8718 u64 weight = scale_load_down(tg->shares);
8719
8720 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8721 }
8722
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)8723 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8724 struct cftype *cft, u64 weight)
8725 {
8726 /*
8727 * cgroup weight knobs should use the common MIN, DFL and MAX
8728 * values which are 1, 100 and 10000 respectively. While it loses
8729 * a bit of range on both ends, it maps pretty well onto the shares
8730 * value used by scheduler and the round-trip conversions preserve
8731 * the original value over the entire range.
8732 */
8733 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8734 return -ERANGE;
8735
8736 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8737
8738 return sched_group_set_shares(css_tg(css), scale_load(weight));
8739 }
8740
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)8741 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8742 struct cftype *cft)
8743 {
8744 unsigned long weight = scale_load_down(css_tg(css)->shares);
8745 int last_delta = INT_MAX;
8746 int prio, delta;
8747
8748 /* find the closest nice value to the current weight */
8749 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8750 delta = abs(sched_prio_to_weight[prio] - weight);
8751 if (delta >= last_delta)
8752 break;
8753 last_delta = delta;
8754 }
8755
8756 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8757 }
8758
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)8759 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8760 struct cftype *cft, s64 nice)
8761 {
8762 unsigned long weight;
8763 int idx;
8764
8765 if (nice < MIN_NICE || nice > MAX_NICE)
8766 return -ERANGE;
8767
8768 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8769 idx = array_index_nospec(idx, 40);
8770 weight = sched_prio_to_weight[idx];
8771
8772 return sched_group_set_shares(css_tg(css), scale_load(weight));
8773 }
8774 #endif
8775
cpu_period_quota_print(struct seq_file * sf,long period,long quota)8776 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8777 long period, long quota)
8778 {
8779 if (quota < 0)
8780 seq_puts(sf, "max");
8781 else
8782 seq_printf(sf, "%ld", quota);
8783
8784 seq_printf(sf, " %ld\n", period);
8785 }
8786
8787 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)8788 static int __maybe_unused cpu_period_quota_parse(char *buf,
8789 u64 *periodp, u64 *quotap)
8790 {
8791 char tok[21]; /* U64_MAX */
8792
8793 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
8794 return -EINVAL;
8795
8796 *periodp *= NSEC_PER_USEC;
8797
8798 if (sscanf(tok, "%llu", quotap))
8799 *quotap *= NSEC_PER_USEC;
8800 else if (!strcmp(tok, "max"))
8801 *quotap = RUNTIME_INF;
8802 else
8803 return -EINVAL;
8804
8805 return 0;
8806 }
8807
8808 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)8809 static int cpu_max_show(struct seq_file *sf, void *v)
8810 {
8811 struct task_group *tg = css_tg(seq_css(sf));
8812
8813 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
8814 return 0;
8815 }
8816
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)8817 static ssize_t cpu_max_write(struct kernfs_open_file *of,
8818 char *buf, size_t nbytes, loff_t off)
8819 {
8820 struct task_group *tg = css_tg(of_css(of));
8821 u64 period = tg_get_cfs_period(tg);
8822 u64 quota;
8823 int ret;
8824
8825 ret = cpu_period_quota_parse(buf, &period, "a);
8826 if (!ret)
8827 ret = tg_set_cfs_bandwidth(tg, period, quota);
8828 return ret ?: nbytes;
8829 }
8830 #endif
8831
8832 static struct cftype cpu_files[] = {
8833 #ifdef CONFIG_FAIR_GROUP_SCHED
8834 {
8835 .name = "weight",
8836 .flags = CFTYPE_NOT_ON_ROOT,
8837 .read_u64 = cpu_weight_read_u64,
8838 .write_u64 = cpu_weight_write_u64,
8839 },
8840 {
8841 .name = "weight.nice",
8842 .flags = CFTYPE_NOT_ON_ROOT,
8843 .read_s64 = cpu_weight_nice_read_s64,
8844 .write_s64 = cpu_weight_nice_write_s64,
8845 },
8846 #endif
8847 #ifdef CONFIG_CFS_BANDWIDTH
8848 {
8849 .name = "max",
8850 .flags = CFTYPE_NOT_ON_ROOT,
8851 .seq_show = cpu_max_show,
8852 .write = cpu_max_write,
8853 },
8854 #endif
8855 #ifdef CONFIG_UCLAMP_TASK_GROUP
8856 {
8857 .name = "uclamp.min",
8858 .flags = CFTYPE_NOT_ON_ROOT,
8859 .seq_show = cpu_uclamp_min_show,
8860 .write = cpu_uclamp_min_write,
8861 },
8862 {
8863 .name = "uclamp.max",
8864 .flags = CFTYPE_NOT_ON_ROOT,
8865 .seq_show = cpu_uclamp_max_show,
8866 .write = cpu_uclamp_max_write,
8867 },
8868 {
8869 .name = "uclamp.latency_sensitive",
8870 .flags = CFTYPE_NOT_ON_ROOT,
8871 .read_u64 = cpu_uclamp_ls_read_u64,
8872 .write_u64 = cpu_uclamp_ls_write_u64,
8873 },
8874 #endif
8875 { } /* terminate */
8876 };
8877
8878 struct cgroup_subsys cpu_cgrp_subsys = {
8879 .css_alloc = cpu_cgroup_css_alloc,
8880 .css_online = cpu_cgroup_css_online,
8881 .css_released = cpu_cgroup_css_released,
8882 .css_free = cpu_cgroup_css_free,
8883 .css_extra_stat_show = cpu_extra_stat_show,
8884 .fork = cpu_cgroup_fork,
8885 .can_attach = cpu_cgroup_can_attach,
8886 .attach = cpu_cgroup_attach,
8887 .legacy_cftypes = cpu_legacy_files,
8888 .dfl_cftypes = cpu_files,
8889 .early_init = true,
8890 .threaded = true,
8891 };
8892
8893 #endif /* CONFIG_CGROUP_SCHED */
8894
dump_cpu_task(int cpu)8895 void dump_cpu_task(int cpu)
8896 {
8897 pr_info("Task dump for CPU %d:\n", cpu);
8898 sched_show_task(cpu_curr(cpu));
8899 }
8900
8901 /*
8902 * Nice levels are multiplicative, with a gentle 10% change for every
8903 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8904 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8905 * that remained on nice 0.
8906 *
8907 * The "10% effect" is relative and cumulative: from _any_ nice level,
8908 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8909 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8910 * If a task goes up by ~10% and another task goes down by ~10% then
8911 * the relative distance between them is ~25%.)
8912 */
8913 const int sched_prio_to_weight[40] = {
8914 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8915 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8916 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8917 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8918 /* 0 */ 1024, 820, 655, 526, 423,
8919 /* 5 */ 335, 272, 215, 172, 137,
8920 /* 10 */ 110, 87, 70, 56, 45,
8921 /* 15 */ 36, 29, 23, 18, 15,
8922 };
8923
8924 /*
8925 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8926 *
8927 * In cases where the weight does not change often, we can use the
8928 * precalculated inverse to speed up arithmetics by turning divisions
8929 * into multiplications:
8930 */
8931 const u32 sched_prio_to_wmult[40] = {
8932 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8933 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8934 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8935 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8936 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8937 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8938 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8939 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8940 };
8941
call_trace_sched_update_nr_running(struct rq * rq,int count)8942 void call_trace_sched_update_nr_running(struct rq *rq, int count)
8943 {
8944 trace_sched_update_nr_running_tp(rq, count);
8945 }
8946