xref: /OK3568_Linux_fs/kernel/mm/oom_kill.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/oom_kill.c
4  *
5  *  Copyright (C)  1998,2000  Rik van Riel
6  *	Thanks go out to Claus Fischer for some serious inspiration and
7  *	for goading me into coding this file...
8  *  Copyright (C)  2010  Google, Inc.
9  *	Rewritten by David Rientjes
10  *
11  *  The routines in this file are used to kill a process when
12  *  we're seriously out of memory. This gets called from __alloc_pages()
13  *  in mm/page_alloc.c when we really run out of memory.
14  *
15  *  Since we won't call these routines often (on a well-configured
16  *  machine) this file will double as a 'coding guide' and a signpost
17  *  for newbie kernel hackers. It features several pointers to major
18  *  kernel subsystems and hints as to where to find out what things do.
19  */
20 
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/debug.h>
30 #include <linux/swap.h>
31 #include <linux/syscalls.h>
32 #include <linux/timex.h>
33 #include <linux/jiffies.h>
34 #include <linux/cpuset.h>
35 #include <linux/export.h>
36 #include <linux/notifier.h>
37 #include <linux/memcontrol.h>
38 #include <linux/mempolicy.h>
39 #include <linux/security.h>
40 #include <linux/ptrace.h>
41 #include <linux/freezer.h>
42 #include <linux/ftrace.h>
43 #include <linux/ratelimit.h>
44 #include <linux/kthread.h>
45 #include <linux/init.h>
46 #include <linux/mmu_notifier.h>
47 
48 #include <asm/tlb.h>
49 #include "internal.h"
50 #include "slab.h"
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/oom.h>
54 
55 #undef CREATE_TRACE_POINTS
56 #include <trace/hooks/mm.h>
57 
58 int sysctl_panic_on_oom;
59 int sysctl_oom_kill_allocating_task;
60 int sysctl_oom_dump_tasks = 1;
61 
62 /*
63  * Serializes oom killer invocations (out_of_memory()) from all contexts to
64  * prevent from over eager oom killing (e.g. when the oom killer is invoked
65  * from different domains).
66  *
67  * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
68  * and mark_oom_victim
69  */
70 DEFINE_MUTEX(oom_lock);
71 /* Serializes oom_score_adj and oom_score_adj_min updates */
72 DEFINE_MUTEX(oom_adj_mutex);
73 
is_memcg_oom(struct oom_control * oc)74 static inline bool is_memcg_oom(struct oom_control *oc)
75 {
76 	return oc->memcg != NULL;
77 }
78 
79 #ifdef CONFIG_NUMA
80 /**
81  * oom_cpuset_eligible() - check task eligiblity for kill
82  * @start: task struct of which task to consider
83  * @oc: pointer to struct oom_control
84  *
85  * Task eligibility is determined by whether or not a candidate task, @tsk,
86  * shares the same mempolicy nodes as current if it is bound by such a policy
87  * and whether or not it has the same set of allowed cpuset nodes.
88  *
89  * This function is assuming oom-killer context and 'current' has triggered
90  * the oom-killer.
91  */
oom_cpuset_eligible(struct task_struct * start,struct oom_control * oc)92 static bool oom_cpuset_eligible(struct task_struct *start,
93 				struct oom_control *oc)
94 {
95 	struct task_struct *tsk;
96 	bool ret = false;
97 	const nodemask_t *mask = oc->nodemask;
98 
99 	if (is_memcg_oom(oc))
100 		return true;
101 
102 	rcu_read_lock();
103 	for_each_thread(start, tsk) {
104 		if (mask) {
105 			/*
106 			 * If this is a mempolicy constrained oom, tsk's
107 			 * cpuset is irrelevant.  Only return true if its
108 			 * mempolicy intersects current, otherwise it may be
109 			 * needlessly killed.
110 			 */
111 			ret = mempolicy_nodemask_intersects(tsk, mask);
112 		} else {
113 			/*
114 			 * This is not a mempolicy constrained oom, so only
115 			 * check the mems of tsk's cpuset.
116 			 */
117 			ret = cpuset_mems_allowed_intersects(current, tsk);
118 		}
119 		if (ret)
120 			break;
121 	}
122 	rcu_read_unlock();
123 
124 	return ret;
125 }
126 #else
oom_cpuset_eligible(struct task_struct * tsk,struct oom_control * oc)127 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
128 {
129 	return true;
130 }
131 #endif /* CONFIG_NUMA */
132 
133 /*
134  * The process p may have detached its own ->mm while exiting or through
135  * kthread_use_mm(), but one or more of its subthreads may still have a valid
136  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
137  * task_lock() held.
138  */
find_lock_task_mm(struct task_struct * p)139 struct task_struct *find_lock_task_mm(struct task_struct *p)
140 {
141 	struct task_struct *t;
142 
143 	rcu_read_lock();
144 
145 	for_each_thread(p, t) {
146 		task_lock(t);
147 		if (likely(t->mm))
148 			goto found;
149 		task_unlock(t);
150 	}
151 	t = NULL;
152 found:
153 	rcu_read_unlock();
154 
155 	return t;
156 }
157 
158 /*
159  * order == -1 means the oom kill is required by sysrq, otherwise only
160  * for display purposes.
161  */
is_sysrq_oom(struct oom_control * oc)162 static inline bool is_sysrq_oom(struct oom_control *oc)
163 {
164 	return oc->order == -1;
165 }
166 
167 /* return true if the task is not adequate as candidate victim task. */
oom_unkillable_task(struct task_struct * p)168 static bool oom_unkillable_task(struct task_struct *p)
169 {
170 	if (is_global_init(p))
171 		return true;
172 	if (p->flags & PF_KTHREAD)
173 		return true;
174 	return false;
175 }
176 
177 /*
178  * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
179  * than all user memory (LRU pages)
180  */
is_dump_unreclaim_slabs(void)181 static bool is_dump_unreclaim_slabs(void)
182 {
183 	unsigned long nr_lru;
184 
185 	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
186 		 global_node_page_state(NR_INACTIVE_ANON) +
187 		 global_node_page_state(NR_ACTIVE_FILE) +
188 		 global_node_page_state(NR_INACTIVE_FILE) +
189 		 global_node_page_state(NR_ISOLATED_ANON) +
190 		 global_node_page_state(NR_ISOLATED_FILE) +
191 		 global_node_page_state(NR_UNEVICTABLE);
192 
193 	return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
194 }
195 
196 /**
197  * oom_badness - heuristic function to determine which candidate task to kill
198  * @p: task struct of which task we should calculate
199  * @totalpages: total present RAM allowed for page allocation
200  *
201  * The heuristic for determining which task to kill is made to be as simple and
202  * predictable as possible.  The goal is to return the highest value for the
203  * task consuming the most memory to avoid subsequent oom failures.
204  */
oom_badness(struct task_struct * p,unsigned long totalpages)205 long oom_badness(struct task_struct *p, unsigned long totalpages)
206 {
207 	long points;
208 	long adj;
209 
210 	if (oom_unkillable_task(p))
211 		return LONG_MIN;
212 
213 	p = find_lock_task_mm(p);
214 	if (!p)
215 		return LONG_MIN;
216 
217 	/*
218 	 * Do not even consider tasks which are explicitly marked oom
219 	 * unkillable or have been already oom reaped or the are in
220 	 * the middle of vfork
221 	 */
222 	adj = (long)p->signal->oom_score_adj;
223 	if (adj == OOM_SCORE_ADJ_MIN ||
224 			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
225 			in_vfork(p)) {
226 		task_unlock(p);
227 		return LONG_MIN;
228 	}
229 
230 	/*
231 	 * The baseline for the badness score is the proportion of RAM that each
232 	 * task's rss, pagetable and swap space use.
233 	 */
234 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
235 		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
236 	task_unlock(p);
237 
238 	/* Normalize to oom_score_adj units */
239 	adj *= totalpages / 1000;
240 	points += adj;
241 
242 	return points;
243 }
244 
245 static const char * const oom_constraint_text[] = {
246 	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
247 	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
248 	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
249 	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
250 };
251 
252 /*
253  * Determine the type of allocation constraint.
254  */
constrained_alloc(struct oom_control * oc)255 static enum oom_constraint constrained_alloc(struct oom_control *oc)
256 {
257 	struct zone *zone;
258 	struct zoneref *z;
259 	enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
260 	bool cpuset_limited = false;
261 	int nid;
262 
263 	if (is_memcg_oom(oc)) {
264 		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
265 		return CONSTRAINT_MEMCG;
266 	}
267 
268 	/* Default to all available memory */
269 	oc->totalpages = totalram_pages() + total_swap_pages;
270 
271 	if (!IS_ENABLED(CONFIG_NUMA))
272 		return CONSTRAINT_NONE;
273 
274 	if (!oc->zonelist)
275 		return CONSTRAINT_NONE;
276 	/*
277 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
278 	 * to kill current.We have to random task kill in this case.
279 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
280 	 */
281 	if (oc->gfp_mask & __GFP_THISNODE)
282 		return CONSTRAINT_NONE;
283 
284 	/*
285 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
286 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
287 	 * is enforced in get_page_from_freelist().
288 	 */
289 	if (oc->nodemask &&
290 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
291 		oc->totalpages = total_swap_pages;
292 		for_each_node_mask(nid, *oc->nodemask)
293 			oc->totalpages += node_present_pages(nid);
294 		return CONSTRAINT_MEMORY_POLICY;
295 	}
296 
297 	/* Check this allocation failure is caused by cpuset's wall function */
298 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
299 			highest_zoneidx, oc->nodemask)
300 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
301 			cpuset_limited = true;
302 
303 	if (cpuset_limited) {
304 		oc->totalpages = total_swap_pages;
305 		for_each_node_mask(nid, cpuset_current_mems_allowed)
306 			oc->totalpages += node_present_pages(nid);
307 		return CONSTRAINT_CPUSET;
308 	}
309 	return CONSTRAINT_NONE;
310 }
311 
oom_evaluate_task(struct task_struct * task,void * arg)312 static int oom_evaluate_task(struct task_struct *task, void *arg)
313 {
314 	struct oom_control *oc = arg;
315 	long points;
316 
317 	if (oom_unkillable_task(task))
318 		goto next;
319 
320 	/* p may not have freeable memory in nodemask */
321 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
322 		goto next;
323 
324 	/*
325 	 * This task already has access to memory reserves and is being killed.
326 	 * Don't allow any other task to have access to the reserves unless
327 	 * the task has MMF_OOM_SKIP because chances that it would release
328 	 * any memory is quite low.
329 	 */
330 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
331 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
332 			goto next;
333 		goto abort;
334 	}
335 
336 	/*
337 	 * If task is allocating a lot of memory and has been marked to be
338 	 * killed first if it triggers an oom, then select it.
339 	 */
340 	if (oom_task_origin(task)) {
341 		points = LONG_MAX;
342 		goto select;
343 	}
344 
345 	points = oom_badness(task, oc->totalpages);
346 
347 	if (points == LONG_MIN)
348 		goto next;
349 
350 	/*
351 	 * Check to see if this is the worst task with a non-negative
352 	 * ADJ score seen so far
353 	 */
354 	if (task->signal->oom_score_adj >= 0 &&
355 	    points > oc->chosen_non_negative_adj_points) {
356 		if (oc->chosen_non_negative_adj)
357 			put_task_struct(oc->chosen_non_negative_adj);
358 		get_task_struct(task);
359 		oc->chosen_non_negative_adj = task;
360 		oc->chosen_non_negative_adj_points = points;
361 	}
362 
363 	if (points < oc->chosen_points)
364 		goto next;
365 
366 select:
367 	if (oc->chosen)
368 		put_task_struct(oc->chosen);
369 	get_task_struct(task);
370 	oc->chosen = task;
371 	oc->chosen_points = points;
372 next:
373 	return 0;
374 abort:
375 	if (oc->chosen_non_negative_adj)
376 		put_task_struct(oc->chosen_non_negative_adj);
377 	if (oc->chosen)
378 		put_task_struct(oc->chosen);
379 	oc->chosen_non_negative_adj = NULL;
380 	oc->chosen = (void *)-1UL;
381 	return 1;
382 }
383 
384 /*
385  * Simple selection loop. We choose the process with the highest number of
386  * 'points'. In case scan was aborted, oc->chosen is set to -1.
387  */
select_bad_process(struct oom_control * oc)388 static void select_bad_process(struct oom_control *oc)
389 {
390 	oc->chosen_points = LONG_MIN;
391 	oc->chosen_non_negative_adj_points = LONG_MIN;
392 	oc->chosen_non_negative_adj = NULL;
393 
394 	if (is_memcg_oom(oc))
395 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
396 	else {
397 		struct task_struct *p;
398 
399 		rcu_read_lock();
400 		for_each_process(p)
401 			if (oom_evaluate_task(p, oc))
402 				break;
403 		rcu_read_unlock();
404 	}
405 
406 	if (oc->chosen_non_negative_adj) {
407 		/*
408 		 * If oc->chosen has a negative ADJ, and we found a task with
409 		 * a postive ADJ to kill, kill the task with the positive ADJ
410 		 * instead.
411 		 */
412 		if (oc->chosen && oc->chosen->signal->oom_score_adj < 0) {
413 			put_task_struct(oc->chosen);
414 			oc->chosen = oc->chosen_non_negative_adj;
415 			oc->chosen_points = oc->chosen_non_negative_adj_points;
416 		} else
417 			put_task_struct(oc->chosen_non_negative_adj);
418 	}
419 }
420 
dump_task(struct task_struct * p,void * arg)421 static int dump_task(struct task_struct *p, void *arg)
422 {
423 	struct oom_control *oc = arg;
424 	struct task_struct *task;
425 
426 	if (oom_unkillable_task(p))
427 		return 0;
428 
429 	/* p may not have freeable memory in nodemask */
430 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
431 		return 0;
432 
433 	task = find_lock_task_mm(p);
434 	if (!task) {
435 		/*
436 		 * This is a kthread or all of p's threads have already
437 		 * detached their mm's.  There's no need to report
438 		 * them; they can't be oom killed anyway.
439 		 */
440 		return 0;
441 	}
442 
443 	pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
444 		task->pid, from_kuid(&init_user_ns, task_uid(task)),
445 		task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
446 		mm_pgtables_bytes(task->mm),
447 		get_mm_counter(task->mm, MM_SWAPENTS),
448 		task->signal->oom_score_adj, task->comm);
449 	task_unlock(task);
450 
451 	return 0;
452 }
453 
454 /**
455  * dump_tasks - dump current memory state of all system tasks
456  * @oc: pointer to struct oom_control
457  *
458  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
459  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
460  * are not shown.
461  * State information includes task's pid, uid, tgid, vm size, rss,
462  * pgtables_bytes, swapents, oom_score_adj value, and name.
463  */
dump_tasks(struct oom_control * oc)464 static void dump_tasks(struct oom_control *oc)
465 {
466 	pr_info("Tasks state (memory values in pages):\n");
467 	pr_info("[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
468 
469 	if (is_memcg_oom(oc))
470 		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
471 	else {
472 		struct task_struct *p;
473 
474 		rcu_read_lock();
475 		for_each_process(p)
476 			dump_task(p, oc);
477 		rcu_read_unlock();
478 	}
479 }
480 
dump_oom_summary(struct oom_control * oc,struct task_struct * victim)481 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
482 {
483 	/* one line summary of the oom killer context. */
484 	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
485 			oom_constraint_text[oc->constraint],
486 			nodemask_pr_args(oc->nodemask));
487 	cpuset_print_current_mems_allowed();
488 	mem_cgroup_print_oom_context(oc->memcg, victim);
489 	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
490 		from_kuid(&init_user_ns, task_uid(victim)));
491 }
492 
dump_header(struct oom_control * oc,struct task_struct * p)493 static void dump_header(struct oom_control *oc, struct task_struct *p)
494 {
495 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
496 		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
497 			current->signal->oom_score_adj);
498 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
499 		pr_warn("COMPACTION is disabled!!!\n");
500 
501 	dump_stack();
502 	if (is_memcg_oom(oc))
503 		mem_cgroup_print_oom_meminfo(oc->memcg);
504 	else {
505 		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
506 		if (is_dump_unreclaim_slabs())
507 			dump_unreclaimable_slab();
508 	}
509 	if (sysctl_oom_dump_tasks)
510 		dump_tasks(oc);
511 	if (p)
512 		dump_oom_summary(oc, p);
513 }
514 
515 /*
516  * Number of OOM victims in flight
517  */
518 static atomic_t oom_victims = ATOMIC_INIT(0);
519 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
520 
521 static bool oom_killer_disabled __read_mostly;
522 
523 #define K(x) ((x) << (PAGE_SHIFT-10))
524 
525 /*
526  * task->mm can be NULL if the task is the exited group leader.  So to
527  * determine whether the task is using a particular mm, we examine all the
528  * task's threads: if one of those is using this mm then this task was also
529  * using it.
530  */
process_shares_mm(struct task_struct * p,struct mm_struct * mm)531 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
532 {
533 	struct task_struct *t;
534 
535 	for_each_thread(p, t) {
536 		struct mm_struct *t_mm = READ_ONCE(t->mm);
537 		if (t_mm)
538 			return t_mm == mm;
539 	}
540 	return false;
541 }
542 
543 #ifdef CONFIG_MMU
544 /*
545  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
546  * victim (if that is possible) to help the OOM killer to move on.
547  */
548 static struct task_struct *oom_reaper_th;
549 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
550 static struct task_struct *oom_reaper_list;
551 static DEFINE_SPINLOCK(oom_reaper_lock);
552 
__oom_reap_task_mm(struct mm_struct * mm)553 bool __oom_reap_task_mm(struct mm_struct *mm)
554 {
555 	struct vm_area_struct *vma;
556 	bool ret = true;
557 
558 	/*
559 	 * Tell all users of get_user/copy_from_user etc... that the content
560 	 * is no longer stable. No barriers really needed because unmapping
561 	 * should imply barriers already and the reader would hit a page fault
562 	 * if it stumbled over a reaped memory.
563 	 */
564 	set_bit(MMF_UNSTABLE, &mm->flags);
565 
566 	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
567 		if (!can_madv_lru_vma(vma))
568 			continue;
569 
570 		/*
571 		 * Only anonymous pages have a good chance to be dropped
572 		 * without additional steps which we cannot afford as we
573 		 * are OOM already.
574 		 *
575 		 * We do not even care about fs backed pages because all
576 		 * which are reclaimable have already been reclaimed and
577 		 * we do not want to block exit_mmap by keeping mm ref
578 		 * count elevated without a good reason.
579 		 */
580 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
581 			struct mmu_notifier_range range;
582 			struct mmu_gather tlb;
583 
584 			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
585 						vma, mm, vma->vm_start,
586 						vma->vm_end);
587 			tlb_gather_mmu(&tlb, mm, range.start, range.end);
588 			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
589 				tlb_finish_mmu(&tlb, range.start, range.end);
590 				ret = false;
591 				continue;
592 			}
593 			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
594 			mmu_notifier_invalidate_range_end(&range);
595 			tlb_finish_mmu(&tlb, range.start, range.end);
596 		}
597 	}
598 
599 	return ret;
600 }
601 
602 /*
603  * Reaps the address space of the give task.
604  *
605  * Returns true on success and false if none or part of the address space
606  * has been reclaimed and the caller should retry later.
607  */
oom_reap_task_mm(struct task_struct * tsk,struct mm_struct * mm)608 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
609 {
610 	bool ret = true;
611 
612 	if (!mmap_read_trylock(mm)) {
613 		trace_skip_task_reaping(tsk->pid);
614 		return false;
615 	}
616 
617 	/*
618 	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
619 	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
620 	 * under mmap_lock for reading because it serializes against the
621 	 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
622 	 */
623 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
624 		trace_skip_task_reaping(tsk->pid);
625 		goto out_unlock;
626 	}
627 
628 	trace_start_task_reaping(tsk->pid);
629 
630 	/* failed to reap part of the address space. Try again later */
631 	ret = __oom_reap_task_mm(mm);
632 	if (!ret)
633 		goto out_finish;
634 
635 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
636 			task_pid_nr(tsk), tsk->comm,
637 			K(get_mm_counter(mm, MM_ANONPAGES)),
638 			K(get_mm_counter(mm, MM_FILEPAGES)),
639 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
640 out_finish:
641 	trace_finish_task_reaping(tsk->pid);
642 out_unlock:
643 	mmap_read_unlock(mm);
644 
645 	return ret;
646 }
647 
648 #define MAX_OOM_REAP_RETRIES 10
oom_reap_task(struct task_struct * tsk)649 static void oom_reap_task(struct task_struct *tsk)
650 {
651 	int attempts = 0;
652 	struct mm_struct *mm = tsk->signal->oom_mm;
653 
654 	/* Retry the mmap_read_trylock(mm) a few times */
655 	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
656 		schedule_timeout_idle(HZ/10);
657 
658 	if (attempts <= MAX_OOM_REAP_RETRIES ||
659 	    test_bit(MMF_OOM_SKIP, &mm->flags))
660 		goto done;
661 
662 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
663 		task_pid_nr(tsk), tsk->comm);
664 	sched_show_task(tsk);
665 	debug_show_all_locks();
666 
667 done:
668 	tsk->oom_reaper_list = NULL;
669 
670 	/*
671 	 * Hide this mm from OOM killer because it has been either reaped or
672 	 * somebody can't call mmap_write_unlock(mm).
673 	 */
674 	set_bit(MMF_OOM_SKIP, &mm->flags);
675 
676 	/* Drop a reference taken by wake_oom_reaper */
677 	put_task_struct(tsk);
678 }
679 
oom_reaper(void * unused)680 static int oom_reaper(void *unused)
681 {
682 	while (true) {
683 		struct task_struct *tsk = NULL;
684 
685 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
686 		spin_lock(&oom_reaper_lock);
687 		if (oom_reaper_list != NULL) {
688 			tsk = oom_reaper_list;
689 			oom_reaper_list = tsk->oom_reaper_list;
690 		}
691 		spin_unlock(&oom_reaper_lock);
692 
693 		if (tsk)
694 			oom_reap_task(tsk);
695 	}
696 
697 	return 0;
698 }
699 
wake_oom_reaper(struct task_struct * tsk)700 static void wake_oom_reaper(struct task_struct *tsk)
701 {
702 	/* mm is already queued? */
703 	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
704 		return;
705 
706 	get_task_struct(tsk);
707 
708 	spin_lock(&oom_reaper_lock);
709 	tsk->oom_reaper_list = oom_reaper_list;
710 	oom_reaper_list = tsk;
711 	spin_unlock(&oom_reaper_lock);
712 	trace_wake_reaper(tsk->pid);
713 	wake_up(&oom_reaper_wait);
714 }
715 
oom_init(void)716 static int __init oom_init(void)
717 {
718 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
719 	return 0;
720 }
subsys_initcall(oom_init)721 subsys_initcall(oom_init)
722 #else
723 static inline void wake_oom_reaper(struct task_struct *tsk)
724 {
725 }
726 #endif /* CONFIG_MMU */
727 
728 /**
729  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
730  * under task_lock or operate on the current).
731  */
732 static void __mark_oom_victim(struct task_struct *tsk)
733 {
734 	struct mm_struct *mm = tsk->mm;
735 
736 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
737 		mmgrab(tsk->signal->oom_mm);
738 		set_bit(MMF_OOM_VICTIM, &mm->flags);
739 	}
740 }
741 
742 /**
743  * mark_oom_victim - mark the given task as OOM victim
744  * @tsk: task to mark
745  *
746  * Has to be called with oom_lock held and never after
747  * oom has been disabled already.
748  *
749  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
750  * under task_lock or operate on the current).
751  */
mark_oom_victim(struct task_struct * tsk)752 static void mark_oom_victim(struct task_struct *tsk)
753 {
754 	WARN_ON(oom_killer_disabled);
755 	/* OOM killer might race with memcg OOM */
756 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
757 		return;
758 
759 	/* oom_mm is bound to the signal struct life time. */
760 	__mark_oom_victim(tsk);
761 
762 	/*
763 	 * Make sure that the task is woken up from uninterruptible sleep
764 	 * if it is frozen because OOM killer wouldn't be able to free
765 	 * any memory and livelock. freezing_slow_path will tell the freezer
766 	 * that TIF_MEMDIE tasks should be ignored.
767 	 */
768 	__thaw_task(tsk);
769 	atomic_inc(&oom_victims);
770 	trace_mark_victim(tsk->pid);
771 }
772 
773 /**
774  * exit_oom_victim - note the exit of an OOM victim
775  */
exit_oom_victim(void)776 void exit_oom_victim(void)
777 {
778 	clear_thread_flag(TIF_MEMDIE);
779 
780 	if (!atomic_dec_return(&oom_victims))
781 		wake_up_all(&oom_victims_wait);
782 }
783 
784 /**
785  * oom_killer_enable - enable OOM killer
786  */
oom_killer_enable(void)787 void oom_killer_enable(void)
788 {
789 	oom_killer_disabled = false;
790 	pr_info("OOM killer enabled.\n");
791 }
792 
793 /**
794  * oom_killer_disable - disable OOM killer
795  * @timeout: maximum timeout to wait for oom victims in jiffies
796  *
797  * Forces all page allocations to fail rather than trigger OOM killer.
798  * Will block and wait until all OOM victims are killed or the given
799  * timeout expires.
800  *
801  * The function cannot be called when there are runnable user tasks because
802  * the userspace would see unexpected allocation failures as a result. Any
803  * new usage of this function should be consulted with MM people.
804  *
805  * Returns true if successful and false if the OOM killer cannot be
806  * disabled.
807  */
oom_killer_disable(signed long timeout)808 bool oom_killer_disable(signed long timeout)
809 {
810 	signed long ret;
811 
812 	/*
813 	 * Make sure to not race with an ongoing OOM killer. Check that the
814 	 * current is not killed (possibly due to sharing the victim's memory).
815 	 */
816 	if (mutex_lock_killable(&oom_lock))
817 		return false;
818 	oom_killer_disabled = true;
819 	mutex_unlock(&oom_lock);
820 
821 	ret = wait_event_interruptible_timeout(oom_victims_wait,
822 			!atomic_read(&oom_victims), timeout);
823 	if (ret <= 0) {
824 		oom_killer_enable();
825 		return false;
826 	}
827 	pr_info("OOM killer disabled.\n");
828 
829 	return true;
830 }
831 
__task_will_free_mem(struct task_struct * task)832 static inline bool __task_will_free_mem(struct task_struct *task)
833 {
834 	struct signal_struct *sig = task->signal;
835 
836 	/*
837 	 * A coredumping process may sleep for an extended period in exit_mm(),
838 	 * so the oom killer cannot assume that the process will promptly exit
839 	 * and release memory.
840 	 */
841 	if (sig->flags & SIGNAL_GROUP_COREDUMP)
842 		return false;
843 
844 	if (sig->flags & SIGNAL_GROUP_EXIT)
845 		return true;
846 
847 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
848 		return true;
849 
850 	return false;
851 }
852 
853 /*
854  * Checks whether the given task is dying or exiting and likely to
855  * release its address space. This means that all threads and processes
856  * sharing the same mm have to be killed or exiting.
857  * Caller has to make sure that task->mm is stable (hold task_lock or
858  * it operates on the current).
859  */
task_will_free_mem(struct task_struct * task)860 static bool task_will_free_mem(struct task_struct *task)
861 {
862 	struct mm_struct *mm = task->mm;
863 	struct task_struct *p;
864 	bool ret = true;
865 
866 	/*
867 	 * Skip tasks without mm because it might have passed its exit_mm and
868 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
869 	 * on that for now. We can consider find_lock_task_mm in future.
870 	 */
871 	if (!mm)
872 		return false;
873 
874 	if (!__task_will_free_mem(task))
875 		return false;
876 
877 	/*
878 	 * This task has already been drained by the oom reaper so there are
879 	 * only small chances it will free some more
880 	 */
881 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
882 		return false;
883 
884 	if (atomic_read(&mm->mm_users) <= 1)
885 		return true;
886 
887 	/*
888 	 * Make sure that all tasks which share the mm with the given tasks
889 	 * are dying as well to make sure that a) nobody pins its mm and
890 	 * b) the task is also reapable by the oom reaper.
891 	 */
892 	rcu_read_lock();
893 	for_each_process(p) {
894 		if (!process_shares_mm(p, mm))
895 			continue;
896 		if (same_thread_group(task, p))
897 			continue;
898 		ret = __task_will_free_mem(p);
899 		if (!ret)
900 			break;
901 	}
902 	rcu_read_unlock();
903 
904 	return ret;
905 }
906 
__oom_kill_process(struct task_struct * victim,const char * message)907 static void __oom_kill_process(struct task_struct *victim, const char *message)
908 {
909 	struct task_struct *p;
910 	struct mm_struct *mm;
911 	bool can_oom_reap = true;
912 
913 	p = find_lock_task_mm(victim);
914 	if (!p) {
915 		pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
916 			message, task_pid_nr(victim), victim->comm);
917 		put_task_struct(victim);
918 		return;
919 	} else if (victim != p) {
920 		get_task_struct(p);
921 		put_task_struct(victim);
922 		victim = p;
923 	}
924 
925 	/* Get a reference to safely compare mm after task_unlock(victim) */
926 	mm = victim->mm;
927 	mmgrab(mm);
928 
929 	/* Raise event before sending signal: task reaper must see this */
930 	count_vm_event(OOM_KILL);
931 	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
932 
933 	/*
934 	 * We should send SIGKILL before granting access to memory reserves
935 	 * in order to prevent the OOM victim from depleting the memory
936 	 * reserves from the user space under its control.
937 	 */
938 	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
939 	mark_oom_victim(victim);
940 	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
941 		message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
942 		K(get_mm_counter(mm, MM_ANONPAGES)),
943 		K(get_mm_counter(mm, MM_FILEPAGES)),
944 		K(get_mm_counter(mm, MM_SHMEMPAGES)),
945 		from_kuid(&init_user_ns, task_uid(victim)),
946 		mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
947 	task_unlock(victim);
948 
949 	/*
950 	 * Kill all user processes sharing victim->mm in other thread groups, if
951 	 * any.  They don't get access to memory reserves, though, to avoid
952 	 * depletion of all memory.  This prevents mm->mmap_lock livelock when an
953 	 * oom killed thread cannot exit because it requires the semaphore and
954 	 * its contended by another thread trying to allocate memory itself.
955 	 * That thread will now get access to memory reserves since it has a
956 	 * pending fatal signal.
957 	 */
958 	rcu_read_lock();
959 	for_each_process(p) {
960 		if (!process_shares_mm(p, mm))
961 			continue;
962 		if (same_thread_group(p, victim))
963 			continue;
964 		if (is_global_init(p)) {
965 			can_oom_reap = false;
966 			set_bit(MMF_OOM_SKIP, &mm->flags);
967 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
968 					task_pid_nr(victim), victim->comm,
969 					task_pid_nr(p), p->comm);
970 			continue;
971 		}
972 		/*
973 		 * No kthead_use_mm() user needs to read from the userspace so
974 		 * we are ok to reap it.
975 		 */
976 		if (unlikely(p->flags & PF_KTHREAD))
977 			continue;
978 		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
979 	}
980 	rcu_read_unlock();
981 
982 	if (can_oom_reap)
983 		wake_oom_reaper(victim);
984 
985 	mmdrop(mm);
986 	put_task_struct(victim);
987 }
988 #undef K
989 
990 /*
991  * Kill provided task unless it's secured by setting
992  * oom_score_adj to OOM_SCORE_ADJ_MIN.
993  */
oom_kill_memcg_member(struct task_struct * task,void * message)994 static int oom_kill_memcg_member(struct task_struct *task, void *message)
995 {
996 	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
997 	    !is_global_init(task)) {
998 		get_task_struct(task);
999 		__oom_kill_process(task, message);
1000 	}
1001 	return 0;
1002 }
1003 
oom_kill_process(struct oom_control * oc,const char * message)1004 static void oom_kill_process(struct oom_control *oc, const char *message)
1005 {
1006 	struct task_struct *victim = oc->chosen;
1007 	struct mem_cgroup *oom_group;
1008 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1009 					      DEFAULT_RATELIMIT_BURST);
1010 
1011 	/*
1012 	 * If the task is already exiting, don't alarm the sysadmin or kill
1013 	 * its children or threads, just give it access to memory reserves
1014 	 * so it can die quickly
1015 	 */
1016 	task_lock(victim);
1017 	if (task_will_free_mem(victim)) {
1018 		mark_oom_victim(victim);
1019 		wake_oom_reaper(victim);
1020 		task_unlock(victim);
1021 		put_task_struct(victim);
1022 		return;
1023 	}
1024 	task_unlock(victim);
1025 
1026 	if (__ratelimit(&oom_rs))
1027 		dump_header(oc, victim);
1028 
1029 	/*
1030 	 * Do we need to kill the entire memory cgroup?
1031 	 * Or even one of the ancestor memory cgroups?
1032 	 * Check this out before killing the victim task.
1033 	 */
1034 	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1035 
1036 	__oom_kill_process(victim, message);
1037 
1038 	/*
1039 	 * If necessary, kill all tasks in the selected memory cgroup.
1040 	 */
1041 	if (oom_group) {
1042 		mem_cgroup_print_oom_group(oom_group);
1043 		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1044 				      (void*)message);
1045 		mem_cgroup_put(oom_group);
1046 	}
1047 }
1048 
1049 /*
1050  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1051  */
check_panic_on_oom(struct oom_control * oc)1052 static void check_panic_on_oom(struct oom_control *oc)
1053 {
1054 	if (likely(!sysctl_panic_on_oom))
1055 		return;
1056 	if (sysctl_panic_on_oom != 2) {
1057 		/*
1058 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1059 		 * does not panic for cpuset, mempolicy, or memcg allocation
1060 		 * failures.
1061 		 */
1062 		if (oc->constraint != CONSTRAINT_NONE)
1063 			return;
1064 	}
1065 	/* Do not panic for oom kills triggered by sysrq */
1066 	if (is_sysrq_oom(oc))
1067 		return;
1068 	dump_header(oc, NULL);
1069 	panic("Out of memory: %s panic_on_oom is enabled\n",
1070 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1071 }
1072 
1073 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1074 
register_oom_notifier(struct notifier_block * nb)1075 int register_oom_notifier(struct notifier_block *nb)
1076 {
1077 	return blocking_notifier_chain_register(&oom_notify_list, nb);
1078 }
1079 EXPORT_SYMBOL_GPL(register_oom_notifier);
1080 
unregister_oom_notifier(struct notifier_block * nb)1081 int unregister_oom_notifier(struct notifier_block *nb)
1082 {
1083 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1084 }
1085 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1086 
1087 /**
1088  * out_of_memory - kill the "best" process when we run out of memory
1089  * @oc: pointer to struct oom_control
1090  *
1091  * If we run out of memory, we have the choice between either
1092  * killing a random task (bad), letting the system crash (worse)
1093  * OR try to be smart about which process to kill. Note that we
1094  * don't have to be perfect here, we just have to be good.
1095  */
out_of_memory(struct oom_control * oc)1096 bool out_of_memory(struct oom_control *oc)
1097 {
1098 	unsigned long freed = 0;
1099 
1100 	if (oom_killer_disabled)
1101 		return false;
1102 
1103 	if (!is_memcg_oom(oc)) {
1104 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1105 		if (freed > 0)
1106 			/* Got some memory back in the last second. */
1107 			return true;
1108 	}
1109 
1110 	/*
1111 	 * If current has a pending SIGKILL or is exiting, then automatically
1112 	 * select it.  The goal is to allow it to allocate so that it may
1113 	 * quickly exit and free its memory.
1114 	 */
1115 	if (task_will_free_mem(current)) {
1116 		mark_oom_victim(current);
1117 		wake_oom_reaper(current);
1118 		return true;
1119 	}
1120 
1121 	/*
1122 	 * The OOM killer does not compensate for IO-less reclaim.
1123 	 * pagefault_out_of_memory lost its gfp context so we have to
1124 	 * make sure exclude 0 mask - all other users should have at least
1125 	 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1126 	 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1127 	 */
1128 	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1129 		return true;
1130 
1131 	/*
1132 	 * Check if there were limitations on the allocation (only relevant for
1133 	 * NUMA and memcg) that may require different handling.
1134 	 */
1135 	oc->constraint = constrained_alloc(oc);
1136 	if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1137 		oc->nodemask = NULL;
1138 	check_panic_on_oom(oc);
1139 
1140 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1141 	    current->mm && !oom_unkillable_task(current) &&
1142 	    oom_cpuset_eligible(current, oc) &&
1143 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1144 		get_task_struct(current);
1145 		oc->chosen = current;
1146 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1147 		return true;
1148 	}
1149 
1150 	select_bad_process(oc);
1151 	/* Found nothing?!?! */
1152 	if (!oc->chosen) {
1153 		int ret = false;
1154 
1155 		trace_android_vh_oom_check_panic(oc, &ret);
1156 		if (ret)
1157 			return true;
1158 
1159 		dump_header(oc, NULL);
1160 		pr_warn("Out of memory and no killable processes...\n");
1161 		/*
1162 		 * If we got here due to an actual allocation at the
1163 		 * system level, we cannot survive this and will enter
1164 		 * an endless loop in the allocator. Bail out now.
1165 		 */
1166 		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1167 			panic("System is deadlocked on memory\n");
1168 	}
1169 	if (oc->chosen && oc->chosen != (void *)-1UL)
1170 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1171 				 "Memory cgroup out of memory");
1172 	return !!oc->chosen;
1173 }
1174 
1175 /*
1176  * The pagefault handler calls here because some allocation has failed. We have
1177  * to take care of the memcg OOM here because this is the only safe context without
1178  * any locks held but let the oom killer triggered from the allocation context care
1179  * about the global OOM.
1180  */
pagefault_out_of_memory(void)1181 void pagefault_out_of_memory(void)
1182 {
1183 	static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1184 				      DEFAULT_RATELIMIT_BURST);
1185 
1186 	if (mem_cgroup_oom_synchronize(true))
1187 		return;
1188 
1189 	if (fatal_signal_pending(current))
1190 		return;
1191 
1192 	if (__ratelimit(&pfoom_rs))
1193 		pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1194 }
1195 
SYSCALL_DEFINE2(process_mrelease,int,pidfd,unsigned int,flags)1196 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1197 {
1198 #ifdef CONFIG_MMU
1199 	struct mm_struct *mm = NULL;
1200 	struct task_struct *task;
1201 	struct task_struct *p;
1202 	unsigned int f_flags;
1203 	bool reap = false;
1204 	struct pid *pid;
1205 	long ret = 0;
1206 
1207 	if (flags)
1208 		return -EINVAL;
1209 
1210 	pid = pidfd_get_pid(pidfd, &f_flags);
1211 	if (IS_ERR(pid))
1212 		return PTR_ERR(pid);
1213 
1214 	task = get_pid_task(pid, PIDTYPE_TGID);
1215 	if (!task) {
1216 		ret = -ESRCH;
1217 		goto put_pid;
1218 	}
1219 
1220 	/*
1221 	 * Make sure to choose a thread which still has a reference to mm
1222 	 * during the group exit
1223 	 */
1224 	p = find_lock_task_mm(task);
1225 	if (!p) {
1226 		ret = -ESRCH;
1227 		goto put_task;
1228 	}
1229 
1230 	mm = p->mm;
1231 	mmgrab(mm);
1232 
1233 	/*
1234 	 * If we are too late and exit_mmap already checked mm_is_oom_victim
1235 	 * then will block on mmap_read_lock until exit_mmap releases mmap_lock
1236 	 */
1237 	set_bit(MMF_OOM_VICTIM, &mm->flags);
1238 
1239 	if (task_will_free_mem(p))
1240 		reap = true;
1241 	else {
1242 		/* Error only if the work has not been done already */
1243 		if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1244 			ret = -EINVAL;
1245 	}
1246 	task_unlock(p);
1247 
1248 	if (!reap)
1249 		goto drop_mm;
1250 
1251 	if (mmap_read_lock_killable(mm)) {
1252 		ret = -EINTR;
1253 		goto drop_mm;
1254 	}
1255 	/*
1256 	 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1257 	 * possible change in exit_mmap is seen
1258 	 */
1259 	if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm))
1260 		ret = -EAGAIN;
1261 	mmap_read_unlock(mm);
1262 
1263 drop_mm:
1264 	mmdrop(mm);
1265 put_task:
1266 	put_task_struct(task);
1267 put_pid:
1268 	put_pid(pid);
1269 	return ret;
1270 #else
1271 	return -ENOSYS;
1272 #endif /* CONFIG_MMU */
1273 }
1274 
add_to_oom_reaper(struct task_struct * p)1275 void add_to_oom_reaper(struct task_struct *p)
1276 {
1277 	p = find_lock_task_mm(p);
1278 	if (!p)
1279 		return;
1280 
1281 	get_task_struct(p);
1282 	if (task_will_free_mem(p)) {
1283 		__mark_oom_victim(p);
1284 		wake_oom_reaper(p);
1285 	}
1286 	task_unlock(p);
1287 	put_task_struct(p);
1288 }
1289