1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2016-2017 Micron Technology, Inc.
4 *
5 * Authors:
6 * Peter Pan <peterpandong@micron.com>
7 * Boris Brezillon <boris.brezillon@bootlin.com>
8 */
9
10 #define pr_fmt(fmt) "spi-nand: " fmt
11
12 #ifndef __UBOOT__
13 #include <linux/device.h>
14 #include <linux/jiffies.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/mtd/spinand.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-mem.h>
22 #else
23 #include <common.h>
24 #include <errno.h>
25 #include <spi.h>
26 #include <spi-mem.h>
27 #include <linux/mtd/spinand.h>
28 #endif
29
30 /* SPI NAND index visible in MTD names */
31 static int spi_nand_idx;
32
spinand_cache_op_adjust_colum(struct spinand_device * spinand,const struct nand_page_io_req * req,u16 * column)33 static void spinand_cache_op_adjust_colum(struct spinand_device *spinand,
34 const struct nand_page_io_req *req,
35 u16 *column)
36 {
37 struct nand_device *nand = spinand_to_nand(spinand);
38 unsigned int shift;
39
40 if (nand->memorg.planes_per_lun < 2)
41 return;
42
43 /* The plane number is passed in MSB just above the column address */
44 shift = fls(nand->memorg.pagesize);
45 *column |= req->pos.plane << shift;
46 }
47
spinand_read_reg_op(struct spinand_device * spinand,u8 reg,u8 * val)48 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
49 {
50 struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
51 spinand->scratchbuf);
52 int ret;
53
54 ret = spi_mem_exec_op(spinand->slave, &op);
55 if (ret)
56 return ret;
57
58 *val = *spinand->scratchbuf;
59 return 0;
60 }
61
spinand_write_reg_op(struct spinand_device * spinand,u8 reg,u8 val)62 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
63 {
64 struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
65 spinand->scratchbuf);
66
67 *spinand->scratchbuf = val;
68 return spi_mem_exec_op(spinand->slave, &op);
69 }
70
spinand_read_status(struct spinand_device * spinand,u8 * status)71 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
72 {
73 return spinand_read_reg_op(spinand, REG_STATUS, status);
74 }
75
spinand_get_cfg(struct spinand_device * spinand,u8 * cfg)76 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
77 {
78 struct nand_device *nand = spinand_to_nand(spinand);
79
80 if (WARN_ON(spinand->cur_target < 0 ||
81 spinand->cur_target >= nand->memorg.ntargets))
82 return -EINVAL;
83
84 *cfg = spinand->cfg_cache[spinand->cur_target];
85 return 0;
86 }
87
spinand_set_cfg(struct spinand_device * spinand,u8 cfg)88 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
89 {
90 struct nand_device *nand = spinand_to_nand(spinand);
91 int ret;
92
93 if (WARN_ON(spinand->cur_target < 0 ||
94 spinand->cur_target >= nand->memorg.ntargets))
95 return -EINVAL;
96
97 if (spinand->cfg_cache[spinand->cur_target] == cfg)
98 return 0;
99
100 ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
101 if (ret)
102 return ret;
103
104 spinand->cfg_cache[spinand->cur_target] = cfg;
105 return 0;
106 }
107
108 /**
109 * spinand_upd_cfg() - Update the configuration register
110 * @spinand: the spinand device
111 * @mask: the mask encoding the bits to update in the config reg
112 * @val: the new value to apply
113 *
114 * Update the configuration register.
115 *
116 * Return: 0 on success, a negative error code otherwise.
117 */
spinand_upd_cfg(struct spinand_device * spinand,u8 mask,u8 val)118 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
119 {
120 int ret;
121 u8 cfg;
122
123 ret = spinand_get_cfg(spinand, &cfg);
124 if (ret)
125 return ret;
126
127 cfg &= ~mask;
128 cfg |= val;
129
130 return spinand_set_cfg(spinand, cfg);
131 }
132
133 /**
134 * spinand_select_target() - Select a specific NAND target/die
135 * @spinand: the spinand device
136 * @target: the target/die to select
137 *
138 * Select a new target/die. If chip only has one die, this function is a NOOP.
139 *
140 * Return: 0 on success, a negative error code otherwise.
141 */
spinand_select_target(struct spinand_device * spinand,unsigned int target)142 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
143 {
144 struct nand_device *nand = spinand_to_nand(spinand);
145 int ret;
146
147 if (WARN_ON(target >= nand->memorg.ntargets))
148 return -EINVAL;
149
150 if (spinand->cur_target == target)
151 return 0;
152
153 if (nand->memorg.ntargets == 1) {
154 spinand->cur_target = target;
155 return 0;
156 }
157
158 ret = spinand->select_target(spinand, target);
159 if (ret)
160 return ret;
161
162 spinand->cur_target = target;
163 return 0;
164 }
165
spinand_init_cfg_cache(struct spinand_device * spinand)166 static int spinand_init_cfg_cache(struct spinand_device *spinand)
167 {
168 struct nand_device *nand = spinand_to_nand(spinand);
169 struct udevice *dev = spinand->slave->dev;
170 unsigned int target;
171 int ret;
172
173 spinand->cfg_cache = devm_kzalloc(dev,
174 sizeof(*spinand->cfg_cache) *
175 nand->memorg.ntargets,
176 GFP_KERNEL);
177 if (!spinand->cfg_cache)
178 return -ENOMEM;
179
180 for (target = 0; target < nand->memorg.ntargets; target++) {
181 ret = spinand_select_target(spinand, target);
182 if (ret)
183 return ret;
184
185 /*
186 * We use spinand_read_reg_op() instead of spinand_get_cfg()
187 * here to bypass the config cache.
188 */
189 ret = spinand_read_reg_op(spinand, REG_CFG,
190 &spinand->cfg_cache[target]);
191 if (ret)
192 return ret;
193 }
194
195 return 0;
196 }
197
spinand_init_quad_enable(struct spinand_device * spinand)198 static int spinand_init_quad_enable(struct spinand_device *spinand)
199 {
200 bool enable = false;
201
202 if (!(spinand->flags & SPINAND_HAS_QE_BIT))
203 return 0;
204
205 if (spinand->op_templates.read_cache->data.buswidth == 4 ||
206 spinand->op_templates.write_cache->data.buswidth == 4 ||
207 spinand->op_templates.update_cache->data.buswidth == 4)
208 enable = true;
209
210 return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
211 enable ? CFG_QUAD_ENABLE : 0);
212 }
213
spinand_ecc_enable(struct spinand_device * spinand,bool enable)214 static int spinand_ecc_enable(struct spinand_device *spinand,
215 bool enable)
216 {
217 return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
218 enable ? CFG_ECC_ENABLE : 0);
219 }
220
spinand_write_enable_op(struct spinand_device * spinand)221 static int spinand_write_enable_op(struct spinand_device *spinand)
222 {
223 struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
224
225 return spi_mem_exec_op(spinand->slave, &op);
226 }
227
spinand_load_page_op(struct spinand_device * spinand,const struct nand_page_io_req * req)228 static int spinand_load_page_op(struct spinand_device *spinand,
229 const struct nand_page_io_req *req)
230 {
231 struct nand_device *nand = spinand_to_nand(spinand);
232 unsigned int row = nanddev_pos_to_row(nand, &req->pos);
233 struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
234
235 return spi_mem_exec_op(spinand->slave, &op);
236 }
237
spinand_read_from_cache_op(struct spinand_device * spinand,const struct nand_page_io_req * req)238 static int spinand_read_from_cache_op(struct spinand_device *spinand,
239 const struct nand_page_io_req *req)
240 {
241 struct spi_mem_op op = *spinand->op_templates.read_cache;
242 struct nand_device *nand = spinand_to_nand(spinand);
243 struct mtd_info *mtd = nanddev_to_mtd(nand);
244 struct nand_page_io_req adjreq = *req;
245 unsigned int nbytes = 0;
246 void *buf = NULL;
247 u16 column = 0;
248 int ret;
249
250 if (req->datalen) {
251 adjreq.datalen = nanddev_page_size(nand);
252 adjreq.dataoffs = 0;
253 adjreq.databuf.in = spinand->databuf;
254 buf = spinand->databuf;
255 nbytes = adjreq.datalen;
256 }
257
258 if (spinand->support_cont_read && req->datalen) {
259 adjreq.datalen = req->datalen;
260 adjreq.dataoffs = 0;
261 adjreq.databuf.in = req->databuf.in;
262 buf = req->databuf.in;
263 nbytes = adjreq.datalen;
264 }
265
266 if (req->ooblen) {
267 adjreq.ooblen = nanddev_per_page_oobsize(nand);
268 adjreq.ooboffs = 0;
269 adjreq.oobbuf.in = spinand->oobbuf;
270 nbytes += nanddev_per_page_oobsize(nand);
271 if (!buf) {
272 buf = spinand->oobbuf;
273 column = nanddev_page_size(nand);
274 }
275 }
276
277 spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
278 op.addr.val = column;
279
280 /*
281 * Some controllers are limited in term of max RX data size. In this
282 * case, just repeat the READ_CACHE operation after updating the
283 * column.
284 */
285 while (nbytes) {
286 op.data.buf.in = buf;
287 op.data.nbytes = nbytes;
288 ret = spi_mem_adjust_op_size(spinand->slave, &op);
289 if (ret)
290 return ret;
291
292 ret = spi_mem_exec_op(spinand->slave, &op);
293 if (ret)
294 return ret;
295
296 buf += op.data.nbytes;
297 nbytes -= op.data.nbytes;
298 op.addr.val += op.data.nbytes;
299 }
300
301 if (!spinand->support_cont_read && req->datalen)
302 memcpy(req->databuf.in, spinand->databuf + req->dataoffs, req->datalen);
303
304 if (req->ooblen) {
305 if (req->mode == MTD_OPS_AUTO_OOB)
306 mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
307 spinand->oobbuf,
308 req->ooboffs,
309 req->ooblen);
310 else
311 memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
312 req->ooblen);
313 }
314
315 return 0;
316 }
317
spinand_write_to_cache_op(struct spinand_device * spinand,const struct nand_page_io_req * req)318 static int spinand_write_to_cache_op(struct spinand_device *spinand,
319 const struct nand_page_io_req *req)
320 {
321 struct spi_mem_op op = *spinand->op_templates.write_cache;
322 struct nand_device *nand = spinand_to_nand(spinand);
323 struct mtd_info *mtd = nanddev_to_mtd(nand);
324 struct nand_page_io_req adjreq = *req;
325 unsigned int nbytes = 0;
326 void *buf = NULL;
327 u16 column = 0;
328 int ret;
329
330 /*
331 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
332 * the cache content to 0xFF (depends on vendor implementation), so we
333 * must fill the page cache entirely even if we only want to program
334 * the data portion of the page, otherwise we might corrupt the BBM or
335 * user data previously programmed in OOB area.
336 */
337 memset(spinand->databuf, 0xff,
338 nanddev_page_size(nand) +
339 nanddev_per_page_oobsize(nand));
340
341 if (req->datalen) {
342 memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
343 req->datalen);
344 adjreq.dataoffs = 0;
345 adjreq.datalen = nanddev_page_size(nand);
346 adjreq.databuf.out = spinand->databuf;
347 nbytes = adjreq.datalen;
348 buf = spinand->databuf;
349 }
350
351 if (req->ooblen) {
352 if (req->mode == MTD_OPS_AUTO_OOB)
353 mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
354 spinand->oobbuf,
355 req->ooboffs,
356 req->ooblen);
357 else
358 memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
359 req->ooblen);
360
361 adjreq.ooblen = nanddev_per_page_oobsize(nand);
362 adjreq.ooboffs = 0;
363 nbytes += nanddev_per_page_oobsize(nand);
364 if (!buf) {
365 buf = spinand->oobbuf;
366 column = nanddev_page_size(nand);
367 }
368 }
369
370 spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
371
372 op = *spinand->op_templates.write_cache;
373 op.addr.val = column;
374
375 /*
376 * Some controllers are limited in term of max TX data size. In this
377 * case, split the operation into one LOAD CACHE and one or more
378 * LOAD RANDOM CACHE.
379 */
380 while (nbytes) {
381 op.data.buf.out = buf;
382 op.data.nbytes = nbytes;
383
384 ret = spi_mem_adjust_op_size(spinand->slave, &op);
385 if (ret)
386 return ret;
387
388 ret = spi_mem_exec_op(spinand->slave, &op);
389 if (ret)
390 return ret;
391
392 buf += op.data.nbytes;
393 nbytes -= op.data.nbytes;
394 op.addr.val += op.data.nbytes;
395
396 /*
397 * We need to use the RANDOM LOAD CACHE operation if there's
398 * more than one iteration, because the LOAD operation resets
399 * the cache to 0xff.
400 */
401 if (nbytes) {
402 column = op.addr.val;
403 op = *spinand->op_templates.update_cache;
404 op.addr.val = column;
405 }
406 }
407
408 return 0;
409 }
410
spinand_program_op(struct spinand_device * spinand,const struct nand_page_io_req * req)411 static int spinand_program_op(struct spinand_device *spinand,
412 const struct nand_page_io_req *req)
413 {
414 struct nand_device *nand = spinand_to_nand(spinand);
415 unsigned int row = nanddev_pos_to_row(nand, &req->pos);
416 struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
417
418 return spi_mem_exec_op(spinand->slave, &op);
419 }
420
spinand_erase_op(struct spinand_device * spinand,const struct nand_pos * pos)421 static int spinand_erase_op(struct spinand_device *spinand,
422 const struct nand_pos *pos)
423 {
424 struct nand_device *nand = &spinand->base;
425 unsigned int row = nanddev_pos_to_row(nand, pos);
426 struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
427
428 return spi_mem_exec_op(spinand->slave, &op);
429 }
430
spinand_wait(struct spinand_device * spinand,u8 * s)431 static int spinand_wait(struct spinand_device *spinand, u8 *s)
432 {
433 unsigned long start, stop;
434 u8 status;
435 int ret;
436
437 start = get_timer(0);
438 stop = 400;
439 do {
440 ret = spinand_read_status(spinand, &status);
441 if (ret)
442 return ret;
443
444 if (!(status & STATUS_BUSY))
445 goto out;
446 } while (get_timer(start) < stop);
447
448 /*
449 * Extra read, just in case the STATUS_READY bit has changed
450 * since our last check
451 */
452 ret = spinand_read_status(spinand, &status);
453 if (ret)
454 return ret;
455
456 out:
457 if (s)
458 *s = status;
459
460 return status & STATUS_BUSY ? -ETIMEDOUT : 0;
461 }
462
spinand_read_id_op(struct spinand_device * spinand,u8 naddr,u8 ndummy,u8 * buf)463 static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
464 u8 ndummy, u8 *buf)
465 {
466 struct spi_mem_op op = SPINAND_READID_OP(
467 naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
468 int ret;
469
470 ret = spi_mem_exec_op(spinand->slave, &op);
471 if (!ret)
472 memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
473
474 return ret;
475 }
476
477 #if !CONFIG_IS_ENABLED(SUPPORT_USBPLUG)
spinand_reset_op(struct spinand_device * spinand)478 static int spinand_reset_op(struct spinand_device *spinand)
479 {
480 struct spi_mem_op op = SPINAND_RESET_OP;
481 int ret;
482
483 ret = spi_mem_exec_op(spinand->slave, &op);
484 if (ret)
485 return ret;
486
487 return spinand_wait(spinand, NULL);
488 }
489 #endif
490
spinand_lock_block(struct spinand_device * spinand,u8 lock)491 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
492 {
493 return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
494 }
495
spinand_check_ecc_status(struct spinand_device * spinand,u8 status)496 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
497 {
498 struct nand_device *nand = spinand_to_nand(spinand);
499
500 if (spinand->eccinfo.get_status)
501 return spinand->eccinfo.get_status(spinand, status);
502
503 switch (status & STATUS_ECC_MASK) {
504 case STATUS_ECC_NO_BITFLIPS:
505 return 0;
506
507 case STATUS_ECC_HAS_BITFLIPS:
508 /*
509 * We have no way to know exactly how many bitflips have been
510 * fixed, so let's return the maximum possible value so that
511 * wear-leveling layers move the data immediately.
512 */
513 return nand->eccreq.strength;
514
515 case STATUS_ECC_UNCOR_ERROR:
516 return -EBADMSG;
517
518 default:
519 break;
520 }
521
522 return -EINVAL;
523 }
524
spinand_read_page(struct spinand_device * spinand,const struct nand_page_io_req * req,bool ecc_enabled)525 static int spinand_read_page(struct spinand_device *spinand,
526 const struct nand_page_io_req *req,
527 bool ecc_enabled)
528 {
529 u8 status = 0;
530 int ret;
531
532 ret = spinand_load_page_op(spinand, req);
533 if (ret)
534 return ret;
535
536 ret = spinand_wait(spinand, &status);
537 /*
538 * When there is data outside of OIP in the status, the status data is
539 * inaccurate and needs to be reconfirmed
540 */
541 if (spinand->id.data[0] == 0x01 && status && !ret)
542 ret = spinand_wait(spinand, &status);
543 if (ret < 0)
544 return ret;
545
546 ret = spinand_read_from_cache_op(spinand, req);
547 if (ret)
548 return ret;
549
550 if (spinand->support_cont_read && !(spinand->slave->mode & SPI_DMA_PREPARE))
551 spinand_wait(spinand, &status);
552
553 if (!ecc_enabled)
554 return 0;
555
556 return spinand_check_ecc_status(spinand, status);
557 }
558
spinand_write_page(struct spinand_device * spinand,const struct nand_page_io_req * req)559 static int spinand_write_page(struct spinand_device *spinand,
560 const struct nand_page_io_req *req)
561 {
562 u8 status;
563 int ret;
564
565 ret = spinand_write_enable_op(spinand);
566 if (ret)
567 return ret;
568
569 ret = spinand_write_to_cache_op(spinand, req);
570 if (ret)
571 return ret;
572
573 ret = spinand_program_op(spinand, req);
574 if (ret)
575 return ret;
576
577 ret = spinand_wait(spinand, &status);
578 if (!ret && (status & STATUS_PROG_FAILED))
579 ret = -EIO;
580
581 return ret;
582 }
583
spinand_mtd_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)584 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
585 struct mtd_oob_ops *ops)
586 {
587 struct spinand_device *spinand = mtd_to_spinand(mtd);
588 struct nand_device *nand = mtd_to_nanddev(mtd);
589 unsigned int max_bitflips = 0;
590 struct nand_io_iter iter;
591 bool enable_ecc = false;
592 bool ecc_failed = false;
593 int ret = 0;
594 bool cont_real = spinand->support_cont_read;
595
596 if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout)
597 enable_ecc = true;
598
599 #ifndef __UBOOT__
600 mutex_lock(&spinand->lock);
601 #endif
602
603 nanddev_io_for_each_page(nand, from, ops, &iter) {
604 ret = spinand_select_target(spinand, iter.req.pos.target);
605 if (ret)
606 break;
607
608 ret = spinand_ecc_enable(spinand, enable_ecc);
609 if (ret)
610 break;
611
612 /* For misaligned situations, temporarily disable the cont read capability */
613 if (iter.req.dataoffs)
614 spinand->support_cont_read = false;
615 else
616 spinand->support_cont_read = cont_real;
617
618 if (spinand->support_cont_read) {
619 iter.req.datalen = ops->len;
620 iter.req.ooblen = 0;
621 }
622 ret = spinand_read_page(spinand, &iter.req, enable_ecc);
623 if (ret < 0 && ret != -EBADMSG)
624 break;
625
626 if (ret == -EBADMSG) {
627 ecc_failed = true;
628 mtd->ecc_stats.failed++;
629 } else {
630 mtd->ecc_stats.corrected += ret;
631 max_bitflips = max_t(unsigned int, max_bitflips, ret);
632 }
633
634 ret = 0;
635 if (spinand->support_cont_read) {
636 ops->retlen = ops->len;
637 ops->oobretlen = ops->ooblen;
638 break;
639 }
640
641 ops->retlen += iter.req.datalen;
642 ops->oobretlen += iter.req.ooblen;
643 }
644
645 #ifndef __UBOOT__
646 mutex_unlock(&spinand->lock);
647 #endif
648 if (ecc_failed && !ret)
649 ret = -EBADMSG;
650
651 spinand->support_cont_read = cont_real;
652
653 return ret ? ret : max_bitflips;
654 }
655
spinand_mtd_write(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)656 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
657 struct mtd_oob_ops *ops)
658 {
659 struct spinand_device *spinand = mtd_to_spinand(mtd);
660 struct nand_device *nand = mtd_to_nanddev(mtd);
661 struct nand_io_iter iter;
662 bool enable_ecc = false;
663 int ret = 0;
664
665 if (ops->mode != MTD_OPS_RAW && mtd->ooblayout)
666 enable_ecc = true;
667
668 #ifndef __UBOOT__
669 mutex_lock(&spinand->lock);
670 #endif
671
672 nanddev_io_for_each_page(nand, to, ops, &iter) {
673 ret = spinand_select_target(spinand, iter.req.pos.target);
674 if (ret)
675 break;
676
677 ret = spinand_ecc_enable(spinand, enable_ecc);
678 if (ret)
679 break;
680
681 ret = spinand_write_page(spinand, &iter.req);
682 if (ret)
683 break;
684
685 ops->retlen += iter.req.datalen;
686 ops->oobretlen += iter.req.ooblen;
687 }
688
689 #ifndef __UBOOT__
690 mutex_unlock(&spinand->lock);
691 #endif
692
693 return ret;
694 }
695
spinand_isbad(struct nand_device * nand,const struct nand_pos * pos)696 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
697 {
698 struct spinand_device *spinand = nand_to_spinand(nand);
699 u8 marker[2] = { };
700 struct nand_page_io_req req = {
701 .pos = *pos,
702 .ooblen = sizeof(marker),
703 .ooboffs = 0,
704 .oobbuf.in = marker,
705 .mode = MTD_OPS_RAW,
706 };
707
708 spinand_select_target(spinand, pos->target);
709 spinand_read_page(spinand, &req, false);
710 if (marker[0] != 0xff || marker[1] != 0xff)
711 return true;
712
713 return false;
714 }
715
spinand_mtd_block_isbad(struct mtd_info * mtd,loff_t offs)716 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
717 {
718 struct nand_device *nand = mtd_to_nanddev(mtd);
719 #ifndef __UBOOT__
720 struct spinand_device *spinand = nand_to_spinand(nand);
721 #endif
722 struct nand_pos pos;
723 int ret;
724
725 nanddev_offs_to_pos(nand, offs, &pos);
726 #ifndef __UBOOT__
727 mutex_lock(&spinand->lock);
728 #endif
729 ret = nanddev_isbad(nand, &pos);
730 #ifndef __UBOOT__
731 mutex_unlock(&spinand->lock);
732 #endif
733 return ret;
734 }
735
spinand_markbad(struct nand_device * nand,const struct nand_pos * pos)736 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
737 {
738 struct spinand_device *spinand = nand_to_spinand(nand);
739 u8 marker[2] = { 0, 0 };
740 struct nand_page_io_req req = {
741 .pos = *pos,
742 .ooboffs = 0,
743 .ooblen = sizeof(marker),
744 .oobbuf.out = marker,
745 .mode = MTD_OPS_RAW,
746 };
747 int ret;
748
749 ret = spinand_select_target(spinand, pos->target);
750 if (ret)
751 return ret;
752
753 ret = spinand_write_enable_op(spinand);
754 if (ret)
755 return ret;
756
757 return spinand_write_page(spinand, &req);
758 }
759
spinand_mtd_block_markbad(struct mtd_info * mtd,loff_t offs)760 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
761 {
762 struct nand_device *nand = mtd_to_nanddev(mtd);
763 #ifndef __UBOOT__
764 struct spinand_device *spinand = nand_to_spinand(nand);
765 #endif
766 struct nand_pos pos;
767 int ret;
768
769 nanddev_offs_to_pos(nand, offs, &pos);
770 #ifndef __UBOOT__
771 mutex_lock(&spinand->lock);
772 #endif
773 ret = nanddev_markbad(nand, &pos);
774 #ifndef __UBOOT__
775 mutex_unlock(&spinand->lock);
776 #endif
777 return ret;
778 }
779
spinand_erase(struct nand_device * nand,const struct nand_pos * pos)780 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
781 {
782 struct spinand_device *spinand = nand_to_spinand(nand);
783 u8 status;
784 int ret;
785
786 ret = spinand_select_target(spinand, pos->target);
787 if (ret)
788 return ret;
789
790 ret = spinand_write_enable_op(spinand);
791 if (ret)
792 return ret;
793
794 ret = spinand_erase_op(spinand, pos);
795 if (ret)
796 return ret;
797
798 ret = spinand_wait(spinand, &status);
799 if (!ret && (status & STATUS_ERASE_FAILED))
800 ret = -EIO;
801
802 return ret;
803 }
804
spinand_mtd_erase(struct mtd_info * mtd,struct erase_info * einfo)805 static int spinand_mtd_erase(struct mtd_info *mtd,
806 struct erase_info *einfo)
807 {
808 #ifndef __UBOOT__
809 struct spinand_device *spinand = mtd_to_spinand(mtd);
810 #endif
811 int ret;
812
813 #ifndef __UBOOT__
814 mutex_lock(&spinand->lock);
815 #endif
816 ret = nanddev_mtd_erase(mtd, einfo);
817 #ifndef __UBOOT__
818 mutex_unlock(&spinand->lock);
819 #endif
820
821 return ret;
822 }
823
spinand_mtd_block_isreserved(struct mtd_info * mtd,loff_t offs)824 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
825 {
826 #ifndef __UBOOT__
827 struct spinand_device *spinand = mtd_to_spinand(mtd);
828 #endif
829 struct nand_device *nand = mtd_to_nanddev(mtd);
830 struct nand_pos pos;
831 int ret;
832
833 nanddev_offs_to_pos(nand, offs, &pos);
834 #ifndef __UBOOT__
835 mutex_lock(&spinand->lock);
836 #endif
837 ret = nanddev_isreserved(nand, &pos);
838 #ifndef __UBOOT__
839 mutex_unlock(&spinand->lock);
840 #endif
841
842 return ret;
843 }
844
845 const struct spi_mem_op *
spinand_find_supported_op(struct spinand_device * spinand,const struct spi_mem_op * ops,unsigned int nops)846 spinand_find_supported_op(struct spinand_device *spinand,
847 const struct spi_mem_op *ops,
848 unsigned int nops)
849 {
850 unsigned int i;
851
852 for (i = 0; i < nops; i++) {
853 if (spi_mem_supports_op(spinand->slave, &ops[i]))
854 return &ops[i];
855 }
856
857 return NULL;
858 }
859
860 static const struct nand_ops spinand_ops = {
861 .erase = spinand_erase,
862 .markbad = spinand_markbad,
863 .isbad = spinand_isbad,
864 };
865
866 static const struct spinand_manufacturer *spinand_manufacturers[] = {
867 #ifdef CONFIG_SPI_NAND_GIGADEVICE
868 &gigadevice_spinand_manufacturer,
869 #endif
870 #ifdef CONFIG_SPI_NAND_MACRONIX
871 ¯onix_spinand_manufacturer,
872 #endif
873 #ifdef CONFIG_SPI_NAND_MICRON
874 µn_spinand_manufacturer,
875 #endif
876 #ifdef CONFIG_SPI_NAND_TOSHIBA
877 &toshiba_spinand_manufacturer,
878 #endif
879 #ifdef CONFIG_SPI_NAND_WINBOND
880 &winbond_spinand_manufacturer,
881 #endif
882 #ifdef CONFIG_SPI_NAND_DOSILICON
883 &dosilicon_spinand_manufacturer,
884 #endif
885 #ifdef CONFIG_SPI_NAND_ESMT
886 &esmt_spinand_manufacturer,
887 #endif
888 #ifdef CONFIG_SPI_NAND_XINCUN
889 &xincun_spinand_manufacturer,
890 #endif
891 #ifdef CONFIG_SPI_NAND_XTX
892 &xtx_spinand_manufacturer,
893 #endif
894 #ifdef CONFIG_SPI_NAND_HYF
895 &hyf_spinand_manufacturer,
896 #endif
897 #ifdef CONFIG_SPI_NAND_FMSH
898 &fmsh_spinand_manufacturer,
899 #endif
900 #ifdef CONFIG_SPI_NAND_FORESEE
901 &foresee_spinand_manufacturer,
902 #endif
903 #ifdef CONFIG_SPI_NAND_BIWIN
904 &biwin_spinand_manufacturer,
905 #endif
906 #ifdef CONFIG_SPI_NAND_ETRON
907 &etron_spinand_manufacturer,
908 #endif
909 #ifdef CONFIG_SPI_NAND_JSC
910 &jsc_spinand_manufacturer,
911 #endif
912 #ifdef CONFIG_SPI_NAND_SILICONGO
913 &silicongo_spinand_manufacturer,
914 #endif
915 #ifdef CONFIG_SPI_NAND_UNIM
916 &unim_spinand_manufacturer,
917 &unim_zl_spinand_manufacturer,
918 #endif
919 #ifdef CONFIG_SPI_NAND_SKYHIGH
920 &skyhigh_spinand_manufacturer,
921 #endif
922 #ifdef CONFIG_SPI_NAND_GSTO
923 &gsto_spinand_manufacturer,
924 #endif
925 #ifdef CONFIG_SPI_NAND_ZBIT
926 &zbit_spinand_manufacturer,
927 #endif
928 #ifdef CONFIG_SPI_NAND_HIKSEMI
929 &hiksemi_spinand_manufacturer,
930 #endif
931 #ifdef CONFIG_SPI_NAND_KINGSTON
932 &kingston_spinand_manufacturer,
933 #endif
934 };
935
spinand_manufacturer_match(struct spinand_device * spinand,enum spinand_readid_method rdid_method)936 static int spinand_manufacturer_match(struct spinand_device *spinand,
937 enum spinand_readid_method rdid_method)
938 {
939 u8 *id = spinand->id.data;
940 unsigned int i;
941 int ret;
942
943 for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
944 const struct spinand_manufacturer *manufacturer =
945 spinand_manufacturers[i];
946
947 if (id[0] != manufacturer->id)
948 continue;
949
950 ret = spinand_match_and_init(spinand,
951 manufacturer->chips,
952 manufacturer->nchips,
953 rdid_method);
954 if (ret < 0)
955 continue;
956
957 spinand->manufacturer = manufacturer;
958 return 0;
959 }
960 return -ENOTSUPP;
961 }
962
spinand_id_detect(struct spinand_device * spinand)963 static int spinand_id_detect(struct spinand_device *spinand)
964 {
965 u8 *id = spinand->id.data;
966 int ret;
967
968 ret = spinand_read_id_op(spinand, 0, 0, id);
969 if (ret)
970 return ret;
971 ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
972 if (!ret)
973 return 0;
974
975 ret = spinand_read_id_op(spinand, 1, 0, id);
976 if (ret)
977 return ret;
978 ret = spinand_manufacturer_match(spinand,
979 SPINAND_READID_METHOD_OPCODE_ADDR);
980 if (!ret)
981 return 0;
982
983 ret = spinand_read_id_op(spinand, 0, 1, id);
984 if (ret)
985 return ret;
986 ret = spinand_manufacturer_match(spinand,
987 SPINAND_READID_METHOD_OPCODE_DUMMY);
988
989 return ret;
990 }
991
spinand_manufacturer_init(struct spinand_device * spinand)992 static int spinand_manufacturer_init(struct spinand_device *spinand)
993 {
994 if (spinand->manufacturer->ops->init)
995 return spinand->manufacturer->ops->init(spinand);
996
997 return 0;
998 }
999
spinand_manufacturer_cleanup(struct spinand_device * spinand)1000 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
1001 {
1002 /* Release manufacturer private data */
1003 if (spinand->manufacturer->ops->cleanup)
1004 return spinand->manufacturer->ops->cleanup(spinand);
1005 }
1006
1007 static const struct spi_mem_op *
spinand_select_op_variant(struct spinand_device * spinand,const struct spinand_op_variants * variants)1008 spinand_select_op_variant(struct spinand_device *spinand,
1009 const struct spinand_op_variants *variants)
1010 {
1011 struct nand_device *nand = spinand_to_nand(spinand);
1012 unsigned int i;
1013
1014 for (i = 0; i < variants->nops; i++) {
1015 struct spi_mem_op op = variants->ops[i];
1016 unsigned int nbytes;
1017 int ret;
1018
1019 nbytes = nanddev_per_page_oobsize(nand) +
1020 nanddev_page_size(nand);
1021
1022 while (nbytes) {
1023 op.data.nbytes = nbytes;
1024 ret = spi_mem_adjust_op_size(spinand->slave, &op);
1025 if (ret)
1026 break;
1027
1028 if (!spi_mem_supports_op(spinand->slave, &op))
1029 break;
1030
1031 nbytes -= op.data.nbytes;
1032 }
1033
1034 if (!nbytes)
1035 return &variants->ops[i];
1036 }
1037
1038 return NULL;
1039 }
1040
1041 /**
1042 * spinand_match_and_init() - Try to find a match between a device ID and an
1043 * entry in a spinand_info table
1044 * @spinand: SPI NAND object
1045 * @table: SPI NAND device description table
1046 * @table_size: size of the device description table
1047 * @rdid_method: read id method to match
1048 *
1049 * Match between a device ID retrieved through the READ_ID command and an
1050 * entry in the SPI NAND description table. If a match is found, the spinand
1051 * object will be initialized with information provided by the matching
1052 * spinand_info entry.
1053 *
1054 * Return: 0 on success, a negative error code otherwise.
1055 */
spinand_match_and_init(struct spinand_device * spinand,const struct spinand_info * table,unsigned int table_size,enum spinand_readid_method rdid_method)1056 int spinand_match_and_init(struct spinand_device *spinand,
1057 const struct spinand_info *table,
1058 unsigned int table_size,
1059 enum spinand_readid_method rdid_method)
1060 {
1061 u8 *id = spinand->id.data;
1062 struct nand_device *nand = spinand_to_nand(spinand);
1063 unsigned int i;
1064
1065 for (i = 0; i < table_size; i++) {
1066 const struct spinand_info *info = &table[i];
1067 const struct spi_mem_op *op;
1068
1069 if (rdid_method != info->devid.method)
1070 continue;
1071
1072 if (memcmp(id + 1, info->devid.id, info->devid.len))
1073 continue;
1074
1075 nand->memorg = table[i].memorg;
1076 nand->eccreq = table[i].eccreq;
1077 spinand->eccinfo = table[i].eccinfo;
1078 spinand->flags = table[i].flags;
1079 spinand->id.len = 1 + table[i].devid.len;
1080 spinand->select_target = table[i].select_target;
1081
1082 op = spinand_select_op_variant(spinand,
1083 info->op_variants.read_cache);
1084 if (!op)
1085 return -ENOTSUPP;
1086
1087 spinand->op_templates.read_cache = op;
1088
1089 op = spinand_select_op_variant(spinand,
1090 info->op_variants.write_cache);
1091 if (!op)
1092 return -ENOTSUPP;
1093
1094 spinand->op_templates.write_cache = op;
1095
1096 op = spinand_select_op_variant(spinand,
1097 info->op_variants.update_cache);
1098 spinand->op_templates.update_cache = op;
1099
1100 return 0;
1101 }
1102
1103 return -ENOTSUPP;
1104 }
1105
spinand_detect(struct spinand_device * spinand)1106 static int spinand_detect(struct spinand_device *spinand)
1107 {
1108 struct nand_device *nand = spinand_to_nand(spinand);
1109 int ret;
1110
1111 #if !CONFIG_IS_ENABLED(SUPPORT_USBPLUG)
1112 ret = spinand_reset_op(spinand);
1113 if (ret)
1114 return ret;
1115 #endif
1116
1117 ret = spinand_id_detect(spinand);
1118 if (ret) {
1119 dev_err(dev, "unknown raw ID %x %x %x\n",
1120 spinand->id.data[0], spinand->id.data[1], spinand->id.data[2]);
1121 return ret;
1122 }
1123 dev_err(dev, "SPI Nand ID %x %x %x\n",
1124 spinand->id.data[0], spinand->id.data[1], spinand->id.data[2]);
1125
1126 if (nand->memorg.ntargets > 1 && !spinand->select_target) {
1127 dev_err(dev,
1128 "SPI NANDs with more than one die must implement ->select_target()\n");
1129 return -EINVAL;
1130 }
1131
1132 dev_info(spinand->slave->dev,
1133 "%s SPI NAND was found.\n", spinand->manufacturer->name);
1134 dev_info(spinand->slave->dev,
1135 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
1136 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
1137 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
1138
1139 return 0;
1140 }
1141
spinand_noecc_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * region)1142 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
1143 struct mtd_oob_region *region)
1144 {
1145 return -ERANGE;
1146 }
1147
spinand_noecc_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * region)1148 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
1149 struct mtd_oob_region *region)
1150 {
1151 if (section)
1152 return -ERANGE;
1153
1154 /* Reserve 2 bytes for the BBM. */
1155 region->offset = 2;
1156 region->length = 62;
1157
1158 return 0;
1159 }
1160
1161 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
1162 .ecc = spinand_noecc_ooblayout_ecc,
1163 .rfree = spinand_noecc_ooblayout_free,
1164 };
1165
spinand_init(struct spinand_device * spinand)1166 static int spinand_init(struct spinand_device *spinand)
1167 {
1168 struct mtd_info *mtd = spinand_to_mtd(spinand);
1169 struct nand_device *nand = mtd_to_nanddev(mtd);
1170 int ret, i;
1171
1172 /*
1173 * We need a scratch buffer because the spi_mem interface requires that
1174 * buf passed in spi_mem_op->data.buf be DMA-able.
1175 */
1176 spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
1177 if (!spinand->scratchbuf)
1178 return -ENOMEM;
1179
1180 ret = spinand_detect(spinand);
1181 if (ret)
1182 goto err_free_bufs;
1183
1184 /*
1185 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
1186 * may use this buffer for DMA access.
1187 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
1188 */
1189 spinand->databuf = kzalloc(nanddev_page_size(nand) +
1190 nanddev_per_page_oobsize(nand),
1191 GFP_KERNEL);
1192 if (!spinand->databuf) {
1193 ret = -ENOMEM;
1194 goto err_free_bufs;
1195 }
1196
1197 spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
1198
1199 ret = spinand_init_cfg_cache(spinand);
1200 if (ret)
1201 goto err_free_bufs;
1202
1203 ret = spinand_init_quad_enable(spinand);
1204 if (ret)
1205 goto err_free_bufs;
1206
1207 ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1208 if (ret)
1209 goto err_free_bufs;
1210
1211 ret = spinand_manufacturer_init(spinand);
1212 if (ret) {
1213 dev_err(dev,
1214 "Failed to initialize the SPI NAND chip (err = %d)\n",
1215 ret);
1216 goto err_free_bufs;
1217 }
1218
1219 /* After power up, all blocks are locked, so unlock them here. */
1220 for (i = 0; i < nand->memorg.ntargets; i++) {
1221 ret = spinand_select_target(spinand, i);
1222 if (ret)
1223 goto err_free_bufs;
1224
1225 /* HWP_EN must be enabled first before block unlock region is set */
1226 if (spinand->id.data[0] == 0x01) {
1227 ret = spinand_lock_block(spinand, HWP_EN);
1228 if (ret)
1229 goto err_free_bufs;
1230 }
1231
1232 ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1233 if (ret)
1234 goto err_free_bufs;
1235 }
1236
1237 nand->bbt.option = NANDDEV_BBT_USE_FLASH;
1238 ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1239 if (ret)
1240 goto err_manuf_cleanup;
1241
1242 /*
1243 * Right now, we don't support ECC, so let the whole oob
1244 * area is available for user.
1245 */
1246 mtd->_read_oob = spinand_mtd_read;
1247 mtd->_write_oob = spinand_mtd_write;
1248 mtd->_block_isbad = spinand_mtd_block_isbad;
1249 mtd->_block_markbad = spinand_mtd_block_markbad;
1250 mtd->_block_isreserved = spinand_mtd_block_isreserved;
1251 mtd->_erase = spinand_mtd_erase;
1252
1253 if (spinand->eccinfo.ooblayout)
1254 mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
1255 else
1256 mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
1257
1258 ret = mtd_ooblayout_count_freebytes(mtd);
1259 if (ret < 0)
1260 goto err_cleanup_nanddev;
1261
1262 mtd->oobavail = ret;
1263
1264 /* Propagate ECC information to mtd_info */
1265 mtd->ecc_strength = nand->eccreq.strength;
1266 mtd->ecc_step_size = nand->eccreq.step_size;
1267
1268 return 0;
1269
1270 err_cleanup_nanddev:
1271 nanddev_cleanup(nand);
1272
1273 err_manuf_cleanup:
1274 spinand_manufacturer_cleanup(spinand);
1275
1276 err_free_bufs:
1277 kfree(spinand->databuf);
1278 kfree(spinand->scratchbuf);
1279 return ret;
1280 }
1281
spinand_cleanup(struct spinand_device * spinand)1282 static void spinand_cleanup(struct spinand_device *spinand)
1283 {
1284 struct nand_device *nand = spinand_to_nand(spinand);
1285
1286 nanddev_cleanup(nand);
1287 spinand_manufacturer_cleanup(spinand);
1288 kfree(spinand->databuf);
1289 kfree(spinand->scratchbuf);
1290 }
1291
spinand_bind(struct udevice * udev)1292 static int spinand_bind(struct udevice *udev)
1293 {
1294 int ret = 0;
1295
1296 #ifdef CONFIG_MTD_BLK
1297 struct udevice *bdev;
1298
1299 ret = blk_create_devicef(udev, "mtd_blk", "blk", IF_TYPE_MTD,
1300 BLK_MTD_SPI_NAND, 512, 0, &bdev);
1301 if (ret)
1302 printf("Cannot create block device\n");
1303 #endif
1304 return ret;
1305 }
1306
spinand_probe(struct udevice * dev)1307 static int spinand_probe(struct udevice *dev)
1308 {
1309 struct spinand_device *spinand = dev_get_priv(dev);
1310 struct spi_slave *slave = dev_get_parent_priv(dev);
1311 struct mtd_info *mtd = dev_get_uclass_priv(dev);
1312 struct nand_device *nand = spinand_to_nand(spinand);
1313 int ret;
1314
1315 #ifndef __UBOOT__
1316 spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1317 GFP_KERNEL);
1318 if (!spinand)
1319 return -ENOMEM;
1320
1321 spinand->spimem = mem;
1322 spi_mem_set_drvdata(mem, spinand);
1323 spinand_set_of_node(spinand, mem->spi->dev.of_node);
1324 mutex_init(&spinand->lock);
1325
1326 mtd = spinand_to_mtd(spinand);
1327 mtd->dev.parent = &mem->spi->dev;
1328 #else
1329 nand->mtd = mtd;
1330 mtd->priv = nand;
1331 mtd->dev = dev;
1332 mtd->name = malloc(20);
1333 if (!mtd->name)
1334 return -ENOMEM;
1335 sprintf(mtd->name, "spi-nand%d", spi_nand_idx++);
1336 spinand->slave = slave;
1337 spinand_set_of_node(spinand, dev->node.np);
1338 #endif
1339
1340 ret = spinand_init(spinand);
1341 if (ret)
1342 return ret;
1343
1344 #ifndef __UBOOT__
1345 ret = mtd_device_register(mtd, NULL, 0);
1346 #else
1347 ret = add_mtd_device(mtd);
1348 #endif
1349 if (ret)
1350 goto err_spinand_cleanup;
1351
1352 return 0;
1353
1354 err_spinand_cleanup:
1355 spinand_cleanup(spinand);
1356
1357 return ret;
1358 }
1359
1360 #ifndef __UBOOT__
spinand_remove(struct udevice * slave)1361 static int spinand_remove(struct udevice *slave)
1362 {
1363 struct spinand_device *spinand;
1364 struct mtd_info *mtd;
1365 int ret;
1366
1367 spinand = spi_mem_get_drvdata(slave);
1368 mtd = spinand_to_mtd(spinand);
1369 free(mtd->name);
1370
1371 ret = mtd_device_unregister(mtd);
1372 if (ret)
1373 return ret;
1374
1375 spinand_cleanup(spinand);
1376
1377 return 0;
1378 }
1379
1380 static const struct spi_device_id spinand_ids[] = {
1381 { .name = "spi-nand" },
1382 { /* sentinel */ },
1383 };
1384
1385 #ifdef CONFIG_OF
1386 static const struct of_device_id spinand_of_ids[] = {
1387 { .compatible = "spi-nand" },
1388 { /* sentinel */ },
1389 };
1390 #endif
1391
1392 static struct spi_mem_driver spinand_drv = {
1393 .spidrv = {
1394 .id_table = spinand_ids,
1395 .driver = {
1396 .name = "spi-nand",
1397 .of_match_table = of_match_ptr(spinand_of_ids),
1398 },
1399 },
1400 .probe = spinand_probe,
1401 .remove = spinand_remove,
1402 };
1403 module_spi_mem_driver(spinand_drv);
1404
1405 MODULE_DESCRIPTION("SPI NAND framework");
1406 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1407 MODULE_LICENSE("GPL v2");
1408 #endif /* __UBOOT__ */
1409
1410 static const struct udevice_id spinand_ids[] = {
1411 { .compatible = "spi-nand" },
1412 { /* sentinel */ },
1413 };
1414
1415 U_BOOT_DRIVER(spinand) = {
1416 .name = "spi_nand",
1417 .id = UCLASS_MTD,
1418 .of_match = spinand_ids,
1419 .bind = spinand_bind,
1420 .priv_auto_alloc_size = sizeof(struct spinand_device),
1421 .probe = spinand_probe,
1422 };
1423