xref: /OK3568_Linux_fs/kernel/arch/x86/kernel/cpu/bugs.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1994  Linus Torvalds
4  *
5  *  Cyrix stuff, June 1998 by:
6  *	- Rafael R. Reilova (moved everything from head.S),
7  *        <rreilova@ececs.uc.edu>
8  *	- Channing Corn (tests & fixes),
9  *	- Andrew D. Balsa (code cleanup).
10  */
11 #include <linux/init.h>
12 #include <linux/utsname.h>
13 #include <linux/cpu.h>
14 #include <linux/module.h>
15 #include <linux/nospec.h>
16 #include <linux/prctl.h>
17 #include <linux/sched/smt.h>
18 #include <linux/pgtable.h>
19 #include <linux/bpf.h>
20 
21 #include <asm/spec-ctrl.h>
22 #include <asm/cmdline.h>
23 #include <asm/bugs.h>
24 #include <asm/processor.h>
25 #include <asm/processor-flags.h>
26 #include <asm/fpu/internal.h>
27 #include <asm/msr.h>
28 #include <asm/vmx.h>
29 #include <asm/paravirt.h>
30 #include <asm/alternative.h>
31 #include <asm/set_memory.h>
32 #include <asm/intel-family.h>
33 #include <asm/e820/api.h>
34 #include <asm/hypervisor.h>
35 #include <asm/tlbflush.h>
36 
37 #include "cpu.h"
38 
39 static void __init spectre_v1_select_mitigation(void);
40 static void __init spectre_v2_select_mitigation(void);
41 static void __init retbleed_select_mitigation(void);
42 static void __init spectre_v2_user_select_mitigation(void);
43 static void __init ssb_select_mitigation(void);
44 static void __init l1tf_select_mitigation(void);
45 static void __init mds_select_mitigation(void);
46 static void __init md_clear_update_mitigation(void);
47 static void __init md_clear_select_mitigation(void);
48 static void __init taa_select_mitigation(void);
49 static void __init mmio_select_mitigation(void);
50 static void __init srbds_select_mitigation(void);
51 
52 /* The base value of the SPEC_CTRL MSR without task-specific bits set */
53 u64 x86_spec_ctrl_base;
54 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
55 
56 /* The current value of the SPEC_CTRL MSR with task-specific bits set */
57 DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
58 EXPORT_SYMBOL_GPL(x86_spec_ctrl_current);
59 
60 static DEFINE_MUTEX(spec_ctrl_mutex);
61 
62 /* Update SPEC_CTRL MSR and its cached copy unconditionally */
update_spec_ctrl(u64 val)63 static void update_spec_ctrl(u64 val)
64 {
65 	this_cpu_write(x86_spec_ctrl_current, val);
66 	wrmsrl(MSR_IA32_SPEC_CTRL, val);
67 }
68 
69 /*
70  * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
71  * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
72  */
update_spec_ctrl_cond(u64 val)73 void update_spec_ctrl_cond(u64 val)
74 {
75 	if (this_cpu_read(x86_spec_ctrl_current) == val)
76 		return;
77 
78 	this_cpu_write(x86_spec_ctrl_current, val);
79 
80 	/*
81 	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
82 	 * forced the update can be delayed until that time.
83 	 */
84 	if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
85 		wrmsrl(MSR_IA32_SPEC_CTRL, val);
86 }
87 
spec_ctrl_current(void)88 u64 spec_ctrl_current(void)
89 {
90 	return this_cpu_read(x86_spec_ctrl_current);
91 }
92 EXPORT_SYMBOL_GPL(spec_ctrl_current);
93 
94 /*
95  * AMD specific MSR info for Speculative Store Bypass control.
96  * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
97  */
98 u64 __ro_after_init x86_amd_ls_cfg_base;
99 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
100 
101 /* Control conditional STIBP in switch_to() */
102 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
103 /* Control conditional IBPB in switch_mm() */
104 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
105 /* Control unconditional IBPB in switch_mm() */
106 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
107 
108 /* Control MDS CPU buffer clear before returning to user space */
109 DEFINE_STATIC_KEY_FALSE(mds_user_clear);
110 EXPORT_SYMBOL_GPL(mds_user_clear);
111 /* Control MDS CPU buffer clear before idling (halt, mwait) */
112 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
113 EXPORT_SYMBOL_GPL(mds_idle_clear);
114 
115 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
116 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
117 EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
118 
check_bugs(void)119 void __init check_bugs(void)
120 {
121 	identify_boot_cpu();
122 
123 	/*
124 	 * identify_boot_cpu() initialized SMT support information, let the
125 	 * core code know.
126 	 */
127 	cpu_smt_check_topology();
128 
129 	if (!IS_ENABLED(CONFIG_SMP)) {
130 		pr_info("CPU: ");
131 		print_cpu_info(&boot_cpu_data);
132 	}
133 
134 	/*
135 	 * Read the SPEC_CTRL MSR to account for reserved bits which may
136 	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
137 	 * init code as it is not enumerated and depends on the family.
138 	 */
139 	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
140 		rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
141 
142 	/* Select the proper CPU mitigations before patching alternatives: */
143 	spectre_v1_select_mitigation();
144 	spectre_v2_select_mitigation();
145 	/*
146 	 * retbleed_select_mitigation() relies on the state set by
147 	 * spectre_v2_select_mitigation(); specifically it wants to know about
148 	 * spectre_v2=ibrs.
149 	 */
150 	retbleed_select_mitigation();
151 	/*
152 	 * spectre_v2_user_select_mitigation() relies on the state set by
153 	 * retbleed_select_mitigation(); specifically the STIBP selection is
154 	 * forced for UNRET or IBPB.
155 	 */
156 	spectre_v2_user_select_mitigation();
157 	ssb_select_mitigation();
158 	l1tf_select_mitigation();
159 	md_clear_select_mitigation();
160 	srbds_select_mitigation();
161 
162 	arch_smt_update();
163 
164 #ifdef CONFIG_X86_32
165 	/*
166 	 * Check whether we are able to run this kernel safely on SMP.
167 	 *
168 	 * - i386 is no longer supported.
169 	 * - In order to run on anything without a TSC, we need to be
170 	 *   compiled for a i486.
171 	 */
172 	if (boot_cpu_data.x86 < 4)
173 		panic("Kernel requires i486+ for 'invlpg' and other features");
174 
175 	init_utsname()->machine[1] =
176 		'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
177 	alternative_instructions();
178 
179 	fpu__init_check_bugs();
180 #else /* CONFIG_X86_64 */
181 	alternative_instructions();
182 
183 	/*
184 	 * Make sure the first 2MB area is not mapped by huge pages
185 	 * There are typically fixed size MTRRs in there and overlapping
186 	 * MTRRs into large pages causes slow downs.
187 	 *
188 	 * Right now we don't do that with gbpages because there seems
189 	 * very little benefit for that case.
190 	 */
191 	if (!direct_gbpages)
192 		set_memory_4k((unsigned long)__va(0), 1);
193 #endif
194 }
195 
196 /*
197  * NOTE: For VMX, this function is not called in the vmexit path.
198  * It uses vmx_spec_ctrl_restore_host() instead.
199  */
200 void
x86_virt_spec_ctrl(u64 guest_spec_ctrl,u64 guest_virt_spec_ctrl,bool setguest)201 x86_virt_spec_ctrl(u64 guest_spec_ctrl, u64 guest_virt_spec_ctrl, bool setguest)
202 {
203 	u64 msrval, guestval = guest_spec_ctrl, hostval = spec_ctrl_current();
204 	struct thread_info *ti = current_thread_info();
205 
206 	if (static_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) {
207 		if (hostval != guestval) {
208 			msrval = setguest ? guestval : hostval;
209 			wrmsrl(MSR_IA32_SPEC_CTRL, msrval);
210 		}
211 	}
212 
213 	/*
214 	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
215 	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
216 	 */
217 	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
218 	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
219 		return;
220 
221 	/*
222 	 * If the host has SSBD mitigation enabled, force it in the host's
223 	 * virtual MSR value. If its not permanently enabled, evaluate
224 	 * current's TIF_SSBD thread flag.
225 	 */
226 	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
227 		hostval = SPEC_CTRL_SSBD;
228 	else
229 		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
230 
231 	/* Sanitize the guest value */
232 	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
233 
234 	if (hostval != guestval) {
235 		unsigned long tif;
236 
237 		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
238 				 ssbd_spec_ctrl_to_tif(hostval);
239 
240 		speculation_ctrl_update(tif);
241 	}
242 }
243 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
244 
x86_amd_ssb_disable(void)245 static void x86_amd_ssb_disable(void)
246 {
247 	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
248 
249 	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
250 		wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
251 	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
252 		wrmsrl(MSR_AMD64_LS_CFG, msrval);
253 }
254 
255 #undef pr_fmt
256 #define pr_fmt(fmt)	"MDS: " fmt
257 
258 /* Default mitigation for MDS-affected CPUs */
259 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
260 static bool mds_nosmt __ro_after_init = false;
261 
262 static const char * const mds_strings[] = {
263 	[MDS_MITIGATION_OFF]	= "Vulnerable",
264 	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
265 	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
266 };
267 
mds_select_mitigation(void)268 static void __init mds_select_mitigation(void)
269 {
270 	if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
271 		mds_mitigation = MDS_MITIGATION_OFF;
272 		return;
273 	}
274 
275 	if (mds_mitigation == MDS_MITIGATION_FULL) {
276 		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
277 			mds_mitigation = MDS_MITIGATION_VMWERV;
278 
279 		static_branch_enable(&mds_user_clear);
280 
281 		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
282 		    (mds_nosmt || cpu_mitigations_auto_nosmt()))
283 			cpu_smt_disable(false);
284 	}
285 }
286 
mds_cmdline(char * str)287 static int __init mds_cmdline(char *str)
288 {
289 	if (!boot_cpu_has_bug(X86_BUG_MDS))
290 		return 0;
291 
292 	if (!str)
293 		return -EINVAL;
294 
295 	if (!strcmp(str, "off"))
296 		mds_mitigation = MDS_MITIGATION_OFF;
297 	else if (!strcmp(str, "full"))
298 		mds_mitigation = MDS_MITIGATION_FULL;
299 	else if (!strcmp(str, "full,nosmt")) {
300 		mds_mitigation = MDS_MITIGATION_FULL;
301 		mds_nosmt = true;
302 	}
303 
304 	return 0;
305 }
306 early_param("mds", mds_cmdline);
307 
308 #undef pr_fmt
309 #define pr_fmt(fmt)	"TAA: " fmt
310 
311 enum taa_mitigations {
312 	TAA_MITIGATION_OFF,
313 	TAA_MITIGATION_UCODE_NEEDED,
314 	TAA_MITIGATION_VERW,
315 	TAA_MITIGATION_TSX_DISABLED,
316 };
317 
318 /* Default mitigation for TAA-affected CPUs */
319 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
320 static bool taa_nosmt __ro_after_init;
321 
322 static const char * const taa_strings[] = {
323 	[TAA_MITIGATION_OFF]		= "Vulnerable",
324 	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
325 	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
326 	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
327 };
328 
taa_select_mitigation(void)329 static void __init taa_select_mitigation(void)
330 {
331 	u64 ia32_cap;
332 
333 	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
334 		taa_mitigation = TAA_MITIGATION_OFF;
335 		return;
336 	}
337 
338 	/* TSX previously disabled by tsx=off */
339 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
340 		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
341 		return;
342 	}
343 
344 	if (cpu_mitigations_off()) {
345 		taa_mitigation = TAA_MITIGATION_OFF;
346 		return;
347 	}
348 
349 	/*
350 	 * TAA mitigation via VERW is turned off if both
351 	 * tsx_async_abort=off and mds=off are specified.
352 	 */
353 	if (taa_mitigation == TAA_MITIGATION_OFF &&
354 	    mds_mitigation == MDS_MITIGATION_OFF)
355 		return;
356 
357 	if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
358 		taa_mitigation = TAA_MITIGATION_VERW;
359 	else
360 		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
361 
362 	/*
363 	 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
364 	 * A microcode update fixes this behavior to clear CPU buffers. It also
365 	 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
366 	 * ARCH_CAP_TSX_CTRL_MSR bit.
367 	 *
368 	 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
369 	 * update is required.
370 	 */
371 	ia32_cap = x86_read_arch_cap_msr();
372 	if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
373 	    !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
374 		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
375 
376 	/*
377 	 * TSX is enabled, select alternate mitigation for TAA which is
378 	 * the same as MDS. Enable MDS static branch to clear CPU buffers.
379 	 *
380 	 * For guests that can't determine whether the correct microcode is
381 	 * present on host, enable the mitigation for UCODE_NEEDED as well.
382 	 */
383 	static_branch_enable(&mds_user_clear);
384 
385 	if (taa_nosmt || cpu_mitigations_auto_nosmt())
386 		cpu_smt_disable(false);
387 }
388 
tsx_async_abort_parse_cmdline(char * str)389 static int __init tsx_async_abort_parse_cmdline(char *str)
390 {
391 	if (!boot_cpu_has_bug(X86_BUG_TAA))
392 		return 0;
393 
394 	if (!str)
395 		return -EINVAL;
396 
397 	if (!strcmp(str, "off")) {
398 		taa_mitigation = TAA_MITIGATION_OFF;
399 	} else if (!strcmp(str, "full")) {
400 		taa_mitigation = TAA_MITIGATION_VERW;
401 	} else if (!strcmp(str, "full,nosmt")) {
402 		taa_mitigation = TAA_MITIGATION_VERW;
403 		taa_nosmt = true;
404 	}
405 
406 	return 0;
407 }
408 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
409 
410 #undef pr_fmt
411 #define pr_fmt(fmt)	"MMIO Stale Data: " fmt
412 
413 enum mmio_mitigations {
414 	MMIO_MITIGATION_OFF,
415 	MMIO_MITIGATION_UCODE_NEEDED,
416 	MMIO_MITIGATION_VERW,
417 };
418 
419 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
420 static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
421 static bool mmio_nosmt __ro_after_init = false;
422 
423 static const char * const mmio_strings[] = {
424 	[MMIO_MITIGATION_OFF]		= "Vulnerable",
425 	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
426 	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
427 };
428 
mmio_select_mitigation(void)429 static void __init mmio_select_mitigation(void)
430 {
431 	u64 ia32_cap;
432 
433 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
434 	     boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
435 	     cpu_mitigations_off()) {
436 		mmio_mitigation = MMIO_MITIGATION_OFF;
437 		return;
438 	}
439 
440 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
441 		return;
442 
443 	ia32_cap = x86_read_arch_cap_msr();
444 
445 	/*
446 	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
447 	 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
448 	 */
449 	if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
450 					      boot_cpu_has(X86_FEATURE_RTM)))
451 		static_branch_enable(&mds_user_clear);
452 	else
453 		static_branch_enable(&mmio_stale_data_clear);
454 
455 	/*
456 	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
457 	 * be propagated to uncore buffers, clearing the Fill buffers on idle
458 	 * is required irrespective of SMT state.
459 	 */
460 	if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
461 		static_branch_enable(&mds_idle_clear);
462 
463 	/*
464 	 * Check if the system has the right microcode.
465 	 *
466 	 * CPU Fill buffer clear mitigation is enumerated by either an explicit
467 	 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
468 	 * affected systems.
469 	 */
470 	if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
471 	    (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
472 	     boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
473 	     !(ia32_cap & ARCH_CAP_MDS_NO)))
474 		mmio_mitigation = MMIO_MITIGATION_VERW;
475 	else
476 		mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
477 
478 	if (mmio_nosmt || cpu_mitigations_auto_nosmt())
479 		cpu_smt_disable(false);
480 }
481 
mmio_stale_data_parse_cmdline(char * str)482 static int __init mmio_stale_data_parse_cmdline(char *str)
483 {
484 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
485 		return 0;
486 
487 	if (!str)
488 		return -EINVAL;
489 
490 	if (!strcmp(str, "off")) {
491 		mmio_mitigation = MMIO_MITIGATION_OFF;
492 	} else if (!strcmp(str, "full")) {
493 		mmio_mitigation = MMIO_MITIGATION_VERW;
494 	} else if (!strcmp(str, "full,nosmt")) {
495 		mmio_mitigation = MMIO_MITIGATION_VERW;
496 		mmio_nosmt = true;
497 	}
498 
499 	return 0;
500 }
501 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
502 
503 #undef pr_fmt
504 #define pr_fmt(fmt)     "" fmt
505 
md_clear_update_mitigation(void)506 static void __init md_clear_update_mitigation(void)
507 {
508 	if (cpu_mitigations_off())
509 		return;
510 
511 	if (!static_key_enabled(&mds_user_clear))
512 		goto out;
513 
514 	/*
515 	 * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data
516 	 * mitigation, if necessary.
517 	 */
518 	if (mds_mitigation == MDS_MITIGATION_OFF &&
519 	    boot_cpu_has_bug(X86_BUG_MDS)) {
520 		mds_mitigation = MDS_MITIGATION_FULL;
521 		mds_select_mitigation();
522 	}
523 	if (taa_mitigation == TAA_MITIGATION_OFF &&
524 	    boot_cpu_has_bug(X86_BUG_TAA)) {
525 		taa_mitigation = TAA_MITIGATION_VERW;
526 		taa_select_mitigation();
527 	}
528 	if (mmio_mitigation == MMIO_MITIGATION_OFF &&
529 	    boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
530 		mmio_mitigation = MMIO_MITIGATION_VERW;
531 		mmio_select_mitigation();
532 	}
533 out:
534 	if (boot_cpu_has_bug(X86_BUG_MDS))
535 		pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
536 	if (boot_cpu_has_bug(X86_BUG_TAA))
537 		pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
538 	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
539 		pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
540 	else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
541 		pr_info("MMIO Stale Data: Unknown: No mitigations\n");
542 }
543 
md_clear_select_mitigation(void)544 static void __init md_clear_select_mitigation(void)
545 {
546 	mds_select_mitigation();
547 	taa_select_mitigation();
548 	mmio_select_mitigation();
549 
550 	/*
551 	 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
552 	 * and print their mitigation after MDS, TAA and MMIO Stale Data
553 	 * mitigation selection is done.
554 	 */
555 	md_clear_update_mitigation();
556 }
557 
558 #undef pr_fmt
559 #define pr_fmt(fmt)	"SRBDS: " fmt
560 
561 enum srbds_mitigations {
562 	SRBDS_MITIGATION_OFF,
563 	SRBDS_MITIGATION_UCODE_NEEDED,
564 	SRBDS_MITIGATION_FULL,
565 	SRBDS_MITIGATION_TSX_OFF,
566 	SRBDS_MITIGATION_HYPERVISOR,
567 };
568 
569 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
570 
571 static const char * const srbds_strings[] = {
572 	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
573 	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
574 	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
575 	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
576 	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
577 };
578 
579 static bool srbds_off;
580 
update_srbds_msr(void)581 void update_srbds_msr(void)
582 {
583 	u64 mcu_ctrl;
584 
585 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
586 		return;
587 
588 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
589 		return;
590 
591 	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
592 		return;
593 
594 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
595 
596 	switch (srbds_mitigation) {
597 	case SRBDS_MITIGATION_OFF:
598 	case SRBDS_MITIGATION_TSX_OFF:
599 		mcu_ctrl |= RNGDS_MITG_DIS;
600 		break;
601 	case SRBDS_MITIGATION_FULL:
602 		mcu_ctrl &= ~RNGDS_MITG_DIS;
603 		break;
604 	default:
605 		break;
606 	}
607 
608 	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
609 }
610 
srbds_select_mitigation(void)611 static void __init srbds_select_mitigation(void)
612 {
613 	u64 ia32_cap;
614 
615 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
616 		return;
617 
618 	/*
619 	 * Check to see if this is one of the MDS_NO systems supporting TSX that
620 	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
621 	 * by Processor MMIO Stale Data vulnerability.
622 	 */
623 	ia32_cap = x86_read_arch_cap_msr();
624 	if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
625 	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
626 		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
627 	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
628 		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
629 	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
630 		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
631 	else if (cpu_mitigations_off() || srbds_off)
632 		srbds_mitigation = SRBDS_MITIGATION_OFF;
633 
634 	update_srbds_msr();
635 	pr_info("%s\n", srbds_strings[srbds_mitigation]);
636 }
637 
srbds_parse_cmdline(char * str)638 static int __init srbds_parse_cmdline(char *str)
639 {
640 	if (!str)
641 		return -EINVAL;
642 
643 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
644 		return 0;
645 
646 	srbds_off = !strcmp(str, "off");
647 	return 0;
648 }
649 early_param("srbds", srbds_parse_cmdline);
650 
651 #undef pr_fmt
652 #define pr_fmt(fmt)     "Spectre V1 : " fmt
653 
654 enum spectre_v1_mitigation {
655 	SPECTRE_V1_MITIGATION_NONE,
656 	SPECTRE_V1_MITIGATION_AUTO,
657 };
658 
659 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
660 	SPECTRE_V1_MITIGATION_AUTO;
661 
662 static const char * const spectre_v1_strings[] = {
663 	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
664 	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
665 };
666 
667 /*
668  * Does SMAP provide full mitigation against speculative kernel access to
669  * userspace?
670  */
smap_works_speculatively(void)671 static bool smap_works_speculatively(void)
672 {
673 	if (!boot_cpu_has(X86_FEATURE_SMAP))
674 		return false;
675 
676 	/*
677 	 * On CPUs which are vulnerable to Meltdown, SMAP does not
678 	 * prevent speculative access to user data in the L1 cache.
679 	 * Consider SMAP to be non-functional as a mitigation on these
680 	 * CPUs.
681 	 */
682 	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
683 		return false;
684 
685 	return true;
686 }
687 
spectre_v1_select_mitigation(void)688 static void __init spectre_v1_select_mitigation(void)
689 {
690 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
691 		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
692 		return;
693 	}
694 
695 	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
696 		/*
697 		 * With Spectre v1, a user can speculatively control either
698 		 * path of a conditional swapgs with a user-controlled GS
699 		 * value.  The mitigation is to add lfences to both code paths.
700 		 *
701 		 * If FSGSBASE is enabled, the user can put a kernel address in
702 		 * GS, in which case SMAP provides no protection.
703 		 *
704 		 * If FSGSBASE is disabled, the user can only put a user space
705 		 * address in GS.  That makes an attack harder, but still
706 		 * possible if there's no SMAP protection.
707 		 */
708 		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
709 		    !smap_works_speculatively()) {
710 			/*
711 			 * Mitigation can be provided from SWAPGS itself or
712 			 * PTI as the CR3 write in the Meltdown mitigation
713 			 * is serializing.
714 			 *
715 			 * If neither is there, mitigate with an LFENCE to
716 			 * stop speculation through swapgs.
717 			 */
718 			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
719 			    !boot_cpu_has(X86_FEATURE_PTI))
720 				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
721 
722 			/*
723 			 * Enable lfences in the kernel entry (non-swapgs)
724 			 * paths, to prevent user entry from speculatively
725 			 * skipping swapgs.
726 			 */
727 			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
728 		}
729 	}
730 
731 	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
732 }
733 
nospectre_v1_cmdline(char * str)734 static int __init nospectre_v1_cmdline(char *str)
735 {
736 	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
737 	return 0;
738 }
739 early_param("nospectre_v1", nospectre_v1_cmdline);
740 
741 static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init =
742 	SPECTRE_V2_NONE;
743 
744 #undef pr_fmt
745 #define pr_fmt(fmt)     "RETBleed: " fmt
746 
747 enum retbleed_mitigation {
748 	RETBLEED_MITIGATION_NONE,
749 	RETBLEED_MITIGATION_UNRET,
750 	RETBLEED_MITIGATION_IBPB,
751 	RETBLEED_MITIGATION_IBRS,
752 	RETBLEED_MITIGATION_EIBRS,
753 };
754 
755 enum retbleed_mitigation_cmd {
756 	RETBLEED_CMD_OFF,
757 	RETBLEED_CMD_AUTO,
758 	RETBLEED_CMD_UNRET,
759 	RETBLEED_CMD_IBPB,
760 };
761 
762 const char * const retbleed_strings[] = {
763 	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
764 	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
765 	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
766 	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
767 	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
768 };
769 
770 static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
771 	RETBLEED_MITIGATION_NONE;
772 static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
773 	RETBLEED_CMD_AUTO;
774 
775 static int __ro_after_init retbleed_nosmt = false;
776 
retbleed_parse_cmdline(char * str)777 static int __init retbleed_parse_cmdline(char *str)
778 {
779 	if (!str)
780 		return -EINVAL;
781 
782 	while (str) {
783 		char *next = strchr(str, ',');
784 		if (next) {
785 			*next = 0;
786 			next++;
787 		}
788 
789 		if (!strcmp(str, "off")) {
790 			retbleed_cmd = RETBLEED_CMD_OFF;
791 		} else if (!strcmp(str, "auto")) {
792 			retbleed_cmd = RETBLEED_CMD_AUTO;
793 		} else if (!strcmp(str, "unret")) {
794 			retbleed_cmd = RETBLEED_CMD_UNRET;
795 		} else if (!strcmp(str, "ibpb")) {
796 			retbleed_cmd = RETBLEED_CMD_IBPB;
797 		} else if (!strcmp(str, "nosmt")) {
798 			retbleed_nosmt = true;
799 		} else {
800 			pr_err("Ignoring unknown retbleed option (%s).", str);
801 		}
802 
803 		str = next;
804 	}
805 
806 	return 0;
807 }
808 early_param("retbleed", retbleed_parse_cmdline);
809 
810 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
811 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
812 
retbleed_select_mitigation(void)813 static void __init retbleed_select_mitigation(void)
814 {
815 	bool mitigate_smt = false;
816 
817 	if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
818 		return;
819 
820 	switch (retbleed_cmd) {
821 	case RETBLEED_CMD_OFF:
822 		return;
823 
824 	case RETBLEED_CMD_UNRET:
825 		if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) {
826 			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
827 		} else {
828 			pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n");
829 			goto do_cmd_auto;
830 		}
831 		break;
832 
833 	case RETBLEED_CMD_IBPB:
834 		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
835 			pr_err("WARNING: CPU does not support IBPB.\n");
836 			goto do_cmd_auto;
837 		} else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
838 			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
839 		} else {
840 			pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
841 			goto do_cmd_auto;
842 		}
843 		break;
844 
845 do_cmd_auto:
846 	case RETBLEED_CMD_AUTO:
847 	default:
848 		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
849 		    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
850 			if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY))
851 				retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
852 			else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB))
853 				retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
854 		}
855 
856 		/*
857 		 * The Intel mitigation (IBRS or eIBRS) was already selected in
858 		 * spectre_v2_select_mitigation().  'retbleed_mitigation' will
859 		 * be set accordingly below.
860 		 */
861 
862 		break;
863 	}
864 
865 	switch (retbleed_mitigation) {
866 	case RETBLEED_MITIGATION_UNRET:
867 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
868 		setup_force_cpu_cap(X86_FEATURE_UNRET);
869 
870 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
871 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
872 			pr_err(RETBLEED_UNTRAIN_MSG);
873 
874 		mitigate_smt = true;
875 		break;
876 
877 	case RETBLEED_MITIGATION_IBPB:
878 		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
879 		mitigate_smt = true;
880 		break;
881 
882 	default:
883 		break;
884 	}
885 
886 	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
887 	    (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
888 		cpu_smt_disable(false);
889 
890 	/*
891 	 * Let IBRS trump all on Intel without affecting the effects of the
892 	 * retbleed= cmdline option.
893 	 */
894 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
895 		switch (spectre_v2_enabled) {
896 		case SPECTRE_V2_IBRS:
897 			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
898 			break;
899 		case SPECTRE_V2_EIBRS:
900 		case SPECTRE_V2_EIBRS_RETPOLINE:
901 		case SPECTRE_V2_EIBRS_LFENCE:
902 			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
903 			break;
904 		default:
905 			pr_err(RETBLEED_INTEL_MSG);
906 		}
907 	}
908 
909 	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
910 }
911 
912 #undef pr_fmt
913 #define pr_fmt(fmt)     "Spectre V2 : " fmt
914 
915 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
916 	SPECTRE_V2_USER_NONE;
917 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
918 	SPECTRE_V2_USER_NONE;
919 
920 #ifdef CONFIG_RETPOLINE
921 static bool spectre_v2_bad_module;
922 
retpoline_module_ok(bool has_retpoline)923 bool retpoline_module_ok(bool has_retpoline)
924 {
925 	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
926 		return true;
927 
928 	pr_err("System may be vulnerable to spectre v2\n");
929 	spectre_v2_bad_module = true;
930 	return false;
931 }
932 
spectre_v2_module_string(void)933 static inline const char *spectre_v2_module_string(void)
934 {
935 	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
936 }
937 #else
spectre_v2_module_string(void)938 static inline const char *spectre_v2_module_string(void) { return ""; }
939 #endif
940 
941 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
942 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
943 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
944 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
945 
946 #ifdef CONFIG_BPF_SYSCALL
unpriv_ebpf_notify(int new_state)947 void unpriv_ebpf_notify(int new_state)
948 {
949 	if (new_state)
950 		return;
951 
952 	/* Unprivileged eBPF is enabled */
953 
954 	switch (spectre_v2_enabled) {
955 	case SPECTRE_V2_EIBRS:
956 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
957 		break;
958 	case SPECTRE_V2_EIBRS_LFENCE:
959 		if (sched_smt_active())
960 			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
961 		break;
962 	default:
963 		break;
964 	}
965 }
966 #endif
967 
match_option(const char * arg,int arglen,const char * opt)968 static inline bool match_option(const char *arg, int arglen, const char *opt)
969 {
970 	int len = strlen(opt);
971 
972 	return len == arglen && !strncmp(arg, opt, len);
973 }
974 
975 /* The kernel command line selection for spectre v2 */
976 enum spectre_v2_mitigation_cmd {
977 	SPECTRE_V2_CMD_NONE,
978 	SPECTRE_V2_CMD_AUTO,
979 	SPECTRE_V2_CMD_FORCE,
980 	SPECTRE_V2_CMD_RETPOLINE,
981 	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
982 	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
983 	SPECTRE_V2_CMD_EIBRS,
984 	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
985 	SPECTRE_V2_CMD_EIBRS_LFENCE,
986 	SPECTRE_V2_CMD_IBRS,
987 };
988 
989 enum spectre_v2_user_cmd {
990 	SPECTRE_V2_USER_CMD_NONE,
991 	SPECTRE_V2_USER_CMD_AUTO,
992 	SPECTRE_V2_USER_CMD_FORCE,
993 	SPECTRE_V2_USER_CMD_PRCTL,
994 	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
995 	SPECTRE_V2_USER_CMD_SECCOMP,
996 	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
997 };
998 
999 static const char * const spectre_v2_user_strings[] = {
1000 	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
1001 	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
1002 	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
1003 	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
1004 	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
1005 };
1006 
1007 static const struct {
1008 	const char			*option;
1009 	enum spectre_v2_user_cmd	cmd;
1010 	bool				secure;
1011 } v2_user_options[] __initconst = {
1012 	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
1013 	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
1014 	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
1015 	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
1016 	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
1017 	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
1018 	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
1019 };
1020 
spec_v2_user_print_cond(const char * reason,bool secure)1021 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1022 {
1023 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1024 		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1025 }
1026 
1027 static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1028 
1029 static enum spectre_v2_user_cmd __init
spectre_v2_parse_user_cmdline(void)1030 spectre_v2_parse_user_cmdline(void)
1031 {
1032 	char arg[20];
1033 	int ret, i;
1034 
1035 	switch (spectre_v2_cmd) {
1036 	case SPECTRE_V2_CMD_NONE:
1037 		return SPECTRE_V2_USER_CMD_NONE;
1038 	case SPECTRE_V2_CMD_FORCE:
1039 		return SPECTRE_V2_USER_CMD_FORCE;
1040 	default:
1041 		break;
1042 	}
1043 
1044 	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1045 				  arg, sizeof(arg));
1046 	if (ret < 0)
1047 		return SPECTRE_V2_USER_CMD_AUTO;
1048 
1049 	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1050 		if (match_option(arg, ret, v2_user_options[i].option)) {
1051 			spec_v2_user_print_cond(v2_user_options[i].option,
1052 						v2_user_options[i].secure);
1053 			return v2_user_options[i].cmd;
1054 		}
1055 	}
1056 
1057 	pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1058 	return SPECTRE_V2_USER_CMD_AUTO;
1059 }
1060 
spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)1061 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1062 {
1063 	return mode == SPECTRE_V2_IBRS ||
1064 	       mode == SPECTRE_V2_EIBRS ||
1065 	       mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1066 	       mode == SPECTRE_V2_EIBRS_LFENCE;
1067 }
1068 
1069 static void __init
spectre_v2_user_select_mitigation(void)1070 spectre_v2_user_select_mitigation(void)
1071 {
1072 	enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1073 	bool smt_possible = IS_ENABLED(CONFIG_SMP);
1074 	enum spectre_v2_user_cmd cmd;
1075 
1076 	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1077 		return;
1078 
1079 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1080 	    cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1081 		smt_possible = false;
1082 
1083 	cmd = spectre_v2_parse_user_cmdline();
1084 	switch (cmd) {
1085 	case SPECTRE_V2_USER_CMD_NONE:
1086 		goto set_mode;
1087 	case SPECTRE_V2_USER_CMD_FORCE:
1088 		mode = SPECTRE_V2_USER_STRICT;
1089 		break;
1090 	case SPECTRE_V2_USER_CMD_PRCTL:
1091 	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1092 		mode = SPECTRE_V2_USER_PRCTL;
1093 		break;
1094 	case SPECTRE_V2_USER_CMD_AUTO:
1095 	case SPECTRE_V2_USER_CMD_SECCOMP:
1096 	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1097 		if (IS_ENABLED(CONFIG_SECCOMP))
1098 			mode = SPECTRE_V2_USER_SECCOMP;
1099 		else
1100 			mode = SPECTRE_V2_USER_PRCTL;
1101 		break;
1102 	}
1103 
1104 	/* Initialize Indirect Branch Prediction Barrier */
1105 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
1106 		setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1107 
1108 		spectre_v2_user_ibpb = mode;
1109 		switch (cmd) {
1110 		case SPECTRE_V2_USER_CMD_FORCE:
1111 		case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1112 		case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1113 			static_branch_enable(&switch_mm_always_ibpb);
1114 			spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1115 			break;
1116 		case SPECTRE_V2_USER_CMD_PRCTL:
1117 		case SPECTRE_V2_USER_CMD_AUTO:
1118 		case SPECTRE_V2_USER_CMD_SECCOMP:
1119 			static_branch_enable(&switch_mm_cond_ibpb);
1120 			break;
1121 		default:
1122 			break;
1123 		}
1124 
1125 		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1126 			static_key_enabled(&switch_mm_always_ibpb) ?
1127 			"always-on" : "conditional");
1128 	}
1129 
1130 	/*
1131 	 * If no STIBP, IBRS or enhanced IBRS is enabled, or SMT impossible,
1132 	 * STIBP is not required.
1133 	 */
1134 	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1135 	    !smt_possible ||
1136 	    spectre_v2_in_ibrs_mode(spectre_v2_enabled))
1137 		return;
1138 
1139 	/*
1140 	 * At this point, an STIBP mode other than "off" has been set.
1141 	 * If STIBP support is not being forced, check if STIBP always-on
1142 	 * is preferred.
1143 	 */
1144 	if (mode != SPECTRE_V2_USER_STRICT &&
1145 	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1146 		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1147 
1148 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1149 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1150 		if (mode != SPECTRE_V2_USER_STRICT &&
1151 		    mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1152 			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1153 		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1154 	}
1155 
1156 	spectre_v2_user_stibp = mode;
1157 
1158 set_mode:
1159 	pr_info("%s\n", spectre_v2_user_strings[mode]);
1160 }
1161 
1162 static const char * const spectre_v2_strings[] = {
1163 	[SPECTRE_V2_NONE]			= "Vulnerable",
1164 	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
1165 	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
1166 	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced IBRS",
1167 	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced IBRS + LFENCE",
1168 	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced IBRS + Retpolines",
1169 	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
1170 };
1171 
1172 static const struct {
1173 	const char *option;
1174 	enum spectre_v2_mitigation_cmd cmd;
1175 	bool secure;
1176 } mitigation_options[] __initconst = {
1177 	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
1178 	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
1179 	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
1180 	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1181 	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1182 	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1183 	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
1184 	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
1185 	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
1186 	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
1187 	{ "ibrs",		SPECTRE_V2_CMD_IBRS,              false },
1188 };
1189 
spec_v2_print_cond(const char * reason,bool secure)1190 static void __init spec_v2_print_cond(const char *reason, bool secure)
1191 {
1192 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1193 		pr_info("%s selected on command line.\n", reason);
1194 }
1195 
spectre_v2_parse_cmdline(void)1196 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1197 {
1198 	enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1199 	char arg[20];
1200 	int ret, i;
1201 
1202 	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1203 	    cpu_mitigations_off())
1204 		return SPECTRE_V2_CMD_NONE;
1205 
1206 	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1207 	if (ret < 0)
1208 		return SPECTRE_V2_CMD_AUTO;
1209 
1210 	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1211 		if (!match_option(arg, ret, mitigation_options[i].option))
1212 			continue;
1213 		cmd = mitigation_options[i].cmd;
1214 		break;
1215 	}
1216 
1217 	if (i >= ARRAY_SIZE(mitigation_options)) {
1218 		pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1219 		return SPECTRE_V2_CMD_AUTO;
1220 	}
1221 
1222 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1223 	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1224 	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1225 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1226 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1227 	    !IS_ENABLED(CONFIG_RETPOLINE)) {
1228 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1229 		       mitigation_options[i].option);
1230 		return SPECTRE_V2_CMD_AUTO;
1231 	}
1232 
1233 	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1234 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1235 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1236 	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1237 		pr_err("%s selected but CPU doesn't have eIBRS. Switching to AUTO select\n",
1238 		       mitigation_options[i].option);
1239 		return SPECTRE_V2_CMD_AUTO;
1240 	}
1241 
1242 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1243 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1244 	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1245 		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1246 		       mitigation_options[i].option);
1247 		return SPECTRE_V2_CMD_AUTO;
1248 	}
1249 
1250 	if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) {
1251 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1252 		       mitigation_options[i].option);
1253 		return SPECTRE_V2_CMD_AUTO;
1254 	}
1255 
1256 	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1257 		pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1258 		       mitigation_options[i].option);
1259 		return SPECTRE_V2_CMD_AUTO;
1260 	}
1261 
1262 	if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1263 		pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1264 		       mitigation_options[i].option);
1265 		return SPECTRE_V2_CMD_AUTO;
1266 	}
1267 
1268 	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_has(X86_FEATURE_XENPV)) {
1269 		pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1270 		       mitigation_options[i].option);
1271 		return SPECTRE_V2_CMD_AUTO;
1272 	}
1273 
1274 	spec_v2_print_cond(mitigation_options[i].option,
1275 			   mitigation_options[i].secure);
1276 	return cmd;
1277 }
1278 
spectre_v2_select_retpoline(void)1279 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1280 {
1281 	if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1282 		pr_err("Kernel not compiled with retpoline; no mitigation available!");
1283 		return SPECTRE_V2_NONE;
1284 	}
1285 
1286 	return SPECTRE_V2_RETPOLINE;
1287 }
1288 
1289 /* Disable in-kernel use of non-RSB RET predictors */
spec_ctrl_disable_kernel_rrsba(void)1290 static void __init spec_ctrl_disable_kernel_rrsba(void)
1291 {
1292 	u64 ia32_cap;
1293 
1294 	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1295 		return;
1296 
1297 	ia32_cap = x86_read_arch_cap_msr();
1298 
1299 	if (ia32_cap & ARCH_CAP_RRSBA) {
1300 		x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1301 		update_spec_ctrl(x86_spec_ctrl_base);
1302 	}
1303 }
1304 
spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)1305 static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1306 {
1307 	/*
1308 	 * Similar to context switches, there are two types of RSB attacks
1309 	 * after VM exit:
1310 	 *
1311 	 * 1) RSB underflow
1312 	 *
1313 	 * 2) Poisoned RSB entry
1314 	 *
1315 	 * When retpoline is enabled, both are mitigated by filling/clearing
1316 	 * the RSB.
1317 	 *
1318 	 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1319 	 * prediction isolation protections, RSB still needs to be cleared
1320 	 * because of #2.  Note that SMEP provides no protection here, unlike
1321 	 * user-space-poisoned RSB entries.
1322 	 *
1323 	 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1324 	 * bug is present then a LITE version of RSB protection is required,
1325 	 * just a single call needs to retire before a RET is executed.
1326 	 */
1327 	switch (mode) {
1328 	case SPECTRE_V2_NONE:
1329 		return;
1330 
1331 	case SPECTRE_V2_EIBRS_LFENCE:
1332 	case SPECTRE_V2_EIBRS:
1333 		if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1334 			setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1335 			pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1336 		}
1337 		return;
1338 
1339 	case SPECTRE_V2_EIBRS_RETPOLINE:
1340 	case SPECTRE_V2_RETPOLINE:
1341 	case SPECTRE_V2_LFENCE:
1342 	case SPECTRE_V2_IBRS:
1343 		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1344 		pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1345 		return;
1346 	}
1347 
1348 	pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1349 	dump_stack();
1350 }
1351 
spectre_v2_select_mitigation(void)1352 static void __init spectre_v2_select_mitigation(void)
1353 {
1354 	enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1355 	enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1356 
1357 	/*
1358 	 * If the CPU is not affected and the command line mode is NONE or AUTO
1359 	 * then nothing to do.
1360 	 */
1361 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1362 	    (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1363 		return;
1364 
1365 	switch (cmd) {
1366 	case SPECTRE_V2_CMD_NONE:
1367 		return;
1368 
1369 	case SPECTRE_V2_CMD_FORCE:
1370 	case SPECTRE_V2_CMD_AUTO:
1371 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1372 			mode = SPECTRE_V2_EIBRS;
1373 			break;
1374 		}
1375 
1376 		if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) &&
1377 		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1378 		    retbleed_cmd != RETBLEED_CMD_OFF &&
1379 		    boot_cpu_has(X86_FEATURE_IBRS) &&
1380 		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1381 			mode = SPECTRE_V2_IBRS;
1382 			break;
1383 		}
1384 
1385 		mode = spectre_v2_select_retpoline();
1386 		break;
1387 
1388 	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1389 		pr_err(SPECTRE_V2_LFENCE_MSG);
1390 		mode = SPECTRE_V2_LFENCE;
1391 		break;
1392 
1393 	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1394 		mode = SPECTRE_V2_RETPOLINE;
1395 		break;
1396 
1397 	case SPECTRE_V2_CMD_RETPOLINE:
1398 		mode = spectre_v2_select_retpoline();
1399 		break;
1400 
1401 	case SPECTRE_V2_CMD_IBRS:
1402 		mode = SPECTRE_V2_IBRS;
1403 		break;
1404 
1405 	case SPECTRE_V2_CMD_EIBRS:
1406 		mode = SPECTRE_V2_EIBRS;
1407 		break;
1408 
1409 	case SPECTRE_V2_CMD_EIBRS_LFENCE:
1410 		mode = SPECTRE_V2_EIBRS_LFENCE;
1411 		break;
1412 
1413 	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1414 		mode = SPECTRE_V2_EIBRS_RETPOLINE;
1415 		break;
1416 	}
1417 
1418 	if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1419 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1420 
1421 	if (spectre_v2_in_ibrs_mode(mode)) {
1422 		x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1423 		update_spec_ctrl(x86_spec_ctrl_base);
1424 	}
1425 
1426 	switch (mode) {
1427 	case SPECTRE_V2_NONE:
1428 	case SPECTRE_V2_EIBRS:
1429 		break;
1430 
1431 	case SPECTRE_V2_IBRS:
1432 		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1433 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1434 			pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1435 		break;
1436 
1437 	case SPECTRE_V2_LFENCE:
1438 	case SPECTRE_V2_EIBRS_LFENCE:
1439 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1440 		fallthrough;
1441 
1442 	case SPECTRE_V2_RETPOLINE:
1443 	case SPECTRE_V2_EIBRS_RETPOLINE:
1444 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1445 		break;
1446 	}
1447 
1448 	/*
1449 	 * Disable alternate RSB predictions in kernel when indirect CALLs and
1450 	 * JMPs gets protection against BHI and Intramode-BTI, but RET
1451 	 * prediction from a non-RSB predictor is still a risk.
1452 	 */
1453 	if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1454 	    mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1455 	    mode == SPECTRE_V2_RETPOLINE)
1456 		spec_ctrl_disable_kernel_rrsba();
1457 
1458 	spectre_v2_enabled = mode;
1459 	pr_info("%s\n", spectre_v2_strings[mode]);
1460 
1461 	/*
1462 	 * If Spectre v2 protection has been enabled, fill the RSB during a
1463 	 * context switch.  In general there are two types of RSB attacks
1464 	 * across context switches, for which the CALLs/RETs may be unbalanced.
1465 	 *
1466 	 * 1) RSB underflow
1467 	 *
1468 	 *    Some Intel parts have "bottomless RSB".  When the RSB is empty,
1469 	 *    speculated return targets may come from the branch predictor,
1470 	 *    which could have a user-poisoned BTB or BHB entry.
1471 	 *
1472 	 *    AMD has it even worse: *all* returns are speculated from the BTB,
1473 	 *    regardless of the state of the RSB.
1474 	 *
1475 	 *    When IBRS or eIBRS is enabled, the "user -> kernel" attack
1476 	 *    scenario is mitigated by the IBRS branch prediction isolation
1477 	 *    properties, so the RSB buffer filling wouldn't be necessary to
1478 	 *    protect against this type of attack.
1479 	 *
1480 	 *    The "user -> user" attack scenario is mitigated by RSB filling.
1481 	 *
1482 	 * 2) Poisoned RSB entry
1483 	 *
1484 	 *    If the 'next' in-kernel return stack is shorter than 'prev',
1485 	 *    'next' could be tricked into speculating with a user-poisoned RSB
1486 	 *    entry.
1487 	 *
1488 	 *    The "user -> kernel" attack scenario is mitigated by SMEP and
1489 	 *    eIBRS.
1490 	 *
1491 	 *    The "user -> user" scenario, also known as SpectreBHB, requires
1492 	 *    RSB clearing.
1493 	 *
1494 	 * So to mitigate all cases, unconditionally fill RSB on context
1495 	 * switches.
1496 	 *
1497 	 * FIXME: Is this pointless for retbleed-affected AMD?
1498 	 */
1499 	setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1500 	pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1501 
1502 	spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1503 
1504 	/*
1505 	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
1506 	 * and Enhanced IBRS protect firmware too, so enable IBRS around
1507 	 * firmware calls only when IBRS / Enhanced IBRS aren't otherwise
1508 	 * enabled.
1509 	 *
1510 	 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1511 	 * the user might select retpoline on the kernel command line and if
1512 	 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1513 	 * enable IBRS around firmware calls.
1514 	 */
1515 	if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1516 	    boot_cpu_has(X86_FEATURE_IBPB) &&
1517 	    (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1518 	     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1519 
1520 		if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1521 			setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1522 			pr_info("Enabling Speculation Barrier for firmware calls\n");
1523 		}
1524 
1525 	} else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1526 		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1527 		pr_info("Enabling Restricted Speculation for firmware calls\n");
1528 	}
1529 
1530 	/* Set up IBPB and STIBP depending on the general spectre V2 command */
1531 	spectre_v2_cmd = cmd;
1532 }
1533 
update_stibp_msr(void * __unused)1534 static void update_stibp_msr(void * __unused)
1535 {
1536 	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1537 	update_spec_ctrl(val);
1538 }
1539 
1540 /* Update x86_spec_ctrl_base in case SMT state changed. */
update_stibp_strict(void)1541 static void update_stibp_strict(void)
1542 {
1543 	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1544 
1545 	if (sched_smt_active())
1546 		mask |= SPEC_CTRL_STIBP;
1547 
1548 	if (mask == x86_spec_ctrl_base)
1549 		return;
1550 
1551 	pr_info("Update user space SMT mitigation: STIBP %s\n",
1552 		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1553 	x86_spec_ctrl_base = mask;
1554 	on_each_cpu(update_stibp_msr, NULL, 1);
1555 }
1556 
1557 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
update_indir_branch_cond(void)1558 static void update_indir_branch_cond(void)
1559 {
1560 	if (sched_smt_active())
1561 		static_branch_enable(&switch_to_cond_stibp);
1562 	else
1563 		static_branch_disable(&switch_to_cond_stibp);
1564 }
1565 
1566 #undef pr_fmt
1567 #define pr_fmt(fmt) fmt
1568 
1569 /* Update the static key controlling the MDS CPU buffer clear in idle */
update_mds_branch_idle(void)1570 static void update_mds_branch_idle(void)
1571 {
1572 	u64 ia32_cap = x86_read_arch_cap_msr();
1573 
1574 	/*
1575 	 * Enable the idle clearing if SMT is active on CPUs which are
1576 	 * affected only by MSBDS and not any other MDS variant.
1577 	 *
1578 	 * The other variants cannot be mitigated when SMT is enabled, so
1579 	 * clearing the buffers on idle just to prevent the Store Buffer
1580 	 * repartitioning leak would be a window dressing exercise.
1581 	 */
1582 	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1583 		return;
1584 
1585 	if (sched_smt_active()) {
1586 		static_branch_enable(&mds_idle_clear);
1587 	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1588 		   (ia32_cap & ARCH_CAP_FBSDP_NO)) {
1589 		static_branch_disable(&mds_idle_clear);
1590 	}
1591 }
1592 
1593 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1594 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1595 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1596 
cpu_bugs_smt_update(void)1597 void cpu_bugs_smt_update(void)
1598 {
1599 	mutex_lock(&spec_ctrl_mutex);
1600 
1601 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1602 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1603 		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1604 
1605 	switch (spectre_v2_user_stibp) {
1606 	case SPECTRE_V2_USER_NONE:
1607 		break;
1608 	case SPECTRE_V2_USER_STRICT:
1609 	case SPECTRE_V2_USER_STRICT_PREFERRED:
1610 		update_stibp_strict();
1611 		break;
1612 	case SPECTRE_V2_USER_PRCTL:
1613 	case SPECTRE_V2_USER_SECCOMP:
1614 		update_indir_branch_cond();
1615 		break;
1616 	}
1617 
1618 	switch (mds_mitigation) {
1619 	case MDS_MITIGATION_FULL:
1620 	case MDS_MITIGATION_VMWERV:
1621 		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1622 			pr_warn_once(MDS_MSG_SMT);
1623 		update_mds_branch_idle();
1624 		break;
1625 	case MDS_MITIGATION_OFF:
1626 		break;
1627 	}
1628 
1629 	switch (taa_mitigation) {
1630 	case TAA_MITIGATION_VERW:
1631 	case TAA_MITIGATION_UCODE_NEEDED:
1632 		if (sched_smt_active())
1633 			pr_warn_once(TAA_MSG_SMT);
1634 		break;
1635 	case TAA_MITIGATION_TSX_DISABLED:
1636 	case TAA_MITIGATION_OFF:
1637 		break;
1638 	}
1639 
1640 	switch (mmio_mitigation) {
1641 	case MMIO_MITIGATION_VERW:
1642 	case MMIO_MITIGATION_UCODE_NEEDED:
1643 		if (sched_smt_active())
1644 			pr_warn_once(MMIO_MSG_SMT);
1645 		break;
1646 	case MMIO_MITIGATION_OFF:
1647 		break;
1648 	}
1649 
1650 	mutex_unlock(&spec_ctrl_mutex);
1651 }
1652 
1653 #undef pr_fmt
1654 #define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
1655 
1656 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1657 
1658 /* The kernel command line selection */
1659 enum ssb_mitigation_cmd {
1660 	SPEC_STORE_BYPASS_CMD_NONE,
1661 	SPEC_STORE_BYPASS_CMD_AUTO,
1662 	SPEC_STORE_BYPASS_CMD_ON,
1663 	SPEC_STORE_BYPASS_CMD_PRCTL,
1664 	SPEC_STORE_BYPASS_CMD_SECCOMP,
1665 };
1666 
1667 static const char * const ssb_strings[] = {
1668 	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
1669 	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
1670 	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
1671 	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1672 };
1673 
1674 static const struct {
1675 	const char *option;
1676 	enum ssb_mitigation_cmd cmd;
1677 } ssb_mitigation_options[]  __initconst = {
1678 	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
1679 	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
1680 	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
1681 	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
1682 	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1683 };
1684 
ssb_parse_cmdline(void)1685 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1686 {
1687 	enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1688 	char arg[20];
1689 	int ret, i;
1690 
1691 	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1692 	    cpu_mitigations_off()) {
1693 		return SPEC_STORE_BYPASS_CMD_NONE;
1694 	} else {
1695 		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1696 					  arg, sizeof(arg));
1697 		if (ret < 0)
1698 			return SPEC_STORE_BYPASS_CMD_AUTO;
1699 
1700 		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1701 			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1702 				continue;
1703 
1704 			cmd = ssb_mitigation_options[i].cmd;
1705 			break;
1706 		}
1707 
1708 		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1709 			pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1710 			return SPEC_STORE_BYPASS_CMD_AUTO;
1711 		}
1712 	}
1713 
1714 	return cmd;
1715 }
1716 
__ssb_select_mitigation(void)1717 static enum ssb_mitigation __init __ssb_select_mitigation(void)
1718 {
1719 	enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1720 	enum ssb_mitigation_cmd cmd;
1721 
1722 	if (!boot_cpu_has(X86_FEATURE_SSBD))
1723 		return mode;
1724 
1725 	cmd = ssb_parse_cmdline();
1726 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1727 	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1728 	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1729 		return mode;
1730 
1731 	switch (cmd) {
1732 	case SPEC_STORE_BYPASS_CMD_AUTO:
1733 	case SPEC_STORE_BYPASS_CMD_SECCOMP:
1734 		/*
1735 		 * Choose prctl+seccomp as the default mode if seccomp is
1736 		 * enabled.
1737 		 */
1738 		if (IS_ENABLED(CONFIG_SECCOMP))
1739 			mode = SPEC_STORE_BYPASS_SECCOMP;
1740 		else
1741 			mode = SPEC_STORE_BYPASS_PRCTL;
1742 		break;
1743 	case SPEC_STORE_BYPASS_CMD_ON:
1744 		mode = SPEC_STORE_BYPASS_DISABLE;
1745 		break;
1746 	case SPEC_STORE_BYPASS_CMD_PRCTL:
1747 		mode = SPEC_STORE_BYPASS_PRCTL;
1748 		break;
1749 	case SPEC_STORE_BYPASS_CMD_NONE:
1750 		break;
1751 	}
1752 
1753 	/*
1754 	 * We have three CPU feature flags that are in play here:
1755 	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1756 	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1757 	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1758 	 */
1759 	if (mode == SPEC_STORE_BYPASS_DISABLE) {
1760 		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1761 		/*
1762 		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1763 		 * use a completely different MSR and bit dependent on family.
1764 		 */
1765 		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1766 		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1767 			x86_amd_ssb_disable();
1768 		} else {
1769 			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1770 			update_spec_ctrl(x86_spec_ctrl_base);
1771 		}
1772 	}
1773 
1774 	return mode;
1775 }
1776 
ssb_select_mitigation(void)1777 static void ssb_select_mitigation(void)
1778 {
1779 	ssb_mode = __ssb_select_mitigation();
1780 
1781 	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1782 		pr_info("%s\n", ssb_strings[ssb_mode]);
1783 }
1784 
1785 #undef pr_fmt
1786 #define pr_fmt(fmt)     "Speculation prctl: " fmt
1787 
task_update_spec_tif(struct task_struct * tsk)1788 static void task_update_spec_tif(struct task_struct *tsk)
1789 {
1790 	/* Force the update of the real TIF bits */
1791 	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1792 
1793 	/*
1794 	 * Immediately update the speculation control MSRs for the current
1795 	 * task, but for a non-current task delay setting the CPU
1796 	 * mitigation until it is scheduled next.
1797 	 *
1798 	 * This can only happen for SECCOMP mitigation. For PRCTL it's
1799 	 * always the current task.
1800 	 */
1801 	if (tsk == current)
1802 		speculation_ctrl_update_current();
1803 }
1804 
ssb_prctl_set(struct task_struct * task,unsigned long ctrl)1805 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
1806 {
1807 	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
1808 	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
1809 		return -ENXIO;
1810 
1811 	switch (ctrl) {
1812 	case PR_SPEC_ENABLE:
1813 		/* If speculation is force disabled, enable is not allowed */
1814 		if (task_spec_ssb_force_disable(task))
1815 			return -EPERM;
1816 		task_clear_spec_ssb_disable(task);
1817 		task_clear_spec_ssb_noexec(task);
1818 		task_update_spec_tif(task);
1819 		break;
1820 	case PR_SPEC_DISABLE:
1821 		task_set_spec_ssb_disable(task);
1822 		task_clear_spec_ssb_noexec(task);
1823 		task_update_spec_tif(task);
1824 		break;
1825 	case PR_SPEC_FORCE_DISABLE:
1826 		task_set_spec_ssb_disable(task);
1827 		task_set_spec_ssb_force_disable(task);
1828 		task_clear_spec_ssb_noexec(task);
1829 		task_update_spec_tif(task);
1830 		break;
1831 	case PR_SPEC_DISABLE_NOEXEC:
1832 		if (task_spec_ssb_force_disable(task))
1833 			return -EPERM;
1834 		task_set_spec_ssb_disable(task);
1835 		task_set_spec_ssb_noexec(task);
1836 		task_update_spec_tif(task);
1837 		break;
1838 	default:
1839 		return -ERANGE;
1840 	}
1841 	return 0;
1842 }
1843 
is_spec_ib_user_controlled(void)1844 static bool is_spec_ib_user_controlled(void)
1845 {
1846 	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
1847 		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1848 		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
1849 		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
1850 }
1851 
ib_prctl_set(struct task_struct * task,unsigned long ctrl)1852 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
1853 {
1854 	switch (ctrl) {
1855 	case PR_SPEC_ENABLE:
1856 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1857 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1858 			return 0;
1859 
1860 		/*
1861 		 * With strict mode for both IBPB and STIBP, the instruction
1862 		 * code paths avoid checking this task flag and instead,
1863 		 * unconditionally run the instruction. However, STIBP and IBPB
1864 		 * are independent and either can be set to conditionally
1865 		 * enabled regardless of the mode of the other.
1866 		 *
1867 		 * If either is set to conditional, allow the task flag to be
1868 		 * updated, unless it was force-disabled by a previous prctl
1869 		 * call. Currently, this is possible on an AMD CPU which has the
1870 		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
1871 		 * kernel is booted with 'spectre_v2_user=seccomp', then
1872 		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
1873 		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
1874 		 */
1875 		if (!is_spec_ib_user_controlled() ||
1876 		    task_spec_ib_force_disable(task))
1877 			return -EPERM;
1878 
1879 		task_clear_spec_ib_disable(task);
1880 		task_update_spec_tif(task);
1881 		break;
1882 	case PR_SPEC_DISABLE:
1883 	case PR_SPEC_FORCE_DISABLE:
1884 		/*
1885 		 * Indirect branch speculation is always allowed when
1886 		 * mitigation is force disabled.
1887 		 */
1888 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1889 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1890 			return -EPERM;
1891 
1892 		if (!is_spec_ib_user_controlled())
1893 			return 0;
1894 
1895 		task_set_spec_ib_disable(task);
1896 		if (ctrl == PR_SPEC_FORCE_DISABLE)
1897 			task_set_spec_ib_force_disable(task);
1898 		task_update_spec_tif(task);
1899 		break;
1900 	default:
1901 		return -ERANGE;
1902 	}
1903 	return 0;
1904 }
1905 
arch_prctl_spec_ctrl_set(struct task_struct * task,unsigned long which,unsigned long ctrl)1906 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
1907 			     unsigned long ctrl)
1908 {
1909 	switch (which) {
1910 	case PR_SPEC_STORE_BYPASS:
1911 		return ssb_prctl_set(task, ctrl);
1912 	case PR_SPEC_INDIRECT_BRANCH:
1913 		return ib_prctl_set(task, ctrl);
1914 	default:
1915 		return -ENODEV;
1916 	}
1917 }
1918 
1919 #ifdef CONFIG_SECCOMP
arch_seccomp_spec_mitigate(struct task_struct * task)1920 void arch_seccomp_spec_mitigate(struct task_struct *task)
1921 {
1922 	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
1923 		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
1924 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1925 	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
1926 		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
1927 }
1928 #endif
1929 
ssb_prctl_get(struct task_struct * task)1930 static int ssb_prctl_get(struct task_struct *task)
1931 {
1932 	switch (ssb_mode) {
1933 	case SPEC_STORE_BYPASS_DISABLE:
1934 		return PR_SPEC_DISABLE;
1935 	case SPEC_STORE_BYPASS_SECCOMP:
1936 	case SPEC_STORE_BYPASS_PRCTL:
1937 		if (task_spec_ssb_force_disable(task))
1938 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
1939 		if (task_spec_ssb_noexec(task))
1940 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
1941 		if (task_spec_ssb_disable(task))
1942 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1943 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1944 	default:
1945 		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1946 			return PR_SPEC_ENABLE;
1947 		return PR_SPEC_NOT_AFFECTED;
1948 	}
1949 }
1950 
ib_prctl_get(struct task_struct * task)1951 static int ib_prctl_get(struct task_struct *task)
1952 {
1953 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
1954 		return PR_SPEC_NOT_AFFECTED;
1955 
1956 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1957 	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1958 		return PR_SPEC_ENABLE;
1959 	else if (is_spec_ib_user_controlled()) {
1960 		if (task_spec_ib_force_disable(task))
1961 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
1962 		if (task_spec_ib_disable(task))
1963 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1964 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1965 	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
1966 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
1967 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
1968 		return PR_SPEC_DISABLE;
1969 	else
1970 		return PR_SPEC_NOT_AFFECTED;
1971 }
1972 
arch_prctl_spec_ctrl_get(struct task_struct * task,unsigned long which)1973 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
1974 {
1975 	switch (which) {
1976 	case PR_SPEC_STORE_BYPASS:
1977 		return ssb_prctl_get(task);
1978 	case PR_SPEC_INDIRECT_BRANCH:
1979 		return ib_prctl_get(task);
1980 	default:
1981 		return -ENODEV;
1982 	}
1983 }
1984 
x86_spec_ctrl_setup_ap(void)1985 void x86_spec_ctrl_setup_ap(void)
1986 {
1987 	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
1988 		update_spec_ctrl(x86_spec_ctrl_base);
1989 
1990 	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
1991 		x86_amd_ssb_disable();
1992 }
1993 
1994 bool itlb_multihit_kvm_mitigation;
1995 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
1996 
1997 #undef pr_fmt
1998 #define pr_fmt(fmt)	"L1TF: " fmt
1999 
2000 /* Default mitigation for L1TF-affected CPUs */
2001 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
2002 #if IS_ENABLED(CONFIG_KVM_INTEL)
2003 EXPORT_SYMBOL_GPL(l1tf_mitigation);
2004 #endif
2005 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2006 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2007 
2008 /*
2009  * These CPUs all support 44bits physical address space internally in the
2010  * cache but CPUID can report a smaller number of physical address bits.
2011  *
2012  * The L1TF mitigation uses the top most address bit for the inversion of
2013  * non present PTEs. When the installed memory reaches into the top most
2014  * address bit due to memory holes, which has been observed on machines
2015  * which report 36bits physical address bits and have 32G RAM installed,
2016  * then the mitigation range check in l1tf_select_mitigation() triggers.
2017  * This is a false positive because the mitigation is still possible due to
2018  * the fact that the cache uses 44bit internally. Use the cache bits
2019  * instead of the reported physical bits and adjust them on the affected
2020  * machines to 44bit if the reported bits are less than 44.
2021  */
override_cache_bits(struct cpuinfo_x86 * c)2022 static void override_cache_bits(struct cpuinfo_x86 *c)
2023 {
2024 	if (c->x86 != 6)
2025 		return;
2026 
2027 	switch (c->x86_model) {
2028 	case INTEL_FAM6_NEHALEM:
2029 	case INTEL_FAM6_WESTMERE:
2030 	case INTEL_FAM6_SANDYBRIDGE:
2031 	case INTEL_FAM6_IVYBRIDGE:
2032 	case INTEL_FAM6_HASWELL:
2033 	case INTEL_FAM6_HASWELL_L:
2034 	case INTEL_FAM6_HASWELL_G:
2035 	case INTEL_FAM6_BROADWELL:
2036 	case INTEL_FAM6_BROADWELL_G:
2037 	case INTEL_FAM6_SKYLAKE_L:
2038 	case INTEL_FAM6_SKYLAKE:
2039 	case INTEL_FAM6_KABYLAKE_L:
2040 	case INTEL_FAM6_KABYLAKE:
2041 		if (c->x86_cache_bits < 44)
2042 			c->x86_cache_bits = 44;
2043 		break;
2044 	}
2045 }
2046 
l1tf_select_mitigation(void)2047 static void __init l1tf_select_mitigation(void)
2048 {
2049 	u64 half_pa;
2050 
2051 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2052 		return;
2053 
2054 	if (cpu_mitigations_off())
2055 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2056 	else if (cpu_mitigations_auto_nosmt())
2057 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2058 
2059 	override_cache_bits(&boot_cpu_data);
2060 
2061 	switch (l1tf_mitigation) {
2062 	case L1TF_MITIGATION_OFF:
2063 	case L1TF_MITIGATION_FLUSH_NOWARN:
2064 	case L1TF_MITIGATION_FLUSH:
2065 		break;
2066 	case L1TF_MITIGATION_FLUSH_NOSMT:
2067 	case L1TF_MITIGATION_FULL:
2068 		cpu_smt_disable(false);
2069 		break;
2070 	case L1TF_MITIGATION_FULL_FORCE:
2071 		cpu_smt_disable(true);
2072 		break;
2073 	}
2074 
2075 #if CONFIG_PGTABLE_LEVELS == 2
2076 	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2077 	return;
2078 #endif
2079 
2080 	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2081 	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2082 			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2083 		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2084 		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2085 				half_pa);
2086 		pr_info("However, doing so will make a part of your RAM unusable.\n");
2087 		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2088 		return;
2089 	}
2090 
2091 	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2092 }
2093 
l1tf_cmdline(char * str)2094 static int __init l1tf_cmdline(char *str)
2095 {
2096 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2097 		return 0;
2098 
2099 	if (!str)
2100 		return -EINVAL;
2101 
2102 	if (!strcmp(str, "off"))
2103 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2104 	else if (!strcmp(str, "flush,nowarn"))
2105 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2106 	else if (!strcmp(str, "flush"))
2107 		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2108 	else if (!strcmp(str, "flush,nosmt"))
2109 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2110 	else if (!strcmp(str, "full"))
2111 		l1tf_mitigation = L1TF_MITIGATION_FULL;
2112 	else if (!strcmp(str, "full,force"))
2113 		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2114 
2115 	return 0;
2116 }
2117 early_param("l1tf", l1tf_cmdline);
2118 
2119 #undef pr_fmt
2120 #define pr_fmt(fmt) fmt
2121 
2122 #ifdef CONFIG_SYSFS
2123 
2124 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2125 
2126 #if IS_ENABLED(CONFIG_KVM_INTEL)
2127 static const char * const l1tf_vmx_states[] = {
2128 	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
2129 	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
2130 	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
2131 	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
2132 	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
2133 	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
2134 };
2135 
l1tf_show_state(char * buf)2136 static ssize_t l1tf_show_state(char *buf)
2137 {
2138 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2139 		return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
2140 
2141 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2142 	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2143 	     sched_smt_active())) {
2144 		return sprintf(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2145 			       l1tf_vmx_states[l1tf_vmx_mitigation]);
2146 	}
2147 
2148 	return sprintf(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2149 		       l1tf_vmx_states[l1tf_vmx_mitigation],
2150 		       sched_smt_active() ? "vulnerable" : "disabled");
2151 }
2152 
itlb_multihit_show_state(char * buf)2153 static ssize_t itlb_multihit_show_state(char *buf)
2154 {
2155 	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2156 	    !boot_cpu_has(X86_FEATURE_VMX))
2157 		return sprintf(buf, "KVM: Mitigation: VMX unsupported\n");
2158 	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2159 		return sprintf(buf, "KVM: Mitigation: VMX disabled\n");
2160 	else if (itlb_multihit_kvm_mitigation)
2161 		return sprintf(buf, "KVM: Mitigation: Split huge pages\n");
2162 	else
2163 		return sprintf(buf, "KVM: Vulnerable\n");
2164 }
2165 #else
l1tf_show_state(char * buf)2166 static ssize_t l1tf_show_state(char *buf)
2167 {
2168 	return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
2169 }
2170 
itlb_multihit_show_state(char * buf)2171 static ssize_t itlb_multihit_show_state(char *buf)
2172 {
2173 	return sprintf(buf, "Processor vulnerable\n");
2174 }
2175 #endif
2176 
mds_show_state(char * buf)2177 static ssize_t mds_show_state(char *buf)
2178 {
2179 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2180 		return sprintf(buf, "%s; SMT Host state unknown\n",
2181 			       mds_strings[mds_mitigation]);
2182 	}
2183 
2184 	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2185 		return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2186 			       (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2187 			        sched_smt_active() ? "mitigated" : "disabled"));
2188 	}
2189 
2190 	return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2191 		       sched_smt_active() ? "vulnerable" : "disabled");
2192 }
2193 
tsx_async_abort_show_state(char * buf)2194 static ssize_t tsx_async_abort_show_state(char *buf)
2195 {
2196 	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2197 	    (taa_mitigation == TAA_MITIGATION_OFF))
2198 		return sprintf(buf, "%s\n", taa_strings[taa_mitigation]);
2199 
2200 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2201 		return sprintf(buf, "%s; SMT Host state unknown\n",
2202 			       taa_strings[taa_mitigation]);
2203 	}
2204 
2205 	return sprintf(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2206 		       sched_smt_active() ? "vulnerable" : "disabled");
2207 }
2208 
mmio_stale_data_show_state(char * buf)2209 static ssize_t mmio_stale_data_show_state(char *buf)
2210 {
2211 	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2212 		return sysfs_emit(buf, "Unknown: No mitigations\n");
2213 
2214 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
2215 		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2216 
2217 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2218 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2219 				  mmio_strings[mmio_mitigation]);
2220 	}
2221 
2222 	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2223 			  sched_smt_active() ? "vulnerable" : "disabled");
2224 }
2225 
stibp_state(void)2226 static char *stibp_state(void)
2227 {
2228 	if (spectre_v2_in_ibrs_mode(spectre_v2_enabled))
2229 		return "";
2230 
2231 	switch (spectre_v2_user_stibp) {
2232 	case SPECTRE_V2_USER_NONE:
2233 		return ", STIBP: disabled";
2234 	case SPECTRE_V2_USER_STRICT:
2235 		return ", STIBP: forced";
2236 	case SPECTRE_V2_USER_STRICT_PREFERRED:
2237 		return ", STIBP: always-on";
2238 	case SPECTRE_V2_USER_PRCTL:
2239 	case SPECTRE_V2_USER_SECCOMP:
2240 		if (static_key_enabled(&switch_to_cond_stibp))
2241 			return ", STIBP: conditional";
2242 	}
2243 	return "";
2244 }
2245 
ibpb_state(void)2246 static char *ibpb_state(void)
2247 {
2248 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
2249 		if (static_key_enabled(&switch_mm_always_ibpb))
2250 			return ", IBPB: always-on";
2251 		if (static_key_enabled(&switch_mm_cond_ibpb))
2252 			return ", IBPB: conditional";
2253 		return ", IBPB: disabled";
2254 	}
2255 	return "";
2256 }
2257 
pbrsb_eibrs_state(void)2258 static char *pbrsb_eibrs_state(void)
2259 {
2260 	if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2261 		if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2262 		    boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2263 			return ", PBRSB-eIBRS: SW sequence";
2264 		else
2265 			return ", PBRSB-eIBRS: Vulnerable";
2266 	} else {
2267 		return ", PBRSB-eIBRS: Not affected";
2268 	}
2269 }
2270 
spectre_v2_show_state(char * buf)2271 static ssize_t spectre_v2_show_state(char *buf)
2272 {
2273 	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2274 		return sprintf(buf, "Vulnerable: LFENCE\n");
2275 
2276 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2277 		return sprintf(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2278 
2279 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2280 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2281 		return sprintf(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2282 
2283 	return sprintf(buf, "%s%s%s%s%s%s%s\n",
2284 		       spectre_v2_strings[spectre_v2_enabled],
2285 		       ibpb_state(),
2286 		       boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
2287 		       stibp_state(),
2288 		       boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
2289 		       pbrsb_eibrs_state(),
2290 		       spectre_v2_module_string());
2291 }
2292 
srbds_show_state(char * buf)2293 static ssize_t srbds_show_state(char *buf)
2294 {
2295 	return sprintf(buf, "%s\n", srbds_strings[srbds_mitigation]);
2296 }
2297 
retbleed_show_state(char * buf)2298 static ssize_t retbleed_show_state(char *buf)
2299 {
2300 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2301 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2302 	    if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2303 		boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2304 		    return sprintf(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2305 
2306 	    return sprintf(buf, "%s; SMT %s\n",
2307 			   retbleed_strings[retbleed_mitigation],
2308 			   !sched_smt_active() ? "disabled" :
2309 			   spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2310 			   spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2311 			   "enabled with STIBP protection" : "vulnerable");
2312 	}
2313 
2314 	return sprintf(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2315 }
2316 
cpu_show_common(struct device * dev,struct device_attribute * attr,char * buf,unsigned int bug)2317 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2318 			       char *buf, unsigned int bug)
2319 {
2320 	if (!boot_cpu_has_bug(bug))
2321 		return sprintf(buf, "Not affected\n");
2322 
2323 	switch (bug) {
2324 	case X86_BUG_CPU_MELTDOWN:
2325 		if (boot_cpu_has(X86_FEATURE_PTI))
2326 			return sprintf(buf, "Mitigation: PTI\n");
2327 
2328 		if (hypervisor_is_type(X86_HYPER_XEN_PV))
2329 			return sprintf(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2330 
2331 		break;
2332 
2333 	case X86_BUG_SPECTRE_V1:
2334 		return sprintf(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2335 
2336 	case X86_BUG_SPECTRE_V2:
2337 		return spectre_v2_show_state(buf);
2338 
2339 	case X86_BUG_SPEC_STORE_BYPASS:
2340 		return sprintf(buf, "%s\n", ssb_strings[ssb_mode]);
2341 
2342 	case X86_BUG_L1TF:
2343 		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2344 			return l1tf_show_state(buf);
2345 		break;
2346 
2347 	case X86_BUG_MDS:
2348 		return mds_show_state(buf);
2349 
2350 	case X86_BUG_TAA:
2351 		return tsx_async_abort_show_state(buf);
2352 
2353 	case X86_BUG_ITLB_MULTIHIT:
2354 		return itlb_multihit_show_state(buf);
2355 
2356 	case X86_BUG_SRBDS:
2357 		return srbds_show_state(buf);
2358 
2359 	case X86_BUG_MMIO_STALE_DATA:
2360 	case X86_BUG_MMIO_UNKNOWN:
2361 		return mmio_stale_data_show_state(buf);
2362 
2363 	case X86_BUG_RETBLEED:
2364 		return retbleed_show_state(buf);
2365 
2366 	default:
2367 		break;
2368 	}
2369 
2370 	return sprintf(buf, "Vulnerable\n");
2371 }
2372 
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)2373 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2374 {
2375 	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2376 }
2377 
cpu_show_spectre_v1(struct device * dev,struct device_attribute * attr,char * buf)2378 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2379 {
2380 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2381 }
2382 
cpu_show_spectre_v2(struct device * dev,struct device_attribute * attr,char * buf)2383 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2384 {
2385 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2386 }
2387 
cpu_show_spec_store_bypass(struct device * dev,struct device_attribute * attr,char * buf)2388 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2389 {
2390 	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2391 }
2392 
cpu_show_l1tf(struct device * dev,struct device_attribute * attr,char * buf)2393 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2394 {
2395 	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2396 }
2397 
cpu_show_mds(struct device * dev,struct device_attribute * attr,char * buf)2398 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2399 {
2400 	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2401 }
2402 
cpu_show_tsx_async_abort(struct device * dev,struct device_attribute * attr,char * buf)2403 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2404 {
2405 	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2406 }
2407 
cpu_show_itlb_multihit(struct device * dev,struct device_attribute * attr,char * buf)2408 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2409 {
2410 	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2411 }
2412 
cpu_show_srbds(struct device * dev,struct device_attribute * attr,char * buf)2413 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2414 {
2415 	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2416 }
2417 
cpu_show_mmio_stale_data(struct device * dev,struct device_attribute * attr,char * buf)2418 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2419 {
2420 	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2421 		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
2422 	else
2423 		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2424 }
2425 
cpu_show_retbleed(struct device * dev,struct device_attribute * attr,char * buf)2426 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
2427 {
2428 	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
2429 }
2430 #endif
2431