xref: /OK3568_Linux_fs/kernel/net/core/sock.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Generic socket support routines. Memory allocators, socket lock/release
8  *		handler for protocols to use and generic option handler.
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  */
85 
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87 
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 #include <linux/compat.h>
117 
118 #include <linux/uaccess.h>
119 
120 #include <linux/netdevice.h>
121 #include <net/protocol.h>
122 #include <linux/skbuff.h>
123 #include <net/net_namespace.h>
124 #include <net/request_sock.h>
125 #include <net/sock.h>
126 #include <linux/net_tstamp.h>
127 #include <net/xfrm.h>
128 #include <linux/ipsec.h>
129 #include <net/cls_cgroup.h>
130 #include <net/netprio_cgroup.h>
131 #include <linux/sock_diag.h>
132 
133 #include <linux/filter.h>
134 #include <net/sock_reuseport.h>
135 #include <net/bpf_sk_storage.h>
136 
137 #include <trace/events/sock.h>
138 #include <trace/hooks/sched.h>
139 
140 #include <net/tcp.h>
141 #include <net/busy_poll.h>
142 
143 static DEFINE_MUTEX(proto_list_mutex);
144 static LIST_HEAD(proto_list);
145 
146 static void sock_inuse_add(struct net *net, int val);
147 
148 /**
149  * sk_ns_capable - General socket capability test
150  * @sk: Socket to use a capability on or through
151  * @user_ns: The user namespace of the capability to use
152  * @cap: The capability to use
153  *
154  * Test to see if the opener of the socket had when the socket was
155  * created and the current process has the capability @cap in the user
156  * namespace @user_ns.
157  */
sk_ns_capable(const struct sock * sk,struct user_namespace * user_ns,int cap)158 bool sk_ns_capable(const struct sock *sk,
159 		   struct user_namespace *user_ns, int cap)
160 {
161 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
162 		ns_capable(user_ns, cap);
163 }
164 EXPORT_SYMBOL(sk_ns_capable);
165 
166 /**
167  * sk_capable - Socket global capability test
168  * @sk: Socket to use a capability on or through
169  * @cap: The global capability to use
170  *
171  * Test to see if the opener of the socket had when the socket was
172  * created and the current process has the capability @cap in all user
173  * namespaces.
174  */
sk_capable(const struct sock * sk,int cap)175 bool sk_capable(const struct sock *sk, int cap)
176 {
177 	return sk_ns_capable(sk, &init_user_ns, cap);
178 }
179 EXPORT_SYMBOL(sk_capable);
180 
181 /**
182  * sk_net_capable - Network namespace socket capability test
183  * @sk: Socket to use a capability on or through
184  * @cap: The capability to use
185  *
186  * Test to see if the opener of the socket had when the socket was created
187  * and the current process has the capability @cap over the network namespace
188  * the socket is a member of.
189  */
sk_net_capable(const struct sock * sk,int cap)190 bool sk_net_capable(const struct sock *sk, int cap)
191 {
192 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
193 }
194 EXPORT_SYMBOL(sk_net_capable);
195 
196 /*
197  * Each address family might have different locking rules, so we have
198  * one slock key per address family and separate keys for internal and
199  * userspace sockets.
200  */
201 static struct lock_class_key af_family_keys[AF_MAX];
202 static struct lock_class_key af_family_kern_keys[AF_MAX];
203 static struct lock_class_key af_family_slock_keys[AF_MAX];
204 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
205 
206 /*
207  * Make lock validator output more readable. (we pre-construct these
208  * strings build-time, so that runtime initialization of socket
209  * locks is fast):
210  */
211 
212 #define _sock_locks(x)						  \
213   x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
214   x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
215   x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
216   x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
217   x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
218   x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
219   x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
220   x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
221   x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
222   x "27"       ,	x "28"          ,	x "AF_CAN"      , \
223   x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
224   x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
225   x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
226   x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
227   x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
228   x "AF_MAX"
229 
230 static const char *const af_family_key_strings[AF_MAX+1] = {
231 	_sock_locks("sk_lock-")
232 };
233 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
234 	_sock_locks("slock-")
235 };
236 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
237 	_sock_locks("clock-")
238 };
239 
240 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
241 	_sock_locks("k-sk_lock-")
242 };
243 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
244 	_sock_locks("k-slock-")
245 };
246 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
247 	_sock_locks("k-clock-")
248 };
249 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
250 	_sock_locks("rlock-")
251 };
252 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
253 	_sock_locks("wlock-")
254 };
255 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
256 	_sock_locks("elock-")
257 };
258 
259 /*
260  * sk_callback_lock and sk queues locking rules are per-address-family,
261  * so split the lock classes by using a per-AF key:
262  */
263 static struct lock_class_key af_callback_keys[AF_MAX];
264 static struct lock_class_key af_rlock_keys[AF_MAX];
265 static struct lock_class_key af_wlock_keys[AF_MAX];
266 static struct lock_class_key af_elock_keys[AF_MAX];
267 static struct lock_class_key af_kern_callback_keys[AF_MAX];
268 
269 /* Run time adjustable parameters. */
270 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
271 EXPORT_SYMBOL(sysctl_wmem_max);
272 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
273 EXPORT_SYMBOL(sysctl_rmem_max);
274 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
275 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
276 
277 /* Maximal space eaten by iovec or ancillary data plus some space */
278 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
279 EXPORT_SYMBOL(sysctl_optmem_max);
280 
281 int sysctl_tstamp_allow_data __read_mostly = 1;
282 
283 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
284 EXPORT_SYMBOL_GPL(memalloc_socks_key);
285 
286 /**
287  * sk_set_memalloc - sets %SOCK_MEMALLOC
288  * @sk: socket to set it on
289  *
290  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
291  * It's the responsibility of the admin to adjust min_free_kbytes
292  * to meet the requirements
293  */
sk_set_memalloc(struct sock * sk)294 void sk_set_memalloc(struct sock *sk)
295 {
296 	sock_set_flag(sk, SOCK_MEMALLOC);
297 	sk->sk_allocation |= __GFP_MEMALLOC;
298 	static_branch_inc(&memalloc_socks_key);
299 }
300 EXPORT_SYMBOL_GPL(sk_set_memalloc);
301 
sk_clear_memalloc(struct sock * sk)302 void sk_clear_memalloc(struct sock *sk)
303 {
304 	sock_reset_flag(sk, SOCK_MEMALLOC);
305 	sk->sk_allocation &= ~__GFP_MEMALLOC;
306 	static_branch_dec(&memalloc_socks_key);
307 
308 	/*
309 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
310 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
311 	 * it has rmem allocations due to the last swapfile being deactivated
312 	 * but there is a risk that the socket is unusable due to exceeding
313 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
314 	 */
315 	sk_mem_reclaim(sk);
316 }
317 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
318 
__sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)319 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
320 {
321 	int ret;
322 	unsigned int noreclaim_flag;
323 
324 	/* these should have been dropped before queueing */
325 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
326 
327 	noreclaim_flag = memalloc_noreclaim_save();
328 	ret = sk->sk_backlog_rcv(sk, skb);
329 	memalloc_noreclaim_restore(noreclaim_flag);
330 
331 	return ret;
332 }
333 EXPORT_SYMBOL(__sk_backlog_rcv);
334 
sock_get_timeout(long timeo,void * optval,bool old_timeval)335 static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
336 {
337 	struct __kernel_sock_timeval tv;
338 
339 	if (timeo == MAX_SCHEDULE_TIMEOUT) {
340 		tv.tv_sec = 0;
341 		tv.tv_usec = 0;
342 	} else {
343 		tv.tv_sec = timeo / HZ;
344 		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
345 	}
346 
347 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
348 		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
349 		*(struct old_timeval32 *)optval = tv32;
350 		return sizeof(tv32);
351 	}
352 
353 	if (old_timeval) {
354 		struct __kernel_old_timeval old_tv;
355 		old_tv.tv_sec = tv.tv_sec;
356 		old_tv.tv_usec = tv.tv_usec;
357 		*(struct __kernel_old_timeval *)optval = old_tv;
358 		return sizeof(old_tv);
359 	}
360 
361 	*(struct __kernel_sock_timeval *)optval = tv;
362 	return sizeof(tv);
363 }
364 
sock_set_timeout(long * timeo_p,sockptr_t optval,int optlen,bool old_timeval)365 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
366 			    bool old_timeval)
367 {
368 	struct __kernel_sock_timeval tv;
369 
370 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
371 		struct old_timeval32 tv32;
372 
373 		if (optlen < sizeof(tv32))
374 			return -EINVAL;
375 
376 		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
377 			return -EFAULT;
378 		tv.tv_sec = tv32.tv_sec;
379 		tv.tv_usec = tv32.tv_usec;
380 	} else if (old_timeval) {
381 		struct __kernel_old_timeval old_tv;
382 
383 		if (optlen < sizeof(old_tv))
384 			return -EINVAL;
385 		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
386 			return -EFAULT;
387 		tv.tv_sec = old_tv.tv_sec;
388 		tv.tv_usec = old_tv.tv_usec;
389 	} else {
390 		if (optlen < sizeof(tv))
391 			return -EINVAL;
392 		if (copy_from_sockptr(&tv, optval, sizeof(tv)))
393 			return -EFAULT;
394 	}
395 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
396 		return -EDOM;
397 
398 	if (tv.tv_sec < 0) {
399 		static int warned __read_mostly;
400 
401 		*timeo_p = 0;
402 		if (warned < 10 && net_ratelimit()) {
403 			warned++;
404 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
405 				__func__, current->comm, task_pid_nr(current));
406 		}
407 		return 0;
408 	}
409 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
410 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
411 		return 0;
412 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
413 		*timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
414 	return 0;
415 }
416 
sock_needs_netstamp(const struct sock * sk)417 static bool sock_needs_netstamp(const struct sock *sk)
418 {
419 	switch (sk->sk_family) {
420 	case AF_UNSPEC:
421 	case AF_UNIX:
422 		return false;
423 	default:
424 		return true;
425 	}
426 }
427 
sock_disable_timestamp(struct sock * sk,unsigned long flags)428 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
429 {
430 	if (sk->sk_flags & flags) {
431 		sk->sk_flags &= ~flags;
432 		if (sock_needs_netstamp(sk) &&
433 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
434 			net_disable_timestamp();
435 	}
436 }
437 
438 
__sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)439 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
440 {
441 	unsigned long flags;
442 	struct sk_buff_head *list = &sk->sk_receive_queue;
443 
444 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
445 		atomic_inc(&sk->sk_drops);
446 		trace_sock_rcvqueue_full(sk, skb);
447 		return -ENOMEM;
448 	}
449 
450 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
451 		atomic_inc(&sk->sk_drops);
452 		return -ENOBUFS;
453 	}
454 
455 	skb->dev = NULL;
456 	skb_set_owner_r(skb, sk);
457 
458 	/* we escape from rcu protected region, make sure we dont leak
459 	 * a norefcounted dst
460 	 */
461 	skb_dst_force(skb);
462 
463 	spin_lock_irqsave(&list->lock, flags);
464 	sock_skb_set_dropcount(sk, skb);
465 	__skb_queue_tail(list, skb);
466 	spin_unlock_irqrestore(&list->lock, flags);
467 
468 	if (!sock_flag(sk, SOCK_DEAD))
469 		sk->sk_data_ready(sk);
470 	return 0;
471 }
472 EXPORT_SYMBOL(__sock_queue_rcv_skb);
473 
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)474 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
475 {
476 	int err;
477 
478 	err = sk_filter(sk, skb);
479 	if (err)
480 		return err;
481 
482 	return __sock_queue_rcv_skb(sk, skb);
483 }
484 EXPORT_SYMBOL(sock_queue_rcv_skb);
485 
__sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested,unsigned int trim_cap,bool refcounted)486 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
487 		     const int nested, unsigned int trim_cap, bool refcounted)
488 {
489 	int rc = NET_RX_SUCCESS;
490 
491 	if (sk_filter_trim_cap(sk, skb, trim_cap))
492 		goto discard_and_relse;
493 
494 	skb->dev = NULL;
495 
496 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
497 		atomic_inc(&sk->sk_drops);
498 		goto discard_and_relse;
499 	}
500 	if (nested)
501 		bh_lock_sock_nested(sk);
502 	else
503 		bh_lock_sock(sk);
504 	if (!sock_owned_by_user(sk)) {
505 		/*
506 		 * trylock + unlock semantics:
507 		 */
508 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
509 
510 		rc = sk_backlog_rcv(sk, skb);
511 
512 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
513 	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
514 		bh_unlock_sock(sk);
515 		atomic_inc(&sk->sk_drops);
516 		goto discard_and_relse;
517 	}
518 
519 	bh_unlock_sock(sk);
520 out:
521 	if (refcounted)
522 		sock_put(sk);
523 	return rc;
524 discard_and_relse:
525 	kfree_skb(skb);
526 	goto out;
527 }
528 EXPORT_SYMBOL(__sk_receive_skb);
529 
__sk_dst_check(struct sock * sk,u32 cookie)530 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
531 {
532 	struct dst_entry *dst = __sk_dst_get(sk);
533 
534 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
535 		sk_tx_queue_clear(sk);
536 		sk->sk_dst_pending_confirm = 0;
537 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
538 		dst_release(dst);
539 		return NULL;
540 	}
541 
542 	return dst;
543 }
544 EXPORT_SYMBOL(__sk_dst_check);
545 
sk_dst_check(struct sock * sk,u32 cookie)546 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
547 {
548 	struct dst_entry *dst = sk_dst_get(sk);
549 
550 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
551 		sk_dst_reset(sk);
552 		dst_release(dst);
553 		return NULL;
554 	}
555 
556 	return dst;
557 }
558 EXPORT_SYMBOL(sk_dst_check);
559 
sock_bindtoindex_locked(struct sock * sk,int ifindex)560 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
561 {
562 	int ret = -ENOPROTOOPT;
563 #ifdef CONFIG_NETDEVICES
564 	struct net *net = sock_net(sk);
565 
566 	/* Sorry... */
567 	ret = -EPERM;
568 	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
569 		goto out;
570 
571 	ret = -EINVAL;
572 	if (ifindex < 0)
573 		goto out;
574 
575 	sk->sk_bound_dev_if = ifindex;
576 	if (sk->sk_prot->rehash)
577 		sk->sk_prot->rehash(sk);
578 	sk_dst_reset(sk);
579 
580 	ret = 0;
581 
582 out:
583 #endif
584 
585 	return ret;
586 }
587 
sock_bindtoindex(struct sock * sk,int ifindex,bool lock_sk)588 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
589 {
590 	int ret;
591 
592 	if (lock_sk)
593 		lock_sock(sk);
594 	ret = sock_bindtoindex_locked(sk, ifindex);
595 	if (lock_sk)
596 		release_sock(sk);
597 
598 	return ret;
599 }
600 EXPORT_SYMBOL(sock_bindtoindex);
601 
sock_setbindtodevice(struct sock * sk,sockptr_t optval,int optlen)602 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
603 {
604 	int ret = -ENOPROTOOPT;
605 #ifdef CONFIG_NETDEVICES
606 	struct net *net = sock_net(sk);
607 	char devname[IFNAMSIZ];
608 	int index;
609 
610 	ret = -EINVAL;
611 	if (optlen < 0)
612 		goto out;
613 
614 	/* Bind this socket to a particular device like "eth0",
615 	 * as specified in the passed interface name. If the
616 	 * name is "" or the option length is zero the socket
617 	 * is not bound.
618 	 */
619 	if (optlen > IFNAMSIZ - 1)
620 		optlen = IFNAMSIZ - 1;
621 	memset(devname, 0, sizeof(devname));
622 
623 	ret = -EFAULT;
624 	if (copy_from_sockptr(devname, optval, optlen))
625 		goto out;
626 
627 	index = 0;
628 	if (devname[0] != '\0') {
629 		struct net_device *dev;
630 
631 		rcu_read_lock();
632 		dev = dev_get_by_name_rcu(net, devname);
633 		if (dev)
634 			index = dev->ifindex;
635 		rcu_read_unlock();
636 		ret = -ENODEV;
637 		if (!dev)
638 			goto out;
639 	}
640 
641 	return sock_bindtoindex(sk, index, true);
642 out:
643 #endif
644 
645 	return ret;
646 }
647 
sock_getbindtodevice(struct sock * sk,char __user * optval,int __user * optlen,int len)648 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
649 				int __user *optlen, int len)
650 {
651 	int ret = -ENOPROTOOPT;
652 #ifdef CONFIG_NETDEVICES
653 	struct net *net = sock_net(sk);
654 	char devname[IFNAMSIZ];
655 
656 	if (sk->sk_bound_dev_if == 0) {
657 		len = 0;
658 		goto zero;
659 	}
660 
661 	ret = -EINVAL;
662 	if (len < IFNAMSIZ)
663 		goto out;
664 
665 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
666 	if (ret)
667 		goto out;
668 
669 	len = strlen(devname) + 1;
670 
671 	ret = -EFAULT;
672 	if (copy_to_user(optval, devname, len))
673 		goto out;
674 
675 zero:
676 	ret = -EFAULT;
677 	if (put_user(len, optlen))
678 		goto out;
679 
680 	ret = 0;
681 
682 out:
683 #endif
684 
685 	return ret;
686 }
687 
sk_mc_loop(struct sock * sk)688 bool sk_mc_loop(struct sock *sk)
689 {
690 	if (dev_recursion_level())
691 		return false;
692 	if (!sk)
693 		return true;
694 	switch (sk->sk_family) {
695 	case AF_INET:
696 		return inet_sk(sk)->mc_loop;
697 #if IS_ENABLED(CONFIG_IPV6)
698 	case AF_INET6:
699 		return inet6_sk(sk)->mc_loop;
700 #endif
701 	}
702 	WARN_ON_ONCE(1);
703 	return true;
704 }
705 EXPORT_SYMBOL(sk_mc_loop);
706 
sock_set_reuseaddr(struct sock * sk)707 void sock_set_reuseaddr(struct sock *sk)
708 {
709 	lock_sock(sk);
710 	sk->sk_reuse = SK_CAN_REUSE;
711 	release_sock(sk);
712 }
713 EXPORT_SYMBOL(sock_set_reuseaddr);
714 
sock_set_reuseport(struct sock * sk)715 void sock_set_reuseport(struct sock *sk)
716 {
717 	lock_sock(sk);
718 	sk->sk_reuseport = true;
719 	release_sock(sk);
720 }
721 EXPORT_SYMBOL(sock_set_reuseport);
722 
sock_no_linger(struct sock * sk)723 void sock_no_linger(struct sock *sk)
724 {
725 	lock_sock(sk);
726 	sk->sk_lingertime = 0;
727 	sock_set_flag(sk, SOCK_LINGER);
728 	release_sock(sk);
729 }
730 EXPORT_SYMBOL(sock_no_linger);
731 
sock_set_priority(struct sock * sk,u32 priority)732 void sock_set_priority(struct sock *sk, u32 priority)
733 {
734 	lock_sock(sk);
735 	sk->sk_priority = priority;
736 	release_sock(sk);
737 }
738 EXPORT_SYMBOL(sock_set_priority);
739 
sock_set_sndtimeo(struct sock * sk,s64 secs)740 void sock_set_sndtimeo(struct sock *sk, s64 secs)
741 {
742 	lock_sock(sk);
743 	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
744 		sk->sk_sndtimeo = secs * HZ;
745 	else
746 		sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
747 	release_sock(sk);
748 }
749 EXPORT_SYMBOL(sock_set_sndtimeo);
750 
__sock_set_timestamps(struct sock * sk,bool val,bool new,bool ns)751 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
752 {
753 	if (val)  {
754 		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
755 		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
756 		sock_set_flag(sk, SOCK_RCVTSTAMP);
757 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
758 	} else {
759 		sock_reset_flag(sk, SOCK_RCVTSTAMP);
760 		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
761 	}
762 }
763 
sock_enable_timestamps(struct sock * sk)764 void sock_enable_timestamps(struct sock *sk)
765 {
766 	lock_sock(sk);
767 	__sock_set_timestamps(sk, true, false, true);
768 	release_sock(sk);
769 }
770 EXPORT_SYMBOL(sock_enable_timestamps);
771 
sock_set_keepalive(struct sock * sk)772 void sock_set_keepalive(struct sock *sk)
773 {
774 	lock_sock(sk);
775 	if (sk->sk_prot->keepalive)
776 		sk->sk_prot->keepalive(sk, true);
777 	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
778 	release_sock(sk);
779 }
780 EXPORT_SYMBOL(sock_set_keepalive);
781 
__sock_set_rcvbuf(struct sock * sk,int val)782 static void __sock_set_rcvbuf(struct sock *sk, int val)
783 {
784 	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
785 	 * as a negative value.
786 	 */
787 	val = min_t(int, val, INT_MAX / 2);
788 	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
789 
790 	/* We double it on the way in to account for "struct sk_buff" etc.
791 	 * overhead.   Applications assume that the SO_RCVBUF setting they make
792 	 * will allow that much actual data to be received on that socket.
793 	 *
794 	 * Applications are unaware that "struct sk_buff" and other overheads
795 	 * allocate from the receive buffer during socket buffer allocation.
796 	 *
797 	 * And after considering the possible alternatives, returning the value
798 	 * we actually used in getsockopt is the most desirable behavior.
799 	 */
800 	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
801 }
802 
sock_set_rcvbuf(struct sock * sk,int val)803 void sock_set_rcvbuf(struct sock *sk, int val)
804 {
805 	lock_sock(sk);
806 	__sock_set_rcvbuf(sk, val);
807 	release_sock(sk);
808 }
809 EXPORT_SYMBOL(sock_set_rcvbuf);
810 
__sock_set_mark(struct sock * sk,u32 val)811 static void __sock_set_mark(struct sock *sk, u32 val)
812 {
813 	if (val != sk->sk_mark) {
814 		sk->sk_mark = val;
815 		sk_dst_reset(sk);
816 	}
817 }
818 
sock_set_mark(struct sock * sk,u32 val)819 void sock_set_mark(struct sock *sk, u32 val)
820 {
821 	lock_sock(sk);
822 	__sock_set_mark(sk, val);
823 	release_sock(sk);
824 }
825 EXPORT_SYMBOL(sock_set_mark);
826 
827 /*
828  *	This is meant for all protocols to use and covers goings on
829  *	at the socket level. Everything here is generic.
830  */
831 
sock_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)832 int sock_setsockopt(struct socket *sock, int level, int optname,
833 		    sockptr_t optval, unsigned int optlen)
834 {
835 	struct sock_txtime sk_txtime;
836 	struct sock *sk = sock->sk;
837 	int val;
838 	int valbool;
839 	struct linger ling;
840 	int ret = 0;
841 
842 	/*
843 	 *	Options without arguments
844 	 */
845 
846 	if (optname == SO_BINDTODEVICE)
847 		return sock_setbindtodevice(sk, optval, optlen);
848 
849 	if (optlen < sizeof(int))
850 		return -EINVAL;
851 
852 	if (copy_from_sockptr(&val, optval, sizeof(val)))
853 		return -EFAULT;
854 
855 	valbool = val ? 1 : 0;
856 
857 	lock_sock(sk);
858 
859 	switch (optname) {
860 	case SO_DEBUG:
861 		if (val && !capable(CAP_NET_ADMIN))
862 			ret = -EACCES;
863 		else
864 			sock_valbool_flag(sk, SOCK_DBG, valbool);
865 		break;
866 	case SO_REUSEADDR:
867 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
868 		break;
869 	case SO_REUSEPORT:
870 		sk->sk_reuseport = valbool;
871 		break;
872 	case SO_TYPE:
873 	case SO_PROTOCOL:
874 	case SO_DOMAIN:
875 	case SO_ERROR:
876 		ret = -ENOPROTOOPT;
877 		break;
878 	case SO_DONTROUTE:
879 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
880 		sk_dst_reset(sk);
881 		break;
882 	case SO_BROADCAST:
883 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
884 		break;
885 	case SO_SNDBUF:
886 		/* Don't error on this BSD doesn't and if you think
887 		 * about it this is right. Otherwise apps have to
888 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
889 		 * are treated in BSD as hints
890 		 */
891 		val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
892 set_sndbuf:
893 		/* Ensure val * 2 fits into an int, to prevent max_t()
894 		 * from treating it as a negative value.
895 		 */
896 		val = min_t(int, val, INT_MAX / 2);
897 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
898 		WRITE_ONCE(sk->sk_sndbuf,
899 			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
900 		/* Wake up sending tasks if we upped the value. */
901 		sk->sk_write_space(sk);
902 		break;
903 
904 	case SO_SNDBUFFORCE:
905 		if (!capable(CAP_NET_ADMIN)) {
906 			ret = -EPERM;
907 			break;
908 		}
909 
910 		/* No negative values (to prevent underflow, as val will be
911 		 * multiplied by 2).
912 		 */
913 		if (val < 0)
914 			val = 0;
915 		goto set_sndbuf;
916 
917 	case SO_RCVBUF:
918 		/* Don't error on this BSD doesn't and if you think
919 		 * about it this is right. Otherwise apps have to
920 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
921 		 * are treated in BSD as hints
922 		 */
923 		__sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
924 		break;
925 
926 	case SO_RCVBUFFORCE:
927 		if (!capable(CAP_NET_ADMIN)) {
928 			ret = -EPERM;
929 			break;
930 		}
931 
932 		/* No negative values (to prevent underflow, as val will be
933 		 * multiplied by 2).
934 		 */
935 		__sock_set_rcvbuf(sk, max(val, 0));
936 		break;
937 
938 	case SO_KEEPALIVE:
939 		if (sk->sk_prot->keepalive)
940 			sk->sk_prot->keepalive(sk, valbool);
941 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
942 		break;
943 
944 	case SO_OOBINLINE:
945 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
946 		break;
947 
948 	case SO_NO_CHECK:
949 		sk->sk_no_check_tx = valbool;
950 		break;
951 
952 	case SO_PRIORITY:
953 		if ((val >= 0 && val <= 6) ||
954 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
955 			sk->sk_priority = val;
956 		else
957 			ret = -EPERM;
958 		break;
959 
960 	case SO_LINGER:
961 		if (optlen < sizeof(ling)) {
962 			ret = -EINVAL;	/* 1003.1g */
963 			break;
964 		}
965 		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
966 			ret = -EFAULT;
967 			break;
968 		}
969 		if (!ling.l_onoff)
970 			sock_reset_flag(sk, SOCK_LINGER);
971 		else {
972 #if (BITS_PER_LONG == 32)
973 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
974 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
975 			else
976 #endif
977 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
978 			sock_set_flag(sk, SOCK_LINGER);
979 		}
980 		break;
981 
982 	case SO_BSDCOMPAT:
983 		break;
984 
985 	case SO_PASSCRED:
986 		if (valbool)
987 			set_bit(SOCK_PASSCRED, &sock->flags);
988 		else
989 			clear_bit(SOCK_PASSCRED, &sock->flags);
990 		break;
991 
992 	case SO_TIMESTAMP_OLD:
993 		__sock_set_timestamps(sk, valbool, false, false);
994 		break;
995 	case SO_TIMESTAMP_NEW:
996 		__sock_set_timestamps(sk, valbool, true, false);
997 		break;
998 	case SO_TIMESTAMPNS_OLD:
999 		__sock_set_timestamps(sk, valbool, false, true);
1000 		break;
1001 	case SO_TIMESTAMPNS_NEW:
1002 		__sock_set_timestamps(sk, valbool, true, true);
1003 		break;
1004 	case SO_TIMESTAMPING_NEW:
1005 	case SO_TIMESTAMPING_OLD:
1006 		if (val & ~SOF_TIMESTAMPING_MASK) {
1007 			ret = -EINVAL;
1008 			break;
1009 		}
1010 
1011 		if (val & SOF_TIMESTAMPING_OPT_ID &&
1012 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
1013 			if (sk->sk_protocol == IPPROTO_TCP &&
1014 			    sk->sk_type == SOCK_STREAM) {
1015 				if ((1 << sk->sk_state) &
1016 				    (TCPF_CLOSE | TCPF_LISTEN)) {
1017 					ret = -EINVAL;
1018 					break;
1019 				}
1020 				sk->sk_tskey = tcp_sk(sk)->snd_una;
1021 			} else {
1022 				sk->sk_tskey = 0;
1023 			}
1024 		}
1025 
1026 		if (val & SOF_TIMESTAMPING_OPT_STATS &&
1027 		    !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
1028 			ret = -EINVAL;
1029 			break;
1030 		}
1031 
1032 		sk->sk_tsflags = val;
1033 		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
1034 
1035 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
1036 			sock_enable_timestamp(sk,
1037 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
1038 		else
1039 			sock_disable_timestamp(sk,
1040 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
1041 		break;
1042 
1043 	case SO_RCVLOWAT:
1044 		if (val < 0)
1045 			val = INT_MAX;
1046 		if (sock->ops->set_rcvlowat)
1047 			ret = sock->ops->set_rcvlowat(sk, val);
1048 		else
1049 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1050 		break;
1051 
1052 	case SO_RCVTIMEO_OLD:
1053 	case SO_RCVTIMEO_NEW:
1054 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1055 				       optlen, optname == SO_RCVTIMEO_OLD);
1056 		break;
1057 
1058 	case SO_SNDTIMEO_OLD:
1059 	case SO_SNDTIMEO_NEW:
1060 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1061 				       optlen, optname == SO_SNDTIMEO_OLD);
1062 		break;
1063 
1064 	case SO_ATTACH_FILTER: {
1065 		struct sock_fprog fprog;
1066 
1067 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1068 		if (!ret)
1069 			ret = sk_attach_filter(&fprog, sk);
1070 		break;
1071 	}
1072 	case SO_ATTACH_BPF:
1073 		ret = -EINVAL;
1074 		if (optlen == sizeof(u32)) {
1075 			u32 ufd;
1076 
1077 			ret = -EFAULT;
1078 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1079 				break;
1080 
1081 			ret = sk_attach_bpf(ufd, sk);
1082 		}
1083 		break;
1084 
1085 	case SO_ATTACH_REUSEPORT_CBPF: {
1086 		struct sock_fprog fprog;
1087 
1088 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1089 		if (!ret)
1090 			ret = sk_reuseport_attach_filter(&fprog, sk);
1091 		break;
1092 	}
1093 	case SO_ATTACH_REUSEPORT_EBPF:
1094 		ret = -EINVAL;
1095 		if (optlen == sizeof(u32)) {
1096 			u32 ufd;
1097 
1098 			ret = -EFAULT;
1099 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1100 				break;
1101 
1102 			ret = sk_reuseport_attach_bpf(ufd, sk);
1103 		}
1104 		break;
1105 
1106 	case SO_DETACH_REUSEPORT_BPF:
1107 		ret = reuseport_detach_prog(sk);
1108 		break;
1109 
1110 	case SO_DETACH_FILTER:
1111 		ret = sk_detach_filter(sk);
1112 		break;
1113 
1114 	case SO_LOCK_FILTER:
1115 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1116 			ret = -EPERM;
1117 		else
1118 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1119 		break;
1120 
1121 	case SO_PASSSEC:
1122 		if (valbool)
1123 			set_bit(SOCK_PASSSEC, &sock->flags);
1124 		else
1125 			clear_bit(SOCK_PASSSEC, &sock->flags);
1126 		break;
1127 	case SO_MARK:
1128 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1129 			ret = -EPERM;
1130 			break;
1131 		}
1132 
1133 		__sock_set_mark(sk, val);
1134 		break;
1135 
1136 	case SO_RXQ_OVFL:
1137 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1138 		break;
1139 
1140 	case SO_WIFI_STATUS:
1141 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1142 		break;
1143 
1144 	case SO_PEEK_OFF:
1145 		if (sock->ops->set_peek_off)
1146 			ret = sock->ops->set_peek_off(sk, val);
1147 		else
1148 			ret = -EOPNOTSUPP;
1149 		break;
1150 
1151 	case SO_NOFCS:
1152 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1153 		break;
1154 
1155 	case SO_SELECT_ERR_QUEUE:
1156 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1157 		break;
1158 
1159 #ifdef CONFIG_NET_RX_BUSY_POLL
1160 	case SO_BUSY_POLL:
1161 		/* allow unprivileged users to decrease the value */
1162 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1163 			ret = -EPERM;
1164 		else {
1165 			if (val < 0)
1166 				ret = -EINVAL;
1167 			else
1168 				WRITE_ONCE(sk->sk_ll_usec, val);
1169 		}
1170 		break;
1171 #endif
1172 
1173 	case SO_MAX_PACING_RATE:
1174 		{
1175 		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1176 
1177 		if (sizeof(ulval) != sizeof(val) &&
1178 		    optlen >= sizeof(ulval) &&
1179 		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1180 			ret = -EFAULT;
1181 			break;
1182 		}
1183 		if (ulval != ~0UL)
1184 			cmpxchg(&sk->sk_pacing_status,
1185 				SK_PACING_NONE,
1186 				SK_PACING_NEEDED);
1187 		sk->sk_max_pacing_rate = ulval;
1188 		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1189 		break;
1190 		}
1191 	case SO_INCOMING_CPU:
1192 		WRITE_ONCE(sk->sk_incoming_cpu, val);
1193 		break;
1194 
1195 	case SO_CNX_ADVICE:
1196 		if (val == 1)
1197 			dst_negative_advice(sk);
1198 		break;
1199 
1200 	case SO_ZEROCOPY:
1201 		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1202 			if (!((sk->sk_type == SOCK_STREAM &&
1203 			       sk->sk_protocol == IPPROTO_TCP) ||
1204 			      (sk->sk_type == SOCK_DGRAM &&
1205 			       sk->sk_protocol == IPPROTO_UDP)))
1206 				ret = -ENOTSUPP;
1207 		} else if (sk->sk_family != PF_RDS) {
1208 			ret = -ENOTSUPP;
1209 		}
1210 		if (!ret) {
1211 			if (val < 0 || val > 1)
1212 				ret = -EINVAL;
1213 			else
1214 				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1215 		}
1216 		break;
1217 
1218 	case SO_TXTIME:
1219 		if (optlen != sizeof(struct sock_txtime)) {
1220 			ret = -EINVAL;
1221 			break;
1222 		} else if (copy_from_sockptr(&sk_txtime, optval,
1223 			   sizeof(struct sock_txtime))) {
1224 			ret = -EFAULT;
1225 			break;
1226 		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1227 			ret = -EINVAL;
1228 			break;
1229 		}
1230 		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1231 		 * scheduler has enough safe guards.
1232 		 */
1233 		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1234 		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1235 			ret = -EPERM;
1236 			break;
1237 		}
1238 		sock_valbool_flag(sk, SOCK_TXTIME, true);
1239 		sk->sk_clockid = sk_txtime.clockid;
1240 		sk->sk_txtime_deadline_mode =
1241 			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1242 		sk->sk_txtime_report_errors =
1243 			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1244 		break;
1245 
1246 	case SO_BINDTOIFINDEX:
1247 		ret = sock_bindtoindex_locked(sk, val);
1248 		break;
1249 
1250 	default:
1251 		ret = -ENOPROTOOPT;
1252 		break;
1253 	}
1254 	release_sock(sk);
1255 	return ret;
1256 }
1257 EXPORT_SYMBOL(sock_setsockopt);
1258 
sk_get_peer_cred(struct sock * sk)1259 static const struct cred *sk_get_peer_cred(struct sock *sk)
1260 {
1261 	const struct cred *cred;
1262 
1263 	spin_lock(&sk->sk_peer_lock);
1264 	cred = get_cred(sk->sk_peer_cred);
1265 	spin_unlock(&sk->sk_peer_lock);
1266 
1267 	return cred;
1268 }
1269 
cred_to_ucred(struct pid * pid,const struct cred * cred,struct ucred * ucred)1270 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1271 			  struct ucred *ucred)
1272 {
1273 	ucred->pid = pid_vnr(pid);
1274 	ucred->uid = ucred->gid = -1;
1275 	if (cred) {
1276 		struct user_namespace *current_ns = current_user_ns();
1277 
1278 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1279 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1280 	}
1281 }
1282 
groups_to_user(gid_t __user * dst,const struct group_info * src)1283 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1284 {
1285 	struct user_namespace *user_ns = current_user_ns();
1286 	int i;
1287 
1288 	for (i = 0; i < src->ngroups; i++)
1289 		if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1290 			return -EFAULT;
1291 
1292 	return 0;
1293 }
1294 
sock_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1295 int sock_getsockopt(struct socket *sock, int level, int optname,
1296 		    char __user *optval, int __user *optlen)
1297 {
1298 	struct sock *sk = sock->sk;
1299 
1300 	union {
1301 		int val;
1302 		u64 val64;
1303 		unsigned long ulval;
1304 		struct linger ling;
1305 		struct old_timeval32 tm32;
1306 		struct __kernel_old_timeval tm;
1307 		struct  __kernel_sock_timeval stm;
1308 		struct sock_txtime txtime;
1309 	} v;
1310 
1311 	int lv = sizeof(int);
1312 	int len;
1313 
1314 	if (get_user(len, optlen))
1315 		return -EFAULT;
1316 	if (len < 0)
1317 		return -EINVAL;
1318 
1319 	memset(&v, 0, sizeof(v));
1320 
1321 	switch (optname) {
1322 	case SO_DEBUG:
1323 		v.val = sock_flag(sk, SOCK_DBG);
1324 		break;
1325 
1326 	case SO_DONTROUTE:
1327 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1328 		break;
1329 
1330 	case SO_BROADCAST:
1331 		v.val = sock_flag(sk, SOCK_BROADCAST);
1332 		break;
1333 
1334 	case SO_SNDBUF:
1335 		v.val = sk->sk_sndbuf;
1336 		break;
1337 
1338 	case SO_RCVBUF:
1339 		v.val = sk->sk_rcvbuf;
1340 		break;
1341 
1342 	case SO_REUSEADDR:
1343 		v.val = sk->sk_reuse;
1344 		break;
1345 
1346 	case SO_REUSEPORT:
1347 		v.val = sk->sk_reuseport;
1348 		break;
1349 
1350 	case SO_KEEPALIVE:
1351 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1352 		break;
1353 
1354 	case SO_TYPE:
1355 		v.val = sk->sk_type;
1356 		break;
1357 
1358 	case SO_PROTOCOL:
1359 		v.val = sk->sk_protocol;
1360 		break;
1361 
1362 	case SO_DOMAIN:
1363 		v.val = sk->sk_family;
1364 		break;
1365 
1366 	case SO_ERROR:
1367 		v.val = -sock_error(sk);
1368 		if (v.val == 0)
1369 			v.val = xchg(&sk->sk_err_soft, 0);
1370 		break;
1371 
1372 	case SO_OOBINLINE:
1373 		v.val = sock_flag(sk, SOCK_URGINLINE);
1374 		break;
1375 
1376 	case SO_NO_CHECK:
1377 		v.val = sk->sk_no_check_tx;
1378 		break;
1379 
1380 	case SO_PRIORITY:
1381 		v.val = sk->sk_priority;
1382 		break;
1383 
1384 	case SO_LINGER:
1385 		lv		= sizeof(v.ling);
1386 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1387 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1388 		break;
1389 
1390 	case SO_BSDCOMPAT:
1391 		break;
1392 
1393 	case SO_TIMESTAMP_OLD:
1394 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1395 				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1396 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1397 		break;
1398 
1399 	case SO_TIMESTAMPNS_OLD:
1400 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1401 		break;
1402 
1403 	case SO_TIMESTAMP_NEW:
1404 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1405 		break;
1406 
1407 	case SO_TIMESTAMPNS_NEW:
1408 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1409 		break;
1410 
1411 	case SO_TIMESTAMPING_OLD:
1412 		v.val = sk->sk_tsflags;
1413 		break;
1414 
1415 	case SO_RCVTIMEO_OLD:
1416 	case SO_RCVTIMEO_NEW:
1417 		lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1418 		break;
1419 
1420 	case SO_SNDTIMEO_OLD:
1421 	case SO_SNDTIMEO_NEW:
1422 		lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1423 		break;
1424 
1425 	case SO_RCVLOWAT:
1426 		v.val = sk->sk_rcvlowat;
1427 		break;
1428 
1429 	case SO_SNDLOWAT:
1430 		v.val = 1;
1431 		break;
1432 
1433 	case SO_PASSCRED:
1434 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1435 		break;
1436 
1437 	case SO_PEERCRED:
1438 	{
1439 		struct ucred peercred;
1440 		if (len > sizeof(peercred))
1441 			len = sizeof(peercred);
1442 
1443 		spin_lock(&sk->sk_peer_lock);
1444 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1445 		spin_unlock(&sk->sk_peer_lock);
1446 
1447 		if (copy_to_user(optval, &peercred, len))
1448 			return -EFAULT;
1449 		goto lenout;
1450 	}
1451 
1452 	case SO_PEERGROUPS:
1453 	{
1454 		const struct cred *cred;
1455 		int ret, n;
1456 
1457 		cred = sk_get_peer_cred(sk);
1458 		if (!cred)
1459 			return -ENODATA;
1460 
1461 		n = cred->group_info->ngroups;
1462 		if (len < n * sizeof(gid_t)) {
1463 			len = n * sizeof(gid_t);
1464 			put_cred(cred);
1465 			return put_user(len, optlen) ? -EFAULT : -ERANGE;
1466 		}
1467 		len = n * sizeof(gid_t);
1468 
1469 		ret = groups_to_user((gid_t __user *)optval, cred->group_info);
1470 		put_cred(cred);
1471 		if (ret)
1472 			return ret;
1473 		goto lenout;
1474 	}
1475 
1476 	case SO_PEERNAME:
1477 	{
1478 		char address[128];
1479 
1480 		lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1481 		if (lv < 0)
1482 			return -ENOTCONN;
1483 		if (lv < len)
1484 			return -EINVAL;
1485 		if (copy_to_user(optval, address, len))
1486 			return -EFAULT;
1487 		goto lenout;
1488 	}
1489 
1490 	/* Dubious BSD thing... Probably nobody even uses it, but
1491 	 * the UNIX standard wants it for whatever reason... -DaveM
1492 	 */
1493 	case SO_ACCEPTCONN:
1494 		v.val = sk->sk_state == TCP_LISTEN;
1495 		break;
1496 
1497 	case SO_PASSSEC:
1498 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1499 		break;
1500 
1501 	case SO_PEERSEC:
1502 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1503 
1504 	case SO_MARK:
1505 		v.val = sk->sk_mark;
1506 		break;
1507 
1508 	case SO_RXQ_OVFL:
1509 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1510 		break;
1511 
1512 	case SO_WIFI_STATUS:
1513 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1514 		break;
1515 
1516 	case SO_PEEK_OFF:
1517 		if (!sock->ops->set_peek_off)
1518 			return -EOPNOTSUPP;
1519 
1520 		v.val = sk->sk_peek_off;
1521 		break;
1522 	case SO_NOFCS:
1523 		v.val = sock_flag(sk, SOCK_NOFCS);
1524 		break;
1525 
1526 	case SO_BINDTODEVICE:
1527 		return sock_getbindtodevice(sk, optval, optlen, len);
1528 
1529 	case SO_GET_FILTER:
1530 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1531 		if (len < 0)
1532 			return len;
1533 
1534 		goto lenout;
1535 
1536 	case SO_LOCK_FILTER:
1537 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1538 		break;
1539 
1540 	case SO_BPF_EXTENSIONS:
1541 		v.val = bpf_tell_extensions();
1542 		break;
1543 
1544 	case SO_SELECT_ERR_QUEUE:
1545 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1546 		break;
1547 
1548 #ifdef CONFIG_NET_RX_BUSY_POLL
1549 	case SO_BUSY_POLL:
1550 		v.val = sk->sk_ll_usec;
1551 		break;
1552 #endif
1553 
1554 	case SO_MAX_PACING_RATE:
1555 		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1556 			lv = sizeof(v.ulval);
1557 			v.ulval = sk->sk_max_pacing_rate;
1558 		} else {
1559 			/* 32bit version */
1560 			v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1561 		}
1562 		break;
1563 
1564 	case SO_INCOMING_CPU:
1565 		v.val = READ_ONCE(sk->sk_incoming_cpu);
1566 		break;
1567 
1568 	case SO_MEMINFO:
1569 	{
1570 		u32 meminfo[SK_MEMINFO_VARS];
1571 
1572 		sk_get_meminfo(sk, meminfo);
1573 
1574 		len = min_t(unsigned int, len, sizeof(meminfo));
1575 		if (copy_to_user(optval, &meminfo, len))
1576 			return -EFAULT;
1577 
1578 		goto lenout;
1579 	}
1580 
1581 #ifdef CONFIG_NET_RX_BUSY_POLL
1582 	case SO_INCOMING_NAPI_ID:
1583 		v.val = READ_ONCE(sk->sk_napi_id);
1584 
1585 		/* aggregate non-NAPI IDs down to 0 */
1586 		if (v.val < MIN_NAPI_ID)
1587 			v.val = 0;
1588 
1589 		break;
1590 #endif
1591 
1592 	case SO_COOKIE:
1593 		lv = sizeof(u64);
1594 		if (len < lv)
1595 			return -EINVAL;
1596 		v.val64 = sock_gen_cookie(sk);
1597 		break;
1598 
1599 	case SO_ZEROCOPY:
1600 		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1601 		break;
1602 
1603 	case SO_TXTIME:
1604 		lv = sizeof(v.txtime);
1605 		v.txtime.clockid = sk->sk_clockid;
1606 		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1607 				  SOF_TXTIME_DEADLINE_MODE : 0;
1608 		v.txtime.flags |= sk->sk_txtime_report_errors ?
1609 				  SOF_TXTIME_REPORT_ERRORS : 0;
1610 		break;
1611 
1612 	case SO_BINDTOIFINDEX:
1613 		v.val = sk->sk_bound_dev_if;
1614 		break;
1615 
1616 	default:
1617 		/* We implement the SO_SNDLOWAT etc to not be settable
1618 		 * (1003.1g 7).
1619 		 */
1620 		return -ENOPROTOOPT;
1621 	}
1622 
1623 	if (len > lv)
1624 		len = lv;
1625 	if (copy_to_user(optval, &v, len))
1626 		return -EFAULT;
1627 lenout:
1628 	if (put_user(len, optlen))
1629 		return -EFAULT;
1630 	return 0;
1631 }
1632 
1633 /*
1634  * Initialize an sk_lock.
1635  *
1636  * (We also register the sk_lock with the lock validator.)
1637  */
sock_lock_init(struct sock * sk)1638 static inline void sock_lock_init(struct sock *sk)
1639 {
1640 	if (sk->sk_kern_sock)
1641 		sock_lock_init_class_and_name(
1642 			sk,
1643 			af_family_kern_slock_key_strings[sk->sk_family],
1644 			af_family_kern_slock_keys + sk->sk_family,
1645 			af_family_kern_key_strings[sk->sk_family],
1646 			af_family_kern_keys + sk->sk_family);
1647 	else
1648 		sock_lock_init_class_and_name(
1649 			sk,
1650 			af_family_slock_key_strings[sk->sk_family],
1651 			af_family_slock_keys + sk->sk_family,
1652 			af_family_key_strings[sk->sk_family],
1653 			af_family_keys + sk->sk_family);
1654 }
1655 
1656 /*
1657  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1658  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1659  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1660  */
sock_copy(struct sock * nsk,const struct sock * osk)1661 static void sock_copy(struct sock *nsk, const struct sock *osk)
1662 {
1663 	const struct proto *prot = READ_ONCE(osk->sk_prot);
1664 #ifdef CONFIG_SECURITY_NETWORK
1665 	void *sptr = nsk->sk_security;
1666 #endif
1667 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1668 
1669 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1670 	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1671 
1672 #ifdef CONFIG_SECURITY_NETWORK
1673 	nsk->sk_security = sptr;
1674 	security_sk_clone(osk, nsk);
1675 #endif
1676 }
1677 
sk_prot_alloc(struct proto * prot,gfp_t priority,int family)1678 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1679 		int family)
1680 {
1681 	struct sock *sk;
1682 	struct kmem_cache *slab;
1683 
1684 	slab = prot->slab;
1685 	if (slab != NULL) {
1686 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1687 		if (!sk)
1688 			return sk;
1689 		if (want_init_on_alloc(priority))
1690 			sk_prot_clear_nulls(sk, prot->obj_size);
1691 	} else
1692 		sk = kmalloc(prot->obj_size, priority);
1693 
1694 	if (sk != NULL) {
1695 		if (security_sk_alloc(sk, family, priority))
1696 			goto out_free;
1697 
1698 		if (!try_module_get(prot->owner))
1699 			goto out_free_sec;
1700 		sk_tx_queue_clear(sk);
1701 	}
1702 
1703 	return sk;
1704 
1705 out_free_sec:
1706 	security_sk_free(sk);
1707 out_free:
1708 	if (slab != NULL)
1709 		kmem_cache_free(slab, sk);
1710 	else
1711 		kfree(sk);
1712 	return NULL;
1713 }
1714 
sk_prot_free(struct proto * prot,struct sock * sk)1715 static void sk_prot_free(struct proto *prot, struct sock *sk)
1716 {
1717 	struct kmem_cache *slab;
1718 	struct module *owner;
1719 
1720 	owner = prot->owner;
1721 	slab = prot->slab;
1722 
1723 	cgroup_sk_free(&sk->sk_cgrp_data);
1724 	mem_cgroup_sk_free(sk);
1725 	security_sk_free(sk);
1726 	if (slab != NULL)
1727 		kmem_cache_free(slab, sk);
1728 	else
1729 		kfree(sk);
1730 	module_put(owner);
1731 }
1732 
1733 /**
1734  *	sk_alloc - All socket objects are allocated here
1735  *	@net: the applicable net namespace
1736  *	@family: protocol family
1737  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1738  *	@prot: struct proto associated with this new sock instance
1739  *	@kern: is this to be a kernel socket?
1740  */
sk_alloc(struct net * net,int family,gfp_t priority,struct proto * prot,int kern)1741 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1742 		      struct proto *prot, int kern)
1743 {
1744 	struct sock *sk;
1745 
1746 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1747 	if (sk) {
1748 		sk->sk_family = family;
1749 		/*
1750 		 * See comment in struct sock definition to understand
1751 		 * why we need sk_prot_creator -acme
1752 		 */
1753 		sk->sk_prot = sk->sk_prot_creator = prot;
1754 		sk->sk_kern_sock = kern;
1755 		sock_lock_init(sk);
1756 		sk->sk_net_refcnt = kern ? 0 : 1;
1757 		if (likely(sk->sk_net_refcnt)) {
1758 			get_net(net);
1759 			sock_inuse_add(net, 1);
1760 		}
1761 
1762 		sock_net_set(sk, net);
1763 		refcount_set(&sk->sk_wmem_alloc, 1);
1764 
1765 		mem_cgroup_sk_alloc(sk);
1766 		cgroup_sk_alloc(&sk->sk_cgrp_data);
1767 		sock_update_classid(&sk->sk_cgrp_data);
1768 		sock_update_netprioidx(&sk->sk_cgrp_data);
1769 		sk_tx_queue_clear(sk);
1770 	}
1771 
1772 	return sk;
1773 }
1774 EXPORT_SYMBOL(sk_alloc);
1775 
1776 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1777  * grace period. This is the case for UDP sockets and TCP listeners.
1778  */
__sk_destruct(struct rcu_head * head)1779 static void __sk_destruct(struct rcu_head *head)
1780 {
1781 	struct sock *sk = container_of(head, struct sock, sk_rcu);
1782 	struct sk_filter *filter;
1783 
1784 	if (sk->sk_destruct)
1785 		sk->sk_destruct(sk);
1786 
1787 	filter = rcu_dereference_check(sk->sk_filter,
1788 				       refcount_read(&sk->sk_wmem_alloc) == 0);
1789 	if (filter) {
1790 		sk_filter_uncharge(sk, filter);
1791 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1792 	}
1793 
1794 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1795 
1796 #ifdef CONFIG_BPF_SYSCALL
1797 	bpf_sk_storage_free(sk);
1798 #endif
1799 
1800 	if (atomic_read(&sk->sk_omem_alloc))
1801 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1802 			 __func__, atomic_read(&sk->sk_omem_alloc));
1803 
1804 	if (sk->sk_frag.page) {
1805 		put_page(sk->sk_frag.page);
1806 		sk->sk_frag.page = NULL;
1807 	}
1808 
1809 	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
1810 	put_cred(sk->sk_peer_cred);
1811 	put_pid(sk->sk_peer_pid);
1812 
1813 	if (likely(sk->sk_net_refcnt))
1814 		put_net(sock_net(sk));
1815 	sk_prot_free(sk->sk_prot_creator, sk);
1816 }
1817 
sk_destruct(struct sock * sk)1818 void sk_destruct(struct sock *sk)
1819 {
1820 	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1821 
1822 	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1823 		reuseport_detach_sock(sk);
1824 		use_call_rcu = true;
1825 	}
1826 
1827 	if (use_call_rcu)
1828 		call_rcu(&sk->sk_rcu, __sk_destruct);
1829 	else
1830 		__sk_destruct(&sk->sk_rcu);
1831 }
1832 
__sk_free(struct sock * sk)1833 static void __sk_free(struct sock *sk)
1834 {
1835 	if (likely(sk->sk_net_refcnt))
1836 		sock_inuse_add(sock_net(sk), -1);
1837 
1838 	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1839 		sock_diag_broadcast_destroy(sk);
1840 	else
1841 		sk_destruct(sk);
1842 }
1843 
sk_free(struct sock * sk)1844 void sk_free(struct sock *sk)
1845 {
1846 	/*
1847 	 * We subtract one from sk_wmem_alloc and can know if
1848 	 * some packets are still in some tx queue.
1849 	 * If not null, sock_wfree() will call __sk_free(sk) later
1850 	 */
1851 	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1852 		__sk_free(sk);
1853 }
1854 EXPORT_SYMBOL(sk_free);
1855 
sk_init_common(struct sock * sk)1856 static void sk_init_common(struct sock *sk)
1857 {
1858 	skb_queue_head_init(&sk->sk_receive_queue);
1859 	skb_queue_head_init(&sk->sk_write_queue);
1860 	skb_queue_head_init(&sk->sk_error_queue);
1861 
1862 	rwlock_init(&sk->sk_callback_lock);
1863 	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1864 			af_rlock_keys + sk->sk_family,
1865 			af_family_rlock_key_strings[sk->sk_family]);
1866 	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1867 			af_wlock_keys + sk->sk_family,
1868 			af_family_wlock_key_strings[sk->sk_family]);
1869 	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1870 			af_elock_keys + sk->sk_family,
1871 			af_family_elock_key_strings[sk->sk_family]);
1872 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1873 			af_callback_keys + sk->sk_family,
1874 			af_family_clock_key_strings[sk->sk_family]);
1875 }
1876 
1877 /**
1878  *	sk_clone_lock - clone a socket, and lock its clone
1879  *	@sk: the socket to clone
1880  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1881  *
1882  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1883  */
sk_clone_lock(const struct sock * sk,const gfp_t priority)1884 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1885 {
1886 	struct proto *prot = READ_ONCE(sk->sk_prot);
1887 	struct sk_filter *filter;
1888 	bool is_charged = true;
1889 	struct sock *newsk;
1890 
1891 	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
1892 	if (!newsk)
1893 		goto out;
1894 
1895 	sock_copy(newsk, sk);
1896 
1897 	newsk->sk_prot_creator = prot;
1898 
1899 	/* SANITY */
1900 	if (likely(newsk->sk_net_refcnt)) {
1901 		get_net(sock_net(newsk));
1902 		sock_inuse_add(sock_net(newsk), 1);
1903 	}
1904 	sk_node_init(&newsk->sk_node);
1905 	sock_lock_init(newsk);
1906 	bh_lock_sock(newsk);
1907 	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1908 	newsk->sk_backlog.len = 0;
1909 
1910 	atomic_set(&newsk->sk_rmem_alloc, 0);
1911 
1912 	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
1913 	refcount_set(&newsk->sk_wmem_alloc, 1);
1914 
1915 	atomic_set(&newsk->sk_omem_alloc, 0);
1916 	sk_init_common(newsk);
1917 
1918 	newsk->sk_dst_cache	= NULL;
1919 	newsk->sk_dst_pending_confirm = 0;
1920 	newsk->sk_wmem_queued	= 0;
1921 	newsk->sk_forward_alloc = 0;
1922 	atomic_set(&newsk->sk_drops, 0);
1923 	newsk->sk_send_head	= NULL;
1924 	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1925 	atomic_set(&newsk->sk_zckey, 0);
1926 
1927 	sock_reset_flag(newsk, SOCK_DONE);
1928 
1929 	/* sk->sk_memcg will be populated at accept() time */
1930 	newsk->sk_memcg = NULL;
1931 
1932 	cgroup_sk_clone(&newsk->sk_cgrp_data);
1933 
1934 	rcu_read_lock();
1935 	filter = rcu_dereference(sk->sk_filter);
1936 	if (filter != NULL)
1937 		/* though it's an empty new sock, the charging may fail
1938 		 * if sysctl_optmem_max was changed between creation of
1939 		 * original socket and cloning
1940 		 */
1941 		is_charged = sk_filter_charge(newsk, filter);
1942 	RCU_INIT_POINTER(newsk->sk_filter, filter);
1943 	rcu_read_unlock();
1944 
1945 	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1946 		/* We need to make sure that we don't uncharge the new
1947 		 * socket if we couldn't charge it in the first place
1948 		 * as otherwise we uncharge the parent's filter.
1949 		 */
1950 		if (!is_charged)
1951 			RCU_INIT_POINTER(newsk->sk_filter, NULL);
1952 		sk_free_unlock_clone(newsk);
1953 		newsk = NULL;
1954 		goto out;
1955 	}
1956 	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1957 
1958 	if (bpf_sk_storage_clone(sk, newsk)) {
1959 		sk_free_unlock_clone(newsk);
1960 		newsk = NULL;
1961 		goto out;
1962 	}
1963 
1964 	/* Clear sk_user_data if parent had the pointer tagged
1965 	 * as not suitable for copying when cloning.
1966 	 */
1967 	if (sk_user_data_is_nocopy(newsk))
1968 		newsk->sk_user_data = NULL;
1969 
1970 	newsk->sk_err	   = 0;
1971 	newsk->sk_err_soft = 0;
1972 	newsk->sk_priority = 0;
1973 	newsk->sk_incoming_cpu = raw_smp_processor_id();
1974 
1975 	/* Before updating sk_refcnt, we must commit prior changes to memory
1976 	 * (Documentation/RCU/rculist_nulls.rst for details)
1977 	 */
1978 	smp_wmb();
1979 	refcount_set(&newsk->sk_refcnt, 2);
1980 
1981 	/* Increment the counter in the same struct proto as the master
1982 	 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1983 	 * is the same as sk->sk_prot->socks, as this field was copied
1984 	 * with memcpy).
1985 	 *
1986 	 * This _changes_ the previous behaviour, where
1987 	 * tcp_create_openreq_child always was incrementing the
1988 	 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1989 	 * to be taken into account in all callers. -acme
1990 	 */
1991 	sk_refcnt_debug_inc(newsk);
1992 	sk_set_socket(newsk, NULL);
1993 	sk_tx_queue_clear(newsk);
1994 	RCU_INIT_POINTER(newsk->sk_wq, NULL);
1995 
1996 	if (newsk->sk_prot->sockets_allocated)
1997 		sk_sockets_allocated_inc(newsk);
1998 
1999 	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2000 		net_enable_timestamp();
2001 out:
2002 	return newsk;
2003 }
2004 EXPORT_SYMBOL_GPL(sk_clone_lock);
2005 
sk_free_unlock_clone(struct sock * sk)2006 void sk_free_unlock_clone(struct sock *sk)
2007 {
2008 	/* It is still raw copy of parent, so invalidate
2009 	 * destructor and make plain sk_free() */
2010 	sk->sk_destruct = NULL;
2011 	bh_unlock_sock(sk);
2012 	sk_free(sk);
2013 }
2014 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2015 
sk_setup_caps(struct sock * sk,struct dst_entry * dst)2016 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2017 {
2018 	u32 max_segs = 1;
2019 
2020 	sk_dst_set(sk, dst);
2021 	sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2022 	if (sk->sk_route_caps & NETIF_F_GSO)
2023 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2024 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
2025 	if (sk_can_gso(sk)) {
2026 		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2027 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2028 		} else {
2029 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2030 			sk->sk_gso_max_size = dst->dev->gso_max_size;
2031 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2032 		}
2033 	}
2034 	sk->sk_gso_max_segs = max_segs;
2035 }
2036 EXPORT_SYMBOL_GPL(sk_setup_caps);
2037 
2038 /*
2039  *	Simple resource managers for sockets.
2040  */
2041 
2042 
2043 /*
2044  * Write buffer destructor automatically called from kfree_skb.
2045  */
sock_wfree(struct sk_buff * skb)2046 void sock_wfree(struct sk_buff *skb)
2047 {
2048 	struct sock *sk = skb->sk;
2049 	unsigned int len = skb->truesize;
2050 
2051 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2052 		/*
2053 		 * Keep a reference on sk_wmem_alloc, this will be released
2054 		 * after sk_write_space() call
2055 		 */
2056 		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2057 		sk->sk_write_space(sk);
2058 		len = 1;
2059 	}
2060 	/*
2061 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2062 	 * could not do because of in-flight packets
2063 	 */
2064 	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2065 		__sk_free(sk);
2066 }
2067 EXPORT_SYMBOL(sock_wfree);
2068 
2069 /* This variant of sock_wfree() is used by TCP,
2070  * since it sets SOCK_USE_WRITE_QUEUE.
2071  */
__sock_wfree(struct sk_buff * skb)2072 void __sock_wfree(struct sk_buff *skb)
2073 {
2074 	struct sock *sk = skb->sk;
2075 
2076 	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2077 		__sk_free(sk);
2078 }
2079 
skb_set_owner_w(struct sk_buff * skb,struct sock * sk)2080 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2081 {
2082 	skb_orphan(skb);
2083 	skb->sk = sk;
2084 #ifdef CONFIG_INET
2085 	if (unlikely(!sk_fullsock(sk))) {
2086 		skb->destructor = sock_edemux;
2087 		sock_hold(sk);
2088 		return;
2089 	}
2090 #endif
2091 	skb->destructor = sock_wfree;
2092 	skb_set_hash_from_sk(skb, sk);
2093 	/*
2094 	 * We used to take a refcount on sk, but following operation
2095 	 * is enough to guarantee sk_free() wont free this sock until
2096 	 * all in-flight packets are completed
2097 	 */
2098 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2099 }
2100 EXPORT_SYMBOL(skb_set_owner_w);
2101 
can_skb_orphan_partial(const struct sk_buff * skb)2102 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2103 {
2104 #ifdef CONFIG_TLS_DEVICE
2105 	/* Drivers depend on in-order delivery for crypto offload,
2106 	 * partial orphan breaks out-of-order-OK logic.
2107 	 */
2108 	if (skb->decrypted)
2109 		return false;
2110 #endif
2111 	return (skb->destructor == sock_wfree ||
2112 		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2113 }
2114 
2115 /* This helper is used by netem, as it can hold packets in its
2116  * delay queue. We want to allow the owner socket to send more
2117  * packets, as if they were already TX completed by a typical driver.
2118  * But we also want to keep skb->sk set because some packet schedulers
2119  * rely on it (sch_fq for example).
2120  */
skb_orphan_partial(struct sk_buff * skb)2121 void skb_orphan_partial(struct sk_buff *skb)
2122 {
2123 	if (skb_is_tcp_pure_ack(skb))
2124 		return;
2125 
2126 	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2127 		return;
2128 
2129 	skb_orphan(skb);
2130 }
2131 EXPORT_SYMBOL(skb_orphan_partial);
2132 
2133 /*
2134  * Read buffer destructor automatically called from kfree_skb.
2135  */
sock_rfree(struct sk_buff * skb)2136 void sock_rfree(struct sk_buff *skb)
2137 {
2138 	struct sock *sk = skb->sk;
2139 	unsigned int len = skb->truesize;
2140 
2141 	atomic_sub(len, &sk->sk_rmem_alloc);
2142 	sk_mem_uncharge(sk, len);
2143 }
2144 EXPORT_SYMBOL(sock_rfree);
2145 
2146 /*
2147  * Buffer destructor for skbs that are not used directly in read or write
2148  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2149  */
sock_efree(struct sk_buff * skb)2150 void sock_efree(struct sk_buff *skb)
2151 {
2152 	sock_put(skb->sk);
2153 }
2154 EXPORT_SYMBOL(sock_efree);
2155 
2156 /* Buffer destructor for prefetch/receive path where reference count may
2157  * not be held, e.g. for listen sockets.
2158  */
2159 #ifdef CONFIG_INET
sock_pfree(struct sk_buff * skb)2160 void sock_pfree(struct sk_buff *skb)
2161 {
2162 	if (sk_is_refcounted(skb->sk))
2163 		sock_gen_put(skb->sk);
2164 }
2165 EXPORT_SYMBOL(sock_pfree);
2166 #endif /* CONFIG_INET */
2167 
sock_i_uid(struct sock * sk)2168 kuid_t sock_i_uid(struct sock *sk)
2169 {
2170 	kuid_t uid;
2171 
2172 	read_lock_bh(&sk->sk_callback_lock);
2173 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2174 	read_unlock_bh(&sk->sk_callback_lock);
2175 	return uid;
2176 }
2177 EXPORT_SYMBOL(sock_i_uid);
2178 
sock_i_ino(struct sock * sk)2179 unsigned long sock_i_ino(struct sock *sk)
2180 {
2181 	unsigned long ino;
2182 
2183 	read_lock_bh(&sk->sk_callback_lock);
2184 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2185 	read_unlock_bh(&sk->sk_callback_lock);
2186 	return ino;
2187 }
2188 EXPORT_SYMBOL(sock_i_ino);
2189 
2190 /*
2191  * Allocate a skb from the socket's send buffer.
2192  */
sock_wmalloc(struct sock * sk,unsigned long size,int force,gfp_t priority)2193 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2194 			     gfp_t priority)
2195 {
2196 	if (force ||
2197 	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2198 		struct sk_buff *skb = alloc_skb(size, priority);
2199 
2200 		if (skb) {
2201 			skb_set_owner_w(skb, sk);
2202 			return skb;
2203 		}
2204 	}
2205 	return NULL;
2206 }
2207 EXPORT_SYMBOL(sock_wmalloc);
2208 
sock_ofree(struct sk_buff * skb)2209 static void sock_ofree(struct sk_buff *skb)
2210 {
2211 	struct sock *sk = skb->sk;
2212 
2213 	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2214 }
2215 
sock_omalloc(struct sock * sk,unsigned long size,gfp_t priority)2216 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2217 			     gfp_t priority)
2218 {
2219 	struct sk_buff *skb;
2220 
2221 	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2222 	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2223 	    READ_ONCE(sysctl_optmem_max))
2224 		return NULL;
2225 
2226 	skb = alloc_skb(size, priority);
2227 	if (!skb)
2228 		return NULL;
2229 
2230 	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2231 	skb->sk = sk;
2232 	skb->destructor = sock_ofree;
2233 	return skb;
2234 }
2235 
2236 /*
2237  * Allocate a memory block from the socket's option memory buffer.
2238  */
sock_kmalloc(struct sock * sk,int size,gfp_t priority)2239 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2240 {
2241 	int optmem_max = READ_ONCE(sysctl_optmem_max);
2242 
2243 	if ((unsigned int)size <= optmem_max &&
2244 	    atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2245 		void *mem;
2246 		/* First do the add, to avoid the race if kmalloc
2247 		 * might sleep.
2248 		 */
2249 		atomic_add(size, &sk->sk_omem_alloc);
2250 		mem = kmalloc(size, priority);
2251 		if (mem)
2252 			return mem;
2253 		atomic_sub(size, &sk->sk_omem_alloc);
2254 	}
2255 	return NULL;
2256 }
2257 EXPORT_SYMBOL(sock_kmalloc);
2258 
2259 /* Free an option memory block. Note, we actually want the inline
2260  * here as this allows gcc to detect the nullify and fold away the
2261  * condition entirely.
2262  */
__sock_kfree_s(struct sock * sk,void * mem,int size,const bool nullify)2263 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2264 				  const bool nullify)
2265 {
2266 	if (WARN_ON_ONCE(!mem))
2267 		return;
2268 	if (nullify)
2269 		kfree_sensitive(mem);
2270 	else
2271 		kfree(mem);
2272 	atomic_sub(size, &sk->sk_omem_alloc);
2273 }
2274 
sock_kfree_s(struct sock * sk,void * mem,int size)2275 void sock_kfree_s(struct sock *sk, void *mem, int size)
2276 {
2277 	__sock_kfree_s(sk, mem, size, false);
2278 }
2279 EXPORT_SYMBOL(sock_kfree_s);
2280 
sock_kzfree_s(struct sock * sk,void * mem,int size)2281 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2282 {
2283 	__sock_kfree_s(sk, mem, size, true);
2284 }
2285 EXPORT_SYMBOL(sock_kzfree_s);
2286 
2287 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2288    I think, these locks should be removed for datagram sockets.
2289  */
sock_wait_for_wmem(struct sock * sk,long timeo)2290 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2291 {
2292 	DEFINE_WAIT(wait);
2293 
2294 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2295 	for (;;) {
2296 		if (!timeo)
2297 			break;
2298 		if (signal_pending(current))
2299 			break;
2300 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2301 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2302 		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2303 			break;
2304 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2305 			break;
2306 		if (sk->sk_err)
2307 			break;
2308 		timeo = schedule_timeout(timeo);
2309 	}
2310 	finish_wait(sk_sleep(sk), &wait);
2311 	return timeo;
2312 }
2313 
2314 
2315 /*
2316  *	Generic send/receive buffer handlers
2317  */
2318 
sock_alloc_send_pskb(struct sock * sk,unsigned long header_len,unsigned long data_len,int noblock,int * errcode,int max_page_order)2319 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2320 				     unsigned long data_len, int noblock,
2321 				     int *errcode, int max_page_order)
2322 {
2323 	struct sk_buff *skb;
2324 	long timeo;
2325 	int err;
2326 
2327 	timeo = sock_sndtimeo(sk, noblock);
2328 	for (;;) {
2329 		err = sock_error(sk);
2330 		if (err != 0)
2331 			goto failure;
2332 
2333 		err = -EPIPE;
2334 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2335 			goto failure;
2336 
2337 		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2338 			break;
2339 
2340 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2341 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2342 		err = -EAGAIN;
2343 		if (!timeo)
2344 			goto failure;
2345 		if (signal_pending(current))
2346 			goto interrupted;
2347 		timeo = sock_wait_for_wmem(sk, timeo);
2348 	}
2349 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2350 				   errcode, sk->sk_allocation);
2351 	if (skb)
2352 		skb_set_owner_w(skb, sk);
2353 	return skb;
2354 
2355 interrupted:
2356 	err = sock_intr_errno(timeo);
2357 failure:
2358 	*errcode = err;
2359 	return NULL;
2360 }
2361 EXPORT_SYMBOL(sock_alloc_send_pskb);
2362 
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)2363 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2364 				    int noblock, int *errcode)
2365 {
2366 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2367 }
2368 EXPORT_SYMBOL(sock_alloc_send_skb);
2369 
__sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct cmsghdr * cmsg,struct sockcm_cookie * sockc)2370 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2371 		     struct sockcm_cookie *sockc)
2372 {
2373 	u32 tsflags;
2374 
2375 	switch (cmsg->cmsg_type) {
2376 	case SO_MARK:
2377 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2378 			return -EPERM;
2379 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2380 			return -EINVAL;
2381 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2382 		break;
2383 	case SO_TIMESTAMPING_OLD:
2384 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2385 			return -EINVAL;
2386 
2387 		tsflags = *(u32 *)CMSG_DATA(cmsg);
2388 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2389 			return -EINVAL;
2390 
2391 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2392 		sockc->tsflags |= tsflags;
2393 		break;
2394 	case SCM_TXTIME:
2395 		if (!sock_flag(sk, SOCK_TXTIME))
2396 			return -EINVAL;
2397 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2398 			return -EINVAL;
2399 		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2400 		break;
2401 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2402 	case SCM_RIGHTS:
2403 	case SCM_CREDENTIALS:
2404 		break;
2405 	default:
2406 		return -EINVAL;
2407 	}
2408 	return 0;
2409 }
2410 EXPORT_SYMBOL(__sock_cmsg_send);
2411 
sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct sockcm_cookie * sockc)2412 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2413 		   struct sockcm_cookie *sockc)
2414 {
2415 	struct cmsghdr *cmsg;
2416 	int ret;
2417 
2418 	for_each_cmsghdr(cmsg, msg) {
2419 		if (!CMSG_OK(msg, cmsg))
2420 			return -EINVAL;
2421 		if (cmsg->cmsg_level != SOL_SOCKET)
2422 			continue;
2423 		ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2424 		if (ret)
2425 			return ret;
2426 	}
2427 	return 0;
2428 }
2429 EXPORT_SYMBOL(sock_cmsg_send);
2430 
sk_enter_memory_pressure(struct sock * sk)2431 static void sk_enter_memory_pressure(struct sock *sk)
2432 {
2433 	if (!sk->sk_prot->enter_memory_pressure)
2434 		return;
2435 
2436 	sk->sk_prot->enter_memory_pressure(sk);
2437 }
2438 
sk_leave_memory_pressure(struct sock * sk)2439 static void sk_leave_memory_pressure(struct sock *sk)
2440 {
2441 	if (sk->sk_prot->leave_memory_pressure) {
2442 		sk->sk_prot->leave_memory_pressure(sk);
2443 	} else {
2444 		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2445 
2446 		if (memory_pressure && READ_ONCE(*memory_pressure))
2447 			WRITE_ONCE(*memory_pressure, 0);
2448 	}
2449 }
2450 
2451 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2452 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2453 
2454 /**
2455  * skb_page_frag_refill - check that a page_frag contains enough room
2456  * @sz: minimum size of the fragment we want to get
2457  * @pfrag: pointer to page_frag
2458  * @gfp: priority for memory allocation
2459  *
2460  * Note: While this allocator tries to use high order pages, there is
2461  * no guarantee that allocations succeed. Therefore, @sz MUST be
2462  * less or equal than PAGE_SIZE.
2463  */
skb_page_frag_refill(unsigned int sz,struct page_frag * pfrag,gfp_t gfp)2464 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2465 {
2466 	if (pfrag->page) {
2467 		if (page_ref_count(pfrag->page) == 1) {
2468 			pfrag->offset = 0;
2469 			return true;
2470 		}
2471 		if (pfrag->offset + sz <= pfrag->size)
2472 			return true;
2473 		put_page(pfrag->page);
2474 	}
2475 
2476 	pfrag->offset = 0;
2477 	if (SKB_FRAG_PAGE_ORDER &&
2478 	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2479 		/* Avoid direct reclaim but allow kswapd to wake */
2480 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2481 					  __GFP_COMP | __GFP_NOWARN |
2482 					  __GFP_NORETRY,
2483 					  SKB_FRAG_PAGE_ORDER);
2484 		if (likely(pfrag->page)) {
2485 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2486 			return true;
2487 		}
2488 	}
2489 	pfrag->page = alloc_page(gfp);
2490 	if (likely(pfrag->page)) {
2491 		pfrag->size = PAGE_SIZE;
2492 		return true;
2493 	}
2494 	return false;
2495 }
2496 EXPORT_SYMBOL(skb_page_frag_refill);
2497 
sk_page_frag_refill(struct sock * sk,struct page_frag * pfrag)2498 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2499 {
2500 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2501 		return true;
2502 
2503 	sk_enter_memory_pressure(sk);
2504 	sk_stream_moderate_sndbuf(sk);
2505 	return false;
2506 }
2507 EXPORT_SYMBOL(sk_page_frag_refill);
2508 
__lock_sock(struct sock * sk)2509 static void __lock_sock(struct sock *sk)
2510 	__releases(&sk->sk_lock.slock)
2511 	__acquires(&sk->sk_lock.slock)
2512 {
2513 	DEFINE_WAIT(wait);
2514 
2515 	for (;;) {
2516 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2517 					TASK_UNINTERRUPTIBLE);
2518 		spin_unlock_bh(&sk->sk_lock.slock);
2519 		schedule();
2520 		spin_lock_bh(&sk->sk_lock.slock);
2521 		if (!sock_owned_by_user(sk))
2522 			break;
2523 	}
2524 	finish_wait(&sk->sk_lock.wq, &wait);
2525 }
2526 
__release_sock(struct sock * sk)2527 void __release_sock(struct sock *sk)
2528 	__releases(&sk->sk_lock.slock)
2529 	__acquires(&sk->sk_lock.slock)
2530 {
2531 	struct sk_buff *skb, *next;
2532 
2533 	while ((skb = sk->sk_backlog.head) != NULL) {
2534 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2535 
2536 		spin_unlock_bh(&sk->sk_lock.slock);
2537 
2538 		do {
2539 			next = skb->next;
2540 			prefetch(next);
2541 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2542 			skb_mark_not_on_list(skb);
2543 			sk_backlog_rcv(sk, skb);
2544 
2545 			cond_resched();
2546 
2547 			skb = next;
2548 		} while (skb != NULL);
2549 
2550 		spin_lock_bh(&sk->sk_lock.slock);
2551 	}
2552 
2553 	/*
2554 	 * Doing the zeroing here guarantee we can not loop forever
2555 	 * while a wild producer attempts to flood us.
2556 	 */
2557 	sk->sk_backlog.len = 0;
2558 }
2559 
__sk_flush_backlog(struct sock * sk)2560 void __sk_flush_backlog(struct sock *sk)
2561 {
2562 	spin_lock_bh(&sk->sk_lock.slock);
2563 	__release_sock(sk);
2564 	spin_unlock_bh(&sk->sk_lock.slock);
2565 }
2566 
2567 /**
2568  * sk_wait_data - wait for data to arrive at sk_receive_queue
2569  * @sk:    sock to wait on
2570  * @timeo: for how long
2571  * @skb:   last skb seen on sk_receive_queue
2572  *
2573  * Now socket state including sk->sk_err is changed only under lock,
2574  * hence we may omit checks after joining wait queue.
2575  * We check receive queue before schedule() only as optimization;
2576  * it is very likely that release_sock() added new data.
2577  */
sk_wait_data(struct sock * sk,long * timeo,const struct sk_buff * skb)2578 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2579 {
2580 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2581 	int rc;
2582 
2583 	add_wait_queue(sk_sleep(sk), &wait);
2584 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2585 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2586 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2587 	remove_wait_queue(sk_sleep(sk), &wait);
2588 	return rc;
2589 }
2590 EXPORT_SYMBOL(sk_wait_data);
2591 
2592 /**
2593  *	__sk_mem_raise_allocated - increase memory_allocated
2594  *	@sk: socket
2595  *	@size: memory size to allocate
2596  *	@amt: pages to allocate
2597  *	@kind: allocation type
2598  *
2599  *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2600  */
__sk_mem_raise_allocated(struct sock * sk,int size,int amt,int kind)2601 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2602 {
2603 	struct proto *prot = sk->sk_prot;
2604 	long allocated = sk_memory_allocated_add(sk, amt);
2605 	bool charged = true;
2606 
2607 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2608 	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2609 		goto suppress_allocation;
2610 
2611 	/* Under limit. */
2612 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
2613 		sk_leave_memory_pressure(sk);
2614 		return 1;
2615 	}
2616 
2617 	/* Under pressure. */
2618 	if (allocated > sk_prot_mem_limits(sk, 1))
2619 		sk_enter_memory_pressure(sk);
2620 
2621 	/* Over hard limit. */
2622 	if (allocated > sk_prot_mem_limits(sk, 2))
2623 		goto suppress_allocation;
2624 
2625 	/* guarantee minimum buffer size under pressure */
2626 	if (kind == SK_MEM_RECV) {
2627 		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2628 			return 1;
2629 
2630 	} else { /* SK_MEM_SEND */
2631 		int wmem0 = sk_get_wmem0(sk, prot);
2632 
2633 		if (sk->sk_type == SOCK_STREAM) {
2634 			if (sk->sk_wmem_queued < wmem0)
2635 				return 1;
2636 		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2637 				return 1;
2638 		}
2639 	}
2640 
2641 	if (sk_has_memory_pressure(sk)) {
2642 		u64 alloc;
2643 
2644 		if (!sk_under_memory_pressure(sk))
2645 			return 1;
2646 		alloc = sk_sockets_allocated_read_positive(sk);
2647 		if (sk_prot_mem_limits(sk, 2) > alloc *
2648 		    sk_mem_pages(sk->sk_wmem_queued +
2649 				 atomic_read(&sk->sk_rmem_alloc) +
2650 				 sk->sk_forward_alloc))
2651 			return 1;
2652 	}
2653 
2654 suppress_allocation:
2655 
2656 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2657 		sk_stream_moderate_sndbuf(sk);
2658 
2659 		/* Fail only if socket is _under_ its sndbuf.
2660 		 * In this case we cannot block, so that we have to fail.
2661 		 */
2662 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2663 			return 1;
2664 	}
2665 
2666 	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2667 		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2668 
2669 	sk_memory_allocated_sub(sk, amt);
2670 
2671 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2672 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2673 
2674 	return 0;
2675 }
2676 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2677 
2678 /**
2679  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2680  *	@sk: socket
2681  *	@size: memory size to allocate
2682  *	@kind: allocation type
2683  *
2684  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2685  *	rmem allocation. This function assumes that protocols which have
2686  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2687  */
__sk_mem_schedule(struct sock * sk,int size,int kind)2688 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2689 {
2690 	int ret, amt = sk_mem_pages(size);
2691 
2692 	sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2693 	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2694 	if (!ret)
2695 		sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2696 	return ret;
2697 }
2698 EXPORT_SYMBOL(__sk_mem_schedule);
2699 
2700 /**
2701  *	__sk_mem_reduce_allocated - reclaim memory_allocated
2702  *	@sk: socket
2703  *	@amount: number of quanta
2704  *
2705  *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2706  */
__sk_mem_reduce_allocated(struct sock * sk,int amount)2707 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2708 {
2709 	sk_memory_allocated_sub(sk, amount);
2710 
2711 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2712 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2713 
2714 	if (sk_under_memory_pressure(sk) &&
2715 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2716 		sk_leave_memory_pressure(sk);
2717 }
2718 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2719 
2720 /**
2721  *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2722  *	@sk: socket
2723  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2724  */
__sk_mem_reclaim(struct sock * sk,int amount)2725 void __sk_mem_reclaim(struct sock *sk, int amount)
2726 {
2727 	amount >>= SK_MEM_QUANTUM_SHIFT;
2728 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2729 	__sk_mem_reduce_allocated(sk, amount);
2730 }
2731 EXPORT_SYMBOL(__sk_mem_reclaim);
2732 
sk_set_peek_off(struct sock * sk,int val)2733 int sk_set_peek_off(struct sock *sk, int val)
2734 {
2735 	sk->sk_peek_off = val;
2736 	return 0;
2737 }
2738 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2739 
2740 /*
2741  * Set of default routines for initialising struct proto_ops when
2742  * the protocol does not support a particular function. In certain
2743  * cases where it makes no sense for a protocol to have a "do nothing"
2744  * function, some default processing is provided.
2745  */
2746 
sock_no_bind(struct socket * sock,struct sockaddr * saddr,int len)2747 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2748 {
2749 	return -EOPNOTSUPP;
2750 }
2751 EXPORT_SYMBOL(sock_no_bind);
2752 
sock_no_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)2753 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2754 		    int len, int flags)
2755 {
2756 	return -EOPNOTSUPP;
2757 }
2758 EXPORT_SYMBOL(sock_no_connect);
2759 
sock_no_socketpair(struct socket * sock1,struct socket * sock2)2760 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2761 {
2762 	return -EOPNOTSUPP;
2763 }
2764 EXPORT_SYMBOL(sock_no_socketpair);
2765 
sock_no_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)2766 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2767 		   bool kern)
2768 {
2769 	return -EOPNOTSUPP;
2770 }
2771 EXPORT_SYMBOL(sock_no_accept);
2772 
sock_no_getname(struct socket * sock,struct sockaddr * saddr,int peer)2773 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2774 		    int peer)
2775 {
2776 	return -EOPNOTSUPP;
2777 }
2778 EXPORT_SYMBOL(sock_no_getname);
2779 
sock_no_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)2780 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2781 {
2782 	return -EOPNOTSUPP;
2783 }
2784 EXPORT_SYMBOL(sock_no_ioctl);
2785 
sock_no_listen(struct socket * sock,int backlog)2786 int sock_no_listen(struct socket *sock, int backlog)
2787 {
2788 	return -EOPNOTSUPP;
2789 }
2790 EXPORT_SYMBOL(sock_no_listen);
2791 
sock_no_shutdown(struct socket * sock,int how)2792 int sock_no_shutdown(struct socket *sock, int how)
2793 {
2794 	return -EOPNOTSUPP;
2795 }
2796 EXPORT_SYMBOL(sock_no_shutdown);
2797 
sock_no_sendmsg(struct socket * sock,struct msghdr * m,size_t len)2798 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2799 {
2800 	return -EOPNOTSUPP;
2801 }
2802 EXPORT_SYMBOL(sock_no_sendmsg);
2803 
sock_no_sendmsg_locked(struct sock * sk,struct msghdr * m,size_t len)2804 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2805 {
2806 	return -EOPNOTSUPP;
2807 }
2808 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2809 
sock_no_recvmsg(struct socket * sock,struct msghdr * m,size_t len,int flags)2810 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2811 		    int flags)
2812 {
2813 	return -EOPNOTSUPP;
2814 }
2815 EXPORT_SYMBOL(sock_no_recvmsg);
2816 
sock_no_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)2817 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2818 {
2819 	/* Mirror missing mmap method error code */
2820 	return -ENODEV;
2821 }
2822 EXPORT_SYMBOL(sock_no_mmap);
2823 
2824 /*
2825  * When a file is received (via SCM_RIGHTS, etc), we must bump the
2826  * various sock-based usage counts.
2827  */
__receive_sock(struct file * file)2828 void __receive_sock(struct file *file)
2829 {
2830 	struct socket *sock;
2831 	int error;
2832 
2833 	/*
2834 	 * The resulting value of "error" is ignored here since we only
2835 	 * need to take action when the file is a socket and testing
2836 	 * "sock" for NULL is sufficient.
2837 	 */
2838 	sock = sock_from_file(file, &error);
2839 	if (sock) {
2840 		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2841 		sock_update_classid(&sock->sk->sk_cgrp_data);
2842 	}
2843 }
2844 
sock_no_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)2845 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2846 {
2847 	ssize_t res;
2848 	struct msghdr msg = {.msg_flags = flags};
2849 	struct kvec iov;
2850 	char *kaddr = kmap(page);
2851 	iov.iov_base = kaddr + offset;
2852 	iov.iov_len = size;
2853 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2854 	kunmap(page);
2855 	return res;
2856 }
2857 EXPORT_SYMBOL(sock_no_sendpage);
2858 
sock_no_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)2859 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2860 				int offset, size_t size, int flags)
2861 {
2862 	ssize_t res;
2863 	struct msghdr msg = {.msg_flags = flags};
2864 	struct kvec iov;
2865 	char *kaddr = kmap(page);
2866 
2867 	iov.iov_base = kaddr + offset;
2868 	iov.iov_len = size;
2869 	res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2870 	kunmap(page);
2871 	return res;
2872 }
2873 EXPORT_SYMBOL(sock_no_sendpage_locked);
2874 
2875 /*
2876  *	Default Socket Callbacks
2877  */
2878 
sock_def_wakeup(struct sock * sk)2879 static void sock_def_wakeup(struct sock *sk)
2880 {
2881 	struct socket_wq *wq;
2882 
2883 	rcu_read_lock();
2884 	wq = rcu_dereference(sk->sk_wq);
2885 	if (skwq_has_sleeper(wq))
2886 		wake_up_interruptible_all(&wq->wait);
2887 	rcu_read_unlock();
2888 }
2889 
sock_def_error_report(struct sock * sk)2890 static void sock_def_error_report(struct sock *sk)
2891 {
2892 	struct socket_wq *wq;
2893 
2894 	rcu_read_lock();
2895 	wq = rcu_dereference(sk->sk_wq);
2896 	if (skwq_has_sleeper(wq))
2897 		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2898 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2899 	rcu_read_unlock();
2900 }
2901 
sock_def_readable(struct sock * sk)2902 void sock_def_readable(struct sock *sk)
2903 {
2904 	struct socket_wq *wq;
2905 
2906 	rcu_read_lock();
2907 	wq = rcu_dereference(sk->sk_wq);
2908 
2909 	if (skwq_has_sleeper(wq)) {
2910 		int done = 0;
2911 
2912 		trace_android_vh_do_wake_up_sync(&wq->wait, &done);
2913 		if (done)
2914 			goto out;
2915 
2916 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2917 						EPOLLRDNORM | EPOLLRDBAND);
2918 	}
2919 
2920 out:
2921 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2922 	rcu_read_unlock();
2923 }
2924 
sock_def_write_space(struct sock * sk)2925 static void sock_def_write_space(struct sock *sk)
2926 {
2927 	struct socket_wq *wq;
2928 
2929 	rcu_read_lock();
2930 
2931 	/* Do not wake up a writer until he can make "significant"
2932 	 * progress.  --DaveM
2933 	 */
2934 	if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2935 		wq = rcu_dereference(sk->sk_wq);
2936 		if (skwq_has_sleeper(wq))
2937 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2938 						EPOLLWRNORM | EPOLLWRBAND);
2939 
2940 		/* Should agree with poll, otherwise some programs break */
2941 		if (sock_writeable(sk))
2942 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2943 	}
2944 
2945 	rcu_read_unlock();
2946 }
2947 
sock_def_destruct(struct sock * sk)2948 static void sock_def_destruct(struct sock *sk)
2949 {
2950 }
2951 
sk_send_sigurg(struct sock * sk)2952 void sk_send_sigurg(struct sock *sk)
2953 {
2954 	if (sk->sk_socket && sk->sk_socket->file)
2955 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2956 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2957 }
2958 EXPORT_SYMBOL(sk_send_sigurg);
2959 
sk_reset_timer(struct sock * sk,struct timer_list * timer,unsigned long expires)2960 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2961 		    unsigned long expires)
2962 {
2963 	if (!mod_timer(timer, expires))
2964 		sock_hold(sk);
2965 }
2966 EXPORT_SYMBOL(sk_reset_timer);
2967 
sk_stop_timer(struct sock * sk,struct timer_list * timer)2968 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2969 {
2970 	if (del_timer(timer))
2971 		__sock_put(sk);
2972 }
2973 EXPORT_SYMBOL(sk_stop_timer);
2974 
sk_stop_timer_sync(struct sock * sk,struct timer_list * timer)2975 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
2976 {
2977 	if (del_timer_sync(timer))
2978 		__sock_put(sk);
2979 }
2980 EXPORT_SYMBOL(sk_stop_timer_sync);
2981 
sock_init_data(struct socket * sock,struct sock * sk)2982 void sock_init_data(struct socket *sock, struct sock *sk)
2983 {
2984 	sk_init_common(sk);
2985 	sk->sk_send_head	=	NULL;
2986 
2987 	timer_setup(&sk->sk_timer, NULL, 0);
2988 
2989 	sk->sk_allocation	=	GFP_KERNEL;
2990 	sk->sk_rcvbuf		=	READ_ONCE(sysctl_rmem_default);
2991 	sk->sk_sndbuf		=	READ_ONCE(sysctl_wmem_default);
2992 	sk->sk_state		=	TCP_CLOSE;
2993 	sk_set_socket(sk, sock);
2994 
2995 	sock_set_flag(sk, SOCK_ZAPPED);
2996 
2997 	if (sock) {
2998 		sk->sk_type	=	sock->type;
2999 		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3000 		sock->sk	=	sk;
3001 		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
3002 	} else {
3003 		RCU_INIT_POINTER(sk->sk_wq, NULL);
3004 		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
3005 	}
3006 
3007 	rwlock_init(&sk->sk_callback_lock);
3008 	if (sk->sk_kern_sock)
3009 		lockdep_set_class_and_name(
3010 			&sk->sk_callback_lock,
3011 			af_kern_callback_keys + sk->sk_family,
3012 			af_family_kern_clock_key_strings[sk->sk_family]);
3013 	else
3014 		lockdep_set_class_and_name(
3015 			&sk->sk_callback_lock,
3016 			af_callback_keys + sk->sk_family,
3017 			af_family_clock_key_strings[sk->sk_family]);
3018 
3019 	sk->sk_state_change	=	sock_def_wakeup;
3020 	sk->sk_data_ready	=	sock_def_readable;
3021 	sk->sk_write_space	=	sock_def_write_space;
3022 	sk->sk_error_report	=	sock_def_error_report;
3023 	sk->sk_destruct		=	sock_def_destruct;
3024 
3025 	sk->sk_frag.page	=	NULL;
3026 	sk->sk_frag.offset	=	0;
3027 	sk->sk_peek_off		=	-1;
3028 
3029 	sk->sk_peer_pid 	=	NULL;
3030 	sk->sk_peer_cred	=	NULL;
3031 	spin_lock_init(&sk->sk_peer_lock);
3032 
3033 	sk->sk_write_pending	=	0;
3034 	sk->sk_rcvlowat		=	1;
3035 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3036 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3037 
3038 	sk->sk_stamp = SK_DEFAULT_STAMP;
3039 #if BITS_PER_LONG==32
3040 	seqlock_init(&sk->sk_stamp_seq);
3041 #endif
3042 	atomic_set(&sk->sk_zckey, 0);
3043 
3044 #ifdef CONFIG_NET_RX_BUSY_POLL
3045 	sk->sk_napi_id		=	0;
3046 	sk->sk_ll_usec		=	READ_ONCE(sysctl_net_busy_read);
3047 #endif
3048 
3049 	sk->sk_max_pacing_rate = ~0UL;
3050 	sk->sk_pacing_rate = ~0UL;
3051 	WRITE_ONCE(sk->sk_pacing_shift, 10);
3052 	sk->sk_incoming_cpu = -1;
3053 
3054 	sk_rx_queue_clear(sk);
3055 	/*
3056 	 * Before updating sk_refcnt, we must commit prior changes to memory
3057 	 * (Documentation/RCU/rculist_nulls.rst for details)
3058 	 */
3059 	smp_wmb();
3060 	refcount_set(&sk->sk_refcnt, 1);
3061 	atomic_set(&sk->sk_drops, 0);
3062 }
3063 EXPORT_SYMBOL(sock_init_data);
3064 
lock_sock_nested(struct sock * sk,int subclass)3065 void lock_sock_nested(struct sock *sk, int subclass)
3066 {
3067 	might_sleep();
3068 	spin_lock_bh(&sk->sk_lock.slock);
3069 	if (sk->sk_lock.owned)
3070 		__lock_sock(sk);
3071 	sk->sk_lock.owned = 1;
3072 	spin_unlock(&sk->sk_lock.slock);
3073 	/*
3074 	 * The sk_lock has mutex_lock() semantics here:
3075 	 */
3076 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3077 	local_bh_enable();
3078 }
3079 EXPORT_SYMBOL(lock_sock_nested);
3080 
release_sock(struct sock * sk)3081 void release_sock(struct sock *sk)
3082 {
3083 	spin_lock_bh(&sk->sk_lock.slock);
3084 	if (sk->sk_backlog.tail)
3085 		__release_sock(sk);
3086 
3087 	/* Warning : release_cb() might need to release sk ownership,
3088 	 * ie call sock_release_ownership(sk) before us.
3089 	 */
3090 	if (sk->sk_prot->release_cb)
3091 		sk->sk_prot->release_cb(sk);
3092 
3093 	sock_release_ownership(sk);
3094 	if (waitqueue_active(&sk->sk_lock.wq))
3095 		wake_up(&sk->sk_lock.wq);
3096 	spin_unlock_bh(&sk->sk_lock.slock);
3097 }
3098 EXPORT_SYMBOL(release_sock);
3099 
3100 /**
3101  * lock_sock_fast - fast version of lock_sock
3102  * @sk: socket
3103  *
3104  * This version should be used for very small section, where process wont block
3105  * return false if fast path is taken:
3106  *
3107  *   sk_lock.slock locked, owned = 0, BH disabled
3108  *
3109  * return true if slow path is taken:
3110  *
3111  *   sk_lock.slock unlocked, owned = 1, BH enabled
3112  */
lock_sock_fast(struct sock * sk)3113 bool lock_sock_fast(struct sock *sk)
3114 {
3115 	might_sleep();
3116 	spin_lock_bh(&sk->sk_lock.slock);
3117 
3118 	if (!sk->sk_lock.owned)
3119 		/*
3120 		 * Note : We must disable BH
3121 		 */
3122 		return false;
3123 
3124 	__lock_sock(sk);
3125 	sk->sk_lock.owned = 1;
3126 	spin_unlock(&sk->sk_lock.slock);
3127 	/*
3128 	 * The sk_lock has mutex_lock() semantics here:
3129 	 */
3130 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3131 	local_bh_enable();
3132 	return true;
3133 }
3134 EXPORT_SYMBOL(lock_sock_fast);
3135 
sock_gettstamp(struct socket * sock,void __user * userstamp,bool timeval,bool time32)3136 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3137 		   bool timeval, bool time32)
3138 {
3139 	struct sock *sk = sock->sk;
3140 	struct timespec64 ts;
3141 
3142 	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3143 	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3144 	if (ts.tv_sec == -1)
3145 		return -ENOENT;
3146 	if (ts.tv_sec == 0) {
3147 		ktime_t kt = ktime_get_real();
3148 		sock_write_timestamp(sk, kt);
3149 		ts = ktime_to_timespec64(kt);
3150 	}
3151 
3152 	if (timeval)
3153 		ts.tv_nsec /= 1000;
3154 
3155 #ifdef CONFIG_COMPAT_32BIT_TIME
3156 	if (time32)
3157 		return put_old_timespec32(&ts, userstamp);
3158 #endif
3159 #ifdef CONFIG_SPARC64
3160 	/* beware of padding in sparc64 timeval */
3161 	if (timeval && !in_compat_syscall()) {
3162 		struct __kernel_old_timeval __user tv = {
3163 			.tv_sec = ts.tv_sec,
3164 			.tv_usec = ts.tv_nsec,
3165 		};
3166 		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3167 			return -EFAULT;
3168 		return 0;
3169 	}
3170 #endif
3171 	return put_timespec64(&ts, userstamp);
3172 }
3173 EXPORT_SYMBOL(sock_gettstamp);
3174 
sock_enable_timestamp(struct sock * sk,enum sock_flags flag)3175 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3176 {
3177 	if (!sock_flag(sk, flag)) {
3178 		unsigned long previous_flags = sk->sk_flags;
3179 
3180 		sock_set_flag(sk, flag);
3181 		/*
3182 		 * we just set one of the two flags which require net
3183 		 * time stamping, but time stamping might have been on
3184 		 * already because of the other one
3185 		 */
3186 		if (sock_needs_netstamp(sk) &&
3187 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3188 			net_enable_timestamp();
3189 	}
3190 }
3191 
sock_recv_errqueue(struct sock * sk,struct msghdr * msg,int len,int level,int type)3192 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3193 		       int level, int type)
3194 {
3195 	struct sock_exterr_skb *serr;
3196 	struct sk_buff *skb;
3197 	int copied, err;
3198 
3199 	err = -EAGAIN;
3200 	skb = sock_dequeue_err_skb(sk);
3201 	if (skb == NULL)
3202 		goto out;
3203 
3204 	copied = skb->len;
3205 	if (copied > len) {
3206 		msg->msg_flags |= MSG_TRUNC;
3207 		copied = len;
3208 	}
3209 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3210 	if (err)
3211 		goto out_free_skb;
3212 
3213 	sock_recv_timestamp(msg, sk, skb);
3214 
3215 	serr = SKB_EXT_ERR(skb);
3216 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3217 
3218 	msg->msg_flags |= MSG_ERRQUEUE;
3219 	err = copied;
3220 
3221 out_free_skb:
3222 	kfree_skb(skb);
3223 out:
3224 	return err;
3225 }
3226 EXPORT_SYMBOL(sock_recv_errqueue);
3227 
3228 /*
3229  *	Get a socket option on an socket.
3230  *
3231  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3232  *	asynchronous errors should be reported by getsockopt. We assume
3233  *	this means if you specify SO_ERROR (otherwise whats the point of it).
3234  */
sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)3235 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3236 			   char __user *optval, int __user *optlen)
3237 {
3238 	struct sock *sk = sock->sk;
3239 
3240 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3241 }
3242 EXPORT_SYMBOL(sock_common_getsockopt);
3243 
sock_common_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)3244 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3245 			int flags)
3246 {
3247 	struct sock *sk = sock->sk;
3248 	int addr_len = 0;
3249 	int err;
3250 
3251 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3252 				   flags & ~MSG_DONTWAIT, &addr_len);
3253 	if (err >= 0)
3254 		msg->msg_namelen = addr_len;
3255 	return err;
3256 }
3257 EXPORT_SYMBOL(sock_common_recvmsg);
3258 
3259 /*
3260  *	Set socket options on an inet socket.
3261  */
sock_common_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)3262 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3263 			   sockptr_t optval, unsigned int optlen)
3264 {
3265 	struct sock *sk = sock->sk;
3266 
3267 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3268 }
3269 EXPORT_SYMBOL(sock_common_setsockopt);
3270 
sk_common_release(struct sock * sk)3271 void sk_common_release(struct sock *sk)
3272 {
3273 	if (sk->sk_prot->destroy)
3274 		sk->sk_prot->destroy(sk);
3275 
3276 	/*
3277 	 * Observation: when sk_common_release is called, processes have
3278 	 * no access to socket. But net still has.
3279 	 * Step one, detach it from networking:
3280 	 *
3281 	 * A. Remove from hash tables.
3282 	 */
3283 
3284 	sk->sk_prot->unhash(sk);
3285 
3286 	/*
3287 	 * In this point socket cannot receive new packets, but it is possible
3288 	 * that some packets are in flight because some CPU runs receiver and
3289 	 * did hash table lookup before we unhashed socket. They will achieve
3290 	 * receive queue and will be purged by socket destructor.
3291 	 *
3292 	 * Also we still have packets pending on receive queue and probably,
3293 	 * our own packets waiting in device queues. sock_destroy will drain
3294 	 * receive queue, but transmitted packets will delay socket destruction
3295 	 * until the last reference will be released.
3296 	 */
3297 
3298 	sock_orphan(sk);
3299 
3300 	xfrm_sk_free_policy(sk);
3301 
3302 	sk_refcnt_debug_release(sk);
3303 
3304 	sock_put(sk);
3305 }
3306 EXPORT_SYMBOL(sk_common_release);
3307 
sk_get_meminfo(const struct sock * sk,u32 * mem)3308 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3309 {
3310 	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3311 
3312 	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3313 	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3314 	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3315 	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3316 	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3317 	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3318 	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3319 	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3320 	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3321 }
3322 
3323 #ifdef CONFIG_PROC_FS
3324 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
3325 struct prot_inuse {
3326 	int val[PROTO_INUSE_NR];
3327 };
3328 
3329 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3330 
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)3331 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3332 {
3333 	__this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3334 }
3335 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3336 
sock_prot_inuse_get(struct net * net,struct proto * prot)3337 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3338 {
3339 	int cpu, idx = prot->inuse_idx;
3340 	int res = 0;
3341 
3342 	for_each_possible_cpu(cpu)
3343 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3344 
3345 	return res >= 0 ? res : 0;
3346 }
3347 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3348 
sock_inuse_add(struct net * net,int val)3349 static void sock_inuse_add(struct net *net, int val)
3350 {
3351 	this_cpu_add(*net->core.sock_inuse, val);
3352 }
3353 
sock_inuse_get(struct net * net)3354 int sock_inuse_get(struct net *net)
3355 {
3356 	int cpu, res = 0;
3357 
3358 	for_each_possible_cpu(cpu)
3359 		res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3360 
3361 	return res;
3362 }
3363 
3364 EXPORT_SYMBOL_GPL(sock_inuse_get);
3365 
sock_inuse_init_net(struct net * net)3366 static int __net_init sock_inuse_init_net(struct net *net)
3367 {
3368 	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3369 	if (net->core.prot_inuse == NULL)
3370 		return -ENOMEM;
3371 
3372 	net->core.sock_inuse = alloc_percpu(int);
3373 	if (net->core.sock_inuse == NULL)
3374 		goto out;
3375 
3376 	return 0;
3377 
3378 out:
3379 	free_percpu(net->core.prot_inuse);
3380 	return -ENOMEM;
3381 }
3382 
sock_inuse_exit_net(struct net * net)3383 static void __net_exit sock_inuse_exit_net(struct net *net)
3384 {
3385 	free_percpu(net->core.prot_inuse);
3386 	free_percpu(net->core.sock_inuse);
3387 }
3388 
3389 static struct pernet_operations net_inuse_ops = {
3390 	.init = sock_inuse_init_net,
3391 	.exit = sock_inuse_exit_net,
3392 };
3393 
net_inuse_init(void)3394 static __init int net_inuse_init(void)
3395 {
3396 	if (register_pernet_subsys(&net_inuse_ops))
3397 		panic("Cannot initialize net inuse counters");
3398 
3399 	return 0;
3400 }
3401 
3402 core_initcall(net_inuse_init);
3403 
assign_proto_idx(struct proto * prot)3404 static int assign_proto_idx(struct proto *prot)
3405 {
3406 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3407 
3408 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3409 		pr_err("PROTO_INUSE_NR exhausted\n");
3410 		return -ENOSPC;
3411 	}
3412 
3413 	set_bit(prot->inuse_idx, proto_inuse_idx);
3414 	return 0;
3415 }
3416 
release_proto_idx(struct proto * prot)3417 static void release_proto_idx(struct proto *prot)
3418 {
3419 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3420 		clear_bit(prot->inuse_idx, proto_inuse_idx);
3421 }
3422 #else
assign_proto_idx(struct proto * prot)3423 static inline int assign_proto_idx(struct proto *prot)
3424 {
3425 	return 0;
3426 }
3427 
release_proto_idx(struct proto * prot)3428 static inline void release_proto_idx(struct proto *prot)
3429 {
3430 }
3431 
sock_inuse_add(struct net * net,int val)3432 static void sock_inuse_add(struct net *net, int val)
3433 {
3434 }
3435 #endif
3436 
tw_prot_cleanup(struct timewait_sock_ops * twsk_prot)3437 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3438 {
3439 	if (!twsk_prot)
3440 		return;
3441 	kfree(twsk_prot->twsk_slab_name);
3442 	twsk_prot->twsk_slab_name = NULL;
3443 	kmem_cache_destroy(twsk_prot->twsk_slab);
3444 	twsk_prot->twsk_slab = NULL;
3445 }
3446 
req_prot_cleanup(struct request_sock_ops * rsk_prot)3447 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3448 {
3449 	if (!rsk_prot)
3450 		return;
3451 	kfree(rsk_prot->slab_name);
3452 	rsk_prot->slab_name = NULL;
3453 	kmem_cache_destroy(rsk_prot->slab);
3454 	rsk_prot->slab = NULL;
3455 }
3456 
req_prot_init(const struct proto * prot)3457 static int req_prot_init(const struct proto *prot)
3458 {
3459 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3460 
3461 	if (!rsk_prot)
3462 		return 0;
3463 
3464 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3465 					prot->name);
3466 	if (!rsk_prot->slab_name)
3467 		return -ENOMEM;
3468 
3469 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3470 					   rsk_prot->obj_size, 0,
3471 					   SLAB_ACCOUNT | prot->slab_flags,
3472 					   NULL);
3473 
3474 	if (!rsk_prot->slab) {
3475 		pr_crit("%s: Can't create request sock SLAB cache!\n",
3476 			prot->name);
3477 		return -ENOMEM;
3478 	}
3479 	return 0;
3480 }
3481 
proto_register(struct proto * prot,int alloc_slab)3482 int proto_register(struct proto *prot, int alloc_slab)
3483 {
3484 	int ret = -ENOBUFS;
3485 
3486 	if (alloc_slab) {
3487 		prot->slab = kmem_cache_create_usercopy(prot->name,
3488 					prot->obj_size, 0,
3489 					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3490 					prot->slab_flags,
3491 					prot->useroffset, prot->usersize,
3492 					NULL);
3493 
3494 		if (prot->slab == NULL) {
3495 			pr_crit("%s: Can't create sock SLAB cache!\n",
3496 				prot->name);
3497 			goto out;
3498 		}
3499 
3500 		if (req_prot_init(prot))
3501 			goto out_free_request_sock_slab;
3502 
3503 		if (prot->twsk_prot != NULL) {
3504 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3505 
3506 			if (prot->twsk_prot->twsk_slab_name == NULL)
3507 				goto out_free_request_sock_slab;
3508 
3509 			prot->twsk_prot->twsk_slab =
3510 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3511 						  prot->twsk_prot->twsk_obj_size,
3512 						  0,
3513 						  SLAB_ACCOUNT |
3514 						  prot->slab_flags,
3515 						  NULL);
3516 			if (prot->twsk_prot->twsk_slab == NULL)
3517 				goto out_free_timewait_sock_slab;
3518 		}
3519 	}
3520 
3521 	mutex_lock(&proto_list_mutex);
3522 	ret = assign_proto_idx(prot);
3523 	if (ret) {
3524 		mutex_unlock(&proto_list_mutex);
3525 		goto out_free_timewait_sock_slab;
3526 	}
3527 	list_add(&prot->node, &proto_list);
3528 	mutex_unlock(&proto_list_mutex);
3529 	return ret;
3530 
3531 out_free_timewait_sock_slab:
3532 	if (alloc_slab && prot->twsk_prot)
3533 		tw_prot_cleanup(prot->twsk_prot);
3534 out_free_request_sock_slab:
3535 	if (alloc_slab) {
3536 		req_prot_cleanup(prot->rsk_prot);
3537 
3538 		kmem_cache_destroy(prot->slab);
3539 		prot->slab = NULL;
3540 	}
3541 out:
3542 	return ret;
3543 }
3544 EXPORT_SYMBOL(proto_register);
3545 
proto_unregister(struct proto * prot)3546 void proto_unregister(struct proto *prot)
3547 {
3548 	mutex_lock(&proto_list_mutex);
3549 	release_proto_idx(prot);
3550 	list_del(&prot->node);
3551 	mutex_unlock(&proto_list_mutex);
3552 
3553 	kmem_cache_destroy(prot->slab);
3554 	prot->slab = NULL;
3555 
3556 	req_prot_cleanup(prot->rsk_prot);
3557 	tw_prot_cleanup(prot->twsk_prot);
3558 }
3559 EXPORT_SYMBOL(proto_unregister);
3560 
sock_load_diag_module(int family,int protocol)3561 int sock_load_diag_module(int family, int protocol)
3562 {
3563 	if (!protocol) {
3564 		if (!sock_is_registered(family))
3565 			return -ENOENT;
3566 
3567 		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3568 				      NETLINK_SOCK_DIAG, family);
3569 	}
3570 
3571 #ifdef CONFIG_INET
3572 	if (family == AF_INET &&
3573 	    protocol != IPPROTO_RAW &&
3574 	    protocol < MAX_INET_PROTOS &&
3575 	    !rcu_access_pointer(inet_protos[protocol]))
3576 		return -ENOENT;
3577 #endif
3578 
3579 	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3580 			      NETLINK_SOCK_DIAG, family, protocol);
3581 }
3582 EXPORT_SYMBOL(sock_load_diag_module);
3583 
3584 #ifdef CONFIG_PROC_FS
proto_seq_start(struct seq_file * seq,loff_t * pos)3585 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3586 	__acquires(proto_list_mutex)
3587 {
3588 	mutex_lock(&proto_list_mutex);
3589 	return seq_list_start_head(&proto_list, *pos);
3590 }
3591 
proto_seq_next(struct seq_file * seq,void * v,loff_t * pos)3592 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3593 {
3594 	return seq_list_next(v, &proto_list, pos);
3595 }
3596 
proto_seq_stop(struct seq_file * seq,void * v)3597 static void proto_seq_stop(struct seq_file *seq, void *v)
3598 	__releases(proto_list_mutex)
3599 {
3600 	mutex_unlock(&proto_list_mutex);
3601 }
3602 
proto_method_implemented(const void * method)3603 static char proto_method_implemented(const void *method)
3604 {
3605 	return method == NULL ? 'n' : 'y';
3606 }
sock_prot_memory_allocated(struct proto * proto)3607 static long sock_prot_memory_allocated(struct proto *proto)
3608 {
3609 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3610 }
3611 
sock_prot_memory_pressure(struct proto * proto)3612 static const char *sock_prot_memory_pressure(struct proto *proto)
3613 {
3614 	return proto->memory_pressure != NULL ?
3615 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3616 }
3617 
proto_seq_printf(struct seq_file * seq,struct proto * proto)3618 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3619 {
3620 
3621 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
3622 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3623 		   proto->name,
3624 		   proto->obj_size,
3625 		   sock_prot_inuse_get(seq_file_net(seq), proto),
3626 		   sock_prot_memory_allocated(proto),
3627 		   sock_prot_memory_pressure(proto),
3628 		   proto->max_header,
3629 		   proto->slab == NULL ? "no" : "yes",
3630 		   module_name(proto->owner),
3631 		   proto_method_implemented(proto->close),
3632 		   proto_method_implemented(proto->connect),
3633 		   proto_method_implemented(proto->disconnect),
3634 		   proto_method_implemented(proto->accept),
3635 		   proto_method_implemented(proto->ioctl),
3636 		   proto_method_implemented(proto->init),
3637 		   proto_method_implemented(proto->destroy),
3638 		   proto_method_implemented(proto->shutdown),
3639 		   proto_method_implemented(proto->setsockopt),
3640 		   proto_method_implemented(proto->getsockopt),
3641 		   proto_method_implemented(proto->sendmsg),
3642 		   proto_method_implemented(proto->recvmsg),
3643 		   proto_method_implemented(proto->sendpage),
3644 		   proto_method_implemented(proto->bind),
3645 		   proto_method_implemented(proto->backlog_rcv),
3646 		   proto_method_implemented(proto->hash),
3647 		   proto_method_implemented(proto->unhash),
3648 		   proto_method_implemented(proto->get_port),
3649 		   proto_method_implemented(proto->enter_memory_pressure));
3650 }
3651 
proto_seq_show(struct seq_file * seq,void * v)3652 static int proto_seq_show(struct seq_file *seq, void *v)
3653 {
3654 	if (v == &proto_list)
3655 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3656 			   "protocol",
3657 			   "size",
3658 			   "sockets",
3659 			   "memory",
3660 			   "press",
3661 			   "maxhdr",
3662 			   "slab",
3663 			   "module",
3664 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3665 	else
3666 		proto_seq_printf(seq, list_entry(v, struct proto, node));
3667 	return 0;
3668 }
3669 
3670 static const struct seq_operations proto_seq_ops = {
3671 	.start  = proto_seq_start,
3672 	.next   = proto_seq_next,
3673 	.stop   = proto_seq_stop,
3674 	.show   = proto_seq_show,
3675 };
3676 
proto_init_net(struct net * net)3677 static __net_init int proto_init_net(struct net *net)
3678 {
3679 	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3680 			sizeof(struct seq_net_private)))
3681 		return -ENOMEM;
3682 
3683 	return 0;
3684 }
3685 
proto_exit_net(struct net * net)3686 static __net_exit void proto_exit_net(struct net *net)
3687 {
3688 	remove_proc_entry("protocols", net->proc_net);
3689 }
3690 
3691 
3692 static __net_initdata struct pernet_operations proto_net_ops = {
3693 	.init = proto_init_net,
3694 	.exit = proto_exit_net,
3695 };
3696 
proto_init(void)3697 static int __init proto_init(void)
3698 {
3699 	return register_pernet_subsys(&proto_net_ops);
3700 }
3701 
3702 subsys_initcall(proto_init);
3703 
3704 #endif /* PROC_FS */
3705 
3706 #ifdef CONFIG_NET_RX_BUSY_POLL
sk_busy_loop_end(void * p,unsigned long start_time)3707 bool sk_busy_loop_end(void *p, unsigned long start_time)
3708 {
3709 	struct sock *sk = p;
3710 
3711 	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3712 	       sk_busy_loop_timeout(sk, start_time);
3713 }
3714 EXPORT_SYMBOL(sk_busy_loop_end);
3715 #endif /* CONFIG_NET_RX_BUSY_POLL */
3716 
sock_bind_add(struct sock * sk,struct sockaddr * addr,int addr_len)3717 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3718 {
3719 	if (!sk->sk_prot->bind_add)
3720 		return -EOPNOTSUPP;
3721 	return sk->sk_prot->bind_add(sk, addr, addr_len);
3722 }
3723 EXPORT_SYMBOL(sock_bind_add);
3724