xref: /OK3568_Linux_fs/kernel/net/core/skbuff.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71 #include <net/mptcp.h>
72 
73 #include <linux/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 #include <linux/capability.h>
77 #include <linux/user_namespace.h>
78 #include <linux/indirect_call_wrapper.h>
79 #include <trace/hooks/net.h>
80 
81 #include "datagram.h"
82 
83 struct kmem_cache *skbuff_head_cache __ro_after_init;
84 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
85 #ifdef CONFIG_SKB_EXTENSIONS
86 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
87 #endif
88 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
89 EXPORT_SYMBOL(sysctl_max_skb_frags);
90 
91 /**
92  *	skb_panic - private function for out-of-line support
93  *	@skb:	buffer
94  *	@sz:	size
95  *	@addr:	address
96  *	@msg:	skb_over_panic or skb_under_panic
97  *
98  *	Out-of-line support for skb_put() and skb_push().
99  *	Called via the wrapper skb_over_panic() or skb_under_panic().
100  *	Keep out of line to prevent kernel bloat.
101  *	__builtin_return_address is not used because it is not always reliable.
102  */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])103 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
104 		      const char msg[])
105 {
106 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
107 		 msg, addr, skb->len, sz, skb->head, skb->data,
108 		 (unsigned long)skb->tail, (unsigned long)skb->end,
109 		 skb->dev ? skb->dev->name : "<NULL>");
110 	BUG();
111 }
112 
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)113 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 {
115 	skb_panic(skb, sz, addr, __func__);
116 }
117 
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)118 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
119 {
120 	skb_panic(skb, sz, addr, __func__);
121 }
122 
123 /*
124  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
125  * the caller if emergency pfmemalloc reserves are being used. If it is and
126  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
127  * may be used. Otherwise, the packet data may be discarded until enough
128  * memory is free
129  */
130 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
131 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
132 
__kmalloc_reserve(size_t size,gfp_t flags,int node,unsigned long ip,bool * pfmemalloc)133 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
134 			       unsigned long ip, bool *pfmemalloc)
135 {
136 	void *obj;
137 	bool ret_pfmemalloc = false;
138 
139 	/*
140 	 * Try a regular allocation, when that fails and we're not entitled
141 	 * to the reserves, fail.
142 	 */
143 	obj = kmalloc_node_track_caller(size,
144 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
145 					node);
146 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
147 		goto out;
148 
149 	/* Try again but now we are using pfmemalloc reserves */
150 	ret_pfmemalloc = true;
151 	obj = kmalloc_node_track_caller(size, flags, node);
152 
153 out:
154 	if (pfmemalloc)
155 		*pfmemalloc = ret_pfmemalloc;
156 
157 	return obj;
158 }
159 
160 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
161  *	'private' fields and also do memory statistics to find all the
162  *	[BEEP] leaks.
163  *
164  */
165 
166 /**
167  *	__alloc_skb	-	allocate a network buffer
168  *	@size: size to allocate
169  *	@gfp_mask: allocation mask
170  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
171  *		instead of head cache and allocate a cloned (child) skb.
172  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
173  *		allocations in case the data is required for writeback
174  *	@node: numa node to allocate memory on
175  *
176  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
177  *	tail room of at least size bytes. The object has a reference count
178  *	of one. The return is the buffer. On a failure the return is %NULL.
179  *
180  *	Buffers may only be allocated from interrupts using a @gfp_mask of
181  *	%GFP_ATOMIC.
182  */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)183 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
184 			    int flags, int node)
185 {
186 	struct kmem_cache *cache;
187 	struct skb_shared_info *shinfo;
188 	struct sk_buff *skb;
189 	u8 *data;
190 	bool pfmemalloc;
191 
192 	cache = (flags & SKB_ALLOC_FCLONE)
193 		? skbuff_fclone_cache : skbuff_head_cache;
194 
195 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
196 		gfp_mask |= __GFP_MEMALLOC;
197 
198 	/* Get the HEAD */
199 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
200 	if (!skb)
201 		goto out;
202 	prefetchw(skb);
203 
204 	/* We do our best to align skb_shared_info on a separate cache
205 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
206 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
207 	 * Both skb->head and skb_shared_info are cache line aligned.
208 	 */
209 	size = SKB_DATA_ALIGN(size);
210 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
211 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
212 	if (!data)
213 		goto nodata;
214 	/* kmalloc(size) might give us more room than requested.
215 	 * Put skb_shared_info exactly at the end of allocated zone,
216 	 * to allow max possible filling before reallocation.
217 	 */
218 	size = SKB_WITH_OVERHEAD(ksize(data));
219 	prefetchw(data + size);
220 
221 	/*
222 	 * Only clear those fields we need to clear, not those that we will
223 	 * actually initialise below. Hence, don't put any more fields after
224 	 * the tail pointer in struct sk_buff!
225 	 */
226 	memset(skb, 0, offsetof(struct sk_buff, tail));
227 	/* Account for allocated memory : skb + skb->head */
228 	skb->truesize = SKB_TRUESIZE(size);
229 	skb->pfmemalloc = pfmemalloc;
230 	refcount_set(&skb->users, 1);
231 	skb->head = data;
232 	skb->data = data;
233 	skb_reset_tail_pointer(skb);
234 	skb->end = skb->tail + size;
235 	skb->mac_header = (typeof(skb->mac_header))~0U;
236 	skb->transport_header = (typeof(skb->transport_header))~0U;
237 
238 	/* make sure we initialize shinfo sequentially */
239 	shinfo = skb_shinfo(skb);
240 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
241 	atomic_set(&shinfo->dataref, 1);
242 
243 	if (flags & SKB_ALLOC_FCLONE) {
244 		struct sk_buff_fclones *fclones;
245 
246 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
247 
248 		skb->fclone = SKB_FCLONE_ORIG;
249 		refcount_set(&fclones->fclone_ref, 1);
250 
251 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
252 	}
253 
254 	skb_set_kcov_handle(skb, kcov_common_handle());
255 
256 out:
257 	return skb;
258 nodata:
259 	kmem_cache_free(cache, skb);
260 	skb = NULL;
261 	goto out;
262 }
263 EXPORT_SYMBOL(__alloc_skb);
264 
265 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)266 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
267 					  void *data, unsigned int frag_size)
268 {
269 	struct skb_shared_info *shinfo;
270 	unsigned int size = frag_size ? : ksize(data);
271 
272 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
273 
274 	/* Assumes caller memset cleared SKB */
275 	skb->truesize = SKB_TRUESIZE(size);
276 	refcount_set(&skb->users, 1);
277 	skb->head = data;
278 	skb->data = data;
279 	skb_reset_tail_pointer(skb);
280 	skb->end = skb->tail + size;
281 	skb->mac_header = (typeof(skb->mac_header))~0U;
282 	skb->transport_header = (typeof(skb->transport_header))~0U;
283 
284 	/* make sure we initialize shinfo sequentially */
285 	shinfo = skb_shinfo(skb);
286 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
287 	atomic_set(&shinfo->dataref, 1);
288 
289 	skb_set_kcov_handle(skb, kcov_common_handle());
290 
291 	return skb;
292 }
293 
294 /**
295  * __build_skb - build a network buffer
296  * @data: data buffer provided by caller
297  * @frag_size: size of data, or 0 if head was kmalloced
298  *
299  * Allocate a new &sk_buff. Caller provides space holding head and
300  * skb_shared_info. @data must have been allocated by kmalloc() only if
301  * @frag_size is 0, otherwise data should come from the page allocator
302  *  or vmalloc()
303  * The return is the new skb buffer.
304  * On a failure the return is %NULL, and @data is not freed.
305  * Notes :
306  *  Before IO, driver allocates only data buffer where NIC put incoming frame
307  *  Driver should add room at head (NET_SKB_PAD) and
308  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
309  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
310  *  before giving packet to stack.
311  *  RX rings only contains data buffers, not full skbs.
312  */
__build_skb(void * data,unsigned int frag_size)313 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
314 {
315 	struct sk_buff *skb;
316 
317 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
318 	if (unlikely(!skb))
319 		return NULL;
320 
321 	memset(skb, 0, offsetof(struct sk_buff, tail));
322 
323 	return __build_skb_around(skb, data, frag_size);
324 }
325 
326 /* build_skb() is wrapper over __build_skb(), that specifically
327  * takes care of skb->head and skb->pfmemalloc
328  * This means that if @frag_size is not zero, then @data must be backed
329  * by a page fragment, not kmalloc() or vmalloc()
330  */
build_skb(void * data,unsigned int frag_size)331 struct sk_buff *build_skb(void *data, unsigned int frag_size)
332 {
333 	struct sk_buff *skb = __build_skb(data, frag_size);
334 
335 	if (skb && frag_size) {
336 		skb->head_frag = 1;
337 		if (page_is_pfmemalloc(virt_to_head_page(data)))
338 			skb->pfmemalloc = 1;
339 	}
340 	return skb;
341 }
342 EXPORT_SYMBOL(build_skb);
343 
344 /**
345  * build_skb_around - build a network buffer around provided skb
346  * @skb: sk_buff provide by caller, must be memset cleared
347  * @data: data buffer provided by caller
348  * @frag_size: size of data, or 0 if head was kmalloced
349  */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)350 struct sk_buff *build_skb_around(struct sk_buff *skb,
351 				 void *data, unsigned int frag_size)
352 {
353 	if (unlikely(!skb))
354 		return NULL;
355 
356 	skb = __build_skb_around(skb, data, frag_size);
357 
358 	if (skb && frag_size) {
359 		skb->head_frag = 1;
360 		if (page_is_pfmemalloc(virt_to_head_page(data)))
361 			skb->pfmemalloc = 1;
362 	}
363 	return skb;
364 }
365 EXPORT_SYMBOL(build_skb_around);
366 
367 #define NAPI_SKB_CACHE_SIZE	64
368 
369 struct napi_alloc_cache {
370 	struct page_frag_cache page;
371 	unsigned int skb_count;
372 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
373 };
374 
375 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
376 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
377 
__napi_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)378 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
379 {
380 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
381 
382 	return page_frag_alloc(&nc->page, fragsz, gfp_mask);
383 }
384 
napi_alloc_frag(unsigned int fragsz)385 void *napi_alloc_frag(unsigned int fragsz)
386 {
387 	fragsz = SKB_DATA_ALIGN(fragsz);
388 
389 	return __napi_alloc_frag(fragsz, GFP_ATOMIC);
390 }
391 EXPORT_SYMBOL(napi_alloc_frag);
392 
393 /**
394  * netdev_alloc_frag - allocate a page fragment
395  * @fragsz: fragment size
396  *
397  * Allocates a frag from a page for receive buffer.
398  * Uses GFP_ATOMIC allocations.
399  */
netdev_alloc_frag(unsigned int fragsz)400 void *netdev_alloc_frag(unsigned int fragsz)
401 {
402 	struct page_frag_cache *nc;
403 	void *data;
404 
405 	fragsz = SKB_DATA_ALIGN(fragsz);
406 	if (in_irq() || irqs_disabled()) {
407 		nc = this_cpu_ptr(&netdev_alloc_cache);
408 		data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
409 	} else {
410 		local_bh_disable();
411 		data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
412 		local_bh_enable();
413 	}
414 	return data;
415 }
416 EXPORT_SYMBOL(netdev_alloc_frag);
417 
418 /**
419  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
420  *	@dev: network device to receive on
421  *	@len: length to allocate
422  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
423  *
424  *	Allocate a new &sk_buff and assign it a usage count of one. The
425  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
426  *	the headroom they think they need without accounting for the
427  *	built in space. The built in space is used for optimisations.
428  *
429  *	%NULL is returned if there is no free memory.
430  */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)431 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
432 				   gfp_t gfp_mask)
433 {
434 	struct page_frag_cache *nc;
435 	struct sk_buff *skb;
436 	bool pfmemalloc;
437 	void *data;
438 
439 	len += NET_SKB_PAD;
440 
441 	/* If requested length is either too small or too big,
442 	 * we use kmalloc() for skb->head allocation.
443 	 */
444 	if (len <= SKB_WITH_OVERHEAD(1024) ||
445 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
446 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
447 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
448 		if (!skb)
449 			goto skb_fail;
450 		goto skb_success;
451 	}
452 
453 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
454 	len = SKB_DATA_ALIGN(len);
455 
456 	if (sk_memalloc_socks())
457 		gfp_mask |= __GFP_MEMALLOC;
458 
459 	if (in_irq() || irqs_disabled()) {
460 		nc = this_cpu_ptr(&netdev_alloc_cache);
461 		data = page_frag_alloc(nc, len, gfp_mask);
462 		pfmemalloc = nc->pfmemalloc;
463 	} else {
464 		local_bh_disable();
465 		nc = this_cpu_ptr(&napi_alloc_cache.page);
466 		data = page_frag_alloc(nc, len, gfp_mask);
467 		pfmemalloc = nc->pfmemalloc;
468 		local_bh_enable();
469 	}
470 
471 	if (unlikely(!data))
472 		return NULL;
473 
474 	skb = __build_skb(data, len);
475 	if (unlikely(!skb)) {
476 		skb_free_frag(data);
477 		return NULL;
478 	}
479 
480 	if (pfmemalloc)
481 		skb->pfmemalloc = 1;
482 	skb->head_frag = 1;
483 
484 skb_success:
485 	skb_reserve(skb, NET_SKB_PAD);
486 	skb->dev = dev;
487 
488 skb_fail:
489 	return skb;
490 }
491 EXPORT_SYMBOL(__netdev_alloc_skb);
492 
493 /**
494  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
495  *	@napi: napi instance this buffer was allocated for
496  *	@len: length to allocate
497  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
498  *
499  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
500  *	attempt to allocate the head from a special reserved region used
501  *	only for NAPI Rx allocation.  By doing this we can save several
502  *	CPU cycles by avoiding having to disable and re-enable IRQs.
503  *
504  *	%NULL is returned if there is no free memory.
505  */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)506 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
507 				 gfp_t gfp_mask)
508 {
509 	struct napi_alloc_cache *nc;
510 	struct sk_buff *skb;
511 	void *data;
512 
513 	len += NET_SKB_PAD + NET_IP_ALIGN;
514 
515 	/* If requested length is either too small or too big,
516 	 * we use kmalloc() for skb->head allocation.
517 	 */
518 	if (len <= SKB_WITH_OVERHEAD(1024) ||
519 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
520 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
521 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
522 		if (!skb)
523 			goto skb_fail;
524 		goto skb_success;
525 	}
526 
527 	nc = this_cpu_ptr(&napi_alloc_cache);
528 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
529 	len = SKB_DATA_ALIGN(len);
530 
531 	if (sk_memalloc_socks())
532 		gfp_mask |= __GFP_MEMALLOC;
533 
534 	data = page_frag_alloc(&nc->page, len, gfp_mask);
535 	if (unlikely(!data))
536 		return NULL;
537 
538 	skb = __build_skb(data, len);
539 	if (unlikely(!skb)) {
540 		skb_free_frag(data);
541 		return NULL;
542 	}
543 
544 	if (nc->page.pfmemalloc)
545 		skb->pfmemalloc = 1;
546 	skb->head_frag = 1;
547 
548 skb_success:
549 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
550 	skb->dev = napi->dev;
551 
552 skb_fail:
553 	return skb;
554 }
555 EXPORT_SYMBOL(__napi_alloc_skb);
556 
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)557 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
558 		     int size, unsigned int truesize)
559 {
560 	skb_fill_page_desc(skb, i, page, off, size);
561 	skb->len += size;
562 	skb->data_len += size;
563 	skb->truesize += truesize;
564 }
565 EXPORT_SYMBOL(skb_add_rx_frag);
566 
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)567 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
568 			  unsigned int truesize)
569 {
570 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
571 
572 	skb_frag_size_add(frag, size);
573 	skb->len += size;
574 	skb->data_len += size;
575 	skb->truesize += truesize;
576 }
577 EXPORT_SYMBOL(skb_coalesce_rx_frag);
578 
skb_drop_list(struct sk_buff ** listp)579 static void skb_drop_list(struct sk_buff **listp)
580 {
581 	kfree_skb_list(*listp);
582 	*listp = NULL;
583 }
584 
skb_drop_fraglist(struct sk_buff * skb)585 static inline void skb_drop_fraglist(struct sk_buff *skb)
586 {
587 	skb_drop_list(&skb_shinfo(skb)->frag_list);
588 }
589 
skb_clone_fraglist(struct sk_buff * skb)590 static void skb_clone_fraglist(struct sk_buff *skb)
591 {
592 	struct sk_buff *list;
593 
594 	skb_walk_frags(skb, list)
595 		skb_get(list);
596 }
597 
skb_free_head(struct sk_buff * skb)598 static void skb_free_head(struct sk_buff *skb)
599 {
600 	unsigned char *head = skb->head;
601 
602 	if (skb->head_frag)
603 		skb_free_frag(head);
604 	else
605 		kfree(head);
606 }
607 
skb_release_data(struct sk_buff * skb)608 static void skb_release_data(struct sk_buff *skb)
609 {
610 	struct skb_shared_info *shinfo = skb_shinfo(skb);
611 	int i;
612 
613 	if (skb->cloned &&
614 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
615 			      &shinfo->dataref))
616 		return;
617 
618 	for (i = 0; i < shinfo->nr_frags; i++)
619 		__skb_frag_unref(&shinfo->frags[i]);
620 
621 	if (shinfo->frag_list)
622 		kfree_skb_list(shinfo->frag_list);
623 
624 	skb_zcopy_clear(skb, true);
625 	skb_free_head(skb);
626 }
627 
628 /*
629  *	Free an skbuff by memory without cleaning the state.
630  */
kfree_skbmem(struct sk_buff * skb)631 static void kfree_skbmem(struct sk_buff *skb)
632 {
633 	struct sk_buff_fclones *fclones;
634 
635 	switch (skb->fclone) {
636 	case SKB_FCLONE_UNAVAILABLE:
637 		kmem_cache_free(skbuff_head_cache, skb);
638 		return;
639 
640 	case SKB_FCLONE_ORIG:
641 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
642 
643 		/* We usually free the clone (TX completion) before original skb
644 		 * This test would have no chance to be true for the clone,
645 		 * while here, branch prediction will be good.
646 		 */
647 		if (refcount_read(&fclones->fclone_ref) == 1)
648 			goto fastpath;
649 		break;
650 
651 	default: /* SKB_FCLONE_CLONE */
652 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
653 		break;
654 	}
655 	if (!refcount_dec_and_test(&fclones->fclone_ref))
656 		return;
657 fastpath:
658 	kmem_cache_free(skbuff_fclone_cache, fclones);
659 }
660 
skb_release_head_state(struct sk_buff * skb)661 void skb_release_head_state(struct sk_buff *skb)
662 {
663 	nf_reset_ct(skb);
664 	skb_dst_drop(skb);
665 	if (skb->destructor) {
666 		WARN_ON(in_irq());
667 		skb->destructor(skb);
668 	}
669 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
670 	nf_conntrack_put(skb_nfct(skb));
671 #endif
672 	skb_ext_put(skb);
673 }
674 
675 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)676 static void skb_release_all(struct sk_buff *skb)
677 {
678 	skb_release_head_state(skb);
679 	if (likely(skb->head))
680 		skb_release_data(skb);
681 }
682 
683 /**
684  *	__kfree_skb - private function
685  *	@skb: buffer
686  *
687  *	Free an sk_buff. Release anything attached to the buffer.
688  *	Clean the state. This is an internal helper function. Users should
689  *	always call kfree_skb
690  */
691 
__kfree_skb(struct sk_buff * skb)692 void __kfree_skb(struct sk_buff *skb)
693 {
694 	skb_release_all(skb);
695 	kfree_skbmem(skb);
696 }
697 EXPORT_SYMBOL(__kfree_skb);
698 
699 /**
700  *	kfree_skb - free an sk_buff
701  *	@skb: buffer to free
702  *
703  *	Drop a reference to the buffer and free it if the usage count has
704  *	hit zero.
705  */
kfree_skb(struct sk_buff * skb)706 void kfree_skb(struct sk_buff *skb)
707 {
708 	if (!skb_unref(skb))
709 		return;
710 
711 	trace_android_vh_kfree_skb(skb);
712 	trace_kfree_skb(skb, __builtin_return_address(0));
713 	__kfree_skb(skb);
714 }
715 EXPORT_SYMBOL(kfree_skb);
716 
kfree_skb_list(struct sk_buff * segs)717 void kfree_skb_list(struct sk_buff *segs)
718 {
719 	while (segs) {
720 		struct sk_buff *next = segs->next;
721 
722 		kfree_skb(segs);
723 		segs = next;
724 	}
725 }
726 EXPORT_SYMBOL(kfree_skb_list);
727 
728 /* Dump skb information and contents.
729  *
730  * Must only be called from net_ratelimit()-ed paths.
731  *
732  * Dumps whole packets if full_pkt, only headers otherwise.
733  */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)734 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
735 {
736 	struct skb_shared_info *sh = skb_shinfo(skb);
737 	struct net_device *dev = skb->dev;
738 	struct sock *sk = skb->sk;
739 	struct sk_buff *list_skb;
740 	bool has_mac, has_trans;
741 	int headroom, tailroom;
742 	int i, len, seg_len;
743 
744 	if (full_pkt)
745 		len = skb->len;
746 	else
747 		len = min_t(int, skb->len, MAX_HEADER + 128);
748 
749 	headroom = skb_headroom(skb);
750 	tailroom = skb_tailroom(skb);
751 
752 	has_mac = skb_mac_header_was_set(skb);
753 	has_trans = skb_transport_header_was_set(skb);
754 
755 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
756 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
757 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
758 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
759 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
760 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
761 	       has_mac ? skb->mac_header : -1,
762 	       has_mac ? skb_mac_header_len(skb) : -1,
763 	       skb->network_header,
764 	       has_trans ? skb_network_header_len(skb) : -1,
765 	       has_trans ? skb->transport_header : -1,
766 	       sh->tx_flags, sh->nr_frags,
767 	       sh->gso_size, sh->gso_type, sh->gso_segs,
768 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
769 	       skb->csum_valid, skb->csum_level,
770 	       skb->hash, skb->sw_hash, skb->l4_hash,
771 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
772 
773 	if (dev)
774 		printk("%sdev name=%s feat=%pNF\n",
775 		       level, dev->name, &dev->features);
776 	if (sk)
777 		printk("%ssk family=%hu type=%u proto=%u\n",
778 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
779 
780 	if (full_pkt && headroom)
781 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
782 			       16, 1, skb->head, headroom, false);
783 
784 	seg_len = min_t(int, skb_headlen(skb), len);
785 	if (seg_len)
786 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
787 			       16, 1, skb->data, seg_len, false);
788 	len -= seg_len;
789 
790 	if (full_pkt && tailroom)
791 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
792 			       16, 1, skb_tail_pointer(skb), tailroom, false);
793 
794 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
795 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
796 		u32 p_off, p_len, copied;
797 		struct page *p;
798 		u8 *vaddr;
799 
800 		skb_frag_foreach_page(frag, skb_frag_off(frag),
801 				      skb_frag_size(frag), p, p_off, p_len,
802 				      copied) {
803 			seg_len = min_t(int, p_len, len);
804 			vaddr = kmap_atomic(p);
805 			print_hex_dump(level, "skb frag:     ",
806 				       DUMP_PREFIX_OFFSET,
807 				       16, 1, vaddr + p_off, seg_len, false);
808 			kunmap_atomic(vaddr);
809 			len -= seg_len;
810 			if (!len)
811 				break;
812 		}
813 	}
814 
815 	if (full_pkt && skb_has_frag_list(skb)) {
816 		printk("skb fraglist:\n");
817 		skb_walk_frags(skb, list_skb)
818 			skb_dump(level, list_skb, true);
819 	}
820 }
821 EXPORT_SYMBOL(skb_dump);
822 
823 /**
824  *	skb_tx_error - report an sk_buff xmit error
825  *	@skb: buffer that triggered an error
826  *
827  *	Report xmit error if a device callback is tracking this skb.
828  *	skb must be freed afterwards.
829  */
skb_tx_error(struct sk_buff * skb)830 void skb_tx_error(struct sk_buff *skb)
831 {
832 	skb_zcopy_clear(skb, true);
833 }
834 EXPORT_SYMBOL(skb_tx_error);
835 
836 #ifdef CONFIG_TRACEPOINTS
837 /**
838  *	consume_skb - free an skbuff
839  *	@skb: buffer to free
840  *
841  *	Drop a ref to the buffer and free it if the usage count has hit zero
842  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
843  *	is being dropped after a failure and notes that
844  */
consume_skb(struct sk_buff * skb)845 void consume_skb(struct sk_buff *skb)
846 {
847 	if (!skb_unref(skb))
848 		return;
849 
850 	trace_consume_skb(skb);
851 	__kfree_skb(skb);
852 }
853 EXPORT_SYMBOL(consume_skb);
854 #endif
855 
856 /**
857  *	consume_stateless_skb - free an skbuff, assuming it is stateless
858  *	@skb: buffer to free
859  *
860  *	Alike consume_skb(), but this variant assumes that this is the last
861  *	skb reference and all the head states have been already dropped
862  */
__consume_stateless_skb(struct sk_buff * skb)863 void __consume_stateless_skb(struct sk_buff *skb)
864 {
865 	trace_consume_skb(skb);
866 	skb_release_data(skb);
867 	kfree_skbmem(skb);
868 }
869 
__kfree_skb_flush(void)870 void __kfree_skb_flush(void)
871 {
872 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
873 
874 	/* flush skb_cache if containing objects */
875 	if (nc->skb_count) {
876 		kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
877 				     nc->skb_cache);
878 		nc->skb_count = 0;
879 	}
880 }
881 
_kfree_skb_defer(struct sk_buff * skb)882 static inline void _kfree_skb_defer(struct sk_buff *skb)
883 {
884 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
885 
886 	/* drop skb->head and call any destructors for packet */
887 	skb_release_all(skb);
888 
889 	/* record skb to CPU local list */
890 	nc->skb_cache[nc->skb_count++] = skb;
891 
892 #ifdef CONFIG_SLUB
893 	/* SLUB writes into objects when freeing */
894 	prefetchw(skb);
895 #endif
896 
897 	/* flush skb_cache if it is filled */
898 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
899 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
900 				     nc->skb_cache);
901 		nc->skb_count = 0;
902 	}
903 }
__kfree_skb_defer(struct sk_buff * skb)904 void __kfree_skb_defer(struct sk_buff *skb)
905 {
906 	_kfree_skb_defer(skb);
907 }
908 
napi_consume_skb(struct sk_buff * skb,int budget)909 void napi_consume_skb(struct sk_buff *skb, int budget)
910 {
911 	/* Zero budget indicate non-NAPI context called us, like netpoll */
912 	if (unlikely(!budget)) {
913 		dev_consume_skb_any(skb);
914 		return;
915 	}
916 
917 	if (!skb_unref(skb))
918 		return;
919 
920 	/* if reaching here SKB is ready to free */
921 	trace_consume_skb(skb);
922 
923 	/* if SKB is a clone, don't handle this case */
924 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
925 		__kfree_skb(skb);
926 		return;
927 	}
928 
929 	_kfree_skb_defer(skb);
930 }
931 EXPORT_SYMBOL(napi_consume_skb);
932 
933 /* Make sure a field is enclosed inside headers_start/headers_end section */
934 #define CHECK_SKB_FIELD(field) \
935 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
936 		     offsetof(struct sk_buff, headers_start));	\
937 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
938 		     offsetof(struct sk_buff, headers_end));	\
939 
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)940 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
941 {
942 	new->tstamp		= old->tstamp;
943 	/* We do not copy old->sk */
944 	new->dev		= old->dev;
945 	memcpy(new->cb, old->cb, sizeof(old->cb));
946 	skb_dst_copy(new, old);
947 	__skb_ext_copy(new, old);
948 	__nf_copy(new, old, false);
949 
950 	/* Note : this field could be in headers_start/headers_end section
951 	 * It is not yet because we do not want to have a 16 bit hole
952 	 */
953 	new->queue_mapping = old->queue_mapping;
954 
955 	memcpy(&new->headers_start, &old->headers_start,
956 	       offsetof(struct sk_buff, headers_end) -
957 	       offsetof(struct sk_buff, headers_start));
958 	CHECK_SKB_FIELD(protocol);
959 	CHECK_SKB_FIELD(csum);
960 	CHECK_SKB_FIELD(hash);
961 	CHECK_SKB_FIELD(priority);
962 	CHECK_SKB_FIELD(skb_iif);
963 	CHECK_SKB_FIELD(vlan_proto);
964 	CHECK_SKB_FIELD(vlan_tci);
965 	CHECK_SKB_FIELD(transport_header);
966 	CHECK_SKB_FIELD(network_header);
967 	CHECK_SKB_FIELD(mac_header);
968 	CHECK_SKB_FIELD(inner_protocol);
969 	CHECK_SKB_FIELD(inner_transport_header);
970 	CHECK_SKB_FIELD(inner_network_header);
971 	CHECK_SKB_FIELD(inner_mac_header);
972 	CHECK_SKB_FIELD(mark);
973 #ifdef CONFIG_NETWORK_SECMARK
974 	CHECK_SKB_FIELD(secmark);
975 #endif
976 #ifdef CONFIG_NET_RX_BUSY_POLL
977 	CHECK_SKB_FIELD(napi_id);
978 #endif
979 #ifdef CONFIG_XPS
980 	CHECK_SKB_FIELD(sender_cpu);
981 #endif
982 #ifdef CONFIG_NET_SCHED
983 	CHECK_SKB_FIELD(tc_index);
984 #endif
985 
986 }
987 
988 /*
989  * You should not add any new code to this function.  Add it to
990  * __copy_skb_header above instead.
991  */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)992 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
993 {
994 #define C(x) n->x = skb->x
995 
996 	n->next = n->prev = NULL;
997 	n->sk = NULL;
998 	__copy_skb_header(n, skb);
999 
1000 	C(len);
1001 	C(data_len);
1002 	C(mac_len);
1003 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1004 	n->cloned = 1;
1005 	n->nohdr = 0;
1006 	n->peeked = 0;
1007 	C(pfmemalloc);
1008 	n->destructor = NULL;
1009 	C(tail);
1010 	C(end);
1011 	C(head);
1012 	C(head_frag);
1013 	C(data);
1014 	C(truesize);
1015 	refcount_set(&n->users, 1);
1016 
1017 	atomic_inc(&(skb_shinfo(skb)->dataref));
1018 	skb->cloned = 1;
1019 
1020 	return n;
1021 #undef C
1022 }
1023 
1024 /**
1025  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1026  * @first: first sk_buff of the msg
1027  */
alloc_skb_for_msg(struct sk_buff * first)1028 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1029 {
1030 	struct sk_buff *n;
1031 
1032 	n = alloc_skb(0, GFP_ATOMIC);
1033 	if (!n)
1034 		return NULL;
1035 
1036 	n->len = first->len;
1037 	n->data_len = first->len;
1038 	n->truesize = first->truesize;
1039 
1040 	skb_shinfo(n)->frag_list = first;
1041 
1042 	__copy_skb_header(n, first);
1043 	n->destructor = NULL;
1044 
1045 	return n;
1046 }
1047 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1048 
1049 /**
1050  *	skb_morph	-	morph one skb into another
1051  *	@dst: the skb to receive the contents
1052  *	@src: the skb to supply the contents
1053  *
1054  *	This is identical to skb_clone except that the target skb is
1055  *	supplied by the user.
1056  *
1057  *	The target skb is returned upon exit.
1058  */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1059 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1060 {
1061 	skb_release_all(dst);
1062 	return __skb_clone(dst, src);
1063 }
1064 EXPORT_SYMBOL_GPL(skb_morph);
1065 
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1066 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1067 {
1068 	unsigned long max_pg, num_pg, new_pg, old_pg;
1069 	struct user_struct *user;
1070 
1071 	if (capable(CAP_IPC_LOCK) || !size)
1072 		return 0;
1073 
1074 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1075 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1076 	user = mmp->user ? : current_user();
1077 
1078 	do {
1079 		old_pg = atomic_long_read(&user->locked_vm);
1080 		new_pg = old_pg + num_pg;
1081 		if (new_pg > max_pg)
1082 			return -ENOBUFS;
1083 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1084 		 old_pg);
1085 
1086 	if (!mmp->user) {
1087 		mmp->user = get_uid(user);
1088 		mmp->num_pg = num_pg;
1089 	} else {
1090 		mmp->num_pg += num_pg;
1091 	}
1092 
1093 	return 0;
1094 }
1095 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1096 
mm_unaccount_pinned_pages(struct mmpin * mmp)1097 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1098 {
1099 	if (mmp->user) {
1100 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1101 		free_uid(mmp->user);
1102 	}
1103 }
1104 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1105 
sock_zerocopy_alloc(struct sock * sk,size_t size)1106 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1107 {
1108 	struct ubuf_info *uarg;
1109 	struct sk_buff *skb;
1110 
1111 	WARN_ON_ONCE(!in_task());
1112 
1113 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1114 	if (!skb)
1115 		return NULL;
1116 
1117 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1118 	uarg = (void *)skb->cb;
1119 	uarg->mmp.user = NULL;
1120 
1121 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1122 		kfree_skb(skb);
1123 		return NULL;
1124 	}
1125 
1126 	uarg->callback = sock_zerocopy_callback;
1127 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1128 	uarg->len = 1;
1129 	uarg->bytelen = size;
1130 	uarg->zerocopy = 1;
1131 	refcount_set(&uarg->refcnt, 1);
1132 	sock_hold(sk);
1133 
1134 	return uarg;
1135 }
1136 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1137 
skb_from_uarg(struct ubuf_info * uarg)1138 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1139 {
1140 	return container_of((void *)uarg, struct sk_buff, cb);
1141 }
1142 
sock_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1143 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1144 					struct ubuf_info *uarg)
1145 {
1146 	if (uarg) {
1147 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1148 		u32 bytelen, next;
1149 
1150 		/* realloc only when socket is locked (TCP, UDP cork),
1151 		 * so uarg->len and sk_zckey access is serialized
1152 		 */
1153 		if (!sock_owned_by_user(sk)) {
1154 			WARN_ON_ONCE(1);
1155 			return NULL;
1156 		}
1157 
1158 		bytelen = uarg->bytelen + size;
1159 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1160 			/* TCP can create new skb to attach new uarg */
1161 			if (sk->sk_type == SOCK_STREAM)
1162 				goto new_alloc;
1163 			return NULL;
1164 		}
1165 
1166 		next = (u32)atomic_read(&sk->sk_zckey);
1167 		if ((u32)(uarg->id + uarg->len) == next) {
1168 			if (mm_account_pinned_pages(&uarg->mmp, size))
1169 				return NULL;
1170 			uarg->len++;
1171 			uarg->bytelen = bytelen;
1172 			atomic_set(&sk->sk_zckey, ++next);
1173 
1174 			/* no extra ref when appending to datagram (MSG_MORE) */
1175 			if (sk->sk_type == SOCK_STREAM)
1176 				sock_zerocopy_get(uarg);
1177 
1178 			return uarg;
1179 		}
1180 	}
1181 
1182 new_alloc:
1183 	return sock_zerocopy_alloc(sk, size);
1184 }
1185 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1186 
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1187 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1188 {
1189 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1190 	u32 old_lo, old_hi;
1191 	u64 sum_len;
1192 
1193 	old_lo = serr->ee.ee_info;
1194 	old_hi = serr->ee.ee_data;
1195 	sum_len = old_hi - old_lo + 1ULL + len;
1196 
1197 	if (sum_len >= (1ULL << 32))
1198 		return false;
1199 
1200 	if (lo != old_hi + 1)
1201 		return false;
1202 
1203 	serr->ee.ee_data += len;
1204 	return true;
1205 }
1206 
sock_zerocopy_callback(struct ubuf_info * uarg,bool success)1207 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1208 {
1209 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1210 	struct sock_exterr_skb *serr;
1211 	struct sock *sk = skb->sk;
1212 	struct sk_buff_head *q;
1213 	unsigned long flags;
1214 	u32 lo, hi;
1215 	u16 len;
1216 
1217 	mm_unaccount_pinned_pages(&uarg->mmp);
1218 
1219 	/* if !len, there was only 1 call, and it was aborted
1220 	 * so do not queue a completion notification
1221 	 */
1222 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1223 		goto release;
1224 
1225 	len = uarg->len;
1226 	lo = uarg->id;
1227 	hi = uarg->id + len - 1;
1228 
1229 	serr = SKB_EXT_ERR(skb);
1230 	memset(serr, 0, sizeof(*serr));
1231 	serr->ee.ee_errno = 0;
1232 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1233 	serr->ee.ee_data = hi;
1234 	serr->ee.ee_info = lo;
1235 	if (!success)
1236 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1237 
1238 	q = &sk->sk_error_queue;
1239 	spin_lock_irqsave(&q->lock, flags);
1240 	tail = skb_peek_tail(q);
1241 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1242 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1243 		__skb_queue_tail(q, skb);
1244 		skb = NULL;
1245 	}
1246 	spin_unlock_irqrestore(&q->lock, flags);
1247 
1248 	sk->sk_error_report(sk);
1249 
1250 release:
1251 	consume_skb(skb);
1252 	sock_put(sk);
1253 }
1254 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1255 
sock_zerocopy_put(struct ubuf_info * uarg)1256 void sock_zerocopy_put(struct ubuf_info *uarg)
1257 {
1258 	if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1259 		if (uarg->callback)
1260 			uarg->callback(uarg, uarg->zerocopy);
1261 		else
1262 			consume_skb(skb_from_uarg(uarg));
1263 	}
1264 }
1265 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1266 
sock_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1267 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1268 {
1269 	if (uarg) {
1270 		struct sock *sk = skb_from_uarg(uarg)->sk;
1271 
1272 		atomic_dec(&sk->sk_zckey);
1273 		uarg->len--;
1274 
1275 		if (have_uref)
1276 			sock_zerocopy_put(uarg);
1277 	}
1278 }
1279 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1280 
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1281 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1282 {
1283 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1284 }
1285 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1286 
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1287 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1288 			     struct msghdr *msg, int len,
1289 			     struct ubuf_info *uarg)
1290 {
1291 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1292 	struct iov_iter orig_iter = msg->msg_iter;
1293 	int err, orig_len = skb->len;
1294 
1295 	/* An skb can only point to one uarg. This edge case happens when
1296 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1297 	 */
1298 	if (orig_uarg && uarg != orig_uarg)
1299 		return -EEXIST;
1300 
1301 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1302 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1303 		struct sock *save_sk = skb->sk;
1304 
1305 		/* Streams do not free skb on error. Reset to prev state. */
1306 		msg->msg_iter = orig_iter;
1307 		skb->sk = sk;
1308 		___pskb_trim(skb, orig_len);
1309 		skb->sk = save_sk;
1310 		return err;
1311 	}
1312 
1313 	skb_zcopy_set(skb, uarg, NULL);
1314 	return skb->len - orig_len;
1315 }
1316 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1317 
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1318 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1319 			      gfp_t gfp_mask)
1320 {
1321 	if (skb_zcopy(orig)) {
1322 		if (skb_zcopy(nskb)) {
1323 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1324 			if (!gfp_mask) {
1325 				WARN_ON_ONCE(1);
1326 				return -ENOMEM;
1327 			}
1328 			if (skb_uarg(nskb) == skb_uarg(orig))
1329 				return 0;
1330 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1331 				return -EIO;
1332 		}
1333 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1334 	}
1335 	return 0;
1336 }
1337 
1338 /**
1339  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1340  *	@skb: the skb to modify
1341  *	@gfp_mask: allocation priority
1342  *
1343  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
1344  *	It will copy all frags into kernel and drop the reference
1345  *	to userspace pages.
1346  *
1347  *	If this function is called from an interrupt gfp_mask() must be
1348  *	%GFP_ATOMIC.
1349  *
1350  *	Returns 0 on success or a negative error code on failure
1351  *	to allocate kernel memory to copy to.
1352  */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1353 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1354 {
1355 	int num_frags = skb_shinfo(skb)->nr_frags;
1356 	struct page *page, *head = NULL;
1357 	int i, new_frags;
1358 	u32 d_off;
1359 
1360 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1361 		return -EINVAL;
1362 
1363 	if (!num_frags)
1364 		goto release;
1365 
1366 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1367 	for (i = 0; i < new_frags; i++) {
1368 		page = alloc_page(gfp_mask);
1369 		if (!page) {
1370 			while (head) {
1371 				struct page *next = (struct page *)page_private(head);
1372 				put_page(head);
1373 				head = next;
1374 			}
1375 			return -ENOMEM;
1376 		}
1377 		set_page_private(page, (unsigned long)head);
1378 		head = page;
1379 	}
1380 
1381 	page = head;
1382 	d_off = 0;
1383 	for (i = 0; i < num_frags; i++) {
1384 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1385 		u32 p_off, p_len, copied;
1386 		struct page *p;
1387 		u8 *vaddr;
1388 
1389 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1390 				      p, p_off, p_len, copied) {
1391 			u32 copy, done = 0;
1392 			vaddr = kmap_atomic(p);
1393 
1394 			while (done < p_len) {
1395 				if (d_off == PAGE_SIZE) {
1396 					d_off = 0;
1397 					page = (struct page *)page_private(page);
1398 				}
1399 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1400 				memcpy(page_address(page) + d_off,
1401 				       vaddr + p_off + done, copy);
1402 				done += copy;
1403 				d_off += copy;
1404 			}
1405 			kunmap_atomic(vaddr);
1406 		}
1407 	}
1408 
1409 	/* skb frags release userspace buffers */
1410 	for (i = 0; i < num_frags; i++)
1411 		skb_frag_unref(skb, i);
1412 
1413 	/* skb frags point to kernel buffers */
1414 	for (i = 0; i < new_frags - 1; i++) {
1415 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1416 		head = (struct page *)page_private(head);
1417 	}
1418 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1419 	skb_shinfo(skb)->nr_frags = new_frags;
1420 
1421 release:
1422 	skb_zcopy_clear(skb, false);
1423 	return 0;
1424 }
1425 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1426 
1427 /**
1428  *	skb_clone	-	duplicate an sk_buff
1429  *	@skb: buffer to clone
1430  *	@gfp_mask: allocation priority
1431  *
1432  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1433  *	copies share the same packet data but not structure. The new
1434  *	buffer has a reference count of 1. If the allocation fails the
1435  *	function returns %NULL otherwise the new buffer is returned.
1436  *
1437  *	If this function is called from an interrupt gfp_mask() must be
1438  *	%GFP_ATOMIC.
1439  */
1440 
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1441 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1442 {
1443 	struct sk_buff_fclones *fclones = container_of(skb,
1444 						       struct sk_buff_fclones,
1445 						       skb1);
1446 	struct sk_buff *n;
1447 
1448 	if (skb_orphan_frags(skb, gfp_mask))
1449 		return NULL;
1450 
1451 	if (skb->fclone == SKB_FCLONE_ORIG &&
1452 	    refcount_read(&fclones->fclone_ref) == 1) {
1453 		n = &fclones->skb2;
1454 		refcount_set(&fclones->fclone_ref, 2);
1455 	} else {
1456 		if (skb_pfmemalloc(skb))
1457 			gfp_mask |= __GFP_MEMALLOC;
1458 
1459 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1460 		if (!n)
1461 			return NULL;
1462 
1463 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1464 	}
1465 
1466 	return __skb_clone(n, skb);
1467 }
1468 EXPORT_SYMBOL(skb_clone);
1469 
skb_headers_offset_update(struct sk_buff * skb,int off)1470 void skb_headers_offset_update(struct sk_buff *skb, int off)
1471 {
1472 	/* Only adjust this if it actually is csum_start rather than csum */
1473 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1474 		skb->csum_start += off;
1475 	/* {transport,network,mac}_header and tail are relative to skb->head */
1476 	skb->transport_header += off;
1477 	skb->network_header   += off;
1478 	if (skb_mac_header_was_set(skb))
1479 		skb->mac_header += off;
1480 	skb->inner_transport_header += off;
1481 	skb->inner_network_header += off;
1482 	skb->inner_mac_header += off;
1483 }
1484 EXPORT_SYMBOL(skb_headers_offset_update);
1485 
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)1486 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1487 {
1488 	__copy_skb_header(new, old);
1489 
1490 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1491 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1492 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1493 }
1494 EXPORT_SYMBOL(skb_copy_header);
1495 
skb_alloc_rx_flag(const struct sk_buff * skb)1496 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1497 {
1498 	if (skb_pfmemalloc(skb))
1499 		return SKB_ALLOC_RX;
1500 	return 0;
1501 }
1502 
1503 /**
1504  *	skb_copy	-	create private copy of an sk_buff
1505  *	@skb: buffer to copy
1506  *	@gfp_mask: allocation priority
1507  *
1508  *	Make a copy of both an &sk_buff and its data. This is used when the
1509  *	caller wishes to modify the data and needs a private copy of the
1510  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1511  *	on success. The returned buffer has a reference count of 1.
1512  *
1513  *	As by-product this function converts non-linear &sk_buff to linear
1514  *	one, so that &sk_buff becomes completely private and caller is allowed
1515  *	to modify all the data of returned buffer. This means that this
1516  *	function is not recommended for use in circumstances when only
1517  *	header is going to be modified. Use pskb_copy() instead.
1518  */
1519 
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1520 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1521 {
1522 	int headerlen = skb_headroom(skb);
1523 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1524 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1525 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1526 
1527 	if (!n)
1528 		return NULL;
1529 
1530 	/* Set the data pointer */
1531 	skb_reserve(n, headerlen);
1532 	/* Set the tail pointer and length */
1533 	skb_put(n, skb->len);
1534 
1535 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1536 
1537 	skb_copy_header(n, skb);
1538 	return n;
1539 }
1540 EXPORT_SYMBOL(skb_copy);
1541 
1542 /**
1543  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1544  *	@skb: buffer to copy
1545  *	@headroom: headroom of new skb
1546  *	@gfp_mask: allocation priority
1547  *	@fclone: if true allocate the copy of the skb from the fclone
1548  *	cache instead of the head cache; it is recommended to set this
1549  *	to true for the cases where the copy will likely be cloned
1550  *
1551  *	Make a copy of both an &sk_buff and part of its data, located
1552  *	in header. Fragmented data remain shared. This is used when
1553  *	the caller wishes to modify only header of &sk_buff and needs
1554  *	private copy of the header to alter. Returns %NULL on failure
1555  *	or the pointer to the buffer on success.
1556  *	The returned buffer has a reference count of 1.
1557  */
1558 
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1559 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1560 				   gfp_t gfp_mask, bool fclone)
1561 {
1562 	unsigned int size = skb_headlen(skb) + headroom;
1563 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1564 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1565 
1566 	if (!n)
1567 		goto out;
1568 
1569 	/* Set the data pointer */
1570 	skb_reserve(n, headroom);
1571 	/* Set the tail pointer and length */
1572 	skb_put(n, skb_headlen(skb));
1573 	/* Copy the bytes */
1574 	skb_copy_from_linear_data(skb, n->data, n->len);
1575 
1576 	n->truesize += skb->data_len;
1577 	n->data_len  = skb->data_len;
1578 	n->len	     = skb->len;
1579 
1580 	if (skb_shinfo(skb)->nr_frags) {
1581 		int i;
1582 
1583 		if (skb_orphan_frags(skb, gfp_mask) ||
1584 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1585 			kfree_skb(n);
1586 			n = NULL;
1587 			goto out;
1588 		}
1589 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1590 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1591 			skb_frag_ref(skb, i);
1592 		}
1593 		skb_shinfo(n)->nr_frags = i;
1594 	}
1595 
1596 	if (skb_has_frag_list(skb)) {
1597 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1598 		skb_clone_fraglist(n);
1599 	}
1600 
1601 	skb_copy_header(n, skb);
1602 out:
1603 	return n;
1604 }
1605 EXPORT_SYMBOL(__pskb_copy_fclone);
1606 
1607 /**
1608  *	pskb_expand_head - reallocate header of &sk_buff
1609  *	@skb: buffer to reallocate
1610  *	@nhead: room to add at head
1611  *	@ntail: room to add at tail
1612  *	@gfp_mask: allocation priority
1613  *
1614  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1615  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1616  *	reference count of 1. Returns zero in the case of success or error,
1617  *	if expansion failed. In the last case, &sk_buff is not changed.
1618  *
1619  *	All the pointers pointing into skb header may change and must be
1620  *	reloaded after call to this function.
1621  */
1622 
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1623 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1624 		     gfp_t gfp_mask)
1625 {
1626 	int i, osize = skb_end_offset(skb);
1627 	int size = osize + nhead + ntail;
1628 	long off;
1629 	u8 *data;
1630 
1631 	BUG_ON(nhead < 0);
1632 
1633 	BUG_ON(skb_shared(skb));
1634 
1635 	size = SKB_DATA_ALIGN(size);
1636 
1637 	if (skb_pfmemalloc(skb))
1638 		gfp_mask |= __GFP_MEMALLOC;
1639 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1640 			       gfp_mask, NUMA_NO_NODE, NULL);
1641 	if (!data)
1642 		goto nodata;
1643 	size = SKB_WITH_OVERHEAD(ksize(data));
1644 
1645 	/* Copy only real data... and, alas, header. This should be
1646 	 * optimized for the cases when header is void.
1647 	 */
1648 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1649 
1650 	memcpy((struct skb_shared_info *)(data + size),
1651 	       skb_shinfo(skb),
1652 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1653 
1654 	/*
1655 	 * if shinfo is shared we must drop the old head gracefully, but if it
1656 	 * is not we can just drop the old head and let the existing refcount
1657 	 * be since all we did is relocate the values
1658 	 */
1659 	if (skb_cloned(skb)) {
1660 		if (skb_orphan_frags(skb, gfp_mask))
1661 			goto nofrags;
1662 		if (skb_zcopy(skb))
1663 			refcount_inc(&skb_uarg(skb)->refcnt);
1664 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1665 			skb_frag_ref(skb, i);
1666 
1667 		if (skb_has_frag_list(skb))
1668 			skb_clone_fraglist(skb);
1669 
1670 		skb_release_data(skb);
1671 	} else {
1672 		skb_free_head(skb);
1673 	}
1674 	off = (data + nhead) - skb->head;
1675 
1676 	skb->head     = data;
1677 	skb->head_frag = 0;
1678 	skb->data    += off;
1679 
1680 	skb_set_end_offset(skb, size);
1681 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1682 	off           = nhead;
1683 #endif
1684 	skb->tail	      += off;
1685 	skb_headers_offset_update(skb, nhead);
1686 	skb->cloned   = 0;
1687 	skb->hdr_len  = 0;
1688 	skb->nohdr    = 0;
1689 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1690 
1691 	skb_metadata_clear(skb);
1692 
1693 	/* It is not generally safe to change skb->truesize.
1694 	 * For the moment, we really care of rx path, or
1695 	 * when skb is orphaned (not attached to a socket).
1696 	 */
1697 	if (!skb->sk || skb->destructor == sock_edemux)
1698 		skb->truesize += size - osize;
1699 
1700 	return 0;
1701 
1702 nofrags:
1703 	kfree(data);
1704 nodata:
1705 	return -ENOMEM;
1706 }
1707 EXPORT_SYMBOL(pskb_expand_head);
1708 
1709 /* Make private copy of skb with writable head and some headroom */
1710 
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1711 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1712 {
1713 	struct sk_buff *skb2;
1714 	int delta = headroom - skb_headroom(skb);
1715 
1716 	if (delta <= 0)
1717 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1718 	else {
1719 		skb2 = skb_clone(skb, GFP_ATOMIC);
1720 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1721 					     GFP_ATOMIC)) {
1722 			kfree_skb(skb2);
1723 			skb2 = NULL;
1724 		}
1725 	}
1726 	return skb2;
1727 }
1728 EXPORT_SYMBOL(skb_realloc_headroom);
1729 
__skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)1730 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1731 {
1732 	unsigned int saved_end_offset, saved_truesize;
1733 	struct skb_shared_info *shinfo;
1734 	int res;
1735 
1736 	saved_end_offset = skb_end_offset(skb);
1737 	saved_truesize = skb->truesize;
1738 
1739 	res = pskb_expand_head(skb, 0, 0, pri);
1740 	if (res)
1741 		return res;
1742 
1743 	skb->truesize = saved_truesize;
1744 
1745 	if (likely(skb_end_offset(skb) == saved_end_offset))
1746 		return 0;
1747 
1748 	shinfo = skb_shinfo(skb);
1749 
1750 	/* We are about to change back skb->end,
1751 	 * we need to move skb_shinfo() to its new location.
1752 	 */
1753 	memmove(skb->head + saved_end_offset,
1754 		shinfo,
1755 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
1756 
1757 	skb_set_end_offset(skb, saved_end_offset);
1758 
1759 	return 0;
1760 }
1761 
1762 /**
1763  *	skb_copy_expand	-	copy and expand sk_buff
1764  *	@skb: buffer to copy
1765  *	@newheadroom: new free bytes at head
1766  *	@newtailroom: new free bytes at tail
1767  *	@gfp_mask: allocation priority
1768  *
1769  *	Make a copy of both an &sk_buff and its data and while doing so
1770  *	allocate additional space.
1771  *
1772  *	This is used when the caller wishes to modify the data and needs a
1773  *	private copy of the data to alter as well as more space for new fields.
1774  *	Returns %NULL on failure or the pointer to the buffer
1775  *	on success. The returned buffer has a reference count of 1.
1776  *
1777  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1778  *	is called from an interrupt.
1779  */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1780 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1781 				int newheadroom, int newtailroom,
1782 				gfp_t gfp_mask)
1783 {
1784 	/*
1785 	 *	Allocate the copy buffer
1786 	 */
1787 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1788 					gfp_mask, skb_alloc_rx_flag(skb),
1789 					NUMA_NO_NODE);
1790 	int oldheadroom = skb_headroom(skb);
1791 	int head_copy_len, head_copy_off;
1792 
1793 	if (!n)
1794 		return NULL;
1795 
1796 	skb_reserve(n, newheadroom);
1797 
1798 	/* Set the tail pointer and length */
1799 	skb_put(n, skb->len);
1800 
1801 	head_copy_len = oldheadroom;
1802 	head_copy_off = 0;
1803 	if (newheadroom <= head_copy_len)
1804 		head_copy_len = newheadroom;
1805 	else
1806 		head_copy_off = newheadroom - head_copy_len;
1807 
1808 	/* Copy the linear header and data. */
1809 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1810 			     skb->len + head_copy_len));
1811 
1812 	skb_copy_header(n, skb);
1813 
1814 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1815 
1816 	return n;
1817 }
1818 EXPORT_SYMBOL(skb_copy_expand);
1819 
1820 /**
1821  *	__skb_pad		-	zero pad the tail of an skb
1822  *	@skb: buffer to pad
1823  *	@pad: space to pad
1824  *	@free_on_error: free buffer on error
1825  *
1826  *	Ensure that a buffer is followed by a padding area that is zero
1827  *	filled. Used by network drivers which may DMA or transfer data
1828  *	beyond the buffer end onto the wire.
1829  *
1830  *	May return error in out of memory cases. The skb is freed on error
1831  *	if @free_on_error is true.
1832  */
1833 
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)1834 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1835 {
1836 	int err;
1837 	int ntail;
1838 
1839 	/* If the skbuff is non linear tailroom is always zero.. */
1840 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1841 		memset(skb->data+skb->len, 0, pad);
1842 		return 0;
1843 	}
1844 
1845 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1846 	if (likely(skb_cloned(skb) || ntail > 0)) {
1847 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1848 		if (unlikely(err))
1849 			goto free_skb;
1850 	}
1851 
1852 	/* FIXME: The use of this function with non-linear skb's really needs
1853 	 * to be audited.
1854 	 */
1855 	err = skb_linearize(skb);
1856 	if (unlikely(err))
1857 		goto free_skb;
1858 
1859 	memset(skb->data + skb->len, 0, pad);
1860 	return 0;
1861 
1862 free_skb:
1863 	if (free_on_error)
1864 		kfree_skb(skb);
1865 	return err;
1866 }
1867 EXPORT_SYMBOL(__skb_pad);
1868 
1869 /**
1870  *	pskb_put - add data to the tail of a potentially fragmented buffer
1871  *	@skb: start of the buffer to use
1872  *	@tail: tail fragment of the buffer to use
1873  *	@len: amount of data to add
1874  *
1875  *	This function extends the used data area of the potentially
1876  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1877  *	@skb itself. If this would exceed the total buffer size the kernel
1878  *	will panic. A pointer to the first byte of the extra data is
1879  *	returned.
1880  */
1881 
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)1882 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1883 {
1884 	if (tail != skb) {
1885 		skb->data_len += len;
1886 		skb->len += len;
1887 	}
1888 	return skb_put(tail, len);
1889 }
1890 EXPORT_SYMBOL_GPL(pskb_put);
1891 
1892 /**
1893  *	skb_put - add data to a buffer
1894  *	@skb: buffer to use
1895  *	@len: amount of data to add
1896  *
1897  *	This function extends the used data area of the buffer. If this would
1898  *	exceed the total buffer size the kernel will panic. A pointer to the
1899  *	first byte of the extra data is returned.
1900  */
skb_put(struct sk_buff * skb,unsigned int len)1901 void *skb_put(struct sk_buff *skb, unsigned int len)
1902 {
1903 	void *tmp = skb_tail_pointer(skb);
1904 	SKB_LINEAR_ASSERT(skb);
1905 	skb->tail += len;
1906 	skb->len  += len;
1907 	if (unlikely(skb->tail > skb->end))
1908 		skb_over_panic(skb, len, __builtin_return_address(0));
1909 	return tmp;
1910 }
1911 EXPORT_SYMBOL(skb_put);
1912 
1913 /**
1914  *	skb_push - add data to the start of a buffer
1915  *	@skb: buffer to use
1916  *	@len: amount of data to add
1917  *
1918  *	This function extends the used data area of the buffer at the buffer
1919  *	start. If this would exceed the total buffer headroom the kernel will
1920  *	panic. A pointer to the first byte of the extra data is returned.
1921  */
skb_push(struct sk_buff * skb,unsigned int len)1922 void *skb_push(struct sk_buff *skb, unsigned int len)
1923 {
1924 	skb->data -= len;
1925 	skb->len  += len;
1926 	if (unlikely(skb->data < skb->head))
1927 		skb_under_panic(skb, len, __builtin_return_address(0));
1928 	return skb->data;
1929 }
1930 EXPORT_SYMBOL(skb_push);
1931 
1932 /**
1933  *	skb_pull - remove data from the start of a buffer
1934  *	@skb: buffer to use
1935  *	@len: amount of data to remove
1936  *
1937  *	This function removes data from the start of a buffer, returning
1938  *	the memory to the headroom. A pointer to the next data in the buffer
1939  *	is returned. Once the data has been pulled future pushes will overwrite
1940  *	the old data.
1941  */
skb_pull(struct sk_buff * skb,unsigned int len)1942 void *skb_pull(struct sk_buff *skb, unsigned int len)
1943 {
1944 	return skb_pull_inline(skb, len);
1945 }
1946 EXPORT_SYMBOL(skb_pull);
1947 
1948 /**
1949  *	skb_trim - remove end from a buffer
1950  *	@skb: buffer to alter
1951  *	@len: new length
1952  *
1953  *	Cut the length of a buffer down by removing data from the tail. If
1954  *	the buffer is already under the length specified it is not modified.
1955  *	The skb must be linear.
1956  */
skb_trim(struct sk_buff * skb,unsigned int len)1957 void skb_trim(struct sk_buff *skb, unsigned int len)
1958 {
1959 	if (skb->len > len)
1960 		__skb_trim(skb, len);
1961 }
1962 EXPORT_SYMBOL(skb_trim);
1963 
1964 /* Trims skb to length len. It can change skb pointers.
1965  */
1966 
___pskb_trim(struct sk_buff * skb,unsigned int len)1967 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1968 {
1969 	struct sk_buff **fragp;
1970 	struct sk_buff *frag;
1971 	int offset = skb_headlen(skb);
1972 	int nfrags = skb_shinfo(skb)->nr_frags;
1973 	int i;
1974 	int err;
1975 
1976 	if (skb_cloned(skb) &&
1977 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1978 		return err;
1979 
1980 	i = 0;
1981 	if (offset >= len)
1982 		goto drop_pages;
1983 
1984 	for (; i < nfrags; i++) {
1985 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1986 
1987 		if (end < len) {
1988 			offset = end;
1989 			continue;
1990 		}
1991 
1992 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1993 
1994 drop_pages:
1995 		skb_shinfo(skb)->nr_frags = i;
1996 
1997 		for (; i < nfrags; i++)
1998 			skb_frag_unref(skb, i);
1999 
2000 		if (skb_has_frag_list(skb))
2001 			skb_drop_fraglist(skb);
2002 		goto done;
2003 	}
2004 
2005 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2006 	     fragp = &frag->next) {
2007 		int end = offset + frag->len;
2008 
2009 		if (skb_shared(frag)) {
2010 			struct sk_buff *nfrag;
2011 
2012 			nfrag = skb_clone(frag, GFP_ATOMIC);
2013 			if (unlikely(!nfrag))
2014 				return -ENOMEM;
2015 
2016 			nfrag->next = frag->next;
2017 			consume_skb(frag);
2018 			frag = nfrag;
2019 			*fragp = frag;
2020 		}
2021 
2022 		if (end < len) {
2023 			offset = end;
2024 			continue;
2025 		}
2026 
2027 		if (end > len &&
2028 		    unlikely((err = pskb_trim(frag, len - offset))))
2029 			return err;
2030 
2031 		if (frag->next)
2032 			skb_drop_list(&frag->next);
2033 		break;
2034 	}
2035 
2036 done:
2037 	if (len > skb_headlen(skb)) {
2038 		skb->data_len -= skb->len - len;
2039 		skb->len       = len;
2040 	} else {
2041 		skb->len       = len;
2042 		skb->data_len  = 0;
2043 		skb_set_tail_pointer(skb, len);
2044 	}
2045 
2046 	if (!skb->sk || skb->destructor == sock_edemux)
2047 		skb_condense(skb);
2048 	return 0;
2049 }
2050 EXPORT_SYMBOL(___pskb_trim);
2051 
2052 /* Note : use pskb_trim_rcsum() instead of calling this directly
2053  */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2054 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2055 {
2056 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2057 		int delta = skb->len - len;
2058 
2059 		skb->csum = csum_block_sub(skb->csum,
2060 					   skb_checksum(skb, len, delta, 0),
2061 					   len);
2062 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2063 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2064 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2065 
2066 		if (offset + sizeof(__sum16) > hdlen)
2067 			return -EINVAL;
2068 	}
2069 	return __pskb_trim(skb, len);
2070 }
2071 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2072 
2073 /**
2074  *	__pskb_pull_tail - advance tail of skb header
2075  *	@skb: buffer to reallocate
2076  *	@delta: number of bytes to advance tail
2077  *
2078  *	The function makes a sense only on a fragmented &sk_buff,
2079  *	it expands header moving its tail forward and copying necessary
2080  *	data from fragmented part.
2081  *
2082  *	&sk_buff MUST have reference count of 1.
2083  *
2084  *	Returns %NULL (and &sk_buff does not change) if pull failed
2085  *	or value of new tail of skb in the case of success.
2086  *
2087  *	All the pointers pointing into skb header may change and must be
2088  *	reloaded after call to this function.
2089  */
2090 
2091 /* Moves tail of skb head forward, copying data from fragmented part,
2092  * when it is necessary.
2093  * 1. It may fail due to malloc failure.
2094  * 2. It may change skb pointers.
2095  *
2096  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2097  */
__pskb_pull_tail(struct sk_buff * skb,int delta)2098 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2099 {
2100 	/* If skb has not enough free space at tail, get new one
2101 	 * plus 128 bytes for future expansions. If we have enough
2102 	 * room at tail, reallocate without expansion only if skb is cloned.
2103 	 */
2104 	int i, k, eat = (skb->tail + delta) - skb->end;
2105 
2106 	if (eat > 0 || skb_cloned(skb)) {
2107 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2108 				     GFP_ATOMIC))
2109 			return NULL;
2110 	}
2111 
2112 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2113 			     skb_tail_pointer(skb), delta));
2114 
2115 	/* Optimization: no fragments, no reasons to preestimate
2116 	 * size of pulled pages. Superb.
2117 	 */
2118 	if (!skb_has_frag_list(skb))
2119 		goto pull_pages;
2120 
2121 	/* Estimate size of pulled pages. */
2122 	eat = delta;
2123 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2124 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2125 
2126 		if (size >= eat)
2127 			goto pull_pages;
2128 		eat -= size;
2129 	}
2130 
2131 	/* If we need update frag list, we are in troubles.
2132 	 * Certainly, it is possible to add an offset to skb data,
2133 	 * but taking into account that pulling is expected to
2134 	 * be very rare operation, it is worth to fight against
2135 	 * further bloating skb head and crucify ourselves here instead.
2136 	 * Pure masohism, indeed. 8)8)
2137 	 */
2138 	if (eat) {
2139 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2140 		struct sk_buff *clone = NULL;
2141 		struct sk_buff *insp = NULL;
2142 
2143 		do {
2144 			if (list->len <= eat) {
2145 				/* Eaten as whole. */
2146 				eat -= list->len;
2147 				list = list->next;
2148 				insp = list;
2149 			} else {
2150 				/* Eaten partially. */
2151 
2152 				if (skb_shared(list)) {
2153 					/* Sucks! We need to fork list. :-( */
2154 					clone = skb_clone(list, GFP_ATOMIC);
2155 					if (!clone)
2156 						return NULL;
2157 					insp = list->next;
2158 					list = clone;
2159 				} else {
2160 					/* This may be pulled without
2161 					 * problems. */
2162 					insp = list;
2163 				}
2164 				if (!pskb_pull(list, eat)) {
2165 					kfree_skb(clone);
2166 					return NULL;
2167 				}
2168 				break;
2169 			}
2170 		} while (eat);
2171 
2172 		/* Free pulled out fragments. */
2173 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2174 			skb_shinfo(skb)->frag_list = list->next;
2175 			consume_skb(list);
2176 		}
2177 		/* And insert new clone at head. */
2178 		if (clone) {
2179 			clone->next = list;
2180 			skb_shinfo(skb)->frag_list = clone;
2181 		}
2182 	}
2183 	/* Success! Now we may commit changes to skb data. */
2184 
2185 pull_pages:
2186 	eat = delta;
2187 	k = 0;
2188 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2189 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2190 
2191 		if (size <= eat) {
2192 			skb_frag_unref(skb, i);
2193 			eat -= size;
2194 		} else {
2195 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2196 
2197 			*frag = skb_shinfo(skb)->frags[i];
2198 			if (eat) {
2199 				skb_frag_off_add(frag, eat);
2200 				skb_frag_size_sub(frag, eat);
2201 				if (!i)
2202 					goto end;
2203 				eat = 0;
2204 			}
2205 			k++;
2206 		}
2207 	}
2208 	skb_shinfo(skb)->nr_frags = k;
2209 
2210 end:
2211 	skb->tail     += delta;
2212 	skb->data_len -= delta;
2213 
2214 	if (!skb->data_len)
2215 		skb_zcopy_clear(skb, false);
2216 
2217 	return skb_tail_pointer(skb);
2218 }
2219 EXPORT_SYMBOL(__pskb_pull_tail);
2220 
2221 /**
2222  *	skb_copy_bits - copy bits from skb to kernel buffer
2223  *	@skb: source skb
2224  *	@offset: offset in source
2225  *	@to: destination buffer
2226  *	@len: number of bytes to copy
2227  *
2228  *	Copy the specified number of bytes from the source skb to the
2229  *	destination buffer.
2230  *
2231  *	CAUTION ! :
2232  *		If its prototype is ever changed,
2233  *		check arch/{*}/net/{*}.S files,
2234  *		since it is called from BPF assembly code.
2235  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2236 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2237 {
2238 	int start = skb_headlen(skb);
2239 	struct sk_buff *frag_iter;
2240 	int i, copy;
2241 
2242 	if (offset > (int)skb->len - len)
2243 		goto fault;
2244 
2245 	/* Copy header. */
2246 	if ((copy = start - offset) > 0) {
2247 		if (copy > len)
2248 			copy = len;
2249 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2250 		if ((len -= copy) == 0)
2251 			return 0;
2252 		offset += copy;
2253 		to     += copy;
2254 	}
2255 
2256 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2257 		int end;
2258 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2259 
2260 		WARN_ON(start > offset + len);
2261 
2262 		end = start + skb_frag_size(f);
2263 		if ((copy = end - offset) > 0) {
2264 			u32 p_off, p_len, copied;
2265 			struct page *p;
2266 			u8 *vaddr;
2267 
2268 			if (copy > len)
2269 				copy = len;
2270 
2271 			skb_frag_foreach_page(f,
2272 					      skb_frag_off(f) + offset - start,
2273 					      copy, p, p_off, p_len, copied) {
2274 				vaddr = kmap_atomic(p);
2275 				memcpy(to + copied, vaddr + p_off, p_len);
2276 				kunmap_atomic(vaddr);
2277 			}
2278 
2279 			if ((len -= copy) == 0)
2280 				return 0;
2281 			offset += copy;
2282 			to     += copy;
2283 		}
2284 		start = end;
2285 	}
2286 
2287 	skb_walk_frags(skb, frag_iter) {
2288 		int end;
2289 
2290 		WARN_ON(start > offset + len);
2291 
2292 		end = start + frag_iter->len;
2293 		if ((copy = end - offset) > 0) {
2294 			if (copy > len)
2295 				copy = len;
2296 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2297 				goto fault;
2298 			if ((len -= copy) == 0)
2299 				return 0;
2300 			offset += copy;
2301 			to     += copy;
2302 		}
2303 		start = end;
2304 	}
2305 
2306 	if (!len)
2307 		return 0;
2308 
2309 fault:
2310 	return -EFAULT;
2311 }
2312 EXPORT_SYMBOL(skb_copy_bits);
2313 
2314 /*
2315  * Callback from splice_to_pipe(), if we need to release some pages
2316  * at the end of the spd in case we error'ed out in filling the pipe.
2317  */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2318 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2319 {
2320 	put_page(spd->pages[i]);
2321 }
2322 
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2323 static struct page *linear_to_page(struct page *page, unsigned int *len,
2324 				   unsigned int *offset,
2325 				   struct sock *sk)
2326 {
2327 	struct page_frag *pfrag = sk_page_frag(sk);
2328 
2329 	if (!sk_page_frag_refill(sk, pfrag))
2330 		return NULL;
2331 
2332 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2333 
2334 	memcpy(page_address(pfrag->page) + pfrag->offset,
2335 	       page_address(page) + *offset, *len);
2336 	*offset = pfrag->offset;
2337 	pfrag->offset += *len;
2338 
2339 	return pfrag->page;
2340 }
2341 
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2342 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2343 			     struct page *page,
2344 			     unsigned int offset)
2345 {
2346 	return	spd->nr_pages &&
2347 		spd->pages[spd->nr_pages - 1] == page &&
2348 		(spd->partial[spd->nr_pages - 1].offset +
2349 		 spd->partial[spd->nr_pages - 1].len == offset);
2350 }
2351 
2352 /*
2353  * Fill page/offset/length into spd, if it can hold more pages.
2354  */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)2355 static bool spd_fill_page(struct splice_pipe_desc *spd,
2356 			  struct pipe_inode_info *pipe, struct page *page,
2357 			  unsigned int *len, unsigned int offset,
2358 			  bool linear,
2359 			  struct sock *sk)
2360 {
2361 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2362 		return true;
2363 
2364 	if (linear) {
2365 		page = linear_to_page(page, len, &offset, sk);
2366 		if (!page)
2367 			return true;
2368 	}
2369 	if (spd_can_coalesce(spd, page, offset)) {
2370 		spd->partial[spd->nr_pages - 1].len += *len;
2371 		return false;
2372 	}
2373 	get_page(page);
2374 	spd->pages[spd->nr_pages] = page;
2375 	spd->partial[spd->nr_pages].len = *len;
2376 	spd->partial[spd->nr_pages].offset = offset;
2377 	spd->nr_pages++;
2378 
2379 	return false;
2380 }
2381 
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)2382 static bool __splice_segment(struct page *page, unsigned int poff,
2383 			     unsigned int plen, unsigned int *off,
2384 			     unsigned int *len,
2385 			     struct splice_pipe_desc *spd, bool linear,
2386 			     struct sock *sk,
2387 			     struct pipe_inode_info *pipe)
2388 {
2389 	if (!*len)
2390 		return true;
2391 
2392 	/* skip this segment if already processed */
2393 	if (*off >= plen) {
2394 		*off -= plen;
2395 		return false;
2396 	}
2397 
2398 	/* ignore any bits we already processed */
2399 	poff += *off;
2400 	plen -= *off;
2401 	*off = 0;
2402 
2403 	do {
2404 		unsigned int flen = min(*len, plen);
2405 
2406 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2407 				  linear, sk))
2408 			return true;
2409 		poff += flen;
2410 		plen -= flen;
2411 		*len -= flen;
2412 	} while (*len && plen);
2413 
2414 	return false;
2415 }
2416 
2417 /*
2418  * Map linear and fragment data from the skb to spd. It reports true if the
2419  * pipe is full or if we already spliced the requested length.
2420  */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)2421 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2422 			      unsigned int *offset, unsigned int *len,
2423 			      struct splice_pipe_desc *spd, struct sock *sk)
2424 {
2425 	int seg;
2426 	struct sk_buff *iter;
2427 
2428 	/* map the linear part :
2429 	 * If skb->head_frag is set, this 'linear' part is backed by a
2430 	 * fragment, and if the head is not shared with any clones then
2431 	 * we can avoid a copy since we own the head portion of this page.
2432 	 */
2433 	if (__splice_segment(virt_to_page(skb->data),
2434 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2435 			     skb_headlen(skb),
2436 			     offset, len, spd,
2437 			     skb_head_is_locked(skb),
2438 			     sk, pipe))
2439 		return true;
2440 
2441 	/*
2442 	 * then map the fragments
2443 	 */
2444 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2445 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2446 
2447 		if (__splice_segment(skb_frag_page(f),
2448 				     skb_frag_off(f), skb_frag_size(f),
2449 				     offset, len, spd, false, sk, pipe))
2450 			return true;
2451 	}
2452 
2453 	skb_walk_frags(skb, iter) {
2454 		if (*offset >= iter->len) {
2455 			*offset -= iter->len;
2456 			continue;
2457 		}
2458 		/* __skb_splice_bits() only fails if the output has no room
2459 		 * left, so no point in going over the frag_list for the error
2460 		 * case.
2461 		 */
2462 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2463 			return true;
2464 	}
2465 
2466 	return false;
2467 }
2468 
2469 /*
2470  * Map data from the skb to a pipe. Should handle both the linear part,
2471  * the fragments, and the frag list.
2472  */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)2473 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2474 		    struct pipe_inode_info *pipe, unsigned int tlen,
2475 		    unsigned int flags)
2476 {
2477 	struct partial_page partial[MAX_SKB_FRAGS];
2478 	struct page *pages[MAX_SKB_FRAGS];
2479 	struct splice_pipe_desc spd = {
2480 		.pages = pages,
2481 		.partial = partial,
2482 		.nr_pages_max = MAX_SKB_FRAGS,
2483 		.ops = &nosteal_pipe_buf_ops,
2484 		.spd_release = sock_spd_release,
2485 	};
2486 	int ret = 0;
2487 
2488 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2489 
2490 	if (spd.nr_pages)
2491 		ret = splice_to_pipe(pipe, &spd);
2492 
2493 	return ret;
2494 }
2495 EXPORT_SYMBOL_GPL(skb_splice_bits);
2496 
2497 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)2498 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2499 			 int len)
2500 {
2501 	unsigned int orig_len = len;
2502 	struct sk_buff *head = skb;
2503 	unsigned short fragidx;
2504 	int slen, ret;
2505 
2506 do_frag_list:
2507 
2508 	/* Deal with head data */
2509 	while (offset < skb_headlen(skb) && len) {
2510 		struct kvec kv;
2511 		struct msghdr msg;
2512 
2513 		slen = min_t(int, len, skb_headlen(skb) - offset);
2514 		kv.iov_base = skb->data + offset;
2515 		kv.iov_len = slen;
2516 		memset(&msg, 0, sizeof(msg));
2517 		msg.msg_flags = MSG_DONTWAIT;
2518 
2519 		ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2520 		if (ret <= 0)
2521 			goto error;
2522 
2523 		offset += ret;
2524 		len -= ret;
2525 	}
2526 
2527 	/* All the data was skb head? */
2528 	if (!len)
2529 		goto out;
2530 
2531 	/* Make offset relative to start of frags */
2532 	offset -= skb_headlen(skb);
2533 
2534 	/* Find where we are in frag list */
2535 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2536 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2537 
2538 		if (offset < skb_frag_size(frag))
2539 			break;
2540 
2541 		offset -= skb_frag_size(frag);
2542 	}
2543 
2544 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2545 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2546 
2547 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2548 
2549 		while (slen) {
2550 			ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2551 						     skb_frag_off(frag) + offset,
2552 						     slen, MSG_DONTWAIT);
2553 			if (ret <= 0)
2554 				goto error;
2555 
2556 			len -= ret;
2557 			offset += ret;
2558 			slen -= ret;
2559 		}
2560 
2561 		offset = 0;
2562 	}
2563 
2564 	if (len) {
2565 		/* Process any frag lists */
2566 
2567 		if (skb == head) {
2568 			if (skb_has_frag_list(skb)) {
2569 				skb = skb_shinfo(skb)->frag_list;
2570 				goto do_frag_list;
2571 			}
2572 		} else if (skb->next) {
2573 			skb = skb->next;
2574 			goto do_frag_list;
2575 		}
2576 	}
2577 
2578 out:
2579 	return orig_len - len;
2580 
2581 error:
2582 	return orig_len == len ? ret : orig_len - len;
2583 }
2584 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2585 
2586 /**
2587  *	skb_store_bits - store bits from kernel buffer to skb
2588  *	@skb: destination buffer
2589  *	@offset: offset in destination
2590  *	@from: source buffer
2591  *	@len: number of bytes to copy
2592  *
2593  *	Copy the specified number of bytes from the source buffer to the
2594  *	destination skb.  This function handles all the messy bits of
2595  *	traversing fragment lists and such.
2596  */
2597 
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)2598 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2599 {
2600 	int start = skb_headlen(skb);
2601 	struct sk_buff *frag_iter;
2602 	int i, copy;
2603 
2604 	if (offset > (int)skb->len - len)
2605 		goto fault;
2606 
2607 	if ((copy = start - offset) > 0) {
2608 		if (copy > len)
2609 			copy = len;
2610 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2611 		if ((len -= copy) == 0)
2612 			return 0;
2613 		offset += copy;
2614 		from += copy;
2615 	}
2616 
2617 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2618 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2619 		int end;
2620 
2621 		WARN_ON(start > offset + len);
2622 
2623 		end = start + skb_frag_size(frag);
2624 		if ((copy = end - offset) > 0) {
2625 			u32 p_off, p_len, copied;
2626 			struct page *p;
2627 			u8 *vaddr;
2628 
2629 			if (copy > len)
2630 				copy = len;
2631 
2632 			skb_frag_foreach_page(frag,
2633 					      skb_frag_off(frag) + offset - start,
2634 					      copy, p, p_off, p_len, copied) {
2635 				vaddr = kmap_atomic(p);
2636 				memcpy(vaddr + p_off, from + copied, p_len);
2637 				kunmap_atomic(vaddr);
2638 			}
2639 
2640 			if ((len -= copy) == 0)
2641 				return 0;
2642 			offset += copy;
2643 			from += copy;
2644 		}
2645 		start = end;
2646 	}
2647 
2648 	skb_walk_frags(skb, frag_iter) {
2649 		int end;
2650 
2651 		WARN_ON(start > offset + len);
2652 
2653 		end = start + frag_iter->len;
2654 		if ((copy = end - offset) > 0) {
2655 			if (copy > len)
2656 				copy = len;
2657 			if (skb_store_bits(frag_iter, offset - start,
2658 					   from, copy))
2659 				goto fault;
2660 			if ((len -= copy) == 0)
2661 				return 0;
2662 			offset += copy;
2663 			from += copy;
2664 		}
2665 		start = end;
2666 	}
2667 	if (!len)
2668 		return 0;
2669 
2670 fault:
2671 	return -EFAULT;
2672 }
2673 EXPORT_SYMBOL(skb_store_bits);
2674 
2675 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2676 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2677 		      __wsum csum, const struct skb_checksum_ops *ops)
2678 {
2679 	int start = skb_headlen(skb);
2680 	int i, copy = start - offset;
2681 	struct sk_buff *frag_iter;
2682 	int pos = 0;
2683 
2684 	/* Checksum header. */
2685 	if (copy > 0) {
2686 		if (copy > len)
2687 			copy = len;
2688 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2689 				       skb->data + offset, copy, csum);
2690 		if ((len -= copy) == 0)
2691 			return csum;
2692 		offset += copy;
2693 		pos	= copy;
2694 	}
2695 
2696 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2697 		int end;
2698 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2699 
2700 		WARN_ON(start > offset + len);
2701 
2702 		end = start + skb_frag_size(frag);
2703 		if ((copy = end - offset) > 0) {
2704 			u32 p_off, p_len, copied;
2705 			struct page *p;
2706 			__wsum csum2;
2707 			u8 *vaddr;
2708 
2709 			if (copy > len)
2710 				copy = len;
2711 
2712 			skb_frag_foreach_page(frag,
2713 					      skb_frag_off(frag) + offset - start,
2714 					      copy, p, p_off, p_len, copied) {
2715 				vaddr = kmap_atomic(p);
2716 				csum2 = INDIRECT_CALL_1(ops->update,
2717 							csum_partial_ext,
2718 							vaddr + p_off, p_len, 0);
2719 				kunmap_atomic(vaddr);
2720 				csum = INDIRECT_CALL_1(ops->combine,
2721 						       csum_block_add_ext, csum,
2722 						       csum2, pos, p_len);
2723 				pos += p_len;
2724 			}
2725 
2726 			if (!(len -= copy))
2727 				return csum;
2728 			offset += copy;
2729 		}
2730 		start = end;
2731 	}
2732 
2733 	skb_walk_frags(skb, frag_iter) {
2734 		int end;
2735 
2736 		WARN_ON(start > offset + len);
2737 
2738 		end = start + frag_iter->len;
2739 		if ((copy = end - offset) > 0) {
2740 			__wsum csum2;
2741 			if (copy > len)
2742 				copy = len;
2743 			csum2 = __skb_checksum(frag_iter, offset - start,
2744 					       copy, 0, ops);
2745 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2746 					       csum, csum2, pos, copy);
2747 			if ((len -= copy) == 0)
2748 				return csum;
2749 			offset += copy;
2750 			pos    += copy;
2751 		}
2752 		start = end;
2753 	}
2754 	BUG_ON(len);
2755 
2756 	return csum;
2757 }
2758 EXPORT_SYMBOL(__skb_checksum);
2759 
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)2760 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2761 		    int len, __wsum csum)
2762 {
2763 	const struct skb_checksum_ops ops = {
2764 		.update  = csum_partial_ext,
2765 		.combine = csum_block_add_ext,
2766 	};
2767 
2768 	return __skb_checksum(skb, offset, len, csum, &ops);
2769 }
2770 EXPORT_SYMBOL(skb_checksum);
2771 
2772 /* Both of above in one bottle. */
2773 
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)2774 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2775 				    u8 *to, int len)
2776 {
2777 	int start = skb_headlen(skb);
2778 	int i, copy = start - offset;
2779 	struct sk_buff *frag_iter;
2780 	int pos = 0;
2781 	__wsum csum = 0;
2782 
2783 	/* Copy header. */
2784 	if (copy > 0) {
2785 		if (copy > len)
2786 			copy = len;
2787 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2788 						 copy);
2789 		if ((len -= copy) == 0)
2790 			return csum;
2791 		offset += copy;
2792 		to     += copy;
2793 		pos	= copy;
2794 	}
2795 
2796 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2797 		int end;
2798 
2799 		WARN_ON(start > offset + len);
2800 
2801 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2802 		if ((copy = end - offset) > 0) {
2803 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2804 			u32 p_off, p_len, copied;
2805 			struct page *p;
2806 			__wsum csum2;
2807 			u8 *vaddr;
2808 
2809 			if (copy > len)
2810 				copy = len;
2811 
2812 			skb_frag_foreach_page(frag,
2813 					      skb_frag_off(frag) + offset - start,
2814 					      copy, p, p_off, p_len, copied) {
2815 				vaddr = kmap_atomic(p);
2816 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2817 								  to + copied,
2818 								  p_len);
2819 				kunmap_atomic(vaddr);
2820 				csum = csum_block_add(csum, csum2, pos);
2821 				pos += p_len;
2822 			}
2823 
2824 			if (!(len -= copy))
2825 				return csum;
2826 			offset += copy;
2827 			to     += copy;
2828 		}
2829 		start = end;
2830 	}
2831 
2832 	skb_walk_frags(skb, frag_iter) {
2833 		__wsum csum2;
2834 		int end;
2835 
2836 		WARN_ON(start > offset + len);
2837 
2838 		end = start + frag_iter->len;
2839 		if ((copy = end - offset) > 0) {
2840 			if (copy > len)
2841 				copy = len;
2842 			csum2 = skb_copy_and_csum_bits(frag_iter,
2843 						       offset - start,
2844 						       to, copy);
2845 			csum = csum_block_add(csum, csum2, pos);
2846 			if ((len -= copy) == 0)
2847 				return csum;
2848 			offset += copy;
2849 			to     += copy;
2850 			pos    += copy;
2851 		}
2852 		start = end;
2853 	}
2854 	BUG_ON(len);
2855 	return csum;
2856 }
2857 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2858 
__skb_checksum_complete_head(struct sk_buff * skb,int len)2859 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2860 {
2861 	__sum16 sum;
2862 
2863 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2864 	/* See comments in __skb_checksum_complete(). */
2865 	if (likely(!sum)) {
2866 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2867 		    !skb->csum_complete_sw)
2868 			netdev_rx_csum_fault(skb->dev, skb);
2869 	}
2870 	if (!skb_shared(skb))
2871 		skb->csum_valid = !sum;
2872 	return sum;
2873 }
2874 EXPORT_SYMBOL(__skb_checksum_complete_head);
2875 
2876 /* This function assumes skb->csum already holds pseudo header's checksum,
2877  * which has been changed from the hardware checksum, for example, by
2878  * __skb_checksum_validate_complete(). And, the original skb->csum must
2879  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2880  *
2881  * It returns non-zero if the recomputed checksum is still invalid, otherwise
2882  * zero. The new checksum is stored back into skb->csum unless the skb is
2883  * shared.
2884  */
__skb_checksum_complete(struct sk_buff * skb)2885 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2886 {
2887 	__wsum csum;
2888 	__sum16 sum;
2889 
2890 	csum = skb_checksum(skb, 0, skb->len, 0);
2891 
2892 	sum = csum_fold(csum_add(skb->csum, csum));
2893 	/* This check is inverted, because we already knew the hardware
2894 	 * checksum is invalid before calling this function. So, if the
2895 	 * re-computed checksum is valid instead, then we have a mismatch
2896 	 * between the original skb->csum and skb_checksum(). This means either
2897 	 * the original hardware checksum is incorrect or we screw up skb->csum
2898 	 * when moving skb->data around.
2899 	 */
2900 	if (likely(!sum)) {
2901 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2902 		    !skb->csum_complete_sw)
2903 			netdev_rx_csum_fault(skb->dev, skb);
2904 	}
2905 
2906 	if (!skb_shared(skb)) {
2907 		/* Save full packet checksum */
2908 		skb->csum = csum;
2909 		skb->ip_summed = CHECKSUM_COMPLETE;
2910 		skb->csum_complete_sw = 1;
2911 		skb->csum_valid = !sum;
2912 	}
2913 
2914 	return sum;
2915 }
2916 EXPORT_SYMBOL(__skb_checksum_complete);
2917 
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)2918 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2919 {
2920 	net_warn_ratelimited(
2921 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2922 		__func__);
2923 	return 0;
2924 }
2925 
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)2926 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2927 				       int offset, int len)
2928 {
2929 	net_warn_ratelimited(
2930 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
2931 		__func__);
2932 	return 0;
2933 }
2934 
2935 static const struct skb_checksum_ops default_crc32c_ops = {
2936 	.update  = warn_crc32c_csum_update,
2937 	.combine = warn_crc32c_csum_combine,
2938 };
2939 
2940 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2941 	&default_crc32c_ops;
2942 EXPORT_SYMBOL(crc32c_csum_stub);
2943 
2944  /**
2945  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2946  *	@from: source buffer
2947  *
2948  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2949  *	into skb_zerocopy().
2950  */
2951 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)2952 skb_zerocopy_headlen(const struct sk_buff *from)
2953 {
2954 	unsigned int hlen = 0;
2955 
2956 	if (!from->head_frag ||
2957 	    skb_headlen(from) < L1_CACHE_BYTES ||
2958 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
2959 		hlen = skb_headlen(from);
2960 		if (!hlen)
2961 			hlen = from->len;
2962 	}
2963 
2964 	if (skb_has_frag_list(from))
2965 		hlen = from->len;
2966 
2967 	return hlen;
2968 }
2969 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2970 
2971 /**
2972  *	skb_zerocopy - Zero copy skb to skb
2973  *	@to: destination buffer
2974  *	@from: source buffer
2975  *	@len: number of bytes to copy from source buffer
2976  *	@hlen: size of linear headroom in destination buffer
2977  *
2978  *	Copies up to `len` bytes from `from` to `to` by creating references
2979  *	to the frags in the source buffer.
2980  *
2981  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2982  *	headroom in the `to` buffer.
2983  *
2984  *	Return value:
2985  *	0: everything is OK
2986  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2987  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2988  */
2989 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)2990 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2991 {
2992 	int i, j = 0;
2993 	int plen = 0; /* length of skb->head fragment */
2994 	int ret;
2995 	struct page *page;
2996 	unsigned int offset;
2997 
2998 	BUG_ON(!from->head_frag && !hlen);
2999 
3000 	/* dont bother with small payloads */
3001 	if (len <= skb_tailroom(to))
3002 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3003 
3004 	if (hlen) {
3005 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3006 		if (unlikely(ret))
3007 			return ret;
3008 		len -= hlen;
3009 	} else {
3010 		plen = min_t(int, skb_headlen(from), len);
3011 		if (plen) {
3012 			page = virt_to_head_page(from->head);
3013 			offset = from->data - (unsigned char *)page_address(page);
3014 			__skb_fill_page_desc(to, 0, page, offset, plen);
3015 			get_page(page);
3016 			j = 1;
3017 			len -= plen;
3018 		}
3019 	}
3020 
3021 	to->truesize += len + plen;
3022 	to->len += len + plen;
3023 	to->data_len += len + plen;
3024 
3025 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3026 		skb_tx_error(from);
3027 		return -ENOMEM;
3028 	}
3029 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3030 
3031 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3032 		int size;
3033 
3034 		if (!len)
3035 			break;
3036 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3037 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3038 					len);
3039 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3040 		len -= size;
3041 		skb_frag_ref(to, j);
3042 		j++;
3043 	}
3044 	skb_shinfo(to)->nr_frags = j;
3045 
3046 	return 0;
3047 }
3048 EXPORT_SYMBOL_GPL(skb_zerocopy);
3049 
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3050 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3051 {
3052 	__wsum csum;
3053 	long csstart;
3054 
3055 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3056 		csstart = skb_checksum_start_offset(skb);
3057 	else
3058 		csstart = skb_headlen(skb);
3059 
3060 	BUG_ON(csstart > skb_headlen(skb));
3061 
3062 	skb_copy_from_linear_data(skb, to, csstart);
3063 
3064 	csum = 0;
3065 	if (csstart != skb->len)
3066 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3067 					      skb->len - csstart);
3068 
3069 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3070 		long csstuff = csstart + skb->csum_offset;
3071 
3072 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3073 	}
3074 }
3075 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3076 
3077 /**
3078  *	skb_dequeue - remove from the head of the queue
3079  *	@list: list to dequeue from
3080  *
3081  *	Remove the head of the list. The list lock is taken so the function
3082  *	may be used safely with other locking list functions. The head item is
3083  *	returned or %NULL if the list is empty.
3084  */
3085 
skb_dequeue(struct sk_buff_head * list)3086 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3087 {
3088 	unsigned long flags;
3089 	struct sk_buff *result;
3090 
3091 	spin_lock_irqsave(&list->lock, flags);
3092 	result = __skb_dequeue(list);
3093 	spin_unlock_irqrestore(&list->lock, flags);
3094 	return result;
3095 }
3096 EXPORT_SYMBOL(skb_dequeue);
3097 
3098 /**
3099  *	skb_dequeue_tail - remove from the tail of the queue
3100  *	@list: list to dequeue from
3101  *
3102  *	Remove the tail of the list. The list lock is taken so the function
3103  *	may be used safely with other locking list functions. The tail item is
3104  *	returned or %NULL if the list is empty.
3105  */
skb_dequeue_tail(struct sk_buff_head * list)3106 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3107 {
3108 	unsigned long flags;
3109 	struct sk_buff *result;
3110 
3111 	spin_lock_irqsave(&list->lock, flags);
3112 	result = __skb_dequeue_tail(list);
3113 	spin_unlock_irqrestore(&list->lock, flags);
3114 	return result;
3115 }
3116 EXPORT_SYMBOL(skb_dequeue_tail);
3117 
3118 /**
3119  *	skb_queue_purge - empty a list
3120  *	@list: list to empty
3121  *
3122  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3123  *	the list and one reference dropped. This function takes the list
3124  *	lock and is atomic with respect to other list locking functions.
3125  */
skb_queue_purge(struct sk_buff_head * list)3126 void skb_queue_purge(struct sk_buff_head *list)
3127 {
3128 	struct sk_buff *skb;
3129 	while ((skb = skb_dequeue(list)) != NULL)
3130 		kfree_skb(skb);
3131 }
3132 EXPORT_SYMBOL(skb_queue_purge);
3133 
3134 /**
3135  *	skb_rbtree_purge - empty a skb rbtree
3136  *	@root: root of the rbtree to empty
3137  *	Return value: the sum of truesizes of all purged skbs.
3138  *
3139  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3140  *	the list and one reference dropped. This function does not take
3141  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3142  *	out-of-order queue is protected by the socket lock).
3143  */
skb_rbtree_purge(struct rb_root * root)3144 unsigned int skb_rbtree_purge(struct rb_root *root)
3145 {
3146 	struct rb_node *p = rb_first(root);
3147 	unsigned int sum = 0;
3148 
3149 	while (p) {
3150 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3151 
3152 		p = rb_next(p);
3153 		rb_erase(&skb->rbnode, root);
3154 		sum += skb->truesize;
3155 		kfree_skb(skb);
3156 	}
3157 	return sum;
3158 }
3159 
3160 /**
3161  *	skb_queue_head - queue a buffer at the list head
3162  *	@list: list to use
3163  *	@newsk: buffer to queue
3164  *
3165  *	Queue a buffer at the start of the list. This function takes the
3166  *	list lock and can be used safely with other locking &sk_buff functions
3167  *	safely.
3168  *
3169  *	A buffer cannot be placed on two lists at the same time.
3170  */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3171 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3172 {
3173 	unsigned long flags;
3174 
3175 	spin_lock_irqsave(&list->lock, flags);
3176 	__skb_queue_head(list, newsk);
3177 	spin_unlock_irqrestore(&list->lock, flags);
3178 }
3179 EXPORT_SYMBOL(skb_queue_head);
3180 
3181 /**
3182  *	skb_queue_tail - queue a buffer at the list tail
3183  *	@list: list to use
3184  *	@newsk: buffer to queue
3185  *
3186  *	Queue a buffer at the tail of the list. This function takes the
3187  *	list lock and can be used safely with other locking &sk_buff functions
3188  *	safely.
3189  *
3190  *	A buffer cannot be placed on two lists at the same time.
3191  */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)3192 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3193 {
3194 	unsigned long flags;
3195 
3196 	spin_lock_irqsave(&list->lock, flags);
3197 	__skb_queue_tail(list, newsk);
3198 	spin_unlock_irqrestore(&list->lock, flags);
3199 }
3200 EXPORT_SYMBOL(skb_queue_tail);
3201 
3202 /**
3203  *	skb_unlink	-	remove a buffer from a list
3204  *	@skb: buffer to remove
3205  *	@list: list to use
3206  *
3207  *	Remove a packet from a list. The list locks are taken and this
3208  *	function is atomic with respect to other list locked calls
3209  *
3210  *	You must know what list the SKB is on.
3211  */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)3212 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3213 {
3214 	unsigned long flags;
3215 
3216 	spin_lock_irqsave(&list->lock, flags);
3217 	__skb_unlink(skb, list);
3218 	spin_unlock_irqrestore(&list->lock, flags);
3219 }
3220 EXPORT_SYMBOL(skb_unlink);
3221 
3222 /**
3223  *	skb_append	-	append a buffer
3224  *	@old: buffer to insert after
3225  *	@newsk: buffer to insert
3226  *	@list: list to use
3227  *
3228  *	Place a packet after a given packet in a list. The list locks are taken
3229  *	and this function is atomic with respect to other list locked calls.
3230  *	A buffer cannot be placed on two lists at the same time.
3231  */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)3232 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3233 {
3234 	unsigned long flags;
3235 
3236 	spin_lock_irqsave(&list->lock, flags);
3237 	__skb_queue_after(list, old, newsk);
3238 	spin_unlock_irqrestore(&list->lock, flags);
3239 }
3240 EXPORT_SYMBOL(skb_append);
3241 
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)3242 static inline void skb_split_inside_header(struct sk_buff *skb,
3243 					   struct sk_buff* skb1,
3244 					   const u32 len, const int pos)
3245 {
3246 	int i;
3247 
3248 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3249 					 pos - len);
3250 	/* And move data appendix as is. */
3251 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3252 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3253 
3254 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3255 	skb_shinfo(skb)->nr_frags  = 0;
3256 	skb1->data_len		   = skb->data_len;
3257 	skb1->len		   += skb1->data_len;
3258 	skb->data_len		   = 0;
3259 	skb->len		   = len;
3260 	skb_set_tail_pointer(skb, len);
3261 }
3262 
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)3263 static inline void skb_split_no_header(struct sk_buff *skb,
3264 				       struct sk_buff* skb1,
3265 				       const u32 len, int pos)
3266 {
3267 	int i, k = 0;
3268 	const int nfrags = skb_shinfo(skb)->nr_frags;
3269 
3270 	skb_shinfo(skb)->nr_frags = 0;
3271 	skb1->len		  = skb1->data_len = skb->len - len;
3272 	skb->len		  = len;
3273 	skb->data_len		  = len - pos;
3274 
3275 	for (i = 0; i < nfrags; i++) {
3276 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3277 
3278 		if (pos + size > len) {
3279 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3280 
3281 			if (pos < len) {
3282 				/* Split frag.
3283 				 * We have two variants in this case:
3284 				 * 1. Move all the frag to the second
3285 				 *    part, if it is possible. F.e.
3286 				 *    this approach is mandatory for TUX,
3287 				 *    where splitting is expensive.
3288 				 * 2. Split is accurately. We make this.
3289 				 */
3290 				skb_frag_ref(skb, i);
3291 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3292 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3293 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3294 				skb_shinfo(skb)->nr_frags++;
3295 			}
3296 			k++;
3297 		} else
3298 			skb_shinfo(skb)->nr_frags++;
3299 		pos += size;
3300 	}
3301 	skb_shinfo(skb1)->nr_frags = k;
3302 }
3303 
3304 /**
3305  * skb_split - Split fragmented skb to two parts at length len.
3306  * @skb: the buffer to split
3307  * @skb1: the buffer to receive the second part
3308  * @len: new length for skb
3309  */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)3310 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3311 {
3312 	int pos = skb_headlen(skb);
3313 
3314 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3315 				      SKBTX_SHARED_FRAG;
3316 	skb_zerocopy_clone(skb1, skb, 0);
3317 	if (len < pos)	/* Split line is inside header. */
3318 		skb_split_inside_header(skb, skb1, len, pos);
3319 	else		/* Second chunk has no header, nothing to copy. */
3320 		skb_split_no_header(skb, skb1, len, pos);
3321 }
3322 EXPORT_SYMBOL(skb_split);
3323 
3324 /* Shifting from/to a cloned skb is a no-go.
3325  *
3326  * Caller cannot keep skb_shinfo related pointers past calling here!
3327  */
skb_prepare_for_shift(struct sk_buff * skb)3328 static int skb_prepare_for_shift(struct sk_buff *skb)
3329 {
3330 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3331 }
3332 
3333 /**
3334  * skb_shift - Shifts paged data partially from skb to another
3335  * @tgt: buffer into which tail data gets added
3336  * @skb: buffer from which the paged data comes from
3337  * @shiftlen: shift up to this many bytes
3338  *
3339  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3340  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3341  * It's up to caller to free skb if everything was shifted.
3342  *
3343  * If @tgt runs out of frags, the whole operation is aborted.
3344  *
3345  * Skb cannot include anything else but paged data while tgt is allowed
3346  * to have non-paged data as well.
3347  *
3348  * TODO: full sized shift could be optimized but that would need
3349  * specialized skb free'er to handle frags without up-to-date nr_frags.
3350  */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)3351 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3352 {
3353 	int from, to, merge, todo;
3354 	skb_frag_t *fragfrom, *fragto;
3355 
3356 	BUG_ON(shiftlen > skb->len);
3357 
3358 	if (skb_headlen(skb))
3359 		return 0;
3360 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3361 		return 0;
3362 
3363 	todo = shiftlen;
3364 	from = 0;
3365 	to = skb_shinfo(tgt)->nr_frags;
3366 	fragfrom = &skb_shinfo(skb)->frags[from];
3367 
3368 	/* Actual merge is delayed until the point when we know we can
3369 	 * commit all, so that we don't have to undo partial changes
3370 	 */
3371 	if (!to ||
3372 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3373 			      skb_frag_off(fragfrom))) {
3374 		merge = -1;
3375 	} else {
3376 		merge = to - 1;
3377 
3378 		todo -= skb_frag_size(fragfrom);
3379 		if (todo < 0) {
3380 			if (skb_prepare_for_shift(skb) ||
3381 			    skb_prepare_for_shift(tgt))
3382 				return 0;
3383 
3384 			/* All previous frag pointers might be stale! */
3385 			fragfrom = &skb_shinfo(skb)->frags[from];
3386 			fragto = &skb_shinfo(tgt)->frags[merge];
3387 
3388 			skb_frag_size_add(fragto, shiftlen);
3389 			skb_frag_size_sub(fragfrom, shiftlen);
3390 			skb_frag_off_add(fragfrom, shiftlen);
3391 
3392 			goto onlymerged;
3393 		}
3394 
3395 		from++;
3396 	}
3397 
3398 	/* Skip full, not-fitting skb to avoid expensive operations */
3399 	if ((shiftlen == skb->len) &&
3400 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3401 		return 0;
3402 
3403 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3404 		return 0;
3405 
3406 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3407 		if (to == MAX_SKB_FRAGS)
3408 			return 0;
3409 
3410 		fragfrom = &skb_shinfo(skb)->frags[from];
3411 		fragto = &skb_shinfo(tgt)->frags[to];
3412 
3413 		if (todo >= skb_frag_size(fragfrom)) {
3414 			*fragto = *fragfrom;
3415 			todo -= skb_frag_size(fragfrom);
3416 			from++;
3417 			to++;
3418 
3419 		} else {
3420 			__skb_frag_ref(fragfrom);
3421 			skb_frag_page_copy(fragto, fragfrom);
3422 			skb_frag_off_copy(fragto, fragfrom);
3423 			skb_frag_size_set(fragto, todo);
3424 
3425 			skb_frag_off_add(fragfrom, todo);
3426 			skb_frag_size_sub(fragfrom, todo);
3427 			todo = 0;
3428 
3429 			to++;
3430 			break;
3431 		}
3432 	}
3433 
3434 	/* Ready to "commit" this state change to tgt */
3435 	skb_shinfo(tgt)->nr_frags = to;
3436 
3437 	if (merge >= 0) {
3438 		fragfrom = &skb_shinfo(skb)->frags[0];
3439 		fragto = &skb_shinfo(tgt)->frags[merge];
3440 
3441 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3442 		__skb_frag_unref(fragfrom);
3443 	}
3444 
3445 	/* Reposition in the original skb */
3446 	to = 0;
3447 	while (from < skb_shinfo(skb)->nr_frags)
3448 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3449 	skb_shinfo(skb)->nr_frags = to;
3450 
3451 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3452 
3453 onlymerged:
3454 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3455 	 * the other hand might need it if it needs to be resent
3456 	 */
3457 	tgt->ip_summed = CHECKSUM_PARTIAL;
3458 	skb->ip_summed = CHECKSUM_PARTIAL;
3459 
3460 	/* Yak, is it really working this way? Some helper please? */
3461 	skb->len -= shiftlen;
3462 	skb->data_len -= shiftlen;
3463 	skb->truesize -= shiftlen;
3464 	tgt->len += shiftlen;
3465 	tgt->data_len += shiftlen;
3466 	tgt->truesize += shiftlen;
3467 
3468 	return shiftlen;
3469 }
3470 
3471 /**
3472  * skb_prepare_seq_read - Prepare a sequential read of skb data
3473  * @skb: the buffer to read
3474  * @from: lower offset of data to be read
3475  * @to: upper offset of data to be read
3476  * @st: state variable
3477  *
3478  * Initializes the specified state variable. Must be called before
3479  * invoking skb_seq_read() for the first time.
3480  */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)3481 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3482 			  unsigned int to, struct skb_seq_state *st)
3483 {
3484 	st->lower_offset = from;
3485 	st->upper_offset = to;
3486 	st->root_skb = st->cur_skb = skb;
3487 	st->frag_idx = st->stepped_offset = 0;
3488 	st->frag_data = NULL;
3489 }
3490 EXPORT_SYMBOL(skb_prepare_seq_read);
3491 
3492 /**
3493  * skb_seq_read - Sequentially read skb data
3494  * @consumed: number of bytes consumed by the caller so far
3495  * @data: destination pointer for data to be returned
3496  * @st: state variable
3497  *
3498  * Reads a block of skb data at @consumed relative to the
3499  * lower offset specified to skb_prepare_seq_read(). Assigns
3500  * the head of the data block to @data and returns the length
3501  * of the block or 0 if the end of the skb data or the upper
3502  * offset has been reached.
3503  *
3504  * The caller is not required to consume all of the data
3505  * returned, i.e. @consumed is typically set to the number
3506  * of bytes already consumed and the next call to
3507  * skb_seq_read() will return the remaining part of the block.
3508  *
3509  * Note 1: The size of each block of data returned can be arbitrary,
3510  *       this limitation is the cost for zerocopy sequential
3511  *       reads of potentially non linear data.
3512  *
3513  * Note 2: Fragment lists within fragments are not implemented
3514  *       at the moment, state->root_skb could be replaced with
3515  *       a stack for this purpose.
3516  */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)3517 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3518 			  struct skb_seq_state *st)
3519 {
3520 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3521 	skb_frag_t *frag;
3522 
3523 	if (unlikely(abs_offset >= st->upper_offset)) {
3524 		if (st->frag_data) {
3525 			kunmap_atomic(st->frag_data);
3526 			st->frag_data = NULL;
3527 		}
3528 		return 0;
3529 	}
3530 
3531 next_skb:
3532 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3533 
3534 	if (abs_offset < block_limit && !st->frag_data) {
3535 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3536 		return block_limit - abs_offset;
3537 	}
3538 
3539 	if (st->frag_idx == 0 && !st->frag_data)
3540 		st->stepped_offset += skb_headlen(st->cur_skb);
3541 
3542 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3543 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3544 		block_limit = skb_frag_size(frag) + st->stepped_offset;
3545 
3546 		if (abs_offset < block_limit) {
3547 			if (!st->frag_data)
3548 				st->frag_data = kmap_atomic(skb_frag_page(frag));
3549 
3550 			*data = (u8 *) st->frag_data + skb_frag_off(frag) +
3551 				(abs_offset - st->stepped_offset);
3552 
3553 			return block_limit - abs_offset;
3554 		}
3555 
3556 		if (st->frag_data) {
3557 			kunmap_atomic(st->frag_data);
3558 			st->frag_data = NULL;
3559 		}
3560 
3561 		st->frag_idx++;
3562 		st->stepped_offset += skb_frag_size(frag);
3563 	}
3564 
3565 	if (st->frag_data) {
3566 		kunmap_atomic(st->frag_data);
3567 		st->frag_data = NULL;
3568 	}
3569 
3570 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3571 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3572 		st->frag_idx = 0;
3573 		goto next_skb;
3574 	} else if (st->cur_skb->next) {
3575 		st->cur_skb = st->cur_skb->next;
3576 		st->frag_idx = 0;
3577 		goto next_skb;
3578 	}
3579 
3580 	return 0;
3581 }
3582 EXPORT_SYMBOL(skb_seq_read);
3583 
3584 /**
3585  * skb_abort_seq_read - Abort a sequential read of skb data
3586  * @st: state variable
3587  *
3588  * Must be called if skb_seq_read() was not called until it
3589  * returned 0.
3590  */
skb_abort_seq_read(struct skb_seq_state * st)3591 void skb_abort_seq_read(struct skb_seq_state *st)
3592 {
3593 	if (st->frag_data)
3594 		kunmap_atomic(st->frag_data);
3595 }
3596 EXPORT_SYMBOL(skb_abort_seq_read);
3597 
3598 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3599 
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)3600 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3601 					  struct ts_config *conf,
3602 					  struct ts_state *state)
3603 {
3604 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3605 }
3606 
skb_ts_finish(struct ts_config * conf,struct ts_state * state)3607 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3608 {
3609 	skb_abort_seq_read(TS_SKB_CB(state));
3610 }
3611 
3612 /**
3613  * skb_find_text - Find a text pattern in skb data
3614  * @skb: the buffer to look in
3615  * @from: search offset
3616  * @to: search limit
3617  * @config: textsearch configuration
3618  *
3619  * Finds a pattern in the skb data according to the specified
3620  * textsearch configuration. Use textsearch_next() to retrieve
3621  * subsequent occurrences of the pattern. Returns the offset
3622  * to the first occurrence or UINT_MAX if no match was found.
3623  */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)3624 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3625 			   unsigned int to, struct ts_config *config)
3626 {
3627 	struct ts_state state;
3628 	unsigned int ret;
3629 
3630 	config->get_next_block = skb_ts_get_next_block;
3631 	config->finish = skb_ts_finish;
3632 
3633 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3634 
3635 	ret = textsearch_find(config, &state);
3636 	return (ret <= to - from ? ret : UINT_MAX);
3637 }
3638 EXPORT_SYMBOL(skb_find_text);
3639 
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)3640 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3641 			 int offset, size_t size)
3642 {
3643 	int i = skb_shinfo(skb)->nr_frags;
3644 
3645 	if (skb_can_coalesce(skb, i, page, offset)) {
3646 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3647 	} else if (i < MAX_SKB_FRAGS) {
3648 		get_page(page);
3649 		skb_fill_page_desc(skb, i, page, offset, size);
3650 	} else {
3651 		return -EMSGSIZE;
3652 	}
3653 
3654 	return 0;
3655 }
3656 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3657 
3658 /**
3659  *	skb_pull_rcsum - pull skb and update receive checksum
3660  *	@skb: buffer to update
3661  *	@len: length of data pulled
3662  *
3663  *	This function performs an skb_pull on the packet and updates
3664  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3665  *	receive path processing instead of skb_pull unless you know
3666  *	that the checksum difference is zero (e.g., a valid IP header)
3667  *	or you are setting ip_summed to CHECKSUM_NONE.
3668  */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)3669 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3670 {
3671 	unsigned char *data = skb->data;
3672 
3673 	BUG_ON(len > skb->len);
3674 	__skb_pull(skb, len);
3675 	skb_postpull_rcsum(skb, data, len);
3676 	return skb->data;
3677 }
3678 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3679 
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)3680 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3681 {
3682 	skb_frag_t head_frag;
3683 	struct page *page;
3684 
3685 	page = virt_to_head_page(frag_skb->head);
3686 	__skb_frag_set_page(&head_frag, page);
3687 	skb_frag_off_set(&head_frag, frag_skb->data -
3688 			 (unsigned char *)page_address(page));
3689 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3690 	return head_frag;
3691 }
3692 
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)3693 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3694 				 netdev_features_t features,
3695 				 unsigned int offset)
3696 {
3697 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3698 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3699 	unsigned int delta_truesize = 0;
3700 	unsigned int delta_len = 0;
3701 	struct sk_buff *tail = NULL;
3702 	struct sk_buff *nskb, *tmp;
3703 	int len_diff, err;
3704 
3705 	skb_push(skb, -skb_network_offset(skb) + offset);
3706 
3707 	skb_shinfo(skb)->frag_list = NULL;
3708 
3709 	do {
3710 		nskb = list_skb;
3711 		list_skb = list_skb->next;
3712 
3713 		err = 0;
3714 		delta_truesize += nskb->truesize;
3715 		if (skb_shared(nskb)) {
3716 			tmp = skb_clone(nskb, GFP_ATOMIC);
3717 			if (tmp) {
3718 				consume_skb(nskb);
3719 				nskb = tmp;
3720 				err = skb_unclone(nskb, GFP_ATOMIC);
3721 			} else {
3722 				err = -ENOMEM;
3723 			}
3724 		}
3725 
3726 		if (!tail)
3727 			skb->next = nskb;
3728 		else
3729 			tail->next = nskb;
3730 
3731 		if (unlikely(err)) {
3732 			nskb->next = list_skb;
3733 			goto err_linearize;
3734 		}
3735 
3736 		tail = nskb;
3737 
3738 		delta_len += nskb->len;
3739 
3740 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3741 
3742 		skb_release_head_state(nskb);
3743 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
3744 		 __copy_skb_header(nskb, skb);
3745 
3746 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3747 		nskb->transport_header += len_diff;
3748 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3749 						 nskb->data - tnl_hlen,
3750 						 offset + tnl_hlen);
3751 
3752 		if (skb_needs_linearize(nskb, features) &&
3753 		    __skb_linearize(nskb))
3754 			goto err_linearize;
3755 
3756 	} while (list_skb);
3757 
3758 	skb->truesize = skb->truesize - delta_truesize;
3759 	skb->data_len = skb->data_len - delta_len;
3760 	skb->len = skb->len - delta_len;
3761 
3762 	skb_gso_reset(skb);
3763 
3764 	skb->prev = tail;
3765 
3766 	if (skb_needs_linearize(skb, features) &&
3767 	    __skb_linearize(skb))
3768 		goto err_linearize;
3769 
3770 	skb_get(skb);
3771 
3772 	return skb;
3773 
3774 err_linearize:
3775 	kfree_skb_list(skb->next);
3776 	skb->next = NULL;
3777 	return ERR_PTR(-ENOMEM);
3778 }
3779 EXPORT_SYMBOL_GPL(skb_segment_list);
3780 
skb_gro_receive_list(struct sk_buff * p,struct sk_buff * skb)3781 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3782 {
3783 	if (unlikely(p->len + skb->len >= 65536))
3784 		return -E2BIG;
3785 
3786 	if (NAPI_GRO_CB(p)->last == p)
3787 		skb_shinfo(p)->frag_list = skb;
3788 	else
3789 		NAPI_GRO_CB(p)->last->next = skb;
3790 
3791 	skb_pull(skb, skb_gro_offset(skb));
3792 
3793 	NAPI_GRO_CB(p)->last = skb;
3794 	NAPI_GRO_CB(p)->count++;
3795 	p->data_len += skb->len;
3796 	p->truesize += skb->truesize;
3797 	p->len += skb->len;
3798 
3799 	NAPI_GRO_CB(skb)->same_flow = 1;
3800 
3801 	return 0;
3802 }
3803 
3804 /**
3805  *	skb_segment - Perform protocol segmentation on skb.
3806  *	@head_skb: buffer to segment
3807  *	@features: features for the output path (see dev->features)
3808  *
3809  *	This function performs segmentation on the given skb.  It returns
3810  *	a pointer to the first in a list of new skbs for the segments.
3811  *	In case of error it returns ERR_PTR(err).
3812  */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)3813 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3814 			    netdev_features_t features)
3815 {
3816 	struct sk_buff *segs = NULL;
3817 	struct sk_buff *tail = NULL;
3818 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3819 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3820 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3821 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3822 	struct sk_buff *frag_skb = head_skb;
3823 	unsigned int offset = doffset;
3824 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3825 	unsigned int partial_segs = 0;
3826 	unsigned int headroom;
3827 	unsigned int len = head_skb->len;
3828 	__be16 proto;
3829 	bool csum, sg;
3830 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3831 	int err = -ENOMEM;
3832 	int i = 0;
3833 	int pos;
3834 
3835 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
3836 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
3837 		struct sk_buff *check_skb;
3838 
3839 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
3840 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
3841 				/* gso_size is untrusted, and we have a frag_list with
3842 				 * a linear non head_frag item.
3843 				 *
3844 				 * If head_skb's headlen does not fit requested gso_size,
3845 				 * it means that the frag_list members do NOT terminate
3846 				 * on exact gso_size boundaries. Hence we cannot perform
3847 				 * skb_frag_t page sharing. Therefore we must fallback to
3848 				 * copying the frag_list skbs; we do so by disabling SG.
3849 				 */
3850 				features &= ~NETIF_F_SG;
3851 				break;
3852 			}
3853 		}
3854 	}
3855 
3856 	__skb_push(head_skb, doffset);
3857 	proto = skb_network_protocol(head_skb, NULL);
3858 	if (unlikely(!proto))
3859 		return ERR_PTR(-EINVAL);
3860 
3861 	sg = !!(features & NETIF_F_SG);
3862 	csum = !!can_checksum_protocol(features, proto);
3863 
3864 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
3865 		if (!(features & NETIF_F_GSO_PARTIAL)) {
3866 			struct sk_buff *iter;
3867 			unsigned int frag_len;
3868 
3869 			if (!list_skb ||
3870 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3871 				goto normal;
3872 
3873 			/* If we get here then all the required
3874 			 * GSO features except frag_list are supported.
3875 			 * Try to split the SKB to multiple GSO SKBs
3876 			 * with no frag_list.
3877 			 * Currently we can do that only when the buffers don't
3878 			 * have a linear part and all the buffers except
3879 			 * the last are of the same length.
3880 			 */
3881 			frag_len = list_skb->len;
3882 			skb_walk_frags(head_skb, iter) {
3883 				if (frag_len != iter->len && iter->next)
3884 					goto normal;
3885 				if (skb_headlen(iter) && !iter->head_frag)
3886 					goto normal;
3887 
3888 				len -= iter->len;
3889 			}
3890 
3891 			if (len != frag_len)
3892 				goto normal;
3893 		}
3894 
3895 		/* GSO partial only requires that we trim off any excess that
3896 		 * doesn't fit into an MSS sized block, so take care of that
3897 		 * now.
3898 		 */
3899 		partial_segs = len / mss;
3900 		if (partial_segs > 1)
3901 			mss *= partial_segs;
3902 		else
3903 			partial_segs = 0;
3904 	}
3905 
3906 normal:
3907 	headroom = skb_headroom(head_skb);
3908 	pos = skb_headlen(head_skb);
3909 
3910 	do {
3911 		struct sk_buff *nskb;
3912 		skb_frag_t *nskb_frag;
3913 		int hsize;
3914 		int size;
3915 
3916 		if (unlikely(mss == GSO_BY_FRAGS)) {
3917 			len = list_skb->len;
3918 		} else {
3919 			len = head_skb->len - offset;
3920 			if (len > mss)
3921 				len = mss;
3922 		}
3923 
3924 		hsize = skb_headlen(head_skb) - offset;
3925 		if (hsize < 0)
3926 			hsize = 0;
3927 		if (hsize > len || !sg)
3928 			hsize = len;
3929 
3930 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3931 		    (skb_headlen(list_skb) == len || sg)) {
3932 			BUG_ON(skb_headlen(list_skb) > len);
3933 
3934 			i = 0;
3935 			nfrags = skb_shinfo(list_skb)->nr_frags;
3936 			frag = skb_shinfo(list_skb)->frags;
3937 			frag_skb = list_skb;
3938 			pos += skb_headlen(list_skb);
3939 
3940 			while (pos < offset + len) {
3941 				BUG_ON(i >= nfrags);
3942 
3943 				size = skb_frag_size(frag);
3944 				if (pos + size > offset + len)
3945 					break;
3946 
3947 				i++;
3948 				pos += size;
3949 				frag++;
3950 			}
3951 
3952 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3953 			list_skb = list_skb->next;
3954 
3955 			if (unlikely(!nskb))
3956 				goto err;
3957 
3958 			if (unlikely(pskb_trim(nskb, len))) {
3959 				kfree_skb(nskb);
3960 				goto err;
3961 			}
3962 
3963 			hsize = skb_end_offset(nskb);
3964 			if (skb_cow_head(nskb, doffset + headroom)) {
3965 				kfree_skb(nskb);
3966 				goto err;
3967 			}
3968 
3969 			nskb->truesize += skb_end_offset(nskb) - hsize;
3970 			skb_release_head_state(nskb);
3971 			__skb_push(nskb, doffset);
3972 		} else {
3973 			nskb = __alloc_skb(hsize + doffset + headroom,
3974 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3975 					   NUMA_NO_NODE);
3976 
3977 			if (unlikely(!nskb))
3978 				goto err;
3979 
3980 			skb_reserve(nskb, headroom);
3981 			__skb_put(nskb, doffset);
3982 		}
3983 
3984 		if (segs)
3985 			tail->next = nskb;
3986 		else
3987 			segs = nskb;
3988 		tail = nskb;
3989 
3990 		__copy_skb_header(nskb, head_skb);
3991 
3992 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3993 		skb_reset_mac_len(nskb);
3994 
3995 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3996 						 nskb->data - tnl_hlen,
3997 						 doffset + tnl_hlen);
3998 
3999 		if (nskb->len == len + doffset)
4000 			goto perform_csum_check;
4001 
4002 		if (!sg) {
4003 			if (!csum) {
4004 				if (!nskb->remcsum_offload)
4005 					nskb->ip_summed = CHECKSUM_NONE;
4006 				SKB_GSO_CB(nskb)->csum =
4007 					skb_copy_and_csum_bits(head_skb, offset,
4008 							       skb_put(nskb,
4009 								       len),
4010 							       len);
4011 				SKB_GSO_CB(nskb)->csum_start =
4012 					skb_headroom(nskb) + doffset;
4013 			} else {
4014 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4015 					goto err;
4016 			}
4017 			continue;
4018 		}
4019 
4020 		nskb_frag = skb_shinfo(nskb)->frags;
4021 
4022 		skb_copy_from_linear_data_offset(head_skb, offset,
4023 						 skb_put(nskb, hsize), hsize);
4024 
4025 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
4026 					      SKBTX_SHARED_FRAG;
4027 
4028 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4029 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4030 			goto err;
4031 
4032 		while (pos < offset + len) {
4033 			if (i >= nfrags) {
4034 				i = 0;
4035 				nfrags = skb_shinfo(list_skb)->nr_frags;
4036 				frag = skb_shinfo(list_skb)->frags;
4037 				frag_skb = list_skb;
4038 				if (!skb_headlen(list_skb)) {
4039 					BUG_ON(!nfrags);
4040 				} else {
4041 					BUG_ON(!list_skb->head_frag);
4042 
4043 					/* to make room for head_frag. */
4044 					i--;
4045 					frag--;
4046 				}
4047 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4048 				    skb_zerocopy_clone(nskb, frag_skb,
4049 						       GFP_ATOMIC))
4050 					goto err;
4051 
4052 				list_skb = list_skb->next;
4053 			}
4054 
4055 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4056 				     MAX_SKB_FRAGS)) {
4057 				net_warn_ratelimited(
4058 					"skb_segment: too many frags: %u %u\n",
4059 					pos, mss);
4060 				err = -EINVAL;
4061 				goto err;
4062 			}
4063 
4064 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4065 			__skb_frag_ref(nskb_frag);
4066 			size = skb_frag_size(nskb_frag);
4067 
4068 			if (pos < offset) {
4069 				skb_frag_off_add(nskb_frag, offset - pos);
4070 				skb_frag_size_sub(nskb_frag, offset - pos);
4071 			}
4072 
4073 			skb_shinfo(nskb)->nr_frags++;
4074 
4075 			if (pos + size <= offset + len) {
4076 				i++;
4077 				frag++;
4078 				pos += size;
4079 			} else {
4080 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4081 				goto skip_fraglist;
4082 			}
4083 
4084 			nskb_frag++;
4085 		}
4086 
4087 skip_fraglist:
4088 		nskb->data_len = len - hsize;
4089 		nskb->len += nskb->data_len;
4090 		nskb->truesize += nskb->data_len;
4091 
4092 perform_csum_check:
4093 		if (!csum) {
4094 			if (skb_has_shared_frag(nskb) &&
4095 			    __skb_linearize(nskb))
4096 				goto err;
4097 
4098 			if (!nskb->remcsum_offload)
4099 				nskb->ip_summed = CHECKSUM_NONE;
4100 			SKB_GSO_CB(nskb)->csum =
4101 				skb_checksum(nskb, doffset,
4102 					     nskb->len - doffset, 0);
4103 			SKB_GSO_CB(nskb)->csum_start =
4104 				skb_headroom(nskb) + doffset;
4105 		}
4106 	} while ((offset += len) < head_skb->len);
4107 
4108 	/* Some callers want to get the end of the list.
4109 	 * Put it in segs->prev to avoid walking the list.
4110 	 * (see validate_xmit_skb_list() for example)
4111 	 */
4112 	segs->prev = tail;
4113 
4114 	if (partial_segs) {
4115 		struct sk_buff *iter;
4116 		int type = skb_shinfo(head_skb)->gso_type;
4117 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4118 
4119 		/* Update type to add partial and then remove dodgy if set */
4120 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4121 		type &= ~SKB_GSO_DODGY;
4122 
4123 		/* Update GSO info and prepare to start updating headers on
4124 		 * our way back down the stack of protocols.
4125 		 */
4126 		for (iter = segs; iter; iter = iter->next) {
4127 			skb_shinfo(iter)->gso_size = gso_size;
4128 			skb_shinfo(iter)->gso_segs = partial_segs;
4129 			skb_shinfo(iter)->gso_type = type;
4130 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4131 		}
4132 
4133 		if (tail->len - doffset <= gso_size)
4134 			skb_shinfo(tail)->gso_size = 0;
4135 		else if (tail != segs)
4136 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4137 	}
4138 
4139 	/* Following permits correct backpressure, for protocols
4140 	 * using skb_set_owner_w().
4141 	 * Idea is to tranfert ownership from head_skb to last segment.
4142 	 */
4143 	if (head_skb->destructor == sock_wfree) {
4144 		swap(tail->truesize, head_skb->truesize);
4145 		swap(tail->destructor, head_skb->destructor);
4146 		swap(tail->sk, head_skb->sk);
4147 	}
4148 	return segs;
4149 
4150 err:
4151 	kfree_skb_list(segs);
4152 	return ERR_PTR(err);
4153 }
4154 EXPORT_SYMBOL_GPL(skb_segment);
4155 
skb_gro_receive(struct sk_buff * p,struct sk_buff * skb)4156 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4157 {
4158 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4159 	unsigned int offset = skb_gro_offset(skb);
4160 	unsigned int headlen = skb_headlen(skb);
4161 	unsigned int len = skb_gro_len(skb);
4162 	unsigned int delta_truesize;
4163 	struct sk_buff *lp;
4164 
4165 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4166 		return -E2BIG;
4167 
4168 	lp = NAPI_GRO_CB(p)->last;
4169 	pinfo = skb_shinfo(lp);
4170 
4171 	if (headlen <= offset) {
4172 		skb_frag_t *frag;
4173 		skb_frag_t *frag2;
4174 		int i = skbinfo->nr_frags;
4175 		int nr_frags = pinfo->nr_frags + i;
4176 
4177 		if (nr_frags > MAX_SKB_FRAGS)
4178 			goto merge;
4179 
4180 		offset -= headlen;
4181 		pinfo->nr_frags = nr_frags;
4182 		skbinfo->nr_frags = 0;
4183 
4184 		frag = pinfo->frags + nr_frags;
4185 		frag2 = skbinfo->frags + i;
4186 		do {
4187 			*--frag = *--frag2;
4188 		} while (--i);
4189 
4190 		skb_frag_off_add(frag, offset);
4191 		skb_frag_size_sub(frag, offset);
4192 
4193 		/* all fragments truesize : remove (head size + sk_buff) */
4194 		delta_truesize = skb->truesize -
4195 				 SKB_TRUESIZE(skb_end_offset(skb));
4196 
4197 		skb->truesize -= skb->data_len;
4198 		skb->len -= skb->data_len;
4199 		skb->data_len = 0;
4200 
4201 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4202 		goto done;
4203 	} else if (skb->head_frag) {
4204 		int nr_frags = pinfo->nr_frags;
4205 		skb_frag_t *frag = pinfo->frags + nr_frags;
4206 		struct page *page = virt_to_head_page(skb->head);
4207 		unsigned int first_size = headlen - offset;
4208 		unsigned int first_offset;
4209 
4210 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4211 			goto merge;
4212 
4213 		first_offset = skb->data -
4214 			       (unsigned char *)page_address(page) +
4215 			       offset;
4216 
4217 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4218 
4219 		__skb_frag_set_page(frag, page);
4220 		skb_frag_off_set(frag, first_offset);
4221 		skb_frag_size_set(frag, first_size);
4222 
4223 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4224 		/* We dont need to clear skbinfo->nr_frags here */
4225 
4226 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4227 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4228 		goto done;
4229 	}
4230 
4231 merge:
4232 	delta_truesize = skb->truesize;
4233 	if (offset > headlen) {
4234 		unsigned int eat = offset - headlen;
4235 
4236 		skb_frag_off_add(&skbinfo->frags[0], eat);
4237 		skb_frag_size_sub(&skbinfo->frags[0], eat);
4238 		skb->data_len -= eat;
4239 		skb->len -= eat;
4240 		offset = headlen;
4241 	}
4242 
4243 	__skb_pull(skb, offset);
4244 
4245 	if (NAPI_GRO_CB(p)->last == p)
4246 		skb_shinfo(p)->frag_list = skb;
4247 	else
4248 		NAPI_GRO_CB(p)->last->next = skb;
4249 	NAPI_GRO_CB(p)->last = skb;
4250 	__skb_header_release(skb);
4251 	lp = p;
4252 
4253 done:
4254 	NAPI_GRO_CB(p)->count++;
4255 	p->data_len += len;
4256 	p->truesize += delta_truesize;
4257 	p->len += len;
4258 	if (lp != p) {
4259 		lp->data_len += len;
4260 		lp->truesize += delta_truesize;
4261 		lp->len += len;
4262 	}
4263 	NAPI_GRO_CB(skb)->same_flow = 1;
4264 	return 0;
4265 }
4266 
4267 #ifdef CONFIG_SKB_EXTENSIONS
4268 #define SKB_EXT_ALIGN_VALUE	8
4269 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4270 
4271 static const u8 skb_ext_type_len[] = {
4272 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4273 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4274 #endif
4275 #ifdef CONFIG_XFRM
4276 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4277 #endif
4278 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4279 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4280 #endif
4281 #if IS_ENABLED(CONFIG_MPTCP)
4282 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4283 #endif
4284 #if IS_ENABLED(CONFIG_KCOV)
4285 	[SKB_EXT_KCOV_HANDLE] = SKB_EXT_CHUNKSIZEOF(u64),
4286 #endif
4287 };
4288 
skb_ext_total_length(void)4289 static __always_inline unsigned int skb_ext_total_length(void)
4290 {
4291 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4292 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4293 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4294 #endif
4295 #ifdef CONFIG_XFRM
4296 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4297 #endif
4298 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4299 		skb_ext_type_len[TC_SKB_EXT] +
4300 #endif
4301 #if IS_ENABLED(CONFIG_MPTCP)
4302 		skb_ext_type_len[SKB_EXT_MPTCP] +
4303 #endif
4304 #if IS_ENABLED(CONFIG_KCOV)
4305 		skb_ext_type_len[SKB_EXT_KCOV_HANDLE] +
4306 #endif
4307 		0;
4308 }
4309 
skb_extensions_init(void)4310 static void skb_extensions_init(void)
4311 {
4312 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4313 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4314 
4315 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4316 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4317 					     0,
4318 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4319 					     NULL);
4320 }
4321 #else
skb_extensions_init(void)4322 static void skb_extensions_init(void) {}
4323 #endif
4324 
skb_init(void)4325 void __init skb_init(void)
4326 {
4327 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4328 					      sizeof(struct sk_buff),
4329 					      0,
4330 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4331 					      offsetof(struct sk_buff, cb),
4332 					      sizeof_field(struct sk_buff, cb),
4333 					      NULL);
4334 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4335 						sizeof(struct sk_buff_fclones),
4336 						0,
4337 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4338 						NULL);
4339 	skb_extensions_init();
4340 }
4341 
4342 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)4343 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4344 	       unsigned int recursion_level)
4345 {
4346 	int start = skb_headlen(skb);
4347 	int i, copy = start - offset;
4348 	struct sk_buff *frag_iter;
4349 	int elt = 0;
4350 
4351 	if (unlikely(recursion_level >= 24))
4352 		return -EMSGSIZE;
4353 
4354 	if (copy > 0) {
4355 		if (copy > len)
4356 			copy = len;
4357 		sg_set_buf(sg, skb->data + offset, copy);
4358 		elt++;
4359 		if ((len -= copy) == 0)
4360 			return elt;
4361 		offset += copy;
4362 	}
4363 
4364 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4365 		int end;
4366 
4367 		WARN_ON(start > offset + len);
4368 
4369 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4370 		if ((copy = end - offset) > 0) {
4371 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4372 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4373 				return -EMSGSIZE;
4374 
4375 			if (copy > len)
4376 				copy = len;
4377 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4378 				    skb_frag_off(frag) + offset - start);
4379 			elt++;
4380 			if (!(len -= copy))
4381 				return elt;
4382 			offset += copy;
4383 		}
4384 		start = end;
4385 	}
4386 
4387 	skb_walk_frags(skb, frag_iter) {
4388 		int end, ret;
4389 
4390 		WARN_ON(start > offset + len);
4391 
4392 		end = start + frag_iter->len;
4393 		if ((copy = end - offset) > 0) {
4394 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4395 				return -EMSGSIZE;
4396 
4397 			if (copy > len)
4398 				copy = len;
4399 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4400 					      copy, recursion_level + 1);
4401 			if (unlikely(ret < 0))
4402 				return ret;
4403 			elt += ret;
4404 			if ((len -= copy) == 0)
4405 				return elt;
4406 			offset += copy;
4407 		}
4408 		start = end;
4409 	}
4410 	BUG_ON(len);
4411 	return elt;
4412 }
4413 
4414 /**
4415  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4416  *	@skb: Socket buffer containing the buffers to be mapped
4417  *	@sg: The scatter-gather list to map into
4418  *	@offset: The offset into the buffer's contents to start mapping
4419  *	@len: Length of buffer space to be mapped
4420  *
4421  *	Fill the specified scatter-gather list with mappings/pointers into a
4422  *	region of the buffer space attached to a socket buffer. Returns either
4423  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4424  *	could not fit.
4425  */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4426 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4427 {
4428 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4429 
4430 	if (nsg <= 0)
4431 		return nsg;
4432 
4433 	sg_mark_end(&sg[nsg - 1]);
4434 
4435 	return nsg;
4436 }
4437 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4438 
4439 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4440  * sglist without mark the sg which contain last skb data as the end.
4441  * So the caller can mannipulate sg list as will when padding new data after
4442  * the first call without calling sg_unmark_end to expend sg list.
4443  *
4444  * Scenario to use skb_to_sgvec_nomark:
4445  * 1. sg_init_table
4446  * 2. skb_to_sgvec_nomark(payload1)
4447  * 3. skb_to_sgvec_nomark(payload2)
4448  *
4449  * This is equivalent to:
4450  * 1. sg_init_table
4451  * 2. skb_to_sgvec(payload1)
4452  * 3. sg_unmark_end
4453  * 4. skb_to_sgvec(payload2)
4454  *
4455  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4456  * is more preferable.
4457  */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4458 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4459 			int offset, int len)
4460 {
4461 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4462 }
4463 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4464 
4465 
4466 
4467 /**
4468  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4469  *	@skb: The socket buffer to check.
4470  *	@tailbits: Amount of trailing space to be added
4471  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4472  *
4473  *	Make sure that the data buffers attached to a socket buffer are
4474  *	writable. If they are not, private copies are made of the data buffers
4475  *	and the socket buffer is set to use these instead.
4476  *
4477  *	If @tailbits is given, make sure that there is space to write @tailbits
4478  *	bytes of data beyond current end of socket buffer.  @trailer will be
4479  *	set to point to the skb in which this space begins.
4480  *
4481  *	The number of scatterlist elements required to completely map the
4482  *	COW'd and extended socket buffer will be returned.
4483  */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)4484 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4485 {
4486 	int copyflag;
4487 	int elt;
4488 	struct sk_buff *skb1, **skb_p;
4489 
4490 	/* If skb is cloned or its head is paged, reallocate
4491 	 * head pulling out all the pages (pages are considered not writable
4492 	 * at the moment even if they are anonymous).
4493 	 */
4494 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4495 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4496 		return -ENOMEM;
4497 
4498 	/* Easy case. Most of packets will go this way. */
4499 	if (!skb_has_frag_list(skb)) {
4500 		/* A little of trouble, not enough of space for trailer.
4501 		 * This should not happen, when stack is tuned to generate
4502 		 * good frames. OK, on miss we reallocate and reserve even more
4503 		 * space, 128 bytes is fair. */
4504 
4505 		if (skb_tailroom(skb) < tailbits &&
4506 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4507 			return -ENOMEM;
4508 
4509 		/* Voila! */
4510 		*trailer = skb;
4511 		return 1;
4512 	}
4513 
4514 	/* Misery. We are in troubles, going to mincer fragments... */
4515 
4516 	elt = 1;
4517 	skb_p = &skb_shinfo(skb)->frag_list;
4518 	copyflag = 0;
4519 
4520 	while ((skb1 = *skb_p) != NULL) {
4521 		int ntail = 0;
4522 
4523 		/* The fragment is partially pulled by someone,
4524 		 * this can happen on input. Copy it and everything
4525 		 * after it. */
4526 
4527 		if (skb_shared(skb1))
4528 			copyflag = 1;
4529 
4530 		/* If the skb is the last, worry about trailer. */
4531 
4532 		if (skb1->next == NULL && tailbits) {
4533 			if (skb_shinfo(skb1)->nr_frags ||
4534 			    skb_has_frag_list(skb1) ||
4535 			    skb_tailroom(skb1) < tailbits)
4536 				ntail = tailbits + 128;
4537 		}
4538 
4539 		if (copyflag ||
4540 		    skb_cloned(skb1) ||
4541 		    ntail ||
4542 		    skb_shinfo(skb1)->nr_frags ||
4543 		    skb_has_frag_list(skb1)) {
4544 			struct sk_buff *skb2;
4545 
4546 			/* Fuck, we are miserable poor guys... */
4547 			if (ntail == 0)
4548 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4549 			else
4550 				skb2 = skb_copy_expand(skb1,
4551 						       skb_headroom(skb1),
4552 						       ntail,
4553 						       GFP_ATOMIC);
4554 			if (unlikely(skb2 == NULL))
4555 				return -ENOMEM;
4556 
4557 			if (skb1->sk)
4558 				skb_set_owner_w(skb2, skb1->sk);
4559 
4560 			/* Looking around. Are we still alive?
4561 			 * OK, link new skb, drop old one */
4562 
4563 			skb2->next = skb1->next;
4564 			*skb_p = skb2;
4565 			kfree_skb(skb1);
4566 			skb1 = skb2;
4567 		}
4568 		elt++;
4569 		*trailer = skb1;
4570 		skb_p = &skb1->next;
4571 	}
4572 
4573 	return elt;
4574 }
4575 EXPORT_SYMBOL_GPL(skb_cow_data);
4576 
sock_rmem_free(struct sk_buff * skb)4577 static void sock_rmem_free(struct sk_buff *skb)
4578 {
4579 	struct sock *sk = skb->sk;
4580 
4581 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4582 }
4583 
skb_set_err_queue(struct sk_buff * skb)4584 static void skb_set_err_queue(struct sk_buff *skb)
4585 {
4586 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4587 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4588 	 */
4589 	skb->pkt_type = PACKET_OUTGOING;
4590 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4591 }
4592 
4593 /*
4594  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4595  */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)4596 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4597 {
4598 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4599 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4600 		return -ENOMEM;
4601 
4602 	skb_orphan(skb);
4603 	skb->sk = sk;
4604 	skb->destructor = sock_rmem_free;
4605 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4606 	skb_set_err_queue(skb);
4607 
4608 	/* before exiting rcu section, make sure dst is refcounted */
4609 	skb_dst_force(skb);
4610 
4611 	skb_queue_tail(&sk->sk_error_queue, skb);
4612 	if (!sock_flag(sk, SOCK_DEAD))
4613 		sk->sk_error_report(sk);
4614 	return 0;
4615 }
4616 EXPORT_SYMBOL(sock_queue_err_skb);
4617 
is_icmp_err_skb(const struct sk_buff * skb)4618 static bool is_icmp_err_skb(const struct sk_buff *skb)
4619 {
4620 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4621 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4622 }
4623 
sock_dequeue_err_skb(struct sock * sk)4624 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4625 {
4626 	struct sk_buff_head *q = &sk->sk_error_queue;
4627 	struct sk_buff *skb, *skb_next = NULL;
4628 	bool icmp_next = false;
4629 	unsigned long flags;
4630 
4631 	spin_lock_irqsave(&q->lock, flags);
4632 	skb = __skb_dequeue(q);
4633 	if (skb && (skb_next = skb_peek(q))) {
4634 		icmp_next = is_icmp_err_skb(skb_next);
4635 		if (icmp_next)
4636 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4637 	}
4638 	spin_unlock_irqrestore(&q->lock, flags);
4639 
4640 	if (is_icmp_err_skb(skb) && !icmp_next)
4641 		sk->sk_err = 0;
4642 
4643 	if (skb_next)
4644 		sk->sk_error_report(sk);
4645 
4646 	return skb;
4647 }
4648 EXPORT_SYMBOL(sock_dequeue_err_skb);
4649 
4650 /**
4651  * skb_clone_sk - create clone of skb, and take reference to socket
4652  * @skb: the skb to clone
4653  *
4654  * This function creates a clone of a buffer that holds a reference on
4655  * sk_refcnt.  Buffers created via this function are meant to be
4656  * returned using sock_queue_err_skb, or free via kfree_skb.
4657  *
4658  * When passing buffers allocated with this function to sock_queue_err_skb
4659  * it is necessary to wrap the call with sock_hold/sock_put in order to
4660  * prevent the socket from being released prior to being enqueued on
4661  * the sk_error_queue.
4662  */
skb_clone_sk(struct sk_buff * skb)4663 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4664 {
4665 	struct sock *sk = skb->sk;
4666 	struct sk_buff *clone;
4667 
4668 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4669 		return NULL;
4670 
4671 	clone = skb_clone(skb, GFP_ATOMIC);
4672 	if (!clone) {
4673 		sock_put(sk);
4674 		return NULL;
4675 	}
4676 
4677 	clone->sk = sk;
4678 	clone->destructor = sock_efree;
4679 
4680 	return clone;
4681 }
4682 EXPORT_SYMBOL(skb_clone_sk);
4683 
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)4684 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4685 					struct sock *sk,
4686 					int tstype,
4687 					bool opt_stats)
4688 {
4689 	struct sock_exterr_skb *serr;
4690 	int err;
4691 
4692 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4693 
4694 	serr = SKB_EXT_ERR(skb);
4695 	memset(serr, 0, sizeof(*serr));
4696 	serr->ee.ee_errno = ENOMSG;
4697 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4698 	serr->ee.ee_info = tstype;
4699 	serr->opt_stats = opt_stats;
4700 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4701 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4702 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4703 		if (sk->sk_protocol == IPPROTO_TCP &&
4704 		    sk->sk_type == SOCK_STREAM)
4705 			serr->ee.ee_data -= sk->sk_tskey;
4706 	}
4707 
4708 	err = sock_queue_err_skb(sk, skb);
4709 
4710 	if (err)
4711 		kfree_skb(skb);
4712 }
4713 
skb_may_tx_timestamp(struct sock * sk,bool tsonly)4714 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4715 {
4716 	bool ret;
4717 
4718 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4719 		return true;
4720 
4721 	read_lock_bh(&sk->sk_callback_lock);
4722 	ret = sk->sk_socket && sk->sk_socket->file &&
4723 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4724 	read_unlock_bh(&sk->sk_callback_lock);
4725 	return ret;
4726 }
4727 
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)4728 void skb_complete_tx_timestamp(struct sk_buff *skb,
4729 			       struct skb_shared_hwtstamps *hwtstamps)
4730 {
4731 	struct sock *sk = skb->sk;
4732 
4733 	if (!skb_may_tx_timestamp(sk, false))
4734 		goto err;
4735 
4736 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4737 	 * but only if the socket refcount is not zero.
4738 	 */
4739 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4740 		*skb_hwtstamps(skb) = *hwtstamps;
4741 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4742 		sock_put(sk);
4743 		return;
4744 	}
4745 
4746 err:
4747 	kfree_skb(skb);
4748 }
4749 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4750 
__skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)4751 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4752 		     struct skb_shared_hwtstamps *hwtstamps,
4753 		     struct sock *sk, int tstype)
4754 {
4755 	struct sk_buff *skb;
4756 	bool tsonly, opt_stats = false;
4757 
4758 	if (!sk)
4759 		return;
4760 
4761 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4762 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4763 		return;
4764 
4765 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4766 	if (!skb_may_tx_timestamp(sk, tsonly))
4767 		return;
4768 
4769 	if (tsonly) {
4770 #ifdef CONFIG_INET
4771 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4772 		    sk->sk_protocol == IPPROTO_TCP &&
4773 		    sk->sk_type == SOCK_STREAM) {
4774 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb);
4775 			opt_stats = true;
4776 		} else
4777 #endif
4778 			skb = alloc_skb(0, GFP_ATOMIC);
4779 	} else {
4780 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4781 	}
4782 	if (!skb)
4783 		return;
4784 
4785 	if (tsonly) {
4786 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4787 					     SKBTX_ANY_TSTAMP;
4788 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4789 	}
4790 
4791 	if (hwtstamps)
4792 		*skb_hwtstamps(skb) = *hwtstamps;
4793 	else
4794 		skb->tstamp = ktime_get_real();
4795 
4796 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4797 }
4798 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4799 
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)4800 void skb_tstamp_tx(struct sk_buff *orig_skb,
4801 		   struct skb_shared_hwtstamps *hwtstamps)
4802 {
4803 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4804 			       SCM_TSTAMP_SND);
4805 }
4806 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4807 
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)4808 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4809 {
4810 	struct sock *sk = skb->sk;
4811 	struct sock_exterr_skb *serr;
4812 	int err = 1;
4813 
4814 	skb->wifi_acked_valid = 1;
4815 	skb->wifi_acked = acked;
4816 
4817 	serr = SKB_EXT_ERR(skb);
4818 	memset(serr, 0, sizeof(*serr));
4819 	serr->ee.ee_errno = ENOMSG;
4820 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4821 
4822 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4823 	 * but only if the socket refcount is not zero.
4824 	 */
4825 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4826 		err = sock_queue_err_skb(sk, skb);
4827 		sock_put(sk);
4828 	}
4829 	if (err)
4830 		kfree_skb(skb);
4831 }
4832 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4833 
4834 /**
4835  * skb_partial_csum_set - set up and verify partial csum values for packet
4836  * @skb: the skb to set
4837  * @start: the number of bytes after skb->data to start checksumming.
4838  * @off: the offset from start to place the checksum.
4839  *
4840  * For untrusted partially-checksummed packets, we need to make sure the values
4841  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4842  *
4843  * This function checks and sets those values and skb->ip_summed: if this
4844  * returns false you should drop the packet.
4845  */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)4846 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4847 {
4848 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4849 	u32 csum_start = skb_headroom(skb) + (u32)start;
4850 
4851 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4852 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4853 				     start, off, skb_headroom(skb), skb_headlen(skb));
4854 		return false;
4855 	}
4856 	skb->ip_summed = CHECKSUM_PARTIAL;
4857 	skb->csum_start = csum_start;
4858 	skb->csum_offset = off;
4859 	skb_set_transport_header(skb, start);
4860 	return true;
4861 }
4862 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4863 
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)4864 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4865 			       unsigned int max)
4866 {
4867 	if (skb_headlen(skb) >= len)
4868 		return 0;
4869 
4870 	/* If we need to pullup then pullup to the max, so we
4871 	 * won't need to do it again.
4872 	 */
4873 	if (max > skb->len)
4874 		max = skb->len;
4875 
4876 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4877 		return -ENOMEM;
4878 
4879 	if (skb_headlen(skb) < len)
4880 		return -EPROTO;
4881 
4882 	return 0;
4883 }
4884 
4885 #define MAX_TCP_HDR_LEN (15 * 4)
4886 
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)4887 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4888 				      typeof(IPPROTO_IP) proto,
4889 				      unsigned int off)
4890 {
4891 	int err;
4892 
4893 	switch (proto) {
4894 	case IPPROTO_TCP:
4895 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4896 					  off + MAX_TCP_HDR_LEN);
4897 		if (!err && !skb_partial_csum_set(skb, off,
4898 						  offsetof(struct tcphdr,
4899 							   check)))
4900 			err = -EPROTO;
4901 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4902 
4903 	case IPPROTO_UDP:
4904 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4905 					  off + sizeof(struct udphdr));
4906 		if (!err && !skb_partial_csum_set(skb, off,
4907 						  offsetof(struct udphdr,
4908 							   check)))
4909 			err = -EPROTO;
4910 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4911 	}
4912 
4913 	return ERR_PTR(-EPROTO);
4914 }
4915 
4916 /* This value should be large enough to cover a tagged ethernet header plus
4917  * maximally sized IP and TCP or UDP headers.
4918  */
4919 #define MAX_IP_HDR_LEN 128
4920 
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)4921 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4922 {
4923 	unsigned int off;
4924 	bool fragment;
4925 	__sum16 *csum;
4926 	int err;
4927 
4928 	fragment = false;
4929 
4930 	err = skb_maybe_pull_tail(skb,
4931 				  sizeof(struct iphdr),
4932 				  MAX_IP_HDR_LEN);
4933 	if (err < 0)
4934 		goto out;
4935 
4936 	if (ip_is_fragment(ip_hdr(skb)))
4937 		fragment = true;
4938 
4939 	off = ip_hdrlen(skb);
4940 
4941 	err = -EPROTO;
4942 
4943 	if (fragment)
4944 		goto out;
4945 
4946 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4947 	if (IS_ERR(csum))
4948 		return PTR_ERR(csum);
4949 
4950 	if (recalculate)
4951 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4952 					   ip_hdr(skb)->daddr,
4953 					   skb->len - off,
4954 					   ip_hdr(skb)->protocol, 0);
4955 	err = 0;
4956 
4957 out:
4958 	return err;
4959 }
4960 
4961 /* This value should be large enough to cover a tagged ethernet header plus
4962  * an IPv6 header, all options, and a maximal TCP or UDP header.
4963  */
4964 #define MAX_IPV6_HDR_LEN 256
4965 
4966 #define OPT_HDR(type, skb, off) \
4967 	(type *)(skb_network_header(skb) + (off))
4968 
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)4969 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4970 {
4971 	int err;
4972 	u8 nexthdr;
4973 	unsigned int off;
4974 	unsigned int len;
4975 	bool fragment;
4976 	bool done;
4977 	__sum16 *csum;
4978 
4979 	fragment = false;
4980 	done = false;
4981 
4982 	off = sizeof(struct ipv6hdr);
4983 
4984 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4985 	if (err < 0)
4986 		goto out;
4987 
4988 	nexthdr = ipv6_hdr(skb)->nexthdr;
4989 
4990 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4991 	while (off <= len && !done) {
4992 		switch (nexthdr) {
4993 		case IPPROTO_DSTOPTS:
4994 		case IPPROTO_HOPOPTS:
4995 		case IPPROTO_ROUTING: {
4996 			struct ipv6_opt_hdr *hp;
4997 
4998 			err = skb_maybe_pull_tail(skb,
4999 						  off +
5000 						  sizeof(struct ipv6_opt_hdr),
5001 						  MAX_IPV6_HDR_LEN);
5002 			if (err < 0)
5003 				goto out;
5004 
5005 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5006 			nexthdr = hp->nexthdr;
5007 			off += ipv6_optlen(hp);
5008 			break;
5009 		}
5010 		case IPPROTO_AH: {
5011 			struct ip_auth_hdr *hp;
5012 
5013 			err = skb_maybe_pull_tail(skb,
5014 						  off +
5015 						  sizeof(struct ip_auth_hdr),
5016 						  MAX_IPV6_HDR_LEN);
5017 			if (err < 0)
5018 				goto out;
5019 
5020 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5021 			nexthdr = hp->nexthdr;
5022 			off += ipv6_authlen(hp);
5023 			break;
5024 		}
5025 		case IPPROTO_FRAGMENT: {
5026 			struct frag_hdr *hp;
5027 
5028 			err = skb_maybe_pull_tail(skb,
5029 						  off +
5030 						  sizeof(struct frag_hdr),
5031 						  MAX_IPV6_HDR_LEN);
5032 			if (err < 0)
5033 				goto out;
5034 
5035 			hp = OPT_HDR(struct frag_hdr, skb, off);
5036 
5037 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5038 				fragment = true;
5039 
5040 			nexthdr = hp->nexthdr;
5041 			off += sizeof(struct frag_hdr);
5042 			break;
5043 		}
5044 		default:
5045 			done = true;
5046 			break;
5047 		}
5048 	}
5049 
5050 	err = -EPROTO;
5051 
5052 	if (!done || fragment)
5053 		goto out;
5054 
5055 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5056 	if (IS_ERR(csum))
5057 		return PTR_ERR(csum);
5058 
5059 	if (recalculate)
5060 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5061 					 &ipv6_hdr(skb)->daddr,
5062 					 skb->len - off, nexthdr, 0);
5063 	err = 0;
5064 
5065 out:
5066 	return err;
5067 }
5068 
5069 /**
5070  * skb_checksum_setup - set up partial checksum offset
5071  * @skb: the skb to set up
5072  * @recalculate: if true the pseudo-header checksum will be recalculated
5073  */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5074 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5075 {
5076 	int err;
5077 
5078 	switch (skb->protocol) {
5079 	case htons(ETH_P_IP):
5080 		err = skb_checksum_setup_ipv4(skb, recalculate);
5081 		break;
5082 
5083 	case htons(ETH_P_IPV6):
5084 		err = skb_checksum_setup_ipv6(skb, recalculate);
5085 		break;
5086 
5087 	default:
5088 		err = -EPROTO;
5089 		break;
5090 	}
5091 
5092 	return err;
5093 }
5094 EXPORT_SYMBOL(skb_checksum_setup);
5095 
5096 /**
5097  * skb_checksum_maybe_trim - maybe trims the given skb
5098  * @skb: the skb to check
5099  * @transport_len: the data length beyond the network header
5100  *
5101  * Checks whether the given skb has data beyond the given transport length.
5102  * If so, returns a cloned skb trimmed to this transport length.
5103  * Otherwise returns the provided skb. Returns NULL in error cases
5104  * (e.g. transport_len exceeds skb length or out-of-memory).
5105  *
5106  * Caller needs to set the skb transport header and free any returned skb if it
5107  * differs from the provided skb.
5108  */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5109 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5110 					       unsigned int transport_len)
5111 {
5112 	struct sk_buff *skb_chk;
5113 	unsigned int len = skb_transport_offset(skb) + transport_len;
5114 	int ret;
5115 
5116 	if (skb->len < len)
5117 		return NULL;
5118 	else if (skb->len == len)
5119 		return skb;
5120 
5121 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5122 	if (!skb_chk)
5123 		return NULL;
5124 
5125 	ret = pskb_trim_rcsum(skb_chk, len);
5126 	if (ret) {
5127 		kfree_skb(skb_chk);
5128 		return NULL;
5129 	}
5130 
5131 	return skb_chk;
5132 }
5133 
5134 /**
5135  * skb_checksum_trimmed - validate checksum of an skb
5136  * @skb: the skb to check
5137  * @transport_len: the data length beyond the network header
5138  * @skb_chkf: checksum function to use
5139  *
5140  * Applies the given checksum function skb_chkf to the provided skb.
5141  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5142  *
5143  * If the skb has data beyond the given transport length, then a
5144  * trimmed & cloned skb is checked and returned.
5145  *
5146  * Caller needs to set the skb transport header and free any returned skb if it
5147  * differs from the provided skb.
5148  */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5149 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5150 				     unsigned int transport_len,
5151 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5152 {
5153 	struct sk_buff *skb_chk;
5154 	unsigned int offset = skb_transport_offset(skb);
5155 	__sum16 ret;
5156 
5157 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5158 	if (!skb_chk)
5159 		goto err;
5160 
5161 	if (!pskb_may_pull(skb_chk, offset))
5162 		goto err;
5163 
5164 	skb_pull_rcsum(skb_chk, offset);
5165 	ret = skb_chkf(skb_chk);
5166 	skb_push_rcsum(skb_chk, offset);
5167 
5168 	if (ret)
5169 		goto err;
5170 
5171 	return skb_chk;
5172 
5173 err:
5174 	if (skb_chk && skb_chk != skb)
5175 		kfree_skb(skb_chk);
5176 
5177 	return NULL;
5178 
5179 }
5180 EXPORT_SYMBOL(skb_checksum_trimmed);
5181 
__skb_warn_lro_forwarding(const struct sk_buff * skb)5182 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5183 {
5184 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5185 			     skb->dev->name);
5186 }
5187 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5188 
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5189 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5190 {
5191 	if (head_stolen) {
5192 		skb_release_head_state(skb);
5193 		kmem_cache_free(skbuff_head_cache, skb);
5194 	} else {
5195 		__kfree_skb(skb);
5196 	}
5197 }
5198 EXPORT_SYMBOL(kfree_skb_partial);
5199 
5200 /**
5201  * skb_try_coalesce - try to merge skb to prior one
5202  * @to: prior buffer
5203  * @from: buffer to add
5204  * @fragstolen: pointer to boolean
5205  * @delta_truesize: how much more was allocated than was requested
5206  */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)5207 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5208 		      bool *fragstolen, int *delta_truesize)
5209 {
5210 	struct skb_shared_info *to_shinfo, *from_shinfo;
5211 	int i, delta, len = from->len;
5212 
5213 	*fragstolen = false;
5214 
5215 	if (skb_cloned(to))
5216 		return false;
5217 
5218 	if (len <= skb_tailroom(to)) {
5219 		if (len)
5220 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5221 		*delta_truesize = 0;
5222 		return true;
5223 	}
5224 
5225 	to_shinfo = skb_shinfo(to);
5226 	from_shinfo = skb_shinfo(from);
5227 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5228 		return false;
5229 	if (skb_zcopy(to) || skb_zcopy(from))
5230 		return false;
5231 
5232 	if (skb_headlen(from) != 0) {
5233 		struct page *page;
5234 		unsigned int offset;
5235 
5236 		if (to_shinfo->nr_frags +
5237 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5238 			return false;
5239 
5240 		if (skb_head_is_locked(from))
5241 			return false;
5242 
5243 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5244 
5245 		page = virt_to_head_page(from->head);
5246 		offset = from->data - (unsigned char *)page_address(page);
5247 
5248 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5249 				   page, offset, skb_headlen(from));
5250 		*fragstolen = true;
5251 	} else {
5252 		if (to_shinfo->nr_frags +
5253 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5254 			return false;
5255 
5256 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5257 	}
5258 
5259 	WARN_ON_ONCE(delta < len);
5260 
5261 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5262 	       from_shinfo->frags,
5263 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5264 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5265 
5266 	if (!skb_cloned(from))
5267 		from_shinfo->nr_frags = 0;
5268 
5269 	/* if the skb is not cloned this does nothing
5270 	 * since we set nr_frags to 0.
5271 	 */
5272 	for (i = 0; i < from_shinfo->nr_frags; i++)
5273 		__skb_frag_ref(&from_shinfo->frags[i]);
5274 
5275 	to->truesize += delta;
5276 	to->len += len;
5277 	to->data_len += len;
5278 
5279 	*delta_truesize = delta;
5280 	return true;
5281 }
5282 EXPORT_SYMBOL(skb_try_coalesce);
5283 
5284 /**
5285  * skb_scrub_packet - scrub an skb
5286  *
5287  * @skb: buffer to clean
5288  * @xnet: packet is crossing netns
5289  *
5290  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5291  * into/from a tunnel. Some information have to be cleared during these
5292  * operations.
5293  * skb_scrub_packet can also be used to clean a skb before injecting it in
5294  * another namespace (@xnet == true). We have to clear all information in the
5295  * skb that could impact namespace isolation.
5296  */
skb_scrub_packet(struct sk_buff * skb,bool xnet)5297 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5298 {
5299 	skb->pkt_type = PACKET_HOST;
5300 	skb->skb_iif = 0;
5301 	skb->ignore_df = 0;
5302 	skb_dst_drop(skb);
5303 	skb_ext_reset(skb);
5304 	nf_reset_ct(skb);
5305 	nf_reset_trace(skb);
5306 
5307 #ifdef CONFIG_NET_SWITCHDEV
5308 	skb->offload_fwd_mark = 0;
5309 	skb->offload_l3_fwd_mark = 0;
5310 #endif
5311 
5312 	if (!xnet)
5313 		return;
5314 
5315 	ipvs_reset(skb);
5316 	skb->mark = 0;
5317 	skb->tstamp = 0;
5318 }
5319 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5320 
5321 /**
5322  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5323  *
5324  * @skb: GSO skb
5325  *
5326  * skb_gso_transport_seglen is used to determine the real size of the
5327  * individual segments, including Layer4 headers (TCP/UDP).
5328  *
5329  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5330  */
skb_gso_transport_seglen(const struct sk_buff * skb)5331 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5332 {
5333 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5334 	unsigned int thlen = 0;
5335 
5336 	if (skb->encapsulation) {
5337 		thlen = skb_inner_transport_header(skb) -
5338 			skb_transport_header(skb);
5339 
5340 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5341 			thlen += inner_tcp_hdrlen(skb);
5342 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5343 		thlen = tcp_hdrlen(skb);
5344 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5345 		thlen = sizeof(struct sctphdr);
5346 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5347 		thlen = sizeof(struct udphdr);
5348 	}
5349 	/* UFO sets gso_size to the size of the fragmentation
5350 	 * payload, i.e. the size of the L4 (UDP) header is already
5351 	 * accounted for.
5352 	 */
5353 	return thlen + shinfo->gso_size;
5354 }
5355 
5356 /**
5357  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5358  *
5359  * @skb: GSO skb
5360  *
5361  * skb_gso_network_seglen is used to determine the real size of the
5362  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5363  *
5364  * The MAC/L2 header is not accounted for.
5365  */
skb_gso_network_seglen(const struct sk_buff * skb)5366 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5367 {
5368 	unsigned int hdr_len = skb_transport_header(skb) -
5369 			       skb_network_header(skb);
5370 
5371 	return hdr_len + skb_gso_transport_seglen(skb);
5372 }
5373 
5374 /**
5375  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5376  *
5377  * @skb: GSO skb
5378  *
5379  * skb_gso_mac_seglen is used to determine the real size of the
5380  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5381  * headers (TCP/UDP).
5382  */
skb_gso_mac_seglen(const struct sk_buff * skb)5383 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5384 {
5385 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5386 
5387 	return hdr_len + skb_gso_transport_seglen(skb);
5388 }
5389 
5390 /**
5391  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5392  *
5393  * There are a couple of instances where we have a GSO skb, and we
5394  * want to determine what size it would be after it is segmented.
5395  *
5396  * We might want to check:
5397  * -    L3+L4+payload size (e.g. IP forwarding)
5398  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5399  *
5400  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5401  *
5402  * @skb: GSO skb
5403  *
5404  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5405  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5406  *
5407  * @max_len: The maximum permissible length.
5408  *
5409  * Returns true if the segmented length <= max length.
5410  */
skb_gso_size_check(const struct sk_buff * skb,unsigned int seg_len,unsigned int max_len)5411 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5412 				      unsigned int seg_len,
5413 				      unsigned int max_len) {
5414 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5415 	const struct sk_buff *iter;
5416 
5417 	if (shinfo->gso_size != GSO_BY_FRAGS)
5418 		return seg_len <= max_len;
5419 
5420 	/* Undo this so we can re-use header sizes */
5421 	seg_len -= GSO_BY_FRAGS;
5422 
5423 	skb_walk_frags(skb, iter) {
5424 		if (seg_len + skb_headlen(iter) > max_len)
5425 			return false;
5426 	}
5427 
5428 	return true;
5429 }
5430 
5431 /**
5432  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5433  *
5434  * @skb: GSO skb
5435  * @mtu: MTU to validate against
5436  *
5437  * skb_gso_validate_network_len validates if a given skb will fit a
5438  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5439  * payload.
5440  */
skb_gso_validate_network_len(const struct sk_buff * skb,unsigned int mtu)5441 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5442 {
5443 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5444 }
5445 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5446 
5447 /**
5448  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5449  *
5450  * @skb: GSO skb
5451  * @len: length to validate against
5452  *
5453  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5454  * length once split, including L2, L3 and L4 headers and the payload.
5455  */
skb_gso_validate_mac_len(const struct sk_buff * skb,unsigned int len)5456 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5457 {
5458 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5459 }
5460 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5461 
skb_reorder_vlan_header(struct sk_buff * skb)5462 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5463 {
5464 	int mac_len, meta_len;
5465 	void *meta;
5466 
5467 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5468 		kfree_skb(skb);
5469 		return NULL;
5470 	}
5471 
5472 	mac_len = skb->data - skb_mac_header(skb);
5473 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5474 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5475 			mac_len - VLAN_HLEN - ETH_TLEN);
5476 	}
5477 
5478 	meta_len = skb_metadata_len(skb);
5479 	if (meta_len) {
5480 		meta = skb_metadata_end(skb) - meta_len;
5481 		memmove(meta + VLAN_HLEN, meta, meta_len);
5482 	}
5483 
5484 	skb->mac_header += VLAN_HLEN;
5485 	return skb;
5486 }
5487 
skb_vlan_untag(struct sk_buff * skb)5488 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5489 {
5490 	struct vlan_hdr *vhdr;
5491 	u16 vlan_tci;
5492 
5493 	if (unlikely(skb_vlan_tag_present(skb))) {
5494 		/* vlan_tci is already set-up so leave this for another time */
5495 		return skb;
5496 	}
5497 
5498 	skb = skb_share_check(skb, GFP_ATOMIC);
5499 	if (unlikely(!skb))
5500 		goto err_free;
5501 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5502 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5503 		goto err_free;
5504 
5505 	vhdr = (struct vlan_hdr *)skb->data;
5506 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5507 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5508 
5509 	skb_pull_rcsum(skb, VLAN_HLEN);
5510 	vlan_set_encap_proto(skb, vhdr);
5511 
5512 	skb = skb_reorder_vlan_header(skb);
5513 	if (unlikely(!skb))
5514 		goto err_free;
5515 
5516 	skb_reset_network_header(skb);
5517 	skb_reset_transport_header(skb);
5518 	skb_reset_mac_len(skb);
5519 
5520 	return skb;
5521 
5522 err_free:
5523 	kfree_skb(skb);
5524 	return NULL;
5525 }
5526 EXPORT_SYMBOL(skb_vlan_untag);
5527 
skb_ensure_writable(struct sk_buff * skb,int write_len)5528 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5529 {
5530 	if (!pskb_may_pull(skb, write_len))
5531 		return -ENOMEM;
5532 
5533 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5534 		return 0;
5535 
5536 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5537 }
5538 EXPORT_SYMBOL(skb_ensure_writable);
5539 
5540 /* remove VLAN header from packet and update csum accordingly.
5541  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5542  */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)5543 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5544 {
5545 	struct vlan_hdr *vhdr;
5546 	int offset = skb->data - skb_mac_header(skb);
5547 	int err;
5548 
5549 	if (WARN_ONCE(offset,
5550 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5551 		      offset)) {
5552 		return -EINVAL;
5553 	}
5554 
5555 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5556 	if (unlikely(err))
5557 		return err;
5558 
5559 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5560 
5561 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5562 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5563 
5564 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5565 	__skb_pull(skb, VLAN_HLEN);
5566 
5567 	vlan_set_encap_proto(skb, vhdr);
5568 	skb->mac_header += VLAN_HLEN;
5569 
5570 	if (skb_network_offset(skb) < ETH_HLEN)
5571 		skb_set_network_header(skb, ETH_HLEN);
5572 
5573 	skb_reset_mac_len(skb);
5574 
5575 	return err;
5576 }
5577 EXPORT_SYMBOL(__skb_vlan_pop);
5578 
5579 /* Pop a vlan tag either from hwaccel or from payload.
5580  * Expects skb->data at mac header.
5581  */
skb_vlan_pop(struct sk_buff * skb)5582 int skb_vlan_pop(struct sk_buff *skb)
5583 {
5584 	u16 vlan_tci;
5585 	__be16 vlan_proto;
5586 	int err;
5587 
5588 	if (likely(skb_vlan_tag_present(skb))) {
5589 		__vlan_hwaccel_clear_tag(skb);
5590 	} else {
5591 		if (unlikely(!eth_type_vlan(skb->protocol)))
5592 			return 0;
5593 
5594 		err = __skb_vlan_pop(skb, &vlan_tci);
5595 		if (err)
5596 			return err;
5597 	}
5598 	/* move next vlan tag to hw accel tag */
5599 	if (likely(!eth_type_vlan(skb->protocol)))
5600 		return 0;
5601 
5602 	vlan_proto = skb->protocol;
5603 	err = __skb_vlan_pop(skb, &vlan_tci);
5604 	if (unlikely(err))
5605 		return err;
5606 
5607 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5608 	return 0;
5609 }
5610 EXPORT_SYMBOL(skb_vlan_pop);
5611 
5612 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5613  * Expects skb->data at mac header.
5614  */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)5615 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5616 {
5617 	if (skb_vlan_tag_present(skb)) {
5618 		int offset = skb->data - skb_mac_header(skb);
5619 		int err;
5620 
5621 		if (WARN_ONCE(offset,
5622 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5623 			      offset)) {
5624 			return -EINVAL;
5625 		}
5626 
5627 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5628 					skb_vlan_tag_get(skb));
5629 		if (err)
5630 			return err;
5631 
5632 		skb->protocol = skb->vlan_proto;
5633 		skb->mac_len += VLAN_HLEN;
5634 
5635 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5636 	}
5637 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5638 	return 0;
5639 }
5640 EXPORT_SYMBOL(skb_vlan_push);
5641 
5642 /**
5643  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5644  *
5645  * @skb: Socket buffer to modify
5646  *
5647  * Drop the Ethernet header of @skb.
5648  *
5649  * Expects that skb->data points to the mac header and that no VLAN tags are
5650  * present.
5651  *
5652  * Returns 0 on success, -errno otherwise.
5653  */
skb_eth_pop(struct sk_buff * skb)5654 int skb_eth_pop(struct sk_buff *skb)
5655 {
5656 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5657 	    skb_network_offset(skb) < ETH_HLEN)
5658 		return -EPROTO;
5659 
5660 	skb_pull_rcsum(skb, ETH_HLEN);
5661 	skb_reset_mac_header(skb);
5662 	skb_reset_mac_len(skb);
5663 
5664 	return 0;
5665 }
5666 EXPORT_SYMBOL(skb_eth_pop);
5667 
5668 /**
5669  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5670  *
5671  * @skb: Socket buffer to modify
5672  * @dst: Destination MAC address of the new header
5673  * @src: Source MAC address of the new header
5674  *
5675  * Prepend @skb with a new Ethernet header.
5676  *
5677  * Expects that skb->data points to the mac header, which must be empty.
5678  *
5679  * Returns 0 on success, -errno otherwise.
5680  */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)5681 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5682 		 const unsigned char *src)
5683 {
5684 	struct ethhdr *eth;
5685 	int err;
5686 
5687 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5688 		return -EPROTO;
5689 
5690 	err = skb_cow_head(skb, sizeof(*eth));
5691 	if (err < 0)
5692 		return err;
5693 
5694 	skb_push(skb, sizeof(*eth));
5695 	skb_reset_mac_header(skb);
5696 	skb_reset_mac_len(skb);
5697 
5698 	eth = eth_hdr(skb);
5699 	ether_addr_copy(eth->h_dest, dst);
5700 	ether_addr_copy(eth->h_source, src);
5701 	eth->h_proto = skb->protocol;
5702 
5703 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5704 
5705 	return 0;
5706 }
5707 EXPORT_SYMBOL(skb_eth_push);
5708 
5709 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)5710 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5711 			     __be16 ethertype)
5712 {
5713 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5714 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5715 
5716 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5717 	}
5718 
5719 	hdr->h_proto = ethertype;
5720 }
5721 
5722 /**
5723  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5724  *                   the packet
5725  *
5726  * @skb: buffer
5727  * @mpls_lse: MPLS label stack entry to push
5728  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5729  * @mac_len: length of the MAC header
5730  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5731  *            ethernet
5732  *
5733  * Expects skb->data at mac header.
5734  *
5735  * Returns 0 on success, -errno otherwise.
5736  */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)5737 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5738 		  int mac_len, bool ethernet)
5739 {
5740 	struct mpls_shim_hdr *lse;
5741 	int err;
5742 
5743 	if (unlikely(!eth_p_mpls(mpls_proto)))
5744 		return -EINVAL;
5745 
5746 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5747 	if (skb->encapsulation)
5748 		return -EINVAL;
5749 
5750 	err = skb_cow_head(skb, MPLS_HLEN);
5751 	if (unlikely(err))
5752 		return err;
5753 
5754 	if (!skb->inner_protocol) {
5755 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5756 		skb_set_inner_protocol(skb, skb->protocol);
5757 	}
5758 
5759 	skb_push(skb, MPLS_HLEN);
5760 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5761 		mac_len);
5762 	skb_reset_mac_header(skb);
5763 	skb_set_network_header(skb, mac_len);
5764 	skb_reset_mac_len(skb);
5765 
5766 	lse = mpls_hdr(skb);
5767 	lse->label_stack_entry = mpls_lse;
5768 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5769 
5770 	if (ethernet && mac_len >= ETH_HLEN)
5771 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5772 	skb->protocol = mpls_proto;
5773 
5774 	return 0;
5775 }
5776 EXPORT_SYMBOL_GPL(skb_mpls_push);
5777 
5778 /**
5779  * skb_mpls_pop() - pop the outermost MPLS header
5780  *
5781  * @skb: buffer
5782  * @next_proto: ethertype of header after popped MPLS header
5783  * @mac_len: length of the MAC header
5784  * @ethernet: flag to indicate if the packet is ethernet
5785  *
5786  * Expects skb->data at mac header.
5787  *
5788  * Returns 0 on success, -errno otherwise.
5789  */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)5790 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5791 		 bool ethernet)
5792 {
5793 	int err;
5794 
5795 	if (unlikely(!eth_p_mpls(skb->protocol)))
5796 		return 0;
5797 
5798 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5799 	if (unlikely(err))
5800 		return err;
5801 
5802 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5803 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5804 		mac_len);
5805 
5806 	__skb_pull(skb, MPLS_HLEN);
5807 	skb_reset_mac_header(skb);
5808 	skb_set_network_header(skb, mac_len);
5809 
5810 	if (ethernet && mac_len >= ETH_HLEN) {
5811 		struct ethhdr *hdr;
5812 
5813 		/* use mpls_hdr() to get ethertype to account for VLANs. */
5814 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5815 		skb_mod_eth_type(skb, hdr, next_proto);
5816 	}
5817 	skb->protocol = next_proto;
5818 
5819 	return 0;
5820 }
5821 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5822 
5823 /**
5824  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5825  *
5826  * @skb: buffer
5827  * @mpls_lse: new MPLS label stack entry to update to
5828  *
5829  * Expects skb->data at mac header.
5830  *
5831  * Returns 0 on success, -errno otherwise.
5832  */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)5833 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5834 {
5835 	int err;
5836 
5837 	if (unlikely(!eth_p_mpls(skb->protocol)))
5838 		return -EINVAL;
5839 
5840 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5841 	if (unlikely(err))
5842 		return err;
5843 
5844 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5845 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5846 
5847 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5848 	}
5849 
5850 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
5851 
5852 	return 0;
5853 }
5854 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5855 
5856 /**
5857  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5858  *
5859  * @skb: buffer
5860  *
5861  * Expects skb->data at mac header.
5862  *
5863  * Returns 0 on success, -errno otherwise.
5864  */
skb_mpls_dec_ttl(struct sk_buff * skb)5865 int skb_mpls_dec_ttl(struct sk_buff *skb)
5866 {
5867 	u32 lse;
5868 	u8 ttl;
5869 
5870 	if (unlikely(!eth_p_mpls(skb->protocol)))
5871 		return -EINVAL;
5872 
5873 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5874 		return -ENOMEM;
5875 
5876 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5877 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5878 	if (!--ttl)
5879 		return -EINVAL;
5880 
5881 	lse &= ~MPLS_LS_TTL_MASK;
5882 	lse |= ttl << MPLS_LS_TTL_SHIFT;
5883 
5884 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5885 }
5886 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5887 
5888 /**
5889  * alloc_skb_with_frags - allocate skb with page frags
5890  *
5891  * @header_len: size of linear part
5892  * @data_len: needed length in frags
5893  * @max_page_order: max page order desired.
5894  * @errcode: pointer to error code if any
5895  * @gfp_mask: allocation mask
5896  *
5897  * This can be used to allocate a paged skb, given a maximal order for frags.
5898  */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)5899 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5900 				     unsigned long data_len,
5901 				     int max_page_order,
5902 				     int *errcode,
5903 				     gfp_t gfp_mask)
5904 {
5905 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5906 	unsigned long chunk;
5907 	struct sk_buff *skb;
5908 	struct page *page;
5909 	int i;
5910 
5911 	*errcode = -EMSGSIZE;
5912 	/* Note this test could be relaxed, if we succeed to allocate
5913 	 * high order pages...
5914 	 */
5915 	if (npages > MAX_SKB_FRAGS)
5916 		return NULL;
5917 
5918 	*errcode = -ENOBUFS;
5919 	skb = alloc_skb(header_len, gfp_mask);
5920 	if (!skb)
5921 		return NULL;
5922 
5923 	skb->truesize += npages << PAGE_SHIFT;
5924 
5925 	for (i = 0; npages > 0; i++) {
5926 		int order = max_page_order;
5927 
5928 		while (order) {
5929 			if (npages >= 1 << order) {
5930 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5931 						   __GFP_COMP |
5932 						   __GFP_NOWARN,
5933 						   order);
5934 				if (page)
5935 					goto fill_page;
5936 				/* Do not retry other high order allocations */
5937 				order = 1;
5938 				max_page_order = 0;
5939 			}
5940 			order--;
5941 		}
5942 		page = alloc_page(gfp_mask);
5943 		if (!page)
5944 			goto failure;
5945 fill_page:
5946 		chunk = min_t(unsigned long, data_len,
5947 			      PAGE_SIZE << order);
5948 		skb_fill_page_desc(skb, i, page, 0, chunk);
5949 		data_len -= chunk;
5950 		npages -= 1 << order;
5951 	}
5952 	return skb;
5953 
5954 failure:
5955 	kfree_skb(skb);
5956 	return NULL;
5957 }
5958 EXPORT_SYMBOL(alloc_skb_with_frags);
5959 
5960 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)5961 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5962 				    const int headlen, gfp_t gfp_mask)
5963 {
5964 	int i;
5965 	int size = skb_end_offset(skb);
5966 	int new_hlen = headlen - off;
5967 	u8 *data;
5968 
5969 	size = SKB_DATA_ALIGN(size);
5970 
5971 	if (skb_pfmemalloc(skb))
5972 		gfp_mask |= __GFP_MEMALLOC;
5973 	data = kmalloc_reserve(size +
5974 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5975 			       gfp_mask, NUMA_NO_NODE, NULL);
5976 	if (!data)
5977 		return -ENOMEM;
5978 
5979 	size = SKB_WITH_OVERHEAD(ksize(data));
5980 
5981 	/* Copy real data, and all frags */
5982 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5983 	skb->len -= off;
5984 
5985 	memcpy((struct skb_shared_info *)(data + size),
5986 	       skb_shinfo(skb),
5987 	       offsetof(struct skb_shared_info,
5988 			frags[skb_shinfo(skb)->nr_frags]));
5989 	if (skb_cloned(skb)) {
5990 		/* drop the old head gracefully */
5991 		if (skb_orphan_frags(skb, gfp_mask)) {
5992 			kfree(data);
5993 			return -ENOMEM;
5994 		}
5995 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5996 			skb_frag_ref(skb, i);
5997 		if (skb_has_frag_list(skb))
5998 			skb_clone_fraglist(skb);
5999 		skb_release_data(skb);
6000 	} else {
6001 		/* we can reuse existing recount- all we did was
6002 		 * relocate values
6003 		 */
6004 		skb_free_head(skb);
6005 	}
6006 
6007 	skb->head = data;
6008 	skb->data = data;
6009 	skb->head_frag = 0;
6010 	skb_set_end_offset(skb, size);
6011 	skb_set_tail_pointer(skb, skb_headlen(skb));
6012 	skb_headers_offset_update(skb, 0);
6013 	skb->cloned = 0;
6014 	skb->hdr_len = 0;
6015 	skb->nohdr = 0;
6016 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6017 
6018 	return 0;
6019 }
6020 
6021 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6022 
6023 /* carve out the first eat bytes from skb's frag_list. May recurse into
6024  * pskb_carve()
6025  */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6026 static int pskb_carve_frag_list(struct sk_buff *skb,
6027 				struct skb_shared_info *shinfo, int eat,
6028 				gfp_t gfp_mask)
6029 {
6030 	struct sk_buff *list = shinfo->frag_list;
6031 	struct sk_buff *clone = NULL;
6032 	struct sk_buff *insp = NULL;
6033 
6034 	do {
6035 		if (!list) {
6036 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6037 			return -EFAULT;
6038 		}
6039 		if (list->len <= eat) {
6040 			/* Eaten as whole. */
6041 			eat -= list->len;
6042 			list = list->next;
6043 			insp = list;
6044 		} else {
6045 			/* Eaten partially. */
6046 			if (skb_shared(list)) {
6047 				clone = skb_clone(list, gfp_mask);
6048 				if (!clone)
6049 					return -ENOMEM;
6050 				insp = list->next;
6051 				list = clone;
6052 			} else {
6053 				/* This may be pulled without problems. */
6054 				insp = list;
6055 			}
6056 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6057 				kfree_skb(clone);
6058 				return -ENOMEM;
6059 			}
6060 			break;
6061 		}
6062 	} while (eat);
6063 
6064 	/* Free pulled out fragments. */
6065 	while ((list = shinfo->frag_list) != insp) {
6066 		shinfo->frag_list = list->next;
6067 		consume_skb(list);
6068 	}
6069 	/* And insert new clone at head. */
6070 	if (clone) {
6071 		clone->next = list;
6072 		shinfo->frag_list = clone;
6073 	}
6074 	return 0;
6075 }
6076 
6077 /* carve off first len bytes from skb. Split line (off) is in the
6078  * non-linear part of skb
6079  */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6080 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6081 				       int pos, gfp_t gfp_mask)
6082 {
6083 	int i, k = 0;
6084 	int size = skb_end_offset(skb);
6085 	u8 *data;
6086 	const int nfrags = skb_shinfo(skb)->nr_frags;
6087 	struct skb_shared_info *shinfo;
6088 
6089 	size = SKB_DATA_ALIGN(size);
6090 
6091 	if (skb_pfmemalloc(skb))
6092 		gfp_mask |= __GFP_MEMALLOC;
6093 	data = kmalloc_reserve(size +
6094 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6095 			       gfp_mask, NUMA_NO_NODE, NULL);
6096 	if (!data)
6097 		return -ENOMEM;
6098 
6099 	size = SKB_WITH_OVERHEAD(ksize(data));
6100 
6101 	memcpy((struct skb_shared_info *)(data + size),
6102 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6103 	if (skb_orphan_frags(skb, gfp_mask)) {
6104 		kfree(data);
6105 		return -ENOMEM;
6106 	}
6107 	shinfo = (struct skb_shared_info *)(data + size);
6108 	for (i = 0; i < nfrags; i++) {
6109 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6110 
6111 		if (pos + fsize > off) {
6112 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6113 
6114 			if (pos < off) {
6115 				/* Split frag.
6116 				 * We have two variants in this case:
6117 				 * 1. Move all the frag to the second
6118 				 *    part, if it is possible. F.e.
6119 				 *    this approach is mandatory for TUX,
6120 				 *    where splitting is expensive.
6121 				 * 2. Split is accurately. We make this.
6122 				 */
6123 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6124 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6125 			}
6126 			skb_frag_ref(skb, i);
6127 			k++;
6128 		}
6129 		pos += fsize;
6130 	}
6131 	shinfo->nr_frags = k;
6132 	if (skb_has_frag_list(skb))
6133 		skb_clone_fraglist(skb);
6134 
6135 	/* split line is in frag list */
6136 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6137 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6138 		if (skb_has_frag_list(skb))
6139 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6140 		kfree(data);
6141 		return -ENOMEM;
6142 	}
6143 	skb_release_data(skb);
6144 
6145 	skb->head = data;
6146 	skb->head_frag = 0;
6147 	skb->data = data;
6148 	skb_set_end_offset(skb, size);
6149 	skb_reset_tail_pointer(skb);
6150 	skb_headers_offset_update(skb, 0);
6151 	skb->cloned   = 0;
6152 	skb->hdr_len  = 0;
6153 	skb->nohdr    = 0;
6154 	skb->len -= off;
6155 	skb->data_len = skb->len;
6156 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6157 	return 0;
6158 }
6159 
6160 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6161 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6162 {
6163 	int headlen = skb_headlen(skb);
6164 
6165 	if (len < headlen)
6166 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6167 	else
6168 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6169 }
6170 
6171 /* Extract to_copy bytes starting at off from skb, and return this in
6172  * a new skb
6173  */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6174 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6175 			     int to_copy, gfp_t gfp)
6176 {
6177 	struct sk_buff  *clone = skb_clone(skb, gfp);
6178 
6179 	if (!clone)
6180 		return NULL;
6181 
6182 	if (pskb_carve(clone, off, gfp) < 0 ||
6183 	    pskb_trim(clone, to_copy)) {
6184 		kfree_skb(clone);
6185 		return NULL;
6186 	}
6187 	return clone;
6188 }
6189 EXPORT_SYMBOL(pskb_extract);
6190 
6191 /**
6192  * skb_condense - try to get rid of fragments/frag_list if possible
6193  * @skb: buffer
6194  *
6195  * Can be used to save memory before skb is added to a busy queue.
6196  * If packet has bytes in frags and enough tail room in skb->head,
6197  * pull all of them, so that we can free the frags right now and adjust
6198  * truesize.
6199  * Notes:
6200  *	We do not reallocate skb->head thus can not fail.
6201  *	Caller must re-evaluate skb->truesize if needed.
6202  */
skb_condense(struct sk_buff * skb)6203 void skb_condense(struct sk_buff *skb)
6204 {
6205 	if (skb->data_len) {
6206 		if (skb->data_len > skb->end - skb->tail ||
6207 		    skb_cloned(skb))
6208 			return;
6209 
6210 		/* Nice, we can free page frag(s) right now */
6211 		__pskb_pull_tail(skb, skb->data_len);
6212 	}
6213 	/* At this point, skb->truesize might be over estimated,
6214 	 * because skb had a fragment, and fragments do not tell
6215 	 * their truesize.
6216 	 * When we pulled its content into skb->head, fragment
6217 	 * was freed, but __pskb_pull_tail() could not possibly
6218 	 * adjust skb->truesize, not knowing the frag truesize.
6219 	 */
6220 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6221 }
6222 
6223 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6224 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6225 {
6226 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6227 }
6228 
6229 /**
6230  * __skb_ext_alloc - allocate a new skb extensions storage
6231  *
6232  * @flags: See kmalloc().
6233  *
6234  * Returns the newly allocated pointer. The pointer can later attached to a
6235  * skb via __skb_ext_set().
6236  * Note: caller must handle the skb_ext as an opaque data.
6237  */
__skb_ext_alloc(gfp_t flags)6238 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6239 {
6240 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6241 
6242 	if (new) {
6243 		memset(new->offset, 0, sizeof(new->offset));
6244 		refcount_set(&new->refcnt, 1);
6245 	}
6246 
6247 	return new;
6248 }
6249 
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6250 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6251 					 unsigned int old_active)
6252 {
6253 	struct skb_ext *new;
6254 
6255 	if (refcount_read(&old->refcnt) == 1)
6256 		return old;
6257 
6258 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6259 	if (!new)
6260 		return NULL;
6261 
6262 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6263 	refcount_set(&new->refcnt, 1);
6264 
6265 #ifdef CONFIG_XFRM
6266 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6267 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6268 		unsigned int i;
6269 
6270 		for (i = 0; i < sp->len; i++)
6271 			xfrm_state_hold(sp->xvec[i]);
6272 	}
6273 #endif
6274 	__skb_ext_put(old);
6275 	return new;
6276 }
6277 
6278 /**
6279  * __skb_ext_set - attach the specified extension storage to this skb
6280  * @skb: buffer
6281  * @id: extension id
6282  * @ext: extension storage previously allocated via __skb_ext_alloc()
6283  *
6284  * Existing extensions, if any, are cleared.
6285  *
6286  * Returns the pointer to the extension.
6287  */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)6288 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6289 		    struct skb_ext *ext)
6290 {
6291 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6292 
6293 	skb_ext_put(skb);
6294 	newlen = newoff + skb_ext_type_len[id];
6295 	ext->chunks = newlen;
6296 	ext->offset[id] = newoff;
6297 	skb->extensions = ext;
6298 	skb->active_extensions = 1 << id;
6299 	return skb_ext_get_ptr(ext, id);
6300 }
6301 
6302 /**
6303  * skb_ext_add - allocate space for given extension, COW if needed
6304  * @skb: buffer
6305  * @id: extension to allocate space for
6306  *
6307  * Allocates enough space for the given extension.
6308  * If the extension is already present, a pointer to that extension
6309  * is returned.
6310  *
6311  * If the skb was cloned, COW applies and the returned memory can be
6312  * modified without changing the extension space of clones buffers.
6313  *
6314  * Returns pointer to the extension or NULL on allocation failure.
6315  */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)6316 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6317 {
6318 	struct skb_ext *new, *old = NULL;
6319 	unsigned int newlen, newoff;
6320 
6321 	if (skb->active_extensions) {
6322 		old = skb->extensions;
6323 
6324 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6325 		if (!new)
6326 			return NULL;
6327 
6328 		if (__skb_ext_exist(new, id))
6329 			goto set_active;
6330 
6331 		newoff = new->chunks;
6332 	} else {
6333 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6334 
6335 		new = __skb_ext_alloc(GFP_ATOMIC);
6336 		if (!new)
6337 			return NULL;
6338 	}
6339 
6340 	newlen = newoff + skb_ext_type_len[id];
6341 	new->chunks = newlen;
6342 	new->offset[id] = newoff;
6343 set_active:
6344 	skb->extensions = new;
6345 	skb->active_extensions |= 1 << id;
6346 	return skb_ext_get_ptr(new, id);
6347 }
6348 EXPORT_SYMBOL(skb_ext_add);
6349 
6350 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)6351 static void skb_ext_put_sp(struct sec_path *sp)
6352 {
6353 	unsigned int i;
6354 
6355 	for (i = 0; i < sp->len; i++)
6356 		xfrm_state_put(sp->xvec[i]);
6357 }
6358 #endif
6359 
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)6360 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6361 {
6362 	struct skb_ext *ext = skb->extensions;
6363 
6364 	skb->active_extensions &= ~(1 << id);
6365 	if (skb->active_extensions == 0) {
6366 		skb->extensions = NULL;
6367 		__skb_ext_put(ext);
6368 #ifdef CONFIG_XFRM
6369 	} else if (id == SKB_EXT_SEC_PATH &&
6370 		   refcount_read(&ext->refcnt) == 1) {
6371 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6372 
6373 		skb_ext_put_sp(sp);
6374 		sp->len = 0;
6375 #endif
6376 	}
6377 }
6378 EXPORT_SYMBOL(__skb_ext_del);
6379 
__skb_ext_put(struct skb_ext * ext)6380 void __skb_ext_put(struct skb_ext *ext)
6381 {
6382 	/* If this is last clone, nothing can increment
6383 	 * it after check passes.  Avoids one atomic op.
6384 	 */
6385 	if (refcount_read(&ext->refcnt) == 1)
6386 		goto free_now;
6387 
6388 	if (!refcount_dec_and_test(&ext->refcnt))
6389 		return;
6390 free_now:
6391 #ifdef CONFIG_XFRM
6392 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6393 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6394 #endif
6395 
6396 	kmem_cache_free(skbuff_ext_cache, ext);
6397 }
6398 EXPORT_SYMBOL(__skb_ext_put);
6399 #endif /* CONFIG_SKB_EXTENSIONS */
6400