xref: /OK3568_Linux_fs/kernel/include/linux/skbuff.h (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
7  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43 #include <linux/android_kabi.h>
44 #include <linux/android_vendor.h>
45 
46 /* The interface for checksum offload between the stack and networking drivers
47  * is as follows...
48  *
49  * A. IP checksum related features
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * The checksum related features are:
57  *
58  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
59  *			  IP (one's complement) checksum for any combination
60  *			  of protocols or protocol layering. The checksum is
61  *			  computed and set in a packet per the CHECKSUM_PARTIAL
62  *			  interface (see below).
63  *
64  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
65  *			  TCP or UDP packets over IPv4. These are specifically
66  *			  unencapsulated packets of the form IPv4|TCP or
67  *			  IPv4|UDP where the Protocol field in the IPv4 header
68  *			  is TCP or UDP. The IPv4 header may contain IP options.
69  *			  This feature cannot be set in features for a device
70  *			  with NETIF_F_HW_CSUM also set. This feature is being
71  *			  DEPRECATED (see below).
72  *
73  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
74  *			  TCP or UDP packets over IPv6. These are specifically
75  *			  unencapsulated packets of the form IPv6|TCP or
76  *			  IPv6|UDP where the Next Header field in the IPv6
77  *			  header is either TCP or UDP. IPv6 extension headers
78  *			  are not supported with this feature. This feature
79  *			  cannot be set in features for a device with
80  *			  NETIF_F_HW_CSUM also set. This feature is being
81  *			  DEPRECATED (see below).
82  *
83  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
84  *			 This flag is only used to disable the RX checksum
85  *			 feature for a device. The stack will accept receive
86  *			 checksum indication in packets received on a device
87  *			 regardless of whether NETIF_F_RXCSUM is set.
88  *
89  * B. Checksumming of received packets by device. Indication of checksum
90  *    verification is set in skb->ip_summed. Possible values are:
91  *
92  * CHECKSUM_NONE:
93  *
94  *   Device did not checksum this packet e.g. due to lack of capabilities.
95  *   The packet contains full (though not verified) checksum in packet but
96  *   not in skb->csum. Thus, skb->csum is undefined in this case.
97  *
98  * CHECKSUM_UNNECESSARY:
99  *
100  *   The hardware you're dealing with doesn't calculate the full checksum
101  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
102  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
103  *   if their checksums are okay. skb->csum is still undefined in this case
104  *   though. A driver or device must never modify the checksum field in the
105  *   packet even if checksum is verified.
106  *
107  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
108  *     TCP: IPv6 and IPv4.
109  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
110  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
111  *       may perform further validation in this case.
112  *     GRE: only if the checksum is present in the header.
113  *     SCTP: indicates the CRC in SCTP header has been validated.
114  *     FCOE: indicates the CRC in FC frame has been validated.
115  *
116  *   skb->csum_level indicates the number of consecutive checksums found in
117  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
118  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
119  *   and a device is able to verify the checksums for UDP (possibly zero),
120  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
121  *   two. If the device were only able to verify the UDP checksum and not
122  *   GRE, either because it doesn't support GRE checksum or because GRE
123  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
124  *   not considered in this case).
125  *
126  * CHECKSUM_COMPLETE:
127  *
128  *   This is the most generic way. The device supplied checksum of the _whole_
129  *   packet as seen by netif_rx() and fills in skb->csum. This means the
130  *   hardware doesn't need to parse L3/L4 headers to implement this.
131  *
132  *   Notes:
133  *   - Even if device supports only some protocols, but is able to produce
134  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
135  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
136  *
137  * CHECKSUM_PARTIAL:
138  *
139  *   A checksum is set up to be offloaded to a device as described in the
140  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
141  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
142  *   on the same host, or it may be set in the input path in GRO or remote
143  *   checksum offload. For the purposes of checksum verification, the checksum
144  *   referred to by skb->csum_start + skb->csum_offset and any preceding
145  *   checksums in the packet are considered verified. Any checksums in the
146  *   packet that are after the checksum being offloaded are not considered to
147  *   be verified.
148  *
149  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
150  *    in the skb->ip_summed for a packet. Values are:
151  *
152  * CHECKSUM_PARTIAL:
153  *
154  *   The driver is required to checksum the packet as seen by hard_start_xmit()
155  *   from skb->csum_start up to the end, and to record/write the checksum at
156  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
157  *   csum_start and csum_offset values are valid values given the length and
158  *   offset of the packet, but it should not attempt to validate that the
159  *   checksum refers to a legitimate transport layer checksum -- it is the
160  *   purview of the stack to validate that csum_start and csum_offset are set
161  *   correctly.
162  *
163  *   When the stack requests checksum offload for a packet, the driver MUST
164  *   ensure that the checksum is set correctly. A driver can either offload the
165  *   checksum calculation to the device, or call skb_checksum_help (in the case
166  *   that the device does not support offload for a particular checksum).
167  *
168  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
169  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
170  *   checksum offload capability.
171  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
172  *   on network device checksumming capabilities: if a packet does not match
173  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
174  *   csum_not_inet, see item D.) is called to resolve the checksum.
175  *
176  * CHECKSUM_NONE:
177  *
178  *   The skb was already checksummed by the protocol, or a checksum is not
179  *   required.
180  *
181  * CHECKSUM_UNNECESSARY:
182  *
183  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
184  *   output.
185  *
186  * CHECKSUM_COMPLETE:
187  *   Not used in checksum output. If a driver observes a packet with this value
188  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
189  *
190  * D. Non-IP checksum (CRC) offloads
191  *
192  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
193  *     offloading the SCTP CRC in a packet. To perform this offload the stack
194  *     will set csum_start and csum_offset accordingly, set ip_summed to
195  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
196  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
197  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
198  *     must verify which offload is configured for a packet by testing the
199  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
200  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
201  *
202  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
203  *     offloading the FCOE CRC in a packet. To perform this offload the stack
204  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
205  *     accordingly. Note that there is no indication in the skbuff that the
206  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
207  *     both IP checksum offload and FCOE CRC offload must verify which offload
208  *     is configured for a packet, presumably by inspecting packet headers.
209  *
210  * E. Checksumming on output with GSO.
211  *
212  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
213  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
214  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
215  * part of the GSO operation is implied. If a checksum is being offloaded
216  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
217  * csum_offset are set to refer to the outermost checksum being offloaded
218  * (two offloaded checksums are possible with UDP encapsulation).
219  */
220 
221 /* Don't change this without changing skb_csum_unnecessary! */
222 #define CHECKSUM_NONE		0
223 #define CHECKSUM_UNNECESSARY	1
224 #define CHECKSUM_COMPLETE	2
225 #define CHECKSUM_PARTIAL	3
226 
227 /* Maximum value in skb->csum_level */
228 #define SKB_MAX_CSUM_LEVEL	3
229 
230 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
231 #define SKB_WITH_OVERHEAD(X)	\
232 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
233 #define SKB_MAX_ORDER(X, ORDER) \
234 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
235 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
236 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
237 
238 /* return minimum truesize of one skb containing X bytes of data */
239 #define SKB_TRUESIZE(X) ((X) +						\
240 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
241 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
242 
243 struct ahash_request;
244 struct net_device;
245 struct scatterlist;
246 struct pipe_inode_info;
247 struct iov_iter;
248 struct napi_struct;
249 struct bpf_prog;
250 union bpf_attr;
251 struct skb_ext;
252 
253 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
254 struct nf_bridge_info {
255 	enum {
256 		BRNF_PROTO_UNCHANGED,
257 		BRNF_PROTO_8021Q,
258 		BRNF_PROTO_PPPOE
259 	} orig_proto:8;
260 	u8			pkt_otherhost:1;
261 	u8			in_prerouting:1;
262 	u8			bridged_dnat:1;
263 	__u16			frag_max_size;
264 	struct net_device	*physindev;
265 
266 	/* always valid & non-NULL from FORWARD on, for physdev match */
267 	struct net_device	*physoutdev;
268 	union {
269 		/* prerouting: detect dnat in orig/reply direction */
270 		__be32          ipv4_daddr;
271 		struct in6_addr ipv6_daddr;
272 
273 		/* after prerouting + nat detected: store original source
274 		 * mac since neigh resolution overwrites it, only used while
275 		 * skb is out in neigh layer.
276 		 */
277 		char neigh_header[8];
278 	};
279 };
280 #endif
281 
282 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
283 /* Chain in tc_skb_ext will be used to share the tc chain with
284  * ovs recirc_id. It will be set to the current chain by tc
285  * and read by ovs to recirc_id.
286  */
287 struct tc_skb_ext {
288 	__u32 chain;
289 	__u16 mru;
290 };
291 #endif
292 
293 struct sk_buff_head {
294 	/* These two members must be first. */
295 	struct sk_buff	*next;
296 	struct sk_buff	*prev;
297 
298 	__u32		qlen;
299 	spinlock_t	lock;
300 };
301 
302 struct sk_buff;
303 
304 /* To allow 64K frame to be packed as single skb without frag_list we
305  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
306  * buffers which do not start on a page boundary.
307  *
308  * Since GRO uses frags we allocate at least 16 regardless of page
309  * size.
310  */
311 #if (65536/PAGE_SIZE + 1) < 16
312 #define MAX_SKB_FRAGS 16UL
313 #else
314 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
315 #endif
316 extern int sysctl_max_skb_frags;
317 
318 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
319  * segment using its current segmentation instead.
320  */
321 #define GSO_BY_FRAGS	0xFFFF
322 
323 typedef struct bio_vec skb_frag_t;
324 
325 /**
326  * skb_frag_size() - Returns the size of a skb fragment
327  * @frag: skb fragment
328  */
skb_frag_size(const skb_frag_t * frag)329 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
330 {
331 	return frag->bv_len;
332 }
333 
334 /**
335  * skb_frag_size_set() - Sets the size of a skb fragment
336  * @frag: skb fragment
337  * @size: size of fragment
338  */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)339 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
340 {
341 	frag->bv_len = size;
342 }
343 
344 /**
345  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
346  * @frag: skb fragment
347  * @delta: value to add
348  */
skb_frag_size_add(skb_frag_t * frag,int delta)349 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
350 {
351 	frag->bv_len += delta;
352 }
353 
354 /**
355  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
356  * @frag: skb fragment
357  * @delta: value to subtract
358  */
skb_frag_size_sub(skb_frag_t * frag,int delta)359 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
360 {
361 	frag->bv_len -= delta;
362 }
363 
364 /**
365  * skb_frag_must_loop - Test if %p is a high memory page
366  * @p: fragment's page
367  */
skb_frag_must_loop(struct page * p)368 static inline bool skb_frag_must_loop(struct page *p)
369 {
370 #if defined(CONFIG_HIGHMEM)
371 	if (PageHighMem(p))
372 		return true;
373 #endif
374 	return false;
375 }
376 
377 /**
378  *	skb_frag_foreach_page - loop over pages in a fragment
379  *
380  *	@f:		skb frag to operate on
381  *	@f_off:		offset from start of f->bv_page
382  *	@f_len:		length from f_off to loop over
383  *	@p:		(temp var) current page
384  *	@p_off:		(temp var) offset from start of current page,
385  *	                           non-zero only on first page.
386  *	@p_len:		(temp var) length in current page,
387  *				   < PAGE_SIZE only on first and last page.
388  *	@copied:	(temp var) length so far, excluding current p_len.
389  *
390  *	A fragment can hold a compound page, in which case per-page
391  *	operations, notably kmap_atomic, must be called for each
392  *	regular page.
393  */
394 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
395 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
396 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
397 	     p_len = skb_frag_must_loop(p) ?				\
398 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
399 	     copied = 0;						\
400 	     copied < f_len;						\
401 	     copied += p_len, p++, p_off = 0,				\
402 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
403 
404 #define HAVE_HW_TIME_STAMP
405 
406 /**
407  * struct skb_shared_hwtstamps - hardware time stamps
408  * @hwtstamp:	hardware time stamp transformed into duration
409  *		since arbitrary point in time
410  *
411  * Software time stamps generated by ktime_get_real() are stored in
412  * skb->tstamp.
413  *
414  * hwtstamps can only be compared against other hwtstamps from
415  * the same device.
416  *
417  * This structure is attached to packets as part of the
418  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
419  */
420 struct skb_shared_hwtstamps {
421 	ktime_t	hwtstamp;
422 };
423 
424 /* Definitions for tx_flags in struct skb_shared_info */
425 enum {
426 	/* generate hardware time stamp */
427 	SKBTX_HW_TSTAMP = 1 << 0,
428 
429 	/* generate software time stamp when queueing packet to NIC */
430 	SKBTX_SW_TSTAMP = 1 << 1,
431 
432 	/* device driver is going to provide hardware time stamp */
433 	SKBTX_IN_PROGRESS = 1 << 2,
434 
435 	/* device driver supports TX zero-copy buffers */
436 	SKBTX_DEV_ZEROCOPY = 1 << 3,
437 
438 	/* generate wifi status information (where possible) */
439 	SKBTX_WIFI_STATUS = 1 << 4,
440 
441 	/* This indicates at least one fragment might be overwritten
442 	 * (as in vmsplice(), sendfile() ...)
443 	 * If we need to compute a TX checksum, we'll need to copy
444 	 * all frags to avoid possible bad checksum
445 	 */
446 	SKBTX_SHARED_FRAG = 1 << 5,
447 
448 	/* generate software time stamp when entering packet scheduling */
449 	SKBTX_SCHED_TSTAMP = 1 << 6,
450 };
451 
452 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
453 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
454 				 SKBTX_SCHED_TSTAMP)
455 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
456 
457 /*
458  * The callback notifies userspace to release buffers when skb DMA is done in
459  * lower device, the skb last reference should be 0 when calling this.
460  * The zerocopy_success argument is true if zero copy transmit occurred,
461  * false on data copy or out of memory error caused by data copy attempt.
462  * The ctx field is used to track device context.
463  * The desc field is used to track userspace buffer index.
464  */
465 struct ubuf_info {
466 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
467 	union {
468 		struct {
469 			unsigned long desc;
470 			void *ctx;
471 		};
472 		struct {
473 			u32 id;
474 			u16 len;
475 			u16 zerocopy:1;
476 			u32 bytelen;
477 		};
478 	};
479 	refcount_t refcnt;
480 
481 	struct mmpin {
482 		struct user_struct *user;
483 		unsigned int num_pg;
484 	} mmp;
485 };
486 
487 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
488 
489 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
490 void mm_unaccount_pinned_pages(struct mmpin *mmp);
491 
492 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
493 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
494 					struct ubuf_info *uarg);
495 
sock_zerocopy_get(struct ubuf_info * uarg)496 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
497 {
498 	refcount_inc(&uarg->refcnt);
499 }
500 
501 void sock_zerocopy_put(struct ubuf_info *uarg);
502 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
503 
504 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
505 
506 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
507 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
508 			     struct msghdr *msg, int len,
509 			     struct ubuf_info *uarg);
510 
511 /* This data is invariant across clones and lives at
512  * the end of the header data, ie. at skb->end.
513  */
514 struct skb_shared_info {
515 	__u8		__unused;
516 	__u8		meta_len;
517 	__u8		nr_frags;
518 	__u8		tx_flags;
519 	unsigned short	gso_size;
520 	/* Warning: this field is not always filled in (UFO)! */
521 	unsigned short	gso_segs;
522 	struct sk_buff	*frag_list;
523 	struct skb_shared_hwtstamps hwtstamps;
524 	unsigned int	gso_type;
525 	u32		tskey;
526 
527 	/*
528 	 * Warning : all fields before dataref are cleared in __alloc_skb()
529 	 */
530 	atomic_t	dataref;
531 
532 	/* Intermediate layers must ensure that destructor_arg
533 	 * remains valid until skb destructor */
534 	void *		destructor_arg;
535 
536 	ANDROID_OEM_DATA_ARRAY(1, 3);
537 
538 	/* must be last field, see pskb_expand_head() */
539 	skb_frag_t	frags[MAX_SKB_FRAGS];
540 };
541 
542 /* We divide dataref into two halves.  The higher 16 bits hold references
543  * to the payload part of skb->data.  The lower 16 bits hold references to
544  * the entire skb->data.  A clone of a headerless skb holds the length of
545  * the header in skb->hdr_len.
546  *
547  * All users must obey the rule that the skb->data reference count must be
548  * greater than or equal to the payload reference count.
549  *
550  * Holding a reference to the payload part means that the user does not
551  * care about modifications to the header part of skb->data.
552  */
553 #define SKB_DATAREF_SHIFT 16
554 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
555 
556 
557 enum {
558 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
559 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
560 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
561 };
562 
563 enum {
564 	SKB_GSO_TCPV4 = 1 << 0,
565 
566 	/* This indicates the skb is from an untrusted source. */
567 	SKB_GSO_DODGY = 1 << 1,
568 
569 	/* This indicates the tcp segment has CWR set. */
570 	SKB_GSO_TCP_ECN = 1 << 2,
571 
572 	SKB_GSO_TCP_FIXEDID = 1 << 3,
573 
574 	SKB_GSO_TCPV6 = 1 << 4,
575 
576 	SKB_GSO_FCOE = 1 << 5,
577 
578 	SKB_GSO_GRE = 1 << 6,
579 
580 	SKB_GSO_GRE_CSUM = 1 << 7,
581 
582 	SKB_GSO_IPXIP4 = 1 << 8,
583 
584 	SKB_GSO_IPXIP6 = 1 << 9,
585 
586 	SKB_GSO_UDP_TUNNEL = 1 << 10,
587 
588 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
589 
590 	SKB_GSO_PARTIAL = 1 << 12,
591 
592 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
593 
594 	SKB_GSO_SCTP = 1 << 14,
595 
596 	SKB_GSO_ESP = 1 << 15,
597 
598 	SKB_GSO_UDP = 1 << 16,
599 
600 	SKB_GSO_UDP_L4 = 1 << 17,
601 
602 	SKB_GSO_FRAGLIST = 1 << 18,
603 };
604 
605 #if BITS_PER_LONG > 32
606 #define NET_SKBUFF_DATA_USES_OFFSET 1
607 #endif
608 
609 #ifdef NET_SKBUFF_DATA_USES_OFFSET
610 typedef unsigned int sk_buff_data_t;
611 #else
612 typedef unsigned char *sk_buff_data_t;
613 #endif
614 
615 /**
616  *	struct sk_buff - socket buffer
617  *	@next: Next buffer in list
618  *	@prev: Previous buffer in list
619  *	@tstamp: Time we arrived/left
620  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
621  *		for retransmit timer
622  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
623  *	@list: queue head
624  *	@sk: Socket we are owned by
625  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
626  *		fragmentation management
627  *	@dev: Device we arrived on/are leaving by
628  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
629  *	@cb: Control buffer. Free for use by every layer. Put private vars here
630  *	@_skb_refdst: destination entry (with norefcount bit)
631  *	@sp: the security path, used for xfrm
632  *	@len: Length of actual data
633  *	@data_len: Data length
634  *	@mac_len: Length of link layer header
635  *	@hdr_len: writable header length of cloned skb
636  *	@csum: Checksum (must include start/offset pair)
637  *	@csum_start: Offset from skb->head where checksumming should start
638  *	@csum_offset: Offset from csum_start where checksum should be stored
639  *	@priority: Packet queueing priority
640  *	@ignore_df: allow local fragmentation
641  *	@cloned: Head may be cloned (check refcnt to be sure)
642  *	@ip_summed: Driver fed us an IP checksum
643  *	@nohdr: Payload reference only, must not modify header
644  *	@pkt_type: Packet class
645  *	@fclone: skbuff clone status
646  *	@ipvs_property: skbuff is owned by ipvs
647  *	@inner_protocol_type: whether the inner protocol is
648  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
649  *	@remcsum_offload: remote checksum offload is enabled
650  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
651  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
652  *	@tc_skip_classify: do not classify packet. set by IFB device
653  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
654  *	@redirected: packet was redirected by packet classifier
655  *	@from_ingress: packet was redirected from the ingress path
656  *	@peeked: this packet has been seen already, so stats have been
657  *		done for it, don't do them again
658  *	@nf_trace: netfilter packet trace flag
659  *	@protocol: Packet protocol from driver
660  *	@destructor: Destruct function
661  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
662  *	@_nfct: Associated connection, if any (with nfctinfo bits)
663  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
664  *	@skb_iif: ifindex of device we arrived on
665  *	@tc_index: Traffic control index
666  *	@hash: the packet hash
667  *	@queue_mapping: Queue mapping for multiqueue devices
668  *	@head_frag: skb was allocated from page fragments,
669  *		not allocated by kmalloc() or vmalloc().
670  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
671  *	@active_extensions: active extensions (skb_ext_id types)
672  *	@ndisc_nodetype: router type (from link layer)
673  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
674  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
675  *		ports.
676  *	@sw_hash: indicates hash was computed in software stack
677  *	@wifi_acked_valid: wifi_acked was set
678  *	@wifi_acked: whether frame was acked on wifi or not
679  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
680  *	@encapsulation: indicates the inner headers in the skbuff are valid
681  *	@encap_hdr_csum: software checksum is needed
682  *	@csum_valid: checksum is already valid
683  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
684  *	@csum_complete_sw: checksum was completed by software
685  *	@csum_level: indicates the number of consecutive checksums found in
686  *		the packet minus one that have been verified as
687  *		CHECKSUM_UNNECESSARY (max 3)
688  *	@scm_io_uring: SKB holds io_uring registered files
689  *	@dst_pending_confirm: need to confirm neighbour
690  *	@decrypted: Decrypted SKB
691  *	@napi_id: id of the NAPI struct this skb came from
692  *	@sender_cpu: (aka @napi_id) source CPU in XPS
693  *	@secmark: security marking
694  *	@mark: Generic packet mark
695  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
696  *		at the tail of an sk_buff
697  *	@vlan_present: VLAN tag is present
698  *	@vlan_proto: vlan encapsulation protocol
699  *	@vlan_tci: vlan tag control information
700  *	@inner_protocol: Protocol (encapsulation)
701  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
702  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
703  *	@inner_transport_header: Inner transport layer header (encapsulation)
704  *	@inner_network_header: Network layer header (encapsulation)
705  *	@inner_mac_header: Link layer header (encapsulation)
706  *	@transport_header: Transport layer header
707  *	@network_header: Network layer header
708  *	@mac_header: Link layer header
709  *	@tail: Tail pointer
710  *	@end: End pointer
711  *	@head: Head of buffer
712  *	@data: Data head pointer
713  *	@truesize: Buffer size
714  *	@users: User count - see {datagram,tcp}.c
715  *	@extensions: allocated extensions, valid if active_extensions is nonzero
716  */
717 
718 struct sk_buff {
719 	union {
720 		struct {
721 			/* These two members must be first. */
722 			struct sk_buff		*next;
723 			struct sk_buff		*prev;
724 
725 			union {
726 				struct net_device	*dev;
727 				/* Some protocols might use this space to store information,
728 				 * while device pointer would be NULL.
729 				 * UDP receive path is one user.
730 				 */
731 				unsigned long		dev_scratch;
732 			};
733 		};
734 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
735 		struct list_head	list;
736 	};
737 
738 	union {
739 		struct sock		*sk;
740 		int			ip_defrag_offset;
741 	};
742 
743 	union {
744 		ktime_t		tstamp;
745 		u64		skb_mstamp_ns; /* earliest departure time */
746 	};
747 	/*
748 	 * This is the control buffer. It is free to use for every
749 	 * layer. Please put your private variables there. If you
750 	 * want to keep them across layers you have to do a skb_clone()
751 	 * first. This is owned by whoever has the skb queued ATM.
752 	 */
753 	char			cb[48] __aligned(8);
754 
755 	union {
756 		struct {
757 			unsigned long	_skb_refdst;
758 			void		(*destructor)(struct sk_buff *skb);
759 		};
760 		struct list_head	tcp_tsorted_anchor;
761 	};
762 
763 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
764 	unsigned long		 _nfct;
765 #endif
766 	unsigned int		len,
767 				data_len;
768 	__u16			mac_len,
769 				hdr_len;
770 
771 	/* Following fields are _not_ copied in __copy_skb_header()
772 	 * Note that queue_mapping is here mostly to fill a hole.
773 	 */
774 	__u16			queue_mapping;
775 
776 /* if you move cloned around you also must adapt those constants */
777 #ifdef __BIG_ENDIAN_BITFIELD
778 #define CLONED_MASK	(1 << 7)
779 #else
780 #define CLONED_MASK	1
781 #endif
782 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
783 
784 	/* private: */
785 	__u8			__cloned_offset[0];
786 	/* public: */
787 	__u8			cloned:1,
788 				nohdr:1,
789 				fclone:2,
790 				peeked:1,
791 				head_frag:1,
792 				pfmemalloc:1;
793 #ifdef CONFIG_SKB_EXTENSIONS
794 	__u8			active_extensions;
795 #endif
796 	/* fields enclosed in headers_start/headers_end are copied
797 	 * using a single memcpy() in __copy_skb_header()
798 	 */
799 	/* private: */
800 	__u32			headers_start[0];
801 	/* public: */
802 
803 /* if you move pkt_type around you also must adapt those constants */
804 #ifdef __BIG_ENDIAN_BITFIELD
805 #define PKT_TYPE_MAX	(7 << 5)
806 #else
807 #define PKT_TYPE_MAX	7
808 #endif
809 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
810 
811 	/* private: */
812 	__u8			__pkt_type_offset[0];
813 	/* public: */
814 	__u8			pkt_type:3;
815 	__u8			ignore_df:1;
816 	__u8			nf_trace:1;
817 	__u8			ip_summed:2;
818 	__u8			ooo_okay:1;
819 
820 	__u8			l4_hash:1;
821 	__u8			sw_hash:1;
822 	__u8			wifi_acked_valid:1;
823 	__u8			wifi_acked:1;
824 	__u8			no_fcs:1;
825 	/* Indicates the inner headers are valid in the skbuff. */
826 	__u8			encapsulation:1;
827 	__u8			encap_hdr_csum:1;
828 	__u8			csum_valid:1;
829 
830 #ifdef __BIG_ENDIAN_BITFIELD
831 #define PKT_VLAN_PRESENT_BIT	7
832 #else
833 #define PKT_VLAN_PRESENT_BIT	0
834 #endif
835 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
836 	/* private: */
837 	__u8			__pkt_vlan_present_offset[0];
838 	/* public: */
839 	__u8			vlan_present:1;
840 	__u8			csum_complete_sw:1;
841 	__u8			csum_level:2;
842 	__u8			csum_not_inet:1;
843 	__u8			dst_pending_confirm:1;
844 #ifdef CONFIG_IPV6_NDISC_NODETYPE
845 	__u8			ndisc_nodetype:2;
846 #endif
847 
848 	__u8			ipvs_property:1;
849 	__u8			inner_protocol_type:1;
850 	__u8			remcsum_offload:1;
851 #ifdef CONFIG_NET_SWITCHDEV
852 	__u8			offload_fwd_mark:1;
853 	__u8			offload_l3_fwd_mark:1;
854 #endif
855 #ifdef CONFIG_NET_CLS_ACT
856 	__u8			tc_skip_classify:1;
857 	__u8			tc_at_ingress:1;
858 #endif
859 #ifdef CONFIG_NET_REDIRECT
860 	__u8			redirected:1;
861 	__u8			from_ingress:1;
862 #endif
863 #ifdef CONFIG_TLS_DEVICE
864 	__u8			decrypted:1;
865 #endif
866 
867 #ifdef CONFIG_NET_SCHED
868 	__u16			tc_index;	/* traffic control index */
869 #endif
870 
871 	union {
872 		__wsum		csum;
873 		struct {
874 			__u16	csum_start;
875 			__u16	csum_offset;
876 		};
877 	};
878 	__u32			priority;
879 	int			skb_iif;
880 	__u32			hash;
881 	__be16			vlan_proto;
882 	__u16			vlan_tci;
883 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
884 	union {
885 		unsigned int	napi_id;
886 		unsigned int	sender_cpu;
887 	};
888 #endif
889 #ifdef CONFIG_NETWORK_SECMARK
890 	__u32		secmark;
891 #endif
892 
893 	union {
894 		__u32		mark;
895 		__u32		reserved_tailroom;
896 	};
897 
898 	union {
899 		__be16		inner_protocol;
900 		__u8		inner_ipproto;
901 	};
902 
903 	__u16			inner_transport_header;
904 	__u16			inner_network_header;
905 	__u16			inner_mac_header;
906 
907 	__be16			protocol;
908 	__u16			transport_header;
909 	__u16			network_header;
910 	__u16			mac_header;
911 
912 	/* private: */
913 	__u32			headers_end[0];
914 	/* public: */
915 
916 	/* Android KABI preservation.
917 	 *
918 	 * "open coded" version of ANDROID_KABI_USE() to pack more
919 	 * fields/variables into the space that we have.
920 	 *
921 	 * scm_io_uring is from 04df9719df18 ("io_uring/af_unix: defer
922 	 * registered files gc to io_uring release")
923 	 */
924 	_ANDROID_KABI_REPLACE(_ANDROID_KABI_RESERVE(1),
925 			 struct {
926 				__u8 scm_io_uring:1;
927 				__u8 android_kabi_reserved1_padding1;
928 				__u16 android_kabi_reserved1_padding2;
929 				__u32 android_kabi_reserved1_padding3;
930 				});
931 	ANDROID_KABI_RESERVE(2);
932 
933 	/* These elements must be at the end, see alloc_skb() for details.  */
934 	sk_buff_data_t		tail;
935 	sk_buff_data_t		end;
936 	unsigned char		*head,
937 				*data;
938 	unsigned int		truesize;
939 	refcount_t		users;
940 
941 #ifdef CONFIG_SKB_EXTENSIONS
942 	/* only useable after checking ->active_extensions != 0 */
943 	struct skb_ext		*extensions;
944 #endif
945 };
946 
947 #ifdef __KERNEL__
948 /*
949  *	Handling routines are only of interest to the kernel
950  */
951 
952 #define SKB_ALLOC_FCLONE	0x01
953 #define SKB_ALLOC_RX		0x02
954 #define SKB_ALLOC_NAPI		0x04
955 
956 /**
957  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
958  * @skb: buffer
959  */
skb_pfmemalloc(const struct sk_buff * skb)960 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
961 {
962 	return unlikely(skb->pfmemalloc);
963 }
964 
965 /*
966  * skb might have a dst pointer attached, refcounted or not.
967  * _skb_refdst low order bit is set if refcount was _not_ taken
968  */
969 #define SKB_DST_NOREF	1UL
970 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
971 
972 /**
973  * skb_dst - returns skb dst_entry
974  * @skb: buffer
975  *
976  * Returns skb dst_entry, regardless of reference taken or not.
977  */
skb_dst(const struct sk_buff * skb)978 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
979 {
980 	/* If refdst was not refcounted, check we still are in a
981 	 * rcu_read_lock section
982 	 */
983 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
984 		!rcu_read_lock_held() &&
985 		!rcu_read_lock_bh_held());
986 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
987 }
988 
989 /**
990  * skb_dst_set - sets skb dst
991  * @skb: buffer
992  * @dst: dst entry
993  *
994  * Sets skb dst, assuming a reference was taken on dst and should
995  * be released by skb_dst_drop()
996  */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)997 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
998 {
999 	skb->_skb_refdst = (unsigned long)dst;
1000 }
1001 
1002 /**
1003  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1004  * @skb: buffer
1005  * @dst: dst entry
1006  *
1007  * Sets skb dst, assuming a reference was not taken on dst.
1008  * If dst entry is cached, we do not take reference and dst_release
1009  * will be avoided by refdst_drop. If dst entry is not cached, we take
1010  * reference, so that last dst_release can destroy the dst immediately.
1011  */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)1012 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1013 {
1014 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1015 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1016 }
1017 
1018 /**
1019  * skb_dst_is_noref - Test if skb dst isn't refcounted
1020  * @skb: buffer
1021  */
skb_dst_is_noref(const struct sk_buff * skb)1022 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1023 {
1024 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1025 }
1026 
1027 /**
1028  * skb_rtable - Returns the skb &rtable
1029  * @skb: buffer
1030  */
skb_rtable(const struct sk_buff * skb)1031 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1032 {
1033 	return (struct rtable *)skb_dst(skb);
1034 }
1035 
1036 /* For mangling skb->pkt_type from user space side from applications
1037  * such as nft, tc, etc, we only allow a conservative subset of
1038  * possible pkt_types to be set.
1039 */
skb_pkt_type_ok(u32 ptype)1040 static inline bool skb_pkt_type_ok(u32 ptype)
1041 {
1042 	return ptype <= PACKET_OTHERHOST;
1043 }
1044 
1045 /**
1046  * skb_napi_id - Returns the skb's NAPI id
1047  * @skb: buffer
1048  */
skb_napi_id(const struct sk_buff * skb)1049 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1050 {
1051 #ifdef CONFIG_NET_RX_BUSY_POLL
1052 	return skb->napi_id;
1053 #else
1054 	return 0;
1055 #endif
1056 }
1057 
1058 /**
1059  * skb_unref - decrement the skb's reference count
1060  * @skb: buffer
1061  *
1062  * Returns true if we can free the skb.
1063  */
skb_unref(struct sk_buff * skb)1064 static inline bool skb_unref(struct sk_buff *skb)
1065 {
1066 	if (unlikely(!skb))
1067 		return false;
1068 	if (likely(refcount_read(&skb->users) == 1))
1069 		smp_rmb();
1070 	else if (likely(!refcount_dec_and_test(&skb->users)))
1071 		return false;
1072 
1073 	return true;
1074 }
1075 
1076 void skb_release_head_state(struct sk_buff *skb);
1077 void kfree_skb(struct sk_buff *skb);
1078 void kfree_skb_list(struct sk_buff *segs);
1079 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1080 void skb_tx_error(struct sk_buff *skb);
1081 
1082 #ifdef CONFIG_TRACEPOINTS
1083 void consume_skb(struct sk_buff *skb);
1084 #else
consume_skb(struct sk_buff * skb)1085 static inline void consume_skb(struct sk_buff *skb)
1086 {
1087 	return kfree_skb(skb);
1088 }
1089 #endif
1090 
1091 void __consume_stateless_skb(struct sk_buff *skb);
1092 void  __kfree_skb(struct sk_buff *skb);
1093 extern struct kmem_cache *skbuff_head_cache;
1094 
1095 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1096 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1097 		      bool *fragstolen, int *delta_truesize);
1098 
1099 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1100 			    int node);
1101 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1102 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1103 struct sk_buff *build_skb_around(struct sk_buff *skb,
1104 				 void *data, unsigned int frag_size);
1105 
1106 /**
1107  * alloc_skb - allocate a network buffer
1108  * @size: size to allocate
1109  * @priority: allocation mask
1110  *
1111  * This function is a convenient wrapper around __alloc_skb().
1112  */
alloc_skb(unsigned int size,gfp_t priority)1113 static inline struct sk_buff *alloc_skb(unsigned int size,
1114 					gfp_t priority)
1115 {
1116 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1117 }
1118 
1119 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1120 				     unsigned long data_len,
1121 				     int max_page_order,
1122 				     int *errcode,
1123 				     gfp_t gfp_mask);
1124 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1125 
1126 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1127 struct sk_buff_fclones {
1128 	struct sk_buff	skb1;
1129 
1130 	struct sk_buff	skb2;
1131 
1132 	refcount_t	fclone_ref;
1133 };
1134 
1135 /**
1136  *	skb_fclone_busy - check if fclone is busy
1137  *	@sk: socket
1138  *	@skb: buffer
1139  *
1140  * Returns true if skb is a fast clone, and its clone is not freed.
1141  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1142  * so we also check that this didnt happen.
1143  */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1144 static inline bool skb_fclone_busy(const struct sock *sk,
1145 				   const struct sk_buff *skb)
1146 {
1147 	const struct sk_buff_fclones *fclones;
1148 
1149 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1150 
1151 	return skb->fclone == SKB_FCLONE_ORIG &&
1152 	       refcount_read(&fclones->fclone_ref) > 1 &&
1153 	       fclones->skb2.sk == sk;
1154 }
1155 
1156 /**
1157  * alloc_skb_fclone - allocate a network buffer from fclone cache
1158  * @size: size to allocate
1159  * @priority: allocation mask
1160  *
1161  * This function is a convenient wrapper around __alloc_skb().
1162  */
alloc_skb_fclone(unsigned int size,gfp_t priority)1163 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1164 					       gfp_t priority)
1165 {
1166 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1167 }
1168 
1169 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1170 void skb_headers_offset_update(struct sk_buff *skb, int off);
1171 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1172 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1173 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1174 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1175 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1176 				   gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1177 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1178 					  gfp_t gfp_mask)
1179 {
1180 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1181 }
1182 
1183 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1184 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1185 				     unsigned int headroom);
1186 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1187 				int newtailroom, gfp_t priority);
1188 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1189 				     int offset, int len);
1190 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1191 			      int offset, int len);
1192 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1193 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1194 
1195 /**
1196  *	skb_pad			-	zero pad the tail of an skb
1197  *	@skb: buffer to pad
1198  *	@pad: space to pad
1199  *
1200  *	Ensure that a buffer is followed by a padding area that is zero
1201  *	filled. Used by network drivers which may DMA or transfer data
1202  *	beyond the buffer end onto the wire.
1203  *
1204  *	May return error in out of memory cases. The skb is freed on error.
1205  */
skb_pad(struct sk_buff * skb,int pad)1206 static inline int skb_pad(struct sk_buff *skb, int pad)
1207 {
1208 	return __skb_pad(skb, pad, true);
1209 }
1210 #define dev_kfree_skb(a)	consume_skb(a)
1211 
1212 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1213 			 int offset, size_t size);
1214 
1215 struct skb_seq_state {
1216 	__u32		lower_offset;
1217 	__u32		upper_offset;
1218 	__u32		frag_idx;
1219 	__u32		stepped_offset;
1220 	struct sk_buff	*root_skb;
1221 	struct sk_buff	*cur_skb;
1222 	__u8		*frag_data;
1223 };
1224 
1225 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1226 			  unsigned int to, struct skb_seq_state *st);
1227 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1228 			  struct skb_seq_state *st);
1229 void skb_abort_seq_read(struct skb_seq_state *st);
1230 
1231 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1232 			   unsigned int to, struct ts_config *config);
1233 
1234 /*
1235  * Packet hash types specify the type of hash in skb_set_hash.
1236  *
1237  * Hash types refer to the protocol layer addresses which are used to
1238  * construct a packet's hash. The hashes are used to differentiate or identify
1239  * flows of the protocol layer for the hash type. Hash types are either
1240  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1241  *
1242  * Properties of hashes:
1243  *
1244  * 1) Two packets in different flows have different hash values
1245  * 2) Two packets in the same flow should have the same hash value
1246  *
1247  * A hash at a higher layer is considered to be more specific. A driver should
1248  * set the most specific hash possible.
1249  *
1250  * A driver cannot indicate a more specific hash than the layer at which a hash
1251  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1252  *
1253  * A driver may indicate a hash level which is less specific than the
1254  * actual layer the hash was computed on. For instance, a hash computed
1255  * at L4 may be considered an L3 hash. This should only be done if the
1256  * driver can't unambiguously determine that the HW computed the hash at
1257  * the higher layer. Note that the "should" in the second property above
1258  * permits this.
1259  */
1260 enum pkt_hash_types {
1261 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1262 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1263 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1264 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1265 };
1266 
skb_clear_hash(struct sk_buff * skb)1267 static inline void skb_clear_hash(struct sk_buff *skb)
1268 {
1269 	skb->hash = 0;
1270 	skb->sw_hash = 0;
1271 	skb->l4_hash = 0;
1272 }
1273 
skb_clear_hash_if_not_l4(struct sk_buff * skb)1274 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1275 {
1276 	if (!skb->l4_hash)
1277 		skb_clear_hash(skb);
1278 }
1279 
1280 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1281 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1282 {
1283 	skb->l4_hash = is_l4;
1284 	skb->sw_hash = is_sw;
1285 	skb->hash = hash;
1286 }
1287 
1288 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1289 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1290 {
1291 	/* Used by drivers to set hash from HW */
1292 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1293 }
1294 
1295 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1296 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1297 {
1298 	__skb_set_hash(skb, hash, true, is_l4);
1299 }
1300 
1301 void __skb_get_hash(struct sk_buff *skb);
1302 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1303 u32 skb_get_poff(const struct sk_buff *skb);
1304 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1305 		   const struct flow_keys_basic *keys, int hlen);
1306 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1307 			    void *data, int hlen_proto);
1308 
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1309 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1310 					int thoff, u8 ip_proto)
1311 {
1312 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1313 }
1314 
1315 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1316 			     const struct flow_dissector_key *key,
1317 			     unsigned int key_count);
1318 
1319 struct bpf_flow_dissector;
1320 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1321 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1322 
1323 bool __skb_flow_dissect(const struct net *net,
1324 			const struct sk_buff *skb,
1325 			struct flow_dissector *flow_dissector,
1326 			void *target_container,
1327 			void *data, __be16 proto, int nhoff, int hlen,
1328 			unsigned int flags);
1329 
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1330 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1331 				    struct flow_dissector *flow_dissector,
1332 				    void *target_container, unsigned int flags)
1333 {
1334 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1335 				  target_container, NULL, 0, 0, 0, flags);
1336 }
1337 
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1338 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1339 					      struct flow_keys *flow,
1340 					      unsigned int flags)
1341 {
1342 	memset(flow, 0, sizeof(*flow));
1343 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1344 				  flow, NULL, 0, 0, 0, flags);
1345 }
1346 
1347 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1348 skb_flow_dissect_flow_keys_basic(const struct net *net,
1349 				 const struct sk_buff *skb,
1350 				 struct flow_keys_basic *flow, void *data,
1351 				 __be16 proto, int nhoff, int hlen,
1352 				 unsigned int flags)
1353 {
1354 	memset(flow, 0, sizeof(*flow));
1355 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1356 				  data, proto, nhoff, hlen, flags);
1357 }
1358 
1359 void skb_flow_dissect_meta(const struct sk_buff *skb,
1360 			   struct flow_dissector *flow_dissector,
1361 			   void *target_container);
1362 
1363 /* Gets a skb connection tracking info, ctinfo map should be a
1364  * map of mapsize to translate enum ip_conntrack_info states
1365  * to user states.
1366  */
1367 void
1368 skb_flow_dissect_ct(const struct sk_buff *skb,
1369 		    struct flow_dissector *flow_dissector,
1370 		    void *target_container,
1371 		    u16 *ctinfo_map,
1372 		    size_t mapsize);
1373 void
1374 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1375 			     struct flow_dissector *flow_dissector,
1376 			     void *target_container);
1377 
1378 void skb_flow_dissect_hash(const struct sk_buff *skb,
1379 			   struct flow_dissector *flow_dissector,
1380 			   void *target_container);
1381 
skb_get_hash(struct sk_buff * skb)1382 static inline __u32 skb_get_hash(struct sk_buff *skb)
1383 {
1384 	if (!skb->l4_hash && !skb->sw_hash)
1385 		__skb_get_hash(skb);
1386 
1387 	return skb->hash;
1388 }
1389 
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1390 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1391 {
1392 	if (!skb->l4_hash && !skb->sw_hash) {
1393 		struct flow_keys keys;
1394 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1395 
1396 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1397 	}
1398 
1399 	return skb->hash;
1400 }
1401 
1402 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1403 			   const siphash_key_t *perturb);
1404 
skb_get_hash_raw(const struct sk_buff * skb)1405 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1406 {
1407 	return skb->hash;
1408 }
1409 
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1410 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1411 {
1412 	to->hash = from->hash;
1413 	to->sw_hash = from->sw_hash;
1414 	to->l4_hash = from->l4_hash;
1415 };
1416 
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1417 static inline void skb_copy_decrypted(struct sk_buff *to,
1418 				      const struct sk_buff *from)
1419 {
1420 #ifdef CONFIG_TLS_DEVICE
1421 	to->decrypted = from->decrypted;
1422 #endif
1423 }
1424 
1425 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1426 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1427 {
1428 	return skb->head + skb->end;
1429 }
1430 
skb_end_offset(const struct sk_buff * skb)1431 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1432 {
1433 	return skb->end;
1434 }
1435 
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1436 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1437 {
1438 	skb->end = offset;
1439 }
1440 #else
skb_end_pointer(const struct sk_buff * skb)1441 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1442 {
1443 	return skb->end;
1444 }
1445 
skb_end_offset(const struct sk_buff * skb)1446 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1447 {
1448 	return skb->end - skb->head;
1449 }
1450 
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1451 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1452 {
1453 	skb->end = skb->head + offset;
1454 }
1455 #endif
1456 
1457 /* Internal */
1458 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1459 
skb_hwtstamps(struct sk_buff * skb)1460 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1461 {
1462 	return &skb_shinfo(skb)->hwtstamps;
1463 }
1464 
skb_zcopy(struct sk_buff * skb)1465 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1466 {
1467 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1468 
1469 	return is_zcopy ? skb_uarg(skb) : NULL;
1470 }
1471 
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1472 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1473 				 bool *have_ref)
1474 {
1475 	if (skb && uarg && !skb_zcopy(skb)) {
1476 		if (unlikely(have_ref && *have_ref))
1477 			*have_ref = false;
1478 		else
1479 			sock_zerocopy_get(uarg);
1480 		skb_shinfo(skb)->destructor_arg = uarg;
1481 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1482 	}
1483 }
1484 
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1485 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1486 {
1487 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1488 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1489 }
1490 
skb_zcopy_is_nouarg(struct sk_buff * skb)1491 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1492 {
1493 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1494 }
1495 
skb_zcopy_get_nouarg(struct sk_buff * skb)1496 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1497 {
1498 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1499 }
1500 
1501 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy)1502 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1503 {
1504 	struct ubuf_info *uarg = skb_zcopy(skb);
1505 
1506 	if (uarg) {
1507 		if (skb_zcopy_is_nouarg(skb)) {
1508 			/* no notification callback */
1509 		} else if (uarg->callback == sock_zerocopy_callback) {
1510 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1511 			sock_zerocopy_put(uarg);
1512 		} else {
1513 			uarg->callback(uarg, zerocopy);
1514 		}
1515 
1516 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1517 	}
1518 }
1519 
1520 /* Abort a zerocopy operation and revert zckey on error in send syscall */
skb_zcopy_abort(struct sk_buff * skb)1521 static inline void skb_zcopy_abort(struct sk_buff *skb)
1522 {
1523 	struct ubuf_info *uarg = skb_zcopy(skb);
1524 
1525 	if (uarg) {
1526 		sock_zerocopy_put_abort(uarg, false);
1527 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1528 	}
1529 }
1530 
skb_mark_not_on_list(struct sk_buff * skb)1531 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1532 {
1533 	skb->next = NULL;
1534 }
1535 
1536 /* Iterate through singly-linked GSO fragments of an skb. */
1537 #define skb_list_walk_safe(first, skb, next_skb)                               \
1538 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1539 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1540 
skb_list_del_init(struct sk_buff * skb)1541 static inline void skb_list_del_init(struct sk_buff *skb)
1542 {
1543 	__list_del_entry(&skb->list);
1544 	skb_mark_not_on_list(skb);
1545 }
1546 
1547 /**
1548  *	skb_queue_empty - check if a queue is empty
1549  *	@list: queue head
1550  *
1551  *	Returns true if the queue is empty, false otherwise.
1552  */
skb_queue_empty(const struct sk_buff_head * list)1553 static inline int skb_queue_empty(const struct sk_buff_head *list)
1554 {
1555 	return list->next == (const struct sk_buff *) list;
1556 }
1557 
1558 /**
1559  *	skb_queue_empty_lockless - check if a queue is empty
1560  *	@list: queue head
1561  *
1562  *	Returns true if the queue is empty, false otherwise.
1563  *	This variant can be used in lockless contexts.
1564  */
skb_queue_empty_lockless(const struct sk_buff_head * list)1565 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1566 {
1567 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1568 }
1569 
1570 
1571 /**
1572  *	skb_queue_is_last - check if skb is the last entry in the queue
1573  *	@list: queue head
1574  *	@skb: buffer
1575  *
1576  *	Returns true if @skb is the last buffer on the list.
1577  */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1578 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1579 				     const struct sk_buff *skb)
1580 {
1581 	return skb->next == (const struct sk_buff *) list;
1582 }
1583 
1584 /**
1585  *	skb_queue_is_first - check if skb is the first entry in the queue
1586  *	@list: queue head
1587  *	@skb: buffer
1588  *
1589  *	Returns true if @skb is the first buffer on the list.
1590  */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1591 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1592 				      const struct sk_buff *skb)
1593 {
1594 	return skb->prev == (const struct sk_buff *) list;
1595 }
1596 
1597 /**
1598  *	skb_queue_next - return the next packet in the queue
1599  *	@list: queue head
1600  *	@skb: current buffer
1601  *
1602  *	Return the next packet in @list after @skb.  It is only valid to
1603  *	call this if skb_queue_is_last() evaluates to false.
1604  */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1605 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1606 					     const struct sk_buff *skb)
1607 {
1608 	/* This BUG_ON may seem severe, but if we just return then we
1609 	 * are going to dereference garbage.
1610 	 */
1611 	BUG_ON(skb_queue_is_last(list, skb));
1612 	return skb->next;
1613 }
1614 
1615 /**
1616  *	skb_queue_prev - return the prev packet in the queue
1617  *	@list: queue head
1618  *	@skb: current buffer
1619  *
1620  *	Return the prev packet in @list before @skb.  It is only valid to
1621  *	call this if skb_queue_is_first() evaluates to false.
1622  */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1623 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1624 					     const struct sk_buff *skb)
1625 {
1626 	/* This BUG_ON may seem severe, but if we just return then we
1627 	 * are going to dereference garbage.
1628 	 */
1629 	BUG_ON(skb_queue_is_first(list, skb));
1630 	return skb->prev;
1631 }
1632 
1633 /**
1634  *	skb_get - reference buffer
1635  *	@skb: buffer to reference
1636  *
1637  *	Makes another reference to a socket buffer and returns a pointer
1638  *	to the buffer.
1639  */
skb_get(struct sk_buff * skb)1640 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1641 {
1642 	refcount_inc(&skb->users);
1643 	return skb;
1644 }
1645 
1646 /*
1647  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1648  */
1649 
1650 /**
1651  *	skb_cloned - is the buffer a clone
1652  *	@skb: buffer to check
1653  *
1654  *	Returns true if the buffer was generated with skb_clone() and is
1655  *	one of multiple shared copies of the buffer. Cloned buffers are
1656  *	shared data so must not be written to under normal circumstances.
1657  */
skb_cloned(const struct sk_buff * skb)1658 static inline int skb_cloned(const struct sk_buff *skb)
1659 {
1660 	return skb->cloned &&
1661 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1662 }
1663 
skb_unclone(struct sk_buff * skb,gfp_t pri)1664 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1665 {
1666 	might_sleep_if(gfpflags_allow_blocking(pri));
1667 
1668 	if (skb_cloned(skb))
1669 		return pskb_expand_head(skb, 0, 0, pri);
1670 
1671 	return 0;
1672 }
1673 
1674 /* This variant of skb_unclone() makes sure skb->truesize
1675  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1676  *
1677  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1678  * when various debugging features are in place.
1679  */
1680 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)1681 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1682 {
1683 	might_sleep_if(gfpflags_allow_blocking(pri));
1684 
1685 	if (skb_cloned(skb))
1686 		return __skb_unclone_keeptruesize(skb, pri);
1687 	return 0;
1688 }
1689 
1690 /**
1691  *	skb_header_cloned - is the header a clone
1692  *	@skb: buffer to check
1693  *
1694  *	Returns true if modifying the header part of the buffer requires
1695  *	the data to be copied.
1696  */
skb_header_cloned(const struct sk_buff * skb)1697 static inline int skb_header_cloned(const struct sk_buff *skb)
1698 {
1699 	int dataref;
1700 
1701 	if (!skb->cloned)
1702 		return 0;
1703 
1704 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1705 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1706 	return dataref != 1;
1707 }
1708 
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1709 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1710 {
1711 	might_sleep_if(gfpflags_allow_blocking(pri));
1712 
1713 	if (skb_header_cloned(skb))
1714 		return pskb_expand_head(skb, 0, 0, pri);
1715 
1716 	return 0;
1717 }
1718 
1719 /**
1720  *	__skb_header_release - release reference to header
1721  *	@skb: buffer to operate on
1722  */
__skb_header_release(struct sk_buff * skb)1723 static inline void __skb_header_release(struct sk_buff *skb)
1724 {
1725 	skb->nohdr = 1;
1726 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1727 }
1728 
1729 
1730 /**
1731  *	skb_shared - is the buffer shared
1732  *	@skb: buffer to check
1733  *
1734  *	Returns true if more than one person has a reference to this
1735  *	buffer.
1736  */
skb_shared(const struct sk_buff * skb)1737 static inline int skb_shared(const struct sk_buff *skb)
1738 {
1739 	return refcount_read(&skb->users) != 1;
1740 }
1741 
1742 /**
1743  *	skb_share_check - check if buffer is shared and if so clone it
1744  *	@skb: buffer to check
1745  *	@pri: priority for memory allocation
1746  *
1747  *	If the buffer is shared the buffer is cloned and the old copy
1748  *	drops a reference. A new clone with a single reference is returned.
1749  *	If the buffer is not shared the original buffer is returned. When
1750  *	being called from interrupt status or with spinlocks held pri must
1751  *	be GFP_ATOMIC.
1752  *
1753  *	NULL is returned on a memory allocation failure.
1754  */
skb_share_check(struct sk_buff * skb,gfp_t pri)1755 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1756 {
1757 	might_sleep_if(gfpflags_allow_blocking(pri));
1758 	if (skb_shared(skb)) {
1759 		struct sk_buff *nskb = skb_clone(skb, pri);
1760 
1761 		if (likely(nskb))
1762 			consume_skb(skb);
1763 		else
1764 			kfree_skb(skb);
1765 		skb = nskb;
1766 	}
1767 	return skb;
1768 }
1769 
1770 /*
1771  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1772  *	packets to handle cases where we have a local reader and forward
1773  *	and a couple of other messy ones. The normal one is tcpdumping
1774  *	a packet thats being forwarded.
1775  */
1776 
1777 /**
1778  *	skb_unshare - make a copy of a shared buffer
1779  *	@skb: buffer to check
1780  *	@pri: priority for memory allocation
1781  *
1782  *	If the socket buffer is a clone then this function creates a new
1783  *	copy of the data, drops a reference count on the old copy and returns
1784  *	the new copy with the reference count at 1. If the buffer is not a clone
1785  *	the original buffer is returned. When called with a spinlock held or
1786  *	from interrupt state @pri must be %GFP_ATOMIC
1787  *
1788  *	%NULL is returned on a memory allocation failure.
1789  */
skb_unshare(struct sk_buff * skb,gfp_t pri)1790 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1791 					  gfp_t pri)
1792 {
1793 	might_sleep_if(gfpflags_allow_blocking(pri));
1794 	if (skb_cloned(skb)) {
1795 		struct sk_buff *nskb = skb_copy(skb, pri);
1796 
1797 		/* Free our shared copy */
1798 		if (likely(nskb))
1799 			consume_skb(skb);
1800 		else
1801 			kfree_skb(skb);
1802 		skb = nskb;
1803 	}
1804 	return skb;
1805 }
1806 
1807 /**
1808  *	skb_peek - peek at the head of an &sk_buff_head
1809  *	@list_: list to peek at
1810  *
1811  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1812  *	be careful with this one. A peek leaves the buffer on the
1813  *	list and someone else may run off with it. You must hold
1814  *	the appropriate locks or have a private queue to do this.
1815  *
1816  *	Returns %NULL for an empty list or a pointer to the head element.
1817  *	The reference count is not incremented and the reference is therefore
1818  *	volatile. Use with caution.
1819  */
skb_peek(const struct sk_buff_head * list_)1820 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1821 {
1822 	struct sk_buff *skb = list_->next;
1823 
1824 	if (skb == (struct sk_buff *)list_)
1825 		skb = NULL;
1826 	return skb;
1827 }
1828 
1829 /**
1830  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1831  *	@list_: list to peek at
1832  *
1833  *	Like skb_peek(), but the caller knows that the list is not empty.
1834  */
__skb_peek(const struct sk_buff_head * list_)1835 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1836 {
1837 	return list_->next;
1838 }
1839 
1840 /**
1841  *	skb_peek_next - peek skb following the given one from a queue
1842  *	@skb: skb to start from
1843  *	@list_: list to peek at
1844  *
1845  *	Returns %NULL when the end of the list is met or a pointer to the
1846  *	next element. The reference count is not incremented and the
1847  *	reference is therefore volatile. Use with caution.
1848  */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1849 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1850 		const struct sk_buff_head *list_)
1851 {
1852 	struct sk_buff *next = skb->next;
1853 
1854 	if (next == (struct sk_buff *)list_)
1855 		next = NULL;
1856 	return next;
1857 }
1858 
1859 /**
1860  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1861  *	@list_: list to peek at
1862  *
1863  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1864  *	be careful with this one. A peek leaves the buffer on the
1865  *	list and someone else may run off with it. You must hold
1866  *	the appropriate locks or have a private queue to do this.
1867  *
1868  *	Returns %NULL for an empty list or a pointer to the tail element.
1869  *	The reference count is not incremented and the reference is therefore
1870  *	volatile. Use with caution.
1871  */
skb_peek_tail(const struct sk_buff_head * list_)1872 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1873 {
1874 	struct sk_buff *skb = READ_ONCE(list_->prev);
1875 
1876 	if (skb == (struct sk_buff *)list_)
1877 		skb = NULL;
1878 	return skb;
1879 
1880 }
1881 
1882 /**
1883  *	skb_queue_len	- get queue length
1884  *	@list_: list to measure
1885  *
1886  *	Return the length of an &sk_buff queue.
1887  */
skb_queue_len(const struct sk_buff_head * list_)1888 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1889 {
1890 	return list_->qlen;
1891 }
1892 
1893 /**
1894  *	skb_queue_len_lockless	- get queue length
1895  *	@list_: list to measure
1896  *
1897  *	Return the length of an &sk_buff queue.
1898  *	This variant can be used in lockless contexts.
1899  */
skb_queue_len_lockless(const struct sk_buff_head * list_)1900 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1901 {
1902 	return READ_ONCE(list_->qlen);
1903 }
1904 
1905 /**
1906  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1907  *	@list: queue to initialize
1908  *
1909  *	This initializes only the list and queue length aspects of
1910  *	an sk_buff_head object.  This allows to initialize the list
1911  *	aspects of an sk_buff_head without reinitializing things like
1912  *	the spinlock.  It can also be used for on-stack sk_buff_head
1913  *	objects where the spinlock is known to not be used.
1914  */
__skb_queue_head_init(struct sk_buff_head * list)1915 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1916 {
1917 	list->prev = list->next = (struct sk_buff *)list;
1918 	list->qlen = 0;
1919 }
1920 
1921 /*
1922  * This function creates a split out lock class for each invocation;
1923  * this is needed for now since a whole lot of users of the skb-queue
1924  * infrastructure in drivers have different locking usage (in hardirq)
1925  * than the networking core (in softirq only). In the long run either the
1926  * network layer or drivers should need annotation to consolidate the
1927  * main types of usage into 3 classes.
1928  */
skb_queue_head_init(struct sk_buff_head * list)1929 static inline void skb_queue_head_init(struct sk_buff_head *list)
1930 {
1931 	spin_lock_init(&list->lock);
1932 	__skb_queue_head_init(list);
1933 }
1934 
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)1935 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1936 		struct lock_class_key *class)
1937 {
1938 	skb_queue_head_init(list);
1939 	lockdep_set_class(&list->lock, class);
1940 }
1941 
1942 /*
1943  *	Insert an sk_buff on a list.
1944  *
1945  *	The "__skb_xxxx()" functions are the non-atomic ones that
1946  *	can only be called with interrupts disabled.
1947  */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1948 static inline void __skb_insert(struct sk_buff *newsk,
1949 				struct sk_buff *prev, struct sk_buff *next,
1950 				struct sk_buff_head *list)
1951 {
1952 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1953 	 * for the opposite READ_ONCE()
1954 	 */
1955 	WRITE_ONCE(newsk->next, next);
1956 	WRITE_ONCE(newsk->prev, prev);
1957 	WRITE_ONCE(next->prev, newsk);
1958 	WRITE_ONCE(prev->next, newsk);
1959 	WRITE_ONCE(list->qlen, list->qlen + 1);
1960 }
1961 
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1962 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1963 				      struct sk_buff *prev,
1964 				      struct sk_buff *next)
1965 {
1966 	struct sk_buff *first = list->next;
1967 	struct sk_buff *last = list->prev;
1968 
1969 	WRITE_ONCE(first->prev, prev);
1970 	WRITE_ONCE(prev->next, first);
1971 
1972 	WRITE_ONCE(last->next, next);
1973 	WRITE_ONCE(next->prev, last);
1974 }
1975 
1976 /**
1977  *	skb_queue_splice - join two skb lists, this is designed for stacks
1978  *	@list: the new list to add
1979  *	@head: the place to add it in the first list
1980  */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1981 static inline void skb_queue_splice(const struct sk_buff_head *list,
1982 				    struct sk_buff_head *head)
1983 {
1984 	if (!skb_queue_empty(list)) {
1985 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1986 		head->qlen += list->qlen;
1987 	}
1988 }
1989 
1990 /**
1991  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1992  *	@list: the new list to add
1993  *	@head: the place to add it in the first list
1994  *
1995  *	The list at @list is reinitialised
1996  */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)1997 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1998 					 struct sk_buff_head *head)
1999 {
2000 	if (!skb_queue_empty(list)) {
2001 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2002 		head->qlen += list->qlen;
2003 		__skb_queue_head_init(list);
2004 	}
2005 }
2006 
2007 /**
2008  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2009  *	@list: the new list to add
2010  *	@head: the place to add it in the first list
2011  */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)2012 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2013 					 struct sk_buff_head *head)
2014 {
2015 	if (!skb_queue_empty(list)) {
2016 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2017 		head->qlen += list->qlen;
2018 	}
2019 }
2020 
2021 /**
2022  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2023  *	@list: the new list to add
2024  *	@head: the place to add it in the first list
2025  *
2026  *	Each of the lists is a queue.
2027  *	The list at @list is reinitialised
2028  */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)2029 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2030 					      struct sk_buff_head *head)
2031 {
2032 	if (!skb_queue_empty(list)) {
2033 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2034 		head->qlen += list->qlen;
2035 		__skb_queue_head_init(list);
2036 	}
2037 }
2038 
2039 /**
2040  *	__skb_queue_after - queue a buffer at the list head
2041  *	@list: list to use
2042  *	@prev: place after this buffer
2043  *	@newsk: buffer to queue
2044  *
2045  *	Queue a buffer int the middle of a list. This function takes no locks
2046  *	and you must therefore hold required locks before calling it.
2047  *
2048  *	A buffer cannot be placed on two lists at the same time.
2049  */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2050 static inline void __skb_queue_after(struct sk_buff_head *list,
2051 				     struct sk_buff *prev,
2052 				     struct sk_buff *newsk)
2053 {
2054 	__skb_insert(newsk, prev, prev->next, list);
2055 }
2056 
2057 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2058 		struct sk_buff_head *list);
2059 
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2060 static inline void __skb_queue_before(struct sk_buff_head *list,
2061 				      struct sk_buff *next,
2062 				      struct sk_buff *newsk)
2063 {
2064 	__skb_insert(newsk, next->prev, next, list);
2065 }
2066 
2067 /**
2068  *	__skb_queue_head - queue a buffer at the list head
2069  *	@list: list to use
2070  *	@newsk: buffer to queue
2071  *
2072  *	Queue a buffer at the start of a list. This function takes no locks
2073  *	and you must therefore hold required locks before calling it.
2074  *
2075  *	A buffer cannot be placed on two lists at the same time.
2076  */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2077 static inline void __skb_queue_head(struct sk_buff_head *list,
2078 				    struct sk_buff *newsk)
2079 {
2080 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2081 }
2082 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2083 
2084 /**
2085  *	__skb_queue_tail - queue a buffer at the list tail
2086  *	@list: list to use
2087  *	@newsk: buffer to queue
2088  *
2089  *	Queue a buffer at the end of a list. This function takes no locks
2090  *	and you must therefore hold required locks before calling it.
2091  *
2092  *	A buffer cannot be placed on two lists at the same time.
2093  */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2094 static inline void __skb_queue_tail(struct sk_buff_head *list,
2095 				   struct sk_buff *newsk)
2096 {
2097 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2098 }
2099 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2100 
2101 /*
2102  * remove sk_buff from list. _Must_ be called atomically, and with
2103  * the list known..
2104  */
2105 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2106 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2107 {
2108 	struct sk_buff *next, *prev;
2109 
2110 	WRITE_ONCE(list->qlen, list->qlen - 1);
2111 	next	   = skb->next;
2112 	prev	   = skb->prev;
2113 	skb->next  = skb->prev = NULL;
2114 	WRITE_ONCE(next->prev, prev);
2115 	WRITE_ONCE(prev->next, next);
2116 }
2117 
2118 /**
2119  *	__skb_dequeue - remove from the head of the queue
2120  *	@list: list to dequeue from
2121  *
2122  *	Remove the head of the list. This function does not take any locks
2123  *	so must be used with appropriate locks held only. The head item is
2124  *	returned or %NULL if the list is empty.
2125  */
__skb_dequeue(struct sk_buff_head * list)2126 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2127 {
2128 	struct sk_buff *skb = skb_peek(list);
2129 	if (skb)
2130 		__skb_unlink(skb, list);
2131 	return skb;
2132 }
2133 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2134 
2135 /**
2136  *	__skb_dequeue_tail - remove from the tail of the queue
2137  *	@list: list to dequeue from
2138  *
2139  *	Remove the tail of the list. This function does not take any locks
2140  *	so must be used with appropriate locks held only. The tail item is
2141  *	returned or %NULL if the list is empty.
2142  */
__skb_dequeue_tail(struct sk_buff_head * list)2143 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2144 {
2145 	struct sk_buff *skb = skb_peek_tail(list);
2146 	if (skb)
2147 		__skb_unlink(skb, list);
2148 	return skb;
2149 }
2150 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2151 
2152 
skb_is_nonlinear(const struct sk_buff * skb)2153 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2154 {
2155 	return skb->data_len;
2156 }
2157 
skb_headlen(const struct sk_buff * skb)2158 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2159 {
2160 	return skb->len - skb->data_len;
2161 }
2162 
__skb_pagelen(const struct sk_buff * skb)2163 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2164 {
2165 	unsigned int i, len = 0;
2166 
2167 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2168 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2169 	return len;
2170 }
2171 
skb_pagelen(const struct sk_buff * skb)2172 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2173 {
2174 	return skb_headlen(skb) + __skb_pagelen(skb);
2175 }
2176 
2177 /**
2178  * __skb_fill_page_desc - initialise a paged fragment in an skb
2179  * @skb: buffer containing fragment to be initialised
2180  * @i: paged fragment index to initialise
2181  * @page: the page to use for this fragment
2182  * @off: the offset to the data with @page
2183  * @size: the length of the data
2184  *
2185  * Initialises the @i'th fragment of @skb to point to &size bytes at
2186  * offset @off within @page.
2187  *
2188  * Does not take any additional reference on the fragment.
2189  */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2190 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2191 					struct page *page, int off, int size)
2192 {
2193 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2194 
2195 	/*
2196 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2197 	 * that not all callers have unique ownership of the page but rely
2198 	 * on page_is_pfmemalloc doing the right thing(tm).
2199 	 */
2200 	frag->bv_page		  = page;
2201 	frag->bv_offset		  = off;
2202 	skb_frag_size_set(frag, size);
2203 
2204 	page = compound_head(page);
2205 	if (page_is_pfmemalloc(page))
2206 		skb->pfmemalloc	= true;
2207 }
2208 
2209 /**
2210  * skb_fill_page_desc - initialise a paged fragment in an skb
2211  * @skb: buffer containing fragment to be initialised
2212  * @i: paged fragment index to initialise
2213  * @page: the page to use for this fragment
2214  * @off: the offset to the data with @page
2215  * @size: the length of the data
2216  *
2217  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2218  * @skb to point to @size bytes at offset @off within @page. In
2219  * addition updates @skb such that @i is the last fragment.
2220  *
2221  * Does not take any additional reference on the fragment.
2222  */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2223 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2224 				      struct page *page, int off, int size)
2225 {
2226 	__skb_fill_page_desc(skb, i, page, off, size);
2227 	skb_shinfo(skb)->nr_frags = i + 1;
2228 }
2229 
2230 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2231 		     int size, unsigned int truesize);
2232 
2233 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2234 			  unsigned int truesize);
2235 
2236 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2237 
2238 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2239 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2240 {
2241 	return skb->head + skb->tail;
2242 }
2243 
skb_reset_tail_pointer(struct sk_buff * skb)2244 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2245 {
2246 	skb->tail = skb->data - skb->head;
2247 }
2248 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2249 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2250 {
2251 	skb_reset_tail_pointer(skb);
2252 	skb->tail += offset;
2253 }
2254 
2255 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2256 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2257 {
2258 	return skb->tail;
2259 }
2260 
skb_reset_tail_pointer(struct sk_buff * skb)2261 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2262 {
2263 	skb->tail = skb->data;
2264 }
2265 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2266 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2267 {
2268 	skb->tail = skb->data + offset;
2269 }
2270 
2271 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2272 
skb_assert_len(struct sk_buff * skb)2273 static inline void skb_assert_len(struct sk_buff *skb)
2274 {
2275 #ifdef CONFIG_DEBUG_NET
2276 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2277 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2278 #endif /* CONFIG_DEBUG_NET */
2279 }
2280 
2281 /*
2282  *	Add data to an sk_buff
2283  */
2284 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2285 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2286 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2287 {
2288 	void *tmp = skb_tail_pointer(skb);
2289 	SKB_LINEAR_ASSERT(skb);
2290 	skb->tail += len;
2291 	skb->len  += len;
2292 	return tmp;
2293 }
2294 
__skb_put_zero(struct sk_buff * skb,unsigned int len)2295 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2296 {
2297 	void *tmp = __skb_put(skb, len);
2298 
2299 	memset(tmp, 0, len);
2300 	return tmp;
2301 }
2302 
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2303 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2304 				   unsigned int len)
2305 {
2306 	void *tmp = __skb_put(skb, len);
2307 
2308 	memcpy(tmp, data, len);
2309 	return tmp;
2310 }
2311 
__skb_put_u8(struct sk_buff * skb,u8 val)2312 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2313 {
2314 	*(u8 *)__skb_put(skb, 1) = val;
2315 }
2316 
skb_put_zero(struct sk_buff * skb,unsigned int len)2317 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2318 {
2319 	void *tmp = skb_put(skb, len);
2320 
2321 	memset(tmp, 0, len);
2322 
2323 	return tmp;
2324 }
2325 
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2326 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2327 				 unsigned int len)
2328 {
2329 	void *tmp = skb_put(skb, len);
2330 
2331 	memcpy(tmp, data, len);
2332 
2333 	return tmp;
2334 }
2335 
skb_put_u8(struct sk_buff * skb,u8 val)2336 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2337 {
2338 	*(u8 *)skb_put(skb, 1) = val;
2339 }
2340 
2341 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2342 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2343 {
2344 	skb->data -= len;
2345 	skb->len  += len;
2346 	return skb->data;
2347 }
2348 
2349 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2350 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2351 {
2352 	skb->len -= len;
2353 	BUG_ON(skb->len < skb->data_len);
2354 	return skb->data += len;
2355 }
2356 
skb_pull_inline(struct sk_buff * skb,unsigned int len)2357 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2358 {
2359 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2360 }
2361 
2362 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2363 
__pskb_pull(struct sk_buff * skb,unsigned int len)2364 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2365 {
2366 	if (len > skb_headlen(skb) &&
2367 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2368 		return NULL;
2369 	skb->len -= len;
2370 	return skb->data += len;
2371 }
2372 
pskb_pull(struct sk_buff * skb,unsigned int len)2373 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2374 {
2375 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2376 }
2377 
pskb_may_pull(struct sk_buff * skb,unsigned int len)2378 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2379 {
2380 	if (likely(len <= skb_headlen(skb)))
2381 		return true;
2382 	if (unlikely(len > skb->len))
2383 		return false;
2384 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2385 }
2386 
2387 void skb_condense(struct sk_buff *skb);
2388 
2389 /**
2390  *	skb_headroom - bytes at buffer head
2391  *	@skb: buffer to check
2392  *
2393  *	Return the number of bytes of free space at the head of an &sk_buff.
2394  */
skb_headroom(const struct sk_buff * skb)2395 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2396 {
2397 	return skb->data - skb->head;
2398 }
2399 
2400 /**
2401  *	skb_tailroom - bytes at buffer end
2402  *	@skb: buffer to check
2403  *
2404  *	Return the number of bytes of free space at the tail of an sk_buff
2405  */
skb_tailroom(const struct sk_buff * skb)2406 static inline int skb_tailroom(const struct sk_buff *skb)
2407 {
2408 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2409 }
2410 
2411 /**
2412  *	skb_availroom - bytes at buffer end
2413  *	@skb: buffer to check
2414  *
2415  *	Return the number of bytes of free space at the tail of an sk_buff
2416  *	allocated by sk_stream_alloc()
2417  */
skb_availroom(const struct sk_buff * skb)2418 static inline int skb_availroom(const struct sk_buff *skb)
2419 {
2420 	if (skb_is_nonlinear(skb))
2421 		return 0;
2422 
2423 	return skb->end - skb->tail - skb->reserved_tailroom;
2424 }
2425 
2426 /**
2427  *	skb_reserve - adjust headroom
2428  *	@skb: buffer to alter
2429  *	@len: bytes to move
2430  *
2431  *	Increase the headroom of an empty &sk_buff by reducing the tail
2432  *	room. This is only allowed for an empty buffer.
2433  */
skb_reserve(struct sk_buff * skb,int len)2434 static inline void skb_reserve(struct sk_buff *skb, int len)
2435 {
2436 	skb->data += len;
2437 	skb->tail += len;
2438 }
2439 
2440 /**
2441  *	skb_tailroom_reserve - adjust reserved_tailroom
2442  *	@skb: buffer to alter
2443  *	@mtu: maximum amount of headlen permitted
2444  *	@needed_tailroom: minimum amount of reserved_tailroom
2445  *
2446  *	Set reserved_tailroom so that headlen can be as large as possible but
2447  *	not larger than mtu and tailroom cannot be smaller than
2448  *	needed_tailroom.
2449  *	The required headroom should already have been reserved before using
2450  *	this function.
2451  */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2452 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2453 					unsigned int needed_tailroom)
2454 {
2455 	SKB_LINEAR_ASSERT(skb);
2456 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2457 		/* use at most mtu */
2458 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2459 	else
2460 		/* use up to all available space */
2461 		skb->reserved_tailroom = needed_tailroom;
2462 }
2463 
2464 #define ENCAP_TYPE_ETHER	0
2465 #define ENCAP_TYPE_IPPROTO	1
2466 
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2467 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2468 					  __be16 protocol)
2469 {
2470 	skb->inner_protocol = protocol;
2471 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2472 }
2473 
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2474 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2475 					 __u8 ipproto)
2476 {
2477 	skb->inner_ipproto = ipproto;
2478 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2479 }
2480 
skb_reset_inner_headers(struct sk_buff * skb)2481 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2482 {
2483 	skb->inner_mac_header = skb->mac_header;
2484 	skb->inner_network_header = skb->network_header;
2485 	skb->inner_transport_header = skb->transport_header;
2486 }
2487 
skb_reset_mac_len(struct sk_buff * skb)2488 static inline void skb_reset_mac_len(struct sk_buff *skb)
2489 {
2490 	skb->mac_len = skb->network_header - skb->mac_header;
2491 }
2492 
skb_inner_transport_header(const struct sk_buff * skb)2493 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2494 							*skb)
2495 {
2496 	return skb->head + skb->inner_transport_header;
2497 }
2498 
skb_inner_transport_offset(const struct sk_buff * skb)2499 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2500 {
2501 	return skb_inner_transport_header(skb) - skb->data;
2502 }
2503 
skb_reset_inner_transport_header(struct sk_buff * skb)2504 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2505 {
2506 	skb->inner_transport_header = skb->data - skb->head;
2507 }
2508 
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2509 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2510 						   const int offset)
2511 {
2512 	skb_reset_inner_transport_header(skb);
2513 	skb->inner_transport_header += offset;
2514 }
2515 
skb_inner_network_header(const struct sk_buff * skb)2516 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2517 {
2518 	return skb->head + skb->inner_network_header;
2519 }
2520 
skb_reset_inner_network_header(struct sk_buff * skb)2521 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2522 {
2523 	skb->inner_network_header = skb->data - skb->head;
2524 }
2525 
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2526 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2527 						const int offset)
2528 {
2529 	skb_reset_inner_network_header(skb);
2530 	skb->inner_network_header += offset;
2531 }
2532 
skb_inner_mac_header(const struct sk_buff * skb)2533 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2534 {
2535 	return skb->head + skb->inner_mac_header;
2536 }
2537 
skb_reset_inner_mac_header(struct sk_buff * skb)2538 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2539 {
2540 	skb->inner_mac_header = skb->data - skb->head;
2541 }
2542 
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2543 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2544 					    const int offset)
2545 {
2546 	skb_reset_inner_mac_header(skb);
2547 	skb->inner_mac_header += offset;
2548 }
skb_transport_header_was_set(const struct sk_buff * skb)2549 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2550 {
2551 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2552 }
2553 
skb_transport_header(const struct sk_buff * skb)2554 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2555 {
2556 	return skb->head + skb->transport_header;
2557 }
2558 
skb_reset_transport_header(struct sk_buff * skb)2559 static inline void skb_reset_transport_header(struct sk_buff *skb)
2560 {
2561 	skb->transport_header = skb->data - skb->head;
2562 }
2563 
skb_set_transport_header(struct sk_buff * skb,const int offset)2564 static inline void skb_set_transport_header(struct sk_buff *skb,
2565 					    const int offset)
2566 {
2567 	skb_reset_transport_header(skb);
2568 	skb->transport_header += offset;
2569 }
2570 
skb_network_header(const struct sk_buff * skb)2571 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2572 {
2573 	return skb->head + skb->network_header;
2574 }
2575 
skb_reset_network_header(struct sk_buff * skb)2576 static inline void skb_reset_network_header(struct sk_buff *skb)
2577 {
2578 	skb->network_header = skb->data - skb->head;
2579 }
2580 
skb_set_network_header(struct sk_buff * skb,const int offset)2581 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2582 {
2583 	skb_reset_network_header(skb);
2584 	skb->network_header += offset;
2585 }
2586 
skb_mac_header(const struct sk_buff * skb)2587 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2588 {
2589 	return skb->head + skb->mac_header;
2590 }
2591 
skb_mac_offset(const struct sk_buff * skb)2592 static inline int skb_mac_offset(const struct sk_buff *skb)
2593 {
2594 	return skb_mac_header(skb) - skb->data;
2595 }
2596 
skb_mac_header_len(const struct sk_buff * skb)2597 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2598 {
2599 	return skb->network_header - skb->mac_header;
2600 }
2601 
skb_mac_header_was_set(const struct sk_buff * skb)2602 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2603 {
2604 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2605 }
2606 
skb_unset_mac_header(struct sk_buff * skb)2607 static inline void skb_unset_mac_header(struct sk_buff *skb)
2608 {
2609 	skb->mac_header = (typeof(skb->mac_header))~0U;
2610 }
2611 
skb_reset_mac_header(struct sk_buff * skb)2612 static inline void skb_reset_mac_header(struct sk_buff *skb)
2613 {
2614 	skb->mac_header = skb->data - skb->head;
2615 }
2616 
skb_set_mac_header(struct sk_buff * skb,const int offset)2617 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2618 {
2619 	skb_reset_mac_header(skb);
2620 	skb->mac_header += offset;
2621 }
2622 
skb_pop_mac_header(struct sk_buff * skb)2623 static inline void skb_pop_mac_header(struct sk_buff *skb)
2624 {
2625 	skb->mac_header = skb->network_header;
2626 }
2627 
skb_probe_transport_header(struct sk_buff * skb)2628 static inline void skb_probe_transport_header(struct sk_buff *skb)
2629 {
2630 	struct flow_keys_basic keys;
2631 
2632 	if (skb_transport_header_was_set(skb))
2633 		return;
2634 
2635 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2636 					     NULL, 0, 0, 0, 0))
2637 		skb_set_transport_header(skb, keys.control.thoff);
2638 }
2639 
skb_mac_header_rebuild(struct sk_buff * skb)2640 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2641 {
2642 	if (skb_mac_header_was_set(skb)) {
2643 		const unsigned char *old_mac = skb_mac_header(skb);
2644 
2645 		skb_set_mac_header(skb, -skb->mac_len);
2646 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2647 	}
2648 }
2649 
skb_checksum_start_offset(const struct sk_buff * skb)2650 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2651 {
2652 	return skb->csum_start - skb_headroom(skb);
2653 }
2654 
skb_checksum_start(const struct sk_buff * skb)2655 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2656 {
2657 	return skb->head + skb->csum_start;
2658 }
2659 
skb_transport_offset(const struct sk_buff * skb)2660 static inline int skb_transport_offset(const struct sk_buff *skb)
2661 {
2662 	return skb_transport_header(skb) - skb->data;
2663 }
2664 
skb_network_header_len(const struct sk_buff * skb)2665 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2666 {
2667 	return skb->transport_header - skb->network_header;
2668 }
2669 
skb_inner_network_header_len(const struct sk_buff * skb)2670 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2671 {
2672 	return skb->inner_transport_header - skb->inner_network_header;
2673 }
2674 
skb_network_offset(const struct sk_buff * skb)2675 static inline int skb_network_offset(const struct sk_buff *skb)
2676 {
2677 	return skb_network_header(skb) - skb->data;
2678 }
2679 
skb_inner_network_offset(const struct sk_buff * skb)2680 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2681 {
2682 	return skb_inner_network_header(skb) - skb->data;
2683 }
2684 
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2685 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2686 {
2687 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2688 }
2689 
2690 /*
2691  * CPUs often take a performance hit when accessing unaligned memory
2692  * locations. The actual performance hit varies, it can be small if the
2693  * hardware handles it or large if we have to take an exception and fix it
2694  * in software.
2695  *
2696  * Since an ethernet header is 14 bytes network drivers often end up with
2697  * the IP header at an unaligned offset. The IP header can be aligned by
2698  * shifting the start of the packet by 2 bytes. Drivers should do this
2699  * with:
2700  *
2701  * skb_reserve(skb, NET_IP_ALIGN);
2702  *
2703  * The downside to this alignment of the IP header is that the DMA is now
2704  * unaligned. On some architectures the cost of an unaligned DMA is high
2705  * and this cost outweighs the gains made by aligning the IP header.
2706  *
2707  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2708  * to be overridden.
2709  */
2710 #ifndef NET_IP_ALIGN
2711 #define NET_IP_ALIGN	2
2712 #endif
2713 
2714 /*
2715  * The networking layer reserves some headroom in skb data (via
2716  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2717  * the header has to grow. In the default case, if the header has to grow
2718  * 32 bytes or less we avoid the reallocation.
2719  *
2720  * Unfortunately this headroom changes the DMA alignment of the resulting
2721  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2722  * on some architectures. An architecture can override this value,
2723  * perhaps setting it to a cacheline in size (since that will maintain
2724  * cacheline alignment of the DMA). It must be a power of 2.
2725  *
2726  * Various parts of the networking layer expect at least 32 bytes of
2727  * headroom, you should not reduce this.
2728  *
2729  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2730  * to reduce average number of cache lines per packet.
2731  * get_rps_cpu() for example only access one 64 bytes aligned block :
2732  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2733  */
2734 #ifndef NET_SKB_PAD
2735 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2736 #endif
2737 
2738 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2739 
__skb_set_length(struct sk_buff * skb,unsigned int len)2740 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2741 {
2742 	if (WARN_ON(skb_is_nonlinear(skb)))
2743 		return;
2744 	skb->len = len;
2745 	skb_set_tail_pointer(skb, len);
2746 }
2747 
__skb_trim(struct sk_buff * skb,unsigned int len)2748 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2749 {
2750 	__skb_set_length(skb, len);
2751 }
2752 
2753 void skb_trim(struct sk_buff *skb, unsigned int len);
2754 
__pskb_trim(struct sk_buff * skb,unsigned int len)2755 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2756 {
2757 	if (skb->data_len)
2758 		return ___pskb_trim(skb, len);
2759 	__skb_trim(skb, len);
2760 	return 0;
2761 }
2762 
pskb_trim(struct sk_buff * skb,unsigned int len)2763 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2764 {
2765 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2766 }
2767 
2768 /**
2769  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2770  *	@skb: buffer to alter
2771  *	@len: new length
2772  *
2773  *	This is identical to pskb_trim except that the caller knows that
2774  *	the skb is not cloned so we should never get an error due to out-
2775  *	of-memory.
2776  */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2777 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2778 {
2779 	int err = pskb_trim(skb, len);
2780 	BUG_ON(err);
2781 }
2782 
__skb_grow(struct sk_buff * skb,unsigned int len)2783 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2784 {
2785 	unsigned int diff = len - skb->len;
2786 
2787 	if (skb_tailroom(skb) < diff) {
2788 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2789 					   GFP_ATOMIC);
2790 		if (ret)
2791 			return ret;
2792 	}
2793 	__skb_set_length(skb, len);
2794 	return 0;
2795 }
2796 
2797 /**
2798  *	skb_orphan - orphan a buffer
2799  *	@skb: buffer to orphan
2800  *
2801  *	If a buffer currently has an owner then we call the owner's
2802  *	destructor function and make the @skb unowned. The buffer continues
2803  *	to exist but is no longer charged to its former owner.
2804  */
skb_orphan(struct sk_buff * skb)2805 static inline void skb_orphan(struct sk_buff *skb)
2806 {
2807 	if (skb->destructor) {
2808 		skb->destructor(skb);
2809 		skb->destructor = NULL;
2810 		skb->sk		= NULL;
2811 	} else {
2812 		BUG_ON(skb->sk);
2813 	}
2814 }
2815 
2816 /**
2817  *	skb_orphan_frags - orphan the frags contained in a buffer
2818  *	@skb: buffer to orphan frags from
2819  *	@gfp_mask: allocation mask for replacement pages
2820  *
2821  *	For each frag in the SKB which needs a destructor (i.e. has an
2822  *	owner) create a copy of that frag and release the original
2823  *	page by calling the destructor.
2824  */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2825 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2826 {
2827 	if (likely(!skb_zcopy(skb)))
2828 		return 0;
2829 	if (!skb_zcopy_is_nouarg(skb) &&
2830 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2831 		return 0;
2832 	return skb_copy_ubufs(skb, gfp_mask);
2833 }
2834 
2835 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)2836 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2837 {
2838 	if (likely(!skb_zcopy(skb)))
2839 		return 0;
2840 	return skb_copy_ubufs(skb, gfp_mask);
2841 }
2842 
2843 /**
2844  *	__skb_queue_purge - empty a list
2845  *	@list: list to empty
2846  *
2847  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2848  *	the list and one reference dropped. This function does not take the
2849  *	list lock and the caller must hold the relevant locks to use it.
2850  */
__skb_queue_purge(struct sk_buff_head * list)2851 static inline void __skb_queue_purge(struct sk_buff_head *list)
2852 {
2853 	struct sk_buff *skb;
2854 	while ((skb = __skb_dequeue(list)) != NULL)
2855 		kfree_skb(skb);
2856 }
2857 void skb_queue_purge(struct sk_buff_head *list);
2858 
2859 unsigned int skb_rbtree_purge(struct rb_root *root);
2860 
2861 void *netdev_alloc_frag(unsigned int fragsz);
2862 
2863 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2864 				   gfp_t gfp_mask);
2865 
2866 /**
2867  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2868  *	@dev: network device to receive on
2869  *	@length: length to allocate
2870  *
2871  *	Allocate a new &sk_buff and assign it a usage count of one. The
2872  *	buffer has unspecified headroom built in. Users should allocate
2873  *	the headroom they think they need without accounting for the
2874  *	built in space. The built in space is used for optimisations.
2875  *
2876  *	%NULL is returned if there is no free memory. Although this function
2877  *	allocates memory it can be called from an interrupt.
2878  */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2879 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2880 					       unsigned int length)
2881 {
2882 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2883 }
2884 
2885 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)2886 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2887 					      gfp_t gfp_mask)
2888 {
2889 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2890 }
2891 
2892 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)2893 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2894 {
2895 	return netdev_alloc_skb(NULL, length);
2896 }
2897 
2898 
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)2899 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2900 		unsigned int length, gfp_t gfp)
2901 {
2902 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2903 
2904 	if (NET_IP_ALIGN && skb)
2905 		skb_reserve(skb, NET_IP_ALIGN);
2906 	return skb;
2907 }
2908 
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)2909 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2910 		unsigned int length)
2911 {
2912 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2913 }
2914 
skb_free_frag(void * addr)2915 static inline void skb_free_frag(void *addr)
2916 {
2917 	page_frag_free(addr);
2918 }
2919 
2920 void *napi_alloc_frag(unsigned int fragsz);
2921 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2922 				 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)2923 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2924 					     unsigned int length)
2925 {
2926 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2927 }
2928 void napi_consume_skb(struct sk_buff *skb, int budget);
2929 
2930 void __kfree_skb_flush(void);
2931 void __kfree_skb_defer(struct sk_buff *skb);
2932 
2933 /**
2934  * __dev_alloc_pages - allocate page for network Rx
2935  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2936  * @order: size of the allocation
2937  *
2938  * Allocate a new page.
2939  *
2940  * %NULL is returned if there is no free memory.
2941 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)2942 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2943 					     unsigned int order)
2944 {
2945 	/* This piece of code contains several assumptions.
2946 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2947 	 * 2.  The expectation is the user wants a compound page.
2948 	 * 3.  If requesting a order 0 page it will not be compound
2949 	 *     due to the check to see if order has a value in prep_new_page
2950 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2951 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2952 	 */
2953 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2954 
2955 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2956 }
2957 
dev_alloc_pages(unsigned int order)2958 static inline struct page *dev_alloc_pages(unsigned int order)
2959 {
2960 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2961 }
2962 
2963 /**
2964  * __dev_alloc_page - allocate a page for network Rx
2965  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2966  *
2967  * Allocate a new page.
2968  *
2969  * %NULL is returned if there is no free memory.
2970  */
__dev_alloc_page(gfp_t gfp_mask)2971 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2972 {
2973 	return __dev_alloc_pages(gfp_mask, 0);
2974 }
2975 
dev_alloc_page(void)2976 static inline struct page *dev_alloc_page(void)
2977 {
2978 	return dev_alloc_pages(0);
2979 }
2980 
2981 /**
2982  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2983  *	@page: The page that was allocated from skb_alloc_page
2984  *	@skb: The skb that may need pfmemalloc set
2985  */
skb_propagate_pfmemalloc(struct page * page,struct sk_buff * skb)2986 static inline void skb_propagate_pfmemalloc(struct page *page,
2987 					     struct sk_buff *skb)
2988 {
2989 	if (page_is_pfmemalloc(page))
2990 		skb->pfmemalloc = true;
2991 }
2992 
2993 /**
2994  * skb_frag_off() - Returns the offset of a skb fragment
2995  * @frag: the paged fragment
2996  */
skb_frag_off(const skb_frag_t * frag)2997 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2998 {
2999 	return frag->bv_offset;
3000 }
3001 
3002 /**
3003  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3004  * @frag: skb fragment
3005  * @delta: value to add
3006  */
skb_frag_off_add(skb_frag_t * frag,int delta)3007 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3008 {
3009 	frag->bv_offset += delta;
3010 }
3011 
3012 /**
3013  * skb_frag_off_set() - Sets the offset of a skb fragment
3014  * @frag: skb fragment
3015  * @offset: offset of fragment
3016  */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)3017 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3018 {
3019 	frag->bv_offset = offset;
3020 }
3021 
3022 /**
3023  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3024  * @fragto: skb fragment where offset is set
3025  * @fragfrom: skb fragment offset is copied from
3026  */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3027 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3028 				     const skb_frag_t *fragfrom)
3029 {
3030 	fragto->bv_offset = fragfrom->bv_offset;
3031 }
3032 
3033 /**
3034  * skb_frag_page - retrieve the page referred to by a paged fragment
3035  * @frag: the paged fragment
3036  *
3037  * Returns the &struct page associated with @frag.
3038  */
skb_frag_page(const skb_frag_t * frag)3039 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3040 {
3041 	return frag->bv_page;
3042 }
3043 
3044 /**
3045  * __skb_frag_ref - take an addition reference on a paged fragment.
3046  * @frag: the paged fragment
3047  *
3048  * Takes an additional reference on the paged fragment @frag.
3049  */
__skb_frag_ref(skb_frag_t * frag)3050 static inline void __skb_frag_ref(skb_frag_t *frag)
3051 {
3052 	get_page(skb_frag_page(frag));
3053 }
3054 
3055 /**
3056  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3057  * @skb: the buffer
3058  * @f: the fragment offset.
3059  *
3060  * Takes an additional reference on the @f'th paged fragment of @skb.
3061  */
skb_frag_ref(struct sk_buff * skb,int f)3062 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3063 {
3064 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3065 }
3066 
3067 /**
3068  * __skb_frag_unref - release a reference on a paged fragment.
3069  * @frag: the paged fragment
3070  *
3071  * Releases a reference on the paged fragment @frag.
3072  */
__skb_frag_unref(skb_frag_t * frag)3073 static inline void __skb_frag_unref(skb_frag_t *frag)
3074 {
3075 	put_page(skb_frag_page(frag));
3076 }
3077 
3078 /**
3079  * skb_frag_unref - release a reference on a paged fragment of an skb.
3080  * @skb: the buffer
3081  * @f: the fragment offset
3082  *
3083  * Releases a reference on the @f'th paged fragment of @skb.
3084  */
skb_frag_unref(struct sk_buff * skb,int f)3085 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3086 {
3087 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3088 }
3089 
3090 /**
3091  * skb_frag_address - gets the address of the data contained in a paged fragment
3092  * @frag: the paged fragment buffer
3093  *
3094  * Returns the address of the data within @frag. The page must already
3095  * be mapped.
3096  */
skb_frag_address(const skb_frag_t * frag)3097 static inline void *skb_frag_address(const skb_frag_t *frag)
3098 {
3099 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3100 }
3101 
3102 /**
3103  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3104  * @frag: the paged fragment buffer
3105  *
3106  * Returns the address of the data within @frag. Checks that the page
3107  * is mapped and returns %NULL otherwise.
3108  */
skb_frag_address_safe(const skb_frag_t * frag)3109 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3110 {
3111 	void *ptr = page_address(skb_frag_page(frag));
3112 	if (unlikely(!ptr))
3113 		return NULL;
3114 
3115 	return ptr + skb_frag_off(frag);
3116 }
3117 
3118 /**
3119  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3120  * @fragto: skb fragment where page is set
3121  * @fragfrom: skb fragment page is copied from
3122  */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3123 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3124 				      const skb_frag_t *fragfrom)
3125 {
3126 	fragto->bv_page = fragfrom->bv_page;
3127 }
3128 
3129 /**
3130  * __skb_frag_set_page - sets the page contained in a paged fragment
3131  * @frag: the paged fragment
3132  * @page: the page to set
3133  *
3134  * Sets the fragment @frag to contain @page.
3135  */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)3136 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3137 {
3138 	frag->bv_page = page;
3139 }
3140 
3141 /**
3142  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3143  * @skb: the buffer
3144  * @f: the fragment offset
3145  * @page: the page to set
3146  *
3147  * Sets the @f'th fragment of @skb to contain @page.
3148  */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)3149 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3150 				     struct page *page)
3151 {
3152 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3153 }
3154 
3155 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3156 
3157 /**
3158  * skb_frag_dma_map - maps a paged fragment via the DMA API
3159  * @dev: the device to map the fragment to
3160  * @frag: the paged fragment to map
3161  * @offset: the offset within the fragment (starting at the
3162  *          fragment's own offset)
3163  * @size: the number of bytes to map
3164  * @dir: the direction of the mapping (``PCI_DMA_*``)
3165  *
3166  * Maps the page associated with @frag to @device.
3167  */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3168 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3169 					  const skb_frag_t *frag,
3170 					  size_t offset, size_t size,
3171 					  enum dma_data_direction dir)
3172 {
3173 	return dma_map_page(dev, skb_frag_page(frag),
3174 			    skb_frag_off(frag) + offset, size, dir);
3175 }
3176 
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3177 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3178 					gfp_t gfp_mask)
3179 {
3180 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3181 }
3182 
3183 
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3184 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3185 						  gfp_t gfp_mask)
3186 {
3187 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3188 }
3189 
3190 
3191 /**
3192  *	skb_clone_writable - is the header of a clone writable
3193  *	@skb: buffer to check
3194  *	@len: length up to which to write
3195  *
3196  *	Returns true if modifying the header part of the cloned buffer
3197  *	does not requires the data to be copied.
3198  */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3199 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3200 {
3201 	return !skb_header_cloned(skb) &&
3202 	       skb_headroom(skb) + len <= skb->hdr_len;
3203 }
3204 
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3205 static inline int skb_try_make_writable(struct sk_buff *skb,
3206 					unsigned int write_len)
3207 {
3208 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3209 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3210 }
3211 
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3212 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3213 			    int cloned)
3214 {
3215 	int delta = 0;
3216 
3217 	if (headroom > skb_headroom(skb))
3218 		delta = headroom - skb_headroom(skb);
3219 
3220 	if (delta || cloned)
3221 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3222 					GFP_ATOMIC);
3223 	return 0;
3224 }
3225 
3226 /**
3227  *	skb_cow - copy header of skb when it is required
3228  *	@skb: buffer to cow
3229  *	@headroom: needed headroom
3230  *
3231  *	If the skb passed lacks sufficient headroom or its data part
3232  *	is shared, data is reallocated. If reallocation fails, an error
3233  *	is returned and original skb is not changed.
3234  *
3235  *	The result is skb with writable area skb->head...skb->tail
3236  *	and at least @headroom of space at head.
3237  */
skb_cow(struct sk_buff * skb,unsigned int headroom)3238 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3239 {
3240 	return __skb_cow(skb, headroom, skb_cloned(skb));
3241 }
3242 
3243 /**
3244  *	skb_cow_head - skb_cow but only making the head writable
3245  *	@skb: buffer to cow
3246  *	@headroom: needed headroom
3247  *
3248  *	This function is identical to skb_cow except that we replace the
3249  *	skb_cloned check by skb_header_cloned.  It should be used when
3250  *	you only need to push on some header and do not need to modify
3251  *	the data.
3252  */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3253 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3254 {
3255 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3256 }
3257 
3258 /**
3259  *	skb_padto	- pad an skbuff up to a minimal size
3260  *	@skb: buffer to pad
3261  *	@len: minimal length
3262  *
3263  *	Pads up a buffer to ensure the trailing bytes exist and are
3264  *	blanked. If the buffer already contains sufficient data it
3265  *	is untouched. Otherwise it is extended. Returns zero on
3266  *	success. The skb is freed on error.
3267  */
skb_padto(struct sk_buff * skb,unsigned int len)3268 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3269 {
3270 	unsigned int size = skb->len;
3271 	if (likely(size >= len))
3272 		return 0;
3273 	return skb_pad(skb, len - size);
3274 }
3275 
3276 /**
3277  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3278  *	@skb: buffer to pad
3279  *	@len: minimal length
3280  *	@free_on_error: free buffer on error
3281  *
3282  *	Pads up a buffer to ensure the trailing bytes exist and are
3283  *	blanked. If the buffer already contains sufficient data it
3284  *	is untouched. Otherwise it is extended. Returns zero on
3285  *	success. The skb is freed on error if @free_on_error is true.
3286  */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3287 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3288 					       unsigned int len,
3289 					       bool free_on_error)
3290 {
3291 	unsigned int size = skb->len;
3292 
3293 	if (unlikely(size < len)) {
3294 		len -= size;
3295 		if (__skb_pad(skb, len, free_on_error))
3296 			return -ENOMEM;
3297 		__skb_put(skb, len);
3298 	}
3299 	return 0;
3300 }
3301 
3302 /**
3303  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3304  *	@skb: buffer to pad
3305  *	@len: minimal length
3306  *
3307  *	Pads up a buffer to ensure the trailing bytes exist and are
3308  *	blanked. If the buffer already contains sufficient data it
3309  *	is untouched. Otherwise it is extended. Returns zero on
3310  *	success. The skb is freed on error.
3311  */
skb_put_padto(struct sk_buff * skb,unsigned int len)3312 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3313 {
3314 	return __skb_put_padto(skb, len, true);
3315 }
3316 
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3317 static inline int skb_add_data(struct sk_buff *skb,
3318 			       struct iov_iter *from, int copy)
3319 {
3320 	const int off = skb->len;
3321 
3322 	if (skb->ip_summed == CHECKSUM_NONE) {
3323 		__wsum csum = 0;
3324 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3325 					         &csum, from)) {
3326 			skb->csum = csum_block_add(skb->csum, csum, off);
3327 			return 0;
3328 		}
3329 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3330 		return 0;
3331 
3332 	__skb_trim(skb, off);
3333 	return -EFAULT;
3334 }
3335 
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3336 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3337 				    const struct page *page, int off)
3338 {
3339 	if (skb_zcopy(skb))
3340 		return false;
3341 	if (i) {
3342 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3343 
3344 		return page == skb_frag_page(frag) &&
3345 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3346 	}
3347 	return false;
3348 }
3349 
__skb_linearize(struct sk_buff * skb)3350 static inline int __skb_linearize(struct sk_buff *skb)
3351 {
3352 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3353 }
3354 
3355 /**
3356  *	skb_linearize - convert paged skb to linear one
3357  *	@skb: buffer to linarize
3358  *
3359  *	If there is no free memory -ENOMEM is returned, otherwise zero
3360  *	is returned and the old skb data released.
3361  */
skb_linearize(struct sk_buff * skb)3362 static inline int skb_linearize(struct sk_buff *skb)
3363 {
3364 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3365 }
3366 
3367 /**
3368  * skb_has_shared_frag - can any frag be overwritten
3369  * @skb: buffer to test
3370  *
3371  * Return true if the skb has at least one frag that might be modified
3372  * by an external entity (as in vmsplice()/sendfile())
3373  */
skb_has_shared_frag(const struct sk_buff * skb)3374 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3375 {
3376 	return skb_is_nonlinear(skb) &&
3377 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3378 }
3379 
3380 /**
3381  *	skb_linearize_cow - make sure skb is linear and writable
3382  *	@skb: buffer to process
3383  *
3384  *	If there is no free memory -ENOMEM is returned, otherwise zero
3385  *	is returned and the old skb data released.
3386  */
skb_linearize_cow(struct sk_buff * skb)3387 static inline int skb_linearize_cow(struct sk_buff *skb)
3388 {
3389 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3390 	       __skb_linearize(skb) : 0;
3391 }
3392 
3393 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3394 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3395 		     unsigned int off)
3396 {
3397 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3398 		skb->csum = csum_block_sub(skb->csum,
3399 					   csum_partial(start, len, 0), off);
3400 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3401 		 skb_checksum_start_offset(skb) < 0)
3402 		skb->ip_summed = CHECKSUM_NONE;
3403 }
3404 
3405 /**
3406  *	skb_postpull_rcsum - update checksum for received skb after pull
3407  *	@skb: buffer to update
3408  *	@start: start of data before pull
3409  *	@len: length of data pulled
3410  *
3411  *	After doing a pull on a received packet, you need to call this to
3412  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3413  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3414  */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3415 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3416 				      const void *start, unsigned int len)
3417 {
3418 	__skb_postpull_rcsum(skb, start, len, 0);
3419 }
3420 
3421 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3422 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3423 		     unsigned int off)
3424 {
3425 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3426 		skb->csum = csum_block_add(skb->csum,
3427 					   csum_partial(start, len, 0), off);
3428 }
3429 
3430 /**
3431  *	skb_postpush_rcsum - update checksum for received skb after push
3432  *	@skb: buffer to update
3433  *	@start: start of data after push
3434  *	@len: length of data pushed
3435  *
3436  *	After doing a push on a received packet, you need to call this to
3437  *	update the CHECKSUM_COMPLETE checksum.
3438  */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3439 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3440 				      const void *start, unsigned int len)
3441 {
3442 	__skb_postpush_rcsum(skb, start, len, 0);
3443 }
3444 
3445 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3446 
3447 /**
3448  *	skb_push_rcsum - push skb and update receive checksum
3449  *	@skb: buffer to update
3450  *	@len: length of data pulled
3451  *
3452  *	This function performs an skb_push on the packet and updates
3453  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3454  *	receive path processing instead of skb_push unless you know
3455  *	that the checksum difference is zero (e.g., a valid IP header)
3456  *	or you are setting ip_summed to CHECKSUM_NONE.
3457  */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3458 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3459 {
3460 	skb_push(skb, len);
3461 	skb_postpush_rcsum(skb, skb->data, len);
3462 	return skb->data;
3463 }
3464 
3465 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3466 /**
3467  *	pskb_trim_rcsum - trim received skb and update checksum
3468  *	@skb: buffer to trim
3469  *	@len: new length
3470  *
3471  *	This is exactly the same as pskb_trim except that it ensures the
3472  *	checksum of received packets are still valid after the operation.
3473  *	It can change skb pointers.
3474  */
3475 
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3476 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3477 {
3478 	if (likely(len >= skb->len))
3479 		return 0;
3480 	return pskb_trim_rcsum_slow(skb, len);
3481 }
3482 
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3483 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3484 {
3485 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3486 		skb->ip_summed = CHECKSUM_NONE;
3487 	__skb_trim(skb, len);
3488 	return 0;
3489 }
3490 
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3491 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3492 {
3493 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3494 		skb->ip_summed = CHECKSUM_NONE;
3495 	return __skb_grow(skb, len);
3496 }
3497 
3498 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3499 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3500 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3501 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3502 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3503 
3504 #define skb_queue_walk(queue, skb) \
3505 		for (skb = (queue)->next;					\
3506 		     skb != (struct sk_buff *)(queue);				\
3507 		     skb = skb->next)
3508 
3509 #define skb_queue_walk_safe(queue, skb, tmp)					\
3510 		for (skb = (queue)->next, tmp = skb->next;			\
3511 		     skb != (struct sk_buff *)(queue);				\
3512 		     skb = tmp, tmp = skb->next)
3513 
3514 #define skb_queue_walk_from(queue, skb)						\
3515 		for (; skb != (struct sk_buff *)(queue);			\
3516 		     skb = skb->next)
3517 
3518 #define skb_rbtree_walk(skb, root)						\
3519 		for (skb = skb_rb_first(root); skb != NULL;			\
3520 		     skb = skb_rb_next(skb))
3521 
3522 #define skb_rbtree_walk_from(skb)						\
3523 		for (; skb != NULL;						\
3524 		     skb = skb_rb_next(skb))
3525 
3526 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3527 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3528 		     skb = tmp)
3529 
3530 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3531 		for (tmp = skb->next;						\
3532 		     skb != (struct sk_buff *)(queue);				\
3533 		     skb = tmp, tmp = skb->next)
3534 
3535 #define skb_queue_reverse_walk(queue, skb) \
3536 		for (skb = (queue)->prev;					\
3537 		     skb != (struct sk_buff *)(queue);				\
3538 		     skb = skb->prev)
3539 
3540 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3541 		for (skb = (queue)->prev, tmp = skb->prev;			\
3542 		     skb != (struct sk_buff *)(queue);				\
3543 		     skb = tmp, tmp = skb->prev)
3544 
3545 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3546 		for (tmp = skb->prev;						\
3547 		     skb != (struct sk_buff *)(queue);				\
3548 		     skb = tmp, tmp = skb->prev)
3549 
skb_has_frag_list(const struct sk_buff * skb)3550 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3551 {
3552 	return skb_shinfo(skb)->frag_list != NULL;
3553 }
3554 
skb_frag_list_init(struct sk_buff * skb)3555 static inline void skb_frag_list_init(struct sk_buff *skb)
3556 {
3557 	skb_shinfo(skb)->frag_list = NULL;
3558 }
3559 
3560 #define skb_walk_frags(skb, iter)	\
3561 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3562 
3563 
3564 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3565 				int *err, long *timeo_p,
3566 				const struct sk_buff *skb);
3567 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3568 					  struct sk_buff_head *queue,
3569 					  unsigned int flags,
3570 					  int *off, int *err,
3571 					  struct sk_buff **last);
3572 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3573 					struct sk_buff_head *queue,
3574 					unsigned int flags, int *off, int *err,
3575 					struct sk_buff **last);
3576 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3577 				    struct sk_buff_head *sk_queue,
3578 				    unsigned int flags, int *off, int *err);
3579 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3580 				  int *err);
3581 __poll_t datagram_poll(struct file *file, struct socket *sock,
3582 			   struct poll_table_struct *wait);
3583 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3584 			   struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3585 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3586 					struct msghdr *msg, int size)
3587 {
3588 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3589 }
3590 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3591 				   struct msghdr *msg);
3592 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3593 			   struct iov_iter *to, int len,
3594 			   struct ahash_request *hash);
3595 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3596 				 struct iov_iter *from, int len);
3597 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3598 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3599 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3600 static inline void skb_free_datagram_locked(struct sock *sk,
3601 					    struct sk_buff *skb)
3602 {
3603 	__skb_free_datagram_locked(sk, skb, 0);
3604 }
3605 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3606 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3607 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3608 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3609 			      int len);
3610 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3611 		    struct pipe_inode_info *pipe, unsigned int len,
3612 		    unsigned int flags);
3613 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3614 			 int len);
3615 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3616 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3617 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3618 		 int len, int hlen);
3619 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3620 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3621 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3622 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3623 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3624 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3625 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3626 				 unsigned int offset);
3627 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3628 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3629 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3630 int skb_vlan_pop(struct sk_buff *skb);
3631 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3632 int skb_eth_pop(struct sk_buff *skb);
3633 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3634 		 const unsigned char *src);
3635 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3636 		  int mac_len, bool ethernet);
3637 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3638 		 bool ethernet);
3639 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3640 int skb_mpls_dec_ttl(struct sk_buff *skb);
3641 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3642 			     gfp_t gfp);
3643 
memcpy_from_msg(void * data,struct msghdr * msg,int len)3644 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3645 {
3646 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3647 }
3648 
memcpy_to_msg(struct msghdr * msg,void * data,int len)3649 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3650 {
3651 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3652 }
3653 
3654 struct skb_checksum_ops {
3655 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3656 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3657 };
3658 
3659 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3660 
3661 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3662 		      __wsum csum, const struct skb_checksum_ops *ops);
3663 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3664 		    __wsum csum);
3665 
3666 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * data,int hlen,void * buffer)3667 __skb_header_pointer(const struct sk_buff *skb, int offset,
3668 		     int len, void *data, int hlen, void *buffer)
3669 {
3670 	if (hlen - offset >= len)
3671 		return data + offset;
3672 
3673 	if (!skb ||
3674 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3675 		return NULL;
3676 
3677 	return buffer;
3678 }
3679 
3680 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)3681 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3682 {
3683 	return __skb_header_pointer(skb, offset, len, skb->data,
3684 				    skb_headlen(skb), buffer);
3685 }
3686 
3687 /**
3688  *	skb_needs_linearize - check if we need to linearize a given skb
3689  *			      depending on the given device features.
3690  *	@skb: socket buffer to check
3691  *	@features: net device features
3692  *
3693  *	Returns true if either:
3694  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3695  *	2. skb is fragmented and the device does not support SG.
3696  */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)3697 static inline bool skb_needs_linearize(struct sk_buff *skb,
3698 				       netdev_features_t features)
3699 {
3700 	return skb_is_nonlinear(skb) &&
3701 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3702 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3703 }
3704 
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)3705 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3706 					     void *to,
3707 					     const unsigned int len)
3708 {
3709 	memcpy(to, skb->data, len);
3710 }
3711 
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)3712 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3713 						    const int offset, void *to,
3714 						    const unsigned int len)
3715 {
3716 	memcpy(to, skb->data + offset, len);
3717 }
3718 
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)3719 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3720 					   const void *from,
3721 					   const unsigned int len)
3722 {
3723 	memcpy(skb->data, from, len);
3724 }
3725 
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)3726 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3727 						  const int offset,
3728 						  const void *from,
3729 						  const unsigned int len)
3730 {
3731 	memcpy(skb->data + offset, from, len);
3732 }
3733 
3734 void skb_init(void);
3735 
skb_get_ktime(const struct sk_buff * skb)3736 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3737 {
3738 	return skb->tstamp;
3739 }
3740 
3741 /**
3742  *	skb_get_timestamp - get timestamp from a skb
3743  *	@skb: skb to get stamp from
3744  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3745  *
3746  *	Timestamps are stored in the skb as offsets to a base timestamp.
3747  *	This function converts the offset back to a struct timeval and stores
3748  *	it in stamp.
3749  */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)3750 static inline void skb_get_timestamp(const struct sk_buff *skb,
3751 				     struct __kernel_old_timeval *stamp)
3752 {
3753 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3754 }
3755 
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)3756 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3757 					 struct __kernel_sock_timeval *stamp)
3758 {
3759 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3760 
3761 	stamp->tv_sec = ts.tv_sec;
3762 	stamp->tv_usec = ts.tv_nsec / 1000;
3763 }
3764 
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)3765 static inline void skb_get_timestampns(const struct sk_buff *skb,
3766 				       struct __kernel_old_timespec *stamp)
3767 {
3768 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3769 
3770 	stamp->tv_sec = ts.tv_sec;
3771 	stamp->tv_nsec = ts.tv_nsec;
3772 }
3773 
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)3774 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3775 					   struct __kernel_timespec *stamp)
3776 {
3777 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3778 
3779 	stamp->tv_sec = ts.tv_sec;
3780 	stamp->tv_nsec = ts.tv_nsec;
3781 }
3782 
__net_timestamp(struct sk_buff * skb)3783 static inline void __net_timestamp(struct sk_buff *skb)
3784 {
3785 	skb->tstamp = ktime_get_real();
3786 }
3787 
net_timedelta(ktime_t t)3788 static inline ktime_t net_timedelta(ktime_t t)
3789 {
3790 	return ktime_sub(ktime_get_real(), t);
3791 }
3792 
net_invalid_timestamp(void)3793 static inline ktime_t net_invalid_timestamp(void)
3794 {
3795 	return 0;
3796 }
3797 
skb_metadata_len(const struct sk_buff * skb)3798 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3799 {
3800 	return skb_shinfo(skb)->meta_len;
3801 }
3802 
skb_metadata_end(const struct sk_buff * skb)3803 static inline void *skb_metadata_end(const struct sk_buff *skb)
3804 {
3805 	return skb_mac_header(skb);
3806 }
3807 
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)3808 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3809 					  const struct sk_buff *skb_b,
3810 					  u8 meta_len)
3811 {
3812 	const void *a = skb_metadata_end(skb_a);
3813 	const void *b = skb_metadata_end(skb_b);
3814 	/* Using more efficient varaiant than plain call to memcmp(). */
3815 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3816 	u64 diffs = 0;
3817 
3818 	switch (meta_len) {
3819 #define __it(x, op) (x -= sizeof(u##op))
3820 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3821 	case 32: diffs |= __it_diff(a, b, 64);
3822 		fallthrough;
3823 	case 24: diffs |= __it_diff(a, b, 64);
3824 		fallthrough;
3825 	case 16: diffs |= __it_diff(a, b, 64);
3826 		fallthrough;
3827 	case  8: diffs |= __it_diff(a, b, 64);
3828 		break;
3829 	case 28: diffs |= __it_diff(a, b, 64);
3830 		fallthrough;
3831 	case 20: diffs |= __it_diff(a, b, 64);
3832 		fallthrough;
3833 	case 12: diffs |= __it_diff(a, b, 64);
3834 		fallthrough;
3835 	case  4: diffs |= __it_diff(a, b, 32);
3836 		break;
3837 	}
3838 	return diffs;
3839 #else
3840 	return memcmp(a - meta_len, b - meta_len, meta_len);
3841 #endif
3842 }
3843 
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)3844 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3845 					const struct sk_buff *skb_b)
3846 {
3847 	u8 len_a = skb_metadata_len(skb_a);
3848 	u8 len_b = skb_metadata_len(skb_b);
3849 
3850 	if (!(len_a | len_b))
3851 		return false;
3852 
3853 	return len_a != len_b ?
3854 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3855 }
3856 
skb_metadata_set(struct sk_buff * skb,u8 meta_len)3857 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3858 {
3859 	skb_shinfo(skb)->meta_len = meta_len;
3860 }
3861 
skb_metadata_clear(struct sk_buff * skb)3862 static inline void skb_metadata_clear(struct sk_buff *skb)
3863 {
3864 	skb_metadata_set(skb, 0);
3865 }
3866 
3867 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3868 
3869 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3870 
3871 void skb_clone_tx_timestamp(struct sk_buff *skb);
3872 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3873 
3874 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3875 
skb_clone_tx_timestamp(struct sk_buff * skb)3876 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3877 {
3878 }
3879 
skb_defer_rx_timestamp(struct sk_buff * skb)3880 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3881 {
3882 	return false;
3883 }
3884 
3885 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3886 
3887 /**
3888  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3889  *
3890  * PHY drivers may accept clones of transmitted packets for
3891  * timestamping via their phy_driver.txtstamp method. These drivers
3892  * must call this function to return the skb back to the stack with a
3893  * timestamp.
3894  *
3895  * @skb: clone of the original outgoing packet
3896  * @hwtstamps: hardware time stamps
3897  *
3898  */
3899 void skb_complete_tx_timestamp(struct sk_buff *skb,
3900 			       struct skb_shared_hwtstamps *hwtstamps);
3901 
3902 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3903 		     struct skb_shared_hwtstamps *hwtstamps,
3904 		     struct sock *sk, int tstype);
3905 
3906 /**
3907  * skb_tstamp_tx - queue clone of skb with send time stamps
3908  * @orig_skb:	the original outgoing packet
3909  * @hwtstamps:	hardware time stamps, may be NULL if not available
3910  *
3911  * If the skb has a socket associated, then this function clones the
3912  * skb (thus sharing the actual data and optional structures), stores
3913  * the optional hardware time stamping information (if non NULL) or
3914  * generates a software time stamp (otherwise), then queues the clone
3915  * to the error queue of the socket.  Errors are silently ignored.
3916  */
3917 void skb_tstamp_tx(struct sk_buff *orig_skb,
3918 		   struct skb_shared_hwtstamps *hwtstamps);
3919 
3920 /**
3921  * skb_tx_timestamp() - Driver hook for transmit timestamping
3922  *
3923  * Ethernet MAC Drivers should call this function in their hard_xmit()
3924  * function immediately before giving the sk_buff to the MAC hardware.
3925  *
3926  * Specifically, one should make absolutely sure that this function is
3927  * called before TX completion of this packet can trigger.  Otherwise
3928  * the packet could potentially already be freed.
3929  *
3930  * @skb: A socket buffer.
3931  */
skb_tx_timestamp(struct sk_buff * skb)3932 static inline void skb_tx_timestamp(struct sk_buff *skb)
3933 {
3934 	skb_clone_tx_timestamp(skb);
3935 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3936 		skb_tstamp_tx(skb, NULL);
3937 }
3938 
3939 /**
3940  * skb_complete_wifi_ack - deliver skb with wifi status
3941  *
3942  * @skb: the original outgoing packet
3943  * @acked: ack status
3944  *
3945  */
3946 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3947 
3948 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3949 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3950 
skb_csum_unnecessary(const struct sk_buff * skb)3951 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3952 {
3953 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3954 		skb->csum_valid ||
3955 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3956 		 skb_checksum_start_offset(skb) >= 0));
3957 }
3958 
3959 /**
3960  *	skb_checksum_complete - Calculate checksum of an entire packet
3961  *	@skb: packet to process
3962  *
3963  *	This function calculates the checksum over the entire packet plus
3964  *	the value of skb->csum.  The latter can be used to supply the
3965  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3966  *	checksum.
3967  *
3968  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3969  *	this function can be used to verify that checksum on received
3970  *	packets.  In that case the function should return zero if the
3971  *	checksum is correct.  In particular, this function will return zero
3972  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3973  *	hardware has already verified the correctness of the checksum.
3974  */
skb_checksum_complete(struct sk_buff * skb)3975 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3976 {
3977 	return skb_csum_unnecessary(skb) ?
3978 	       0 : __skb_checksum_complete(skb);
3979 }
3980 
__skb_decr_checksum_unnecessary(struct sk_buff * skb)3981 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3982 {
3983 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3984 		if (skb->csum_level == 0)
3985 			skb->ip_summed = CHECKSUM_NONE;
3986 		else
3987 			skb->csum_level--;
3988 	}
3989 }
3990 
__skb_incr_checksum_unnecessary(struct sk_buff * skb)3991 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3992 {
3993 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3994 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3995 			skb->csum_level++;
3996 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3997 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3998 		skb->csum_level = 0;
3999 	}
4000 }
4001 
__skb_reset_checksum_unnecessary(struct sk_buff * skb)4002 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4003 {
4004 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4005 		skb->ip_summed = CHECKSUM_NONE;
4006 		skb->csum_level = 0;
4007 	}
4008 }
4009 
4010 /* Check if we need to perform checksum complete validation.
4011  *
4012  * Returns true if checksum complete is needed, false otherwise
4013  * (either checksum is unnecessary or zero checksum is allowed).
4014  */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)4015 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4016 						  bool zero_okay,
4017 						  __sum16 check)
4018 {
4019 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4020 		skb->csum_valid = 1;
4021 		__skb_decr_checksum_unnecessary(skb);
4022 		return false;
4023 	}
4024 
4025 	return true;
4026 }
4027 
4028 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4029  * in checksum_init.
4030  */
4031 #define CHECKSUM_BREAK 76
4032 
4033 /* Unset checksum-complete
4034  *
4035  * Unset checksum complete can be done when packet is being modified
4036  * (uncompressed for instance) and checksum-complete value is
4037  * invalidated.
4038  */
skb_checksum_complete_unset(struct sk_buff * skb)4039 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4040 {
4041 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4042 		skb->ip_summed = CHECKSUM_NONE;
4043 }
4044 
4045 /* Validate (init) checksum based on checksum complete.
4046  *
4047  * Return values:
4048  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4049  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4050  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4051  *   non-zero: value of invalid checksum
4052  *
4053  */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4054 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4055 						       bool complete,
4056 						       __wsum psum)
4057 {
4058 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4059 		if (!csum_fold(csum_add(psum, skb->csum))) {
4060 			skb->csum_valid = 1;
4061 			return 0;
4062 		}
4063 	}
4064 
4065 	skb->csum = psum;
4066 
4067 	if (complete || skb->len <= CHECKSUM_BREAK) {
4068 		__sum16 csum;
4069 
4070 		csum = __skb_checksum_complete(skb);
4071 		skb->csum_valid = !csum;
4072 		return csum;
4073 	}
4074 
4075 	return 0;
4076 }
4077 
null_compute_pseudo(struct sk_buff * skb,int proto)4078 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4079 {
4080 	return 0;
4081 }
4082 
4083 /* Perform checksum validate (init). Note that this is a macro since we only
4084  * want to calculate the pseudo header which is an input function if necessary.
4085  * First we try to validate without any computation (checksum unnecessary) and
4086  * then calculate based on checksum complete calling the function to compute
4087  * pseudo header.
4088  *
4089  * Return values:
4090  *   0: checksum is validated or try to in skb_checksum_complete
4091  *   non-zero: value of invalid checksum
4092  */
4093 #define __skb_checksum_validate(skb, proto, complete,			\
4094 				zero_okay, check, compute_pseudo)	\
4095 ({									\
4096 	__sum16 __ret = 0;						\
4097 	skb->csum_valid = 0;						\
4098 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4099 		__ret = __skb_checksum_validate_complete(skb,		\
4100 				complete, compute_pseudo(skb, proto));	\
4101 	__ret;								\
4102 })
4103 
4104 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4105 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4106 
4107 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4108 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4109 
4110 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4111 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4112 
4113 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4114 					 compute_pseudo)		\
4115 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4116 
4117 #define skb_checksum_simple_validate(skb)				\
4118 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4119 
__skb_checksum_convert_check(struct sk_buff * skb)4120 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4121 {
4122 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4123 }
4124 
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4125 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4126 {
4127 	skb->csum = ~pseudo;
4128 	skb->ip_summed = CHECKSUM_COMPLETE;
4129 }
4130 
4131 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4132 do {									\
4133 	if (__skb_checksum_convert_check(skb))				\
4134 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4135 } while (0)
4136 
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4137 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4138 					      u16 start, u16 offset)
4139 {
4140 	skb->ip_summed = CHECKSUM_PARTIAL;
4141 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4142 	skb->csum_offset = offset - start;
4143 }
4144 
4145 /* Update skbuf and packet to reflect the remote checksum offload operation.
4146  * When called, ptr indicates the starting point for skb->csum when
4147  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4148  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4149  */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4150 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4151 				       int start, int offset, bool nopartial)
4152 {
4153 	__wsum delta;
4154 
4155 	if (!nopartial) {
4156 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4157 		return;
4158 	}
4159 
4160 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4161 		__skb_checksum_complete(skb);
4162 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4163 	}
4164 
4165 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4166 
4167 	/* Adjust skb->csum since we changed the packet */
4168 	skb->csum = csum_add(skb->csum, delta);
4169 }
4170 
skb_nfct(const struct sk_buff * skb)4171 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4172 {
4173 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4174 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4175 #else
4176 	return NULL;
4177 #endif
4178 }
4179 
skb_get_nfct(const struct sk_buff * skb)4180 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4181 {
4182 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4183 	return skb->_nfct;
4184 #else
4185 	return 0UL;
4186 #endif
4187 }
4188 
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4189 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4190 {
4191 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4192 	skb->_nfct = nfct;
4193 #endif
4194 }
4195 
4196 #ifdef CONFIG_SKB_EXTENSIONS
4197 enum skb_ext_id {
4198 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4199 	SKB_EXT_BRIDGE_NF,
4200 #endif
4201 #ifdef CONFIG_XFRM
4202 	SKB_EXT_SEC_PATH,
4203 #endif
4204 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4205 	TC_SKB_EXT,
4206 #endif
4207 #if IS_ENABLED(CONFIG_MPTCP)
4208 	SKB_EXT_MPTCP,
4209 #endif
4210 #if IS_ENABLED(CONFIG_KCOV)
4211 	SKB_EXT_KCOV_HANDLE,
4212 #endif
4213 	SKB_EXT_NUM, /* must be last */
4214 };
4215 
4216 /**
4217  *	struct skb_ext - sk_buff extensions
4218  *	@refcnt: 1 on allocation, deallocated on 0
4219  *	@offset: offset to add to @data to obtain extension address
4220  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4221  *	@data: start of extension data, variable sized
4222  *
4223  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4224  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4225  */
4226 struct skb_ext {
4227 	refcount_t refcnt;
4228 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4229 	u8 chunks;		/* same */
4230 	char data[] __aligned(8);
4231 };
4232 
4233 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4234 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4235 		    struct skb_ext *ext);
4236 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4237 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4238 void __skb_ext_put(struct skb_ext *ext);
4239 
skb_ext_put(struct sk_buff * skb)4240 static inline void skb_ext_put(struct sk_buff *skb)
4241 {
4242 	if (skb->active_extensions)
4243 		__skb_ext_put(skb->extensions);
4244 }
4245 
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4246 static inline void __skb_ext_copy(struct sk_buff *dst,
4247 				  const struct sk_buff *src)
4248 {
4249 	dst->active_extensions = src->active_extensions;
4250 
4251 	if (src->active_extensions) {
4252 		struct skb_ext *ext = src->extensions;
4253 
4254 		refcount_inc(&ext->refcnt);
4255 		dst->extensions = ext;
4256 	}
4257 }
4258 
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4259 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4260 {
4261 	skb_ext_put(dst);
4262 	__skb_ext_copy(dst, src);
4263 }
4264 
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4265 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4266 {
4267 	return !!ext->offset[i];
4268 }
4269 
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4270 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4271 {
4272 	return skb->active_extensions & (1 << id);
4273 }
4274 
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4275 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4276 {
4277 	if (skb_ext_exist(skb, id))
4278 		__skb_ext_del(skb, id);
4279 }
4280 
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4281 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4282 {
4283 	if (skb_ext_exist(skb, id)) {
4284 		struct skb_ext *ext = skb->extensions;
4285 
4286 		return (void *)ext + (ext->offset[id] << 3);
4287 	}
4288 
4289 	return NULL;
4290 }
4291 
skb_ext_reset(struct sk_buff * skb)4292 static inline void skb_ext_reset(struct sk_buff *skb)
4293 {
4294 	if (unlikely(skb->active_extensions)) {
4295 		__skb_ext_put(skb->extensions);
4296 		skb->active_extensions = 0;
4297 	}
4298 }
4299 
skb_has_extensions(struct sk_buff * skb)4300 static inline bool skb_has_extensions(struct sk_buff *skb)
4301 {
4302 	return unlikely(skb->active_extensions);
4303 }
4304 #else
skb_ext_put(struct sk_buff * skb)4305 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4306 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4307 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4308 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4309 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4310 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4311 #endif /* CONFIG_SKB_EXTENSIONS */
4312 
nf_reset_ct(struct sk_buff * skb)4313 static inline void nf_reset_ct(struct sk_buff *skb)
4314 {
4315 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4316 	nf_conntrack_put(skb_nfct(skb));
4317 	skb->_nfct = 0;
4318 #endif
4319 }
4320 
nf_reset_trace(struct sk_buff * skb)4321 static inline void nf_reset_trace(struct sk_buff *skb)
4322 {
4323 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4324 	skb->nf_trace = 0;
4325 #endif
4326 }
4327 
ipvs_reset(struct sk_buff * skb)4328 static inline void ipvs_reset(struct sk_buff *skb)
4329 {
4330 #if IS_ENABLED(CONFIG_IP_VS)
4331 	skb->ipvs_property = 0;
4332 #endif
4333 }
4334 
4335 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4336 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4337 			     bool copy)
4338 {
4339 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4340 	dst->_nfct = src->_nfct;
4341 	nf_conntrack_get(skb_nfct(src));
4342 #endif
4343 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4344 	if (copy)
4345 		dst->nf_trace = src->nf_trace;
4346 #endif
4347 }
4348 
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4349 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4350 {
4351 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4352 	nf_conntrack_put(skb_nfct(dst));
4353 #endif
4354 	__nf_copy(dst, src, true);
4355 }
4356 
4357 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4358 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4359 {
4360 	to->secmark = from->secmark;
4361 }
4362 
skb_init_secmark(struct sk_buff * skb)4363 static inline void skb_init_secmark(struct sk_buff *skb)
4364 {
4365 	skb->secmark = 0;
4366 }
4367 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4368 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4369 { }
4370 
skb_init_secmark(struct sk_buff * skb)4371 static inline void skb_init_secmark(struct sk_buff *skb)
4372 { }
4373 #endif
4374 
secpath_exists(const struct sk_buff * skb)4375 static inline int secpath_exists(const struct sk_buff *skb)
4376 {
4377 #ifdef CONFIG_XFRM
4378 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4379 #else
4380 	return 0;
4381 #endif
4382 }
4383 
skb_irq_freeable(const struct sk_buff * skb)4384 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4385 {
4386 	return !skb->destructor &&
4387 		!secpath_exists(skb) &&
4388 		!skb_nfct(skb) &&
4389 		!skb->_skb_refdst &&
4390 		!skb_has_frag_list(skb);
4391 }
4392 
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4393 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4394 {
4395 	skb->queue_mapping = queue_mapping;
4396 }
4397 
skb_get_queue_mapping(const struct sk_buff * skb)4398 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4399 {
4400 	return skb->queue_mapping;
4401 }
4402 
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4403 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4404 {
4405 	to->queue_mapping = from->queue_mapping;
4406 }
4407 
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4408 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4409 {
4410 	skb->queue_mapping = rx_queue + 1;
4411 }
4412 
skb_get_rx_queue(const struct sk_buff * skb)4413 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4414 {
4415 	return skb->queue_mapping - 1;
4416 }
4417 
skb_rx_queue_recorded(const struct sk_buff * skb)4418 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4419 {
4420 	return skb->queue_mapping != 0;
4421 }
4422 
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4423 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4424 {
4425 	skb->dst_pending_confirm = val;
4426 }
4427 
skb_get_dst_pending_confirm(const struct sk_buff * skb)4428 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4429 {
4430 	return skb->dst_pending_confirm != 0;
4431 }
4432 
skb_sec_path(const struct sk_buff * skb)4433 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4434 {
4435 #ifdef CONFIG_XFRM
4436 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4437 #else
4438 	return NULL;
4439 #endif
4440 }
4441 
4442 /* Keeps track of mac header offset relative to skb->head.
4443  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4444  * For non-tunnel skb it points to skb_mac_header() and for
4445  * tunnel skb it points to outer mac header.
4446  * Keeps track of level of encapsulation of network headers.
4447  */
4448 struct skb_gso_cb {
4449 	union {
4450 		int	mac_offset;
4451 		int	data_offset;
4452 	};
4453 	int	encap_level;
4454 	__wsum	csum;
4455 	__u16	csum_start;
4456 };
4457 #define SKB_GSO_CB_OFFSET	32
4458 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4459 
skb_tnl_header_len(const struct sk_buff * inner_skb)4460 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4461 {
4462 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4463 		SKB_GSO_CB(inner_skb)->mac_offset;
4464 }
4465 
gso_pskb_expand_head(struct sk_buff * skb,int extra)4466 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4467 {
4468 	int new_headroom, headroom;
4469 	int ret;
4470 
4471 	headroom = skb_headroom(skb);
4472 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4473 	if (ret)
4474 		return ret;
4475 
4476 	new_headroom = skb_headroom(skb);
4477 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4478 	return 0;
4479 }
4480 
gso_reset_checksum(struct sk_buff * skb,__wsum res)4481 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4482 {
4483 	/* Do not update partial checksums if remote checksum is enabled. */
4484 	if (skb->remcsum_offload)
4485 		return;
4486 
4487 	SKB_GSO_CB(skb)->csum = res;
4488 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4489 }
4490 
4491 /* Compute the checksum for a gso segment. First compute the checksum value
4492  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4493  * then add in skb->csum (checksum from csum_start to end of packet).
4494  * skb->csum and csum_start are then updated to reflect the checksum of the
4495  * resultant packet starting from the transport header-- the resultant checksum
4496  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4497  * header.
4498  */
gso_make_checksum(struct sk_buff * skb,__wsum res)4499 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4500 {
4501 	unsigned char *csum_start = skb_transport_header(skb);
4502 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4503 	__wsum partial = SKB_GSO_CB(skb)->csum;
4504 
4505 	SKB_GSO_CB(skb)->csum = res;
4506 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4507 
4508 	return csum_fold(csum_partial(csum_start, plen, partial));
4509 }
4510 
skb_is_gso(const struct sk_buff * skb)4511 static inline bool skb_is_gso(const struct sk_buff *skb)
4512 {
4513 	return skb_shinfo(skb)->gso_size;
4514 }
4515 
4516 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4517 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4518 {
4519 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4520 }
4521 
4522 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4523 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4524 {
4525 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4526 }
4527 
4528 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4529 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4530 {
4531 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4532 }
4533 
skb_gso_reset(struct sk_buff * skb)4534 static inline void skb_gso_reset(struct sk_buff *skb)
4535 {
4536 	skb_shinfo(skb)->gso_size = 0;
4537 	skb_shinfo(skb)->gso_segs = 0;
4538 	skb_shinfo(skb)->gso_type = 0;
4539 }
4540 
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4541 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4542 					 u16 increment)
4543 {
4544 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4545 		return;
4546 	shinfo->gso_size += increment;
4547 }
4548 
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4549 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4550 					 u16 decrement)
4551 {
4552 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4553 		return;
4554 	shinfo->gso_size -= decrement;
4555 }
4556 
4557 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4558 
skb_warn_if_lro(const struct sk_buff * skb)4559 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4560 {
4561 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4562 	 * wanted then gso_type will be set. */
4563 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4564 
4565 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4566 	    unlikely(shinfo->gso_type == 0)) {
4567 		__skb_warn_lro_forwarding(skb);
4568 		return true;
4569 	}
4570 	return false;
4571 }
4572 
skb_forward_csum(struct sk_buff * skb)4573 static inline void skb_forward_csum(struct sk_buff *skb)
4574 {
4575 	/* Unfortunately we don't support this one.  Any brave souls? */
4576 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4577 		skb->ip_summed = CHECKSUM_NONE;
4578 }
4579 
4580 /**
4581  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4582  * @skb: skb to check
4583  *
4584  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4585  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4586  * use this helper, to document places where we make this assertion.
4587  */
skb_checksum_none_assert(const struct sk_buff * skb)4588 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4589 {
4590 #ifdef DEBUG
4591 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4592 #endif
4593 }
4594 
4595 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4596 
4597 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4598 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4599 				     unsigned int transport_len,
4600 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4601 
4602 /**
4603  * skb_head_is_locked - Determine if the skb->head is locked down
4604  * @skb: skb to check
4605  *
4606  * The head on skbs build around a head frag can be removed if they are
4607  * not cloned.  This function returns true if the skb head is locked down
4608  * due to either being allocated via kmalloc, or by being a clone with
4609  * multiple references to the head.
4610  */
skb_head_is_locked(const struct sk_buff * skb)4611 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4612 {
4613 	return !skb->head_frag || skb_cloned(skb);
4614 }
4615 
4616 /* Local Checksum Offload.
4617  * Compute outer checksum based on the assumption that the
4618  * inner checksum will be offloaded later.
4619  * See Documentation/networking/checksum-offloads.rst for
4620  * explanation of how this works.
4621  * Fill in outer checksum adjustment (e.g. with sum of outer
4622  * pseudo-header) before calling.
4623  * Also ensure that inner checksum is in linear data area.
4624  */
lco_csum(struct sk_buff * skb)4625 static inline __wsum lco_csum(struct sk_buff *skb)
4626 {
4627 	unsigned char *csum_start = skb_checksum_start(skb);
4628 	unsigned char *l4_hdr = skb_transport_header(skb);
4629 	__wsum partial;
4630 
4631 	/* Start with complement of inner checksum adjustment */
4632 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4633 						    skb->csum_offset));
4634 
4635 	/* Add in checksum of our headers (incl. outer checksum
4636 	 * adjustment filled in by caller) and return result.
4637 	 */
4638 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4639 }
4640 
skb_is_redirected(const struct sk_buff * skb)4641 static inline bool skb_is_redirected(const struct sk_buff *skb)
4642 {
4643 #ifdef CONFIG_NET_REDIRECT
4644 	return skb->redirected;
4645 #else
4646 	return false;
4647 #endif
4648 }
4649 
skb_set_redirected(struct sk_buff * skb,bool from_ingress)4650 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4651 {
4652 #ifdef CONFIG_NET_REDIRECT
4653 	skb->redirected = 1;
4654 	skb->from_ingress = from_ingress;
4655 	if (skb->from_ingress)
4656 		skb->tstamp = 0;
4657 #endif
4658 }
4659 
skb_reset_redirect(struct sk_buff * skb)4660 static inline void skb_reset_redirect(struct sk_buff *skb)
4661 {
4662 #ifdef CONFIG_NET_REDIRECT
4663 	skb->redirected = 0;
4664 #endif
4665 }
4666 
4667 #if IS_ENABLED(CONFIG_KCOV) && IS_ENABLED(CONFIG_SKB_EXTENSIONS)
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)4668 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4669 				       const u64 kcov_handle)
4670 {
4671 	/* Do not allocate skb extensions only to set kcov_handle to zero
4672 	 * (as it is zero by default). However, if the extensions are
4673 	 * already allocated, update kcov_handle anyway since
4674 	 * skb_set_kcov_handle can be called to zero a previously set
4675 	 * value.
4676 	 */
4677 	if (skb_has_extensions(skb) || kcov_handle) {
4678 		u64 *kcov_handle_ptr = skb_ext_add(skb, SKB_EXT_KCOV_HANDLE);
4679 
4680 		if (kcov_handle_ptr)
4681 			*kcov_handle_ptr = kcov_handle;
4682 	}
4683 }
4684 
skb_get_kcov_handle(struct sk_buff * skb)4685 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4686 {
4687 	u64 *kcov_handle = skb_ext_find(skb, SKB_EXT_KCOV_HANDLE);
4688 
4689 	return kcov_handle ? *kcov_handle : 0;
4690 }
4691 #else
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)4692 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4693 				       const u64 kcov_handle) { }
skb_get_kcov_handle(struct sk_buff * skb)4694 static inline u64 skb_get_kcov_handle(struct sk_buff *skb) { return 0; }
4695 #endif /* CONFIG_KCOV && CONFIG_SKB_EXTENSIONS */
4696 
4697 #endif	/* __KERNEL__ */
4698 #endif	/* _LINUX_SKBUFF_H */
4699